WO2019084650A1 - Fertilizante preparado a partir de biocarvão, processo de obtenção e material para propagação vegetal - Google Patents
Fertilizante preparado a partir de biocarvão, processo de obtenção e material para propagação vegetal Download PDFInfo
- Publication number
- WO2019084650A1 WO2019084650A1 PCT/BR2018/050403 BR2018050403W WO2019084650A1 WO 2019084650 A1 WO2019084650 A1 WO 2019084650A1 BR 2018050403 W BR2018050403 W BR 2018050403W WO 2019084650 A1 WO2019084650 A1 WO 2019084650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fertilizer
- bio
- group
- coal
- biochar
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
- C05F11/02—Other organic fertilisers from peat, brown coal, and similar vegetable deposits
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F5/00—Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
- C05F5/006—Waste from chemical processing of material, e.g. diestillation, roasting, cooking
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F5/00—Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
- C05F5/006—Waste from chemical processing of material, e.g. diestillation, roasting, cooking
- C05F5/008—Waste from biochemical processing of material, e.g. fermentation, breweries
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
- C05G3/60—Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
- C05G3/80—Soil conditioners
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G5/00—Fertilisers characterised by their form
- C05G5/30—Layered or coated, e.g. dust-preventing coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
Definitions
- the present invention relates to a fertilizer prepared from bio-carbon, which allows a greater efficiency of nutrients utilization by plants and the improvement of the soil conditions as a result of its production process. Still, the present invention is a plant propagation material comprising said fertilizer. The present invention has application in the agricultural and protected area of horticulture.
- Biocarbons are carbon-rich solids, which can be obtained by thermochemical treatment of biomasses such as animal manure and agro-industrial wastes such as straw, filter cake and sugarcane bagasse, bark of rice and others, by processes known as pyrolysis or carbonization.
- biomasses such as animal manure and agro-industrial wastes such as straw, filter cake and sugarcane bagasse, bark of rice and others
- pyrolysis or carbonization processes known as pyrolysis or carbonization.
- the pyrolysis processes have been seen as an alternative to its handling and use for the purpose of energy utilization and of use in fine chemistry, being a solution attachable to biorefineries for the production of energy, electric and thermal, and other value-added products.
- biomass organic matter breaks down into smaller molecules and react with each other, resulting in three distinct fractions: a gas (biogas), a liquid (bio-oil) and a solid (biochar ).
- biogas gas
- bio-oil liquid
- biochar solid
- the quantity and physical-chemical properties of each of these fractions, generated during the depends on several factors, such as heating rate, temperature, pressure, reactor configuration, residence time and type of biomass used.
- biofuels act in the sequestration of carbon and greenhouse gases (GHG) and increase the productivity of agricultural crops (SOHI, 2012; PAUSTIAN et al., 2016).
- GOG carbon and greenhouse gases
- biofuels can improve their structuring by modifying the particle size distribution and density, as well as directly impacting the retention capacity and availability of water to crops, improve microorganism activity and soil aeration (WU et al., 2016).
- Biocarbons can be subjected to physical and chemical treatments that maximize their agronomic properties.
- the characteristics of the biocarbons that positively influence the interactions with soil and plant development are directly related to their specific surface area, elemental composition, quantity and types of surface oxygenated functional groups.
- a window of opportunity is opened for the use of physicochemical processes that maximize these characteristics and thus the efficiency of the fertilizer, making biofuels viable and competitive against traditional sources in terms of nutrient supply and retention capacity of water, but with superiority regarding the environmental issue and improvements in the radicular environment of the plants.
- BR102015027850-0, 04/11/2015 describes a process for manufacturing a custom mineral fertilizer in which the selected biomass is pretreated in a slow pyrolysis reactor and the resulting biochar being introduced into a reactor of adsorption, in which the mineral fertilizers are added to the biochar: after the adsorption, the fertilizer passes through a drying and sealing reactor for the formation of dry granules.
- an adsorption step is mentioned, the solubility of the nutrients adsorbed to the aforementioned biocarbons in the soil solution is equivalent to cases where a simple physical mixing of the components is performed.
- none of the processes described allows the structure of the bioburne to be altered in order to increase its specific surface area.
- the increase in the porosity of biofuels is also desired because it is related to the improvement in the water retention capacity of the soil, increase of the organic matter and consequently beneficial effects in the microbial population in the bound soil directly to the improvements of the soil properties, factors that in turn generate an increase of productivity.
- the present invention relates to a fertilizer prepared from bio-coal, a process for obtaining said fertilizer and a material for plant propagation.
- the fertilizer of the present invention comprises a biochar and a nutrient salt, wherein said salt is adhered and intimately associated with the structure of the biochar.
- the fertilizer has an increased surface area in relation to the conventional biocharones. These characteristics allow the nutrient to be released gradually to the soil solution, reducing its losses and, with this, the efficiency of the fertilization is increased.
- increased porosity allows more nutrients to be adsorbed, which also contributes to fertilizer efficiency.
- the process of obtaining the fertilizer of the present invention comprises the steps of: (a) soaking the bio-carbon in a solution of activating agents selected from among inorganic activating compounds containing nitrogen, phosphorus or potassium; (b) drying the embedded biocarbon obtained in (a) and performing heat treatment in an inert atmosphere, and (c) neutralizing the thermally treated bioburden of (b) in a solution with a neutralizing agent and drying the product.
- a material as a plant propagation medium comprising an outer coating and / or plant substrate, comprising a fertilizer prepared from biochar and nutrient salts, wherein the salts are adhered to the structure of the biochar.
- Figure 1 shows scanning electron microscopy images of the fertilizer of the present invention, and maps of the K, P and C elements acquired by energy-dispersive spectroscopy (EDS) coupled under the microscope.
- EDS energy-dispersive spectroscopy
- Figure 2 shows scanning electron microscopy images of the fertilizer of the present invention after washing with water, mapping the elements present and highlighting a particle of said fertilizer.
- 1 Fertilizer particle prepared from sugarcane straw biocarbon after washing with water.
- 2 Map of the distribution of potassium showing that there is still residual potassium after washing and that the release of the salt is gradual.
- 3 Map of phosphorus distribution, showing similar effect to that found for potassium (2).
- 4 Map of carbon, structural distribution of biochar.
- Figure 3 shows scanning electron microscopy images of the fertilizer of the present invention highlighting the nutrient salt particle, which is adhered to the biochar.
- Esq . highlights (in circle) for the nutrient salt particles.
- Dir . Zoom of the highlighted region to the left, showing the binding of the salt particles with the biochar.
- Figure 4 shows an image of the granular (2-4 mm) granular bio-based fertilizer.
- Figure 5 shows the ash ash content of sugarcane straw, the bio-carbon obtained with said straw and the fertilizers in different mass proportions of KOH (activating agent) relative to the amount of added straw biochar.
- Figure 6 shows the amount of methylene blue in mg g -1 adsorbed by the bio-carbon and the bio-fertilizer matrix after the manufacturing process, which shows the increase in porosity of the material by the process of the present invention.
- the present invention relates to a fertilizer prepared from bio-carbon and its method of production.
- Biocarbons are defined as solid residues from the pyrolysis or carbonization process of organic materials.
- the organic materials may be selected from the group comprising agricultural crop residues, filter cake, such as sugar cane and rice, lignin, lignocellulosic waste, agricultural and forestry processing waste, by-products of food, paper and timber production.
- fertilizer prepared from bio-coal is meant a fertilizer which comprises, in its composition or structure, a bio-carbon derived from any organic materials.
- the fertilizer of the present invention is characterized in that it comprises a biochar and a nutrient salt, wherein said salt is adhered to the structure of the biochar.
- the biochar in the fertilizer has an increased surface area compared to the original and conventional biochar, with this area being greater than 100 m 2 / g.
- the salt may be selected from the group consisting of KH2 PO4, K2 HPO4, K3 PO4, KCl, KNO3, or mixtures thereof, but not limited to those alone.
- the fertilizer of the present invention may further comprise micronutrients such as iron, zinc, copper, manganese, selenium, chlorine, boron, molybdenum, cobalt, nickel, silicon, mixtures thereof and others which may be considered essential .
- said fertilizer may comprise enzymes such as nitrification inhibitors, urea hydrolysis, among others related to nitrogen metabolism in the soil, in order to increase the efficiency of N use by plants when the fertilizer is composed of nitrogen source .
- the fertilizer of the present invention may be presented in the form of powder, granules, pellets, or other solid fertilizers.
- the fertilizer of the present invention is characterized in that it comprises, in addition to a biochar and a nutrient salt, wherein the salt is adhered to the structure of the biochar, a binding agent or other additives as mentioned in Annexes II, III and IV of the Normative Instruction No. 46 of November 22, 2016 of the Ministry of Agriculture Livestock and Supply.
- the binder may be selected from the group comprising the expansive clays of the montmorillonite and smectite groups.
- the binder may be selected from the group consisting of starch, vinasse and sugar syrups. It is possible that the binding agent is chosen from among these combinations.
- the granules and pellets may comprise mineral or polymeric coatings such as limestone, waxes, and elemental sulfur.
- the fertilizer of this invention has application in the covering of propagating material of plants, like seeds, toletes and tubers.
- a plant propagation material characterized in that it comprises an outer coating, said coating comprising a fertilizer prepared from bio-coal and a nutrient salt, wherein the salt is adhered to the structure of the bio-carbon.
- the outer coating of said plant propagation material comprises a fertilizer prepared from bio-carbon and a nutrient salt, wherein the salt adhered to the structure of the bio-carbon is selected from the group consisting of KH2PO4, K2HPO4, K3PO4, KCl, KNO3 , or mixtures thereof.
- the biochar in this case would have an area greater than 100 m 2 / g.
- the outer covering may further comprise, micronutrients, enzymes, enzymatic inhibitors, binders, and mineral or polymeric coating as described for the fertilizer of the present invention.
- the present invention also relates to the method of obtaining the fertilizer from bio-coal as described above.
- the process comprises the steps of:
- Inorganic compound is meant by a compound containing metals or hydrogen combined with a non-metal or a group of non-metals.
- the inorganic compounds may be selected, preferably, from potassium hydroxide and phosphoric acid, but without restriction thereto.
- the heat treatment of the bio-carbon in step (b) should take place in a free or low oxygen concentration environment, for example under N 2 atmosphere, at a temperature of 400 to 1000 ° C and with the dry material.
- an increased porosity material is obtained in relation to the conventional bio-rolls, with consequent elevation of the specific area of the material. The area reached is greater than 100 m 2 / g.
- step (c) the thermally treated bioburden must be soaked in a neutralizing solution selected from phosphoric acid, hydrochloric acid, nitric acid, sulfuric acid, potassium hydroxide, ammonium hydroxide or others. Because it is a neutralization reaction, care should be taken to choose solutions that neutralize the solution containing activating agents employed in step (a). Thus, if the activating agent employed is the basic potassium hydroxide, the neutralizing solution must be acidic. Otherwise, if the chosen activating agent is phosphoric acid, a basic neutralizing solution should be chosen for step (c).
- a neutralizing solution selected from phosphoric acid, hydrochloric acid, nitric acid, sulfuric acid, potassium hydroxide, ammonium hydroxide or others. Because it is a neutralization reaction, care should be taken to choose solutions that neutralize the solution containing activating agents employed in step (a). Thus, if the activating agent employed is the basic potassium hydroxide, the neutralizing solution must be acidic. Otherwise, if the chosen activ
- step (c) An important feature in the choice of the solution containing activators and the neutralizing solution is the type of fertilizer salt to be obtained at the end of step (c): in one example, if the need is for fertilization with potassium chloride, the hydroxide of potassium should be employed in step (a), while hydrochloric acid should be employed in step
- step (c) of the process If the need is for phosphate fertilization, phosphoric acid may be used in step
- potassium hydroxide may be employed in step (c) of the process or vice versa.
- the product may optionally undergo a step of adding other fertilizing salts and / or compounds of interest such as salts containing micronutrients, enzyme inhibitors, herbicides, fungicides, or combinations among these.
- other fertilizing salts and / or compounds of interest such as salts containing micronutrients, enzyme inhibitors, herbicides, fungicides, or combinations among these.
- the product may optionally pass through a granulation step, by adding a binder selected from the group comprising the expansive clays of the montmorillonite and smectite group.
- the binder may be selected from the group consisting of starch, vinasse, sugar syrups. From the granulation step, a granular product results, which can, optionally, receive mineral or polymeric coatings, such as limestone, microfilm and elemental sulfur.
- the activating agent solution 200 g of KOH were diluted in 500 ml of H 2 O and stirred on a mechanical stirrer until the solution became homogeneous. Subsequently, the biocarbon and also H2O, from 100 to 100 mL, were added to 50 mL of H2O and 200 g of bio-carbon. After the solution was homogeneous, approximately 15 minutes, it was kept under constant agitation for 120 minutes. After this period the mixture was transferred to the plastic tray and dried in a forced air circulation oven at 105 ° C for 24 h or until reaching a constant mass.
- the dried material was then triturated with the aid of a mortar and pestle, transferred to porcelain crucibles and heat-treated in a muffle under an inert atmosphere.
- the gas used to maintain the oxygen-free atmosphere was nitrogen (N2), at a temperature of 700 ° C, for 90 minutes, following a heating curve: from the ambient temperature (25 ° C) the gradual increase in temperature was 20 ° C per minute to 700 ° C (approximate time of 34 minutes); when at 700 ° C the muffle remained for 90 minutes at constant temperature and at the end of the process automatically switched off.
- N2 nitrogen
- the entire heating and cooling process was carried out with the N 2 atmosphere to prevent the material from combusting.
- the N 2 gas flow must remain on for at least 5 minutes so that the oxygen in the inner atmosphere of the muffle is eliminated. Cooling of the system and removal of the material occurred after a period of 12 hours when the temperature was below 150 ° C.
- the material was then triturated with mortar and pestle and homogenized. After this step it was dispersed in 500 mL of H 2 O with the aid of a mechanical stirrer and H 3 PO 4 (85%) was added until the dispersion reached pH 7.00 ( ⁇ 0.05), where 109 mL of 85% H 3 PO 4 were used .
- the dispersion was then placed in a stainless steel pan and dried in a forced ventilation oven at 105 ° C for 24 h until a constant mass was reached. When dry, then enriched with nutrients and with the altered carbonaceous structure, the final material was ground (mortar and pistil) and homogenized: in this process the final mass was 371 g.
- the fertilizer was granulated in a stainless steel dish granulator. Approximately 100 g was placed in the material in granulator plate with slope of 45 ° and 20 rpm.
- a binding agent a sugar solution was used which was sprayed thereon until starting to form fertilizer agglomerates, then the rotation was increased to 30 rpm and more powdered fertilizer was added, alternately with the sugar solution.
- 10% w / w of a stabilizing agent was added, in this case the calcined limestone. After the granules were formed they were oven dried at 65 ° C until constant mass, approximately 12h.
- Table 1 Chemical composition of bio-fertilizer based on granules.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pest Control & Pesticides (AREA)
- Engineering & Computer Science (AREA)
- Botany (AREA)
- Environmental & Geological Engineering (AREA)
- Plant Pathology (AREA)
- Soil Sciences (AREA)
- Biotechnology (AREA)
- Fertilizers (AREA)
Abstract
A presente invenção refere-se a um fertilizante preparado a partir de biocarvão, ao seu processo de obtenção e a um material de propagação vegetal que compreende o referido fertilizante preparado a partir de biocarvão. A presente invenção permite uma maior eficiência de utilização dos nutrientes pelas plantas e a melhoria das condições do solo e possui aplicação na área agrícola e de cultivo protegido de hortifruticultura.
Description
FERTILIZANTE PREPARADO A PARTIR DE BIOCARVAO , PROCESSO DE OBTENÇÃO E MATERIAL PARA PROPAGAÇÃO VEGE TAL
CAMPO DA INVENÇÃO
[001] A presente invenção refere-se a um fertilizante preparado a partir de biocarvão, o qual permite uma maior eficiência de utilização dos nutrientes pelas plantas e a melhoria das condições do solo em decorrência do seu processo de obtenção. Ainda, a presente invenção trata-se de um material para propagação vegetal que compreende o referido fertilizante. A presente invenção possui aplicação na área agrícola e de cultivo protegido de hortifruticultura .
FUNDAMENTOS DA INVENÇÃO
[002] Os biocarvões são sólidos ricos em carbono, os quais podem ser obtidos por meio do tratamento termoquímico de biomassas como o esterco animal e resíduos agroindustriais como a palha, a torta de filtro e o bagaço da cana-de-açúcar, a casca de arroz e outros, por processos conhecidos como pirólise ou carbonização. No caso dos resíduos sólidos da cana-de-açúcar, em especial, os processos de pirólise têm sido vistos como uma alternativa para o seu manejo e utilização com a finalidade de aproveitamento energético e de uso em química-fina, sendo uma solução acoplável a biorrefinarias para produção de energia, elétrica e térmica, e outros produtos de valor agregado.
[003] Durante a pirólise, as cadeias carbónicas do material orgânico da biomassa se fragmentam em moléculas menores e que reagem entre si, resultando em três frações distintas: uma gasosa (biogás), uma líquida (bio-óleo) e uma sólida (biocarvão) . A quantidade e as propriedades físico- químicas de cada uma destas frações, geradas durante o
processo, dependem de diversos fatores, como por exemplo, taxa de aquecimento, temperatura, pressão, configuração do reator, tempo de residência e tipo de biomassa utilizados.
[004] Tem sido observado que o uso de biocarvões no solo permite a melhoria de sua fertilidade e estrutura, com destaque para a capacidade de troca de cátions (CTC) , para o aumento da porosidade e disponibilidade de nutrientes, com redução de perdas (DING et al . , 2016; GUL; WHALEN, 2016) . Ainda, os biocarvões atuam no sequestro de carbono e de gases do efeito estufa (GEE) e aumentam a produtividade de culturas agrícolas (SOHI, 2012; PAUSTIAN et al . , 2016) . Quando incorporados ao solo, os biocarvões podem melhorar sua estruturação, modificando a distribuição de tamanho de partículas e de densidade, além de impactar diretamente na capacidade de retenção e disponibilização de água às culturas, melhorar a atividade de microrganismos e a aeração do solo (WU et al . , 2016) .
[005] Nos últimos anos, apesar da difusão do uso de biocarvões na agricultura como fertilizante e corretivo de solo, a ampla maioria das avaliações de sua eficiência agronómica tem sido realizada a partir da sua aplicação direta ou após tratamento prévio mínimo, tanto físico como químico. No entanto, a aplicação direta possui uma desvantagem logística, uma vez que a densidade aparente destes materiais é muito baixa e consequentemente um grande volume do mesmo necessita ser aplicado ao solo. Assim, custos elevados com transporte do produto inviabilizam sua utilização em grande escala ou em culturas extensivas. Outra desvantagem é a variação quanto a composição dos biocarvões: mesmo sendo processados a partir de materiais ricos em alguns
nutrientes, esses são parcialmente perdidos durante a pirólise e, com isso, apenas uma pequena quantidade deles é levada ao campo. Estes fatores, associados ao elevado custo de produção e aplicação desses materiais sem agregação de valor, inviabiliza a aplicação em grandes áreas.
[006] Os biocarvões, no entanto, podem ser submetidos a tratamentos físicos e químicos que maximizem as suas propriedades agronómicas. As características dos biocarvões que influenciam positivamente nas interações com o solo e no desenvolvimento vegetal possuem relação direta com a sua área superficial específica, composição elementar, quantidade e tipos de grupos funcionais oxigenados de superfície. Diante disto, abre-se uma janela de oportunidades para o emprego de processos físico-químicos que maximizem essas características e, assim, a eficiência do fertilizante, tornando os biocarvões viáveis e competitivos frente às fontes tradicionais quanto ao fornecimento de nutrientes e capacidade de retenção de água, mas com superioridade quanto a questão ambiental e melhorias no ambiente radicular das plantas.
[007] Alguns materiais, neste sentido, vêm sendo estudados e comercializados. No entanto, em geral, realiza- se meramente uma mistura física ou peletização dos nutrientes com o biocarvão, com mistura via sólida ou via úmida. O documento CN104817384, de 20/04/2015, reivindica um fertilizante baseado em cálcio, magnésio e fosfato fundido, em que uma massa entre 20 e 24 % de biocarvão obtido a partir de palha de biomassas vegetais (soja, arroz, milho e similares) faz parte da composição: o processo de preparação envolve a pirólise da palha, o uso do biogás gerado na
pirólise para a fusão dos compostos que integram o fertilizante e a peletização do produto final. Já o documento CN105693328, de 27/01/2016, apresenta uma formulação liquida contendo palha de trigo pirolisada e uma solução de KOH, solução esta que é digerida, filtrada e sofre a adição de outros cátions. Similarmente, o documento CN104211545, de 22/09/2014, trata da mistura de um biocarvão de cascas de amendoim, pedúnculos de banana, bagaço de cana-de-açúcar, resíduos de processamento do milho ou combinações entre estes, com fontes de nitrogénio, fosfato e potássio, granulando-se a mistura com atapulgita ou silicato de sódio. A desvantagem de se utilizar formulações destes tipos reside em que, a partir do momento que estas entram em contato com a água, os nutrientes são solubilizados e passam para a solução do solo rapidamente, ficando passíveis de perdas e reduzindo a eficiência dos fertilizantes. Outro ponto insípido destes processos de simples mistura é que suas formas de produção não promovem o aumento da área superficial do biocarvão, o que é altamente desejado. Materiais com superfície específica maiores são capazes de reter e liberar água e nutrientes de maneira mais gradual, gerando assim um aumento na eficiência e, consequentemente, uma diminuição nos custos de aplicação.
[008] Outras estratégias de formulação de fertilizantes baseados em biocarvões também são adotadas, tal como a descrita em WO201491279, de 12/12/2012, em que se reivindica um processo no qual resíduos agroindustriais passam por uma pirólise a baixa temperatura (entre 300°C e 500°C), o material obtido passa por uma adsorção com uma fonte de N em fase líquida a uma temperatura entre 100 e 200°C e,
posteriormente, por um recobrimento com um polímero biodegradável, como o alginato. De maneira semelhante, BR102015027850-0, de 04/11/2015, descreve um processo de fabricação de um fertilizante mineral customizado em que a biomassa selecionada é pré-tratada em um reator de pirólise lenta e o biocarvão resultante é introduzido em um reator de adsorção interna, no qual os fertilizantes minerais são adicionados ao biocarvão: após à adsorção, o fertilizante passa por um reator de secagem e selagem para a formação de grânulos secos. Embora se mencione uma etapa de adsorção, a solubilidade dos nutrientes adsorvidos aos biocarvões acima citados na solução de solo equivale aos casos onde uma simples mistura física dos componentes é realizada. Ainda, nenhum dos processos descritos permite a alteração da estrutura do biocarvão de maneira a aumentar sua superfície específica .
[009] Em especial, a questão da fertilização fosfatada é de grande interesse principalmente em solos tropicais, altamente intemperizados e com grande capacidade de adsorção desse elemento. Solos como este levam à indisponibilidade de fósforo (P) às plantas e, em decorrência deste fato, a busca pela otimização de fertilizantes é, em sua grande maioria, pautada na disponibilização do fósforo. A eficiência de uso de P em solos brasileiros, por exemplo, é em torno de 30%, mesmo em operações e sistemas altamente tecnifiçados . Em Ronghua et al . , 2016 (Bioresource Technology 215 (2016) 209- 214) , um resíduo da cultura de cana-de-açúcar, em um processo combinado de impregnação e pirólise com óxido de magnésio, forma um biocarvão com propriedades magnéticas, capaz de recuperar fosfatos a partir de soluções aquosas e de ser
empregado como fertilizante fosfatado. Apesar de esta também ser uma solução para o enriquecimento do biocarvão, existe a necessidade de que o processo de impregnação permita, de alguma maneira, o controle do produto que está sendo formado, com uniformidade de características. Além disso, a recuperação de fosfatos a partir de águas residuárias, por exemplo, para usá-lo como nutriente no solo, poderia ser um problema diante da provável contaminação do produto final com metais pesados e patógenos. Isso acarretaria um impacto negativo na utilização do fertilizante formado. Adicionado a isso, gerar todo um processo fundamentado apenas em um nutriente onera a produção do fertilizante, de forma que é interessante que o processo não se limite apenas ao fósforo, mas também se estenda a outros elementos essenciais às plantas .
[010] A simples mistura ou impregnação de um biocarvão com uma solução de ácido fosfórico, além de tornar o produto resultante ácido, inviabilizando sua aplicação ao solo, não alteraria por si só a estrutura e porosidade do biocarvão. Desta forma, as maneiras descritas para o enriquecimento dos biocarvões com nutrientes não atendem à proposta de obtenção de um fertilizante de biocarvão com eficiência aumentada, que controle a disponibilidade dos nutrientes quando em contato com o solo (onde ele pode ser adsorvido, lixiviado ou volatilizado) e que, ao mesmo tempo, permita que as raízes das plantas absorvam os nutrientes do biocarvão. O aumento da porosidade dos biocarvões também é desejado por relacionar-se com a melhoria na capacidade de retenção de água do solo, aumento da matéria orgânica e consequentemente efeitos benéficos na população microbiana no solo ligada
diretamente às melhorias das propriedades edáficas, fatores estes que em geram um incremento de produtividade.
BREVE DESCRIÇÃO DA INVENÇÃO
[011] A presente invenção trata-se de um fertilizante preparado a partir de biocarvão, de um processo de obtenção do referido fertilizante e de um material para propagação vegetal .
[012] O fertilizante da presente invenção compreende um biocarvão e um sal nutriente, em que o dito sal está aderido e intimamente associado à estrutura do biocarvão. Ademais, o fertilizante possui área superficial aumentada em relação aos biocarvões convencionais. Estas características permitem com que o nutriente seja liberado gradualmente à solução de solo, reduzindo suas perdas e, com isso, aumenta-se a eficiência da fertilização. Além disso, a porosidade aumentada permite que mais nutrientes sejam adsorvidos, o que também contribui para a eficiência do fertilizante.
[013] O processo de obtenção do fertilizante de que trata o presente invento compreende as etapas de: (a) embeber o biocarvão em uma solução de agentes ativantes eleitos dentre compostos inorgânicos ativantes que contenham nitrogénio, fósforo ou potássio; (b) secar o biocarvão embebido obtido em (a) e realizar tratamento térmico em atmosfera inerte, e (c) neutralizar o biocarvão termicamente tratado de (b) em uma solução com agente neutralizante e secar o produto. Este processo possui a vantagem de permitir a alteração estrutural do biocarvão, aumentando a sua área superficial e a formação in situ e adesão do sal nutriente à sua estrutura do biocarvão .
[014] Ainda, é objeto da presente invenção um material como meio para propagação vegetal que compreenda um recobrimento externo e/ou substrato de plantas, compreendendo um fertilizante preparado a partir de biocarvão e sais nutrientes, em que os sais estão aderidos à estrutura do biocarvão. A vantagem deste material para propagação reside no fato de que a água e os nutrientes necessários para o desenvolvimento vegetal são mantidos próximos à planta.
BREVE DESCRIÇÃO DAS FIGURAS
[015] A Figura 1 mostra imagens de microscopia eletrônica de varredura do fertilizante do presente invento, e mapas dos elementos K, P e C adquiridos por espectroscopia dispersiva em energia (EDS) acoplada ao microscópio. 1: Partículas dos fertilizantes preparados a partir de biocarvão de palha de cana-de-açúcar . 2: Mapa da distribuição de potássio nas partículas de biocarvão, mostrando que há uma distribuição homogénea deste elemento partículas. 3: Mapa da distribuição de fósforo nas partículas de biocarvão, mostrando efeito semelhante ao encontrado para o potássio (2) . 4: Mapa da distribuição de carbono, estrutural do biocarvão .
[016] A Figura 2 mostra imagens de microscopia eletrônica de varredura do fertilizante do presente invento após lavagem com água, mapeando os elementos presentes e destacando uma partícula do referido fertilizante. 1: Partícula do fertilizante preparado a partir de biocarvão de palha de cana-de-açúcar após lavagem com água. 2: Mapa da distribuição de potássio mostrando que ainda há residual de potássio após lavagem e que a liberação do sal é gradual. 3:
Mapa da distribuição de fósforo, mostrando efeito semelhante ao encontrado para o potássio (2) . 4: Mapa da distribuição de carbono, estrutural do biocarvão.
[017] A Figura 3 mostra imagens de microscopia eletrônica de varredura do fertilizante do presente invento com destaque para a partícula de sal nutriente, que se encontra aderido ao biocarvão. Esq.: destaques (em círculo) para as partículas de sal nutriente. Dir.: Zoom da região destacada à esquerda, mostrando a ligação das partículas de sal com o biocarvão.
[018] A Figura 4 mostra uma imagem do fertilizante a base de biocarvão em grânulo (2 - 4 mm) .
[019] A Figura 5 mostra os teores de cinzas de palha de cana-de-açúcar, do biocarvão obtido com a referida palha e dos fertilizantes em diferentes proporções mássicas de KOH (agente ativante) em relação a quantidade de biocarvão de palha adicionado.
[020] A Figura 6 apresenta a quantidade de azul de metileno em mg g_1 adsorvido pelo biocarvão e pela matriz do fertilizante biocarvão após o processo de fabricação, o que revela o aumento de porosidade do material pelo processo do presente invento.
DESCRIÇÃO DETALHADA DA INVENÇÃO
[021] A presente invenção trata-se de um fertilizante preparado a partir de biocarvão e seu processo de obtenção. Define-se biocarvão por resíduo sólido proveniente de processo de pirólise ou carbonização de materiais orgânicos. A título de exemplos, porém sem limitação a estes, os materiais orgânicos podem ser eleitos dentre o grupo que compreende restos de culturas agrícolas, tortas de filtro,
palhas como a de cana-de-açúcar e arroz, lignina, resíduos lignocelulósicos , resíduos do processamento de produtos agrícolas e florestais, sub-produtos da produção de alimentos, papel e madeiras. Por fertilizante preparado a partir de biocarvão, entende-se um fertilizante que compreende, em sua composição ou estrutura, um biocarvão proveniente de quaisquer materiais orgânicos.
[022] O fertilizante da presente invenção é caracterizado por compreender um biocarvão e um sal nutriente, em que o dito sal está aderido à estrutura do biocarvão .
[023] O biocarvão presente no fertilizante possui uma área superficial aumentada em relação ao biocarvão de origem e os convencionais, sendo esta área superior a 100 m2/g. O sal pode ser eleito dentre o grupo que compreende KH2 PO4 , K2HPO4 , K3PO4, KC1, KNO3, ou misturas entre estes, mas não se limitando a apenas esses.
[024] O fertilizante da presente invenção pode compreender, ainda, micronutrientes tais como ferro, zinco, cobre, manganês, selênio, cloro, boro, molibdênio, cobalto, níquel, silício, misturas entre estes e outros que podem vir a serem considerados essenciais. Além disso, dito fertilizante pode compreender enzimas como inibidores de nitrificação, de hidrólise da ureia, dentre outras relacionadas ao metabolismo de nitrogénio no solo, com o intuito de aumentar a eficiência de uso de N pelas plantas quando o fertilizante for composto por fonte de nitrogénio.
[025] O fertilizante da presente invenção pode ser apresentado na forma de pó, de grânulos, de pellets, ou de outros sólidos fertilizantes. Desta maneira, no caso de um
grânulo, o fertilizante da presente invenção é caracterizado por compreender, além de um biocarvão e um sal nutriente, em que o sal está aderido à estrutura do biocarvão, um agente ligante ou outros aditivos como citados nos Anexos II, III e IV da Instrução Normativa N°46 de 22 de novembro de 2016 do Ministério da Agricultura Pecuária e Abastecimento.
[026] O agente ligante pode ser selecionado dentre o grupo que compreende as argilas expansivas do grupo das montmorilonitas e esmectitas. Ainda, o agente ligante pode ser selecionado dentre o grupo que compreende amido, vinhaça e caldas de açúcares. É possível que o agente ligante seja eleito dentre combinações entre estas opções.
[027] Adicionalmente, os grânulos e pellets podem compreender recobrimentos minerais ou poliméricos como, por exemplo, calcário, ceras, e enxofre elementar.
[028] Em outra vertente, o fertilizante desta invenção possui aplicação no recobrimento de materiais de propagação vegetal, como sementes, toletes e tubérculos. Assim, a presente invenção contempla um material de propagação vegetal caracterizado por compreender um recobrimento externo, dito recobrimento compreendendo um fertilizante preparado a partir de biocarvão e um sal nutriente, em que o sal está aderido à estrutura do biocarvão. Opcionalmente, o recobrimento externo do referido material para propagação vegetal compreende um fertilizante preparado a partir de biocarvão e um sal nutriente, em que o sal aderido à estrutura do biocarvão é selecionado dentre o grupo que compreende KH2 PO4 , K2HPO4 , K3PO4 , KC1, KNO3 , ou misturas entre estes. O biocarvão, neste caso, teria uma área superior a 100 m2/g. O recobrimento externo pode compreender, ainda,
micronutrientes , enzimas, inibidores enzimáticos, agentes ligantes e recobrimento mineral ou polimérico conforme descrito para o fertilizante da presente invenção.
[029] A presente invenção trata-se, também, do processo de obtenção do fertilizante a partir de biocarvão acima descrito. O processo compreende as etapas de:
a) Embeber o biocarvão em uma solução contendo agentes de ativação eleitos dentre compostos inorgânicos que contenham nitrogénio, fósforo ou potássio;
b) Secar o biocarvão embebido obtido em (a) e realizar tratamento térmico em atmosfera inerte, e
c) Neutralizar o biocarvão termicamente tratado de (b) em uma solução neutralizante e secar o produto.
[030] Entende-se por composto inorgânico por um composto que contêm metais ou hidrogénio combinado com um não-metal ou um grupo de não metais. Na etapa (a), os compostos inorgânicos podem ser selecionados , preferencialmente, dentre hidróxido de potássio e ácido fosfórico, porém sem restrição a estes. O tratamento térmico do biocarvão na etapa (b) deve acontecer em um ambiente livre ou com baixa concentração de oxigénio, por exemplo, sob atmosfera de N2, a uma temperatura de 400 a 1000 °C e com o material seco. Ao final da etapa (b) , obtém-se um material de porosidade aumentada em relação aos biocarvões convencionais, com consequente elevação da área especifica do material. A área atingida é superior a 100 m2/g.
[031] Na etapa (c) o biocarvão tratado termicamente deve ser embebido em uma solução neutralizante selecionada dentre o ácido fosfórico, ácido clorídrico, ácido nítrico, ácido sulfúrico, hidróxido de potássio, hidróxido de amónio ou
outros. Por se tratar de uma reação de neutralização, deve- se ter o cuidado de eleger soluções que neutralizem a solução contendo agentes de ativação empregada na etapa (a) . Desta maneira, se o agente de ativação empregado for o hidróxido de potássio, básico, a solução neutralizante deve ser ácida. Do contrário, se o agente de ativação eleito for o ácido fosfórico, deve-se eleger uma solução neutralizante básica para a etapa (c) . Uma característica importante na escolha da solução contendo agentes de ativação e da solução neutralizante é o tipo de sal fertilizante que se pretende obter ao final da etapa (c) : em um exemplo, caso a necessidade seja a fertilização com cloreto de potássio, o hidróxido de potássio deverá ser empregado na etapa (a) , enquanto que ácido clorídrico deverá ser empregado na etapa
(c) do processo. Caso a necessidade seja a fertilização fosfatada, o ácido fosfórico poderá ser empregado na etapa
(a) , enquanto que hidróxido de potássio poderá ser empregado na etapa (c) do processo ou vice e versa.
[032] Após à neutralização na etapa (c) , o produto pode, opcionalmente, passar por uma etapa de adição de outros sais fertilizantes e/ou compostos de interesse como por exemplo sais contendo micronutrientes , inibidores enzimáticos, herbicidas, fungicidas, ou combinações entre estas.
[033] Ainda, o produto pode passar, opcionalmente, por uma etapa de granulação, adicionando-se um agente ligante selecionado dentre o grupo que compreende as argilas expansivas do grupo das montmorilonitas e esmectitas. Ainda, o agente ligante pode ser selecionado dentre o grupo que compreende amido, vinhaça, caldas de açúcares. Da etapa de granulação, resulta um produto granulado, que pode,
opcionalmente, receber recobrimentos minerais ou poliméricos, como calcário, microfilmes e enxofre elementar.
[034] Exemplo
[035] Duzentos gramas de biocarvão de palha de cana-de- açúcar pirolisada foram obtidos em reator de pirólise de leito fluidizado a 480 °C.
[036] Para a solução de agente de ativação, diluiram-se 200 g de KOH em 500 mL de H2O e agitou-se em agitador mecânico até que a solução ficasse homogénea. Seguidamente foram sendo adicionados, de 50 em 50 g, o biocarvão e também H2O, de 100 em 100 mL, até 1000 mL de H2O e 200 g de biocarvão. Após a solução ficar homogénea, aproximadamente 15 minutos, a mesma foi mantida em agitação constante por 120 minutos. Após esse período a mistura foi transferida à bandeja plástica e seca em estufa de circulação forçada de ar a 105 °C por 24 h ou até atingir massa constante.
[037] O material seco foi então triturado com o auxílio de um almofariz e pistilo, transferido para cadinhos de porcelana e tratado termicamente em mufla sob atmosfera inerte. O gás utilizado para manter a atmosfera livre de oxigénio foi o nitrogénio (N2) , em uma temperatura de 700 °C, por 90 minutos, seguindo uma curva de aquecimento: partindo da temperatura ambiente (25 °C) o aumento gradual da temperatura foi de 20 °C por minuto até 700 °C (tempo aproximado de 34 minutos); quando em 700 °C o mufla permaneceu por 90 minutos em temperatura constante e ao final do processo automaticamente desligada. Todo o processo de aquecimento e resfriamento deu-se com a atmosfera de N2 para evitar que o material entrasse em combustão. Deve-se observar que, após o fechamento da mufla e antes do início do
aquecimento, deve-se permanecer com o fluxo de gás N2 ligado por pelo menos 5 minutos para que o oxigénio na atmosfera interna do mufla seja eliminado. O resfriamento do sistema e a retirada do material deu-se após período de 12 h, quando temperatura estava inferior a 150 °C.
[038] O material foi então triturado com almofariz e pistilo e homogeneizado. Após esta etapa o mesmo foi disperso em 500 mL de H2O com auxílio de agitador mecânico e foi adicionado H3PO4 (85%) até a dispersão atingir pH 7,00 (±0,05), em que foram utilizados 109 mL de H3PO4 85%. A dispersão foi então colocada em bandeja de inox e seca em estufa de ventilação forçada a 105 °C por 24 h até atingir massa constante. Quando seco, e então já enriquecido com nutrientes e com a estrutura carbonácea alterada, o material final foi triturado (almofariz e pistilo) e homogeneizado: neste processo, a massa final foi de 371 g. Após todo o processo o fertilizante foi granulado em um granulador de prato de inox. Foi colocado aproximadamente 100 g no material em prato granulador com inclinação de 45° e 20 rpm. Como agente aglutinador foi utilizada uma solução açucarada que era borrifada no mesmo até começar a formar aglomerados de fertilizante, então a rotação era aumentada para 30 rpm e mais fertilizante em pó era adicionado, alternadamente com a solução açucarada. Após a formação de alguns grânulos era adicionado 10% m/m de um agente estabilizante, no caso o utilizado foi calcário calcinado. Após a formação dos grânulos os mesmos foram secos em estufa a 65°C até massa constante, aproximadamente 12h.
[039] O efeito de aumento da área superficial é exemplificado na Tabela 1 que apresenta os valores de índices
de azul de metileno (capacidade de adsorção de azul de metileno) da palha de cana pirolisada e de um biocarvão dos fertilizantes em questão. Nota-se um aumento de 8x no índice de azul de metileno, e estes valores são diretamente proporcionais a área superficial de biocarvões.
[040] Tabela 1. Composição química do fertilizante a base de biocarvão em grânulos.
Determinações Base seca (65°C) Base úmida pH (CaCl2 Ο,ΟΙΜ) - 7,7
Densidade - 1,08 g/cm3
Umidade 60-65°C - 1,26%
Umidade 110°C - 1,74%
Matéria Orgânica total 28, 87% 28,51%
Carbono Orgânico 14,70% 14,51%
Resíduo mineral total 69,36% 68,49%
Resíduo mineral 65, 36% 64, 54%
Resíduo mineral insolúvel 4, 00% 3,59%
Nitrogénio total 0, 60% 0,59%
Fósforo (P2O5) total 19,48% 19, 23%
Potássio (K2O) total 16, 24% 16, 04%
Cálcio total 9, 52% 9,40%
Magnésio total 2 33s 2,30%
Enxofre total 0, 04% 0, 04%
Relação C/N - 26
Cobre total 7 mg/kg 7 mg/kg
Manganês total 30 mg/kg 29 mg/kg
Zinco total 33 mg/kg 32 mg/kg
Ferro total 1475 mg/kg 1438 mg/kg
Boro total 5 mg/kg 5 mg/kg
CTC 340 mmolc/kg -
ALCARDE , J. C. Manual de Análise de Fertilizantes. FEALQ/Piracicaba. p. 259, 2009.
Claims
1. Fertilizante preparado a partir de biocarvão caracterizado por compreender um biocarvão e um sal nutriente, em que o dito sal está aderido à estrutura do biocarvão .
2. Fertilizante, de acordo com a reivindicação 1, caracterizado pelo fato de que a área superficial do biocarvão é superior a 100 m2/g.
3. Fertilizante, de acordo com as reivindicações 1 ou
2, caracterizado pelo fato de que o sal nutriente é eleito dentre o grupo que compreende KH2 PO4 , K2HPO4 , K3PO4, KC1, KNO3, ou misturas entre estes.
4. Fertilizante, de acordo com as reivindicações 1 a
3, caracterizado pelo fato de compreender micronutrientes selecionados dentre o grupo que compreende ferro, zinco, cobre, manganês, selênio, cloro, boro, molibdênio, cobalto, níquel, silício ou misturas entre estes.
5. Fertilizante, de acordo com as reivindicações 1 a
4, caracterizado pelo fato de compreender enzimas.
6. Fertilizante, de acordo com as reivindicações 1 a
5, caracterizado pelo fato de compreender inibidores enzimáticos .
7. Fertilizante, de acordo com as reivindicações 1 a
6, caracterizado por compreender um agente ligante.
8. Fertilizante, de acordo com a reivindicação 7, caracterizado por o agente ligante ser selecionado dentre o grupo que compreende argilas expansivas do grupo das montmorilonitas e esmectitas, amido, vinhaça, caldas de açúcares ou combinações entre estas.
9. Fertilizante, de acordo com as reivindicações 1 a 8, caracterizado por compreender recobrimentos minerais ou poliméricos .
10. Fertilizante, de acordo com a reivindicação 9, caracterizado pelo fato de o recobrimento ser selecionado dentre o grupo que compreende calcário, ceras e enxofre elementar .
11. Processo de obtenção de fertilizante preparado a partir de biocarvão caracterizado por compreender as etapas de :
a. Embeber o biocarvão em uma solução contendo agentes de ativação eleitos dentre compostos inorgânicos que contenham nitrogénio, fósforo ou potássio;
b. Secar o biocarvão embebido obtido em (a) e realizar tratamento térmico em atmosfera inerte, e
c. Neutralizar o biocarvão termicamente tratado de (b) em uma solução neutralizante e secar o produto.
12. Processo, de acordo com a reivindicação 11, caracterizado por o agente de ativação ser eleito dentre o grupo que compreende hidróxido de potássio e ácido fosfórico.
13. Processo, de acordo com a reivindicação 11, caracterizado por a atmosfera inerte ser atmosfera de N2.
14. Processo, de acordo com as reivindicações 11 ou 12, caracterizado por o tratamento térmico da etapa (b) ser a uma temperatura entre 400 e 1000°C.
15. Processo, de acordo com as reivindicações 11, 12 ou 13, caracterizado por a solução neutralizante ser selecionada dentre o grupo que compreende ácido fosfórico, ácido clorídrico, ácido nítrico, ácido sulfúrico, hidróxido de potássio e hidróxido de amónio.
16. Processo, de acordo com as reivindicações 11, 12, 13, ou 14, caracterizado por o produto da etapa (c) ser adicionado de compostos selecionados dentre o grupo que compreende micronutrientes , inibidores enzimáticos, herbicidas, fungicidas e combinações entre estas.
17. Processo, de acordo com as reivindicações 11, 12, 13, 14 ou 15, caracterizado por o produto da etapa (c) ser adicionado de um agente ligante selecionado dentre o grupo que compreende argilas expansivas do grupo das montmorilonitas e esmectitas, amido, vinhaça, caldas de açúcares e passar por uma etapa de granulação, gerando um produto granulado.
18. Processo, de acordo com a reivindicação 16, caracterizado por o produto granulado receber um recobrimento mineral ou polimérico.
19. Material para propagação vegetal caracterizado por compreender um recobrimento externo, dito recobrimento compreendendo um fertilizante preparado a partir de biocarvão e sais nutrientes, em que os sais estão aderidos à estrutura do biocarvão.
20. Material para propagação vegetal caracterizado por compreender um recobrimento externo, dito recobrimento compreendendo um fertilizante preparado a partir de biocarvão conforme definido nas reivindicações 1 a 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102017023632-3A BR102017023632B1 (pt) | 2017-11-01 | 2017-11-01 | Fertilizante preparado a partir de biocarvão, processo de obtenção e material para propagação vegetal |
BRBR1020170236323 | 2017-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019084650A1 true WO2019084650A1 (pt) | 2019-05-09 |
Family
ID=66331163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2018/050403 WO2019084650A1 (pt) | 2017-11-01 | 2018-11-01 | Fertilizante preparado a partir de biocarvão, processo de obtenção e material para propagação vegetal |
Country Status (2)
Country | Link |
---|---|
BR (1) | BR102017023632B1 (pt) |
WO (1) | WO2019084650A1 (pt) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111662126A (zh) * | 2020-05-21 | 2020-09-15 | 茅台学院 | 酒糟生物炭基肥的生产方法 |
WO2020204723A1 (en) * | 2019-04-03 | 2020-10-08 | Standard Bio As | Nutrient enriched bio-char for soil improvement and the process and apparatus for producing it |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113264798A (zh) * | 2021-05-18 | 2021-08-17 | 济南大学 | 一种利用生物质焦固氮的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB924454A (en) * | 1960-01-12 | 1963-04-24 | Soc Produits Azotes Sa | A method of obtaining granulated ammonium nitrate fertilizers |
CN102826917A (zh) * | 2012-09-25 | 2012-12-19 | 夏雷 | 一种缓释保水高氮肥及其制备方法 |
CN102924164A (zh) * | 2012-04-24 | 2013-02-13 | 中国科学院南京土壤研究所 | 基于生物炭改性的水基聚合物聚丙烯酸酯包膜肥料及其制备方法 |
CN105461463A (zh) * | 2016-01-13 | 2016-04-06 | 于景成 | 环保型生物炭基有机肥料及其制备方法 |
CN106316673A (zh) * | 2016-08-19 | 2017-01-11 | 刘建伟 | 一种生物炭肥及其制备方法 |
CN107200666A (zh) * | 2017-07-14 | 2017-09-26 | 成都新柯力化工科技有限公司 | 一种生物炭基肥料及制备方法 |
CN107226765A (zh) * | 2017-08-01 | 2017-10-03 | 天津市实验林场 | 一种生物炭基缓释氮肥及其制备方法 |
-
2017
- 2017-11-01 BR BR102017023632-3A patent/BR102017023632B1/pt active IP Right Grant
-
2018
- 2018-11-01 WO PCT/BR2018/050403 patent/WO2019084650A1/pt active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB924454A (en) * | 1960-01-12 | 1963-04-24 | Soc Produits Azotes Sa | A method of obtaining granulated ammonium nitrate fertilizers |
CN102924164A (zh) * | 2012-04-24 | 2013-02-13 | 中国科学院南京土壤研究所 | 基于生物炭改性的水基聚合物聚丙烯酸酯包膜肥料及其制备方法 |
CN102826917A (zh) * | 2012-09-25 | 2012-12-19 | 夏雷 | 一种缓释保水高氮肥及其制备方法 |
CN105461463A (zh) * | 2016-01-13 | 2016-04-06 | 于景成 | 环保型生物炭基有机肥料及其制备方法 |
CN106316673A (zh) * | 2016-08-19 | 2017-01-11 | 刘建伟 | 一种生物炭肥及其制备方法 |
CN107200666A (zh) * | 2017-07-14 | 2017-09-26 | 成都新柯力化工科技有限公司 | 一种生物炭基肥料及制备方法 |
CN107226765A (zh) * | 2017-08-01 | 2017-10-03 | 天津市实验林场 | 一种生物炭基缓释氮肥及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020204723A1 (en) * | 2019-04-03 | 2020-10-08 | Standard Bio As | Nutrient enriched bio-char for soil improvement and the process and apparatus for producing it |
CN111662126A (zh) * | 2020-05-21 | 2020-09-15 | 茅台学院 | 酒糟生物炭基肥的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
BR102017023632B1 (pt) | 2023-10-17 |
BR102017023632A2 (pt) | 2019-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Effects of straw return and straw biochar on soil properties and crop growth: A review | |
Li et al. | Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms | |
Li et al. | Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: present and future | |
US8795395B2 (en) | Structurally modified lignite with or without extraction of functionally enhanced organic molecules | |
KR101889400B1 (ko) | 바이오차 및 가축분 퇴비를 이용한 펠렛 형태의 완효성 비료 제조방법 | |
Shin et al. | Agro-environmental impacts, carbon sequestration and profit analysis of blended biochar pellet application in the paddy soil-water system | |
WO2019084650A1 (pt) | Fertilizante preparado a partir de biocarvão, processo de obtenção e material para propagação vegetal | |
Bedussi et al. | Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification | |
Tan et al. | Application of the 15N tracer method to study the effect of pyrolysis temperature and atmosphere on the distribution of biochar nitrogen in the biomass–biochar-plant system | |
Shi et al. | Effect of biochar incorporation on phosphorus supplementation and availability in soil: a review | |
Wrobel-Tobiszewska et al. | Biochar for eucalyptus forestry plantations | |
CN106116980A (zh) | 一种生物炭肥 | |
AU2018272902B2 (en) | Stable humus-water storage hybrid | |
CN104355901A (zh) | 一种利用夏威夷果壳/香榧果壳制备生物碳基缓释肥料的方法 | |
CN104355906A (zh) | 一种利用夏威夷果壳/高粱秸秆制备生物碳基缓释肥料的方法 | |
Fathi Gerdelidani et al. | Effect of spent mushroom compost (SMC) and sugar cane bagasse biochar on availability and fractions of inorganic phosphorus in a calcareous soil | |
RU2713692C1 (ru) | Способ приготовления кремнийорганического удобрения | |
Sitzmann et al. | Suitability of recycled organic materials in Organo-mineral fertilizers manufacturing: a discussion about organic Geogenic material replacement | |
Shivhare et al. | Thirteen Year Long Term Fertilization Effect on Soil Phosphorus Fractions of an Acid Inceptisol and their contribution to phosphorus uptake by a double crop of rice under sub-tropical climate | |
CN104355907A (zh) | 一种利用香榧果壳/高粱秸秆制备生物碳基缓释肥料的方法 | |
Siam et al. | Middle East Journal of Agriculture Research Volume: 12| Issue: 04| Oct.–Dec.| 2023 | |
Melo et al. | Biochar-based fertilizers, co-composting, and growing media | |
CN106365880A (zh) | 腐植酸型园林苗木专用肥砖及其施用方法 | |
ELsayed et al. | Application of Different Biochar Sizes for Improving Chemical Properties of Sandy Soil and its Reflication on Yield Productivity | |
Yousaf et al. | Application of Farmyard Manure in Sustainable Utilization of Animal Wastes to Reclaim Salt Degraded Lands |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18872860 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18872860 Country of ref document: EP Kind code of ref document: A1 |