WO2019082935A1 - Nucleotide construct for expressing spider silk protein in photosynthetic bacterium - Google Patents

Nucleotide construct for expressing spider silk protein in photosynthetic bacterium

Info

Publication number
WO2019082935A1
WO2019082935A1 PCT/JP2018/039521 JP2018039521W WO2019082935A1 WO 2019082935 A1 WO2019082935 A1 WO 2019082935A1 JP 2018039521 W JP2018039521 W JP 2018039521W WO 2019082935 A1 WO2019082935 A1 WO 2019082935A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
spider silk
photosynthetic bacteria
masp1
proteins
Prior art date
Application number
PCT/JP2018/039521
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 沼田
チューン ピン フーン
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2019551207A priority Critical patent/JPWO2019082935A1/en
Publication of WO2019082935A1 publication Critical patent/WO2019082935A1/en
Priority to JP2023097595A priority patent/JP2023116685A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans

Definitions

  • the present invention relates to nucleotide constructs for expressing spider silk proteins in photosynthetic bacteria.
  • the present invention also relates to a photosynthetic bacterium comprising the construct and a method of producing spider silk proteins using the photosynthetic bacterium.
  • Spiders produce seven different types of yarn fibers according to their purpose. Seven kinds of yarn fibers are extracted respectively from seven different glands (major gland (main tube foot capsule gland), feminine gland, squamous gland, grape gland, grape gland, piriform gland, collective gland, tubular gland) .
  • spider silk fiber The main component of spider silk fiber is protein, and it has three highly conserved domains as its main structure.
  • it has a random coil structure, a beta sheet structure, and a helical structure, and the spider yarn fiber exhibits the outstanding characteristic by mixing of these structures.
  • spider silk fibers are outstanding in material properties such as tensile strength and extensibility. Furthermore, it is also known that it is superior in toughness to iron and Kevlar (registered trademark), and spider silk fibers are the most tough materials in natural polymers and artificial polymers. Moreover, they are also useful in biomedical applications such as drug delivery and tissue engineering because they have biodegradability, biocompatibility and antimicrobial properties. Thus, spider silk fibers are attracting attention as promising supermaterials in a wide variety of fields.
  • spider silk proteins can only be achieved in heterologous hosts, as spiders cannibalize and turf, for example, expression of recombinant spider silk proteins can be achieved by bacteria, yeast (Pichia pastoris), Success has been reported in insects (silk Bombyx mori), plants (tobacco and potato) and animals (mouse and goat) (Non-patent Documents 1 and 2).
  • the object of the present invention is to make it possible to produce spider silk proteins at low synthesis costs.
  • the present inventors use photoautotrophic organisms as hosts for producing spider silk proteins instead of heterotrophic organisms such as yeast, insects, plants and animals. I imagined that.
  • the organism can be maintained without the need for feeding by using carbon dioxide etc. obtained from the environment and light, so if this organism can be used for the production of spider silk proteins, it can be synthesized It is possible to reduce the cost.
  • the present inventors have repeated the repetitive sequence (hereinafter also referred to as "monomer”) in the great bottle-like longitudinal protein 1 (MaSp1) derived from Nephila clavipes in the marine red non-sulfur photosynthetic bacteria (Rhodovulum sulfidophilum) It tried to make it express. More specifically, first, a MaSp1 monomer protein containing one of the monomers, or a plasmid vector encoding a MaSp1 multimer protein containing a plurality of the monomers is cloned in E. coli, and the photosynthesis is performed. Bacteria were introduced by conjugal transfer.
  • MaSp1 monomer protein in the photosynthetic bacteria could be detected by SDS-PAGE and Western blotting.
  • MaSp1 multimeric protein can also be detected by western blotting, and the present invention has been completed.
  • the present invention relates to a nucleotide construct for expressing spider silk protein, a photosynthetic bacterium comprising the construct, and a method of producing spider silk protein using the photosynthetic bacterium, and more specifically provides the following.
  • a nucleotide construct comprising a spider silk protein-encoding nucleotide operably linked to a promoter capable of inducing protein expression in photosynthetic bacteria.
  • the promoter is a Tac1 promoter.
  • ⁇ 4> The nucleotide construct according to any one of ⁇ 1> to ⁇ 3>, wherein the spider silk protein is a MaSp1 protein.
  • ⁇ 5> A photosynthetic bacterium into which the nucleotide construct according to any one of ⁇ 1> to ⁇ 4> has been introduced.
  • ⁇ 6> A method for producing spider silk protein, Culturing the photosynthetic bacteria described in ⁇ 5> under light irradiation; Recovering spider silk proteins from the culture of photosynthetic bacteria obtained by the culture.
  • spider silk protein can be produced without feeding the host, so that the synthesis cost can be reduced.
  • FIG. 1 It is a figure which shows the outline of the plasmid DNA for making a spider silk protein (MaSP1 protein) fuse with a His tag etc. and expressing it in photosynthetic bacteria by conjugal transfer between bacteria. It is the schematic which expands and shows a part (lower left part) of plasmid DNA shown in FIG. Analysis of protein solution of photosynthetic bacteria (induction of expression by IPTG: 1 to 4 days and non-induction) into which plasmid DNA encoding MaSP1 monomer protein fused with His tag etc. is introduced by SDS-PAGE Is a photograph of the gel showing the results.
  • M indicates a lane on which ECL low range rainbow molecular weight markers were migrated
  • FT1 to “FT5” indicate the flow-through 1 ⁇ obtained after binding the protein solution to a HisTrap HP column.
  • 5 shows lanes in which each of 5 was electrophoresed
  • HP indicates a lane in which the above-mentioned protein solution was purified using a HisTrap HP column and concentrated.
  • the arrow indicates the size or position of MaSP1 monomeric protein fused to His tag etc. on SDS-PAGE.
  • a plasmid DNA encoding MaSP1 monomer protein fused with a His tag etc. is introduced into photosynthetic bacteria and E.
  • FIG. 5 is a photograph showing the results of analysis of the protein solution of the bacteria by SDS-PAGE (left in the figure) and Western blotting (right in the figure).
  • “1 M”, “2 M”, “3 M” and “6 M” are photosynthetic bacteria which expressed MaSP1 monomer protein, MaSP1 dimer protein, MaSP1 trimer protein and MaSP1 hexamer protein, respectively. Shows the result of analyzing.
  • nucleotide construct The nucleotide construct of the present invention is characterized in that it comprises a nucleotide encoding a spider silk protein functionally linked to a promoter capable of inducing protein expression in photosynthetic bacteria.
  • the "spider” in the present invention is an animal classified into arachnids, preferably an anthropomorphic spider, more preferably a spider, a spider, and more preferably a spider.
  • spider silk thread is also referred to as spider silk thread, and is produced by silk glands in the spider's body, and is spit from a spinneret of a spinneret (pinus) at the rear of the abdomen.
  • the silk glands in the spider's body are divided into pyriform glands, vine-like glands, vitreous glands, tubular glands, tubular glands, collecting glands and mossy glands according to their shape.
  • a spider silk is generally divided into pull yarns (alias: bookmark yarn, yarn), bow yarns, warp yarns, weft yarns, silk yarns, etc. from the function and components thereof.
  • the "arachnoid thread protein” encoded by the nucleotide construct of the present invention is a protein (analogous protein) having the characteristics of a protein constituting a spider thread, as well as a protein constituting a spider thread.
  • the "arachnoid protein” according to the present invention does not have to have exactly the same sequence as a naturally occurring spider silk protein, but may be an artificially modified protein, but the "arachnid silk protein” according to the present invention It is preferable that the protein includes a structure in which a crystalline region and a glycine rich region (noncrystalline region) involved in the formation of a random coil structure are alternately arranged.
  • spider silk proteins typically include spidroin proteins.
  • Spidroin protein is also referred to as fibroin, and is spun by a large spider gland of a natural spider and the like, and mainly includes spidroin I (MaSp1) and spidroin II (MaSp2).
  • Examples of amino acid sequences of spidroin-related proteins and the like typically include the polypeptides described in the accession numbers shown in Tables 1 to 4 below, which are contained in the US National Center for Biotechnology Information (NCBI).
  • the sequence of a gene encoding a protein is naturally mutated, and the amino acid sequence of the protein may be changed accordingly. Therefore, the "spider proteins" according to the present invention include not only proteins specified in the typical sequences shown in Tables 1 to 4 (wild-type spider proteins) but also proteins consisting of naturally mutated sequences (wild-type) It is to be understood that homologs of type spider silk proteins, naturally occurring variants of wild type spider silk proteins, are also included.
  • the spider silk protein according to the present invention is not only such a naturally occurring protein (wild-type spider silk protein, a homolog of wild-type spider silk protein, and natural variants thereof) but also the above-mentioned.
  • the amino acid sequence may be artificially modified (a spider silk protein variant).
  • the "spider silk protein” may be not only full length but also a partial fragment thereof.
  • the “partial fragment” is not particularly limited, and, for example, a repeating unit (monomer) including a structure in which an alanine rich region and a glycine rich region are alternately arranged, a core domain in which the repeating unit is repeated, A non-repetitive domain (non-repetitive amino terminal domain, non-repetitive carboxyl terminal domain) located at both ends of the core domain, preferably a MaSp1 monomer consisting of the amino acid sequence set forth in SEQ ID NO: 1 A protein is mentioned (In addition, the said monomer protein is derived from MaSp1 protein specified by accession number: P19837).
  • a protein containing one of the monomer proteins is suitably used as a spider silk protein.
  • a MaSp1 multimeric protein containing a plurality of the above monomeric proteins is also suitably used.
  • Examples of such multimeric proteins include a protein consisting of the amino acid sequence set forth in SEQ ID NO: 3 when two of the above monomeric proteins are contained, and, for example, when three of the above monomeric proteins are contained, A protein consisting of the amino acid sequence set forth in SEQ ID NO: 4 is mentioned, and when it contains 6 of the above-mentioned monomeric proteins, for example, a protein consisting of the amino acid sequence set forth in SEQ ID NO: 5 is mentioned.
  • “Arachnoid protein” also includes a protein consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the above-mentioned typical amino acid sequence.
  • “plural” is not particularly limited, but is usually 2 to 60, preferably 2 to 50, more preferably 2 to 40, still more preferably 2 to 30, more preferably 2 to 20. And more preferably 2 to 10 (eg, 2 to 8, 2 to 4, 2).
  • the “spider silk protein” preferably has 50% or more (eg, 60% or more, 70% or more) homology with the above-mentioned typical amino acid sequence, and 80% or more (eg, , 85% or more, 86% or more, 87% or more, 88% or more, 89% or more), more preferably 90% or more (eg, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more) is more preferable. Sequence homology can be determined using the BLASTP (amino acid level) program (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The specific method of the analysis method using such a program is known and can be analyzed using default parameters.
  • "homology” according to the present invention includes "identity” and "similarity”.
  • “other proteins” may be added directly or indirectly to "the spider silk protein” encoded by the nucleotide construct according to the present invention.
  • “other proteins” there is no particular limitation on “other proteins”, and for the purpose of facilitating purification of spider silk protein according to the present invention, polyhistidine (His) tag (tag) protein, FLAG-tag protein (registered trademark), Tag for purification such as Sigma-Aldrich), S-tag, glutathione-S-transferase (GST), etc. is suitably used, and in the case of the purpose of facilitating detection of spider silk protein according to the present invention, GFP Tag proteins for detection such as fluorescent proteins such as E.coli and chemiluminescent proteins such as luciferase are preferably used.
  • sequences recognized by cleaving enzymes such as thrombin recognition sequences and enterokinase recognition sequences are disposed between spider silk proteins and other proteins. May be
  • the spider silk protein to which such other proteins have been added is not particularly limited, but is preferably a protein consisting of the amino acid sequence set forth in SEQ ID NO: 7 or 8 from the viewpoint of better expression efficiency in photosynthetic bacteria described later .
  • a tag protein consisting of a His tag, a thrombin recognition sequence, an S tag and an enterokinase recognition sequence sequentially from N-terminal (amino acid sequence set forth in SEQ ID NO: 6
  • the amino acid sequence of (1) excludes the thrombin recognition sequence and the proline residue immediately after S-tag (for details, see Table 5 below).
  • the protein consisting of the amino acid sequence described in SEQ ID NO: 6 from the N-terminal, described in SEQ ID NO: 3, 4 or 5 A protein in which a MaSp1 multimeric protein consisting of the amino acid sequence of SEQ ID NO: 10 is arranged is also suitably used in the present invention.
  • the nucleotide construct of the present invention should at least include a "promoter” capable of inducing expression of the protein in photosynthetic bacteria by being operatively linked to the nucleotide encoding the above-mentioned spider silk protein.
  • a "promoter” capable of inducing expression of the protein in photosynthetic bacteria by being operatively linked to the nucleotide encoding the above-mentioned spider silk protein.
  • Such “promoter” is not particularly limited, and, for example, Tac1 promoter (typically, a promoter consisting of the nucleotide sequence of SEQ ID NO: 14), lac promoter (typically, SEQ ID NO: 15) And puf promoter (typically, a promoter consisting of the nucleotide sequence set forth in SEQ ID NO: 16), but from the viewpoint of better expression efficiency in photosynthetic bacteria, the Tac1 promoter is preferred. .
  • the promoter may also be an inducible promoter, for example by temperature, pH, hormones, metabolites (eg lactose, mannitol and amino acids), light, osmotic potential (eg salt induction), heavy metals or antibiotics What is induced is mentioned.
  • inducible promoter for example by temperature, pH, hormones, metabolites (eg lactose, mannitol and amino acids), light, osmotic potential (eg salt induction), heavy metals or antibiotics What is induced is mentioned.
  • the “promoter” according to the present invention also includes a protein consisting of a nucleotide sequence in which one or more nucleotides are substituted, deleted, added and / or inserted in the above-mentioned typical nucleotide sequence.
  • “plural” is not particularly limited, but generally 2 to 20, preferably 2 to 15, and more preferably 2 to 10 (for example, 2 to 9, 2 to 8, 2 to 7) The number is preferably 2 to 6, more preferably 2 to 5 (eg, 2 to 4, 2 to 3, 2).
  • the “promoter” preferably has 50% or more (eg, 60% or more, 70% or more) homology with the above-mentioned typical nucleotide sequence, and 80% or more (eg, 85 or more) % Or more, 86% or more, 87% or more, 88% or more, 89% or more), more preferably 90% or more (eg, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more) It is more preferable that the above be 96% or more, 97% or more, 98% or more, and 99% or more. Sequence homology can be determined using the BLASTN program. The specific method of the analysis method using such a program is known and can be analyzed using default parameters.
  • nucleotide construct of the present invention may be, besides the promoter, other control sequences that contribute to expression (transcription and translation) in the photosynthetic bacteria of nucleotides encoding spider silk proteins, such as replication origin, terminator, A poly A addition signal, a poly linker, an enhancer, a silencer, a ribosome binding site and the like can be appropriately included.
  • a nucleotide encoding spider silk protein is located downstream of the promoter, and a terminator is located downstream of the gene.
  • sequences may be included that induce expression.
  • a sequence for inducing such expression there is mentioned a lactose operon which can induce the expression of a gene located downstream by the addition of isopropyl- ⁇ -D-thiogalactopyranoside (IPTG).
  • the nucleotide construct of the present invention when introduced into photosynthetic bacteria by conjugal transfer, preferably contains at least one gene selected from the mob, tra, oriT and oriV gene groups. Although these genes are genes necessary for conjugal transfer between bacteria, they do not have to be all on the same nucleotide construct, and they are divided into another nucleotide construct (such as helper plasmid DNA) and conjugated by combining them. It can communicate.
  • the nucleotide construct of the present invention may contain a marker gene from the viewpoint that the transformed photosynthetic bacteria can be selected using the expression as an index.
  • marker genes include kanamycin resistance gene, ampicillin resistance gene, chloramphenicol resistance gene, drug resistance gene such as hygromycin resistance gene, auxotrophic gene, luciferase gene, ⁇ -galactosidase gene, chloramphenicol acetyl gene Enzyme genes (reporter genes) such as transferase (CAT) gene can be mentioned.
  • nucleotide construct for example, cloning vectors such as plasmid DNA, cosmid DNA, phage DNA and the like can be mentioned, but it is not particularly limited thereto, but plasmid DNA is preferable, pBBR1MCS2, pKT230 And pBHR1 etc. are more preferred.
  • nucleotide constructs of the present invention can be those commonly used in the field of genetic engineering.
  • the spider silk protein and, if necessary, nucleotides encoding other proteins are cleaved with an appropriate restriction enzyme, A method of insertion and ligation at a restriction enzyme site or multiple cloning site of a vector is employed.
  • the nucleotide coding for the spider silk protein etc. inserted in this way be optimized in accordance with the host cell for the frequency of use of codons in order to increase the expression amount in the host cell.
  • codon optimization can be performed by known methods.
  • the optimization also includes deletion of infrequently used codons (rare codons) as well as synonymous substitution for frequently used codons.
  • a host cell to be subjected to the usage frequency of codons is usually a photosynthetic bacterium, but when using the conjugation transfer method described later, not only the recipient photosynthetic bacteria but also the donor photosynthetic bacteria.
  • the frequency of use of codons may be optimized in accordance with the bacterium (E. coli in the following example).
  • the present invention provides photosynthetic bacteria into which the nucleotide construct described above has been introduced.
  • the “photosynthetic bacteria” may be any bacteria capable of photosynthesis, and may be non-oxygenated photosynthetic bacteria, or may be oxygenogenic photosynthetic bacteria (blue-colored bacteria).
  • Non-oxygenated photosynthetic bacteria include red bacteria (red non-sulfur bacteria, red sulfur bacteria), green bacteria (green non-sulfur bacteria, green sulfur bacteria) and heliobacteria, but they can survive even under aerobic conditions. Because it is easy to handle and maintain, it is preferably a red-colored bacterium, and it can be grown under aerobic, dark or anaerobic light conditions, and it is easier to handle and maintain.
  • red non-sulfur is more preferable. It is a bacteria. More specifically, as preferable examples of the "photosynthetic bacteria" according to the present invention, Rhodovulum sulfidophilum, Rhodopseudomonas (Afifella) marina, Rhodovulum euryhalinum, Rhodovulum imhoffii, Rhodovulum tesquicola, Rhodovulium visapatnamense, Roseospiramarina tiv prosife It can be mentioned.
  • a transfer method for example, a transfer method, an introduction method using a peptide, an electroporation method, a lithium acetate method, a calcium phosphate method, spheroplast Methods include lipofection methods, DEAE dextran methods, and methods using liposomes (cationic, fusogenic, pH sensitive, etc.).
  • photosynthetic bacteria have been transformed by such a method can be detected by detecting nucleotides encoding spider silk proteins by PCR, sequencing or the like, or detecting the proteins by an immunological technique (such as Western blotting) It can confirm by doing.
  • an immunological technique such as Western blotting
  • the nucleotide construct of the present invention contains the above-mentioned marker gene, it can also be confirmed by culturing under selection conditions corresponding to the marker.
  • the spider silk protein production method of the present invention is Culturing the photosynthetic bacteria of the present invention under light irradiation; And collecting the spider silk protein from the culture of photosynthetic bacteria obtained by the culture.
  • light to be irradiated to the photosynthetic bacteria may be any light having a wavelength that can be absorbed by the bacteria, for example, red light with a wavelength of 620 nm or more for red photosynthetic bacteria.
  • 700 nm, for example 650 to 700 nm, specifically 680 nm, far-red light (wavelength: 700 to 800 nm, for example 700 to 750 nm, specifically 730 nm) are preferably used.
  • the light for example, white light which the light of the other wavelength mixed may be used.
  • the irradiance is not particularly limited, and is usually 10 to 50 Wm ⁇ 2 . Further, such light irradiation can be performed by using a light source such as a light emitting diode (LED), a laser light source, an artificial light source such as a fluorescent lamp, or a natural light source (sunlight).
  • the culture medium used for culturing the photosynthetic bacteria there is no particular limitation on the culture medium used for culturing the photosynthetic bacteria, and it is sufficient if the conditions (organic substance, hydrogen donor such as hydrogen sulfide and water, carbon source) necessary for each photosynthesis are aligned, and photosynthetic bacteria are marine.
  • a culture medium of seawater component for example, marine agar, marine broth, seawater (sterile ocean water etc.) itself) is suitably used.
  • the method of the present invention can be cultured using an extremely inexpensive raw material such as an inorganic salt, as compared with an expression system etc. of E. coli.
  • an inorganic carbon raw material such as carbon dioxide and carbonate.
  • organic nitrogen sources such as yeast extract and peptone
  • inorganic nitrogen sources such as nitrogen, ammonia, ammonium salts, nitrates and nitrites.
  • the culture temperature is usually 15 to 37 ° C., preferably 25 to 35 ° C.
  • the culture time is not particularly limited, and may be appropriately adjusted depending on the nucleotide construct used, type of photosynthetic bacteria and introduction method, and degree of production of spider silk protein, but it is usually 1 to 30 days, preferably 2 It is preferably 10 days, more preferably 3 days.
  • the “culture” of the photosynthetic bacteria thus obtained by culture is not only the photosynthetic bacteria grown in the present invention, but also the secretion products of the bacteria and the metabolism of the photosynthetic bacteria obtained by culturing.
  • spider silk protein from culture of such photosynthetic bacteria
  • it can be carried out using known recovery and purification methods, for example, dissolving or mechanically destroying photosynthetic bacteria.
  • the resulting protein can be purified using standard procedures. If desired, the harvest can be centrifuged to collect the appropriate fractions (precipitate or supernatant). Also, for further purification of spider silk proteins, it can be subjected to gel filtration chromatography such as anion exchange chromatography, dialysis, phase separation or filtration.
  • a tag protein for purification is added to a spider silk protein and added to a photosynthetic bacterium, it can be purified using affinity chromatography according to the tag.
  • the method of the present invention can simplify the cumbersome steps in protein purification.
  • the spider silk protein which was attempted to be expressed in the present example is a protein containing a repetitive sequence (monomer) in MaSp1 of a spider (Nephila clavipe), its dimer, trimer and hexamer respectively ( Hereinafter, these proteins are also collectively referred to as "MaSp1 protein".
  • a tag protein consisting of a His tag, a thrombin recognition sequence, an S tag and an enterokinase recognition sequence (a protein consisting of the amino acid sequence described in SEQ ID NO: 6) is fused to the N terminal of these MaSp1 proteins. Expression was tried (hereinafter, the protein in which the tag protein is fused is also generically referred to as "fused MaSp1 protein").
  • Table 6 shows the amino acid sequence (SEQ ID NO :) of each MaSp1 protein, and the number of amino acids and the molecular weight of each fused MaSp1 protein.
  • Rhodovulum sulfidophilum DSM 1374 / ATCC 35886 was obtained from RIKEN Microorganism Materials Development Laboratory (JCM). Rdv. The sulfidophilum was cultured (maintained) in marine agar or phosphorus broth (BD Difco, USA) at 30 ° C. under semi-aerobic conditions under continuous irradiation of far-red light (730 nm, 30 Wm ⁇ 2 ).
  • coli S17-1 (Simon, R. et al., Nature Biotechnology, 1983, 1 (9): 784-791.) is used as a donor strain in LB agar or LB broth (BD Difco, USA), The culture was maintained at 37 ° C. under aerobic conditions and shaking culture at 180 rpm.
  • each of the above-described MaSp1 proteins encodes E. coli. pET30-a-MaSp1 (Numata, K), together with a DNA encoding a Co. coli-codon-optimized DNA, together with a DNA encoding His tag, S tag, thrombin recognition sequence and enterokinase recognition sequence (amino acid sequence described in SEQ ID NO: 6).
  • underlined portions indicate restriction enzyme recognition sequences. Also, the portions described in bold indicate ribosome binding sequences (RBS).
  • the TacI promoter and MaSp1 gene sequences are treated with the corresponding restriction enzymes and purified, and then the host vector pBBR1MCS-2 (Kovach, M. E. et al., Gene, 1995, 166 (1): 175-176). (See FIGS. 1 and 2).
  • E. coli carrying the recombinant plasmid E. coli S17-1 was inoculated into 5 mL LB medium containing 50 ⁇ g mL ⁇ 1 kanamycin, and shake culture was performed at 37 ° C. and 180 rpm for 16 hours. Meanwhile, Rdv. The sulfidophilum was inoculated in 15 mL of marine broth and cultured at 30 ° C. under semiaerobic conditions under continuous irradiation of far-red light (730 nm, 30 Wm ⁇ 2 ) for 30 hours.
  • the cell suspension of sulfidophilum was mixed at 1: 1. About 200 ⁇ L of the obtained bacterial mixture was soaked in a marine agar plate and cultured for 1 day under continuous irradiation of far-red light (730 nm, 30 Wm ⁇ 2 ). The cells were then scraped from the agar and resuspended in 5 mL of fresh marine broth.
  • the resulting cell suspension to about 100 [mu] L, plated on 100MyugmL -1 kanamycin and 100MyugmL -1 potassium tellurite containing Simmons citrate agar.
  • the agar plates were cultured at 30 ° C. for 7 days under continuous irradiation of far-red light (730 nm, 30 Wm ⁇ 2 ).
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • C. sulfidophilum was cultured at 30 ° C. in 100 ⁇ g mL ⁇ 1 kanamycin-containing marine broth under semiaerobic conditions, continuous irradiation with far-red light (730 nm, 30 Wm ⁇ 2 ) until the OD 600 reached about 1.5. did. Then, expression induction of the fusion MaSp1 protein was performed by adding 1 mM IPTG and culturing it for 1, 2, 3 and 4 days. Also, after the OD 600 reached about 1.5, the cells were further cultured for 4 days in the absence of IPTG.
  • HisTrap purification and concentration Combine protein lysates (cultured under IPTG induction or not for 1 to 4 days) (approx. 550 mL culture solution) and use HisTrap HP 1 mL column (GE Healthcare Life Sciences, USA) Purified according to the manufacturer's protocol.
  • binding buffer (8 M urea, 0.5 M NaCl, 20 mM phosphate buffer, 5 mM imidazole, pH 7.4) and extraction buffer (8 M urea, 0.5 M NaCl, 20 mM phosphate buffer, 500 mM imidazole, pH 7.4) was filtered through a 0.22 .mu.m cellulose acetate filter (Corning, USA).
  • the purified product obtained was concentrated using a Vivaspin 6 MWCO 3000 protein-concentrated spin column (GE Healthcare Life Sciences, USA) using a HisTrap HP 1 mL column, a binding buffer and an extraction buffer.
  • the fused MaSp1 protein in which the 6 ⁇ histidine residue (His tag) is fused to the N-terminus has the ability to bind to the HisTrap column, it is purified and concentrated by the above treatment.
  • Detection of fused MaSp1 monomeric protein containing His tag in a PVDF membrane is carried out according to His tag (registered trademark) Western reagent protocol (Novagen, USA) according to anti-His tag monoclonal antibody and AP-labeled goat anti-mouse IgG Using a His-tag AP Western reagent. The obtained result is shown in FIG.
  • detection of the fusion MaSp1 protein can be carried out according to the above-mentioned protocol: anti-His tag monoclonal antibody and HRP-labeled goat anti-mouse IgG (Thermo Fisher Scientific, USA), and Novex (registered trademark) ECL chemiluminescence substrate reagent kit ( Chemiluminescence detection was also performed using Thermo Fisher Scientific (USA). The obtained result is shown in FIG.
  • LC-MS / MS analysis The target band was excised from the gel subjected to the SDS-PAGE and analyzed by liquid chromatography / mass spectrometry (LC-MS) to identify the amino acid sequence.
  • LC-MS data was processed and searched by the MASCOT program.
  • the marine red non-sulfur photosynthetic bacteria Rdv As is clear from the results shown in FIG. 3, the marine red non-sulfur photosynthetic bacteria Rdv. As a result of attempting to introduce into sulfidophilum, a strong band was detected at the position corresponding to the molecular weight of the protein in SDS-PAGE (see lane HP in FIG. 3). Furthermore, as apparent from the results shown in FIG. 4, in Western blotting using an anti-His tag antibody, a His tag fused to the MaSp1 monomer protein was detected at the same position (see lane HP in FIG. 4). ). Further, as is clear from the results shown in FIG. 5, not only the MaSp1 monomeric protein but also any of dimeric protein, trimeric protein and hexameric protein could be detected. The fused MaSp1 monomeric protein was confirmed by LC-MS / MS analysis that the detected protein was the monomeric protein.
  • MaSp1 protein spike silk protein
  • photosynthetic bacteria which are sites for producing spider silk proteins, can be maintained and propagated without the need for feeding, so that the synthesis cost can be reduced. It becomes possible.
  • spider silk proteins stand out in material properties such as tensile strength, extensibility and toughness. Therefore, it can be used, for example, in the manufacture and development of materials that require high impact resistance, such as bulletproof clothing, parachute, car bodies of automobiles, and the like. Furthermore, since they have biodegradability, biocompatibility and antibacterial properties, spider silk proteins are also used in the manufacture and development of medical materials such as wound closures, sutures, bandages and scaffolds for regenerative medicine. Available.
  • the present invention which can provide such spider silk protein at low cost for its synthesis is extremely useful in various fields such as industrial fields and medical fields.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present inventor succeeded in introducing a nucleotide construct, said nucleotide construct containing a nucleotide encoding a spider silk protein and being functionally linked to a promoter capable of inducing protein expression in a photosynthetic bacterium, into the photosynthetic bacterium and expressing the protein. The photosynthetic bacterium can be maintained without feeding, which makes it possible to keep down the cost for the synthesis of the spider silk protein.

Description

クモ糸タンパク質を光合成細菌にて発現させるためのヌクレオチド構築物Nucleotide constructs for expressing spider silk proteins in photosynthetic bacteria
 本発明は、クモ糸タンパク質を光合成細菌にて発現させるためのヌクレオチド構築物に関する。また本発明は、該構築物を含む光合成細菌、及び該光合成細菌を用いたクモ糸タンパク質の製造方法に関する。 The present invention relates to nucleotide constructs for expressing spider silk proteins in photosynthetic bacteria. The present invention also relates to a photosynthetic bacterium comprising the construct and a method of producing spider silk proteins using the photosynthetic bacterium.
 クモは、異なる7種類の糸繊維を目的に応じて産生する。7種の糸繊維は、異なる7つの腺(大瓶状腺(主管足瓶嚢腺)、小瓶状腺、鞭状腺、ブドウ状腺、梨状腺、集合腺、管状腺)から各々抽出される。 Spiders produce seven different types of yarn fibers according to their purpose. Seven kinds of yarn fibers are extracted respectively from seven different glands (major gland (main tube foot capsule gland), feminine gland, squamous gland, grape gland, grape gland, piriform gland, collective gland, tubular gland) .
 クモ糸繊維の主成分はタンパク質であり、その主な構造として、高度に保存された3つのドメインを有する。アラニンリッチ領域(結晶領域、crystalline)及びグリシンリッチ領域(非結晶領域、less-crystalline)が、交互に配置されているコアドメインと、その両側にある非反復型のアミノ末端ドメインとカルボキシル末端ドメインである。そして、このような構造を採ることにより、ランダムコイル構造、βシート構造及びヘリックス構造を有し、これら構造の混在により、クモ糸繊維は優れた特性を発揮する。 The main component of spider silk fiber is protein, and it has three highly conserved domains as its main structure. An alanine rich region (crystalline region, crystalline) and a glycine rich region (noncrystalline region, less-crystalline), with alternating core domains and unique amino-terminal and carboxyl-terminal domains on either side of it is there. And by having such a structure, it has a random coil structure, a beta sheet structure, and a helical structure, and the spider yarn fiber exhibits the outstanding characteristic by mixing of these structures.
 例えば、クモ糸繊維は、抗張力及び伸張性といった材料特性において傑出している。さらに、鉄及びケブラー(登録商標)よりも靭性において優れ、クモ糸繊維は、天然ポリマー及び人工ポリマーにおいて、最も強靭な材料であることも知られている。その上、生分解性、生物的適合性及び抗菌性も有しているため、ドラッグデリバリー及びティッシュエンジニアリングといった生物医学的応用においても有用である。このように、クモ糸繊維は、多種多様な分野おいて、今後有望なスーパーマテリアルとして注目されている。 For example, spider silk fibers are outstanding in material properties such as tensile strength and extensibility. Furthermore, it is also known that it is superior in toughness to iron and Kevlar (registered trademark), and spider silk fibers are the most tough materials in natural polymers and artificial polymers. Moreover, they are also useful in biomedical applications such as drug delivery and tissue engineering because they have biodegradability, biocompatibility and antimicrobial properties. Thus, spider silk fibers are attracting attention as promising supermaterials in a wide variety of fields.
 しかしながら、クモは共食いや縄張り争いを行なうため、クモ糸タンパク質の大規模生産は、異種宿主においてしか達成することができず、例えば、組み換えクモ糸タンパク質の発現は、細菌、酵母(Pichia pastoris)、昆虫(カイコ Bombyx mori)、植物(タバコ及びジャガイモ)及び動物(マウス及びヤギ)において成功したことが報告されている(非特許文献1及び2)。 However, large-scale production of spider silk proteins can only be achieved in heterologous hosts, as spiders cannibalize and turf, for example, expression of recombinant spider silk proteins can be achieved by bacteria, yeast (Pichia pastoris), Success has been reported in insects (silk Bombyx mori), plants (tobacco and potato) and animals (mouse and goat) (Non-patent Documents 1 and 2).
 本発明は、合成コストを抑えてクモ糸タンパク質を製造することを、可能とすることを目的とする。 The object of the present invention is to make it possible to produce spider silk proteins at low synthesis costs.
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、クモ糸タンパク質を製造する宿主として、上記酵母、昆虫、植物及び動物といった従属栄養生物の代わりに、光合成独立栄養生物を用いることを構想した。当該生物は、環境中から得られる二酸化炭素等及び光を用いることによって、給餌を必要とすることなく、維持することができるため、この生物をクモ糸タンパク質の製造に利用することができれば、合成コストを低くすることが可能となる。 As a result of intensive studies to achieve the above objects, the present inventors use photoautotrophic organisms as hosts for producing spider silk proteins instead of heterotrophic organisms such as yeast, insects, plants and animals. I imagined that. The organism can be maintained without the need for feeding by using carbon dioxide etc. obtained from the environment and light, so if this organism can be used for the production of spider silk proteins, it can be synthesized It is possible to reduce the cost.
 そこで、本発明者らは、ジョロウグモ(Nephila clavipes)由来大瓶状腺縦糸タンパク質1(MaSp1)における反復配列(以下「単量体」とも称する)を、海洋性紅色非硫黄光合成細菌(Rhodovulum sulfidophilum)において発現させることを試みた。より具体的には、先ず、前記単量体を1個含むMaSp1単量体タンパク質、又は前記単量体を複数含むMaSp1多量体タンパク質をコードするプラスミドベクターを大腸菌にてクローニングし、そして、前記光合成細菌に接合伝達により導入した。 Therefore, the present inventors have repeated the repetitive sequence (hereinafter also referred to as "monomer") in the great bottle-like longitudinal protein 1 (MaSp1) derived from Nephila clavipes in the marine red non-sulfur photosynthetic bacteria (Rhodovulum sulfidophilum) It tried to make it express. More specifically, first, a MaSp1 monomer protein containing one of the monomers, or a plasmid vector encoding a MaSp1 multimer protein containing a plurality of the monomers is cloned in E. coli, and the photosynthesis is performed. Bacteria were introduced by conjugal transfer.
 その結果、前記光合成細菌におけるMaSp1単量体タンパク質の発現を、SDS-PAGE及びウエスタンブロッティングにより検出することができた。また同様に、MaSp1多量体タンパク質もウエスタンブロッティングにより検出することができ、本発明を完成するに至った。 As a result, expression of MaSp1 monomer protein in the photosynthetic bacteria could be detected by SDS-PAGE and Western blotting. Similarly, MaSp1 multimeric protein can also be detected by western blotting, and the present invention has been completed.
 すなわち、本発明は、クモ糸タンパク質を発現させるためのヌクレオチド構築物、該構築物を含む光合成細菌、及び該光合成細菌を用いたクモ糸タンパク質の製造方法に関し、より具体的には以下を提供する。
<1> 光合成細菌においてタンパク質発現を誘導し得るプロモーターに機能的に連結された、クモ糸タンパク質をコードするヌクレオチドを含む、ヌクレオチド構築物。
<2> 前記光合成細菌が紅色光合成細菌である、<1>に記載のヌクレオチド構築物。
<3> 前記プロモーターがTac1プロモーターである、<1>又は<2>に記載のヌクレオチド構築物。
<4> 前記クモ糸タンパク質がMaSp1タンパク質である、<1>~<3>のいずれか1項に記載のヌクレオチド構築物。
<5> <1>~<4>のいずれか1項に記載のヌクレオチド構築物が導入された、光合成細菌。
<6> クモ糸タンパク質を製造する方法であって、
 <5>に記載の光合成細菌を、光照射下において培養する工程と、
 前記培養にて得られた光合成細菌の培養物から、クモ糸タンパク質を回収する工程とを、含む方法。
That is, the present invention relates to a nucleotide construct for expressing spider silk protein, a photosynthetic bacterium comprising the construct, and a method of producing spider silk protein using the photosynthetic bacterium, and more specifically provides the following.
<1> A nucleotide construct comprising a spider silk protein-encoding nucleotide operably linked to a promoter capable of inducing protein expression in photosynthetic bacteria.
<2> The nucleotide construct according to <1>, wherein the photosynthetic bacterium is a red photosynthetic bacterium.
<3> The nucleotide construct according to <1> or <2>, wherein the promoter is a Tac1 promoter.
<4> The nucleotide construct according to any one of <1> to <3>, wherein the spider silk protein is a MaSp1 protein.
<5> A photosynthetic bacterium into which the nucleotide construct according to any one of <1> to <4> has been introduced.
<6> A method for producing spider silk protein,
Culturing the photosynthetic bacteria described in <5> under light irradiation;
Recovering spider silk proteins from the culture of photosynthetic bacteria obtained by the culture.
 本発明によれば、宿主に給餌することなく、クモ糸タンパク質を製造することができるため、合成コストを抑えることが可能となる。 According to the present invention, spider silk protein can be produced without feeding the host, so that the synthesis cost can be reduced.
細菌間接合伝達により、クモ糸タンパク質(MaSP1タンパク質)を、光合成細菌においてHisタグ等と融合させて発現させるためのプラスミドDNAの概略を示す、図である。It is a figure which shows the outline of the plasmid DNA for making a spider silk protein (MaSP1 protein) fuse with a His tag etc. and expressing it in photosynthetic bacteria by conjugal transfer between bacteria. 図1に示したプラスミドDNAの一部(左下部)を拡大して示す、概略図である。It is the schematic which expands and shows a part (lower left part) of plasmid DNA shown in FIG. Hisタグ等が融合してあるMaSP1単量体タンパク質をコードするプラスミドDNAを導入した光合成細菌(IPTGによる発現誘導:1~4日間、及び非誘導)のタンパク質溶解液を、SDS-PAGEにて解析した結果を示すゲルの写真である。図中、「M」は、ECL低レンジレインボー分子量マーカーを泳動したレーンを示し、「FT1」~「FT5」は、前記タンパク質溶解液をHisTrapHPカラムに結合させた後、得られたフロースルー1~5を各々泳動したレーンを示し、「HP」は前記タンパク質溶解液をHisTrapHPカラムにより精製し、さらに濃縮したものを、泳動したレーンを示す。また、矢印は、SDS-PAGE上の、Hisタグ等が融合してあるMaSP1単量体タンパク質のサイズ又は位置を示す。Analysis of protein solution of photosynthetic bacteria (induction of expression by IPTG: 1 to 4 days and non-induction) into which plasmid DNA encoding MaSP1 monomer protein fused with His tag etc. is introduced by SDS-PAGE Is a photograph of the gel showing the results. In the figure, “M” indicates a lane on which ECL low range rainbow molecular weight markers were migrated, and “FT1” to “FT5” indicate the flow-through 1 ̃ obtained after binding the protein solution to a HisTrap HP column. 5 shows lanes in which each of 5 was electrophoresed, and “HP” indicates a lane in which the above-mentioned protein solution was purified using a HisTrap HP column and concentrated. Also, the arrow indicates the size or position of MaSP1 monomeric protein fused to His tag etc. on SDS-PAGE. 光合成細菌及び大腸菌に、Hisタグ等が融合してあるMaSP1単量体タンパク質をコードするプラスミドDNAを導入し、これら細菌のタンパク質溶解液を、ウエスタンブロッティングにて解析した結果を示すPVDFメンブレンの写真である。図中、「M」は、ECL低レンジレインボー分子量マーカーを泳動したレーンを示し、「HP」は前記プラスミドDNAを導入した光合成細菌(IPTGによる発現誘導:1~4日間、及び非誘導)のタンパク質溶解液をHisTrapHPカラムにより精製し、さらに濃縮したものを、泳動したレーンを示し、「1」は前記プラスミドDNAを導入した光合成細菌(IPTGによる発現誘導:3日間)のタンパク質溶解液を泳動したレーンを示し、「2」は前記プラスミドDNAを導入した大腸菌(IPTGによる発現誘導:4時間)のタンパク質溶解液を泳動したレーンを示し、「3」は前記プラスミドDNAを導入した大腸菌(IPTGによる発現誘導:24時間)のタンパク質溶解液を泳動したレーンを示す。また、矢印は、PVDFメンブレン上の、Hisタグ等が融合してあるMaSP1単量体タンパク質のサイズ又は位置を示す。A plasmid DNA encoding MaSP1 monomer protein fused with a His tag etc. is introduced into photosynthetic bacteria and E. coli, and protein solutions of these bacteria are analyzed by Western blotting. The photograph of the PVDF membrane shows the results. is there. In the figure, “M” indicates a lane on which ECL low range rainbow molecular weight marker is migrated, and “HP” indicates a protein of photosynthetic bacteria (induction induction by IPTG: 1 to 4 days and non-induction) into which the plasmid DNA is introduced. The lysate was purified using a HisTrap HP column, and further concentrated was shown to indicate a migrating lane, and "1" represents a lane in which a protein lysis solution of photosynthetic bacteria (expression induction by IPTG: 3 days) into which the plasmid DNA had been introduced was migrated. “2” indicates a lane on which a protein solution of E. coli (expression induction by IPTG: 4 hours) into which the plasmid DNA has been introduced migrates, and “3” indicates an E. coli into which the plasmid DNA is introduced (expression induction by IPTG) Shows a lane in which the protein solution of 24 hours was run. Also, the arrow indicates the size or position of MaSP1 monomeric protein fused with His tag etc. on the PVDF membrane. Hisタグ等が融合してある、MaSP1単量体タンパク質又はMaSP1多量体タンパク質を、コードするプラスミドDNAを、光合成細菌に導入し、IPTGによる発現誘導をせずに、4日間培養した。図5は、当該細菌のタンパク質溶解液を、SDS-PAGE(図中、左側)及びウエスタンブロッティング(図中、右側)にて解析した結果を示す、写真である。図中、「1M」、「2M」、「3M」及び「6M」は、MaSP1単量体タンパク質、MaSP1二量体タンパク質、MaSP1三量体タンパク質及びMaSP1六量体タンパク質を各々発現させた光合成細菌を解析した結果を示す。A plasmid DNA encoding MaSP1 monomeric protein or MaSP1 multimeric protein fused with His tag etc. was introduced into photosynthetic bacteria and cultured for 4 days without induction of expression by IPTG. FIG. 5 is a photograph showing the results of analysis of the protein solution of the bacteria by SDS-PAGE (left in the figure) and Western blotting (right in the figure). In the figure, "1 M", "2 M", "3 M" and "6 M" are photosynthetic bacteria which expressed MaSP1 monomer protein, MaSP1 dimer protein, MaSP1 trimer protein and MaSP1 hexamer protein, respectively. Shows the result of analyzing.
 (ヌクレオチド構築物)
 本発明のヌクレオチド構築物は、光合成細菌においてタンパク質発現を誘導し得るプロモーターに機能的に連結された、クモ糸タンパク質をコードするヌクレオチドを含むことを特徴とする。
(Nucleotide construct)
The nucleotide construct of the present invention is characterized in that it comprises a nucleotide encoding a spider silk protein functionally linked to a promoter capable of inducing protein expression in photosynthetic bacteria.
 本発明における「クモ」とは、クモ目に分類される動物、好ましくは造網性のクモ目に分類される動物であり、さらに好ましくはジョロウグモ、オニグモであり、より好ましくはジョロウグモである。 The "spider" in the present invention is an animal classified into arachnids, preferably an anthropomorphic spider, more preferably a spider, a spider, and more preferably a spider.
 「クモの糸」又は「クモ糸」は、クモ絹糸とも言われ、クモの体内の絹糸腺で産生され、腹部後部にある出糸突起(糸疣)の出糸管より吐糸される。クモの体内の絹糸腺はその形から梨状腺、ブドウ状腺、瓶状腺、管状腺、集合腺及び鞭状腺に分けられる。「クモ絹糸」は、一般に、その機能及び成分から、牽引糸(別名:しおり糸、ひき糸)、わく糸、縦糸、横糸及びけい留糸等に分けられる。 The “spider thread” or “spider thread” is also referred to as spider silk thread, and is produced by silk glands in the spider's body, and is spit from a spinneret of a spinneret (pinus) at the rear of the abdomen. The silk glands in the spider's body are divided into pyriform glands, vine-like glands, vitreous glands, tubular glands, tubular glands, collecting glands and mossy glands according to their shape. "A spider silk" is generally divided into pull yarns (alias: bookmark yarn, yarn), bow yarns, warp yarns, weft yarns, silk yarns, etc. from the function and components thereof.
 本発明のヌクレオチド構築物がコードする「クモ糸タンパク質」は、クモ糸を構成するタンパク質のみならず、クモ糸を構成するタンパク質の特徴を有するタンパク質(類似タンパク質)のことである。天然のクモ糸タンパク質と全く同じ配列である必要はなく、人工的に改変されたタンパク質であっても良いが、本発明にかかる「クモ糸タンパク質」は、βシート構造を形成するアラニンリッチ領域(結晶領域)とランダムコイル構造の形成に関与するグリシンリッチ領域(非結晶領域)とが交互に配置された構造を含むタンパク質であることが好ましい。 The "arachnoid thread protein" encoded by the nucleotide construct of the present invention is a protein (analogous protein) having the characteristics of a protein constituting a spider thread, as well as a protein constituting a spider thread. The "arachnoid protein" according to the present invention does not have to have exactly the same sequence as a naturally occurring spider silk protein, but may be an artificially modified protein, but the "arachnid silk protein" according to the present invention It is preferable that the protein includes a structure in which a crystalline region and a glycine rich region (noncrystalline region) involved in the formation of a random coil structure are alternately arranged.
 クモ糸タンパク質の例として、代表的には、スピドロインタンパク質が挙げられる。スピドロインタンパク質は、フィブロインとも言われ、天然のクモの大瓶状腺等で紡糸され、主にスピドロインI(MaSp1)とスピドロインII(MaSp2)とが挙げられる。スピドロイン関連タンパク質等のアミノ酸配列として、典型的には、米国国立バイオテクノロジー情報センター(NCBI)に収録されている、下記表1~4において示されるアクセッション番号に記載のポリペプチドが挙げられる。 Examples of spider silk proteins typically include spidroin proteins. Spidroin protein is also referred to as fibroin, and is spun by a large spider gland of a natural spider and the like, and mainly includes spidroin I (MaSp1) and spidroin II (MaSp2). Examples of amino acid sequences of spidroin-related proteins and the like typically include the polypeptides described in the accession numbers shown in Tables 1 to 4 below, which are contained in the US National Center for Biotechnology Information (NCBI).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、タンパク質をコードする遺伝子の配列は、自然界において変異し、それに伴い、当該タンパク質のアミノ酸配列も変化し得る。したがって、本発明にかかる「クモ糸タンパク質」には、表1~4に示す典型的な配列に特定されたタンパク質(野生型クモ糸タンパク質)のみならず、天然に変異した配列からなるタンパク質(野生型クモ糸タンパク質の相同体、野生型クモ糸タンパク質の天然変異体)も含まれるものであることは理解されたい。 The sequence of a gene encoding a protein is naturally mutated, and the amino acid sequence of the protein may be changed accordingly. Therefore, the "spider proteins" according to the present invention include not only proteins specified in the typical sequences shown in Tables 1 to 4 (wild-type spider proteins) but also proteins consisting of naturally mutated sequences (wild-type) It is to be understood that homologs of type spider silk proteins, naturally occurring variants of wild type spider silk proteins, are also included.
 また、本発明にかかる「クモ糸タンパク質」は、このような天然に存在するタンパク質(野生型クモ糸タンパク質、野生型クモ糸タンパク質の相同体、及びそれらの天然変異体)のみならず、上述のとおり、アミノ酸配列が人工的に改変されたもの(クモ糸タンパク質改変体)であってもよい。 In addition, “the spider silk protein” according to the present invention is not only such a naturally occurring protein (wild-type spider silk protein, a homolog of wild-type spider silk protein, and natural variants thereof) but also the above-mentioned. As such, the amino acid sequence may be artificially modified (a spider silk protein variant).
 また「クモ糸タンパク質」は、全長のみならず、その部分的な断片であってもよい。「部分的な断片」としては特に制限はなく、例えば、アラニンリッチ領域及びグリシンリッチ領域が交互に配置された構造を含む反復単位(単量体)、その反復単位が繰り返してなるコアドメイン、そのコアドメインの両端に位置する非反復型ドメイン(非反復型アミノ末端ドメイン、非反復型カルボキシル末端ドメイン)が挙げられるが、好ましくは、配列番号:1に記載のアミノ酸配列からなる、MaSp1単量体タンパク質が挙げられる(なお、当該単量体タンパク質は、アクセッション番号:P19837にて特定されるMaSp1タンパク質に由来する)。また、後述の実施例において示すとおり、クモ糸タンパク質として、前記単量体タンパク質を1個含むタンパク質(例えば、配列番号:2に記載のアミノ酸配列からなるタンパク質)も好適に用いられる。さらに、前記単量体タンパク質を複数含む、MaSp1多量体タンパク質も好適に用いられる。かかる多量体タンパク質として、前記単量体タンパク質を2個含む場合は、例えば、配列番号:3に記載のアミノ酸配列からなるタンパク質が挙げられ、前記単量体タンパク質を3個含む場合は、例えば、配列番号:4に記載のアミノ酸配列からなるタンパク質が挙げられ、前記単量体タンパク質を6個含む場合は、例えば、配列番号:5に記載のアミノ酸配列からなるタンパク質が挙げられる。 In addition, the "spider silk protein" may be not only full length but also a partial fragment thereof. The “partial fragment” is not particularly limited, and, for example, a repeating unit (monomer) including a structure in which an alanine rich region and a glycine rich region are alternately arranged, a core domain in which the repeating unit is repeated, A non-repetitive domain (non-repetitive amino terminal domain, non-repetitive carboxyl terminal domain) located at both ends of the core domain, preferably a MaSp1 monomer consisting of the amino acid sequence set forth in SEQ ID NO: 1 A protein is mentioned (In addition, the said monomer protein is derived from MaSp1 protein specified by accession number: P19837). In addition, as shown in Examples described later, a protein containing one of the monomer proteins (for example, a protein consisting of the amino acid sequence described in SEQ ID NO: 2) is suitably used as a spider silk protein. Furthermore, a MaSp1 multimeric protein containing a plurality of the above monomeric proteins is also suitably used. Examples of such multimeric proteins include a protein consisting of the amino acid sequence set forth in SEQ ID NO: 3 when two of the above monomeric proteins are contained, and, for example, when three of the above monomeric proteins are contained, A protein consisting of the amino acid sequence set forth in SEQ ID NO: 4 is mentioned, and when it contains 6 of the above-mentioned monomeric proteins, for example, a protein consisting of the amino acid sequence set forth in SEQ ID NO: 5 is mentioned.
 本発明にかかる「クモ糸タンパク質」は、前記典型的なアミノ酸配列において1又は複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列からなるタンパク質も含まれる。ここで「複数」とは、特に制限はないが、通常2~60個、好ましくは2~50個、より好ましくは2~40個、さらに好ましくは2~30個、より好ましくは2~20個、さらに好ましくは2~10個(例えば、2~8個、2~4個、2個)である。 "Arachnoid protein" according to the present invention also includes a protein consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the above-mentioned typical amino acid sequence. Here, "plural" is not particularly limited, but is usually 2 to 60, preferably 2 to 50, more preferably 2 to 40, still more preferably 2 to 30, more preferably 2 to 20. And more preferably 2 to 10 (eg, 2 to 8, 2 to 4, 2).
 また、本発明にかかる「クモ糸タンパク質」は、前記典型的なアミノ酸配列との相同性が、50%以上(例えば、60%以上、70%以上)であることが好ましく、80%以上(例えば、85%以上、86%以上、87%以上、88%以上、89%以上)であることがより好ましく、90%以上(例えば、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上)であることがより好ましい。配列の相同性は、BLASTP(アミノ酸レベル)のプログラム(Altschul et al.J.Mol.Biol.,215:403-410,1990)を利用して決定することができる。かかるプログラムを用いた解析方法の具体的な手法は公知であり、デフォルトのパラメーターを用いて解析することができる。また、本発明にかかる「相同性」には、「同一性」及び「類似性」が含まれる。 In addition, the “spider silk protein” according to the present invention preferably has 50% or more (eg, 60% or more, 70% or more) homology with the above-mentioned typical amino acid sequence, and 80% or more (eg, , 85% or more, 86% or more, 87% or more, 88% or more, 89% or more), more preferably 90% or more (eg, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more) is more preferable. Sequence homology can be determined using the BLASTP (amino acid level) program (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The specific method of the analysis method using such a program is known and can be analyzed using default parameters. In addition, "homology" according to the present invention includes "identity" and "similarity".
 また、本発明にかかるヌクレオチド構築物がコードする「クモ糸タンパク質」には、「他のタンパク質」が直接又は間接的に付加されていてもよい。「他のタンパク質」としては特に制限はなく、本発明にかかるクモ糸タンパク質の精製を容易にする目的の場合には、ポリヒスチジン(His)タグ(tag)タンパク質、FLAG-タグタンパク質(登録商標、Sigma-Aldrich社)、Sタグ、グルタチオン-S-トランスフェラーゼ(GST)等の精製用タグタンパク質が好適に用いられ、また本発明にかかるクモ糸タンパク質の検出を容易とする目的の場合には、GFP等の蛍光タンパク質、ルシフェラーゼ等の化学発光タンパク質等の検出用タグタンパク質が好適に用いられる。また、これら他のタンパク質とクモ糸タンパク質とを分離するために、トロンビン認識配列、エンテロキナーゼ認識配列等の切断酵素によって認識される配列が、クモ糸タンパク質と他のタンパク質との間に配置されていてもよい。 In addition, "other proteins" may be added directly or indirectly to "the spider silk protein" encoded by the nucleotide construct according to the present invention. There is no particular limitation on "other proteins", and for the purpose of facilitating purification of spider silk protein according to the present invention, polyhistidine (His) tag (tag) protein, FLAG-tag protein (registered trademark), Tag for purification such as Sigma-Aldrich), S-tag, glutathione-S-transferase (GST), etc. is suitably used, and in the case of the purpose of facilitating detection of spider silk protein according to the present invention, GFP Tag proteins for detection such as fluorescent proteins such as E.coli and chemiluminescent proteins such as luciferase are preferably used. In addition, in order to separate these other proteins from spider silk proteins, sequences recognized by cleaving enzymes such as thrombin recognition sequences and enterokinase recognition sequences are disposed between spider silk proteins and other proteins. May be
 かかる他のタンパク質が付加されたクモ糸タンパク質としては、特に制限はないが、後述の光合成細菌における発現効率がより良いという観点から、配列番号;7又は8に記載のアミノ酸配列からなるタンパク質が好ましい。なお、配列番号;7に記載のアミノ酸配列からなるタンパク質においては、N末から順に、Hisタグ、トロンビン認識配列、Sタグ及びエンテロキナーゼ認識配列からなるタグタンパク質(配列番号:6に記載のアミノ酸配列からなるタンパク質)、並びに配列番号:2に記載のアミノ酸配列からなるMaSp1単量体タンパク質が配置されているタンパク質である、また、配列番号;8に記載のアミノ酸配列は、配列番号;7に記載のアミノ酸配列から、トロンビン認識配列及びSタグ直後のプロリン残基が除外されたものとなっている(詳細については、下記表5を参照)。 The spider silk protein to which such other proteins have been added is not particularly limited, but is preferably a protein consisting of the amino acid sequence set forth in SEQ ID NO: 7 or 8 from the viewpoint of better expression efficiency in photosynthetic bacteria described later . In the protein consisting of the amino acid sequence set forth in SEQ ID NO: 7, a tag protein consisting of a His tag, a thrombin recognition sequence, an S tag and an enterokinase recognition sequence sequentially from N-terminal (amino acid sequence set forth in SEQ ID NO: 6 And a protein in which a MaSp1 monomeric protein consisting of the amino acid sequence of SEQ ID NO: 2 is arranged, and the amino acid sequence of SEQ ID NO: 8 is described in SEQ ID NO: 7 The amino acid sequence of (1) excludes the thrombin recognition sequence and the proline residue immediately after S-tag (for details, see Table 5 below).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 また、後述の実施例において示すとおり、他のタンパク質が付加されたクモ糸タンパク質として、N末から、配列番号:6に記載のアミノ酸配列からなるタンパク質と、配列番号:3、4又は5に記載のアミノ酸配列からなるMaSp1多量体タンパク質が配置されているタンパク質も、本発明において好適に用いられる。 In addition, as shown in Examples described later, as spider silk proteins to which other proteins have been added, the protein consisting of the amino acid sequence described in SEQ ID NO: 6 from the N-terminal, described in SEQ ID NO: 3, 4 or 5 A protein in which a MaSp1 multimeric protein consisting of the amino acid sequence of SEQ ID NO: 10 is arranged is also suitably used in the present invention.
 本発明のヌクレオチド構築物は、上述のクモ糸タンパク質をコードするヌクレオチドに機能的に連結されることにより、光合成細菌において当該タンパク質の発現を誘導し得る「プロモーター」を少なくとも含む必要がある。かかる「プロモーター」としては、特に制限はなく、例えば、Tac1プロモーター(典型的には、配列番号:14に記載のヌクレオチド配列からなるプロモーター)、lacプロモーター(典型的には、配列番号:15に記載のヌクレオチド配列からなるプロモーター)、pufプロモーター(典型的には、配列番号:16に記載のヌクレオチド配列からなるプロモーター)が挙げられるが、光合成細菌における発現効率がより良いという観点から、Tac1プロモーターが好ましい。また、プロモーターは、誘導性プロモーターであってもよく、例えば、温度、pH、ホルモン、代謝物(例えば、ラクトース、マンニトール及びアミノ酸)、光、浸透ポテンシャル(例えば、塩誘導)、重金属又は抗生物質によって誘導されるものが挙げられる。 The nucleotide construct of the present invention should at least include a "promoter" capable of inducing expression of the protein in photosynthetic bacteria by being operatively linked to the nucleotide encoding the above-mentioned spider silk protein. Such "promoter" is not particularly limited, and, for example, Tac1 promoter (typically, a promoter consisting of the nucleotide sequence of SEQ ID NO: 14), lac promoter (typically, SEQ ID NO: 15) And puf promoter (typically, a promoter consisting of the nucleotide sequence set forth in SEQ ID NO: 16), but from the viewpoint of better expression efficiency in photosynthetic bacteria, the Tac1 promoter is preferred. . The promoter may also be an inducible promoter, for example by temperature, pH, hormones, metabolites (eg lactose, mannitol and amino acids), light, osmotic potential (eg salt induction), heavy metals or antibiotics What is induced is mentioned.
 なお、本発明にかかる「プロモーター」は、前記典型的なヌクレオチド配列において1又は複数のヌクレオチドが置換、欠失、付加、及び/又は挿入されたヌクレオチド配列からなるタンパク質も含まれる。ここで「複数」とは、特に制限はないが、通常2~20個、好ましくは2~15個、より好ましくは2~10個(例えば、2~9個、2~8個、2~7個、2~6個)、さらに好ましくは2~5個(例えば、2~4個、2~3個、2個)である。 The "promoter" according to the present invention also includes a protein consisting of a nucleotide sequence in which one or more nucleotides are substituted, deleted, added and / or inserted in the above-mentioned typical nucleotide sequence. Here, "plural" is not particularly limited, but generally 2 to 20, preferably 2 to 15, and more preferably 2 to 10 (for example, 2 to 9, 2 to 8, 2 to 7) The number is preferably 2 to 6, more preferably 2 to 5 (eg, 2 to 4, 2 to 3, 2).
 また、本発明にかかる「プロモーター」は、前記典型的なヌクレオチド配列との相同性が、50%以上(例えば、60%以上、70%以上)であることが好ましく、80%以上(例えば、85%以上、86%以上、87%以上、88%以上、89%以上)であることがより好ましく、90%以上(例えば、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上)であることがより好ましい。配列の相同性は、BLASTNのプログラムを利用して決定することができる。かかるプログラムを用いた解析方法の具体的な手法は公知であり、デフォルトのパラメーターを用いて解析することができる。 In addition, the “promoter” according to the present invention preferably has 50% or more (eg, 60% or more, 70% or more) homology with the above-mentioned typical nucleotide sequence, and 80% or more (eg, 85 or more) % Or more, 86% or more, 87% or more, 88% or more, 89% or more), more preferably 90% or more (eg, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more) It is more preferable that the above be 96% or more, 97% or more, 98% or more, and 99% or more. Sequence homology can be determined using the BLASTN program. The specific method of the analysis method using such a program is known and can be analyzed using default parameters.
 さらに、本発明のヌクレオチド構築物は、前記プロモーターの他、クモ糸タンパク質をコードするヌクレオチドを光合成細菌にて発現(転写及び翻訳)するのに寄与する他の制御配列、例えば、複製開始点、ターミネーター、ポリA付加シグナル、ポリリンカー、エンハンサー、サイレンサー、リボゾーム結合部位等を適宜含むことができる。一般に、前記プロモーターの下流に、クモ糸タンパク質をコードするヌクレオチドが位置し、さらに該遺伝子の下流にターミネーターが位置する。 Furthermore, the nucleotide construct of the present invention may be, besides the promoter, other control sequences that contribute to expression (transcription and translation) in the photosynthetic bacteria of nucleotides encoding spider silk proteins, such as replication origin, terminator, A poly A addition signal, a poly linker, an enhancer, a silencer, a ribosome binding site and the like can be appropriately included. Generally, a nucleotide encoding spider silk protein is located downstream of the promoter, and a terminator is located downstream of the gene.
 さらに、前記発現を制御する配列以外に発現を誘導する配列を含んでいても良い。かかる発現を誘導する配列としては、イソプロピル-β-D-チオガラクトピラノシド(IPTG)の添加により、下流に配置された遺伝子の発現を誘導することのできるラクトースオペロンが挙げられる。 Furthermore, in addition to the above-mentioned sequences controlling expression, sequences may be included that induce expression. As a sequence for inducing such expression, there is mentioned a lactose operon which can induce the expression of a gene located downstream by the addition of isopropyl-β-D-thiogalactopyranoside (IPTG).
 また、光合成細菌に接合伝達法によって導入される場合、本発明のヌクレオチド構築物は、mob、tra、oriT及びoriV遺伝子群から選択される少なくとも1の遺伝子を含むものであることが望ましい。なお、これら遺伝子は細菌間の接合伝達に必要な遺伝子であるが、全て同じヌクレオチド構築物上になくても良く、別のヌクレオチド構築物(ヘルパープラスミドDNA等)に分配し、それを併用することによって接合伝達を行うことができる。 In addition, when introduced into photosynthetic bacteria by conjugal transfer, the nucleotide construct of the present invention preferably contains at least one gene selected from the mob, tra, oriT and oriV gene groups. Although these genes are genes necessary for conjugal transfer between bacteria, they do not have to be all on the same nucleotide construct, and they are divided into another nucleotide construct (such as helper plasmid DNA) and conjugated by combining them. It can communicate.
 さらに、本発明のヌクレオチド構築物は、その発現を指標として形質転換された光合成細菌を選択できるという観点から、マーカー遺伝子を含むものであってもよい。マーカー遺伝子としては、例えば、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、クロラムフェニコール耐性遺伝子、ハイグロマイシン耐性遺伝子等の薬剤耐性遺伝子、栄養要求性遺伝子、ルシフェラーゼ遺伝子、β-ガラクトシダーゼ遺伝子、クロラムフェニコールアセチルトランスフェラーゼ(CAT)遺伝子等の酵素遺伝子(レポーター遺伝子)が挙げられる。 Furthermore, the nucleotide construct of the present invention may contain a marker gene from the viewpoint that the transformed photosynthetic bacteria can be selected using the expression as an index. Examples of marker genes include kanamycin resistance gene, ampicillin resistance gene, chloramphenicol resistance gene, drug resistance gene such as hygromycin resistance gene, auxotrophic gene, luciferase gene, β-galactosidase gene, chloramphenicol acetyl gene Enzyme genes (reporter genes) such as transferase (CAT) gene can be mentioned.
 また、このようなヌクレオチド構築物の形態としては、例えば、プラスミドDNA、コスミドDNA、ファージDNA等のクローニングベクターが挙げられるが、特にこれらに限定されるものではないが、プラスミドDNAが好ましく、pBBR1MCS2、pKT230、pBHR1等の広域宿主プラスミドDNAがより好ましい。 In addition, as a form of such nucleotide construct, for example, cloning vectors such as plasmid DNA, cosmid DNA, phage DNA and the like can be mentioned, but it is not particularly limited thereto, but plasmid DNA is preferable, pBBR1MCS2, pKT230 And pBHR1 etc. are more preferred.
 本発明のヌクレオチド構築物調製の手順及び方法は、遺伝子工学の分野で慣用されているものを用いることができる。例えば、本発明のヌクレオチド構築物を調製するには、後述の実施例において示すように、クモ糸タンパク質、また必要に応じて前記他のタンパク質もコードするヌクレオチドを適当な制限酵素で切断し、適当なベクターの制限酵素部位又はマルチクローニングサイトに挿入して連結する方法等が採用される。 The procedures and methods for preparation of nucleotide constructs of the present invention can be those commonly used in the field of genetic engineering. For example, in order to prepare the nucleotide construct of the present invention, as shown in the examples below, the spider silk protein and, if necessary, nucleotides encoding other proteins are cleaved with an appropriate restriction enzyme, A method of insertion and ligation at a restriction enzyme site or multiple cloning site of a vector is employed.
 また、このようにして挿入されるクモ糸タンパク質等をコードするヌクレオチドは、宿主細胞での発現量を上げるためにコドンの使用頻度を宿主細胞に合わせて最適化することが好ましい。かかるコドンの最適化は公知の方法で行うことができる。また、当該最適化には、使用頻度の高いコドンへの同義置換のみならず、使用頻度の低いいコドン(レアコドン)の削除も含まれる。さらに、本発明において、コドンの使用頻度を合わせる対象となる宿主細胞は、通常、光合成細菌となるが、後述の接合伝達法を用いる場合には、レシピエントとなる光合成細菌のみならず、ドナーとなる細菌(後述の実施例における、大腸菌)に合わせてコドンの使用頻度を最適化しても良い。 In addition, it is preferable that the nucleotide coding for the spider silk protein etc. inserted in this way be optimized in accordance with the host cell for the frequency of use of codons in order to increase the expression amount in the host cell. Such codon optimization can be performed by known methods. The optimization also includes deletion of infrequently used codons (rare codons) as well as synonymous substitution for frequently used codons. Furthermore, in the present invention, a host cell to be subjected to the usage frequency of codons is usually a photosynthetic bacterium, but when using the conjugation transfer method described later, not only the recipient photosynthetic bacteria but also the donor photosynthetic bacteria. The frequency of use of codons may be optimized in accordance with the bacterium (E. coli in the following example).
 (光合成細菌の形質転換体)
 本発明は、上述のヌクレオチド構築物が導入された光合成細菌を提供する。
(Transformant of photosynthetic bacteria)
The present invention provides photosynthetic bacteria into which the nucleotide construct described above has been introduced.
 本発明において、「光合成細菌」とは、光合成を行える細菌であればよく、酸素非発生型光合成細菌であってもよく、また酸素発生型光合成細菌(藍色細菌)であってもよい。酸素非発生型光合成細菌としては、紅色細菌(紅色非硫黄細菌、紅色硫黄細菌)、緑色細菌(緑色非硫黄細菌、緑色硫黄細菌)、ヘリオバクテリアが挙げられるが、好気性条件下でも生存可能であるため、扱い易く、メンテナンスが容易であるという観点から、好ましくは紅色細菌であり、さらに、好気的で暗所又は嫌気的で明所な条件下でも増殖でき、より扱い易く、メンテナンスが容易であるという観点から、また海水等の高塩度の条件下における培養となるため、培養中のクロスコンタミネーションも最小限に抑えることがし易いという観点からも、より好まししくは紅色非硫黄細菌である。より具体的に、本発明にかかる「光合成細菌」の好適な例として、Rhodovulum sulfidophilum、Rhodopseudomonas (Afifella) marina、Rhodovulum euryhalinum、Rhodovulum imhoffii、Rhodovulum tesquicola、Rhodovulum visakhapatnamense、Roseospira marina、Roseospira goensis、Roseospira visakhapatnamensisが、挙げられる。 In the present invention, the “photosynthetic bacteria” may be any bacteria capable of photosynthesis, and may be non-oxygenated photosynthetic bacteria, or may be oxygenogenic photosynthetic bacteria (blue-colored bacteria). Non-oxygenated photosynthetic bacteria include red bacteria (red non-sulfur bacteria, red sulfur bacteria), green bacteria (green non-sulfur bacteria, green sulfur bacteria) and heliobacteria, but they can survive even under aerobic conditions. Because it is easy to handle and maintain, it is preferably a red-colored bacterium, and it can be grown under aerobic, dark or anaerobic light conditions, and it is easier to handle and maintain. In view of the fact that the culture is carried out under conditions of high salinity such as seawater, and also from the viewpoint that cross contamination during culture is easy to minimize, red non-sulfur is more preferable. It is a bacteria. More specifically, as preferable examples of the "photosynthetic bacteria" according to the present invention, Rhodovulum sulfidophilum, Rhodopseudomonas (Afifella) marina, Rhodovulum euryhalinum, Rhodovulum imhoffii, Rhodovulum tesquicola, Rhodovulium visapatnamense, Roseospiramarina tiv prosife It can be mentioned.
 かかる光合成細菌へのヌクレオチド構築物導入方法(形質転換法)としては、特に制限はなく、例えば、接合伝達法、ペプチドを用いた導入法、エレクトロポレーション法、酢酸リチウム法、リン酸カルシウム法、スフェロプラスト法、リポフェクション法、DEAEデキストラン法、リポソーム(カチオン性、膜融合性、pH感受性等)を用いた方法が挙げられる。 There is no particular limitation on the method for introducing a nucleotide construct into such a photosynthetic bacterium (transformation method), for example, a transfer method, an introduction method using a peptide, an electroporation method, a lithium acetate method, a calcium phosphate method, spheroplast Methods include lipofection methods, DEAE dextran methods, and methods using liposomes (cationic, fusogenic, pH sensitive, etc.).
 また、かかる方法により光合成細菌が形質転換されたかどうかは、クモ糸タンパク質をコードするヌクレオチドを、PCRやシークエンシング等により検出することにより、また当該タンパク質を免疫学的手法(ウエスタンブロッティング等)により検出することにより確認することができる。さらに、本発明のヌクレオチド構築物が、上記マーカー遺伝子を含むものである場合には、そのマーカーに応じた選択条件下にて培養することにより、確認することもできる。 In addition, whether or not photosynthetic bacteria have been transformed by such a method can be detected by detecting nucleotides encoding spider silk proteins by PCR, sequencing or the like, or detecting the proteins by an immunological technique (such as Western blotting) It can confirm by doing. Furthermore, when the nucleotide construct of the present invention contains the above-mentioned marker gene, it can also be confirmed by culturing under selection conditions corresponding to the marker.
 (クモ糸タンパク質の製造方法)
 本発明のクモ糸タンパク質製造方法は、
 本発明の光合成細菌を、光照射下において培養する工程と、
 前記培養にて得られた光合成細菌の培養物から、クモ糸タンパク質を回収する工程とを、含むことを特徴とする。
(Method for producing spider silk protein)
The spider silk protein production method of the present invention is
Culturing the photosynthetic bacteria of the present invention under light irradiation;
And collecting the spider silk protein from the culture of photosynthetic bacteria obtained by the culture.
 本発明にかかる培養工程において、光合成細菌に照射する光としては、当該細菌が吸収し得る波長の光であれば良く、例えば、紅色光合成細菌であれば、波長620nm以上の赤色光(波長:~700nm、例えば650~700nm、具体的には680nm)、遠赤色光(波長:700~800nm、例えば700~750nm、具体的には730nm)が好適に用いられる。また、他の波長の光が混合した光(例えば、白色光)であってもよい。さらに、放射照度としても特に制限はなく、通常、10~50Wm-2である。また、かかる光照射は、発光ダイオード(LED)、レーザー光源、蛍光ランプ等の人工光源、又は自然光源(太陽光)を利用することによって行なうことができる。 In the culture step according to the present invention, light to be irradiated to the photosynthetic bacteria may be any light having a wavelength that can be absorbed by the bacteria, for example, red light with a wavelength of 620 nm or more for red photosynthetic bacteria. 700 nm, for example 650 to 700 nm, specifically 680 nm, far-red light (wavelength: 700 to 800 nm, for example 700 to 750 nm, specifically 730 nm) are preferably used. Moreover, the light (for example, white light) which the light of the other wavelength mixed may be used. Furthermore, the irradiance is not particularly limited, and is usually 10 to 50 Wm −2 . Further, such light irradiation can be performed by using a light source such as a light emitting diode (LED), a laser light source, an artificial light source such as a fluorescent lamp, or a natural light source (sunlight).
 光合成細菌の培養に用いる培地としては特に制限はなく、各光合成に必要な条件(有機物、硫化水素及び水等の水素供与体、炭素源)が揃っていればよく、光合成細菌が海洋性のものである場合には、海水成分の培地(例えば、マリンアガー、マリンブロス、海水(滅菌海洋水等)そのもの)が好適に用いられる。 There is no particular limitation on the culture medium used for culturing the photosynthetic bacteria, and it is sufficient if the conditions (organic substance, hydrogen donor such as hydrogen sulfide and water, carbon source) necessary for each photosynthesis are aligned, and photosynthetic bacteria are marine. In this case, a culture medium of seawater component (for example, marine agar, marine broth, seawater (sterile ocean water etc.) itself) is suitably used.
 なお、本発明の方法は、大腸菌の発現系等と比べ、無機塩等の極めて安価な原料にて培養することが可能である。例えば、大腸菌の培養で通常用いられるグルコース、フルクトース、グルコン酸等の炭素源の代わりに、本発明においては、二酸化炭素や炭酸塩等の無機炭素原料を用いて培養することが可能である。さらに、酵母エキスやペプトンなどの有機窒素原料の代わりに、本発明においては、窒素、アンモニア、アンモニウム塩、硝酸塩、亜硝酸塩等の無機窒素原料で培養することも可能である。 In addition, the method of the present invention can be cultured using an extremely inexpensive raw material such as an inorganic salt, as compared with an expression system etc. of E. coli. For example, instead of a carbon source such as glucose, fructose, gluconic acid and the like usually used in culture of E. coli, in the present invention, it is possible to culture using an inorganic carbon raw material such as carbon dioxide and carbonate. Furthermore, instead of organic nitrogen sources such as yeast extract and peptone, in the present invention, it is also possible to culture with inorganic nitrogen sources such as nitrogen, ammonia, ammonium salts, nitrates and nitrites.
 また、他の条件として、半好気性(半嫌気性)条件下、嫌気性条件下で培養することが好ましく、培養温度は、通常15~37℃であり、好ましくは25~35℃である。培養時間としては、特に制限はなく、用いるヌクレオチド構築物、光合成細菌及び導入法の種類、並びにクモ糸タンパク質の製造の程度により、適宜調整され得るが、通常1日~30日であり、好ましくは2日~10日、より好ましくは3日~7日である。 As other conditions, it is preferable to culture under semi-aerobic (semi-anaerobic) conditions, under anaerobic conditions, and the culture temperature is usually 15 to 37 ° C., preferably 25 to 35 ° C. The culture time is not particularly limited, and may be appropriately adjusted depending on the nucleotide construct used, type of photosynthetic bacteria and introduction method, and degree of production of spider silk protein, but it is usually 1 to 30 days, preferably 2 It is preferably 10 days, more preferably 3 days.
 また、このように培養して得られる光合成細菌の「培養物」とは、本発明において、増殖した光合成細菌のみならず、培養することによって得られる、前記細菌の分泌産物及び該光合成細菌の代謝産物等を含有する培地のことであり、それらの希釈物、濃縮物を含む。 Further, the “culture” of the photosynthetic bacteria thus obtained by culture is not only the photosynthetic bacteria grown in the present invention, but also the secretion products of the bacteria and the metabolism of the photosynthetic bacteria obtained by culturing. A culture medium containing products and the like, including dilutions and concentrates thereof.
 このような光合成細菌の培養物からのクモ糸タンパク質の回収についても、特に制限はなく、公知の回収、精製方法を用いて行うことができ、例えば、光合成細菌を溶解又は機械的に破壊することによって回収することができる。クモ糸タンパク質が分泌されている場合に、培地を回収することによって得ることができる。得られたタンパク質は、標準的な手順を用いて精製することができる。所望の場合、前記回収物を遠心分離にかけて、適切な画分(沈殿物又は上清)を収集することができる。また、クモ糸タンパク質をさらに精製するために、ゲルろ過クロマトグラフィー、例えば、陰イオン交換クロマトグラフィー、透析法、相分離又は濾過に供することができる。さらにまた、クモ糸タンパク質に精製用タグタンパク質を付加させて光合成細菌に付加させている場合には、そのタグに応じたアフィニティクロマトグラフィーを用いて精製することができる。 There is no particular limitation on the recovery of spider silk protein from culture of such photosynthetic bacteria, and it can be carried out using known recovery and purification methods, for example, dissolving or mechanically destroying photosynthetic bacteria. Can be recovered by When spider silk proteins are secreted, they can be obtained by recovering the culture medium. The resulting protein can be purified using standard procedures. If desired, the harvest can be centrifuged to collect the appropriate fractions (precipitate or supernatant). Also, for further purification of spider silk proteins, it can be subjected to gel filtration chromatography such as anion exchange chromatography, dialysis, phase separation or filtration. Furthermore, when a tag protein for purification is added to a spider silk protein and added to a photosynthetic bacterium, it can be purified using affinity chromatography according to the tag.
 なお、本発明の方法において、上述のとおり、夾雑タンパク質のない無機塩原料のみで培養することが可能である。したがって、大腸菌等の他の宿主細胞よりも、本発明の方法は、タンパク質精製における煩雑な工程を簡素化できる。 In the method of the present invention, as described above, it is possible to culture only with the inorganic salt raw material free from contaminating proteins. Thus, rather than other host cells such as E. coli, the method of the invention can simplify the cumbersome steps in protein purification.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。本実施例において、以下の材料及び方法を用い、光合成細菌におけるクモ糸タンパク質の発現を試みた。 Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to the following examples. In the present example, expression of spider silk protein in photosynthetic bacteria was attempted using the following materials and methods.
 なお、本実施例において発現を試みたクモ糸タンパク質は、クモ(Nephila clavipe)のMaSp1における反復配列(単量体)、その二量体、三量体及び六量体を各々含むタンパク質である(以下、これらタンパク質を「MaSp1タンパク質」とも総称する)。また、これらMaSp1タンパク質のN末には、Hisタグ、トロンビン認識配列、Sタグ及びエンテロキナーゼ認識配列からなるタグタンパク質(配列番号:6に記載のアミノ酸配列からなるタンパク質)を融合させ、光合成細菌における発現を試みた(以下、前記タグタンパク質を融合させたタンパク質を、「融合MaSp1タンパク質」とも総称する)。下記表6に、各MaSp1タンパク質のアミノ酸配列(配列番号)、並びに各融合MaSp1タンパク質のアミノ酸数及び分子量を示す。 The spider silk protein which was attempted to be expressed in the present example is a protein containing a repetitive sequence (monomer) in MaSp1 of a spider (Nephila clavipe), its dimer, trimer and hexamer respectively ( Hereinafter, these proteins are also collectively referred to as "MaSp1 protein". In addition, a tag protein consisting of a His tag, a thrombin recognition sequence, an S tag and an enterokinase recognition sequence (a protein consisting of the amino acid sequence described in SEQ ID NO: 6) is fused to the N terminal of these MaSp1 proteins, Expression was tried (hereinafter, the protein in which the tag protein is fused is also generically referred to as "fused MaSp1 protein"). Table 6 below shows the amino acid sequence (SEQ ID NO :) of each MaSp1 protein, and the number of amino acids and the molecular weight of each fused MaSp1 protein.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (細菌株及び培養条件)
 海洋性紅色非硫黄光合成細菌 Rhodovulum sulfidophilum DSM1374/ATCC35886は、理化学研究所 微生物材料開発室(JCM)より入手した。Rdv.sulfidophilumは、マリンアガー又はリンブロス(BD Difco社製,USA)にて、30℃、半好気条件、遠赤色光の連続照射下(730nm,30Wm-2)にて培養(維持)した。
(Bacterial strain and culture conditions)
The marine red non-sulfur photosynthetic bacterium Rhodovulum sulfidophilum DSM 1374 / ATCC 35886 was obtained from RIKEN Microorganism Materials Development Laboratory (JCM). Rdv. The sulfidophilum was cultured (maintained) in marine agar or phosphorus broth (BD Difco, USA) at 30 ° C. under semi-aerobic conditions under continuous irradiation of far-red light (730 nm, 30 Wm −2 ).
 Escherichia coli DH5α(TaKaRa社製,Japan)を、Lysogeny broth(LB)アガー又はLBブロス(BD DifcoLB社製,USA)にて、37℃、好気条件、180rpmにて振とう培養しながら維持し、ジェネラルクローニングに供した。 Maintain Escherichia coli DH5α (TaKaRa, Japan) in shaking culture at 180 ° C. under aerobic conditions at 37 ° C. in Lysogeny broth (LB) agar or LB broth (BD Difco LB, USA) It served for general cloning.
 Rdv.sulfidophilumへのプラスミド接合伝達を行なうため、E.coli S17-1(Simon,R.ら、Nature Biotechnology、1983年、1(9):784-791.)を、ドナー株として用い、LBアガー又はLBブロス(BD Difco社製,USA)にて、37℃、好気条件、180rpmにて振とう培養しながら維持した。 Rdv. In order to perform plasmid junctional transfer to S. sulfidophilum, coli S17-1 (Simon, R. et al., Nature Biotechnology, 1983, 1 (9): 784-791.) is used as a donor strain in LB agar or LB broth (BD Difco, USA), The culture was maintained at 37 ° C. under aerobic conditions and shaking culture at 180 rpm.
 (プラスミド構築及びRdv.sulfidophilumへの接合伝達)
 全てのPCR増幅は、KOD-plus DNAポリメラーゼ(TOYOBO社製,Japan)を用いて行なった。また、前述のMaSp1タンパク質を各々コードし、E.coliのコドンに最適化したDNAを、Hisタグ、Sタグ、トロンビン認識配列及びエンテロキナーゼ認識配列(配列番号:6に記載のアミノ酸配列)をコードするDNAと共に、pET30-a-MaSp1(Numata,K.ら、Advanced Drug Delivery Reviews、2010年、62(15):1497-1508 参照)から、下記表7に示すプライマー(配列番号:11~13)を用いて増幅した。また、当該表において、Tac1プロモーターを、該プロモーターを有するプラスミドを鋳型として増幅するために用いたプライマー(配列番号:9及び10)も併せて示す。
(Plasmid construction and conjugal transfer to Rdv. Sulfidophilum)
All PCR amplification was performed using KOD-plus DNA polymerase (TOYOBO, Japan). In addition, each of the above-described MaSp1 proteins encodes E. coli. pET30-a-MaSp1 (Numata, K), together with a DNA encoding a Co. coli-codon-optimized DNA, together with a DNA encoding His tag, S tag, thrombin recognition sequence and enterokinase recognition sequence (amino acid sequence described in SEQ ID NO: 6). Et al., Advanced Drug Delivery Reviews, 2010, 62 (15): 1497-1508), using the primers shown in Table 7 below (SEQ ID NOS: 11-13). Further, in the table, the Tac1 promoter is also shown together with the primers (SEQ ID NOS: 9 and 10) used to amplify the plasmid having the promoter as a template.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 なお、表7において、下線を引いた箇所は、制限酵素認識配列を示す。また太字にて記載した箇所は、リボソーム結合配列(RBS)を示す。 In Table 7, underlined portions indicate restriction enzyme recognition sequences. Also, the portions described in bold indicate ribosome binding sequences (RBS).
 TacIプロモーター及びMaSp1遺伝子配列は、対応する制限酵素にて処理して精製した後、宿主ベクター pBBR1MCS-2(Kovach,M.E.ら、Gene、1995年、166(1): 175-176 参照)に挿入した(図1及び2 参照)。 The TacI promoter and MaSp1 gene sequences are treated with the corresponding restriction enzymes and purified, and then the host vector pBBR1MCS-2 (Kovach, M. E. et al., Gene, 1995, 166 (1): 175-176). (See FIGS. 1 and 2).
 組み換えプラスミドを保持するE.coli S17-1(ドナー)とRdv.sulfidophilum(レシピエント)との細菌間接合伝達は、以下に記載の方法に沿って行なった。 E. carrying a recombinant plasmid coli S17-1 (donor) and Rdv. Bacterial junctional transfer with sulfidophilum (recipient) was performed according to the method described below.
 先ず、組み換えプラスミドを保持するE.coli S17-1を、50μgmL-1カナマイシン含有5mL LB培地に接種し、37℃、180rpmにて、16時間の振とう培養を行なった。一方、Rdv.sulfidophilumを、15mL マリンブロスに接種し、30℃、半好気性条件下、遠赤色光の連続照射下(730nm,30Wm-2)にて、30時間培養した。 First, E. coli carrying the recombinant plasmid. E. coli S17-1 was inoculated into 5 mL LB medium containing 50 μg mL −1 kanamycin, and shake culture was performed at 37 ° C. and 180 rpm for 16 hours. Meanwhile, Rdv. The sulfidophilum was inoculated in 15 mL of marine broth and cultured at 30 ° C. under semiaerobic conditions under continuous irradiation of far-red light (730 nm, 30 Wm −2 ) for 30 hours.
 両細菌培養物を、12,000rpm、3分間の遠心処理に供した後、新しい培養液に再懸濁した(E.coli S17-1はLBブロスに、Rdv.sulfidophilumはマリンブロスに再懸濁した)。 Both bacterial cultures were subjected to centrifugation at 12,000 rpm for 3 minutes and then resuspended in fresh medium (E. coli S17-1 in LB broth and Rdv. Sulfidophilum in marine broth). did).
 そして、E.coli S17-1及びRdv.sulfidophilumの細胞懸濁液を1:1にて混合した。得られた細菌混合液 約200μLを、マリンアガープレートに染み込ませ、遠赤色光の連続照射下(730nm,30Wm-2)にて、1日培養した。その後、細胞をアガーから削り取り、新しいマリンブロス5mLに再懸濁した。 And E. coli S17-1 and Rdv. The cell suspension of sulfidophilum was mixed at 1: 1. About 200 μL of the obtained bacterial mixture was soaked in a marine agar plate and cultured for 1 day under continuous irradiation of far-red light (730 nm, 30 Wm −2 ). The cells were then scraped from the agar and resuspended in 5 mL of fresh marine broth.
 得られた細胞懸濁液 約100μLを、100μgmL-1カナマイシン及び100μgmL-1亜テルル酸カリウム含有シモンズクエン酸アガーに播いた。そのアガープレートを、30℃にて、遠赤色光の連続照射下(730nm,30Wm-2)にて、7日間培養した。 The resulting cell suspension to about 100 [mu] L, plated on 100MyugmL -1 kanamycin and 100MyugmL -1 potassium tellurite containing Simmons citrate agar. The agar plates were cultured at 30 ° C. for 7 days under continuous irradiation of far-red light (730 nm, 30 Wm −2 ).
 なお、接合完了体が得られたことは、コロニーPCR、制限酵素処理及びDNAシークエンシングにて確認した。 In addition, it was confirmed by colony PCR, restriction enzyme treatment, and DNA sequencing that the conjugation completion body was obtained.
 (融合MaSp1タンパク質の発現)
 E.coliのコドンに最適化したNephila clavipes由来のMaSp1遺伝子を含むpET30プラスミドが導入された、組み換えE.coli BL21(DE3)(TaKaRa社製,Japan)を、37℃、50μgmL-1カナマイシン含有LBブロスにて、振とう(180rpm)させながら、OD600(培養液の濁度)が約1.0に達する迄培養した。その後、1mM イソプロピル-β-チオガラクトピラノシド(IPTG)を添加し、培養温度を30℃に変更して4時間又は24時間培養することにより、MaSp1タンパク質の発現を誘導した。
(Expression of fusion MaSp1 protein)
E. recombinant E. coli into which the pET30 plasmid containing the MaSp1 gene from Nephila clavipes optimized for the E. coli codon was introduced. E. coli BL21 (DE3) (TaKaRa, Japan) at 37 ° C. in 50 μg mL −1 kanamycin containing LB broth while shaking (180 rpm) to OD 600 (the turbidity of the culture solution) to about 1.0 It was cultured to reach the end. Thereafter, the expression of MaSp1 protein was induced by adding 1 mM isopropyl-β-thiogalactopyranoside (IPTG) and changing the culture temperature to 30 ° C. and culturing for 4 hours or 24 hours.
 E.coliのコドンに最適化したNephila clavipes由来のMaSp1遺伝子を導入した組み換えRdv.sulfidophilumを、30℃、100μgmL-1カナマイシン含有マリンブロスにて、半好気性条件、遠赤色光の連続照射下(730nm,30Wm-2)にて、OD600が約1.5に達する迄、培養した。その後、融合MaSp1タンパク質の発現誘導を、1mM IPTGを添加し、1日、2日、3日及び4日培養することにより行った。また、前記OD600が約1.5に達した後、IPTG非存在下でも更に4日間培養した。 E. recombinant Rdv. transduced with MaSp1 gene from Nephila clavipes optimized for codons of E. coli. C. sulfidophilum was cultured at 30 ° C. in 100 μg mL −1 kanamycin-containing marine broth under semiaerobic conditions, continuous irradiation with far-red light (730 nm, 30 Wm −2 ) until the OD 600 reached about 1.5. did. Then, expression induction of the fusion MaSp1 protein was performed by adding 1 mM IPTG and culturing it for 1, 2, 3 and 4 days. Also, after the OD 600 reached about 1.5, the cells were further cultured for 4 days in the absence of IPTG.
 (タンパク質溶解液の調製)
 前記IPTG誘導後又はIPTG非誘導下での培養後、4℃にて、9,000g、10分間の遠心処理に供し、細菌を回収した。湿重量1gの細菌ペレットを、5mLの変性バッファー(10mM Tris,8M 尿素及び100mM NaHPO,pH7)に添加して再懸濁した。さらに、細胞懸濁液を、4℃にて一晩攪拌し、9,000g、30分間、4℃の遠心処理に供した。そして、上清(タンパク質溶解液)を回収した。
(Preparation of protein solution)
After IPTG induction or culture under non-IPTG induction, bacteria were recovered by centrifugation at 9,000 g for 10 minutes at 4 ° C. Bacterial pellets at a wet weight of 1 g were resuspended in 5 mL of denaturation buffer (10 mM Tris, 8 M urea and 100 mM NaH 2 PO 4 , pH 7). Furthermore, the cell suspension was stirred overnight at 4 ° C. and subjected to centrifugation at 9,000 g for 30 minutes at 4 ° C. Then, the supernatant (protein solution) was collected.
 (HisTrap精製及び濃縮)
 タンパク質溶解液(IPTG誘導下又は非誘導下にて1~4日間培養)をまとめた上で(約550mL培養液に相当)、HisTrap HP 1 mLカラム(GE Healthcare Life Sciences社製,USA)を用い、そのメーカープロトコールに沿って精製した。
(HisTrap purification and concentration)
Combine protein lysates (cultured under IPTG induction or not for 1 to 4 days) (approx. 550 mL culture solution) and use HisTrap HP 1 mL column (GE Healthcare Life Sciences, USA) Purified according to the manufacturer's protocol.
 精製に際して、結合バッファー(8M 尿素,0.5M NaCl,20mM リン酸バッファー,5mMイミダゾール,pH7.4)及び抽出バッファー(8M 尿素,0.5M NaCl,20mM リン酸バッファー,500mMイミダゾール,pH7.4)を、0.22μmセルロースアセテートフィルター(Corning社製,USA)にてろ過した。 In purification, binding buffer (8 M urea, 0.5 M NaCl, 20 mM phosphate buffer, 5 mM imidazole, pH 7.4) and extraction buffer (8 M urea, 0.5 M NaCl, 20 mM phosphate buffer, 500 mM imidazole, pH 7.4) Was filtered through a 0.22 .mu.m cellulose acetate filter (Corning, USA).
 HisTrap HP 1 mLカラム、結合バッファー及び抽出バッファーを用いて、得られた精製物は、Vivaspin 6 MWCO 3000タンパク質濃縮スピンカラム(GE Healthcare Life Sciences社製,USA)を用いて濃縮した。 The purified product obtained was concentrated using a Vivaspin 6 MWCO 3000 protein-concentrated spin column (GE Healthcare Life Sciences, USA) using a HisTrap HP 1 mL column, a binding buffer and an extraction buffer.
 なお、6×ヒスチジン残基(Hisタグ)がN末に融合されている、融合MaSp1タンパク質は、HisTrapカラムへの結合能を有するため、前記処理により精製、濃縮されることとなる。 Since the fused MaSp1 protein in which the 6 × histidine residue (His tag) is fused to the N-terminus has the ability to bind to the HisTrap column, it is purified and concentrated by the above treatment.
 (SDSポリアクリルアミドゲル電気泳動(SDS-PAGE))
 前記にて調製したサンプル(タンパク質溶液、HisTrapによる濃縮後のタンパク質溶液等)を、16.5%プレキャストTris-トリシンゲル(Bio-Rad社製,USA)を用いたSDS-PAGEに、2時間供した。そして、ゲルに、固定バッファー(25%エタノール及び15%ホルムアルデヒド)を30分間染み込ませた後、クマシーブリリアントブルー(CBB)-R250による染色に1時間供した。得られた結果を図3に示す。
(SDS polyacrylamide gel electrophoresis (SDS-PAGE))
The sample prepared above (protein solution, protein solution after concentration with HisTrap, etc.) was subjected to SDS-PAGE using 16.5% pre-cast Tris-Tricine gel (Bio-Rad, USA) for 2 hours. . Then, the gel was impregnated with fixing buffer (25% ethanol and 15% formaldehyde) for 30 minutes and then subjected to staining with Coomassie Brilliant Blue (CBB) -R250 for 1 hour. The obtained result is shown in FIG.
 (ウエスタンブロッティング)
 前記SDS-PAGEに供したゲルからフッ化ポリビニリデン(PVDF)メンブレン(0.2μm孔サイズ)(Bio-Rad社製,USA)に、セミドライブロッター(Bio-Rad社製,USA)を用い、タンパク質を電気泳動転写した。
(Western blotting)
Using the semi-dry blotter (Bio-Rad, USA) to the polyvinylidene fluoride (PVDF) membrane (0.2 μm pore size) (Bio-Rad, USA) from the gel subjected to the SDS-PAGE, using a semi-dry blotter (Bio-Rad, USA) Were electrophoretically transferred.
 PVDFメンブレンにおける、Hisタグを含む融合MaSp1単量体タンパク質の検出は、Hisタグ(登録商標)ウエスタン試薬プロトコール(Novagen社製,USA)に沿って、抗Hisタグモノクローナル抗体及びAP標識ヤギ抗マウスIgGを用い、HisタグAPウエスタン試薬による比色検出法により行った。得られた結果を図4に示す。また、融合MaSp1タンパク質の検出は、前記プロトコールに沿って、抗Hisタグモノクローナル抗体及びHRP標識ヤギ抗マウスIgG(Thermo Fisher Scientific社製,USA)、並びにNovex(登録商標)ECL化学発光基質試薬キット(Thermo Fisher Scientific社製,USA)を用い、化学発光検出法によっても行った。得られた結果を図5に示す。 Detection of fused MaSp1 monomeric protein containing His tag in a PVDF membrane is carried out according to His tag (registered trademark) Western reagent protocol (Novagen, USA) according to anti-His tag monoclonal antibody and AP-labeled goat anti-mouse IgG Using a His-tag AP Western reagent. The obtained result is shown in FIG. In addition, detection of the fusion MaSp1 protein can be carried out according to the above-mentioned protocol: anti-His tag monoclonal antibody and HRP-labeled goat anti-mouse IgG (Thermo Fisher Scientific, USA), and Novex (registered trademark) ECL chemiluminescence substrate reagent kit ( Chemiluminescence detection was also performed using Thermo Fisher Scientific (USA). The obtained result is shown in FIG.
 (LC-MS/MS分析)
 前記SDS-PAGEに供したゲルから、目的とするバンドを切り出し、液体クロマトグラフィー/質量分析法(LC-MS)によって分析し、アミノ酸配列を同定した。なお、LC-MSデータについては、MASCOTプログラムにより、処理及び探索を行なった。
(LC-MS / MS analysis)
The target band was excised from the gel subjected to the SDS-PAGE and analyzed by liquid chromatography / mass spectrometry (LC-MS) to identify the amino acid sequence. The LC-MS data was processed and searched by the MASCOT program.
 図3に示した結果から明らかなように、細菌間接合伝達法を用い、融合MaSp1単量体タンパク質をコードするベクターの海洋性紅色非硫黄光合成細菌 Rdv.sulfidophilumへの導入を試みた結果、SDS-PAGEにおいて、前記タンパク質の分子量相当の位置に、強いバンドが検出された(図3のレーンHP 参照)。さらに、図4に示した結果から明らかなように、抗Hisタグ抗体を用いたウエスタンブロッティングにおいて、同位置にMaSp1単量体タンパク質に融合させたHisタグが検出された(図4のレーンHP 参照)。また、図5に示した結果から明らかなように、MaSp1単量体タンパク質のみならず、二量体タンパク質、三量体タンパク質及び六量体タンパク質のいずれについても検出することができた。なお、融合MaSp1単量体タンパク質については、検出されたタンパク質が当該単量体タンパク質であることを、LC-MS/MS分析によって確認した。 As is clear from the results shown in FIG. 3, the marine red non-sulfur photosynthetic bacteria Rdv. As a result of attempting to introduce into sulfidophilum, a strong band was detected at the position corresponding to the molecular weight of the protein in SDS-PAGE (see lane HP in FIG. 3). Furthermore, as apparent from the results shown in FIG. 4, in Western blotting using an anti-His tag antibody, a His tag fused to the MaSp1 monomer protein was detected at the same position (see lane HP in FIG. 4). ). Further, as is clear from the results shown in FIG. 5, not only the MaSp1 monomeric protein but also any of dimeric protein, trimeric protein and hexameric protein could be detected. The fused MaSp1 monomeric protein was confirmed by LC-MS / MS analysis that the detected protein was the monomeric protein.
 したがって、光合成細菌においてMaSp1タンパク質(クモ糸タンパク質)を発現させることができるということが、明らかになった。 Therefore, it became clear that it is possible to express MaSp1 protein (spider silk protein) in photosynthetic bacteria.
 以上説明したように、本発明によれば、クモ糸タンパク質の製造の場となる光合成細菌は、給餌を必要とすることなく維持、増殖させることができるため、その合成コストを低く抑えられることが可能となる。 As described above, according to the present invention, photosynthetic bacteria, which are sites for producing spider silk proteins, can be maintained and propagated without the need for feeding, so that the synthesis cost can be reduced. It becomes possible.
 クモ糸タンパク質は、上述のとおり、抗張力、伸張性、靭性といった材料特性において傑出している。そのため、例えば、防弾衣、パラシュート、自動車の車体等の高い耐衝撃性が必要な材料の製造、開発において利用できる。さらに、生分解性、生物的適合性及び抗菌性も有しているため、クモ糸タンパク質は、創傷閉止材、縫合糸、絆創膏、再生医療用の足場材料等の医療材料の製造、開発においても利用できる。 As mentioned above, spider silk proteins stand out in material properties such as tensile strength, extensibility and toughness. Therefore, it can be used, for example, in the manufacture and development of materials that require high impact resistance, such as bulletproof clothing, parachute, car bodies of automobiles, and the like. Furthermore, since they have biodegradability, biocompatibility and antibacterial properties, spider silk proteins are also used in the manufacture and development of medical materials such as wound closures, sutures, bandages and scaffolds for regenerative medicine. Available.
 したがって、かかるクモ糸タンパク質をその合成コストを抑えて提供することができる本発明は、工業分野、医療分野等の様々な分野において極めて有用である。 Therefore, the present invention which can provide such spider silk protein at low cost for its synthesis is extremely useful in various fields such as industrial fields and medical fields.
配列番号:2~8
<223> 人工的に合成されたポリペプチドの配列
配列番号:9~13
<223> 人工的に合成されたプライマーの配列
配列番号:14~16 
<223> 人工的に合成されたプロモーターの配列
SEQ ID NOs: 2 to 8
<223> SEQ ID NO: 9 to 13 of artificially synthesized polypeptide
<223> SEQ ID NOs: 14 to 16 of artificially synthesized primers
<223> Sequence of artificially synthesized promoter

Claims (6)

  1.  光合成細菌においてタンパク質発現を誘導し得るプロモーターに機能的に連結された、クモ糸タンパク質をコードするヌクレオチドを含む、ヌクレオチド構築物。 A nucleotide construct comprising a nucleotide encoding a spider silk protein operably linked to a promoter capable of inducing protein expression in photosynthetic bacteria.
  2.  前記光合成細菌が紅色光合成細菌である、請求項1に記載のヌクレオチド構築物。 The nucleotide construct according to claim 1, wherein the photosynthetic bacteria are purple photosynthetic bacteria.
  3.  前記プロモーターがTac1プロモーターである、請求項1又は2に記載のヌクレオチド構築物。 The nucleotide construct according to claim 1 or 2, wherein the promoter is a Tac1 promoter.
  4.  前記クモ糸タンパク質がMaSp1タンパク質である、請求項1~3のいずれか1項に記載のヌクレオチド構築物。 The nucleotide construct according to any one of the preceding claims, wherein the spider silk protein is a MaSp1 protein.
  5.  請求項1~4のいずれか1項に記載のヌクレオチド構築物が導入された、光合成細菌。 A photosynthetic bacterium into which the nucleotide construct according to any one of claims 1 to 4 has been introduced.
  6.  クモ糸タンパク質を製造する方法であって、
     請求項5に記載の光合成細菌を、光照射下において培養する工程と、
     前記培養にて得られた光合成細菌の培養物から、クモ糸タンパク質を回収する工程とを、含む方法。
    A method of producing spider silk protein comprising
    Culturing the photosynthetic bacteria according to claim 5 under light irradiation;
    Recovering spider silk proteins from the culture of photosynthetic bacteria obtained by the culture.
PCT/JP2018/039521 2017-10-26 2018-10-24 Nucleotide construct for expressing spider silk protein in photosynthetic bacterium WO2019082935A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019551207A JPWO2019082935A1 (en) 2017-10-26 2018-10-24 Nucleotide construct for expression of spider silk protein in photosynthetic bacteria
JP2023097595A JP2023116685A (en) 2017-10-26 2023-06-14 Nucleotide construct for expressing spider silk protein in photosynthetic bacterium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762577373P 2017-10-26 2017-10-26
US62/577,373 2017-10-26
JP2017219141 2017-11-14
JP2017-219141 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019082935A1 true WO2019082935A1 (en) 2019-05-02

Family

ID=66247541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039521 WO2019082935A1 (en) 2017-10-26 2018-10-24 Nucleotide construct for expressing spider silk protein in photosynthetic bacterium

Country Status (2)

Country Link
JP (2) JPWO2019082935A1 (en)
WO (1) WO2019082935A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363022A (en) * 2020-04-03 2020-07-03 上海交通大学 Preparation method of high-concentration recombinant spider silk protein spinning solution and spinning thereof
CN112575016A (en) * 2019-09-29 2021-03-30 上海交通大学 Construction and application of membrane-free organelle in prokaryote

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146195A1 (en) * 2014-03-28 2015-10-01 株式会社カネカ Microorganism having multiple genes encoding pha synthase and method for producing pha using same
WO2017033652A1 (en) * 2015-08-24 2017-03-02 株式会社カネカ Polyhydroxyalkanoate resin composition having free hydroxy groups, and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100082837A (en) * 2007-09-11 2010-07-20 사파이어 에너지, 인크. Molecule production by photosynthetic organisms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146195A1 (en) * 2014-03-28 2015-10-01 株式会社カネカ Microorganism having multiple genes encoding pha synthase and method for producing pha using same
WO2017033652A1 (en) * 2015-08-24 2017-03-02 株式会社カネカ Polyhydroxyalkanoate resin composition having free hydroxy groups, and method for producing same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FOONG, C. P. ET AL.: "Synthetic spider silk protein in marine photosynthetic bacterium", POLYMER PREPRINTS, JAPAN, vol. 67, no. 1, 8 May 2018 (2018-05-08) *
FOONG, O. P. ET AL.: "Heterologous expression of synthetic spider dragline silk protein in a marine photosynthetic bacterium", ABSTRACTS OF CONSORTIUM OF BIOLOGICAL SCIENCES 2017 (CONBIO2017, 15 November 2017 (2017-11-15) *
KATSIOU, E. ET AL.: "Heterologous expression of genes encoding bacterial light-harvesting complex II in Rhodobacter capsulatus and Rhodovulum sulfidophilum", MICROBIOL. RES., vol. 153, 1998, pages 189 - 204, XP008104204 *
MATSUNAGA, TADASHI, BIOTECHNOLOGY OF MARINE PHOTOSYNTHETIC PROKARYOTES, vol. 27, no. 8, 1989, pages 513 - 520 *
TACHIYAMA, KO: "Research Frontiers-Learning from spider silk, making structural proteins", RIKEN NEWS, vol. 423, 2016, pages 04 - 07 *
TOKAREVA, 0. ET AL.: "Recombinant DNA production of spider silk proteins", MICROBIAL BIOTECHNOLOGY, vol. 6, no. 6, 2013, pages 651 - 663, XP055552571, DOI: doi:10.1111/1751-7915.12081 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575016A (en) * 2019-09-29 2021-03-30 上海交通大学 Construction and application of membrane-free organelle in prokaryote
CN112575016B (en) * 2019-09-29 2022-09-06 上海交通大学 Construction and application of membrane-free organelle in prokaryotes
CN111363022A (en) * 2020-04-03 2020-07-03 上海交通大学 Preparation method of high-concentration recombinant spider silk protein spinning solution and spinning thereof
CN111363022B (en) * 2020-04-03 2023-04-25 上海交通大学 Preparation method of high-concentration recombinant spider silk protein spinning solution and spinning thereof

Also Published As

Publication number Publication date
JP2023116685A (en) 2023-08-22
JPWO2019082935A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP2023116685A (en) Nucleotide construct for expressing spider silk protein in photosynthetic bacterium
JP6931934B2 (en) Methods and compositions for synthesizing improved silk fibers
Li et al. Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems
ES2569075T3 (en) Expression system
US7893229B2 (en) Peptides comprising repetitive units of amino acids and DNA sequences encoding the same
US11780905B2 (en) Preparation method for collagen hydrogel
US11365225B2 (en) Method of making recombinant silk and silk-amyloid hybrid proteins using bacteria
EP0293443A1 (en) Construction of synthetic dna and its use in large polypeptide synthesis
WO2010009614A1 (en) Secretion expression of antibiotic peptide cad in bacillus subtilis and expression system of recombination bacillus subtilis
CN110452909A (en) The really Method and kit for biologically active basic fibroblast growth factor is expressed in bacillus subtilis
Peng et al. Spider silk-like proteins derived from transgenic Nicotiana tabacum
Widmaier et al. Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion
KR101554762B1 (en) Method and gene for imparting or enhancing nonspecific adherence and/or aggregability to microorganism
Thomas et al. Recombinant expression of sericin-cecropin fusion protein and its functional activity
EP2330186B1 (en) Method for synthesizing protein containing high content of specific amino acid through simultaneous expression with trna of the specific amino acid
Gao et al. Codon optimization enhances the expression of porcine β-defensin-2 in Escherichia coli
WO2018164195A1 (en) Method for producing purified protein
US9321816B2 (en) Expression systems and methods of producing spider silk proteins
US20060248615A1 (en) Synthetic spider silk proteins and expression thereof in transgenic plants
CN107805283A (en) One kind intends spider&#39;s thread protein and its biological synthesis method
CN104119445A (en) Fusion protein containing leucine-rich repetitive sequence, and preparation method and application thereof
WO2016057851A1 (en) Expression systems and associated methods
CN113924312A (en) Mass production system of recombinant silk worm grass protein
US11639377B2 (en) Preparation of type I collagen-like fiber and method for regulating and controlling the D-periodic of fiber thereof
KR102211740B1 (en) Novel promoter HASP1 of Phaeodactylum tricornutum and signal peptide thereof and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869591

Country of ref document: EP

Kind code of ref document: A1