WO2019082686A1 - Imaging device - Google Patents

Imaging device

Info

Publication number
WO2019082686A1
WO2019082686A1 PCT/JP2018/038042 JP2018038042W WO2019082686A1 WO 2019082686 A1 WO2019082686 A1 WO 2019082686A1 JP 2018038042 W JP2018038042 W JP 2018038042W WO 2019082686 A1 WO2019082686 A1 WO 2019082686A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
pixel
signal
imaging
Prior art date
Application number
PCT/JP2018/038042
Other languages
French (fr)
Japanese (ja)
Inventor
寿伸 杉山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018008193A external-priority patent/JP2019083501A/en
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/756,171 priority Critical patent/US11372200B2/en
Publication of WO2019082686A1 publication Critical patent/WO2019082686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present technology relates to an imaging device, and in particular to an imaging device capable of efficiently separating signals having different characteristics.
  • a technique using infrared (IR) images in addition to visible images is widely used as a technique for object recognition and information sensing used in surveillance camera systems, security systems, in-vehicle systems, game machines and the like.
  • IR infrared
  • An image sensor capable of simultaneously acquiring IR images has been proposed.
  • Patent Document 1 proposes that one G pixel in a 2 ⁇ 2 Bayer array is replaced with an IR pixel that transmits only IR light. According to the proposal of Patent Document 1, a visible signal and an IR signal are separated by arithmetic processing of signals from respective R, G, B, and IR pixels, and respective images are output according to the application.
  • the present technology has been made in view of such circumstances, and can efficiently separate signals having different characteristics.
  • imaging is performed in a state in which light of a predetermined pattern from a structured light source and an imaging unit that images a subject is irradiated on a projection area of a specific pixel of the imaging unit.
  • an image generation unit configured to generate an image of the subject based on a pixel signal obtained by being read.
  • FIG. 1 It is a flowchart explaining the imaging process of the camera system of FIG. It is a figure which shows the example of a pixel array. It is a figure showing the 3rd example of composition of a camera system to which this art is applied. It is a figure explaining the principle of SL light source. It is a block diagram which shows the structural example of IR light irradiation apparatus and an imaging device. It is a figure which shows the example of the pixel array of an image sensor. It is a figure explaining the relationship between the angle of view of an imaging device, and the irradiation angle of IR-SL light source.
  • FIG. 1 schematically shows an overall configuration of an operating room system. It is a figure which shows the example of a display of the operation screen in a concentration operation panel. It is a figure which shows an example of the mode of the surgery to which the operating room system was applied. It is a block diagram which shows an example of a function structure of the camera head shown in FIG. 33, and CCU.
  • FIG. 1 is a diagram illustrating a first configuration example of a camera system to which the present technology is applied.
  • the camera system of the present technology in a state where light of a dot pattern is projected from a structured light (SL) light source onto a projection area of a predetermined pixel, imaging is performed at a position close to the SL light source.
  • SL structured light
  • the camera system 1 of FIG. 1 includes an IR light irradiation device 11 as an IR-SL light source, and an imaging device 12.
  • IR light irradiation device 11 as an IR-SL light source
  • imaging device 12 In FIG. 1, projection areas of pixels are virtually shown by broken lines on a plane on which a subject is assumed.
  • the projection area is an area corresponding to the pixel array of the image sensor in the imaging device 12.
  • the characters shown in each projection area indicate that the pixels corresponding to each projection area are R, G, B pixels or IR pixels.
  • the IR light irradiation device 11 is a device that emits IR light, and is disposed in the vicinity of the imaging device 12 in a fixed manner.
  • the IR light irradiation device 11 irradiates IR light of a dot pattern that irradiates only the projection area corresponding to the IR pixel. Of the projection areas, each dot of the dot pattern is projected as IR light from the IR light irradiator 11 onto the projection area of the IR pixel as indicated by a colored circle.
  • the imaging device 12 includes, as one example, an image sensor in which R, G, B pixels and IR pixels are arranged in a 2 ⁇ 2 matrix.
  • the shutter system of the image sensor may be a rolling shutter system or a global shutter system.
  • FIG. 1 only the projection area of 4 ⁇ 4 pixels is shown, and the projection areas to which IR light is irradiated are four areas. Each dot of IR light is illuminated.
  • the imaging device 12 images a subject in a state where IR light of a dot pattern that irradiates only a projection area corresponding to an IR pixel is irradiated by the IR light irradiation device 11.
  • IR light of a dot pattern that irradiates only a projection area corresponding to an IR pixel is irradiated by the IR light irradiation device 11.
  • R, G and B pixels visible light from a predetermined light source is received. Thereby, in the imaging device 12, a visible image corresponding to the signal from the R, G, B pixels and an IR image corresponding to the signal from the IR pixel are generated.
  • FIG. 2 is a diagram for explaining the principle of a structured light source.
  • the IR light irradiation device 11 has a configuration in which the diffraction grating 22 is provided in front of the laser light source 21.
  • the diffraction grating 22 By designing the diffraction grating 22 appropriately, it is possible to irradiate IR light of a dot pattern to any position (for example, a projection area of IR pixels in FIG. 1) in a matrix.
  • FIG. 3 is a diagram for explaining the relationship between the angle of view of the imaging device and the irradiation angle of the IR-SL light source.
  • the solid lines in the SL irradiation angle centering on the optical axis 11C of the IR light irradiation device 11 indicate the boundaries of the SL irradiation area, and the broken lines in the angle of view centering on the optical axis 12C of the imaging device 12 , Indicates the boundary of the pixel area.
  • the SL irradiation area is an area where dots are irradiated from the IR-SL light source to the pixel area.
  • the SL irradiation angle of the IR light irradiation device 11 and the angle of view of the imaging device 12 are set so as to approximately match.
  • the solid line L1 on the left side of FIG. 3 indicates the projection area of the imaging device 12.
  • the range indicated by the bidirectional arrow corresponds to the projection area of one pixel.
  • An alternate long and short dash line L2 on the right side of the pixel projection area indicates a parallax matching limit distance.
  • the parallax matching limit distance is a distance from the IR light irradiation device 11 and the imaging device 12 at which the parallaxes of the IR light irradiation device 11 and the imaging device 12 substantially coincide with each other.
  • the black rectangles on the solid line L1 and on the dashed-dotted line L2 represent the dots of the dot pattern.
  • the IR light of the dot pattern from the IR light irradiation device 11 of FIG. 3 is irradiated only to the region corresponding to the IR pixel in the pixel array of the imaging device 12. At that time, the imaging device 12 and the IR light irradiation device 11 are fixed.
  • the dot pattern irradiated from the IR light irradiation device 11 no matter what distance the subject is if it is separated from the parallax matching limit distance shown by the alternate long and short dash line L2.
  • the projection area of the IR pixel and the IR light of the dot pattern correspond to 1: 1. Reflected light of IR light does not reach the R, G and B pixels, and is received only by the IR pixels.
  • the parallax coincidence limit distance is, for example, the distance between the optical axis 11C of the IR light irradiation device 11 and the optical axis 12C of the image sensor (lens) of the imaging device 12 If the difference of about 3 mm, it will be about 60 cm.
  • FIG. 4 is a block diagram showing a configuration example of an imaging device. Imaging of a subject in the camera system 1 is performed by the imaging device 12 in a state in which IR light of a dot pattern from the IR light irradiation device 11 as an IR-SL light source is steadily irradiated.
  • the imaging device 12 includes an optical system 31 such as a lens, an image sensor 32, and an image generation unit 33.
  • the image sensor 32 has a pixel array unit in which R, G, B pixels and IR pixels are arranged in a 2 ⁇ 2 matrix.
  • the image sensor 32 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
  • the image generation unit 33 generates a visible image using signals (visible signals) from R, G, and B pixels among a plurality of pixels forming the pixel array unit of the image sensor 32, and generates the generated visible image as It outputs to the signal processing part of the latter part which is not illustrated. Further, the image generation unit 33 generates an IR image using a signal (IR signal) from an IR pixel among a plurality of pixels constituting the pixel array unit of the image sensor 32, and illustrates the generated IR image. Output to the signal processing unit at the subsequent stage.
  • signals visible signals
  • the image generation unit 33 includes a signal separation unit 41, an interpolation processing unit 42-1 and an interpolation processing unit 42-2, and an image quality improvement signal processing unit 43-1 and an image quality improvement signal processing unit 43-2. Configured
  • the signal separation unit 41 separates the visible signal from the signal of the image sensor 32, and outputs the signal to the interpolation processing unit 42-1. Further, the signal separation unit 41 separates the IR signal from the signal of the image sensor 32, and outputs the IR signal to the interpolation processing unit 42-2.
  • the interpolation processing unit 42-1 generates a visible image by performing interpolation processing such as demosaicing processing that generates pixel signals of missing colors according to the arrangement of R, G, and B pixels, and performs high-quality image processing Supply to section 43-1.
  • interpolation processing such as demosaicing processing that generates pixel signals of missing colors according to the arrangement of R, G, and B pixels, and performs high-quality image processing Supply to section 43-1.
  • the interpolation processing unit 42-2 performs an IR signal interpolation process to generate an IR image, and outputs the IR image to the image quality improvement signal processing unit 43-2.
  • the high image quality formation signal processing unit 43-1 performs high image quality formation processing of the visible image, and outputs the visible image after the high quality processing.
  • the high image quality formation signal processing unit 43-2 performs high image quality formation processing of the IR image, and outputs the IR image after the high quality processing.
  • step S11 of FIG. 5 the image sensor 32 captures an image of the subject in a state where the IR light of the dot pattern from the IR light irradiation device 11 is irradiated.
  • the image sensor 32 photoelectrically converts incident light, and A / D converts the pixel value of each pixel of the pixel array unit to generate a pixel signal.
  • step S12 the signal separation unit 41 separates the visible signal and the IR signal from the signal from the image sensor 32.
  • the separated visible signal is output to the interpolation processing unit 42-1, and the IR signal is output to the interpolation processing unit 42-2.
  • step S13 the interpolation processing unit 42-1 generates a visible image by interpolating the visible signal. Further, the interpolation processing unit 42-2 generates an IR image by performing interpolation processing of the IR signal.
  • the visible image after interpolation is output to the image quality improvement signal processing unit 43-1.
  • the IR image after interpolation is output to the image quality improvement signal processing unit 43-2.
  • step S14 the image quality improvement signal processing unit 43-1 performs image quality improvement processing of a visible image.
  • the high image quality formation signal processing unit 43-2 performs high image quality formation processing of the IR image.
  • the visible image and the IR image after the image quality improvement processing are output to the signal processing unit in the subsequent stage.
  • the visible image and the IR image obtained as described above are used, for example, for object recognition of a surveillance camera system. After separation, they may be combined to obtain a color image.
  • the visible image and the IR image are used for face recognition for security for personal computers and smart phones, or for iris recognition. It is possible to simultaneously acquire an IR image and a visible image used for gesture recognition such as for authentication or for a game by one imaging device.
  • the reflected light from the subject due to the irradiation of the IR light is received only by the IR pixels, it does not affect the visible signals obtained by the RGB pixels. Therefore, it becomes possible to separate the visible signal and the IR signal which are signals having different characteristics. In addition, it is not necessary to form a dedicated on-chip filter for blocking IR irradiation light on R, G, B pixels.
  • FIG. 6 is an external view showing an arrangement example of the IR-SL light source.
  • the imaging device 12 incorporates the IR light irradiator 11A for irradiating IR light as the IR-SL light source, so that the configuration of imaging and the configuration of irradiation of IR light are in the same housing.
  • the IR light irradiation unit 11A is disposed in the vicinity of the optical system 31 represented by the lens of the imaging device 12.
  • the position of the image sensor 32 provided behind the optical system 31 and the position of the IR light irradiation unit 11A can be disposed closer to each other. It is possible to match the pattern and the pixel projection area.
  • FIG. 6 shows an example in which the imaging device 12 and the IR light irradiation device 11 as an IR-SL light source are configured independently of each other.
  • the IR light irradiation device 11 is detachably mounted on, for example, a housing of the imaging device 12 with an adjuster or the like.
  • the arrangement of the RGB-IR pixels is described as an example arranged in a 2 ⁇ 2 matrix, but the arrangement of the RGB-IR pixels is 2 ⁇ 2 It is not limited to the one arranged in the form of matrix. For example, it may be another different pixel array other than RGB-IR, or the pixel array may be arranged on a 3 ⁇ 3 or 4 ⁇ 4 matrix.
  • the pattern shape of the IR-SL light source a dot pattern configured by arranging each dot of IR light in a predetermined pattern has been described as an example, but the pattern shape of the IR-SL light source is The shape is not limited to the dot pattern, and may be another shape such as a pattern formed so that light is applied so that a plurality of pixels straddle, as long as the shape corresponds to the projection area of the pixel.
  • each dot of the dot pattern is projected on the projection area of the IR pixel
  • each dot of the dot pattern is R, G, B It may be projected onto a specific pixel area of the pixels.
  • the number of pixels that receive the IR signal increases, so the resolution of the IR image can be increased.
  • the IR signal mixed in the G pixel is subjected to subtraction processing by matrix operation.
  • the case of using one IR-SL light source has been described, but, for example, in order to increase the intensity of irradiation light, light from a plurality of light sources is irradiated to one pixel. It is also good.
  • FIG. 7 is a diagram illustrating a second configuration example of a camera system to which the present technology is applied.
  • the camera system 51 of FIG. 7 includes a light irradiation device 61 as an SL light source and an imaging device 62.
  • projection areas of pixels are virtually shown by broken lines on a plane on which a subject is assumed.
  • the projection area is an area corresponding to the pixel array of the imaging device 62.
  • the characters shown in each projection area indicate that the pixels corresponding to each projection area are R, G, B pixels or IR pixels.
  • the point which uses the monochrome (W / B) sensor in which the on-chip color filter is not mounted differs from the camera system 1 of FIG.
  • the other common parts have the same configuration as that of the camera system 1 of FIG. 1 and are repeated, so the description of the common parts will be omitted.
  • the four light sources included in the light irradiation device 61 are an R light source that emits R light, a G light source that emits G light, a B light source that emits B light, and an IR light source that emits IR light.
  • the R light source emits R light of a dot pattern that irradiates only the projection area corresponding to the R pixel.
  • the G light source emits G light of a dot pattern that irradiates only the projection area corresponding to the G pixel.
  • the B light source emits B light of a dot pattern that irradiates only the projection area corresponding to the B pixel.
  • the IR light source emits IR light of a dot pattern that irradiates only the projection area corresponding to the IR pixel.
  • each dot of the dot pattern is simultaneously projected as light from the four light sources of the light irradiation device 61, as indicated by four types of hatched circles.
  • the imaging device 62 captures an image of the subject in a state in which light of a dot pattern is emitted from the four light sources of the light irradiation device 61 so as to irradiate only the projection area of each pixel of R, G, B, and IR.
  • the imaging device 62 captures an image of the subject in a state in which light of a dot pattern is emitted from the four light sources of the light irradiation device 61 so as to irradiate only the projection area of each pixel of R, G, B, and IR.
  • FIG. 8 is a block diagram showing a configuration example of an imaging device.
  • the imaging of the subject in the camera system 51 is performed by the imaging device 62 in a state in which the light of the dot pattern from the light irradiation device 61 as the SL light source is steadily irradiated.
  • the imaging device 62 includes an optical system 71 such as a lens, an image sensor 72, and an image generation unit 73.
  • the image sensor 72 photoelectrically converts incident light, and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
  • the image sensor 72 is a black and white (W / B) sensor on which the on-chip color filter is not mounted.
  • the image sensor 72 has a pixel array unit in which R, G, B pixels and IR pixels are arranged in a 2 ⁇ 2 matrix.
  • the image generation unit 73 generates R, G, and B images using R, G, and B signals from R, G, and B pixels among a plurality of pixels forming the pixel array unit of the image sensor 72, The generated R, G, and B images are output to a signal processing unit in a subsequent stage (not shown).
  • the image generation unit 73 generates an IR image using an IR signal from an IR pixel among a plurality of pixels constituting the pixel array unit of the image sensor 72, and generates the generated IR image in a subsequent signal processing (not shown). Output to the unit.
  • the image generation unit 73 is configured to include a signal separation unit 81, an interpolation processing unit 82-1 to an interpolation processing unit 82-4, and an image quality improvement signal processing unit 83-1 to an image quality improvement signal processing unit 83-4. Ru.
  • the signal separation unit 81 separates the R signal from the signal of the image sensor 72, and outputs the R signal to the interpolation processing unit 82-1.
  • the signal separation unit 81 separates the G signal from the signal of the image sensor 72, and outputs the G signal to the interpolation processing unit 82-2.
  • the signal separation unit 81 separates the B signal from the signal of the image sensor 72, and outputs the B signal to the interpolation processing unit 82-3.
  • the signal separation unit 81 separates the IR signal from the signal of the image sensor 72, and outputs the IR signal to the interpolation processing unit 82-4.
  • the interpolation processing unit 82-1 to the interpolation processing unit 82-3 perform interpolation processing such as demosaicing processing for generating pixel signals of missing colors according to the arrangement of R, G, and B pixels, thereby obtaining R image and G
  • the image and the B image are generated and supplied to the image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3, respectively.
  • the interpolation processing unit 82-4 performs interpolation processing of the IR signal to generate an IR image after interpolation, and outputs the IR image to the image quality improvement signal processing unit 83-4.
  • the image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3 perform the image quality improvement processing of the R image, the G image, and the B image, and the R image, the G image, and the B after the image quality improvement processing. Output each image.
  • the high image quality formation signal processing unit 83-4 performs high image quality formation processing of the IR image, and outputs the IR image after the high quality processing.
  • FIG. 9 is an external view showing an arrangement configuration example of the SL light source.
  • 3 shows an example in which the configuration of imaging and the configuration of irradiation of light are integrated in the same casing by incorporating the light irradiation unit 61A-4 for irradiating IR light.
  • the light emitting units 61A-1 to 61A-4 are disposed in the vicinity of the optical system 71 represented by the lens of the imaging device 62.
  • the position of the image sensor 72 provided behind the optical system 71 and the positions of the light emitting units 61A-1 to 61A-4 can be arranged closer to each other. Further, it is possible to make the dot pattern and the pixel projection area coincide with each other at a short distance.
  • the light irradiation device 61 includes a light irradiation unit 61A-1 for irradiating R light, a light irradiation unit 61A-2 for irradiating G light, a light irradiation unit 61A-3 for irradiating B light, and a light irradiation unit for irradiating IR light 61A-4.
  • the light irradiation device 61 is, for example, detachably mounted on the housing of the imaging device 62 with an adjuster or the like.
  • the light irradiation device 61 can be replaced according to the application, and, for example, switching to an SL light source of different wavelength is possible.
  • step S51 of FIG. 10 the image sensor 72 captures an image of the subject in a state where the light of the dot pattern from each of the light emitting units 61A-1 to 61A-4 of the light emitting device 61 is irradiated.
  • the image sensor 72 photoelectrically converts incident light, and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
  • step S52 the signal separation unit 81 separates the R signal, the G signal, the B signal, and the IR signal from the signal from the image sensor 72.
  • the R signal, the G signal, and the B signal are respectively output to the interpolation processing unit 82-1 to the interpolation processing unit 82-3.
  • the IR signal is output to the interpolation processing unit 82-4.
  • step S53 the interpolation processing unit 82-1 to the interpolation processing unit 82-3 respectively perform interpolation processing of the R signal, the G signal, and the B signal to generate R, G, B images after interpolation.
  • the interpolation processing unit 82-4 performs interpolation processing of the IR signal to generate an IR image after interpolation.
  • the R, G, B images after interpolation are output to the image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3, respectively.
  • the IR image after interpolation is output to the image quality improvement signal processing unit 83-4.
  • step S54 the image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3 perform the image quality improvement processing of the R, G, and B images.
  • the image quality improvement signal processing unit 83-4 performs image quality improvement processing of the image of the IR signal.
  • the R, G, B images and the IR image after the image quality improvement processing are output to the signal processing unit in the subsequent stage.
  • FIG. 11 is a diagram illustrating an example of the pixel array.
  • FIG. 11 An example of a pixel arrangement similar to that of FIG. 7 is shown in A of FIG. A in FIG. 11 uses four light sources of R, G, B, and IR as SL light sources for forming dot patterns, and emits light of dot patterns corresponding to each projection area of 2 ⁇ 2 pixels.
  • This is an example in which the By using a combination of four SL light sources of R, G, B, and IR and a corresponding dot pattern, it is possible to obtain a visible image and an IR image as in the first embodiment.
  • B of FIG. 11 is an example in which the IR pattern of the combination of the SL light sources shown in A of FIG. 11 is replaced with a G pattern.
  • C in FIG. 11 uses a plurality of light sources of wavelength bands other than R, G, B, and IR wavelength bands (nine types in the case of C in FIG. 11), and a wide area of 3 ⁇ 3 surrounded by thick lines. It is an example developed to By using such a combination of nine SL light sources and a corresponding dot pattern, it is possible to acquire multispectral spectroscopy and spectral characteristics of an object necessary for analysis. In addition, it may be developed in a wide area of 4 ⁇ 4.
  • the wavelength band to be acquired varies depending on the material of the subject, so a camera system that can flexibly change the probe wavelength for analysis like the camera system of the present technology is useful.
  • the dot pattern is described as an example of the pattern shape of the SL light source, but the pattern shape of the SL light source is not limited to the dot pattern, and a shape corresponding to the projection area of the pixel If it is, other shapes, such as a pattern formed so that light may be irradiated so that a plurality of pixels straddle may be sufficient.
  • the case of only one light source has been described as the arrangement of the SL light source, but for example, in order to irradiate the dot pattern corresponding to the same pixel to increase the intensity of the irradiation light.
  • Multiple SL light sources may be used.
  • the pattern light of one type of SL light source is projected on the projection area of each pixel, but the pattern light from plural types of SL light sources having different wavelength bands on the same pixel projection area May be projected. These are selected depending on the application of spectral analysis.
  • the camera system of the second embodiment can be used for spectral analysis and the like in technical fields such as bio and medical.
  • the imaging of a normal color image, the acquisition of a multispectral spectral image, the observation of a specific fluorescence emission and the like can be performed by using the camera system of the second embodiment.
  • the camera system according to the second embodiment to the technical fields of biotechnology and medical, it is possible to simultaneously perform fluorescence observation for observing fluorescence reflection by excitation light and normal color imaging.
  • imaging is performed in a state where light of a predetermined pattern from a structured light source is emitted to a projection area of a specific pixel of an imaging unit that captures an object.
  • the image of the subject is generated based on the pixel signal.
  • a camera system capable of separating and simultaneously acquiring images having different characteristics, for example, a visible image and an IR image without causing crosstalk.
  • a multi-spectral camera In a multi-spectral camera, many color filters corresponding to various wavelength bands can be arranged at each pixel of the sensor, and each pixel signal can be acquired. By using a multi-spectral camera, the spectral reflection characteristics of the subject are analyzed, or the material identification and analysis of the subject are performed.
  • the present technology it is possible to perform imaging having spectral characteristics similar to those in the case where the on-chip color filter is disposed by one sensor without requiring the on-chip color filter.
  • FIG. 12 is a diagram illustrating a third configuration example of a camera system to which the present technology is applied.
  • the camera system 101 of FIG. 12 includes an IR light irradiation apparatus 111 as an IR-SL light source, and an imaging apparatus 112.
  • projection areas of pixels are virtually shown by broken lines on a plane on which an object is assumed.
  • the projection area is an area corresponding to the pixel array of the imaging device 112. Characters R, G, B and T shown in each projection area indicate that the pixels corresponding to each projection area are R, G and B pixels or pixels for TOF (Time Of Flight), respectively. .
  • the IR light irradiation device 111 is a device that irradiates IR light, and is fixedly disposed in the vicinity of the imaging device 112.
  • the IR light irradiation apparatus 111 blinks and irradiates IR light of a dot pattern which irradiates only the projection area corresponding to the TOF pixel.
  • each dot of the dot pattern is projected as IR light from the IR light irradiator 111, as indicated by a colored circle, on the projection area of the TOF pixel.
  • the imaging device 112 includes an image sensor in which R, G, B pixels and TOF pixels are arranged.
  • the shutter system of the image sensor may be a rolling shutter system or a global shutter system.
  • the imaging device 112 images a subject in a state where IR light of a dot pattern that irradiates only the projection area corresponding to the TOF pixel is irradiated by the IR light irradiation device 111.
  • IR light of a dot pattern that irradiates only the projection area corresponding to the TOF pixel is irradiated by the IR light irradiation device 111.
  • R, G and B pixels visible light from a predetermined light source is received.
  • a visible image corresponding to the signal from the R, G, B pixels is generated, and the distance information is obtained using the signal from the TOF pixel.
  • the IR light irradiation device 111 may be configured integrally with the imaging device 112, or is configured to be detachable from the imaging device 112. It may be
  • FIG. 13 is a diagram for explaining the principle of a structured light source.
  • the IR light irradiation apparatus 111 has a configuration in which the diffraction grating 122 is provided in front of the laser light source 121.
  • the diffraction grating 122 By appropriately designing the diffraction grating 122, it becomes possible to irradiate IR light of a dot pattern at an arbitrary position (for example, a projection area of the TOF pixel in FIG. 12) in a matrix.
  • FIG. 14 is a block diagram showing a configuration example of an IR light irradiation apparatus and an imaging apparatus.
  • the IR light irradiation apparatus 111 includes a laser light source 121, a diffraction grating 122, and an IR-LED driver 131.
  • the IR-LED driver 131 controls the flickering irradiation operation of the laser light source 121 in accordance with the LED ON / OFF signal and the LED intensity adjustment signal supplied from the imaging device 112.
  • the ON / OFF signal of the LED is a signal indicating ON and OFF of the LED.
  • the LED intensity adjustment signal is a signal for adjusting the intensity of the LED.
  • the imaging device 112 includes an optical system 141 such as a lens, an IR band pass filter 142, an image sensor 143, and a camera DSP 144.
  • an optical system 141 such as a lens, an IR band pass filter 142, an image sensor 143, and a camera DSP 144.
  • the image sensor 143 has a pixel array unit in which R, G, B pixels and TOF pixels are arranged.
  • the image sensor 143 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
  • the camera DSP 144 generates a color image by using R, G, B signals from R, G, B pixels among the plurality of pixels constituting the pixel array unit of the image sensor 143, and generates the generated color image. It outputs to the signal processing part of the latter part which is not shown. Further, the camera DSP 144 calculates the distance using the TOF signal from the TOF pixel among the plurality of pixels constituting the pixel array unit of the image sensor 143. The camera DSP 144 generates an AF control signal for controlling AF (Auto Focus) from the distance information indicating the calculated distance. The generated AF control signal is used to drive the optical system 141.
  • AF Auto Focus
  • the camera DSP 144 generates the LED ON / OFF signal and the LED intensity adjustment signal, and outputs the generated LED ON / OFF signal and the LED intensity adjustment signal to the IR-LED driver 131.
  • FIG. 15 is a diagram showing an example of the pixel array of the image sensor.
  • the pixel array unit of the image sensor 143 is configured by a pixel array in which G pixels are replaced with TOF pixels every four pixels in the horizontal direction and the vertical direction of the Bayer array.
  • FIG. 16 is a diagram for explaining the relationship between the angle of view of the imaging device and the irradiation angle of the IR-SL light source.
  • the solid lines in the SL irradiation angle centering on the optical axis 111C of the IR light irradiation device 111 indicate the boundaries of the SL irradiation area, and the broken lines in the angle of view centering on the optical axis 112C of the imaging device 112 , Indicates the boundary of the pixel area.
  • the SL irradiation area is an area where dots are irradiated from the IR-SL light source to the pixel area.
  • the SL irradiation angle of the IR light irradiation device 111 and the angle of view of the imaging device 112 are set so as to approximately match.
  • the solid line L1 on the left side of FIG. 16 indicates the projection area of the imaging device 112.
  • the range indicated by the bidirectional arrow corresponds to the projection area of one pixel.
  • An alternate long and short dash line L2 on the right side of the pixel projection area indicates the parallax matching limit distance described above with reference to FIG.
  • the black rectangles on the solid line L1 and on the dashed-dotted line L2 represent the dots of the dot pattern.
  • the IR light of the dot pattern from the IR light irradiation device 111 of FIG. 16 is irradiated only to the region corresponding to the TOF pixel in the pixel array of the imaging device 112. At that time, the imaging device 112 and the IR light irradiation device 111 are fixed.
  • the dot pattern irradiated from the IR light irradiator 111 no matter what distance the subject is, provided that it is separated from the parallax coincidence limit distance indicated by the dashed dotted line L2.
  • the projection area of the IR pixel and the IR light of the dot pattern correspond to 1: 1. Reflected light of IR light does not reach the R, G and B pixels, and is received only by the IR pixels.
  • the disparity matching limit distance is the same as that in the case of FIG. 3, and thus the description thereof is omitted.
  • FIG. 17 is a view for explaining the relationship between the angle of view of the imaging apparatus and the irradiation angle of the IR-SL light source when a dichroic mirror is used.
  • the dichroic mirror 151 is formed so as to reflect light in a direction perpendicular to the incident surface and transmit light in a direction parallel to the incident surface.
  • the dichroic mirror 151 is disposed in front of the optical system 141 of the imaging device 112 so that the center of the optical axis after reflection of the dichroic mirror 151 and the center of the optical axis 112C of the imaging device 112 substantially coincide with each other.
  • the IR light irradiation device 111 is disposed perpendicularly to the optical axis 112 C of the imaging device 112 so as to emit light in the direction perpendicular to the incident surface of the dichroic mirror 151.
  • the center of the optical axis after reflection of the dichroic mirror 151 and the center of the optical axis 112C of the imaging device 112 can be made to substantially coincide.
  • the IR light of the dot pattern emitted from the IR light irradiation device 111 is reflected by the dichroic mirror 151 and the light from the subject is transmitted, approximately 50% of the IR light may be received by the imaging device 112. it can.
  • the correspondence between the dot pattern and the projection area of the pixel can be made to substantially coincide, including the short distance.
  • dichroic mirror 151 instead of the dichroic mirror 151, a dichroic prism, a deflection beam splitter, or the like may be disposed.
  • the dichroic mirror 151 may be used also in the camera system of the other embodiments.
  • FIG. 18 is a cross-sectional view showing an exemplary configuration of part of the light incident side of the image sensor.
  • the light receiving pixel 161, the insulating layer 162, the filter layer 163, the color filter layer 164, and the on-chip lens 165 are shown as a part of the configuration on the light incident side in the image sensor 143.
  • the light receiving pixel 161 is configured of a B pixel, a G pixel, an R pixel, and a TOF pixel in order from the left.
  • the insulating layer 162 transmits the light transmitted through the filter layer 163 to the light receiving pixel 161.
  • the filter layer 163 includes an IR blocking filter disposed on the B pixel, the G pixel, the R pixel, and a blue filter disposed on the TOF pixel.
  • the IR blocking filter blocks light in a wavelength range of IR light (for example, around 850 nm).
  • the blue filter is disposed to overlap with the red filter of the color filter layer 164 to transmit only IR light.
  • the color filter layer 164 includes a blue filter disposed on the B pixel, a green filter disposed on the G pixel, and a red filter disposed on the R pixel and the TOF pixel.
  • the blue filter blocks light in the G wavelength range and light in the R wavelength range and transmits light in the B wavelength range.
  • the green filter blocks light in the B wavelength range and light in the R wavelength range and transmits light in the G wavelength range.
  • the red filter blocks light in the G wavelength band and light in the B wavelength band and transmits light in the R wavelength band.
  • the on-chip lens 165 is configured of a lens disposed on each pixel of the light receiving pixel 161.
  • an IR band pass filter 142 is disposed between the optical system 141 and the image sensor 143.
  • the IR band pass filter 142 is a band pass filter having transparency in the visible region and in the wavelength region of IR light.
  • FIG. 19 is a diagram showing spectral characteristics of the IR band pass filter and the IR blocking filter.
  • the IR band pass filter 142 transmits light in wavelength ranges of 400 nm to 680 nm and 830 nm to 870 nm, and blocks light in wavelength ranges other than 400 nm to 680 nm and 830 nm to 870 nm.
  • the IR blocking filter blocks light in a wavelength range around 850 nm until the transmittance becomes 0.1.
  • the IR band pass filter 142 completely blocks the light in the wavelength range other than the visible range and the wavelength range of the IR light (transmission factor 0).
  • the IR blocking filter does not completely block light in the wavelength range of IR light. For this reason, as shown below, the transparency of the IR light wavelength region is not zero.
  • FIG. 20 is a diagram showing spectral characteristics corresponding to each pixel.
  • the spectral sensitivity of the sensor is also added to the spectral characteristics of FIG.
  • the R pixel is set to be sensitive to light in a wavelength range of approximately 590 nm to 630 nm.
  • the G pixel is set to be sensitive to light in a wavelength range of approximately 490 nm to 550 nm.
  • the B pixel is set to be sensitive to light in a wavelength range of approximately 440 nm to 470 nm.
  • the TOF pixels are set to be sensitive to light in a wavelength range of approximately 840 nm to 860 nm.
  • the transparency of light in the wavelength range of IR light (for example, around 850 nm) is not completely zero. Permeation of IR light to visible pixels has little effect on the color reproduction of visible images if it is present in the natural environment, but if artificial IR light is mixed in, it can be used for color reproduction of visible images. It will be an influence level.
  • IR light is set to irradiate only the TOF pixels. Therefore, according to the present technology, it is possible to almost completely avoid the mixing of the projected IR light into the visible pixel.
  • FIG. 21 is a block diagram showing a configuration example of a camera DSP in an imaging device.
  • the camera DSP 144 includes a signal separation unit 181, an interpolation processing unit 182, a color image signal processing unit 183, a phase difference calculation processing unit 184, a distance calculation processing unit 185, and an AF control signal generation unit 186.
  • the signal separation unit 181 separates the R, G, and B signals from the signal of the image sensor 143, and outputs the signals to the interpolation processing unit 182. Further, the signal separation unit 181 separates the TOF signal from the signal of the image sensor 143, and outputs the TOF signal to the phase difference calculation processing unit 184.
  • the interpolation processing unit 182 uses the R, G, and B signals supplied from the signal separation unit 181 to perform interpolation processing such as demosaicing processing to generate pixel signals of missing colors according to the arrangement of R, G, and B pixels. I do.
  • the interpolation processing unit 182 outputs the color image generated by performing the interpolation processing to the color image signal processing unit 183.
  • the color image signal processing unit 183 performs predetermined signal processing on the color image supplied from the interpolation processing unit 182, and outputs the color image after signal processing to a signal processing unit in the subsequent stage.
  • the phase difference calculation processing unit 184 calculates the phase difference using the TOF signal supplied from the signal separation unit 181, and outputs phase difference information indicating the calculated phase difference to the distance calculation processing unit 185.
  • the distance calculation processing unit 185 calculates a distance using the phase difference information supplied from the phase difference calculation processing unit 184, and outputs distance information indicating the calculated distance.
  • the distance information output from the distance calculation processing unit 185 is supplied to the AF control signal generation unit 186 and a signal processing unit at a subsequent stage (not shown).
  • the AF control signal generation unit 186 calculates lens position information using the distance information supplied from the distance calculation processing unit 185 and the conversion formula from the distance information to the lens position information.
  • the AF control signal generator 186 generates an AF control signal based on the calculated lens position information.
  • the AF control signal is output to a drive unit (not shown) of the optical system 141.
  • step S111 the image sensor 143 captures an image of the subject in a state where the IR light of the dot pattern from the IR light irradiation device 111, which is an IR-SL light source, is irradiated.
  • the image sensor 143 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a pixel signal.
  • step S112 the signal separation unit 181 separates the RGB signal and the TOF signal from the signal from the image sensor 143.
  • step S 113 the interpolation processing unit 182 performs interpolation processing of the R, G, and B signals supplied from the signal separation unit 181 to generate a color image, and outputs the color image to the color image signal processing unit 183.
  • step S114 the color image signal processing unit 183 performs predetermined signal processing on the color image supplied from the interpolation processing unit 182, and outputs the color image after signal processing to the signal processing unit in the subsequent stage.
  • step S115 the phase difference calculation processing unit 184 calculates the phase difference using the TOF signal supplied from the signal separation unit 181, and transmits the phase difference information indicating the calculated phase difference to the distance calculation processing unit 185. Output.
  • step S116 the distance calculation processing unit 185 performs distance calculation processing using the phase difference information supplied from the phase difference calculation processing unit 184.
  • the distance information output as a result of the distance calculation process is supplied to the AF control signal generation unit 186 and a signal processing unit at a subsequent stage (not shown).
  • step S117 the AF control signal generation unit 186 calculates lens position information from the distance information supplied from the distance calculation processing unit 185 using a conversion formula to lens position information, and is based on the calculated lens position information. , Generate an AF control signal.
  • the AF control signal is output to a drive unit (not shown) of the optical system 141.
  • color images and distance information are used for AF control of portable terminals such as smart phones, security applications requiring color images and distance information such as face recognition, and gesture recognition for games and the like.
  • the image sensor has been described on the premise of an RGB Bayer array sensor, but in the present technology, a monochrome sensor or a color filter array sensor other than the RGB Bayer array is used. Can also be applied.
  • the TOF pixels are arranged every four pixels in the RGB Bayer array of the image sensor, but the density of TOF pixels may be different from the above description. Good. Also, the arrangement of the TOF pixels may be asymmetric in the vertical and horizontal directions. Furthermore, both TOF pixels and image plane phase difference pixels may be arranged.
  • the dot pattern is described as an example of the pattern shape of the SL light source.
  • the pattern shape of the SL light source is not limited to the dot pattern, but a plurality of patterns may be used as long as they correspond to the projection area of the pixel. Other shapes may be used, such as a pattern formed so that light strikes across pixels.
  • the IR blocking filter may not necessarily be used. In particular, it is unnecessary when ambient light does not include IR light, such as indoor use.
  • the reflected light from the subject due to the irradiation of the IR light is received only by the TOF pixels, and thus does not affect the visible signals obtained by the RGB pixels. Therefore, it becomes possible to separate a visible signal and a TOF signal which are signals having different characteristics.
  • FIG. 23 is a diagram illustrating a fourth configuration example of a camera system to which the present technology is applied.
  • the camera system 201 of FIG. 23 includes an IR light irradiation device 211 as an IR-SL light source, and an imaging device 212.
  • IR light irradiation device 211 as an IR-SL light source
  • imaging device 212 In FIG. 23, projected areas of pixels are virtually shown by broken lines on a plane on which an object is assumed.
  • the projection area includes a visible pixel projection area and a triangulation projection area corresponding to the pixel array of the imaging device 212.
  • the visible pixel projection area is an area where visible pixels of R, G and B pixels are arranged.
  • the triangulation projection area is an area in which pixels for triangulation are arranged.
  • the triangulation projection area is formed at the center in the vertical direction of the visible pixel projection area.
  • the triangulation projection area is a band-like area with a width of 2 lines.
  • the IR light irradiator 211 is a device that irradiates IR light, and is separated from the fixed distance necessary for triangulation and fixedly disposed in the imaging device 212.
  • the IR light irradiation apparatus 211 irradiates IR light of a dot pattern which irradiates only predetermined pixels located at random in the triangulation projection area. Each dot of a dot pattern is projected as IR light from IR light irradiation apparatus 211 in the projection area
  • the imaging device 212 includes an image sensor in which R, G, B pixels and triangulation pixels are arranged.
  • the shutter system of the image sensor may be a rolling shutter system or a global shutter system.
  • the imaging device 212 images a subject in a state where IR light of a dot pattern that irradiates only predetermined pixels of the triangulation projection area is irradiated by the IR light irradiation device 211.
  • R, G and B pixels visible light from a predetermined light source is received.
  • a visible image corresponding to the signal from the R, G, B pixels is generated, and the distance information is obtained using the signal from the triangulation pixel.
  • the IR light irradiation device 211 may be configured integrally with the imaging device 212, or is configured to be detachable from the imaging device 212. It may be
  • FIG. 24 is a diagram showing a configuration example of an IR light irradiation apparatus and an imaging apparatus. Among the configurations shown in FIG. 24, the same configurations as the configurations described with reference to FIG. Duplicate descriptions will be omitted as appropriate.
  • the IR light irradiation device 211 separates the distance between the light axis 211C of the IR light irradiation device 211 and the light axis 212C of the image sensor (lens) of the imaging device 212 by the baseline distance Lb and fixes it to the imaging device 212 Will be installed.
  • the IR light irradiator 211 includes a laser light source 121, a diffraction grating 122, and an IR-LED driver 131 as in the case of FIG.
  • the imaging device 212 includes an optical system 141, an image sensor 231, and a camera DSP 232.
  • the image sensor 231 has a pixel array unit in which R, G, B pixels and triangulation pixels are arranged.
  • the image sensor 231 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
  • the camera DSP 232 generates a color image using R, G, B signals from R, G, B pixels among a plurality of pixels constituting the pixel array unit of the image sensor 231, and generates a generated color image. It outputs to the signal processing part of the latter part which is not shown. Further, the camera DSP 232 calculates a distance using a triangulation signal from the triangulation pixels among a plurality of pixels constituting the pixel array unit of the image sensor 231, and generates an AF control signal from the calculated distance information. Do. The generated AF control signal is used to drive the optical system 141.
  • the camera DSP 232 generates an LED ON / OFF signal and an LED intensity adjustment signal, and outputs the generated LED ON / OFF signal and the LED intensity adjustment signal to the IR-LED driver 131.
  • FIG. 25 is a diagram showing an example of the pixel array of the image sensor.
  • the pixel array unit of the image sensor 231 is configured of a visible pixel area in which R, G, B pixels are arranged, and a triangulation area in which pixels for triangulation are arranged.
  • the pixel array unit of the image sensor 231 is configured such that the first to third rows of the 2 ⁇ 2 Bayer array are visible pixel areas, and the fourth row of the 2 ⁇ 2 Bayer arrays is a triangulation area.
  • FIG. 26 is a block diagram showing a configuration example of a camera DSP in an imaging device.
  • the camera DSP 232 includes a signal separation unit 251, an interpolation processing unit 252, a color image signal processing unit 253, a distance calculation processing unit 254, and an AF control signal generation unit 255.
  • the signal separation unit 251 separates the R, G, and B signals from the signal of the image sensor 143, and outputs the signals to the interpolation processing unit 252. Further, the signal separation unit 251 separates the triangulation signal from the signal of the image sensor 143, and outputs the triangulation signal to the distance calculation processing unit 254.
  • the interpolation processing unit 252 performs interpolation processing such as demosaicing processing that generates pixel signals of missing colors according to the arrangement of R, G, B pixels using the R, G, B signals supplied from the signal separation unit 251 To generate a color image and output the color image to the color image signal processing unit 253.
  • interpolation processing such as demosaicing processing that generates pixel signals of missing colors according to the arrangement of R, G, B pixels using the R, G, B signals supplied from the signal separation unit 251 To generate a color image and output the color image to the color image signal processing unit 253.
  • the color image signal processing unit 253 performs predetermined signal processing on the color image supplied from the interpolation processing unit 252, and outputs the color image subjected to the signal processing to a signal processing unit in the subsequent stage.
  • the distance calculation processing unit 254 calculates a distance using the triangulation signal supplied from the interpolation processing unit 252, and outputs distance information indicating the calculated distance.
  • the output distance information is supplied to the AF control signal generation unit 255 and a signal processing unit at a subsequent stage (not shown).
  • the AF control signal generation unit 255 calculates lens position information from the distance information supplied from the distance calculation processing unit 254 using a conversion formula to lens position information, and an AF control signal based on the calculated lens position information. Generate The generated AF control signal is output to a driving unit (not shown) of the optical system 141.
  • step S211 in FIG. 27 the image sensor 143 captures an image of the subject in a state where the IR light of the dot pattern from the IR light irradiation device 211, which is an IR-SL light source, is irradiated.
  • the image sensor 143 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a pixel signal.
  • step S212 the signal separation unit 251 separates the RGB signal and the triangulation signal from the signal from the image sensor 143.
  • the separated RGB signals are output to the interpolation processing unit 252, and the triangulation signal is output to the distance calculation processing unit 254.
  • step S 213 the interpolation processing unit 252 performs interpolation processing of the R, G, and B signals supplied from the signal separation unit 251 to generate a color image, and outputs the color image to the color image signal processing unit 253.
  • step S214 the color image signal processing unit 253 performs predetermined signal processing on the color image supplied from the interpolation processing unit 252, and outputs the color image after signal processing to the signal processing unit of the subsequent stage.
  • step S215 the distance calculation processing unit 254 performs distance calculation processing using the triangulation signal supplied from the signal separation unit 251.
  • the distance information output as a result of the distance calculation process is supplied to the AF control signal generation unit 255 and a signal processing unit at a subsequent stage (not shown).
  • step S216 the AF control signal generation unit 255 calculates lens position information from the distance information supplied from the distance calculation processing unit 254 using a conversion formula to lens position information, and is based on the calculated lens position information. , Generate an AF control signal.
  • the generated AF control signal is output to a driving unit (not shown) of the optical system 141.
  • color images and distance information are used for AF control of portable terminals such as smart phones, security applications requiring color images and distance information such as face recognition, and gesture recognition for games and the like.
  • the image sensor has been described on the premise of an RGB Bayer array sensor, but in the present technology, a monochrome sensor or a color filter array sensor other than the RGB Bayer array is used. Can also be applied.
  • the triangulation pixels are arranged every four rows of the vertical Bayer array, but the trigonometric pixels may have different densities. Also, in the above description, an example in which the triangulation area which is a band-like area is configured with a width of 2 lines has been described, but the triangulation area may be configured with a width of 1 line, It may be configured to have another width.
  • the triangulation pixels described in the third embodiment and the fourth embodiment are described. It may be performed in combination with the described TOF pixels. That is, it is possible to arrange the triangulation pixels and the TOF pixels in the strip-like triangulation projection area of the fourth embodiment and simultaneously perform the triangulation and the TOF distance measurement. . In this case, the accuracy of distance measurement can be improved.
  • the reflected light from the subject due to the irradiation of the IR light is received only by the triangulation pixels, and therefore does not affect the visible signals obtained by the RGB pixels. Therefore, it becomes possible to separate a visible signal and a triangulation signal which are signals having different characteristics.
  • the series of processes described above can be performed by hardware or software.
  • a program that configures the software is installed on a computer.
  • the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 28 is a block diagram showing an example of the hardware configuration of a computer that executes the series of processes described above according to a program.
  • a central processing unit (CPU) 301 a read only memory (ROM) 302, and a random access memory (RAM) 303 are mutually connected via a bus 304.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • An input / output interface 305 Also connected to the bus 304 is an input / output interface 305.
  • An input unit 306, an output unit 307, a storage unit 308, a communication unit 309, and a drive 310 are connected to the input / output interface 305.
  • the input unit 306 includes, for example, a keyboard, a mouse, a microphone, a touch panel, an input terminal, and the like.
  • the output unit 307 includes, for example, a display, a speaker, and an output terminal.
  • the storage unit 308 includes, for example, a hard disk, a RAM disk, and a non-volatile memory.
  • the communication unit 309 includes, for example, a network interface.
  • the drive 310 drives removable media 311 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 301 loads the program stored in the storage unit 308 into the RAM 303 via the input / output interface 305 and the bus 304 and executes the program. Processing is performed.
  • the RAM 303 also stores data necessary for the CPU 301 to execute various processes.
  • the program executed by the computer (CPU 301) can be recorded and applied to, for example, a removable medium 311 as a package medium or the like.
  • the program can be installed in the storage unit 308 via the input / output interface 305 by attaching the removable media 311 to the drive 310.
  • the program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 309 and installed in the storage unit 308.
  • this program can be installed in advance in the ROM 302 or the storage unit 308.
  • the program executed by the communication device may be a program that performs processing in chronological order according to the order described in this specification, or in parallel, or when necessary, such as when a call is made. It may be a program in which processing is performed.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is any type of movement, such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machines, agricultural machines (tractors), etc. It may be realized as a device mounted on the body.
  • FIG. 29 is a block diagram showing a schematic configuration example of a vehicle control system 7000 which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600.
  • the communication network 7010 connecting the plurality of control units is, for example, an arbitrary standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • Each control unit includes a microcomputer that performs arithmetic processing in accordance with various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various arithmetic operations, and drive circuits that drive devices to be controlled. Equipped with Each control unit is provided with a network I / F for communicating with other control units via the communication network 7010, and by wired communication or wireless communication with an apparatus or sensor inside or outside the vehicle. A communication I / F for performing communication is provided. In FIG.
  • the integrated control unit 7600 a microcomputer 7610, a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, an audio image output unit 7670, An in-vehicle network I / F 7680 and a storage unit 7690 are illustrated.
  • the other control units also include a microcomputer, a communication I / F, a storage unit, and the like.
  • Drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • drive system control unit 7100 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering angle of the vehicle. It functions as a control mechanism such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as an ABS (Antilock Brake System) or an ESC (Electronic Stability Control).
  • Vehicle state detection unit 7110 is connected to drive system control unit 7100.
  • the vehicle state detection unit 7110 may be, for example, a gyro sensor that detects an angular velocity of an axial rotational movement of a vehicle body, an acceleration sensor that detects an acceleration of the vehicle, or an operation amount of an accelerator pedal, an operation amount of a brake pedal, and steering of a steering wheel. At least one of the sensors for detecting the angle, the engine speed, the rotational speed of the wheel, etc. is included.
  • Drive system control unit 7100 performs arithmetic processing using a signal input from vehicle state detection unit 7110 to control an internal combustion engine, a drive motor, an electric power steering device, a brake device, and the like.
  • Body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device of various lamps such as a head lamp, a back lamp, a brake lamp, a blinker or a fog lamp.
  • the body system control unit 7200 may receive radio waves or signals of various switches transmitted from a portable device substituting a key.
  • Body system control unit 7200 receives the input of these radio waves or signals, and controls a door lock device, a power window device, a lamp and the like of the vehicle.
  • the battery control unit 7300 controls the secondary battery 7310 which is a power supply source of the drive motor according to various programs. For example, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input to the battery control unit 7300 from the battery device provided with the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device or the like provided in the battery device.
  • Outside-vehicle information detection unit 7400 detects information outside the vehicle equipped with vehicle control system 7000.
  • the imaging unit 7410 and the external information detection unit 7420 is connected to the external information detection unit 7400.
  • the imaging unit 7410 includes at least one of a time-of-flight (ToF) camera, a stereo camera, a monocular camera, an infrared camera, and another camera.
  • ToF time-of-flight
  • an environment sensor for detecting the current weather or weather, or another vehicle, an obstacle or a pedestrian around the vehicle equipped with the vehicle control system 7000 is detected in the outside-vehicle information detection unit 7420, for example.
  • the ambient information detection sensors at least one of the ambient information detection sensors.
  • the environment sensor may be, for example, at least one of a raindrop sensor that detects wet weather, a fog sensor that detects fog, a sunshine sensor that detects sunshine intensity, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a light detection and ranging (LIDAR) device.
  • the imaging unit 7410 and the external information detection unit 7420 may be provided as independent sensors or devices, or may be provided as an integrated device of a plurality of sensors or devices.
  • FIG. 30 shows an example of installation positions of the imaging unit 7410 and the external information detection unit 7420.
  • the imaging units 7910, 7912, 7914, 7916, 7918 are provided at, for example, at least one of the front nose of the vehicle 7900, the side mirror, the rear bumper, the back door, and the upper portion of the windshield of the vehicle interior.
  • An imaging unit 7910 provided in the front nose and an imaging unit 7918 provided in the upper part of the windshield in the vehicle cabin mainly acquire an image in front of the vehicle 7900.
  • the imaging units 7912 and 7914 provided in the side mirror mainly acquire an image of the side of the vehicle 7900.
  • An imaging unit 7916 provided in the rear bumper or back door mainly acquires an image behind the vehicle 7900.
  • the imaging unit 7918 provided on the upper part of the windshield in the passenger compartment is mainly used to detect a leading vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 30 shows an example of the imaging range of each of the imaging units 7910, 7912, 7914, and 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided on the side mirrors
  • the imaging range d indicates The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown.
  • a bird's-eye view of the vehicle 7900 as viewed from above can be obtained.
  • the external information detection units 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, and corners of the vehicle 7900 and above the windshield of the vehicle interior may be, for example, ultrasonic sensors or radar devices.
  • the external information detection units 7920, 7926, 7930 provided on the front nose of the vehicle 7900, the rear bumper, the back door, and the upper part of the windshield of the vehicle interior may be, for example, a LIDAR device.
  • These outside-of-vehicle information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle or the like.
  • the out-of-vehicle information detection unit 7400 causes the imaging unit 7410 to capture an image outside the vehicle, and receives the captured image data. Further, the external information detection unit 7400 receives detection information from the external information detection unit 7420 connected. When the out-of-vehicle information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the out-of-vehicle information detection unit 7400 transmits ultrasonic waves or electromagnetic waves and receives information on the received reflected waves.
  • the external information detection unit 7400 may perform object detection processing or distance detection processing of a person, a car, an obstacle, a sign, a character on a road surface, or the like based on the received information.
  • the external information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions and the like based on the received information.
  • the external information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
  • the external information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, a character on a road surface, or the like based on the received image data.
  • the external information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and combines the image data captured by different imaging units 7410 to generate an overhead image or a panoramic image. It is also good.
  • the external information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410.
  • An in-vehicle information detection unit 7500 detects information in the vehicle.
  • a driver state detection unit 7510 that detects a state of a driver is connected to the in-vehicle information detection unit 7500.
  • the driver state detection unit 7510 may include a camera for imaging the driver, a biometric sensor for detecting the driver's biological information, a microphone for collecting sound in the vehicle interior, and the like.
  • the biological sensor is provided, for example, on a seat or a steering wheel, and detects biological information of an occupant sitting on a seat or a driver who grips the steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, or determine whether the driver does not go to sleep You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
  • the integrated control unit 7600 controls the overall operation in the vehicle control system 7000 in accordance with various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by, for example, a device such as a touch panel, a button, a microphone, a switch or a lever, which can be input operated by the passenger.
  • the integrated control unit 7600 may receive data obtained by speech recognition of speech input by the microphone.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000.
  • PDA Personal Digital Assistant
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Furthermore, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on the information input by the passenger or the like using the above-described input unit 7800 and outputs the generated signal to the integrated control unit 7600. The passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like.
  • the storage unit 7690 may be realized by a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • HDD hard disk drive
  • semiconductor storage device an optical storage device
  • magneto-optical storage device or the like.
  • the general-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750.
  • General-purpose communication I / F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced).
  • GSM Global System of Mobile communications
  • WiMAX registered trademark
  • LTE registered trademark
  • LTE-A Long Term Evolution-Advanced
  • other wireless communication protocols such as wireless LAN (also referred to as Wi-Fi (registered trademark)), Bluetooth (registered trademark), etc. may be implemented.
  • the general-purpose communication I / F 7620 is connected to, for example, an apparatus (for example, an application server or control server) existing on an external network (for example, the Internet, a cloud network or an operator-specific network) via a base station or access point
  • an apparatus for example, an application server or control server
  • an external network for example, the Internet, a cloud network or an operator-specific network
  • the general-purpose communication I / F 7620 is a terminal (for example, a driver, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal) existing near the vehicle using, for example, P2P (Peer To Peer) technology. It may be connected with
  • the dedicated communication I / F 7630 is a communication I / F that supports a communication protocol designed for use in a vehicle.
  • the dedicated communication I / F 7630 may be a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or cellular communication protocol, which is a combination of lower layer IEEE 802.11p and upper layer IEEE 1609, for example. May be implemented.
  • the dedicated communication I / F 7630 is typically used for Vehicle to Vehicle communication, Vehicle to Infrastructure communication, Vehicle to Home communication, and Vehicle to Pedestrian. 2.) Perform V2X communication, a concept that includes one or more of the communication.
  • the positioning unit 7640 receives a GNSS signal (for example, a GPS signal from a Global Positioning System (GPS) satellite) from, for example, a Global Navigation Satellite System (GNSS) satellite and executes positioning, thereby performing latitude, longitude, and altitude of the vehicle.
  • Generate location information including Positioning section 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone having a positioning function, a PHS, or a smartphone.
  • the beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from a radio station or the like installed on a road, and acquires information such as the current position, traffic jams, closing times or required time.
  • the function of the beacon reception unit 7650 may be included in the above-described dedicated communication I / F 7630.
  • An in-vehicle apparatus I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle apparatuses 7760 existing in the vehicle.
  • the in-car device I / F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB). Further, the in-car device I / F 7660 can be connected via a connection terminal (and a cable, if necessary) (not shown) via USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface), or MHL (Mobile High). A wired connection such as -definition Link) may be established.
  • the in-vehicle device 7760 may include, for example, at least one of a mobile device or wearable device owned by a passenger, or an information device carried in or attached to a vehicle. Further, the in-vehicle device 7760 may include a navigation device for performing a route search to any destination.
  • the in-vehicle device I / F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
  • the in-vehicle network I / F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the in-vehicle network I / F 7680 transmits and receives signals and the like in accordance with a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 is connected via at least one of a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon reception unit 7650, an in-vehicle device I / F 7660, and an in-vehicle network I / F 7680.
  • the vehicle control system 7000 is controlled in accordance with various programs based on the information acquired. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the driving system control unit 7100. It is also good.
  • the microcomputer 7610 realizes the function of an advanced driver assistance system (ADAS) including collision avoidance or shock mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, vehicle lane departure warning, etc. Cooperative control for the purpose of In addition, the microcomputer 7610 automatically runs without using the driver's operation by controlling the driving force generating device, the steering mechanism, the braking device, etc. based on the acquired information of the surroundings of the vehicle. Coordinated control may be performed for the purpose of driving and the like.
  • ADAS advanced driver assistance system
  • the microcomputer 7610 is information acquired via at least one of a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon reception unit 7650, an in-vehicle device I / F 7660, and an in-vehicle network I / F 7680. Based on the above, three-dimensional distance information between the vehicle and an object such as a surrounding structure or a person may be generated, and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may predict a danger such as a collision of a vehicle or a pedestrian or the like approaching a road or the like on the basis of the acquired information, and may generate a signal for warning.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or aurally notifying information to a passenger or the outside of a vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices.
  • the display unit 7720 may include, for example, at least one of an on-board display and a head-up display.
  • the display portion 7720 may have an AR (Augmented Reality) display function.
  • the output device may be another device such as a headphone, a wearable device such as a glasses-type display worn by a passenger, a projector, or a lamp other than these devices.
  • the display device may obtain information obtained from various processes performed by the microcomputer 7610 or information received from another control unit in various formats such as text, images, tables, graphs, etc. Display visually.
  • the audio output device converts an audio signal composed of reproduced audio data or audio data into an analog signal and outputs it in an auditory manner.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be configured by a plurality of control units.
  • the vehicle control system 7000 may comprise another control unit not shown.
  • part or all of the functions of any control unit may be provided to another control unit. That is, as long as transmission and reception of information are performed via the communication network 7010, predetermined arithmetic processing may be performed by any control unit.
  • a sensor or device connected to any control unit is connected to another control unit, a plurality of control units may mutually transmit and receive detection information via the communication network 7010. .
  • the camera system according to the present embodiment described with reference to FIGS. 1 to 27 can be applied to the imaging unit 7410 or the external information detection unit 7420 of FIG.
  • the present technology to the imaging unit 7410 or the out-of-vehicle information detection unit 7420, detection and distance measurement of surrounding preceding vehicles, pedestrians, obstacles, and the like can be performed accurately.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an operating room system.
  • FIG. 31 is a diagram schematically showing an overall configuration of an operating room system 5100 to which the technology according to the present disclosure can be applied.
  • the operating room system 5100 is configured such that devices installed in the operating room are connected to be able to cooperate with each other via an audiovisual controller (AV controller) 5107 and an operating room controller 5109.
  • AV controller audiovisual controller
  • FIG. 31 various devices may be installed in the operating room.
  • various device groups 5101 for endoscopic surgery a sealing camera 5187 provided on the ceiling of the operating room for imaging the hand of the operator, and an operating room provided on the ceiling of the operating room
  • a surgical field camera 5189 for imaging the entire situation a plurality of display devices 5103A to 5103D, a recorder 5105, a patient bed 5183 and an illumination 5191 are shown.
  • a device group 5101 belongs to an endoscopic surgery system 5113 described later, and includes an endoscope, a display device that displays an image captured by the endoscope, and the like.
  • Each device belonging to the endoscopic surgery system 5113 is also referred to as a medical device.
  • the display devices 5103A to 5103D, the recorder 5105, the patient bed 5183 and the illumination 5191 are devices provided, for example, in the operating room separately from the endoscopic surgery system 5113.
  • Each device which does not belong to the endoscopic surgery system 5113 is also referred to as a non-medical device.
  • the audiovisual controller 5107 and / or the operating room controller 5109 cooperate with each other to control the operation of the medical device and the non-medical device.
  • the audio-visual controller 5107 centrally controls processing relating to image display in medical devices and non-medical devices.
  • the device group 5101, the ceiling camera 5187, and the operation room camera 5189 have a function of transmitting information to be displayed during surgery (hereinafter also referred to as display information).
  • It may be a device (hereinafter also referred to as a source device).
  • the display devices 5103A to 5103D can be devices to which display information is output (hereinafter, also referred to as a device of an output destination).
  • the recorder 5105 may be a device that corresponds to both a source device and an output device.
  • the audiovisual controller 5107 controls the operation of the transmission source device and the output destination device, acquires display information from the transmission source device, transmits the display information to the output destination device, and displays or records the function.
  • the display information is various images captured during the operation, various information related to the operation (for example, physical information of the patient, information on a past examination result, information on the operation method, etc.).
  • information about an image of a surgical site in a patient's body cavity captured by the endoscope may be transmitted from the device group 5101 as display information to the audiovisual controller 5107.
  • information on the image of the operator's hand captured by the ceiling camera 5187 can be transmitted as display information.
  • information on an image indicating the appearance of the entire operating room captured by the surgery site camera 5189 may be transmitted from the surgery site camera 5189 as display information.
  • the audiovisual controller 5107 acquires information on an image captured by the other device from the other device as display information. You may
  • the recorder 5105 information about these images captured in the past is recorded by the audiovisual controller 5107.
  • the audiovisual controller 5107 can acquire information on an image captured in the past from the recorder 5105 as display information.
  • the recorder 5105 may also record various types of information regarding surgery in advance.
  • the audiovisual controller 5107 causes the acquired display information (that is, the image taken during the operation and various information related to the operation) to be displayed on at least one of the display devices 5103A to 5103D which are output destination devices.
  • the display device 5103A is a display device suspended and installed from the ceiling of the operating room
  • the display device 5103B is a display device installed on the wall of the operating room
  • the display device 5103C is in the operating room
  • the display device 5103D is a display device installed on a desk
  • the display device 5103D is a mobile device (for example, a tablet PC (Personal Computer)) having a display function.
  • the operating room system 5100 may include devices outside the operating room.
  • the apparatus outside the operating room may be, for example, a server connected to a network built inside or outside a hospital, a PC used by medical staff, a projector installed in a conference room of a hospital, or the like.
  • the audiovisual controller 5107 can also display the display information on the display device of another hospital via a video conference system or the like for telemedicine.
  • the operating room control device 5109 centrally controls processing other than processing related to image display in non-medical devices.
  • the operating room controller 5109 controls the driving of the patient bed 5183, the ceiling camera 5187, the operation room camera 5189, and the illumination 5191.
  • the operating room system 5100 is provided with a centralized operation panel 5111, and the user gives an instruction for image display to the audiovisual controller 5107 through the centralized operation panel 5111, and the operating room control device 5109. Instructions can be given to the operation of the non-medical device.
  • the centralized operation panel 5111 is configured by providing a touch panel on the display surface of the display device.
  • FIG. 32 is a view showing a display example of the operation screen on the centralized operation panel 5111.
  • FIG. 32 shows, as an example, an operation screen corresponding to a case where two display devices are provided as an output destination device in the operating room system 5100.
  • the operation screen 5193 is provided with a source selection area 5195, a preview area 5197, and a control area 5201.
  • a transmission source device provided in the operating room system 5100 and a thumbnail screen representing display information of the transmission source device are displayed in association with each other. The user can select display information to be displayed on the display device from any of the transmission source devices displayed in the transmission source selection area 5195.
  • a preview of a screen displayed on two display devices which are output destination devices is displayed.
  • four images are displayed in PinP on one display device.
  • the four images correspond to the display information transmitted from the transmission source device selected in the transmission source selection area 5195.
  • one is displayed relatively large as a main image, and the remaining three are displayed relatively small as sub-images.
  • the user can replace the main image and the sub-image by appropriately selecting the area in which the four images are displayed.
  • a status display area 5199 is provided below the area where the four images are displayed, and the status regarding surgery (for example, elapsed time of surgery, physical information of patient, etc.) is appropriately displayed in the area. obtain.
  • a control area 5201 includes a transmission source operation area 5203 in which a GUI (Graphical User Interface) component for performing an operation on a transmission source device is displayed, and a GUI component for performing an operation on an output destination device And an output destination operation area 5205 in which is displayed.
  • the transmission source operation area 5203 is provided with GUI components for performing various operations (pan, tilt, and zoom) on the camera in the transmission source apparatus having an imaging function. The user can operate the operation of the camera in the source device by appropriately selecting these GUI components.
  • the transmission source operation area 5203 may be provided with a GUI component for performing an operation such as reproduction, reproduction stop, rewind, fast forward, etc. of the image.
  • a GUI component for performing various operations (swap, flip, color adjustment, contrast adjustment, switching between 2D display and 3D display) on the display in the display device which is the output destination device It is provided.
  • the user can operate the display on the display device by appropriately selecting these GUI components.
  • the operation screen displayed on the centralized operation panel 5111 is not limited to the illustrated example, and the user can use the audiovisual controller 5107 and the operating room control device 5109 provided in the operating room system 5100 via the centralized operation panel 5111. Operation input to each device that can be controlled may be possible.
  • FIG. 33 is a diagram showing an example of a state of surgery to which the operating room system described above is applied.
  • a ceiling camera 5187 and an operation room camera 5189 are provided on the ceiling of the operating room, and can capture a picture of the hand of the operator (doctor) 5181 who performs treatment on the affected part of the patient 5185 on the patient bed 5183 and the entire operating room It is.
  • the ceiling camera 5187 and the operation room camera 5189 may be provided with a magnification adjustment function, a focal length adjustment function, an imaging direction adjustment function, and the like.
  • the illumination 5191 is provided on the ceiling of the operating room and illuminates at least the hand of the operator 5181.
  • the illumination 5191 may be capable of appropriately adjusting the irradiation light amount, the wavelength (color) of the irradiation light, the irradiation direction of the light, and the like.
  • the endoscopic surgery system 5113, the patient bed 5183, the ceiling camera 5187, the operation room camera 5189 and the illumination 5191 are connected via the audiovisual controller 5107 and the operating room controller 5109 (not shown in FIG. 33) as shown in FIG. Are connected to each other so that they can cooperate with each other.
  • a centralized operation panel 5111 is provided in the operating room, and as described above, the user can appropriately operate these devices present in the operating room via the centralized operation panel 5111.
  • the endoscopic surgery system 5113 includes an endoscope 5115, other surgical instruments 5131, a support arm device 5141 for supporting the endoscope 5115, and various devices for endoscopic surgery. And a cart 5151 mounted thereon.
  • trocars 5139a to 5139d are punctured in the abdominal wall. Then, the barrel 5117 of the endoscope 5115 and other surgical tools 5131 are inserted into the body cavity of the patient 5185 from the trocars 5139 a to 5139 d.
  • an insufflation tube 5133, an energy treatment instrument 5135, and a forceps 5137 are inserted into the body cavity of the patient 5185 as other surgical instruments 5131.
  • the energy treatment tool 5135 is a treatment tool that performs incision and peeling of tissue, sealing of a blood vessel, and the like by high-frequency current or ultrasonic vibration.
  • the illustrated surgical tool 5131 is merely an example, and various surgical tools generally used in endoscopic surgery, such as forceps and retractors, may be used as the surgical tool 5131, for example.
  • An image of the operation site in the body cavity of the patient 5185 taken by the endoscope 5115 is displayed on the display device 5155.
  • the operator 5181 performs a treatment such as excision of the affected area using the energy treatment tool 5135 and the forceps 5137 while viewing the image of the operative part displayed on the display device 5155 in real time.
  • a treatment such as excision of the affected area using the energy treatment tool 5135 and the forceps 5137
  • the insufflation tube 5133, the energy treatment tool 5135 and the forceps 5137 are supported by the operator 5181 or an assistant during the operation.
  • the support arm device 5141 includes an arm 5145 extending from the base 5143.
  • the arm 5145 includes joints 5147a, 5147b, 5147c, and links 5149a, 5149b, and is driven by control from the arm controller 5159.
  • the endoscope 5115 is supported by the arm 5145, and its position and posture are controlled. In this way, stable position fixation of the endoscope 5115 can be realized.
  • the endoscope 5115 includes a lens barrel 5117 whose region of a predetermined length from the tip is inserted into the body cavity of the patient 5185, and a camera head 5119 connected to the proximal end of the lens barrel 5117.
  • the endoscope 5115 configured as a so-called rigid endoscope having a rigid barrel 5117 is illustrated.
  • the endoscope 5115 is configured as a so-called flexible mirror having a flexible barrel 5117 It is also good.
  • a light source device 5157 is connected to the endoscope 5115, and light generated by the light source device 5157 is guided to the tip of the lens barrel by a light guide extended inside the lens barrel 5117, and an objective The light is emitted toward the observation target in the body cavity of the patient 5185 through the lens.
  • the endoscope 5115 may be a straight endoscope, or may be a oblique endoscope or a side endoscope.
  • An optical system and an imaging device are provided inside the camera head 5119, and reflected light (observation light) from the observation target is condensed on the imaging device by the optical system.
  • the observation light is photoelectrically converted by the imaging element to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 5153 as RAW data.
  • the camera head 5119 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
  • a plurality of imaging devices may be provided in the camera head 5119 in order to cope with, for example, stereoscopic vision (3D display).
  • a plurality of relay optical systems are provided inside the lens barrel 5117 in order to guide observation light to each of the plurality of imaging elements.
  • the CCU 5153 is constituted by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operation of the endoscope 5115 and the display device 5155 in a centralized manner. Specifically, the CCU 5153 subjects the image signal received from the camera head 5119 to various types of image processing, such as development processing (demosaicing processing), for displaying an image based on the image signal. The CCU 5153 provides the display device 5155 with the image signal subjected to the image processing. Further, an audiovisual controller 5107 shown in FIG. 31 is connected to the CCU 5153. The CCU 5153 also provides the audiovisual controller 5107 with the image signal subjected to the image processing.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CCU 5153 transmits a control signal to the camera head 5119 to control the driving thereof.
  • the control signal may include information on imaging conditions such as magnification and focal length.
  • the information related to the imaging condition may be input through the input device 5161 or may be input through the above-described centralized operation panel 5111.
  • the display device 5155 displays an image based on the image signal subjected to the image processing by the CCU 5153 under the control of the CCU 5153.
  • the endoscope 5115 corresponds to high-resolution imaging such as 4K (3840 horizontal pixels ⁇ 2160 vertical pixels) or 8K (7680 horizontal pixels ⁇ 4320 vertical pixels), and / or 3D display, for example
  • a device capable of high-resolution display and / or a device capable of 3D display may be used.
  • high-resolution imaging such as 4K or 8K
  • a display device 5155 having a size of 55 inches or more a further immersive feeling can be obtained.
  • a plurality of display devices 5155 having different resolutions and sizes may be provided depending on the application.
  • the light source device 5157 is configured of a light source such as an LED (light emitting diode), for example, and supplies illumination light at the time of imaging the surgical site to the endoscope 5115.
  • a light source such as an LED (light emitting diode)
  • the arm control device 5159 is constituted by a processor such as a CPU, for example, and operates in accordance with a predetermined program to control the driving of the arm 5145 of the support arm device 5141 according to a predetermined control method.
  • the input device 5161 is an input interface to the endoscopic surgery system 5113.
  • the user can input various information and input instructions to the endoscopic surgery system 5113 through the input device 5161.
  • the user inputs, via the input device 5161, various types of information related to surgery, such as physical information of a patient and information on a surgery procedure.
  • the user instructs, via the input device 5161, an instruction to drive the arm unit 5145, and an instruction to change the imaging conditions (type of irradiated light, magnification, focal length, etc.) by the endoscope 5115.
  • An instruction to drive the energy treatment tool 5135, etc. are input.
  • the type of the input device 5161 is not limited, and the input device 5161 may be various known input devices.
  • a mouse, a keyboard, a touch panel, a switch, a foot switch 5171, and / or a lever may be applied as the input device 5161.
  • the touch panel may be provided on the display surface of the display device 5155.
  • the input device 5161 is a device mounted by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), for example, and various types of input according to the user's gesture or line of sight detected by these devices. Is done. Further, the input device 5161 includes a camera capable of detecting the motion of the user, and various inputs are performed in accordance with the user's gesture and line of sight detected from the image captured by the camera. Furthermore, the input device 5161 includes a microphone capable of picking up the user's voice, and various inputs are performed by voice via the microphone.
  • a glasses-type wearable device or an HMD Head Mounted Display
  • the user for example, the operator 5181
  • the input device 5161 being configured to be able to input various information in a non-contact manner. Is possible.
  • the user can operate the device without releasing his / her hand from the operating tool, the convenience of the user is improved.
  • the treatment instrument control device 5163 controls the drive of the energy treatment instrument 5135 for ablation of tissue, incision, sealing of a blood vessel or the like.
  • the insufflation apparatus 5165 is provided with a gas in the body cavity via the insufflation tube 5133 in order to expand the body cavity of the patient 5185 for the purpose of securing a visual field by the endoscope 5115 and securing a working space of the operator.
  • Send The recorder 5167 is a device capable of recording various types of information regarding surgery.
  • the printer 5169 is a device capable of printing various types of information related to surgery in various types such as text, images, and graphs.
  • the support arm device 5141 includes a base 5143 which is a base and an arm 5145 extending from the base 5143.
  • the arm 5145 includes a plurality of joints 5147a, 5147b, and 5147c, and a plurality of links 5149a and 5149b connected by the joints 5147b.
  • FIG. The structure of the arm 5145 is shown in a simplified manner. In practice, the shape, number and arrangement of the joints 5147a to 5147c and the links 5149a and 5149b, and the direction of the rotation axis of the joints 5147a to 5147c are appropriately set so that the arm 5145 has a desired degree of freedom. obtain.
  • the arm 5145 may be preferably configured to have six or more degrees of freedom.
  • the endoscope 5115 can be freely moved within the movable range of the arm 5145, so that the lens barrel 5117 of the endoscope 5115 can be inserted into the body cavity of the patient 5185 from a desired direction. It will be possible.
  • the joints 5147a to 5147c are provided with an actuator, and the joints 5147a to 5147c are configured to be rotatable around a predetermined rotation axis by driving the actuators.
  • the driving of the actuator is controlled by the arm control device 5159 to control the rotation angles of the joint portions 5147a to 5147c, and the driving of the arm portion 5145 is controlled. Thereby, control of the position and posture of the endoscope 5115 can be realized.
  • the arm control device 5159 can control the driving of the arm unit 5145 by various known control methods such as force control or position control.
  • the drive of the arm 5145 is appropriately controlled by the arm control device 5159 according to the operation input, and
  • the position and attitude of the endoscope 5115 may be controlled.
  • the endoscope 5115 at the tip of the arm 5145 is moved from any position to any position, the endoscope 5115 can be fixedly supported at the position after the movement.
  • the arm 5145 may be operated by a so-called master slave method. In this case, the arm 5145 can be remotely controlled by the user via the input device 5161 installed at a location distant from the operating room.
  • the arm control device 5159 receives the external force from the user and moves the actuator of each joint 5147 a to 5147 c so that the arm 5145 moves smoothly following the external force. So-called power assist control may be performed.
  • the arm 5145 can be moved with a relatively light force. Therefore, it is possible to move the endoscope 5115 more intuitively and with a simpler operation, and the convenience of the user can be improved.
  • the endoscope 5115 is supported by a doctor called scopist.
  • the position of the endoscope 5115 can be more reliably fixed without manual operation, so that it is possible to stably obtain an image of the operative site. , Can be performed smoothly.
  • the arm control device 5159 may not necessarily be provided in the cart 5151. Also, the arm control device 5159 may not necessarily be one device. For example, the arm control device 5159 may be provided at each joint 5147 a to 5147 c of the arm 5145 of the support arm device 5141, and the arm control devices 5159 cooperate with one another to drive the arm 5145. Control may be realized.
  • the light source device 5157 supplies the endoscope 5115 with illumination light for imaging the operative part.
  • the light source device 5157 is configured of, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color can be controlled with high accuracy. Adjustments can be made.
  • the laser light from each of the RGB laser light sources is irradiated on the observation target in time division, and the drive of the imaging device of the camera head 5119 is controlled in synchronization with the irradiation timing to cope with each of RGB. It is also possible to capture a shot image in time division. According to the method, a color image can be obtained without providing a color filter in the imaging device.
  • the drive of the light source device 5157 may be controlled to change the intensity of the light to be output at predetermined time intervals.
  • the drive of the imaging element of the camera head 5119 is controlled in synchronization with the timing of the change of the light intensity to acquire images in time division, and by combining the images, high dynamic without so-called blackout and whiteout is obtained. An image of the range can be generated.
  • the light source device 5157 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, the mucous membrane surface layer is irradiated by irradiating narrow band light as compared with irradiation light (that is, white light) at the time of normal observation using the wavelength dependency of light absorption in body tissue.
  • the so-called narrow band imaging is performed to image a predetermined tissue such as a blood vessel with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiation with excitation light.
  • a body tissue is irradiated with excitation light and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue while being locally injected. What irradiates the excitation light corresponding to the fluorescence wavelength of the reagent, and obtains a fluorescence image etc. can be performed.
  • the light source device 5157 can be configured to be able to supply narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 34 is a block diagram showing an example of a functional configuration of the camera head 5119 and the CCU 5153 shown in FIG.
  • the camera head 5119 has a lens unit 5121, an imaging unit 5123, a drive unit 5125, a communication unit 5127, and a camera head control unit 5129 as its functions.
  • the CCU 5153 also includes a communication unit 5173, an image processing unit 5175, and a control unit 5177 as its functions.
  • the camera head 5119 and the CCU 5153 are communicably connected in both directions by a transmission cable 5179.
  • the lens unit 5121 is an optical system provided at the connection with the lens barrel 5117.
  • the observation light taken in from the tip of the lens barrel 5117 is guided to the camera head 5119 and is incident on the lens unit 5121.
  • the lens unit 5121 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the optical characteristic of the lens unit 5121 is adjusted so as to condense the observation light on the light receiving surface of the imaging element of the imaging unit 5123.
  • the zoom lens and the focus lens are configured such that the position on the optical axis can be moved in order to adjust the magnification and the focus of the captured image.
  • the imaging unit 5123 is configured by an imaging element, and is disposed downstream of the lens unit 5121.
  • the observation light which has passed through the lens unit 5121 is condensed on the light receiving surface of the imaging device, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5123 is provided to the communication unit 5127.
  • an imaging element which comprises the imaging part 5123 it is an image sensor of a CMOS (Complementary Metal Oxide Semiconductor) type, for example, and a color imaging
  • CMOS Complementary Metal Oxide Semiconductor
  • photography of the high resolution image of 4K or more may be used, for example.
  • the imaging device constituting the imaging unit 5123 is configured to have a pair of imaging devices for acquiring image signals for the right eye and for the left eye corresponding to 3D display.
  • the 3D display enables the operator 5181 to more accurately grasp the depth of the living tissue in the operation site.
  • the imaging unit 5123 is configured as a multi-plate type, a plurality of lens units 5121 are also provided corresponding to each imaging element.
  • the imaging unit 5123 may not necessarily be provided in the camera head 5119.
  • the imaging unit 5123 may be provided inside the lens barrel 5117 immediately after the objective lens.
  • the drive unit 5125 is constituted by an actuator, and moves the zoom lens and the focus lens of the lens unit 5121 by a predetermined distance along the optical axis under the control of the camera head control unit 5129. Thereby, the magnification and the focus of the captured image by the imaging unit 5123 may be appropriately adjusted.
  • the communication unit 5127 is configured of a communication device for transmitting and receiving various types of information to and from the CCU 5153.
  • the communication unit 5127 transmits the image signal obtained from the imaging unit 5123 to the CCU 5153 via the transmission cable 5179 as RAW data.
  • the image signal be transmitted by optical communication in order to display the captured image of the surgical site with low latency.
  • the operator 5181 performs the operation while observing the condition of the affected area by the captured image, and for safer and more reliable operation, the moving image of the operation site is displayed in real time as much as possible It is because that is required.
  • the communication unit 5127 is provided with a photoelectric conversion module which converts an electrical signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5153 via the transmission cable 5179.
  • the communication unit 5127 also receives, from the CCU 5153, a control signal for controlling the drive of the camera head 5119.
  • the control signal includes, for example, information indicating that the frame rate of the captured image is designated, information indicating that the exposure value at the time of imaging is designated, and / or information indicating that the magnification and focus of the captured image are designated, etc. Contains information about the condition.
  • the communication unit 5127 provides the received control signal to the camera head control unit 5129.
  • the control signal from the CCU 5153 may also be transmitted by optical communication.
  • the communication unit 5127 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and is then provided to the camera head control unit 5129.
  • imaging conditions such as the frame rate, the exposure value, the magnification, and the focus described above are automatically set by the control unit 5177 of the CCU 5153 based on the acquired image signal. That is, so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 5115.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head control unit 5129 controls the drive of the camera head 5119 based on the control signal from the CCU 5153 received via the communication unit 5127. For example, the camera head control unit 5129 controls the drive of the imaging element of the imaging unit 5123 based on the information to specify the frame rate of the captured image and / or the information to specify the exposure at the time of imaging. In addition, for example, the camera head control unit 5129 appropriately moves the zoom lens and the focus lens of the lens unit 5121 via the drive unit 5125 based on the information indicating that the magnification and the focus of the captured image are designated.
  • the camera head control unit 5129 may further have a function of storing information for identifying the lens barrel 5117 and the camera head 5119.
  • the camera head 5119 can have resistance to autoclave sterilization.
  • the communication unit 5173 is configured of a communication device for transmitting and receiving various information to and from the camera head 5119.
  • the communication unit 5173 receives an image signal transmitted from the camera head 5119 via the transmission cable 5179.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5173 is provided with a photoelectric conversion module which converts an optical signal into an electrical signal.
  • the communication unit 5173 provides the image processing unit 5175 with the image signal converted into the electrical signal.
  • the communication unit 5173 transmits, to the camera head 5119, a control signal for controlling the drive of the camera head 5119.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5175 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 5119.
  • image processing for example, development processing, high image quality processing (band emphasis processing, super-resolution processing, NR (noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing) And various other known signal processings.
  • the image processing unit 5175 also performs detection processing on the image signal to perform AE, AF, and AWB.
  • the image processing unit 5175 is configured by a processor such as a CPU or a GPU, and the image processing and the detection processing described above can be performed by the processor operating according to a predetermined program.
  • the image processing unit 5175 is configured by a plurality of GPUs, the image processing unit 5175 appropriately divides the information related to the image signal, and performs image processing in parallel by the plurality of GPUs.
  • the control unit 5177 performs various types of control regarding imaging of the surgical site by the endoscope 5115 and display of the imaged image. For example, the control unit 5177 generates a control signal for controlling the drive of the camera head 5119. At this time, when the imaging condition is input by the user, the control unit 5177 generates a control signal based on the input by the user. Alternatively, when the endoscope 5115 is equipped with the AE function, the AF function, and the AWB function, the control unit 5177 determines the optimum exposure value, focal length, and the like according to the result of the detection processing by the image processing unit 5175. The white balance is appropriately calculated to generate a control signal.
  • control unit 5177 causes the display device 5155 to display an image of the operative site based on the image signal subjected to the image processing by the image processing unit 5175.
  • the control unit 5177 recognizes various objects in the operation site image using various image recognition techniques. For example, the control unit 5177 detects a shape, a color, and the like of an edge of an object included in an operation part image, thereby enabling a surgical tool such as forceps, a specific living part, bleeding, mist when using the energy treatment tool 5135, etc. It can be recognized.
  • the control unit 5177 uses the recognition result to superimpose various operation support information on the image of the operation unit. The operation support information is superimposed and presented to the operator 5181, which makes it possible to proceed with the operation more safely and reliably.
  • a transmission cable 5179 connecting the camera head 5119 and the CCU 5153 is an electric signal cable corresponding to communication of an electric signal, an optical fiber corresponding to optical communication, or a composite cable of these.
  • communication is performed by wire communication using the transmission cable 5179, but communication between the camera head 5119 and the CCU 5153 may be performed wirelessly.
  • the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5179 in the operating room, so that the movement of the medical staff in the operating room can be eliminated by the transmission cable 5179.
  • the operating room system 5100 to which the technology according to the present disclosure can be applied has been described.
  • the medical treatment system to which the operating room system 5100 is applied is the endoscopic surgery system 5113
  • the configuration of the operating room system 5100 is not limited to such an example.
  • the operating room system 5100 may be applied to a flexible endoscopic system for examination or a microsurgery system instead of the endoscopic surgery system 5113.
  • the camera system according to the present embodiment described with reference to FIGS. 1 to 27 can be suitably applied to the ceiling camera 5187, the surgical site camera 5189, and the camera head 5119 of the endoscope 5115 among the configurations described above.
  • the technology according to the present disclosure to the ceiling camera 5187, the operation room camera 5189, and the camera head 5119 of the endoscope 5115, hemoglobin in the blood can be accurately observed, the depth of internal organs, etc. can be accurately determined. Can be measured.
  • a system means a set of a plurality of components (apparatus, modules (parts), etc.), and it does not matter whether all the components are in the same case. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing are all systems. .
  • An imaging unit for imaging a subject An image of the subject is generated based on a pixel signal obtained by performing imaging in a state in which light of a predetermined pattern from a structured light source is emitted to a projection area of a specific pixel of the imaging unit. And an image generation unit.
  • the image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is irradiated to the projection region of the IR pixel from the structured light source. 1) or the imaging device as described in (2).
  • the image generation unit generates an IR image based on a signal from the IR pixel irradiated with the IR light from the structured light source, and based on a signal from a pixel not irradiated with the IR light.
  • the imaging device according to (3) which generates a visible image.
  • the image generation unit irradiates light of a predetermined pattern from the plurality of structured light sources on a projection area of a pixel corresponding to each of the plurality of structured light sources from the plurality of structured light sources having different wavelength bands.
  • the imaging device according to (1) or (2) wherein an image of the subject is generated based on a pixel signal obtained by performing imaging in a state where the image is captured.
  • the image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is irradiated to the projection region of the TOF pixel from the structured light source.
  • the imaging device according to (1) or (2).
  • the image generation unit calculates a distance for AF control based on a signal from the TOF pixel on which the IR light from the structured light source is irradiated, and the image generation unit calculates the distance from the pixel on which the IR light is not irradiated.
  • the imaging device according to (6) which generates a visible image based on a signal.
  • the image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is emitted from the structured light source to the projection area of the triangulation pixel.
  • the imaging device according to (1) or (2).
  • the image generation unit calculates a distance for AF control based on a signal from the triangulation pixel irradiated with the IR light from the structured light source, and the pixel not irradiated with the IR light
  • An imaging device given in the above (8) which generates a visible picture based on a signal of.
  • the imaging device according to any one of (1) to (10), further including: a light irradiation unit which is the structured light source. (12) In order to make the irradiation area boundary of the light irradiation part substantially coincide with the angle of view of the imaging part, a mirror which reflects the light irradiated from the light irradiation part and transmits the light reflected by the projection area of the pixel.
  • the imaging device according to (11), further comprising: (13) The imaging apparatus according to (11), wherein the light irradiation unit includes a diffraction grating on a front surface.
  • the light emitting unit is configured integrally with the imaging apparatus.
  • the imaging device according to any one of (11) to (13), wherein the light emitting unit is mounted exchangeably to the imaging device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

This technology relates to an imaging device that makes it possible to efficiently separate signals having different characteristics. An image generation unit generates an image of an object on the basis of a pixel signal obtained by performing imaging in a state in which a projection area of a specific pixel of an imaging unit that images the object is irradiated with light of a prescribed pattern from a structured light source. The present disclosure is applicable to, for example, a camera system comprising a structured light source and an imaging device.

Description

撮像装置Imaging device
 本技術は、撮像装置に関し、特に、特性の異なる信号を効率よく分離することができる撮像装置に関する。 The present technology relates to an imaging device, and in particular to an imaging device capable of efficiently separating signals having different characteristics.
 監視カメラシステム、セキュリティシステム、車載システム、ゲーム機などで用いられる物体認識や情報センシングの技術として、可視画像に加えて、赤外線(IR)画像を利用する手法が広く使われている。従来、可視画像を取得するための通常のイメージセンサと、IR光を受光してIR画像を取得するための専用のIRセンサの2つを組み合わせるものが主であったが、最近、可視画像とIR画像を同時に取得可能なイメージセンサが提案されている。 A technique using infrared (IR) images in addition to visible images is widely used as a technique for object recognition and information sensing used in surveillance camera systems, security systems, in-vehicle systems, game machines and the like. Conventionally, a combination of two, a normal image sensor for acquiring a visible image and a dedicated IR sensor for receiving IR light and acquiring an IR image, has been mainly used. An image sensor capable of simultaneously acquiring IR images has been proposed.
 可視画像とIR画像を同時に取得可能なイメージセンサとして、例えば、2×2ベイヤ配列の1つのG画素を、IR光のみを透過するIR画素に置き換えたものが特許文献1に提案されている。特許文献1の提案は、R,G,B,IRそれぞれの画素からの信号を演算処理することにより可視信号とIR信号とを分離し、用途に応じてそれぞれの画像を出力するものである。 As an image sensor capable of simultaneously acquiring a visible image and an IR image, for example, Patent Document 1 proposes that one G pixel in a 2 × 2 Bayer array is replaced with an IR pixel that transmits only IR light. According to the proposal of Patent Document 1, a visible signal and an IR signal are separated by arithmetic processing of signals from respective R, G, B, and IR pixels, and respective images are output according to the application.
特開2014-150470号公報JP, 2014-150470, A
 しかしながら、特許文献1の提案では、被写体にIR光を照射した場合、R,G,Bの画素も強いIR光を受光してしまうため、可視信号とIR信号を演算処理のみにより完全に分離することが難しく、可視画像の画質(ノイズ、色再現性)を劣化させる要因となっていた。 However, in the proposal of Patent Document 1, since the R, G, and B pixels also receive strong IR light when the subject is irradiated with IR light, the visible signal and the IR signal are completely separated only by arithmetic processing. This is a factor that degrades the quality of the visible image (noise, color reproducibility).
 したがって、画質の優れた可視画像とIR画像を取得するには、IR光と可視光をより効率よく分離する手法が必要とされていた。 Therefore, in order to obtain high-quality visible and IR images, a method for more efficiently separating IR light and visible light has been required.
 本技術は、このような状況に鑑みてなされたものであり、特性の異なる信号を効率よく分離することができるものである。 The present technology has been made in view of such circumstances, and can efficiently separate signals having different characteristics.
 本技術の一側面の撮像装置は、被写体を撮像する撮像部と、ストラクチャードライト光源からの所定のパターンの光が、前記撮像部の特定の画素の投影領域に照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する画像生成部を備える。 In an imaging device according to one aspect of the present technology, imaging is performed in a state in which light of a predetermined pattern from a structured light source and an imaging unit that images a subject is irradiated on a projection area of a specific pixel of the imaging unit. And an image generation unit configured to generate an image of the subject based on a pixel signal obtained by being read.
 本技術の一側面においては、ストラクチャードライト光源からの所定のパターンの光が、被写体を撮像する撮像部の特定の画素の投影領域に照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像が生成される。 In one aspect of the present technology, a pixel obtained by performing imaging in a state where light of a predetermined pattern from a structured light source is emitted to a projection area of a specific pixel of an imaging unit that captures an object. An image of the subject is generated based on the signal.
 本技術によれば、特性の異なる信号を効率よく分離することができる。 According to the present technology, signals with different characteristics can be efficiently separated.
 なお、本明細書に記載された効果は、あくまで例示であり、本技術の効果は、本明細書に記載された効果に限定されるものではなく、付加的な効果があってもよい。 The effects described in the present specification are merely examples, and the effects of the present technology are not limited to the effects described in the present specification, and may have additional effects.
本技術を適用したカメラシステムの第1の構成例を示す図である。It is a figure showing the 1st example of composition of the camera system to which this art is applied. SL光源の原理を説明する図である。It is a figure explaining the principle of SL light source. 撮像装置の画角とIR-SL光源の照射角の関係を説明する図である。It is a figure explaining the relationship between the angle of view of an imaging device, and the irradiation angle of IR-SL light source. 図1の撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the imaging device of FIG. 図1のカメラシステムの撮像処理を説明するフローチャートである。It is a flowchart explaining the imaging process of the camera system of FIG. IR-SL光源の配置例を示す外観図である。It is an external view which shows the example of arrangement | positioning of IR-SL light source. 本技術を適用したカメラシステムの第2の構成例を示す図である。It is a figure showing the 2nd example of composition of a camera system to which this art is applied. 図7の撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the imaging device of FIG. SL光源の配置例を示す外観図である。It is an external view which shows the example of arrangement | positioning of SL light source. 図7のカメラシステムの撮像処理を説明するフローチャートである。It is a flowchart explaining the imaging process of the camera system of FIG. 画素配列の例を示す図である。It is a figure which shows the example of a pixel array. 本技術を適用したカメラシステムの第3の構成例を示す図である。It is a figure showing the 3rd example of composition of a camera system to which this art is applied. SL光源の原理を説明する図である。It is a figure explaining the principle of SL light source. IR光照射装置および撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of IR light irradiation apparatus and an imaging device. イメージセンサの画素配列の例を示す図である。It is a figure which shows the example of the pixel array of an image sensor. 撮像装置の画角とIR-SL光源の照射角の関係を説明する図である。It is a figure explaining the relationship between the angle of view of an imaging device, and the irradiation angle of IR-SL light source. ダイクロイックミラーを用いた場合の撮像装置の画角とIR-SL光源の照射角の関係を説明する図である。It is a figure explaining the relationship between the angle of view of an imaging device at the time of using a dichroic mirror, and the irradiation angle of IR-SL light source. イメージセンサにおける光の入射側の一部の構成例を示す断面図である。It is sectional drawing which shows the example of a part of the incident side of the light in an image sensor. IRバンドパスフィルタとIR遮断フィルタの分光特性を示す図である。It is a figure which shows the spectral characteristic of IR band pass filter and IR interruption | blocking filter. 各画素に対応する分光特性を示す図である。It is a figure which shows the spectral characteristic corresponding to each pixel. 撮像装置におけるカメラDSPの構成例を示すブロック図である。It is a block diagram showing an example of composition of camera DSP in an imaging device. 図12の撮像装置の信号処理を説明するフローチャートである。It is a flowchart explaining the signal processing of the imaging device of FIG. 本技術を適用したカメラシステムの第4の構成例を示す図である。It is a figure showing the 4th example of composition of a camera system to which this art is applied. IR光照射装置および撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of IR light irradiation apparatus and an imaging device. イメージセンサの画素配列の例を示す図である。It is a figure which shows the example of the pixel array of an image sensor. 撮像装置におけるカメラDSPの構成例を示すブロック図である。It is a block diagram showing an example of composition of camera DSP in an imaging device. 図23の撮像装置の信号処理を説明するフローチャートである。It is a flowchart explaining the signal processing of the imaging device of FIG. コンピュータの構成例を示すブロック図である。It is a block diagram showing an example of composition of a computer. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram showing an example of rough composition of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part. 手術室システムの全体構成を概略的に示す図である。FIG. 1 schematically shows an overall configuration of an operating room system. 集中操作パネルにおける操作画面の表示例を示す図である。It is a figure which shows the example of a display of the operation screen in a concentration operation panel. 手術室システムが適用された手術の様子の一例を示す図である。It is a figure which shows an example of the mode of the surgery to which the operating room system was applied. 図33に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of the camera head shown in FIG. 33, and CCU.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。説明は以下の順序で行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.第5の実施の形態
 6.応用例1
 7.応用例2
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First Embodiment Second embodiment 3. Third embodiment 4. Fourth embodiment 5. Fifth Embodiment 6. Application Example 1
7. Application example 2
< 第1の実施の形態 >
 <カメラシステムの構成例>
 図1は、本技術を適用したカメラシステムの第1の構成例を示す図である。本技術のカメラシステムでは、ストラクチャードライト(SL)光源から、ドットパターンの光が所定の画素の投影領域に投影されている状態で、SL光源に近接した位置での撮像が行われる。
First Embodiment
<Configuration Example of Camera System>
FIG. 1 is a diagram illustrating a first configuration example of a camera system to which the present technology is applied. In the camera system of the present technology, in a state where light of a dot pattern is projected from a structured light (SL) light source onto a projection area of a predetermined pixel, imaging is performed at a position close to the SL light source.
 図1のカメラシステム1は、IR-SL光源としてのIR光照射装置11と、撮像装置12で構成される。図1には、被写体を想定した平面に、画素の投影領域が仮想的に破線で示されている。投影領域は、撮像装置12内のイメージセンサの画素配列に対応する領域からなる。各投影領域に示される文字は、各投影領域に対応する画素が、R,G,B画素またはIR画素であることを示すものである。 The camera system 1 of FIG. 1 includes an IR light irradiation device 11 as an IR-SL light source, and an imaging device 12. In FIG. 1, projection areas of pixels are virtually shown by broken lines on a plane on which a subject is assumed. The projection area is an area corresponding to the pixel array of the image sensor in the imaging device 12. The characters shown in each projection area indicate that the pixels corresponding to each projection area are R, G, B pixels or IR pixels.
 IR光照射装置11は、IR光を照射する装置であり、撮像装置12に近接して固定して配置される。IR光照射装置11は、IR画素に対応する投影領域のみを照射するようなドットパターンのIR光を照射する。投影領域のうち、IR画素の投影領域には、色付きの丸で示されるように、IR光照射装置11からのIR光として、ドットパターンの各ドットが投影される。 The IR light irradiation device 11 is a device that emits IR light, and is disposed in the vicinity of the imaging device 12 in a fixed manner. The IR light irradiation device 11 irradiates IR light of a dot pattern that irradiates only the projection area corresponding to the IR pixel. Of the projection areas, each dot of the dot pattern is projected as IR light from the IR light irradiator 11 onto the projection area of the IR pixel as indicated by a colored circle.
 撮像装置12は、一例として、R,G,B画素およびIR画素が2×2のマトリクス状に配置されたイメージセンサを備えている。イメージセンサのシャッタ方式は、ローリングシャッタ方式であってもよいし、グローバルシャッタ方式であってもよい。 The imaging device 12 includes, as one example, an image sensor in which R, G, B pixels and IR pixels are arranged in a 2 × 2 matrix. The shutter system of the image sensor may be a rolling shutter system or a global shutter system.
 なお、図1においては、4×4画素の投影領域だけが示され、IR光が照射される投影領域が4つの領域とされているが、実際には、さらに多くの投影領域に対してそれぞれIR光の各ドットが照射される。 In FIG. 1, only the projection area of 4 × 4 pixels is shown, and the projection areas to which IR light is irradiated are four areas. Each dot of IR light is illuminated.
 撮像装置12は、IR画素に対応する投影領域のみを照射するようなドットパターンのIR光がIR光照射装置11により照射されている状態で被写体を撮像する。R,G,B画素においては、所定の光源からの可視光が受光されている。これにより、撮像装置12では、R,G,B画素からの信号に対応する可視画像とIR画素からの信号に対応するIR画像とが生成される。 The imaging device 12 images a subject in a state where IR light of a dot pattern that irradiates only a projection area corresponding to an IR pixel is irradiated by the IR light irradiation device 11. In R, G and B pixels, visible light from a predetermined light source is received. Thereby, in the imaging device 12, a visible image corresponding to the signal from the R, G, B pixels and an IR image corresponding to the signal from the IR pixel are generated.
 <ストラクチャードライト光源の原理>
 図2は、ストラクチャードライト光源の原理を説明する図である。
<Principle of structured light source>
FIG. 2 is a diagram for explaining the principle of a structured light source.
 IR光照射装置11は、レーザ光源21の前面に回折格子22を設けた構成を有する。回折格子22を適切に設計することにより、マトリクス状の任意の位置(例えば、図1のIR画素の投影領域)にドットパターンのIR光を照射することが可能となる。 The IR light irradiation device 11 has a configuration in which the diffraction grating 22 is provided in front of the laser light source 21. By designing the diffraction grating 22 appropriately, it is possible to irradiate IR light of a dot pattern to any position (for example, a projection area of IR pixels in FIG. 1) in a matrix.
 <撮像装置の画角とIR-SL光源の照射角の関係>
 図3は、撮像装置の画角とIR-SL光源の照射角の関係を説明する図である。
<Relationship between angle of view of imaging device and irradiation angle of IR-SL light source>
FIG. 3 is a diagram for explaining the relationship between the angle of view of the imaging device and the irradiation angle of the IR-SL light source.
 IR光照射装置11の光軸11Cを中心としたSL照射角内の各実線は、SL照射領域の境界を示し、また、撮像装置12の光軸12Cを中心とした画角内の各破線は、画素領域の境界を示す。SL照射領域は、画素領域にIR-SL光源からドットが照射される領域である。カメラシステム1において、IR光照射装置11のSL照射角と撮像装置12の画角はおよそ一致するように設定されている。 The solid lines in the SL irradiation angle centering on the optical axis 11C of the IR light irradiation device 11 indicate the boundaries of the SL irradiation area, and the broken lines in the angle of view centering on the optical axis 12C of the imaging device 12 , Indicates the boundary of the pixel area. The SL irradiation area is an area where dots are irradiated from the IR-SL light source to the pixel area. In the camera system 1, the SL irradiation angle of the IR light irradiation device 11 and the angle of view of the imaging device 12 are set so as to approximately match.
 図3の左側の実線L1は、撮像装置12の投影領域を示している。双方向の矢印で示す範囲が、1画素の投影領域に相当する。画素投影領域の右側の一点鎖線L2は、視差一致限界距離を示している。視差一致限界距離は、IR光照射装置11と撮像装置12を起点とした、IR光照射装置11と撮像装置12との視差がほぼ一致する距離である。実線L1上と、一点鎖線L2上の黒の矩形は、ドットパターンの各ドットを表している。 The solid line L1 on the left side of FIG. 3 indicates the projection area of the imaging device 12. The range indicated by the bidirectional arrow corresponds to the projection area of one pixel. An alternate long and short dash line L2 on the right side of the pixel projection area indicates a parallax matching limit distance. The parallax matching limit distance is a distance from the IR light irradiation device 11 and the imaging device 12 at which the parallaxes of the IR light irradiation device 11 and the imaging device 12 substantially coincide with each other. The black rectangles on the solid line L1 and on the dashed-dotted line L2 represent the dots of the dot pattern.
 図3のIR光照射装置11からのドットパターンのIR光は、撮像装置12の画素配列のうち、IR画素に相当する領域のみに照射される。その際、撮像装置12とIR光照射装置11を固定しておく。 The IR light of the dot pattern from the IR light irradiation device 11 of FIG. 3 is irradiated only to the region corresponding to the IR pixel in the pixel array of the imaging device 12. At that time, the imaging device 12 and the IR light irradiation device 11 are fixed.
 これにより、IR光照射装置11と撮像装置12からみて、一点鎖線L2に示される視差一致限界距離より離れていれば、被写体がどの距離にあってもIR光照射装置11から照射されるドットパターンのIR光と撮像装置12の画素投影領域がずれることはない。よって、IR画素の投影境域とドットパターンのIR光は1:1に対応する。IR光の反射光は、R,G,Bの画素には到達せず、IR画素でのみ受光される。 Thereby, as viewed from the IR light irradiation device 11 and the imaging device 12, the dot pattern irradiated from the IR light irradiation device 11 no matter what distance the subject is if it is separated from the parallax matching limit distance shown by the alternate long and short dash line L2. There is no deviation between the IR light of the pixel and the pixel projection area of the imaging device 12. Therefore, the projection area of the IR pixel and the IR light of the dot pattern correspond to 1: 1. Reflected light of IR light does not reach the R, G and B pixels, and is received only by the IR pixels.
 視差一致限界距離は、例えば、イメージセンサの画素サイズを15um程度、レンズの焦点距離を3mm程度、IR光照射装置11の光軸11Cと撮像装置12のイメージセンサ(レンズ)の光軸12Cの距離の差を3mm程度とすると、約60cmとなる。 The parallax coincidence limit distance is, for example, the distance between the optical axis 11C of the IR light irradiation device 11 and the optical axis 12C of the image sensor (lens) of the imaging device 12 If the difference of about 3 mm, it will be about 60 cm.
 <撮像装置の構成例>
 図4は、撮像装置の構成例を示すブロック図である。カメラシステム1における被写体の撮像は、IR-SL光源としてのIR光照射装置11からのドットパターンのIR光が定常的に照射された状態で、撮像装置12により行われる。
<Configuration Example of Imaging Device>
FIG. 4 is a block diagram showing a configuration example of an imaging device. Imaging of a subject in the camera system 1 is performed by the imaging device 12 in a state in which IR light of a dot pattern from the IR light irradiation device 11 as an IR-SL light source is steadily irradiated.
 撮像装置12は、レンズなどの光学系31、イメージセンサ32、画像生成部33より構成される。 The imaging device 12 includes an optical system 31 such as a lens, an image sensor 32, and an image generation unit 33.
 被写体からの光は、光学系31を介して、イメージセンサ32に入射される。イメージセンサ32は、R,G,B画素およびIR画素が2×2のマトリクス状に配置された画素アレイ部を有している。イメージセンサ32は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素の信号を生成する。 Light from the subject is incident on the image sensor 32 through the optical system 31. The image sensor 32 has a pixel array unit in which R, G, B pixels and IR pixels are arranged in a 2 × 2 matrix. The image sensor 32 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
 画像生成部33は、イメージセンサ32の画素アレイ部を構成する複数の画素のうち、R,G,B画素からの信号(可視信号)を用いて可視画像を生成し、生成した可視画像を、図示せぬ後段の信号処理部に出力する。また、画像生成部33は、イメージセンサ32の画素アレイ部を構成する複数の画素のうち、IR画素からの信号(IR信号)を用いてIR画像を生成し、生成したIR画像を、図示せぬ後段の信号処理部に出力する。 The image generation unit 33 generates a visible image using signals (visible signals) from R, G, and B pixels among a plurality of pixels forming the pixel array unit of the image sensor 32, and generates the generated visible image as It outputs to the signal processing part of the latter part which is not illustrated. Further, the image generation unit 33 generates an IR image using a signal (IR signal) from an IR pixel among a plurality of pixels constituting the pixel array unit of the image sensor 32, and illustrates the generated IR image. Output to the signal processing unit at the subsequent stage.
 画像生成部33は、信号分離部41、補間処理部42-1および補間処理部42-2、並びに、高画質化信号処理部43-1および高画質化信号処理部43-2を含むように構成される。 The image generation unit 33 includes a signal separation unit 41, an interpolation processing unit 42-1 and an interpolation processing unit 42-2, and an image quality improvement signal processing unit 43-1 and an image quality improvement signal processing unit 43-2. Configured
 信号分離部41は、イメージセンサ32の信号から可視信号を分離し、補間処理部42-1に出力する。また、信号分離部41は、イメージセンサ32の信号からIR信号を分離し、補間処理部42-2に出力する。 The signal separation unit 41 separates the visible signal from the signal of the image sensor 32, and outputs the signal to the interpolation processing unit 42-1. Further, the signal separation unit 41 separates the IR signal from the signal of the image sensor 32, and outputs the IR signal to the interpolation processing unit 42-2.
 補間処理部42-1は、R,G,B画素の配列に応じて、欠落した色の画素信号を生成するデモザイク処理などの補間処理をすることで可視画像を生成し、高画質化信号処理部43-1に供給する。 The interpolation processing unit 42-1 generates a visible image by performing interpolation processing such as demosaicing processing that generates pixel signals of missing colors according to the arrangement of R, G, and B pixels, and performs high-quality image processing Supply to section 43-1.
 補間処理部42-2は、IR信号の補間処理をすることでIR画像を生成し、高画質化信号処理部43-2に出力する。 The interpolation processing unit 42-2 performs an IR signal interpolation process to generate an IR image, and outputs the IR image to the image quality improvement signal processing unit 43-2.
 高画質化信号処理部43-1は、可視画像の高画質化処理を行い、高画質化処理後の可視画像を出力する。 The high image quality formation signal processing unit 43-1 performs high image quality formation processing of the visible image, and outputs the visible image after the high quality processing.
 高画質化信号処理部43-2は、IR画像の高画質化処理を行い、高画質化処理後のIR画像を出力する。 The high image quality formation signal processing unit 43-2 performs high image quality formation processing of the IR image, and outputs the IR image after the high quality processing.
 <カメラシステムの動作>
 次に、図5のフローチャートを参照して、撮像装置12の撮像処理を説明する。
<Operation of Camera System>
Next, the imaging process of the imaging device 12 will be described with reference to the flowchart of FIG.
 図5のステップS11において、イメージセンサ32は、IR光照射装置11からのドットパターンのIR光が照射されている状態で被写体を撮像する。イメージセンサ32は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素信号を生成する。 In step S11 of FIG. 5, the image sensor 32 captures an image of the subject in a state where the IR light of the dot pattern from the IR light irradiation device 11 is irradiated. The image sensor 32 photoelectrically converts incident light, and A / D converts the pixel value of each pixel of the pixel array unit to generate a pixel signal.
 ステップS12において、信号分離部41は、イメージセンサ32からの信号から可視信号とIR信号を分離する。分離された可視信号は補間処理部42-1に出力され、IR信号は補間処理部42-2に出力される。 In step S12, the signal separation unit 41 separates the visible signal and the IR signal from the signal from the image sensor 32. The separated visible signal is output to the interpolation processing unit 42-1, and the IR signal is output to the interpolation processing unit 42-2.
 ステップS13において、補間処理部42-1は、可視信号の補間処理をすることで可視画像を生成する。また、補間処理部42-2は、IR信号の補間処理をすることでIR画像を生成する。補間後の可視画像は、高画質化信号処理部43-1に出力される。補間後のIR画像は、高画質化信号処理部43-2に出力される。 In step S13, the interpolation processing unit 42-1 generates a visible image by interpolating the visible signal. Further, the interpolation processing unit 42-2 generates an IR image by performing interpolation processing of the IR signal. The visible image after interpolation is output to the image quality improvement signal processing unit 43-1. The IR image after interpolation is output to the image quality improvement signal processing unit 43-2.
 ステップS14において、高画質化信号処理部43-1は、可視画像の高画質化処理を行う。高画質化信号処理部43-2は、IR画像の高画質化処理を行う。高画質化処理後の可視画像とIR画像は、後段の信号処理部に出力される。 In step S14, the image quality improvement signal processing unit 43-1 performs image quality improvement processing of a visible image. The high image quality formation signal processing unit 43-2 performs high image quality formation processing of the IR image. The visible image and the IR image after the image quality improvement processing are output to the signal processing unit in the subsequent stage.
 以上のようにして得られた可視画像とIR画像とは、例えば監視カメラシステムの物体認識に用いられる。分離後に合成して、カラー画像を取得するようにしてもよい。 The visible image and the IR image obtained as described above are used, for example, for object recognition of a surveillance camera system. After separation, they may be combined to obtain a color image.
 また、可視画像とIR画像とは、パーソナルコンピュータやスマートフォン用のセキュリティのための顔認証、または、虹彩認識に用いられる。認証用またはゲームなどのジェスチャ認識に用いるIR画像と可視画像を一台の撮像装置により同時取得が可能である。 Also, the visible image and the IR image are used for face recognition for security for personal computers and smart phones, or for iris recognition. It is possible to simultaneously acquire an IR image and a visible image used for gesture recognition such as for authentication or for a game by one imaging device.
 以上のように、IR光を照射することによる被写体からの反射光は、IR画素でのみ受光されるため、RGB画素によって得られる可視信号に影響を与えることない。したがって、特性の異なる信号である可視信号とIR信号を分離することが可能となる。また、R,G,B画素上に、IR照射光を遮断する専用のオンチップフィルタを形成するようなことも不要となる。 As described above, since the reflected light from the subject due to the irradiation of the IR light is received only by the IR pixels, it does not affect the visible signals obtained by the RGB pixels. Therefore, it becomes possible to separate the visible signal and the IR signal which are signals having different characteristics. In addition, it is not necessary to form a dedicated on-chip filter for blocking IR irradiation light on R, G, B pixels.
 <IR-SL光源の配置例>
 図6は、IR-SL光源の配置例を示す外観図である。
<Example of placement of IR-SL light source>
FIG. 6 is an external view showing an arrangement example of the IR-SL light source.
 図6のAは、撮像装置12に、IR-SL光源としての、IR光を照射するIR光照射部11Aを内蔵させることで、撮像の構成とIR光の照射の構成とを同一筐体に一体化した例を示す。この場合、IR光照射部11Aは、撮像装置12のレンズに代表される光学系31の近傍に配置される。 In FIG. 6A, the imaging device 12 incorporates the IR light irradiator 11A for irradiating IR light as the IR-SL light source, so that the configuration of imaging and the configuration of irradiation of IR light are in the same housing. An integrated example is shown. In this case, the IR light irradiation unit 11A is disposed in the vicinity of the optical system 31 represented by the lens of the imaging device 12.
 図6のAのように一体化することで、光学系31の後方に設けられるイメージセンサ32の位置とIR光照射部11Aの位置をより近くに配置できるため、より近距離においてIR光のドットパターンと画素投影領域を一致させることが可能となる。 By integrating as shown in A of FIG. 6, the position of the image sensor 32 provided behind the optical system 31 and the position of the IR light irradiation unit 11A can be disposed closer to each other. It is possible to match the pattern and the pixel projection area.
 図6のBは、撮像装置12とIR-SL光源としてのIR光照射装置11がそれぞれ独立して構成される例を示す。IR光照射装置11は、例えば、撮像装置12の筐体の上に、アジャスターなどで着脱可能に取り付けられる。 B of FIG. 6 shows an example in which the imaging device 12 and the IR light irradiation device 11 as an IR-SL light source are configured independently of each other. The IR light irradiation device 11 is detachably mounted on, for example, a housing of the imaging device 12 with an adjuster or the like.
 図6のBのようにアジャスターで着脱可能に取り付けることで、IR光照射装置11を用途に応じて取り替えることが可能となり、例えば、IR-SL光源として異なる波長のものへの切り替えが可能となる。 By detachably attaching with an adjuster as shown in B of FIG. 6, it becomes possible to replace the IR light irradiation device 11 according to the application, and for example, it becomes possible to switch to different wavelength as an IR-SL light source. .
 <変形例1>
 以上のように、第1の実施の形態では、RGB-IR画素の配列として、2×2のマトリクス状に配置されたものを例に説明したが、RGB-IR画素の配列は、2×2のマトリクス状に配置されたものに限らない。例えば、RGB-IRではない、他の異なる画素配列でもよく、また、画素配列が3×3や4×4のマトリクス上に配置されたものであってもよい。
<Modification 1>
As described above, in the first embodiment, the arrangement of the RGB-IR pixels is described as an example arranged in a 2 × 2 matrix, but the arrangement of the RGB-IR pixels is 2 × 2 It is not limited to the one arranged in the form of matrix. For example, it may be another different pixel array other than RGB-IR, or the pixel array may be arranged on a 3 × 3 or 4 × 4 matrix.
 第1の実施の形態では、IR-SL光源のパターン形状として、IR光の各ドットが所定のパターンで配列されて構成されるドットパターンを例に説明したが、IR-SL光源のパターン形状は、ドットパターンに限らず、画素の投影領域に対応する形状であれば、複数画素が跨るように光があたるように形成されるパターンなど、他の形状でもよい。 In the first embodiment, as the pattern shape of the IR-SL light source, a dot pattern configured by arranging each dot of IR light in a predetermined pattern has been described as an example, but the pattern shape of the IR-SL light source is The shape is not limited to the dot pattern, and may be another shape such as a pattern formed so that light is applied so that a plurality of pixels straddle, as long as the shape corresponds to the projection area of the pixel.
 第1の実施の形態では、ドットパターンの各ドットが、IR画素の投影領域に投影される場合を例に説明したが、IR画素だけに限らず、ドットパターンの各ドットがR,G,B画素のうちの特定の画素領域に投影されてもよい。例えば、IR画素とG画素にドットパターンの各ドットを投影するようにすると、IR信号を受光する画素が増えるため、IR画像の解像度を上げることができる。その際、G画素に混入するIR信号は、マトリクス演算にて減算処理される。 In the first embodiment, the case where each dot of the dot pattern is projected on the projection area of the IR pixel is described as an example, but not limited to only the IR pixel, each dot of the dot pattern is R, G, B It may be projected onto a specific pixel area of the pixels. For example, when each dot of the dot pattern is projected on the IR pixel and the G pixel, the number of pixels that receive the IR signal increases, so the resolution of the IR image can be increased. At that time, the IR signal mixed in the G pixel is subjected to subtraction processing by matrix operation.
 第1の実施の形態では、1つのIR-SL光源を用いた場合について説明したが、例えば、照射光の強度を上げるために、1つの画素に複数光源からの光が照射されるようにしてもよい。 In the first embodiment, the case of using one IR-SL light source has been described, but, for example, in order to increase the intensity of irradiation light, light from a plurality of light sources is irradiated to one pixel. It is also good.
< 第2の実施の形態 >
 <カメラシステムの構成例>
 図7は、本技術を適用したカメラシステムの第2の構成例を示す図である。
Second Embodiment
<Configuration Example of Camera System>
FIG. 7 is a diagram illustrating a second configuration example of a camera system to which the present technology is applied.
 図7のカメラシステム51は、SL光源としての光照射装置61と、撮像装置62で構成される。図7には、被写体を想定した平面に、画素の投影領域が仮想的に破線で示されている。投影領域は、撮像装置62の画素配列に対応する領域からなる。各投影領域に示される文字は、各投影領域に対応する画素が、R,G,B画素またはIR画素であることを示すものである。 The camera system 51 of FIG. 7 includes a light irradiation device 61 as an SL light source and an imaging device 62. In FIG. 7, projection areas of pixels are virtually shown by broken lines on a plane on which a subject is assumed. The projection area is an area corresponding to the pixel array of the imaging device 62. The characters shown in each projection area indicate that the pixels corresponding to each projection area are R, G, B pixels or IR pixels.
 光照射装置61が、投影領域に投影されるドットパターンを形成するSL光源として、R,G,B,IR光の4つの光源を有している点と、撮像装置62が、イメージセンサとして、オンチップのカラーフィルタが搭載されていない白黒(W/B)のセンサを用いる点は、図1のカメラシステム1と異なっている。それ以外の共通する部分については、図1のカメラシステム1と同様の構成であるため、繰り返しになるので、共通する部分についての説明は省略される。 The point that the light irradiation device 61 has four light sources of R, G, B, and IR light as SL light sources that form dot patterns projected onto the projection area, and the imaging device 62 as an image sensor, The point which uses the monochrome (W / B) sensor in which the on-chip color filter is not mounted differs from the camera system 1 of FIG. The other common parts have the same configuration as that of the camera system 1 of FIG. 1 and are repeated, so the description of the common parts will be omitted.
 光照射装置61が有する4つの光源は、R光を照射するR光源、G光を照射するG光源、B光を照射するB光源、IR光を照射するIR光源である。 The four light sources included in the light irradiation device 61 are an R light source that emits R light, a G light source that emits G light, a B light source that emits B light, and an IR light source that emits IR light.
 R光源は、R画素に対応する投影領域のみを照射するようなドットパターンのR光を照射する。G光源は、G画素に対応する投影領域のみを照射するようなドットパターンのG光を照射する。B光源は、B画素に対応する投影領域のみを照射するようなドットパターンのB光を照射する。IR光源は、IR画素に対応する投影領域のみを照射するようなドットパターンのIR光を照射する。 The R light source emits R light of a dot pattern that irradiates only the projection area corresponding to the R pixel. The G light source emits G light of a dot pattern that irradiates only the projection area corresponding to the G pixel. The B light source emits B light of a dot pattern that irradiates only the projection area corresponding to the B pixel. The IR light source emits IR light of a dot pattern that irradiates only the projection area corresponding to the IR pixel.
 投影領域には、4種類のハッチングの丸で示されるように、光照射装置61の4つの光源からの光として、ドットパターンの各ドットが同時に投影される。 In the projection area, each dot of the dot pattern is simultaneously projected as light from the four light sources of the light irradiation device 61, as indicated by four types of hatched circles.
 撮像装置62は、光照射装置61の4つの光源から、R,G,B,IRの各画素の投影領域のみを照射するようなドットパターンの光が照射されている状態で被写体を撮像する。これにより、上述した第1の実施の形態と同様に、R画像、G画像、B画像が合成された可視画像とIR画像の取得が可能となる。 The imaging device 62 captures an image of the subject in a state in which light of a dot pattern is emitted from the four light sources of the light irradiation device 61 so as to irradiate only the projection area of each pixel of R, G, B, and IR. Thus, as in the first embodiment described above, it is possible to obtain a visible image and an IR image in which the R image, the G image, and the B image are combined.
 <撮像装置の構成例>
 図8は、撮像装置の構成例を示すブロック図である。カメラシステム51における被写体の撮像は、SL光源としての光照射装置61からのドットパターンの光が定常的に照射された状態で、撮像装置62により行われる。
<Configuration Example of Imaging Device>
FIG. 8 is a block diagram showing a configuration example of an imaging device. The imaging of the subject in the camera system 51 is performed by the imaging device 62 in a state in which the light of the dot pattern from the light irradiation device 61 as the SL light source is steadily irradiated.
 撮像装置62は、レンズなどの光学系71、イメージセンサ72、および画像生成部73より構成される。 The imaging device 62 includes an optical system 71 such as a lens, an image sensor 72, and an image generation unit 73.
 被写体からの光は、光学系71を介して、イメージセンサ72に入射される。イメージセンサ72は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素の信号を生成する。 Light from the subject is incident on the image sensor 72 via the optical system 71. The image sensor 72 photoelectrically converts incident light, and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
 イメージセンサ72は、オンチップのカラーフィルタが搭載されていない白黒(W/B)のセンサである。イメージセンサ72は、R,G,B画素およびIR画素が2×2のマトリクス状に配置された画素アレイ部を有している。 The image sensor 72 is a black and white (W / B) sensor on which the on-chip color filter is not mounted. The image sensor 72 has a pixel array unit in which R, G, B pixels and IR pixels are arranged in a 2 × 2 matrix.
 画像生成部73は、イメージセンサ72の画素アレイ部を構成する複数の画素のうち、R,G,B画素からのR,G,B信号を用いてそれぞれR,G,B画像を生成し、生成したR,G,B画像を、図示せぬ後段の信号処理部に出力する。画像生成部73は、イメージセンサ72の画素アレイ部を構成する複数の画素のうち、IR画素からのIR信号を用いてIR画像を生成し、生成したIR画像を、図示せぬ後段の信号処理部に出力する。 The image generation unit 73 generates R, G, and B images using R, G, and B signals from R, G, and B pixels among a plurality of pixels forming the pixel array unit of the image sensor 72, The generated R, G, and B images are output to a signal processing unit in a subsequent stage (not shown). The image generation unit 73 generates an IR image using an IR signal from an IR pixel among a plurality of pixels constituting the pixel array unit of the image sensor 72, and generates the generated IR image in a subsequent signal processing (not shown). Output to the unit.
 画像生成部73は、信号分離部81、補間処理部82-1乃至補間処理部82-4、高画質化信号処理部83-1乃至高画質化信号処理部83-4を含むように構成される。 The image generation unit 73 is configured to include a signal separation unit 81, an interpolation processing unit 82-1 to an interpolation processing unit 82-4, and an image quality improvement signal processing unit 83-1 to an image quality improvement signal processing unit 83-4. Ru.
 信号分離部81は、イメージセンサ72の信号から、R信号を分離し、補間処理部82-1に出力する。信号分離部81は、イメージセンサ72の信号から、G信号を分離し、補間処理部82-2に出力する。信号分離部81は、イメージセンサ72の信号から、B信号を分離し、補間処理部82-3に出力する。信号分離部81は、イメージセンサ72の信号から、IR信号を分離し、補間処理部82-4に出力する。 The signal separation unit 81 separates the R signal from the signal of the image sensor 72, and outputs the R signal to the interpolation processing unit 82-1. The signal separation unit 81 separates the G signal from the signal of the image sensor 72, and outputs the G signal to the interpolation processing unit 82-2. The signal separation unit 81 separates the B signal from the signal of the image sensor 72, and outputs the B signal to the interpolation processing unit 82-3. The signal separation unit 81 separates the IR signal from the signal of the image sensor 72, and outputs the IR signal to the interpolation processing unit 82-4.
 補間処理部82-1乃至補間処理部82-3は、R,G,B画素の配列に応じて、欠落した色の画素信号を生成するデモザイク処理などの補間処理を行うことでR画像,G画像,B画像を生成し、それぞれ、高画質化信号処理部83-1乃至高画質化信号処理部83-3に供給する。 The interpolation processing unit 82-1 to the interpolation processing unit 82-3 perform interpolation processing such as demosaicing processing for generating pixel signals of missing colors according to the arrangement of R, G, and B pixels, thereby obtaining R image and G The image and the B image are generated and supplied to the image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3, respectively.
 補間処理部82-4は、IR信号の補間処理を行うことで、補間後のIR画像を生成し、高画質化信号処理部83-4に出力する。 The interpolation processing unit 82-4 performs interpolation processing of the IR signal to generate an IR image after interpolation, and outputs the IR image to the image quality improvement signal processing unit 83-4.
 高画質化信号処理部83-1乃至高画質化信号処理部83-3は、R画像,G画像,B画像の高画質化処理を行い、高画質化処理後のR画像,G画像,B画像をそれぞれ出力する。 The image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3 perform the image quality improvement processing of the R image, the G image, and the B image, and the R image, the G image, and the B after the image quality improvement processing. Output each image.
 高画質化信号処理部83-4は、IR画像の高画質化処理を行い、高画質化処理後のIR画像を出力する。 The high image quality formation signal processing unit 83-4 performs high image quality formation processing of the IR image, and outputs the IR image after the high quality processing.
 <SL光源の配置例>
 図9は、SL光源の配置構成例を示す外観図である。
<Example of placement of SL light source>
FIG. 9 is an external view showing an arrangement configuration example of the SL light source.
 図9のAは、撮像装置62に、SL光源としての、R光を照射する光照射部61A-1、G光を照射する光照射部61A-2、B光を照射する光照射部61A-3、IR光を照射する光照射部61A-4を内蔵させることで、撮像の構成と光の照射の構成とを同一筐体に一体化した例を示す。この場合、光照射部61A-1乃至光照射部61A-4は、撮像装置62のレンズに代表される光学系71の近傍に配置される。 In FIG. 9A, a light irradiator 61A-1 that emits R light, a light irradiator 61A-2 that emits G light, and a light irradiator 61A that emits B light to the imaging device 62 as an SL light source. 3 shows an example in which the configuration of imaging and the configuration of irradiation of light are integrated in the same casing by incorporating the light irradiation unit 61A-4 for irradiating IR light. In this case, the light emitting units 61A-1 to 61A-4 are disposed in the vicinity of the optical system 71 represented by the lens of the imaging device 62.
 図9のAのように一体化することで、光学系71の後方に設けられるイメージセンサ72の位置と光照射部61A-1乃至光照射部61A-4の位置をより近くに配置できるため、より近距離においてドットパターンと画素投影領域を一致させることが可能となる。 By integrating as shown in A of FIG. 9, the position of the image sensor 72 provided behind the optical system 71 and the positions of the light emitting units 61A-1 to 61A-4 can be arranged closer to each other. Further, it is possible to make the dot pattern and the pixel projection area coincide with each other at a short distance.
 図9のBは、撮像装置62とSL光源としての光照射装置61がそれぞれ独立して構成される例を示す。光照射装置61は、R光を照射する光照射部61A-1、G光を照射する光照射部61A-2、B光を照射する光照射部61A-3、IR光を照射する光照射部61A-4を有する。 B of FIG. 9 illustrates an example in which the imaging device 62 and the light irradiation device 61 as an SL light source are independently configured. The light irradiation device 61 includes a light irradiation unit 61A-1 for irradiating R light, a light irradiation unit 61A-2 for irradiating G light, a light irradiation unit 61A-3 for irradiating B light, and a light irradiation unit for irradiating IR light 61A-4.
 光照射装置61は、例えば、撮像装置62の筐体の上にアジャスターなどで着脱可能に取り付けられる。 The light irradiation device 61 is, for example, detachably mounted on the housing of the imaging device 62 with an adjuster or the like.
 図9のBのようにアジャスターで着脱可能に取り付けることで、光照射装置61を用途に応じて取り替えることが可能となり、例えば、SL光源として異なる波長のものへの切り替えが可能となる。 By detachably attaching the adjuster as shown in B of FIG. 9, the light irradiation device 61 can be replaced according to the application, and, for example, switching to an SL light source of different wavelength is possible.
 <カメラシステムの動作>
 次に、図10のフローチャートを参照して、図7のカメラシステムの撮像処理を説明する。
<Operation of Camera System>
Next, the imaging process of the camera system of FIG. 7 will be described with reference to the flowchart of FIG.
 図10のステップS51において、イメージセンサ72は、光照射装置61の各光照射部61A-1乃至光照射部61A-4からのドットパターンの光が照射されている状態で、被写体を撮像する。イメージセンサ72は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素の信号を生成する。 In step S51 of FIG. 10, the image sensor 72 captures an image of the subject in a state where the light of the dot pattern from each of the light emitting units 61A-1 to 61A-4 of the light emitting device 61 is irradiated. The image sensor 72 photoelectrically converts incident light, and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
 ステップS52において、信号分離部81は、イメージセンサ72からの信号から、R信号、G信号、B信号、IR信号を分離する。R信号、G信号、B信号は、補間処理部82-1乃至補間処理部82-3にそれぞれ出力される。IR信号は、補間処理部82-4に出力される。 In step S52, the signal separation unit 81 separates the R signal, the G signal, the B signal, and the IR signal from the signal from the image sensor 72. The R signal, the G signal, and the B signal are respectively output to the interpolation processing unit 82-1 to the interpolation processing unit 82-3. The IR signal is output to the interpolation processing unit 82-4.
 ステップS53において、補間処理部82-1乃至補間処理部82-3は、R信号、G信号、B信号の補間処理を行うことで、補間後のR,G,B画像をそれぞれ生成する。補間処理部82-4は、IR信号の補間処理を行うことで、補間後のIR画像を生成する。補間後のR,G,B画像は、高画質化信号処理部83-1乃至高画質化信号処理部83-3にそれぞれ出力される。補間後のIR画像は、高画質化信号処理部83-4に出力される。 In step S53, the interpolation processing unit 82-1 to the interpolation processing unit 82-3 respectively perform interpolation processing of the R signal, the G signal, and the B signal to generate R, G, B images after interpolation. The interpolation processing unit 82-4 performs interpolation processing of the IR signal to generate an IR image after interpolation. The R, G, B images after interpolation are output to the image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3, respectively. The IR image after interpolation is output to the image quality improvement signal processing unit 83-4.
 ステップS54において、高画質化信号処理部83-1乃至高画質化信号処理部83-3は、R,G,B画像の高画質化処理をそれぞれ行う。高画質化信号処理部83-4は、IR信号の画像の高画質化処理を行う。高画質化処理後のR,G,B画像とIR画像は、後段の信号処理部に出力される。 In step S54, the image quality improvement signal processing unit 83-1 to the image quality improvement signal processing unit 83-3 perform the image quality improvement processing of the R, G, and B images. The image quality improvement signal processing unit 83-4 performs image quality improvement processing of the image of the IR signal. The R, G, B images and the IR image after the image quality improvement processing are output to the signal processing unit in the subsequent stage.
 <画素配列の例>
 図11は、画素配列の例を示す図である。
<Example of pixel array>
FIG. 11 is a diagram illustrating an example of the pixel array.
 図11のAには、図7と同様の画素配列の例が示されている。図11のAは、ドットパターンを形成するSL光源として、R,G,B,IRの4つの光源を用い、2×2の画素の各投影領域に対応させて、それぞれドットパターンの光を照射するようにした例である。R,G,B,IRの4つのSL光源の組み合わせと対応するドットパターンを用いることにより、第1の実施の形態と同様に、可視画像とIR画像の取得が可能となる。 An example of a pixel arrangement similar to that of FIG. 7 is shown in A of FIG. A in FIG. 11 uses four light sources of R, G, B, and IR as SL light sources for forming dot patterns, and emits light of dot patterns corresponding to each projection area of 2 × 2 pixels. This is an example in which the By using a combination of four SL light sources of R, G, B, and IR and a corresponding dot pattern, it is possible to obtain a visible image and an IR image as in the first embodiment.
 図11のBは、図11のAに示されたSL光源の組み合わせのIRのパターンを、Gパターンに置き換えた例である。R,G,B,Gの4つのSL光源の組み合わせと対応するドットパターンを用いることにより、ベイヤパターンのフィルタを用いたセンサと同様に、高解像度のカラー画像を取得することが可能となる。 B of FIG. 11 is an example in which the IR pattern of the combination of the SL light sources shown in A of FIG. 11 is replaced with a G pattern. By using a combination of four SL light sources of R, G, B, and G and a corresponding dot pattern, it becomes possible to obtain a high-resolution color image as with a sensor using a Bayer pattern filter.
 図11のCは、R,G,B,IRの波長帯域以外の波長帯域の光源を複数(図11のCの場合、9種類)用いて、太線に囲まれた3×3の広範囲の領域に展開した例である。このような9つのSL光源の組み合わせと対応するドットパターンを用いることにより、マルチスペクトル分光、解析に必要な被写体の分光特性を取得することができる。なお、4×4の広範囲の領域に展開してもよい。 C in FIG. 11 uses a plurality of light sources of wavelength bands other than R, G, B, and IR wavelength bands (nine types in the case of C in FIG. 11), and a wide area of 3 × 3 surrounded by thick lines. It is an example developed to By using such a combination of nine SL light sources and a corresponding dot pattern, it is possible to acquire multispectral spectroscopy and spectral characteristics of an object necessary for analysis. In addition, it may be developed in a wide area of 4 × 4.
 以上のように、SL光源の組み合わせを変えることにより、同一のカメラシステムを用途に応じて切り替えることが可能である。被写体の分光解析などの応用では、被写体の材質により、取得すべき波長帯域が異なるため、本技術のカメラシステムのようなフレキシブルに解析用のプローブ波長を変更できるカメラシステムは有用である。 As described above, it is possible to switch the same camera system depending on the application by changing the combination of the SL light sources. In applications such as spectral analysis of a subject, the wavelength band to be acquired varies depending on the material of the subject, so a camera system that can flexibly change the probe wavelength for analysis like the camera system of the present technology is useful.
 <変形例2>
 以上のように、第2の実施の形態では、SL光源のパターン形状として、ドットパターンを例に説明したが、SL光源のパターン形状は、ドットパターンに限らず、画素の投影領域に対応する形状であれば、複数画素が跨るように光があたるように形成されるパターンなど、他の形状でもよい。
<Modification 2>
As described above, in the second embodiment, the dot pattern is described as an example of the pattern shape of the SL light source, but the pattern shape of the SL light source is not limited to the dot pattern, and a shape corresponding to the projection area of the pixel If it is, other shapes, such as a pattern formed so that light may be irradiated so that a plurality of pixels straddle may be sufficient.
 第2の実施の形態では、SL光源の配置として、1つの光源のみの場合を説明してきたが、例えば、照射光の強度を上げるために、同一の画素に対応したドットパターンを照射するための複数のSL光源が用いられるようにしてもよい。 In the second embodiment, the case of only one light source has been described as the arrangement of the SL light source, but for example, in order to irradiate the dot pattern corresponding to the same pixel to increase the intensity of the irradiation light. Multiple SL light sources may be used.
 第2の実施の形態では、各画素の投影領域に1種ずつのSL光源のパターン光のみが投影されているが、同一の画素投影領域に波長帯域の異なる複数種のSL光源からのパターン光が投影されてもよい。これらは、分光解析する用途により選択される。 In the second embodiment, only the pattern light of one type of SL light source is projected on the projection area of each pixel, but the pattern light from plural types of SL light sources having different wavelength bands on the same pixel projection area May be projected. These are selected depending on the application of spectral analysis.
 第2の実施の形態の応用例としては、第2の実施の形態のカメラシステムは、バイオやメディカルなどの技術分野における分光解析などに用いることができる。通常のカラー画像の撮像、マルチスペクトル分光画像の取得、特定の蛍光発光などの観察が、第2の実施の形態のカメラシステムを用いることで可能となる。 As an application example of the second embodiment, the camera system of the second embodiment can be used for spectral analysis and the like in technical fields such as bio and medical. The imaging of a normal color image, the acquisition of a multispectral spectral image, the observation of a specific fluorescence emission and the like can be performed by using the camera system of the second embodiment.
 さらに、第2の実施の形態のカメラシステムを、バイオテクノロジーやメディカルの技術分野に適用することにより、励起光による蛍光反射を観察する蛍光観察と通常のカラー画像撮像とを同時に行うことができる。 Furthermore, by applying the camera system according to the second embodiment to the technical fields of biotechnology and medical, it is possible to simultaneously perform fluorescence observation for observing fluorescence reflection by excitation light and normal color imaging.
 以上のように、本技術においては、ストラクチャードライト光源からの所定のパターンの光が、被写体を撮像する撮像部の特定の画素の投影領域に照射されている状態で撮像が行われることによって得られた画素信号に基づいて被写体の画像を生成するようにした。 As described above, in the present technology, imaging is performed in a state where light of a predetermined pattern from a structured light source is emitted to a projection area of a specific pixel of an imaging unit that captures an object. The image of the subject is generated based on the pixel signal.
 本技術によれば、特性の異なる画像同士、例えば、可視画像とIR画像を、クロストークを起こすことなく、分離、同時取得できるカメラシステムが実現可能である。 According to the present technology, it is possible to realize a camera system capable of separating and simultaneously acquiring images having different characteristics, for example, a visible image and an IR image without causing crosstalk.
 本技術によれば、1つのセンサで、オンチップカラーフィルタを配置した場合と同様な分光特性を有する撮像が可能である。 According to the present technology, it is possible to perform imaging having spectral characteristics similar to the case where an on-chip color filter is disposed by one sensor.
 ここで、従来、分光解析の分野では、マルチ分光スペクトルカメラが提案されていた。マルチ分光スペクトルカメラは、さまざまな波長帯域に対応する多くのカラーフィルタをセンサの各画素に配置し、各画素信号を取得することができる。マルチ分光スペクトルカメラを用いることで、被写体の分光反射特性を解析したり、被写体の材質同定、分析を行っていた。 Here, conventionally, in the field of spectral analysis, a multi-spectral camera has been proposed. In a multi-spectral camera, many color filters corresponding to various wavelength bands can be arranged at each pixel of the sensor, and each pixel signal can be acquired. By using a multi-spectral camera, the spectral reflection characteristics of the subject are analyzed, or the material identification and analysis of the subject are performed.
 ただし、マルチ分光スペクトルカメラは、センサ上に各種のカラーフィルタを形成する必要があるため、製造工程が煩雑になり、センサのコストが高くなっていた。また、多くの波長帯域のデータを取得しようとすると、2次元状に多種のカラーフィルタを展開する必要があり、分光分析結果の空間分解能を高くすることが困難であった。 However, since it is necessary to form various color filters on the sensor in the multi-spectral spectrum camera, the manufacturing process is complicated and the cost of the sensor is increased. In addition, in order to acquire data in many wavelength bands, it is necessary to expand various color filters in a two-dimensional manner, and it has been difficult to increase the spatial resolution of spectral analysis results.
 これに対して、本技術によれば、オンチップカラーフィルタを必要とすることなく、1つのセンサで、オンチップカラーフィルタを配置した場合と同様な分光特性を有する撮像が可能である。 On the other hand, according to the present technology, it is possible to perform imaging having spectral characteristics similar to those in the case where the on-chip color filter is disposed by one sensor without requiring the on-chip color filter.
 これにより、分光分析などにおいて、照射光源を切り替えることにより、1つのカメラシステムで、さまざまな用途に対応することが可能である。 Thereby, in spectral analysis etc., it is possible to correspond to various uses with one camera system by switching an irradiation light source.
< 第3の実施の形態 >
 <カメラシステムの構成例>
 図12は、本技術を適用したカメラシステムの第3の構成例を示す図である。
Third Embodiment
<Configuration Example of Camera System>
FIG. 12 is a diagram illustrating a third configuration example of a camera system to which the present technology is applied.
 図12のカメラシステム101は、IR-SL光源としてのIR光照射装置111と、撮像装置112で構成される。図12には、被写体を想定した平面に、画素の投影領域が仮想的に破線で示されている。投影領域は、撮像装置112の画素配列に対応する領域からなる。各投影領域に示される文字R,G,B,Tは、各投影領域に対応する画素が、それぞれ、R,G,B画素またはTOF(Time Of Flight)用画素であることを示すものである。 The camera system 101 of FIG. 12 includes an IR light irradiation apparatus 111 as an IR-SL light source, and an imaging apparatus 112. In FIG. 12, projection areas of pixels are virtually shown by broken lines on a plane on which an object is assumed. The projection area is an area corresponding to the pixel array of the imaging device 112. Characters R, G, B and T shown in each projection area indicate that the pixels corresponding to each projection area are R, G and B pixels or pixels for TOF (Time Of Flight), respectively. .
 IR光照射装置111は、IR光を照射する装置であり、撮像装置112に近接して固定して配置される。IR光照射装置111は、TOF用画素に対応する投影領域のみを照射するようなドットパターンのIR光を点滅照射する。投影領域のうち、TOF用画素の投影領域には、色付きの丸で示されるように、IR光照射装置111からのIR光として、ドットパターンの各ドットが投影される。 The IR light irradiation device 111 is a device that irradiates IR light, and is fixedly disposed in the vicinity of the imaging device 112. The IR light irradiation apparatus 111 blinks and irradiates IR light of a dot pattern which irradiates only the projection area corresponding to the TOF pixel. Of the projection area, each dot of the dot pattern is projected as IR light from the IR light irradiator 111, as indicated by a colored circle, on the projection area of the TOF pixel.
 撮像装置112は、R,G,B画素およびTOF用画素が配置されたイメージセンサを備えている。イメージセンサのシャッタ方式は、ローリングシャッタ方式であってもよいし、グローバルシャッタ方式であってもよい。 The imaging device 112 includes an image sensor in which R, G, B pixels and TOF pixels are arranged. The shutter system of the image sensor may be a rolling shutter system or a global shutter system.
 撮像装置112は、TOF用画素に対応する投影領域のみを照射するようなドットパターンのIR光がIR光照射装置111により照射されている状態で被写体を撮像する。R,G,B画素においては、所定の光源からの可視光が受光されている。これにより、撮像装置112では、R,G,B画素からの信号に対応する可視画像が生成され、TOF用画素からの信号を用いて距離情報が得られる。 The imaging device 112 images a subject in a state where IR light of a dot pattern that irradiates only the projection area corresponding to the TOF pixel is irradiated by the IR light irradiation device 111. In R, G and B pixels, visible light from a predetermined light source is received. Thereby, in the imaging device 112, a visible image corresponding to the signal from the R, G, B pixels is generated, and the distance information is obtained using the signal from the TOF pixel.
 なお、カメラシステム101においても、IR光照射装置111は、図6を参照して上述したように、撮像装置112と一体型で構成されていてもよいし、撮像装置112に着脱可能に構成されていてもよい。 Also in the camera system 101, as described above with reference to FIG. 6, the IR light irradiation device 111 may be configured integrally with the imaging device 112, or is configured to be detachable from the imaging device 112. It may be
 <ストラクチャードライト光源の原理>
 図13は、ストラクチャードライト光源の原理を説明する図である。
<Principle of structured light source>
FIG. 13 is a diagram for explaining the principle of a structured light source.
 IR光照射装置111は、レーザ光源121の前面に回折格子122を設けた構成を有する。回折格子122を適切に設計することにより、マトリクス状の任意の位置(例えば、図12のTOF用画素の投影領域)にドットパターンのIR光を照射することが可能となる。 The IR light irradiation apparatus 111 has a configuration in which the diffraction grating 122 is provided in front of the laser light source 121. By appropriately designing the diffraction grating 122, it becomes possible to irradiate IR light of a dot pattern at an arbitrary position (for example, a projection area of the TOF pixel in FIG. 12) in a matrix.
 <IR光照射装置および撮像装置の構成例>
 図14は、IR光照射装置および撮像装置の構成例を示すブロック図である。
<Configuration Example of IR Light Irradiation Device and Imaging Device>
FIG. 14 is a block diagram showing a configuration example of an IR light irradiation apparatus and an imaging apparatus.
 IR光照射装置111は、レーザ光源121、回折格子122、およびIR-LEDドライバ131から構成される。 The IR light irradiation apparatus 111 includes a laser light source 121, a diffraction grating 122, and an IR-LED driver 131.
 IR-LEDドライバ131は、撮像装置112から供給されるLEDのON/OFF信号およびLED強度調整信号に応じて、レーザ光源121の点滅照射動作を制御する。LEDのON/OFF信号は、LEDのONとOFFを示す信号である。LED強度調整信号は、LEDの強度を調整するための信号である。 The IR-LED driver 131 controls the flickering irradiation operation of the laser light source 121 in accordance with the LED ON / OFF signal and the LED intensity adjustment signal supplied from the imaging device 112. The ON / OFF signal of the LED is a signal indicating ON and OFF of the LED. The LED intensity adjustment signal is a signal for adjusting the intensity of the LED.
 撮像装置112は、レンズなどの光学系141、IRバンドパスフィルタ142、イメージセンサ143、およびカメラDSP144から構成される。 The imaging device 112 includes an optical system 141 such as a lens, an IR band pass filter 142, an image sensor 143, and a camera DSP 144.
 被写体からの光は、光学系141およびIRバンドパスフィルタ142を介して、イメージセンサ143に入射される。イメージセンサ143は、R,G,B画素およびTOF用画素が配置された画素アレイ部を有している。イメージセンサ143は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素の信号を生成する。 Light from a subject is incident on the image sensor 143 via the optical system 141 and the IR band pass filter 142. The image sensor 143 has a pixel array unit in which R, G, B pixels and TOF pixels are arranged. The image sensor 143 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
 カメラDSP144は、イメージセンサ143の画素アレイ部を構成する複数の画素のうち、R,G,B画素からのR,G,B信号を用いてカラー画像を生成し、生成したカラー画像を、図示せぬ後段の信号処理部に出力する。また、カメラDSP144は、イメージセンサ143の画素アレイ部を構成する複数の画素のうち、TOF用画素からのTOF用信号を用いて距離を算出する。カメラDSP144は、算出した距離を示す距離情報からAF(オートフォーカス)を制御するためのAF制御信号を生成する。生成されたAF制御信号は、光学系141の駆動に用いられる。 The camera DSP 144 generates a color image by using R, G, B signals from R, G, B pixels among the plurality of pixels constituting the pixel array unit of the image sensor 143, and generates the generated color image. It outputs to the signal processing part of the latter part which is not shown. Further, the camera DSP 144 calculates the distance using the TOF signal from the TOF pixel among the plurality of pixels constituting the pixel array unit of the image sensor 143. The camera DSP 144 generates an AF control signal for controlling AF (Auto Focus) from the distance information indicating the calculated distance. The generated AF control signal is used to drive the optical system 141.
 カメラDSP144は、LEDのON/OFF信号およびLED強度調整信号を生成し、生成したLEDのON/OFF信号およびLED強度調整信号を、IR-LEDドライバ131に出力する。 The camera DSP 144 generates the LED ON / OFF signal and the LED intensity adjustment signal, and outputs the generated LED ON / OFF signal and the LED intensity adjustment signal to the IR-LED driver 131.
 <画素配列の例>
 図15は、イメージセンサの画素配列の例を示す図である。
<Example of pixel array>
FIG. 15 is a diagram showing an example of the pixel array of the image sensor.
 イメージセンサ143の画素アレイ部は、図15に示されるように、ベイヤ配列の水平方向および垂直方向において4画素毎にG画素がTOF用画素に置き換えられた画素配列で構成される。 As shown in FIG. 15, the pixel array unit of the image sensor 143 is configured by a pixel array in which G pixels are replaced with TOF pixels every four pixels in the horizontal direction and the vertical direction of the Bayer array.
 <撮像装置の画角とIR-SL光源の照射角の関係>
 図16は、撮像装置の画角とIR-SL光源の照射角の関係を説明する図である。
<Relationship between angle of view of imaging device and irradiation angle of IR-SL light source>
FIG. 16 is a diagram for explaining the relationship between the angle of view of the imaging device and the irradiation angle of the IR-SL light source.
 IR光照射装置111の光軸111Cを中心としたSL照射角内の各実線は、SL照射領域の境界を示し、また、撮像装置112の光軸112Cを中心とした画角内の各破線は、画素領域の境界を示す。SL照射領域は、画素領域にIR-SL光源からドットが照射される領域である。カメラシステム101において、IR光照射装置111のSL照射角と撮像装置112の画角はおよそ一致するように設定されている。 The solid lines in the SL irradiation angle centering on the optical axis 111C of the IR light irradiation device 111 indicate the boundaries of the SL irradiation area, and the broken lines in the angle of view centering on the optical axis 112C of the imaging device 112 , Indicates the boundary of the pixel area. The SL irradiation area is an area where dots are irradiated from the IR-SL light source to the pixel area. In the camera system 101, the SL irradiation angle of the IR light irradiation device 111 and the angle of view of the imaging device 112 are set so as to approximately match.
 図16の左側の実線L1は、撮像装置112の投影領域を示している。双方向の矢印で示す範囲が、1画素の投影領域に相当する。画素投影領域の右側の一点鎖線L2は、図3を参照して上述した視差一致限界距離を示している。実線L1上と、一点鎖線L2上の黒の矩形は、ドットパターンの各ドットを表している。 The solid line L1 on the left side of FIG. 16 indicates the projection area of the imaging device 112. The range indicated by the bidirectional arrow corresponds to the projection area of one pixel. An alternate long and short dash line L2 on the right side of the pixel projection area indicates the parallax matching limit distance described above with reference to FIG. The black rectangles on the solid line L1 and on the dashed-dotted line L2 represent the dots of the dot pattern.
 図16のIR光照射装置111からのドットパターンのIR光は、撮像装置112の画素配列のうち、TOF用画素に相当する領域のみに照射される。その際、撮像装置112とIR光照射装置111を固定しておく。 The IR light of the dot pattern from the IR light irradiation device 111 of FIG. 16 is irradiated only to the region corresponding to the TOF pixel in the pixel array of the imaging device 112. At that time, the imaging device 112 and the IR light irradiation device 111 are fixed.
 これにより、IR光照射装置111と撮像装置112からみて、一点鎖線L2に示される視差一致限界距離より離れていれば、被写体がどの距離にあってもIR光照射装置111から照射されるドットパターンのIR光と撮像装置112の画素投影領域がずれることはない。よって、IR画素の投影境域とドットパターンのIR光は1:1に対応する。IR光の反射光は、R,G,Bの画素には到達せず、IR画素でのみ受光される。 As a result, as viewed from the IR light irradiator 111 and the imaging device 112, the dot pattern irradiated from the IR light irradiator 111 no matter what distance the subject is, provided that it is separated from the parallax coincidence limit distance indicated by the dashed dotted line L2. There is no deviation between the IR light of the pixel and the pixel projection area of the imaging device 112. Therefore, the projection area of the IR pixel and the IR light of the dot pattern correspond to 1: 1. Reflected light of IR light does not reach the R, G and B pixels, and is received only by the IR pixels.
 なお、視差一致限界距離については、図3の場合と同様であるため、その説明は省略される。 The disparity matching limit distance is the same as that in the case of FIG. 3, and thus the description thereof is omitted.
 図17は、ダイクロイックミラーを用いた場合の撮像装置の画角とIR-SL光源の照射角の関係を説明する図である。 FIG. 17 is a view for explaining the relationship between the angle of view of the imaging apparatus and the irradiation angle of the IR-SL light source when a dichroic mirror is used.
 ダイクロイックミラー151は、入射面に対して垂直方向の光を反射し、入射面に対して平行方向の光を透過するように形成されている。ダイクロイックミラー151は、撮像装置112の光学系141の手前に、ダイクロイックミラー151反射後の光軸の中心と、撮像装置112の光軸112Cの中心がほぼ一致するように配置される。 The dichroic mirror 151 is formed so as to reflect light in a direction perpendicular to the incident surface and transmit light in a direction parallel to the incident surface. The dichroic mirror 151 is disposed in front of the optical system 141 of the imaging device 112 so that the center of the optical axis after reflection of the dichroic mirror 151 and the center of the optical axis 112C of the imaging device 112 substantially coincide with each other.
 また、IR光照射装置111は、ダイクロイックミラー151の入射面に対して垂直方向の光を照射するように、撮像装置112の光軸112Cに対して垂直に配置される。 Further, the IR light irradiation device 111 is disposed perpendicularly to the optical axis 112 C of the imaging device 112 so as to emit light in the direction perpendicular to the incident surface of the dichroic mirror 151.
 このように配置することで、ダイクロイックミラー151反射後の光軸の中心と、撮像装置112の光軸112Cの中心とをほぼ一致させることができる。また、ダイクロイックミラー151により、IR光照射装置111から照射されるドットパターンのIR光は反射され、被写体からの光は透過されるので、およそ50%のIR光を撮像装置112で受光することができる。 By arranging in this manner, the center of the optical axis after reflection of the dichroic mirror 151 and the center of the optical axis 112C of the imaging device 112 can be made to substantially coincide. In addition, since the IR light of the dot pattern emitted from the IR light irradiation device 111 is reflected by the dichroic mirror 151 and the light from the subject is transmitted, approximately 50% of the IR light may be received by the imaging device 112. it can.
 これにより、ドットパターンと画素の投影領域の対応を、近距離含めて、ほぼ一致させることができる。 As a result, the correspondence between the dot pattern and the projection area of the pixel can be made to substantially coincide, including the short distance.
 なお、ダイクロイックミラー151の代わりに、ダイクロイックプリズムや偏向ビームスプリッターなどが配置されるようにしてもよい。他の実施の形態のカメラシステムにおいても、ダイクロイックミラー151が用いられるようにしてもよい。 Note that, instead of the dichroic mirror 151, a dichroic prism, a deflection beam splitter, or the like may be disposed. The dichroic mirror 151 may be used also in the camera system of the other embodiments.
 <イメージセンサの一部の断面例>
 図18は、イメージセンサにおける光の入射側の一部の構成例を示す断面図である。
<Example of cross section of part of image sensor>
FIG. 18 is a cross-sectional view showing an exemplary configuration of part of the light incident side of the image sensor.
 図18の例においては、イメージセンサ143における光の入射側の一部の構成として、受光画素161、絶縁層162、フィルタ層163、カラーフィルタ層164、およびオンチップレンズ165が示されている。 In the example of FIG. 18, the light receiving pixel 161, the insulating layer 162, the filter layer 163, the color filter layer 164, and the on-chip lens 165 are shown as a part of the configuration on the light incident side in the image sensor 143.
 受光画素161は、左から順に、B画素、G画素、R画素、TOF用画素で構成される。 The light receiving pixel 161 is configured of a B pixel, a G pixel, an R pixel, and a TOF pixel in order from the left.
 絶縁層162は、フィルタ層163を透過した光を受光画素161まで通過させる。 The insulating layer 162 transmits the light transmitted through the filter layer 163 to the light receiving pixel 161.
 フィルタ層163は、B画素、G画素、R画素上に配置されるIR遮断フィルタおよびTOF用画素上に配置されるブルーフィルタから構成される。IR遮断フィルタは、IR光の波長域(例えば、850nm前後)の光を遮断する。ブルーフィルタは、カラーフィルタ層164のレッドフィルタと重ねて配置されることで、IR光のみを透過させる。 The filter layer 163 includes an IR blocking filter disposed on the B pixel, the G pixel, the R pixel, and a blue filter disposed on the TOF pixel. The IR blocking filter blocks light in a wavelength range of IR light (for example, around 850 nm). The blue filter is disposed to overlap with the red filter of the color filter layer 164 to transmit only IR light.
 カラーフィルタ層164は、B画素上に配置されるブルーフィルタ、G画素上に配置されるグリーンフィルタ、R画素およびTOF用画素上に配置されるレッドフィルタから構成される。ブルーフィルタは、Gの波長域の光とRの波長域の光を遮断し、Bの波長域の光を透過させる。グリーンフィルタは、Bの波長域の光とRの波長域の光を遮断し、Gの波長域の光を透過させる。レッドフィルタは、Gの波長域の光とBの波長域の光を遮断し、Rの波長域の光を透過させる。 The color filter layer 164 includes a blue filter disposed on the B pixel, a green filter disposed on the G pixel, and a red filter disposed on the R pixel and the TOF pixel. The blue filter blocks light in the G wavelength range and light in the R wavelength range and transmits light in the B wavelength range. The green filter blocks light in the B wavelength range and light in the R wavelength range and transmits light in the G wavelength range. The red filter blocks light in the G wavelength band and light in the B wavelength band and transmits light in the R wavelength band.
 オンチップレンズ165は、受光画素161の各画素上に配置されるレンズで構成される。 The on-chip lens 165 is configured of a lens disposed on each pixel of the light receiving pixel 161.
 また、光学系141とイメージセンサ143の間には、IRバンドパスフィルタ142が配置されている。IRバンドパスフィルタ142は、可視領域とIR光の波長域の部分に透過性を有するバンドパスフィルタである。 In addition, an IR band pass filter 142 is disposed between the optical system 141 and the image sensor 143. The IR band pass filter 142 is a band pass filter having transparency in the visible region and in the wavelength region of IR light.
 以上の構成により、B画素には、Bの波長域の光が入射され、G画素には、Gの波長域の光が入射され、R画素には、Rの波長域の光が入射され、TOF用画素には、IR光の波長域の光が入射される。 With the above configuration, light in the wavelength range of B is incident on the B pixel, light in the wavelength range of G is incident on the G pixel, and light in the wavelength range of R is incident on the R pixel, Light in a wavelength range of IR light is incident on the TOF pixel.
 ただし、実際には、IR遮断フィルタを用いても、B画素、G画素、R画素には、IR光の透過残光が入射されてしまう。それは、IR遮断フィルタが、次のような分光特性を有しているためである。 However, in practice, even if an IR blocking filter is used, transmission afterglow of IR light is incident on the B pixel, the G pixel, and the R pixel. That is because the IR blocking filter has the following spectral characteristics.
 <フィルタ分光特性>
 図19は、IRバンドパスフィルタとIR遮断フィルタの分光特性を示す図である。
<Filter spectral characteristics>
FIG. 19 is a diagram showing spectral characteristics of the IR band pass filter and the IR blocking filter.
 IRバンドパスフィルタ142は、400nm乃至680nmおよび830nm乃至870nmの波長域の光を透過し、400nm乃至680nmおよび830nm乃至870nm以外の波長域の光を遮断する。 The IR band pass filter 142 transmits light in wavelength ranges of 400 nm to 680 nm and 830 nm to 870 nm, and blocks light in wavelength ranges other than 400 nm to 680 nm and 830 nm to 870 nm.
 IR遮断フィルタは、850nm付近の波長域の光を、透過率が0.1となるまで遮断している。 The IR blocking filter blocks light in a wavelength range around 850 nm until the transmittance becomes 0.1.
 すなわち、IRバンドパスフィルタ142は、可視領域とIR光の波長域以外の波長域の光を完全(透過率0)に遮断している。一方、IR遮断フィルタは、IR光の波長域の光を完全には遮断してはいない。このため、次に示されるように、IR光の波長域の透過性はゼロではない。 That is, the IR band pass filter 142 completely blocks the light in the wavelength range other than the visible range and the wavelength range of the IR light (transmission factor 0). On the other hand, the IR blocking filter does not completely block light in the wavelength range of IR light. For this reason, as shown below, the transparency of the IR light wavelength region is not zero.
 <各画素に対応する分光特性>
 図20は、各画素に対応する分光特性を示す図である。
<Spectral characteristics corresponding to each pixel>
FIG. 20 is a diagram showing spectral characteristics corresponding to each pixel.
 図20の分光特性には、センサの分光感度も加味されている。 The spectral sensitivity of the sensor is also added to the spectral characteristics of FIG.
 R画素は、およそ590nm乃至630nmの波長域の光に感度を持つように設定されている。G画素は、およそ490nm乃至550nmの波長域の光に感度を持つように設定されている。B画素は、およそ440nm乃至470nmの波長域の光に感度を持つように設定されている。TOF用画素は、およそ840nm乃至860nmの波長域の光に感度を持つように設定されている。 The R pixel is set to be sensitive to light in a wavelength range of approximately 590 nm to 630 nm. The G pixel is set to be sensitive to light in a wavelength range of approximately 490 nm to 550 nm. The B pixel is set to be sensitive to light in a wavelength range of approximately 440 nm to 470 nm. The TOF pixels are set to be sensitive to light in a wavelength range of approximately 840 nm to 860 nm.
 ただし、B画素、G画素、R画素の分光特性をみると、IR光の波長域(例えば、850nm前後)の光の透過性は、完全にはゼロになっていない。IR光の可視画素への透過残光は、自然環境に存在するIR光であれば、可視画像の色再現にほぼ影響ないが、人工的なIR光が混入した場合、可視画像の色再現に影響を及ぼすレベルとなる。 However, when looking at the spectral characteristics of the B pixel, the G pixel, and the R pixel, the transparency of light in the wavelength range of IR light (for example, around 850 nm) is not completely zero. Permeation of IR light to visible pixels has little effect on the color reproduction of visible images if it is present in the natural environment, but if artificial IR light is mixed in, it can be used for color reproduction of visible images. It will be an influence level.
 そこで、本技術においては、IR光が、TOF用画素のみに照射するように設定される。これにより、本技術によれば、可視画素への投光IR光の混入をほぼ完全に回避することが可能となる。 Therefore, in the present technology, IR light is set to irradiate only the TOF pixels. Thereby, according to the present technology, it is possible to almost completely avoid the mixing of the projected IR light into the visible pixel.
 <カメラDSPの構成例>
 図21は、撮像装置におけるカメラDSPの構成例を示すブロック図である。
<Configuration Example of Camera DSP>
FIG. 21 is a block diagram showing a configuration example of a camera DSP in an imaging device.
 カメラDSP144は、信号分離部181、補間処理部182、カラー画像信号処理部183、位相差算出処理部184、距離算出処理部185、およびAF制御信号生成部186から構成される。 The camera DSP 144 includes a signal separation unit 181, an interpolation processing unit 182, a color image signal processing unit 183, a phase difference calculation processing unit 184, a distance calculation processing unit 185, and an AF control signal generation unit 186.
 信号分離部181は、イメージセンサ143の信号からR,G,B信号を分離し、補間処理部182に出力する。また、信号分離部181は、イメージセンサ143の信号からTOF用信号を分離し、位相差算出処理部184に出力する。 The signal separation unit 181 separates the R, G, and B signals from the signal of the image sensor 143, and outputs the signals to the interpolation processing unit 182. Further, the signal separation unit 181 separates the TOF signal from the signal of the image sensor 143, and outputs the TOF signal to the phase difference calculation processing unit 184.
 補間処理部182は、信号分離部181から供給されたR,G,B信号を用い、R,G,B画素の配列に応じて、欠落した色の画素信号を生成するデモザイク処理などの補間処理を行う。補間処理部182は、補間処理を行うことによって生成したカラー画像をカラー画像信号処理部183に出力する。 The interpolation processing unit 182 uses the R, G, and B signals supplied from the signal separation unit 181 to perform interpolation processing such as demosaicing processing to generate pixel signals of missing colors according to the arrangement of R, G, and B pixels. I do. The interpolation processing unit 182 outputs the color image generated by performing the interpolation processing to the color image signal processing unit 183.
 カラー画像信号処理部183は、補間処理部182から供給されたカラー画像に対して所定の信号処理を行い、信号処理後のカラー画像を後段の信号処理部に出力する。 The color image signal processing unit 183 performs predetermined signal processing on the color image supplied from the interpolation processing unit 182, and outputs the color image after signal processing to a signal processing unit in the subsequent stage.
 位相差算出処理部184は、信号分離部181から供給されたTOF用信号を用いて位相差を算出し、算出した位相差を示す位相差情報を距離算出処理部185に出力する。 The phase difference calculation processing unit 184 calculates the phase difference using the TOF signal supplied from the signal separation unit 181, and outputs phase difference information indicating the calculated phase difference to the distance calculation processing unit 185.
 距離算出処理部185は、位相差算出処理部184から供給された位相差情報を用いて距離を算出し、算出した距離を示す距離情報を出力する。距離算出処理部185から出力された距離情報は、AF制御信号生成部186および図示せぬ後段の信号処理部に供給される。 The distance calculation processing unit 185 calculates a distance using the phase difference information supplied from the phase difference calculation processing unit 184, and outputs distance information indicating the calculated distance. The distance information output from the distance calculation processing unit 185 is supplied to the AF control signal generation unit 186 and a signal processing unit at a subsequent stage (not shown).
 AF制御信号生成部186は、距離算出処理部185から供給された距離情報と、距離情報からレンズ位置情報への換算式を用いて、レンズ位置情報を算出する。AF制御信号生成部186は、算出されたレンズ位置情報に基づく、AF制御信号を生成する。AF制御信号は、光学系141の図示せぬ駆動部に出力される。 The AF control signal generation unit 186 calculates lens position information using the distance information supplied from the distance calculation processing unit 185 and the conversion formula from the distance information to the lens position information. The AF control signal generator 186 generates an AF control signal based on the calculated lens position information. The AF control signal is output to a drive unit (not shown) of the optical system 141.
 <カメラシステムの動作>
 次に、図22のフローチャートを参照して、図12の撮像装置の信号処理を説明する。
<Operation of Camera System>
Next, signal processing of the imaging device in FIG. 12 will be described with reference to the flowchart in FIG.
 ステップS111において、イメージセンサ143は、IR-SL光源であるIR光照射装置111からのドットパターンのIR光が照射されている状態で被写体を撮像する。イメージセンサ143は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素信号を生成する。 In step S111, the image sensor 143 captures an image of the subject in a state where the IR light of the dot pattern from the IR light irradiation device 111, which is an IR-SL light source, is irradiated. The image sensor 143 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a pixel signal.
 ステップS112において、信号分離部181は、イメージセンサ143からの信号からRGB信号とTOF用信号を分離する。 In step S112, the signal separation unit 181 separates the RGB signal and the TOF signal from the signal from the image sensor 143.
 ステップS113において、補間処理部182は、信号分離部181から供給されたR,G,B信号の補間処理をすることでカラー画像を生成し、カラー画像信号処理部183に出力する。 In step S 113, the interpolation processing unit 182 performs interpolation processing of the R, G, and B signals supplied from the signal separation unit 181 to generate a color image, and outputs the color image to the color image signal processing unit 183.
 ステップS114において、カラー画像信号処理部183は、補間処理部182から供給されたカラー画像に対して所定の信号処理を行い、信号処理後のカラー画像を後段の信号処理部に出力する。 In step S114, the color image signal processing unit 183 performs predetermined signal processing on the color image supplied from the interpolation processing unit 182, and outputs the color image after signal processing to the signal processing unit in the subsequent stage.
 ステップS115において、位相差算出処理部184は、信号分離部181から供給されたTOF用信号を用いて、位相差を算出し、算出された位相差を示す位相差情報を距離算出処理部185に出力する。 In step S115, the phase difference calculation processing unit 184 calculates the phase difference using the TOF signal supplied from the signal separation unit 181, and transmits the phase difference information indicating the calculated phase difference to the distance calculation processing unit 185. Output.
 ステップS116において、距離算出処理部185は、位相差算出処理部184から供給された位相差情報を用いて、距離算出処理を行う。距離算出処理の結果、出力された距離情報は、AF制御信号生成部186および図示せぬ後段の信号処理部に供給される。 In step S116, the distance calculation processing unit 185 performs distance calculation processing using the phase difference information supplied from the phase difference calculation processing unit 184. The distance information output as a result of the distance calculation process is supplied to the AF control signal generation unit 186 and a signal processing unit at a subsequent stage (not shown).
 ステップS117において、AF制御信号生成部186は、距離算出処理部185から供給された距離情報からレンズ位置情報への換算式を用いて、レンズ位置情報を算出し、算出されたレンズ位置情報に基づく、AF制御信号を生成する。AF制御信号は、光学系141の図示せぬ駆動部に出力される。 In step S117, the AF control signal generation unit 186 calculates lens position information from the distance information supplied from the distance calculation processing unit 185 using a conversion formula to lens position information, and is based on the calculated lens position information. , Generate an AF control signal. The AF control signal is output to a drive unit (not shown) of the optical system 141.
 以上のようにして得られたカラー画像と距離情報とは、アプリケーションに応じて使用される。 The color image and distance information obtained as described above are used according to the application.
 例えば、カラー画像と距離情報は、スマートフォンなど携帯端末のAF制御、顔認識などのカラー画像と距離情報を必要とするセキュリティ用途、ゲームなどのジェスチャ認識などに用いられる。 For example, color images and distance information are used for AF control of portable terminals such as smart phones, security applications requiring color images and distance information such as face recognition, and gesture recognition for games and the like.
 <変形例3>
 以上のように、第3の実施の形態では、イメージセンサとして、RGBベイヤ配列のセンサを前提として説明したが、本技術は、モノクロのセンサやRGBベイヤ配列以外のカラーフィルタ配列のセンサを用いる場合にも適用することができる。
<Modification 3>
As described above, in the third embodiment, the image sensor has been described on the premise of an RGB Bayer array sensor, but in the present technology, a monochrome sensor or a color filter array sensor other than the RGB Bayer array is used. Can also be applied.
 第3の実施の形態では、イメージセンサのRGBベイヤ配列において、4画素毎にTOF用画素を配置する構成としたが、TOF用画素の密度は、上記説明とは異なる密度の構成であってもよい。また、TOF用画素の配置は、縦横で非対称であってもよい。さらに、TOF用画素と像面位相差画素とを両方配置するようにしてもよい。 In the third embodiment, the TOF pixels are arranged every four pixels in the RGB Bayer array of the image sensor, but the density of TOF pixels may be different from the above description. Good. Also, the arrangement of the TOF pixels may be asymmetric in the vertical and horizontal directions. Furthermore, both TOF pixels and image plane phase difference pixels may be arranged.
 第3の実施の形態では、SL光源のパターン形状として、ドットパターンを例に説明したが、SL光源のパターン形状は、ドットパターンに限らず、画素の投影領域に対応する形状であれば、複数画素が跨るように光があたるように形成されるパターンなど、他の形状でもよい。 In the third embodiment, the dot pattern is described as an example of the pattern shape of the SL light source. However, the pattern shape of the SL light source is not limited to the dot pattern, but a plurality of patterns may be used as long as they correspond to the projection area of the pixel. Other shapes may be used, such as a pattern formed so that light strikes across pixels.
 第3の実施の形態では、IR遮断フィルタを用いた場合を説明したが、IR遮断フィルタは必ずしも使用しなくてよい。特に、屋内使用など、環境光にIR光が含まれない場合は不要である。 In the third embodiment, the case of using the IR blocking filter has been described, but the IR blocking filter may not necessarily be used. In particular, it is unnecessary when ambient light does not include IR light, such as indoor use.
 以上のように、本技術によれば、IR光を照射することによる被写体からの反射光は、TOF用画素でのみ受光されるため、RGB画素によって得られる可視信号に影響を与えることない。したがって、特性の異なる信号である可視信号とTOF用信号を分離することが可能となる。 As described above, according to the present technology, the reflected light from the subject due to the irradiation of the IR light is received only by the TOF pixels, and thus does not affect the visible signals obtained by the RGB pixels. Therefore, it becomes possible to separate a visible signal and a TOF signal which are signals having different characteristics.
 これまでTOFセンサとイメージセンサとを併用していた用途に対し、本技術によれば、1チップのセンサシステムで置き換えることが可能である。 According to the present technology, it is possible to replace a sensor system of one chip with an application in which a TOF sensor and an image sensor are used in combination.
< 第4の実施の形態 >
 <カメラシステムの構成例>
 図23は、本技術を適用したカメラシステムの第4の構成例を示す図である。
Fourth Embodiment
<Configuration Example of Camera System>
FIG. 23 is a diagram illustrating a fourth configuration example of a camera system to which the present technology is applied.
 図23のカメラシステム201は、IR-SL光源としてのIR光照射装置211と、撮像装置212で構成される。図23には、被写体を想定した平面に、画素の投影領域が仮想的に破線で示されている。投影領域は、撮像装置212の画素配列に対応する可視画素投影領域と三角測量投影領域からなる。可視画素投影領域は、R,G,B画素の可視画素が配置される領域である。三角測量投影領域は、三角測量用の画素が配置される領域である。 The camera system 201 of FIG. 23 includes an IR light irradiation device 211 as an IR-SL light source, and an imaging device 212. In FIG. 23, projected areas of pixels are virtually shown by broken lines on a plane on which an object is assumed. The projection area includes a visible pixel projection area and a triangulation projection area corresponding to the pixel array of the imaging device 212. The visible pixel projection area is an area where visible pixels of R, G and B pixels are arranged. The triangulation projection area is an area in which pixels for triangulation are arranged.
 図23においては、可視画素投影領域の縦方向の中央に三角測量投影領域が形成されている。三角測量投影領域は、2行の幅の帯状の領域である。 In FIG. 23, the triangulation projection area is formed at the center in the vertical direction of the visible pixel projection area. The triangulation projection area is a band-like area with a width of 2 lines.
 IR光照射装置211は、IR光を照射する装置であり、三角測量に必要な一定距離分、離して、撮像装置212に固定して配置される。IR光照射装置211は、三角測量投影領域のうち、ランダムに位置する所定の画素のみを照射するようなドットパターンのIR光を照射する。三角測量投影領域のうち、所定の画素の投影領域には、色付きの丸で示されるように、IR光照射装置211からのIR光として、ドットパターンの各ドットが投影される。 The IR light irradiator 211 is a device that irradiates IR light, and is separated from the fixed distance necessary for triangulation and fixedly disposed in the imaging device 212. The IR light irradiation apparatus 211 irradiates IR light of a dot pattern which irradiates only predetermined pixels located at random in the triangulation projection area. Each dot of a dot pattern is projected as IR light from IR light irradiation apparatus 211 in the projection area | region of a predetermined | prescribed pixel among the triangulation projection area | regions, as shown by a colored circle.
 撮像装置212は、R,G,B画素および三角測量用画素が配置されたイメージセンサを備えている。イメージセンサのシャッタ方式は、ローリングシャッタ方式であってもよいし、グローバルシャッタ方式であってもよい。 The imaging device 212 includes an image sensor in which R, G, B pixels and triangulation pixels are arranged. The shutter system of the image sensor may be a rolling shutter system or a global shutter system.
 撮像装置212は、三角測量投影領域の所定の画素のみを照射するようなドットパターンのIR光がIR光照射装置211により照射されている状態で被写体を撮像する。R,G,B画素においては、所定の光源からの可視光が受光されている。これにより、撮像装置212では、R,G,B画素からの信号に対応する可視画像が生成され、三角測量用画素からの信号を用いて距離情報が得られる。 The imaging device 212 images a subject in a state where IR light of a dot pattern that irradiates only predetermined pixels of the triangulation projection area is irradiated by the IR light irradiation device 211. In R, G and B pixels, visible light from a predetermined light source is received. Thereby, in the imaging device 212, a visible image corresponding to the signal from the R, G, B pixels is generated, and the distance information is obtained using the signal from the triangulation pixel.
 なお、カメラシステム201においても、IR光照射装置211は、図6を参照して上述したように、撮像装置212と一体型で構成されていてもよいし、撮像装置212に着脱可能に構成されていてもよい。 Also in the camera system 201, as described above with reference to FIG. 6, the IR light irradiation device 211 may be configured integrally with the imaging device 212, or is configured to be detachable from the imaging device 212. It may be
 <IR光照射装置および撮像装置の構成例>
 図24は、IR光照射装置および撮像装置の構成例を示す図である。図24に示す構成のうち、図14を参照して説明した構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
<Configuration Example of IR Light Irradiation Device and Imaging Device>
FIG. 24 is a diagram showing a configuration example of an IR light irradiation apparatus and an imaging apparatus. Among the configurations shown in FIG. 24, the same configurations as the configurations described with reference to FIG. Duplicate descriptions will be omitted as appropriate.
 IR光照射装置211は、IR光照射装置211の光軸211Cと撮像装置212のイメージセンサ(レンズ)の光軸212Cの距離を、ベースライン距離Lb分だけ離して、撮像装置212に固定して設置される。 The IR light irradiation device 211 separates the distance between the light axis 211C of the IR light irradiation device 211 and the light axis 212C of the image sensor (lens) of the imaging device 212 by the baseline distance Lb and fixes it to the imaging device 212 Will be installed.
 IR光照射装置211は、図14の場合と同様に、レーザ光源121、回折格子122、およびIR-LEDドライバ131から構成される。 The IR light irradiator 211 includes a laser light source 121, a diffraction grating 122, and an IR-LED driver 131 as in the case of FIG.
 撮像装置212は、光学系141、イメージセンサ231、カメラDSP232から構成される。 The imaging device 212 includes an optical system 141, an image sensor 231, and a camera DSP 232.
 イメージセンサ231は、R,G,B画素および三角測量用画素が配置された画素アレイ部を有している。イメージセンサ231は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素の信号を生成する。 The image sensor 231 has a pixel array unit in which R, G, B pixels and triangulation pixels are arranged. The image sensor 231 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a signal of the pixel.
 カメラDSP232は、イメージセンサ231の画素アレイ部を構成する複数の画素のうち、R,G,B画素からのR,G,B信号を用いてカラー画像を生成し、生成したカラー画像を、図示せぬ後段の信号処理部に出力する。また、カメラDSP232は、イメージセンサ231の画素アレイ部を構成する複数の画素のうち、三角測量用画素からの三角測量用信号を用いて距離を算出し、算出した距離情報からAF制御信号を生成する。生成されたAF制御信号は、光学系141の駆動に用いられる。 The camera DSP 232 generates a color image using R, G, B signals from R, G, B pixels among a plurality of pixels constituting the pixel array unit of the image sensor 231, and generates a generated color image. It outputs to the signal processing part of the latter part which is not shown. Further, the camera DSP 232 calculates a distance using a triangulation signal from the triangulation pixels among a plurality of pixels constituting the pixel array unit of the image sensor 231, and generates an AF control signal from the calculated distance information. Do. The generated AF control signal is used to drive the optical system 141.
 カメラDSP232は、LEDのON/OFF信号およびLED強度調整信号を生成し、生成したLEDのON/OFF信号およびLED強度調整信号をIR-LEDドライバ131に出力する。 The camera DSP 232 generates an LED ON / OFF signal and an LED intensity adjustment signal, and outputs the generated LED ON / OFF signal and the LED intensity adjustment signal to the IR-LED driver 131.
 <画素配列の例>
 図25は、イメージセンサの画素配列の例を示す図である。
<Example of pixel array>
FIG. 25 is a diagram showing an example of the pixel array of the image sensor.
 イメージセンサ231の画素アレイ部は、図25に示されるように、R,G,B画素が配置される可視画素領域と三角測量用画素が配置される三角測量用領域から構成される。 As shown in FIG. 25, the pixel array unit of the image sensor 231 is configured of a visible pixel area in which R, G, B pixels are arranged, and a triangulation area in which pixels for triangulation are arranged.
 イメージセンサ231の画素アレイ部は、2×2のベイヤ配列1行目乃至3行目が可視画素領域となり、2×2のベイヤ配列4行目が三角測量用領域となるように構成される。 The pixel array unit of the image sensor 231 is configured such that the first to third rows of the 2 × 2 Bayer array are visible pixel areas, and the fourth row of the 2 × 2 Bayer arrays is a triangulation area.
 <カメラDSPの構成例>
 図26は、撮像装置におけるカメラDSPの構成例を示すブロック図である。
<Configuration Example of Camera DSP>
FIG. 26 is a block diagram showing a configuration example of a camera DSP in an imaging device.
 カメラDSP232は、信号分離部251、補間処理部252、カラー画像信号処理部253、距離算出処理部254、およびAF制御信号生成部255から構成される。 The camera DSP 232 includes a signal separation unit 251, an interpolation processing unit 252, a color image signal processing unit 253, a distance calculation processing unit 254, and an AF control signal generation unit 255.
 信号分離部251は、イメージセンサ143の信号からR,G,B信号を分離し、補間処理部252に出力する。また、信号分離部251は、イメージセンサ143の信号から三角測量用信号を分離し、距離算出処理部254に出力する。 The signal separation unit 251 separates the R, G, and B signals from the signal of the image sensor 143, and outputs the signals to the interpolation processing unit 252. Further, the signal separation unit 251 separates the triangulation signal from the signal of the image sensor 143, and outputs the triangulation signal to the distance calculation processing unit 254.
 補間処理部252は、信号分離部251から供給されたR,G,B信号を用い、R,G,B画素の配列に応じて、欠落した色の画素信号を生成するデモザイク処理などの補間処理をすることでカラー画像を生成し、カラー画像信号処理部253に出力する。 The interpolation processing unit 252 performs interpolation processing such as demosaicing processing that generates pixel signals of missing colors according to the arrangement of R, G, B pixels using the R, G, B signals supplied from the signal separation unit 251 To generate a color image and output the color image to the color image signal processing unit 253.
 カラー画像信号処理部253は、補間処理部252から供給されたカラー画像に対して所定の信号処理を行い、信号処理後のカラー画像を後段の信号処理部に出力する。 The color image signal processing unit 253 performs predetermined signal processing on the color image supplied from the interpolation processing unit 252, and outputs the color image subjected to the signal processing to a signal processing unit in the subsequent stage.
 距離算出処理部254は、補間処理部252から供給された三角測量用信号を用いて、距離を算出し、算出された距離を示す距離情報を出力する。出力された距離情報は、AF制御信号生成部255および図示せぬ後段の信号処理部に供給される。 The distance calculation processing unit 254 calculates a distance using the triangulation signal supplied from the interpolation processing unit 252, and outputs distance information indicating the calculated distance. The output distance information is supplied to the AF control signal generation unit 255 and a signal processing unit at a subsequent stage (not shown).
 AF制御信号生成部255は、距離算出処理部254から供給された距離情報からレンズ位置情報への換算式を用いて、レンズ位置情報を算出し、算出されたレンズ位置情報に基づく、AF制御信号を生成する。生成されたAF制御信号は、光学系141の図示せぬ駆動部に出力される。 The AF control signal generation unit 255 calculates lens position information from the distance information supplied from the distance calculation processing unit 254 using a conversion formula to lens position information, and an AF control signal based on the calculated lens position information. Generate The generated AF control signal is output to a driving unit (not shown) of the optical system 141.
 <カメラシステムの動作>
 次に、図27のフローチャートを参照して、図23の撮像装置の信号処理を説明する。
<Operation of Camera System>
Next, signal processing of the imaging device in FIG. 23 will be described with reference to the flowchart in FIG.
 図27のステップS211において、イメージセンサ143は、IR-SL光源であるIR光照射装置211からのドットパターンのIR光が照射されている状態で被写体を撮像する。イメージセンサ143は、入射した光を光電変換し、画素アレイ部の各画素の画素値をA/D変換することで、画素信号を生成する。 In step S211 in FIG. 27, the image sensor 143 captures an image of the subject in a state where the IR light of the dot pattern from the IR light irradiation device 211, which is an IR-SL light source, is irradiated. The image sensor 143 photoelectrically converts incident light and A / D converts the pixel value of each pixel of the pixel array unit to generate a pixel signal.
 ステップS212において、信号分離部251は、イメージセンサ143からの信号からRGB信号と三角測量用信号を分離する。分離されたRGB信号は補間処理部252に出力され、三角測量用信号は距離算出処理部254に出力される。 In step S212, the signal separation unit 251 separates the RGB signal and the triangulation signal from the signal from the image sensor 143. The separated RGB signals are output to the interpolation processing unit 252, and the triangulation signal is output to the distance calculation processing unit 254.
 ステップS213において、補間処理部252は、信号分離部251から供給されたR,G,B信号の補間処理をすることでカラー画像を生成し、カラー画像信号処理部253に出力する。 In step S 213, the interpolation processing unit 252 performs interpolation processing of the R, G, and B signals supplied from the signal separation unit 251 to generate a color image, and outputs the color image to the color image signal processing unit 253.
 ステップS214において、カラー画像信号処理部253は、補間処理部252から供給されたカラー画像に対して所定の信号処理を行い、信号処理後のカラー画像を後段の信号処理部に出力する。 In step S214, the color image signal processing unit 253 performs predetermined signal processing on the color image supplied from the interpolation processing unit 252, and outputs the color image after signal processing to the signal processing unit of the subsequent stage.
 ステップS215において、距離算出処理部254は、信号分離部251から供給された三角測量用信号を用いて、距離算出処理を行う。距離算出処理の結果、出力された距離情報は、AF制御信号生成部255および図示せぬ後段の信号処理部に供給される。 In step S215, the distance calculation processing unit 254 performs distance calculation processing using the triangulation signal supplied from the signal separation unit 251. The distance information output as a result of the distance calculation process is supplied to the AF control signal generation unit 255 and a signal processing unit at a subsequent stage (not shown).
 ステップS216において、AF制御信号生成部255は、距離算出処理部254から供給された距離情報からレンズ位置情報への換算式を用いて、レンズ位置情報を算出し、算出されたレンズ位置情報に基づく、AF制御信号を生成する。生成されたAF制御信号は、光学系141の図示せぬ駆動部に出力される。 In step S216, the AF control signal generation unit 255 calculates lens position information from the distance information supplied from the distance calculation processing unit 254 using a conversion formula to lens position information, and is based on the calculated lens position information. , Generate an AF control signal. The generated AF control signal is output to a driving unit (not shown) of the optical system 141.
 以上のようにして得られたカラー画像と距離情報とは、アプリケーションに応じて使用される。 The color image and distance information obtained as described above are used according to the application.
 例えば、カラー画像と距離情報は、スマートフォンなど携帯端末のAF制御、顔認識などのカラー画像と距離情報を必要とするセキュリティ用途、ゲームなどのジェスチャ認識などに用いられる。 For example, color images and distance information are used for AF control of portable terminals such as smart phones, security applications requiring color images and distance information such as face recognition, and gesture recognition for games and the like.
 <変形例4>
 以上のように、第4の実施の形態では、イメージセンサとして、RGBベイヤ配列のセンサを前提として説明したが、本技術は、モノクロのセンサやRGBベイヤ配列以外のカラーフィルタ配列のセンサを用いる場合にも適用することができる。
<Modification 4>
As described above, in the fourth embodiment, the image sensor has been described on the premise of an RGB Bayer array sensor, but in the present technology, a monochrome sensor or a color filter array sensor other than the RGB Bayer array is used. Can also be applied.
 第4の実施の形態では、RGBベイヤ配列のセンサにおいて、縦のベイヤ配列4行毎に三角測量用画素を配置する構成としたが、三角測量用画素の異なる密度の構成であってもよい。また、上記説明においては、帯状の領域である三角測量用領域が2行の幅で構成する例を説明したが、三角測量用領域は、1行の幅で構成するようにしてもよいし、他の幅で構成するようにしてもよい。 In the fourth embodiment, in the sensor of the RGB Bayer array, the triangulation pixels are arranged every four rows of the vertical Bayer array, but the trigonometric pixels may have different densities. Also, in the above description, an example in which the triangulation area which is a band-like area is configured with a width of 2 lines has been described, but the triangulation area may be configured with a width of 1 line, It may be configured to have another width.
 第4の実施の形態では、三角測量用画素を配置する例を説明したが、第3の実施の形態と第4の実施の形態において説明した三角測量用画素を、第3の実施の形態で説明したTOF用画素と組み合わせて行うようにしてもよい。すなわち、第4の実施の形態の帯状の三角測量用投影領域に、三角測量用画素とTOF用画素とを配置し、三角測量とTOF方式の測距を同時に行うようにすることも可能である。この場合、測距の精度を向上することができる。 In the fourth embodiment, an example in which the triangulation pixels are arranged has been described. However, in the third embodiment, the triangulation pixels described in the third embodiment and the fourth embodiment are described. It may be performed in combination with the described TOF pixels. That is, it is possible to arrange the triangulation pixels and the TOF pixels in the strip-like triangulation projection area of the fourth embodiment and simultaneously perform the triangulation and the TOF distance measurement. . In this case, the accuracy of distance measurement can be improved.
 以上のように、本技術によれば、IR光を照射することによる被写体からの反射光は、三角測量用画素でのみ受光されるため、RGB画素によって得られる可視信号に影響を与えることない。したがって、特性の異なる信号である可視信号と三角測量用信号を分離することが可能となる。 As described above, according to the present technology, the reflected light from the subject due to the irradiation of the IR light is received only by the triangulation pixels, and therefore does not affect the visible signals obtained by the RGB pixels. Therefore, it becomes possible to separate a visible signal and a triangulation signal which are signals having different characteristics.
 これまで三角測量用センサとイメージセンサとを併用していた用途に対し、本技術によれば、1チップのセンサシステムで置き換えることが可能である。 According to the present technology, it is possible to replace the sensor system of one chip with the application in which the sensor for triangulation and the image sensor have been used together until now.
< 第5の実施の形態 >
 <コンピュータのハードウエア構成例>
 上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここでコンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。
Fifth Embodiment
<Example of hardware configuration of computer>
The series of processes described above can be performed by hardware or software. When the series of processes are performed by software, a program that configures the software is installed on a computer. Here, the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
 図28は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエア構成例を示すブロック図である。 FIG. 28 is a block diagram showing an example of the hardware configuration of a computer that executes the series of processes described above according to a program.
 図28に示されるコンピュータにおいて、CPU(Central Processing Unit)301、ROM(Read Only Memory)302、RAM(Random Access Memory)303は、バス304を介して相互に接続されている。 In the computer shown in FIG. 28, a central processing unit (CPU) 301, a read only memory (ROM) 302, and a random access memory (RAM) 303 are mutually connected via a bus 304.
 バス304にはまた、入出力インタフェース305も接続されている。入出力インタフェース305には、入力部306、出力部307、記憶部308、通信部309、およびドライブ310が接続されている。 Also connected to the bus 304 is an input / output interface 305. An input unit 306, an output unit 307, a storage unit 308, a communication unit 309, and a drive 310 are connected to the input / output interface 305.
 入力部306は、例えば、キーボード、マウス、マイクロホン、タッチパネル、入力端子などよりなる。出力部307は、例えば、ディスプレイ、スピーカ、出力端子などよりなる。記憶部308は、例えば、ハードディスク、RAMディスク、不揮発性のメモリなどよりなる。通信部309は、例えば、ネットワークインタフェースよりなる。ドライブ310は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア311を駆動する。 The input unit 306 includes, for example, a keyboard, a mouse, a microphone, a touch panel, an input terminal, and the like. The output unit 307 includes, for example, a display, a speaker, and an output terminal. The storage unit 308 includes, for example, a hard disk, a RAM disk, and a non-volatile memory. The communication unit 309 includes, for example, a network interface. The drive 310 drives removable media 311 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
 以上のように構成されるコンピュータは、CPU301が、例えば、記憶部308に記憶されているプログラムを、入出力インタフェース305およびバス304を介して、RAM303にロードして実行することにより、上述した一連の処理が行われる。RAM303にはまた、CPU301が各種の処理を実行する上において必要なデータなども適宜記憶される。 In the computer configured as described above, for example, the CPU 301 loads the program stored in the storage unit 308 into the RAM 303 via the input / output interface 305 and the bus 304 and executes the program. Processing is performed. The RAM 303 also stores data necessary for the CPU 301 to execute various processes.
 コンピュータ(CPU301)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア311に記録して適用することができる。その場合、プログラムは、リムーバブルメディア311をドライブ310に装着することにより、入出力インタフェース305を介して、記憶部308にインストールすることができる。 The program executed by the computer (CPU 301) can be recorded and applied to, for example, a removable medium 311 as a package medium or the like. In that case, the program can be installed in the storage unit 308 via the input / output interface 305 by attaching the removable media 311 to the drive 310.
 また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部309で受信し、記憶部308にインストールすることができる。 The program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 309 and installed in the storage unit 308.
 その他、このプログラムは、ROM302や記憶部308に、あらかじめインストールしておくこともできる。 In addition, this program can be installed in advance in the ROM 302 or the storage unit 308.
 なお、通信装置が実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 Note that the program executed by the communication device may be a program that performs processing in chronological order according to the order described in this specification, or in parallel, or when necessary, such as when a call is made. It may be a program in which processing is performed.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail with reference to the accompanying drawings, but the present disclosure is not limited to such examples. It is obvious that those skilled in the art to which the present disclosure belongs can conceive of various changes or modifications within the scope of the technical idea described in the claims. It is naturally understood that these also fall within the technical scope of the present disclosure.
< 応用例1 >
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Example 1>
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure is any type of movement, such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machines, agricultural machines (tractors), etc. It may be realized as a device mounted on the body.
 図29は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図29に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 29 is a block diagram showing a schematic configuration example of a vehicle control system 7000 which is an example of a mobile control system to which the technology according to the present disclosure can be applied. Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010. In the example shown in FIG. 29, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600. . The communication network 7010 connecting the plurality of control units is, for example, an arbitrary standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図29では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing in accordance with various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various arithmetic operations, and drive circuits that drive devices to be controlled. Equipped with Each control unit is provided with a network I / F for communicating with other control units via the communication network 7010, and by wired communication or wireless communication with an apparatus or sensor inside or outside the vehicle. A communication I / F for performing communication is provided. In FIG. 29, as a functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, an audio image output unit 7670, An in-vehicle network I / F 7680 and a storage unit 7690 are illustrated. The other control units also include a microcomputer, a communication I / F, a storage unit, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 Drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, drive system control unit 7100 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering angle of the vehicle. It functions as a control mechanism such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as an ABS (Antilock Brake System) or an ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 Vehicle state detection unit 7110 is connected to drive system control unit 7100. The vehicle state detection unit 7110 may be, for example, a gyro sensor that detects an angular velocity of an axial rotational movement of a vehicle body, an acceleration sensor that detects an acceleration of the vehicle, or an operation amount of an accelerator pedal, an operation amount of a brake pedal, and steering of a steering wheel. At least one of the sensors for detecting the angle, the engine speed, the rotational speed of the wheel, etc. is included. Drive system control unit 7100 performs arithmetic processing using a signal input from vehicle state detection unit 7110 to control an internal combustion engine, a drive motor, an electric power steering device, a brake device, and the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 Body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device of various lamps such as a head lamp, a back lamp, a brake lamp, a blinker or a fog lamp. In this case, the body system control unit 7200 may receive radio waves or signals of various switches transmitted from a portable device substituting a key. Body system control unit 7200 receives the input of these radio waves or signals, and controls a door lock device, a power window device, a lamp and the like of the vehicle.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310 which is a power supply source of the drive motor according to various programs. For example, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input to the battery control unit 7300 from the battery device provided with the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device or the like provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 Outside-vehicle information detection unit 7400 detects information outside the vehicle equipped with vehicle control system 7000. For example, at least one of the imaging unit 7410 and the external information detection unit 7420 is connected to the external information detection unit 7400. The imaging unit 7410 includes at least one of a time-of-flight (ToF) camera, a stereo camera, a monocular camera, an infrared camera, and another camera. For example, an environment sensor for detecting the current weather or weather, or another vehicle, an obstacle or a pedestrian around the vehicle equipped with the vehicle control system 7000 is detected in the outside-vehicle information detection unit 7420, for example. And at least one of the ambient information detection sensors.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environment sensor may be, for example, at least one of a raindrop sensor that detects wet weather, a fog sensor that detects fog, a sunshine sensor that detects sunshine intensity, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a light detection and ranging (LIDAR) device. The imaging unit 7410 and the external information detection unit 7420 may be provided as independent sensors or devices, or may be provided as an integrated device of a plurality of sensors or devices.
 ここで、図30は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 30 shows an example of installation positions of the imaging unit 7410 and the external information detection unit 7420. The imaging units 7910, 7912, 7914, 7916, 7918 are provided at, for example, at least one of the front nose of the vehicle 7900, the side mirror, the rear bumper, the back door, and the upper portion of the windshield of the vehicle interior. An imaging unit 7910 provided in the front nose and an imaging unit 7918 provided in the upper part of the windshield in the vehicle cabin mainly acquire an image in front of the vehicle 7900. The imaging units 7912 and 7914 provided in the side mirror mainly acquire an image of the side of the vehicle 7900. An imaging unit 7916 provided in the rear bumper or back door mainly acquires an image behind the vehicle 7900. The imaging unit 7918 provided on the upper part of the windshield in the passenger compartment is mainly used to detect a leading vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図30には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 Note that FIG. 30 shows an example of the imaging range of each of the imaging units 7910, 7912, 7914, and 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose, the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided on the side mirrors, and the imaging range d indicates The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by overlaying the image data captured by the imaging units 7910, 7912, 7914, and 7916, a bird's-eye view of the vehicle 7900 as viewed from above can be obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The external information detection units 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, and corners of the vehicle 7900 and above the windshield of the vehicle interior may be, for example, ultrasonic sensors or radar devices. The external information detection units 7920, 7926, 7930 provided on the front nose of the vehicle 7900, the rear bumper, the back door, and the upper part of the windshield of the vehicle interior may be, for example, a LIDAR device. These outside-of-vehicle information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle or the like.
 図29に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Returning to FIG. 29, the description will be continued. The out-of-vehicle information detection unit 7400 causes the imaging unit 7410 to capture an image outside the vehicle, and receives the captured image data. Further, the external information detection unit 7400 receives detection information from the external information detection unit 7420 connected. When the out-of-vehicle information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the out-of-vehicle information detection unit 7400 transmits ultrasonic waves or electromagnetic waves and receives information on the received reflected waves. The external information detection unit 7400 may perform object detection processing or distance detection processing of a person, a car, an obstacle, a sign, a character on a road surface, or the like based on the received information. The external information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions and the like based on the received information. The external information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 Further, the external information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, a character on a road surface, or the like based on the received image data. The external information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and combines the image data captured by different imaging units 7410 to generate an overhead image or a panoramic image. It is also good. The external information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410.
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 An in-vehicle information detection unit 7500 detects information in the vehicle. For example, a driver state detection unit 7510 that detects a state of a driver is connected to the in-vehicle information detection unit 7500. The driver state detection unit 7510 may include a camera for imaging the driver, a biometric sensor for detecting the driver's biological information, a microphone for collecting sound in the vehicle interior, and the like. The biological sensor is provided, for example, on a seat or a steering wheel, and detects biological information of an occupant sitting on a seat or a driver who grips the steering wheel. The in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, or determine whether the driver does not go to sleep You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls the overall operation in the vehicle control system 7000 in accordance with various programs. An input unit 7800 is connected to the integrated control unit 7600. The input unit 7800 is realized by, for example, a device such as a touch panel, a button, a microphone, a switch or a lever, which can be input operated by the passenger. The integrated control unit 7600 may receive data obtained by speech recognition of speech input by the microphone. The input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000. May be The input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Furthermore, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on the information input by the passenger or the like using the above-described input unit 7800 and outputs the generated signal to the integrated control unit 7600. The passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. In addition, the storage unit 7690 may be realized by a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 The general-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750. General-purpose communication I / F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced). Or, other wireless communication protocols such as wireless LAN (also referred to as Wi-Fi (registered trademark)), Bluetooth (registered trademark), etc. may be implemented. The general-purpose communication I / F 7620 is connected to, for example, an apparatus (for example, an application server or control server) existing on an external network (for example, the Internet, a cloud network or an operator-specific network) via a base station or access point You may Also, the general-purpose communication I / F 7620 is a terminal (for example, a driver, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal) existing near the vehicle using, for example, P2P (Peer To Peer) technology. It may be connected with
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I / F 7630 is a communication I / F that supports a communication protocol designed for use in a vehicle. The dedicated communication I / F 7630 may be a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or cellular communication protocol, which is a combination of lower layer IEEE 802.11p and upper layer IEEE 1609, for example. May be implemented. The dedicated communication I / F 7630 is typically used for Vehicle to Vehicle communication, Vehicle to Infrastructure communication, Vehicle to Home communication, and Vehicle to Pedestrian. 2.) Perform V2X communication, a concept that includes one or more of the communication.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640 receives a GNSS signal (for example, a GPS signal from a Global Positioning System (GPS) satellite) from, for example, a Global Navigation Satellite System (GNSS) satellite and executes positioning, thereby performing latitude, longitude, and altitude of the vehicle. Generate location information including Positioning section 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone having a positioning function, a PHS, or a smartphone.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from a radio station or the like installed on a road, and acquires information such as the current position, traffic jams, closing times or required time. The function of the beacon reception unit 7650 may be included in the above-described dedicated communication I / F 7630.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface、又はMHL(Mobile High-definition Link))等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 An in-vehicle apparatus I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle apparatuses 7760 existing in the vehicle. The in-car device I / F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB). Further, the in-car device I / F 7660 can be connected via a connection terminal (and a cable, if necessary) (not shown) via USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface), or MHL (Mobile High). A wired connection such as -definition Link) may be established. The in-vehicle device 7760 may include, for example, at least one of a mobile device or wearable device owned by a passenger, or an information device carried in or attached to a vehicle. Further, the in-vehicle device 7760 may include a navigation device for performing a route search to any destination. The in-vehicle device I / F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I / F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. The in-vehicle network I / F 7680 transmits and receives signals and the like in accordance with a predetermined protocol supported by the communication network 7010.
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 is connected via at least one of a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon reception unit 7650, an in-vehicle device I / F 7660, and an in-vehicle network I / F 7680. The vehicle control system 7000 is controlled in accordance with various programs based on the information acquired. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the driving system control unit 7100. It is also good. For example, the microcomputer 7610 realizes the function of an advanced driver assistance system (ADAS) including collision avoidance or shock mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, vehicle lane departure warning, etc. Cooperative control for the purpose of In addition, the microcomputer 7610 automatically runs without using the driver's operation by controlling the driving force generating device, the steering mechanism, the braking device, etc. based on the acquired information of the surroundings of the vehicle. Coordinated control may be performed for the purpose of driving and the like.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 The microcomputer 7610 is information acquired via at least one of a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon reception unit 7650, an in-vehicle device I / F 7660, and an in-vehicle network I / F 7680. Based on the above, three-dimensional distance information between the vehicle and an object such as a surrounding structure or a person may be generated, and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may predict a danger such as a collision of a vehicle or a pedestrian or the like approaching a road or the like on the basis of the acquired information, and may generate a signal for warning. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図29の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or aurally notifying information to a passenger or the outside of a vehicle. In the example of FIG. 29, an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices. The display unit 7720 may include, for example, at least one of an on-board display and a head-up display. The display portion 7720 may have an AR (Augmented Reality) display function. The output device may be another device such as a headphone, a wearable device such as a glasses-type display worn by a passenger, a projector, or a lamp other than these devices. When the output device is a display device, the display device may obtain information obtained from various processes performed by the microcomputer 7610 or information received from another control unit in various formats such as text, images, tables, graphs, etc. Display visually. When the output device is an audio output device, the audio output device converts an audio signal composed of reproduced audio data or audio data into an analog signal and outputs it in an auditory manner.
 なお、図29に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 In the example shown in FIG. 29, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, each control unit may be configured by a plurality of control units. Furthermore, the vehicle control system 7000 may comprise another control unit not shown. In the above description, part or all of the functions of any control unit may be provided to another control unit. That is, as long as transmission and reception of information are performed via the communication network 7010, predetermined arithmetic processing may be performed by any control unit. Similarly, while a sensor or device connected to any control unit is connected to another control unit, a plurality of control units may mutually transmit and receive detection information via the communication network 7010. .
 以上説明した車両制御システム7000において、図1乃至図27を用いて説明した本実施形態に係るカメラシステムは、図29の撮像部7410または車外情報検出部7420に適用することができる。例えば、撮像部7410または車外情報検出部7420に本技術を適用することにより、周囲の先行車両、歩行者又は障害物等の検出や測距を正確に行うことができる。 In the vehicle control system 7000 described above, the camera system according to the present embodiment described with reference to FIGS. 1 to 27 can be applied to the imaging unit 7410 or the external information detection unit 7420 of FIG. For example, by applying the present technology to the imaging unit 7410 or the out-of-vehicle information detection unit 7420, detection and distance measurement of surrounding preceding vehicles, pedestrians, obstacles, and the like can be performed accurately.
< 応用例2 >
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、手術室システムに適用されてもよい。
Application Example 2
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be applied to an operating room system.
 図31は、本開示に係る技術が適用され得る手術室システム5100の全体構成を概略的に示す図である。図31を参照すると、手術室システム5100は、手術室内に設置される装置群が視聴覚コントローラ(AV Controller)5107及び手術室制御装置5109を介して互いに連携可能に接続されることにより構成される。 FIG. 31 is a diagram schematically showing an overall configuration of an operating room system 5100 to which the technology according to the present disclosure can be applied. Referring to FIG. 31, the operating room system 5100 is configured such that devices installed in the operating room are connected to be able to cooperate with each other via an audiovisual controller (AV controller) 5107 and an operating room controller 5109.
 手術室には、様々な装置が設置され得る。図31では、一例として、内視鏡下手術のための各種の装置群5101と、手術室の天井に設けられ術者の手元を撮像するシーリングカメラ5187と、手術室の天井に設けられ手術室全体の様子を撮像する術場カメラ5189と、複数の表示装置5103A~5103Dと、レコーダ5105と、患者ベッド5183と、照明5191と、を図示している。 Various devices may be installed in the operating room. In FIG. 31, as an example, various device groups 5101 for endoscopic surgery, a sealing camera 5187 provided on the ceiling of the operating room for imaging the hand of the operator, and an operating room provided on the ceiling of the operating room A surgical field camera 5189 for imaging the entire situation, a plurality of display devices 5103A to 5103D, a recorder 5105, a patient bed 5183 and an illumination 5191 are shown.
 ここで、これらの装置のうち、装置群5101は、後述する内視鏡手術システム5113に属するものであり、内視鏡や当該内視鏡によって撮像された画像を表示する表示装置等からなる。内視鏡手術システム5113に属する各装置は医療用機器とも呼称される。一方、表示装置5103A~5103D、レコーダ5105、患者ベッド5183及び照明5191は、内視鏡手術システム5113とは別個に、例えば手術室に備え付けられている装置である。これらの内視鏡手術システム5113に属さない各装置は非医療用機器とも呼称される。視聴覚コントローラ5107及び/又は手術室制御装置5109は、これら医療機器及び非医療機器の動作を互いに連携して制御する。 Here, among these devices, a device group 5101 belongs to an endoscopic surgery system 5113 described later, and includes an endoscope, a display device that displays an image captured by the endoscope, and the like. Each device belonging to the endoscopic surgery system 5113 is also referred to as a medical device. On the other hand, the display devices 5103A to 5103D, the recorder 5105, the patient bed 5183 and the illumination 5191 are devices provided, for example, in the operating room separately from the endoscopic surgery system 5113. Each device which does not belong to the endoscopic surgery system 5113 is also referred to as a non-medical device. The audiovisual controller 5107 and / or the operating room controller 5109 cooperate with each other to control the operation of the medical device and the non-medical device.
 視聴覚コントローラ5107は、医療機器及び非医療機器における画像表示に関する処理を、統括的に制御する。具体的には、手術室システム5100が備える装置のうち、装置群5101、シーリングカメラ5187及び術場カメラ5189は、手術中に表示すべき情報(以下、表示情報ともいう)を発信する機能を有する装置(以下、発信元の装置とも呼称する)であり得る。また、表示装置5103A~5103Dは、表示情報が出力される装置(以下、出力先の装置とも呼称する)であり得る。また、レコーダ5105は、発信元の装置及び出力先の装置の双方に該当する装置であり得る。視聴覚コントローラ5107は、発信元の装置及び出力先の装置の動作を制御し、発信元の装置から表示情報を取得するとともに、当該表示情報を出力先の装置に送信し、表示又は記録させる機能を有する。なお、表示情報とは、手術中に撮像された各種の画像や、手術に関する各種の情報(例えば、患者の身体情報や、過去の検査結果、術式についての情報等)等である。 The audio-visual controller 5107 centrally controls processing relating to image display in medical devices and non-medical devices. Specifically, among the devices included in the operating room system 5100, the device group 5101, the ceiling camera 5187, and the operation room camera 5189 have a function of transmitting information to be displayed during surgery (hereinafter also referred to as display information). It may be a device (hereinafter also referred to as a source device). In addition, the display devices 5103A to 5103D can be devices to which display information is output (hereinafter, also referred to as a device of an output destination). Also, the recorder 5105 may be a device that corresponds to both a source device and an output device. The audiovisual controller 5107 controls the operation of the transmission source device and the output destination device, acquires display information from the transmission source device, transmits the display information to the output destination device, and displays or records the function. Have. The display information is various images captured during the operation, various information related to the operation (for example, physical information of the patient, information on a past examination result, information on the operation method, etc.).
 具体的には、視聴覚コントローラ5107には、装置群5101から、表示情報として、内視鏡によって撮像された患者の体腔内の術部の画像についての情報が送信され得る。また、シーリングカメラ5187から、表示情報として、当該シーリングカメラ5187によって撮像された術者の手元の画像についての情報が送信され得る。また、術場カメラ5189から、表示情報として、当該術場カメラ5189によって撮像された手術室全体の様子を示す画像についての情報が送信され得る。なお、手術室システム5100に撮像機能を有する他の装置が存在する場合には、視聴覚コントローラ5107は、表示情報として、当該他の装置からも当該他の装置によって撮像された画像についての情報を取得してもよい。 Specifically, information about an image of a surgical site in a patient's body cavity captured by the endoscope may be transmitted from the device group 5101 as display information to the audiovisual controller 5107. Also, from the ceiling camera 5187, information on the image of the operator's hand captured by the ceiling camera 5187 can be transmitted as display information. In addition, information on an image indicating the appearance of the entire operating room captured by the surgery site camera 5189 may be transmitted from the surgery site camera 5189 as display information. When there is another device having an imaging function in the operating room system 5100, the audiovisual controller 5107 acquires information on an image captured by the other device from the other device as display information. You may
 あるいは、例えば、レコーダ5105には、過去に撮像されたこれらの画像についての情報が視聴覚コントローラ5107によって記録されている。視聴覚コントローラ5107は、表示情報として、レコーダ5105から当該過去に撮像された画像についての情報を取得することができる。なお、レコーダ5105には、手術に関する各種の情報も事前に記録されていてもよい。 Alternatively, for example, in the recorder 5105, information about these images captured in the past is recorded by the audiovisual controller 5107. The audiovisual controller 5107 can acquire information on an image captured in the past from the recorder 5105 as display information. The recorder 5105 may also record various types of information regarding surgery in advance.
 視聴覚コントローラ5107は、出力先の装置である表示装置5103A~5103Dの少なくともいずれかに、取得した表示情報(すなわち、手術中に撮影された画像や、手術に関する各種の情報)を表示させる。図示する例では、表示装置5103Aは手術室の天井から吊り下げられて設置される表示装置であり、表示装置5103Bは手術室の壁面に設置される表示装置であり、表示装置5103Cは手術室内の机上に設置される表示装置であり、表示装置5103Dは表示機能を有するモバイル機器(例えば、タブレットPC(Personal Computer))である。 The audiovisual controller 5107 causes the acquired display information (that is, the image taken during the operation and various information related to the operation) to be displayed on at least one of the display devices 5103A to 5103D which are output destination devices. In the illustrated example, the display device 5103A is a display device suspended and installed from the ceiling of the operating room, the display device 5103B is a display device installed on the wall of the operating room, and the display device 5103C is in the operating room The display device 5103D is a display device installed on a desk, and the display device 5103D is a mobile device (for example, a tablet PC (Personal Computer)) having a display function.
 また、図31では図示を省略しているが、手術室システム5100には、手術室の外部の装置が含まれてもよい。手術室の外部の装置は、例えば、病院内外に構築されたネットワークに接続されるサーバや、医療スタッフが用いるPC、病院の会議室に設置されるプロジェクタ等であり得る。このような外部装置が病院外にある場合には、視聴覚コントローラ5107は、遠隔医療のために、テレビ会議システム等を介して、他の病院の表示装置に表示情報を表示させることもできる。 Although not shown in FIG. 31, the operating room system 5100 may include devices outside the operating room. The apparatus outside the operating room may be, for example, a server connected to a network built inside or outside a hospital, a PC used by medical staff, a projector installed in a conference room of a hospital, or the like. When such an external device is outside the hospital, the audiovisual controller 5107 can also display the display information on the display device of another hospital via a video conference system or the like for telemedicine.
 手術室制御装置5109は、非医療機器における画像表示に関する処理以外の処理を、統括的に制御する。例えば、手術室制御装置5109は、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191の駆動を制御する。 The operating room control device 5109 centrally controls processing other than processing related to image display in non-medical devices. For example, the operating room controller 5109 controls the driving of the patient bed 5183, the ceiling camera 5187, the operation room camera 5189, and the illumination 5191.
 手術室システム5100には、集中操作パネル5111が設けられており、ユーザは、当該集中操作パネル5111を介して、視聴覚コントローラ5107に対して画像表示についての指示を与えたり、手術室制御装置5109に対して非医療機器の動作についての指示を与えることができる。集中操作パネル5111は、表示装置の表示面上にタッチパネルが設けられて構成される。 The operating room system 5100 is provided with a centralized operation panel 5111, and the user gives an instruction for image display to the audiovisual controller 5107 through the centralized operation panel 5111, and the operating room control device 5109. Instructions can be given to the operation of the non-medical device. The centralized operation panel 5111 is configured by providing a touch panel on the display surface of the display device.
 図32は、集中操作パネル5111における操作画面の表示例を示す図である。図32では、一例として、手術室システム5100に、出力先の装置として、2つの表示装置が設けられている場合に対応する操作画面を示している。図32を参照すると、操作画面5193には、発信元選択領域5195と、プレビュー領域5197と、コントロール領域5201と、が設けられる。 FIG. 32 is a view showing a display example of the operation screen on the centralized operation panel 5111. FIG. 32 shows, as an example, an operation screen corresponding to a case where two display devices are provided as an output destination device in the operating room system 5100. Referring to FIG. 32, the operation screen 5193 is provided with a source selection area 5195, a preview area 5197, and a control area 5201.
 発信元選択領域5195には、手術室システム5100に備えられる発信元装置と、当該発信元装置が有する表示情報を表すサムネイル画面と、が紐付けられて表示される。ユーザは、表示装置に表示させたい表示情報を、発信元選択領域5195に表示されているいずれかの発信元装置から選択することができる。 In the transmission source selection area 5195, a transmission source device provided in the operating room system 5100 and a thumbnail screen representing display information of the transmission source device are displayed in association with each other. The user can select display information to be displayed on the display device from any of the transmission source devices displayed in the transmission source selection area 5195.
 プレビュー領域5197には、出力先の装置である2つの表示装置(Monitor1、Monitor2)に表示される画面のプレビューが表示される。図示する例では、1つの表示装置において4つの画像がPinP表示されている。当該4つの画像は、発信元選択領域5195において選択された発信元装置から発信された表示情報に対応するものである。4つの画像のうち、1つはメイン画像として比較的大きく表示され、残りの3つはサブ画像として比較的小さく表示される。ユーザは、4つの画像が表示された領域を適宜選択することにより、メイン画像とサブ画像を入れ替えることができる。また、4つの画像が表示される領域の下部には、ステータス表示領域5199が設けられており、当該領域に手術に関するステータス(例えば、手術の経過時間や、患者の身体情報等)が適宜表示され得る。 In the preview area 5197, a preview of a screen displayed on two display devices (Monitor 1 and Monitor 2) which are output destination devices is displayed. In the illustrated example, four images are displayed in PinP on one display device. The four images correspond to the display information transmitted from the transmission source device selected in the transmission source selection area 5195. Of the four images, one is displayed relatively large as a main image, and the remaining three are displayed relatively small as sub-images. The user can replace the main image and the sub-image by appropriately selecting the area in which the four images are displayed. In addition, a status display area 5199 is provided below the area where the four images are displayed, and the status regarding surgery (for example, elapsed time of surgery, physical information of patient, etc.) is appropriately displayed in the area. obtain.
 コントロール領域5201には、発信元の装置に対して操作を行うためのGUI(Graphical User Interface)部品が表示される発信元操作領域5203と、出力先の装置に対して操作を行うためのGUI部品が表示される出力先操作領域5205と、が設けられる。図示する例では、発信元操作領域5203には、撮像機能を有する発信元の装置におけるカメラに対して各種の操作(パン、チルト及びズーム)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、発信元の装置におけるカメラの動作を操作することができる。なお、図示は省略しているが、発信元選択領域5195において選択されている発信元の装置がレコーダである場合(すなわち、プレビュー領域5197において、レコーダに過去に記録された画像が表示されている場合)には、発信元操作領域5203には、当該画像の再生、再生停止、巻き戻し、早送り等の操作を行うためのGUI部品が設けられ得る。 A control area 5201 includes a transmission source operation area 5203 in which a GUI (Graphical User Interface) component for performing an operation on a transmission source device is displayed, and a GUI component for performing an operation on an output destination device And an output destination operation area 5205 in which is displayed. In the illustrated example, the transmission source operation area 5203 is provided with GUI components for performing various operations (pan, tilt, and zoom) on the camera in the transmission source apparatus having an imaging function. The user can operate the operation of the camera in the source device by appropriately selecting these GUI components. Although illustration is omitted, when the device of the transmission source selected in the transmission source selection area 5195 is a recorder (that is, in the preview area 5197, an image recorded in the past is displayed on the recorder) In this case, the transmission source operation area 5203 may be provided with a GUI component for performing an operation such as reproduction, reproduction stop, rewind, fast forward, etc. of the image.
 また、出力先操作領域5205には、出力先の装置である表示装置における表示に対する各種の操作(スワップ、フリップ、色調整、コントラスト調整、2D表示と3D表示の切り替え)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、表示装置における表示を操作することができる。 In addition, in the output destination operation area 5205, a GUI component for performing various operations (swap, flip, color adjustment, contrast adjustment, switching between 2D display and 3D display) on the display in the display device which is the output destination device It is provided. The user can operate the display on the display device by appropriately selecting these GUI components.
 なお、集中操作パネル5111に表示される操作画面は図示する例に限定されず、ユーザは、集中操作パネル5111を介して、手術室システム5100に備えられる、視聴覚コントローラ5107及び手術室制御装置5109によって制御され得る各装置に対する操作入力が可能であってよい。 The operation screen displayed on the centralized operation panel 5111 is not limited to the illustrated example, and the user can use the audiovisual controller 5107 and the operating room control device 5109 provided in the operating room system 5100 via the centralized operation panel 5111. Operation input to each device that can be controlled may be possible.
 図33は、以上説明した手術室システムが適用された手術の様子の一例を示す図である。シーリングカメラ5187及び術場カメラ5189は、手術室の天井に設けられ、患者ベッド5183上の患者5185の患部に対して処置を行う術者(医者)5181の手元及び手術室全体の様子を撮影可能である。シーリングカメラ5187及び術場カメラ5189には、倍率調整機能、焦点距離調整機能、撮影方向調整機能等が設けられ得る。照明5191は、手術室の天井に設けられ、少なくとも術者5181の手元を照射する。照明5191は、その照射光量、照射光の波長(色)及び光の照射方向等を適宜調整可能であってよい。 FIG. 33 is a diagram showing an example of a state of surgery to which the operating room system described above is applied. A ceiling camera 5187 and an operation room camera 5189 are provided on the ceiling of the operating room, and can capture a picture of the hand of the operator (doctor) 5181 who performs treatment on the affected part of the patient 5185 on the patient bed 5183 and the entire operating room It is. The ceiling camera 5187 and the operation room camera 5189 may be provided with a magnification adjustment function, a focal length adjustment function, an imaging direction adjustment function, and the like. The illumination 5191 is provided on the ceiling of the operating room and illuminates at least the hand of the operator 5181. The illumination 5191 may be capable of appropriately adjusting the irradiation light amount, the wavelength (color) of the irradiation light, the irradiation direction of the light, and the like.
 内視鏡手術システム5113、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191は、図31に示すように、視聴覚コントローラ5107及び手術室制御装置5109(図33では図示せず)を介して互いに連携可能に接続されている。手術室内には、集中操作パネル5111が設けられており、上述したように、ユーザは、当該集中操作パネル5111を介して、手術室内に存在するこれらの装置を適宜操作することが可能である。 The endoscopic surgery system 5113, the patient bed 5183, the ceiling camera 5187, the operation room camera 5189 and the illumination 5191 are connected via the audiovisual controller 5107 and the operating room controller 5109 (not shown in FIG. 33) as shown in FIG. Are connected to each other so that they can cooperate with each other. A centralized operation panel 5111 is provided in the operating room, and as described above, the user can appropriately operate these devices present in the operating room via the centralized operation panel 5111.
 以下、内視鏡手術システム5113の構成について詳細に説明する。図示するように、内視鏡手術システム5113は、内視鏡5115と、その他の術具5131と、内視鏡5115を支持する支持アーム装置5141と、内視鏡下手術のための各種の装置が搭載されたカート5151と、から構成される。 The configuration of the endoscopic surgery system 5113 will be described in detail below. As shown, the endoscopic surgery system 5113 includes an endoscope 5115, other surgical instruments 5131, a support arm device 5141 for supporting the endoscope 5115, and various devices for endoscopic surgery. And a cart 5151 mounted thereon.
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5139a~5139dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5139a~5139dから、内視鏡5115の鏡筒5117や、その他の術具5131が患者5185の体腔内に挿入される。図示する例では、その他の術具5131として、気腹チューブ5133、エネルギー処置具5135及び鉗子5137が、患者5185の体腔内に挿入されている。また、エネルギー処置具5135は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5131はあくまで一例であり、術具5131としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。 In endoscopic surgery, instead of cutting and opening the abdominal wall, a plurality of cylindrical opening tools called trocars 5139a to 5139d are punctured in the abdominal wall. Then, the barrel 5117 of the endoscope 5115 and other surgical tools 5131 are inserted into the body cavity of the patient 5185 from the trocars 5139 a to 5139 d. In the illustrated example, an insufflation tube 5133, an energy treatment instrument 5135, and a forceps 5137 are inserted into the body cavity of the patient 5185 as other surgical instruments 5131. In addition, the energy treatment tool 5135 is a treatment tool that performs incision and peeling of tissue, sealing of a blood vessel, and the like by high-frequency current or ultrasonic vibration. However, the illustrated surgical tool 5131 is merely an example, and various surgical tools generally used in endoscopic surgery, such as forceps and retractors, may be used as the surgical tool 5131, for example.
 内視鏡5115によって撮影された患者5185の体腔内の術部の画像が、表示装置5155に表示される。術者5181は、表示装置5155に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5135や鉗子5137を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5133、エネルギー処置具5135及び鉗子5137は、手術中に、術者5181又は助手等によって支持される。 An image of the operation site in the body cavity of the patient 5185 taken by the endoscope 5115 is displayed on the display device 5155. The operator 5181 performs a treatment such as excision of the affected area using the energy treatment tool 5135 and the forceps 5137 while viewing the image of the operative part displayed on the display device 5155 in real time. Although illustration is omitted, the insufflation tube 5133, the energy treatment tool 5135 and the forceps 5137 are supported by the operator 5181 or an assistant during the operation.
 (支持アーム装置)
 支持アーム装置5141は、ベース部5143から延伸するアーム部5145を備える。図示する例では、アーム部5145は、関節部5147a、5147b、5147c、及びリンク5149a、5149bから構成されており、アーム制御装置5159からの制御により駆動される。アーム部5145によって内視鏡5115が支持され、その位置及び姿勢が制御される。これにより、内視鏡5115の安定的な位置の固定が実現され得る。
(Support arm device)
The support arm device 5141 includes an arm 5145 extending from the base 5143. In the illustrated example, the arm 5145 includes joints 5147a, 5147b, 5147c, and links 5149a, 5149b, and is driven by control from the arm controller 5159. The endoscope 5115 is supported by the arm 5145, and its position and posture are controlled. In this way, stable position fixation of the endoscope 5115 can be realized.
 (内視鏡)
 内視鏡5115は、先端から所定の長さの領域が患者5185の体腔内に挿入される鏡筒5117と、鏡筒5117の基端に接続されるカメラヘッド5119と、から構成される。図示する例では、硬性の鏡筒5117を有するいわゆる硬性鏡として構成される内視鏡5115を図示しているが、内視鏡5115は、軟性の鏡筒5117を有するいわゆる軟性鏡として構成されてもよい。
(Endoscope)
The endoscope 5115 includes a lens barrel 5117 whose region of a predetermined length from the tip is inserted into the body cavity of the patient 5185, and a camera head 5119 connected to the proximal end of the lens barrel 5117. In the illustrated example, the endoscope 5115 configured as a so-called rigid endoscope having a rigid barrel 5117 is illustrated. However, the endoscope 5115 is configured as a so-called flexible mirror having a flexible barrel 5117 It is also good.
 鏡筒5117の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5115には光源装置5157が接続されており、当該光源装置5157によって生成された光が、鏡筒5117の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5185の体腔内の観察対象に向かって照射される。なお、内視鏡5115は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 At the tip of the lens barrel 5117, an opening into which an objective lens is fitted is provided. A light source device 5157 is connected to the endoscope 5115, and light generated by the light source device 5157 is guided to the tip of the lens barrel by a light guide extended inside the lens barrel 5117, and an objective The light is emitted toward the observation target in the body cavity of the patient 5185 through the lens. The endoscope 5115 may be a straight endoscope, or may be a oblique endoscope or a side endoscope.
 カメラヘッド5119の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5153に送信される。なお、カメラヘッド5119には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。 An optical system and an imaging device are provided inside the camera head 5119, and reflected light (observation light) from the observation target is condensed on the imaging device by the optical system. The observation light is photoelectrically converted by the imaging element to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 5153 as RAW data. The camera head 5119 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5119には撮像素子が複数設けられてもよい。この場合、鏡筒5117の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。 A plurality of imaging devices may be provided in the camera head 5119 in order to cope with, for example, stereoscopic vision (3D display). In this case, a plurality of relay optical systems are provided inside the lens barrel 5117 in order to guide observation light to each of the plurality of imaging elements.
 (カートに搭載される各種の装置)
 CCU5153は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5115及び表示装置5155の動作を統括的に制御する。具体的には、CCU5153は、カメラヘッド5119から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5153は、当該画像処理を施した画像信号を表示装置5155に提供する。また、CCU5153には、図31に示す視聴覚コントローラ5107が接続される。CCU5153は、画像処理を施した画像信号を視聴覚コントローラ5107にも提供する。また、CCU5153は、カメラヘッド5119に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。当該撮像条件に関する情報は、入力装置5161を介して入力されてもよいし、上述した集中操作パネル5111を介して入力されてもよい。
(Various devices installed in the cart)
The CCU 5153 is constituted by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operation of the endoscope 5115 and the display device 5155 in a centralized manner. Specifically, the CCU 5153 subjects the image signal received from the camera head 5119 to various types of image processing, such as development processing (demosaicing processing), for displaying an image based on the image signal. The CCU 5153 provides the display device 5155 with the image signal subjected to the image processing. Further, an audiovisual controller 5107 shown in FIG. 31 is connected to the CCU 5153. The CCU 5153 also provides the audiovisual controller 5107 with the image signal subjected to the image processing. Also, the CCU 5153 transmits a control signal to the camera head 5119 to control the driving thereof. The control signal may include information on imaging conditions such as magnification and focal length. The information related to the imaging condition may be input through the input device 5161 or may be input through the above-described centralized operation panel 5111.
 表示装置5155は、CCU5153からの制御により、当該CCU5153によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5115が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5155としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5155として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5155が設けられてもよい。 The display device 5155 displays an image based on the image signal subjected to the image processing by the CCU 5153 under the control of the CCU 5153. In the case where the endoscope 5115 corresponds to high-resolution imaging such as 4K (3840 horizontal pixels × 2160 vertical pixels) or 8K (7680 horizontal pixels × 4320 vertical pixels), and / or 3D display, for example In the case where the display device 5155 is compatible with each of the display devices 5155, a device capable of high-resolution display and / or a device capable of 3D display may be used. In the case of high-resolution imaging such as 4K or 8K, by using a display device 5155 having a size of 55 inches or more, a further immersive feeling can be obtained. In addition, a plurality of display devices 5155 having different resolutions and sizes may be provided depending on the application.
 光源装置5157は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5115に供給する。 The light source device 5157 is configured of a light source such as an LED (light emitting diode), for example, and supplies illumination light at the time of imaging the surgical site to the endoscope 5115.
 アーム制御装置5159は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5141のアーム部5145の駆動を制御する。 The arm control device 5159 is constituted by a processor such as a CPU, for example, and operates in accordance with a predetermined program to control the driving of the arm 5145 of the support arm device 5141 according to a predetermined control method.
 入力装置5161は、内視鏡手術システム5113に対する入力インタフェースである。ユーザは、入力装置5161を介して、内視鏡手術システム5113に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5161を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5161を介して、アーム部5145を駆動させる旨の指示や、内視鏡5115による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5135を駆動させる旨の指示等を入力する。 The input device 5161 is an input interface to the endoscopic surgery system 5113. The user can input various information and input instructions to the endoscopic surgery system 5113 through the input device 5161. For example, the user inputs, via the input device 5161, various types of information related to surgery, such as physical information of a patient and information on a surgery procedure. Also, for example, the user instructs, via the input device 5161, an instruction to drive the arm unit 5145, and an instruction to change the imaging conditions (type of irradiated light, magnification, focal length, etc.) by the endoscope 5115. , An instruction to drive the energy treatment tool 5135, etc. are input.
 入力装置5161の種類は限定されず、入力装置5161は各種の公知の入力装置であってよい。入力装置5161としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5171及び/又はレバー等が適用され得る。入力装置5161としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5155の表示面上に設けられてもよい。 The type of the input device 5161 is not limited, and the input device 5161 may be various known input devices. For example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5171, and / or a lever may be applied as the input device 5161. When a touch panel is used as the input device 5161, the touch panel may be provided on the display surface of the display device 5155.
 あるいは、入力装置5161は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5161は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5161は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5161が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5181)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。 Alternatively, the input device 5161 is a device mounted by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), for example, and various types of input according to the user's gesture or line of sight detected by these devices. Is done. Further, the input device 5161 includes a camera capable of detecting the motion of the user, and various inputs are performed in accordance with the user's gesture and line of sight detected from the image captured by the camera. Furthermore, the input device 5161 includes a microphone capable of picking up the user's voice, and various inputs are performed by voice via the microphone. In this manner, the user (for example, the operator 5181) belonging to the clean area operates the apparatus belonging to the unclean area in a non-contact manner by the input device 5161 being configured to be able to input various information in a non-contact manner. Is possible. In addition, since the user can operate the device without releasing his / her hand from the operating tool, the convenience of the user is improved.
 処置具制御装置5163は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5135の駆動を制御する。気腹装置5165は、内視鏡5115による視野の確保及び術者の作業空間の確保の目的で、患者5185の体腔を膨らめるために、気腹チューブ5133を介して当該体腔内にガスを送り込む。レコーダ5167は、手術に関する各種の情報を記録可能な装置である。プリンタ5169は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 5163 controls the drive of the energy treatment instrument 5135 for ablation of tissue, incision, sealing of a blood vessel or the like. The insufflation apparatus 5165 is provided with a gas in the body cavity via the insufflation tube 5133 in order to expand the body cavity of the patient 5185 for the purpose of securing a visual field by the endoscope 5115 and securing a working space of the operator. Send The recorder 5167 is a device capable of recording various types of information regarding surgery. The printer 5169 is a device capable of printing various types of information related to surgery in various types such as text, images, and graphs.
 以下、内視鏡手術システム5113において特に特徴的な構成について、更に詳細に説明する。 The characteristic features of the endoscopic surgery system 5113 will be described in more detail below.
 (支持アーム装置)
 支持アーム装置5141は、基台であるベース部5143と、ベース部5143から延伸するアーム部5145と、を備える。図示する例では、アーム部5145は、複数の関節部5147a、5147b、5147cと、関節部5147bによって連結される複数のリンク5149a、5149bと、から構成されているが、図33では、簡単のため、アーム部5145の構成を簡略化して図示している。実際には、アーム部5145が所望の自由度を有するように、関節部5147a~5147c及びリンク5149a、5149bの形状、数及び配置、並びに関節部5147a~5147cの回転軸の方向等が適宜設定され得る。例えば、アーム部5145は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5145の可動範囲内において内視鏡5115を自由に移動させることが可能になるため、所望の方向から内視鏡5115の鏡筒5117を患者5185の体腔内に挿入することが可能になる。
(Support arm device)
The support arm device 5141 includes a base 5143 which is a base and an arm 5145 extending from the base 5143. In the illustrated example, the arm 5145 includes a plurality of joints 5147a, 5147b, and 5147c, and a plurality of links 5149a and 5149b connected by the joints 5147b. However, in FIG. The structure of the arm 5145 is shown in a simplified manner. In practice, the shape, number and arrangement of the joints 5147a to 5147c and the links 5149a and 5149b, and the direction of the rotation axis of the joints 5147a to 5147c are appropriately set so that the arm 5145 has a desired degree of freedom. obtain. For example, the arm 5145 may be preferably configured to have six or more degrees of freedom. As a result, the endoscope 5115 can be freely moved within the movable range of the arm 5145, so that the lens barrel 5117 of the endoscope 5115 can be inserted into the body cavity of the patient 5185 from a desired direction. It will be possible.
 関節部5147a~5147cにはアクチュエータが設けられており、関節部5147a~5147cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5159によって制御されることにより、各関節部5147a~5147cの回転角度が制御され、アーム部5145の駆動が制御される。これにより、内視鏡5115の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5159は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5145の駆動を制御することができる。 The joints 5147a to 5147c are provided with an actuator, and the joints 5147a to 5147c are configured to be rotatable around a predetermined rotation axis by driving the actuators. The driving of the actuator is controlled by the arm control device 5159 to control the rotation angles of the joint portions 5147a to 5147c, and the driving of the arm portion 5145 is controlled. Thereby, control of the position and posture of the endoscope 5115 can be realized. At this time, the arm control device 5159 can control the driving of the arm unit 5145 by various known control methods such as force control or position control.
 例えば、術者5181が、入力装置5161(フットスイッチ5171を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5159によってアーム部5145の駆動が適宜制御され、内視鏡5115の位置及び姿勢が制御されてよい。当該制御により、アーム部5145の先端の内視鏡5115を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5145は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5145は、手術室から離れた場所に設置される入力装置5161を介してユーザによって遠隔操作され得る。 For example, when the operator 5181 appropriately inputs an operation via the input device 5161 (including the foot switch 5171), the drive of the arm 5145 is appropriately controlled by the arm control device 5159 according to the operation input, and The position and attitude of the endoscope 5115 may be controlled. According to the control, after the endoscope 5115 at the tip of the arm 5145 is moved from any position to any position, the endoscope 5115 can be fixedly supported at the position after the movement. The arm 5145 may be operated by a so-called master slave method. In this case, the arm 5145 can be remotely controlled by the user via the input device 5161 installed at a location distant from the operating room.
 また、力制御が適用される場合には、アーム制御装置5159は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5145が移動するように、各関節部5147a~5147cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5145に触れながらアーム部5145を移動させる際に、比較的軽い力で当該アーム部5145を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5115を移動させることが可能となり、ユーザの利便性を向上させることができる。 Further, when force control is applied, the arm control device 5159 receives the external force from the user and moves the actuator of each joint 5147 a to 5147 c so that the arm 5145 moves smoothly following the external force. So-called power assist control may be performed. Thus, when the user moves the arm 5145 while directly touching the arm 5145, the arm 5145 can be moved with a relatively light force. Therefore, it is possible to move the endoscope 5115 more intuitively and with a simpler operation, and the convenience of the user can be improved.
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5115が支持されていた。これに対して、支持アーム装置5141を用いることにより、人手によらずに内視鏡5115の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。 Here, in general, in endoscopic surgery, the endoscope 5115 is supported by a doctor called scopist. On the other hand, by using the support arm device 5141, the position of the endoscope 5115 can be more reliably fixed without manual operation, so that it is possible to stably obtain an image of the operative site. , Can be performed smoothly.
 なお、アーム制御装置5159は必ずしもカート5151に設けられなくてもよい。また、アーム制御装置5159は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5159は、支持アーム装置5141のアーム部5145の各関節部5147a~5147cにそれぞれ設けられてもよく、複数のアーム制御装置5159が互いに協働することにより、アーム部5145の駆動制御が実現されてもよい。 The arm control device 5159 may not necessarily be provided in the cart 5151. Also, the arm control device 5159 may not necessarily be one device. For example, the arm control device 5159 may be provided at each joint 5147 a to 5147 c of the arm 5145 of the support arm device 5141, and the arm control devices 5159 cooperate with one another to drive the arm 5145. Control may be realized.
 (光源装置)
 光源装置5157は、内視鏡5115に術部を撮影する際の照射光を供給する。光源装置5157は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5157において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5119の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
(Light source device)
The light source device 5157 supplies the endoscope 5115 with illumination light for imaging the operative part. The light source device 5157 is configured of, for example, a white light source configured by an LED, a laser light source, or a combination thereof. At this time, when a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Adjustments can be made. Further, in this case, the laser light from each of the RGB laser light sources is irradiated on the observation target in time division, and the drive of the imaging device of the camera head 5119 is controlled in synchronization with the irradiation timing to cope with each of RGB. It is also possible to capture a shot image in time division. According to the method, a color image can be obtained without providing a color filter in the imaging device.
 また、光源装置5157は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5119の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 In addition, the drive of the light source device 5157 may be controlled to change the intensity of the light to be output at predetermined time intervals. The drive of the imaging element of the camera head 5119 is controlled in synchronization with the timing of the change of the light intensity to acquire images in time division, and by combining the images, high dynamic without so-called blackout and whiteout is obtained. An image of the range can be generated.
 また、光源装置5157は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5157は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 In addition, the light source device 5157 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, the mucous membrane surface layer is irradiated by irradiating narrow band light as compared with irradiation light (that is, white light) at the time of normal observation using the wavelength dependency of light absorption in body tissue. The so-called narrow band imaging (Narrow Band Imaging) is performed to image a predetermined tissue such as a blood vessel with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiation with excitation light. In fluorescence observation, a body tissue is irradiated with excitation light and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue while being locally injected. What irradiates the excitation light corresponding to the fluorescence wavelength of the reagent, and obtains a fluorescence image etc. can be performed. The light source device 5157 can be configured to be able to supply narrow band light and / or excitation light corresponding to such special light observation.
 (カメラヘッド及びCCU)
 図34を参照して、内視鏡5115のカメラヘッド5119及びCCU5153の機能についてより詳細に説明する。図34は、図33に示すカメラヘッド5119及びCCU5153の機能構成の一例を示すブロック図である。
(Camera head and CCU)
The functions of the camera head 5119 and the CCU 5153 of the endoscope 5115 will be described in more detail with reference to FIG. FIG. 34 is a block diagram showing an example of a functional configuration of the camera head 5119 and the CCU 5153 shown in FIG.
 図34を参照すると、カメラヘッド5119は、その機能として、レンズユニット5121と、撮像部5123と、駆動部5125と、通信部5127と、カメラヘッド制御部5129と、を有する。また、CCU5153は、その機能として、通信部5173と、画像処理部5175と、制御部5177と、を有する。カメラヘッド5119とCCU5153とは、伝送ケーブル5179によって双方向に通信可能に接続されている。 Referring to FIG. 34, the camera head 5119 has a lens unit 5121, an imaging unit 5123, a drive unit 5125, a communication unit 5127, and a camera head control unit 5129 as its functions. The CCU 5153 also includes a communication unit 5173, an image processing unit 5175, and a control unit 5177 as its functions. The camera head 5119 and the CCU 5153 are communicably connected in both directions by a transmission cable 5179.
 まず、カメラヘッド5119の機能構成について説明する。レンズユニット5121は、鏡筒5117との接続部に設けられる光学系である。鏡筒5117の先端から取り込まれた観察光は、カメラヘッド5119まで導光され、当該レンズユニット5121に入射する。レンズユニット5121は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5121は、撮像部5123の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。 First, the functional configuration of the camera head 5119 will be described. The lens unit 5121 is an optical system provided at the connection with the lens barrel 5117. The observation light taken in from the tip of the lens barrel 5117 is guided to the camera head 5119 and is incident on the lens unit 5121. The lens unit 5121 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristic of the lens unit 5121 is adjusted so as to condense the observation light on the light receiving surface of the imaging element of the imaging unit 5123. Further, the zoom lens and the focus lens are configured such that the position on the optical axis can be moved in order to adjust the magnification and the focus of the captured image.
 撮像部5123は撮像素子によって構成され、レンズユニット5121の後段に配置される。レンズユニット5121を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5123によって生成された画像信号は、通信部5127に提供される。 The imaging unit 5123 is configured by an imaging element, and is disposed downstream of the lens unit 5121. The observation light which has passed through the lens unit 5121 is condensed on the light receiving surface of the imaging device, and an image signal corresponding to the observation image is generated by photoelectric conversion. The image signal generated by the imaging unit 5123 is provided to the communication unit 5127.
 撮像部5123を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5181は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。 As an imaging element which comprises the imaging part 5123, it is an image sensor of a CMOS (Complementary Metal Oxide Semiconductor) type, for example, and a color imaging | photography thing which has Bayer arrangement is used. In addition, as the said image pick-up element, what can respond | correspond to imaging | photography of the high resolution image of 4K or more may be used, for example. By obtaining a high resolution image of the operation site, the operator 5181 can grasp the situation of the operation site in more detail, and can proceed the surgery more smoothly.
 また、撮像部5123を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5181は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5123が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5121も複数系統設けられる。 In addition, the imaging device constituting the imaging unit 5123 is configured to have a pair of imaging devices for acquiring image signals for the right eye and for the left eye corresponding to 3D display. The 3D display enables the operator 5181 to more accurately grasp the depth of the living tissue in the operation site. When the imaging unit 5123 is configured as a multi-plate type, a plurality of lens units 5121 are also provided corresponding to each imaging element.
 また、撮像部5123は、必ずしもカメラヘッド5119に設けられなくてもよい。例えば、撮像部5123は、鏡筒5117の内部に、対物レンズの直後に設けられてもよい。 In addition, the imaging unit 5123 may not necessarily be provided in the camera head 5119. For example, the imaging unit 5123 may be provided inside the lens barrel 5117 immediately after the objective lens.
 駆動部5125は、アクチュエータによって構成され、カメラヘッド制御部5129からの制御により、レンズユニット5121のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5123による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 5125 is constituted by an actuator, and moves the zoom lens and the focus lens of the lens unit 5121 by a predetermined distance along the optical axis under the control of the camera head control unit 5129. Thereby, the magnification and the focus of the captured image by the imaging unit 5123 may be appropriately adjusted.
 通信部5127は、CCU5153との間で各種の情報を送受信するための通信装置によって構成される。通信部5127は、撮像部5123から得た画像信号をRAWデータとして伝送ケーブル5179を介してCCU5153に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5181が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5127には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5179を介してCCU5153に送信される。 The communication unit 5127 is configured of a communication device for transmitting and receiving various types of information to and from the CCU 5153. The communication unit 5127 transmits the image signal obtained from the imaging unit 5123 to the CCU 5153 via the transmission cable 5179 as RAW data. At this time, it is preferable that the image signal be transmitted by optical communication in order to display the captured image of the surgical site with low latency. During the operation, the operator 5181 performs the operation while observing the condition of the affected area by the captured image, and for safer and more reliable operation, the moving image of the operation site is displayed in real time as much as possible It is because that is required. In the case where optical communication is performed, the communication unit 5127 is provided with a photoelectric conversion module which converts an electrical signal into an optical signal. The image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5153 via the transmission cable 5179.
 また、通信部5127は、CCU5153から、カメラヘッド5119の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5127は、受信した制御信号をカメラヘッド制御部5129に提供する。なお、CCU5153からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5127には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5129に提供される。 The communication unit 5127 also receives, from the CCU 5153, a control signal for controlling the drive of the camera head 5119. The control signal includes, for example, information indicating that the frame rate of the captured image is designated, information indicating that the exposure value at the time of imaging is designated, and / or information indicating that the magnification and focus of the captured image are designated, etc. Contains information about the condition. The communication unit 5127 provides the received control signal to the camera head control unit 5129. The control signal from the CCU 5153 may also be transmitted by optical communication. In this case, the communication unit 5127 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and is then provided to the camera head control unit 5129.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5153の制御部5177によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5115に搭載される。 Note that imaging conditions such as the frame rate, the exposure value, the magnification, and the focus described above are automatically set by the control unit 5177 of the CCU 5153 based on the acquired image signal. That is, so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 5115.
 カメラヘッド制御部5129は、通信部5127を介して受信したCCU5153からの制御信号に基づいて、カメラヘッド5119の駆動を制御する。例えば、カメラヘッド制御部5129は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5123の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5129は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5125を介してレンズユニット5121のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5129は、更に、鏡筒5117やカメラヘッド5119を識別するための情報を記憶する機能を備えてもよい。 The camera head control unit 5129 controls the drive of the camera head 5119 based on the control signal from the CCU 5153 received via the communication unit 5127. For example, the camera head control unit 5129 controls the drive of the imaging element of the imaging unit 5123 based on the information to specify the frame rate of the captured image and / or the information to specify the exposure at the time of imaging. In addition, for example, the camera head control unit 5129 appropriately moves the zoom lens and the focus lens of the lens unit 5121 via the drive unit 5125 based on the information indicating that the magnification and the focus of the captured image are designated. The camera head control unit 5129 may further have a function of storing information for identifying the lens barrel 5117 and the camera head 5119.
 なお、レンズユニット5121や撮像部5123等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5119について、オートクレーブ滅菌処理に対する耐性を持たせることができる。 By disposing the lens unit 5121 and the imaging unit 5123 in a sealed structure having high airtightness and waterproofness, the camera head 5119 can have resistance to autoclave sterilization.
 次に、CCU5153の機能構成について説明する。通信部5173は、カメラヘッド5119との間で各種の情報を送受信するための通信装置によって構成される。通信部5173は、カメラヘッド5119から、伝送ケーブル5179を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5173には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5173は、電気信号に変換した画像信号を画像処理部5175に提供する。 Next, the functional configuration of the CCU 5153 will be described. The communication unit 5173 is configured of a communication device for transmitting and receiving various information to and from the camera head 5119. The communication unit 5173 receives an image signal transmitted from the camera head 5119 via the transmission cable 5179. At this time, as described above, the image signal can be suitably transmitted by optical communication. In this case, in accordance with the optical communication, the communication unit 5173 is provided with a photoelectric conversion module which converts an optical signal into an electrical signal. The communication unit 5173 provides the image processing unit 5175 with the image signal converted into the electrical signal.
 また、通信部5173は、カメラヘッド5119に対して、カメラヘッド5119の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。 In addition, the communication unit 5173 transmits, to the camera head 5119, a control signal for controlling the drive of the camera head 5119. The control signal may also be transmitted by optical communication.
 画像処理部5175は、カメラヘッド5119から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5175は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。 The image processing unit 5175 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 5119. As the image processing, for example, development processing, high image quality processing (band emphasis processing, super-resolution processing, NR (noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing) And various other known signal processings. The image processing unit 5175 also performs detection processing on the image signal to perform AE, AF, and AWB.
 画像処理部5175は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5175が複数のGPUによって構成される場合には、画像処理部5175は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。 The image processing unit 5175 is configured by a processor such as a CPU or a GPU, and the image processing and the detection processing described above can be performed by the processor operating according to a predetermined program. When the image processing unit 5175 is configured by a plurality of GPUs, the image processing unit 5175 appropriately divides the information related to the image signal, and performs image processing in parallel by the plurality of GPUs.
 制御部5177は、内視鏡5115による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5177は、カメラヘッド5119の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5177は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5115にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5177は、画像処理部5175による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。 The control unit 5177 performs various types of control regarding imaging of the surgical site by the endoscope 5115 and display of the imaged image. For example, the control unit 5177 generates a control signal for controlling the drive of the camera head 5119. At this time, when the imaging condition is input by the user, the control unit 5177 generates a control signal based on the input by the user. Alternatively, when the endoscope 5115 is equipped with the AE function, the AF function, and the AWB function, the control unit 5177 determines the optimum exposure value, focal length, and the like according to the result of the detection processing by the image processing unit 5175. The white balance is appropriately calculated to generate a control signal.
 また、制御部5177は、画像処理部5175によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5155に表示させる。この際、制御部5177は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5177は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5135使用時のミスト等を認識することができる。制御部5177は、表示装置5155に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5181に提示されることにより、より安全かつ確実に手術を進めることが可能になる。 In addition, the control unit 5177 causes the display device 5155 to display an image of the operative site based on the image signal subjected to the image processing by the image processing unit 5175. At this time, the control unit 5177 recognizes various objects in the operation site image using various image recognition techniques. For example, the control unit 5177 detects a shape, a color, and the like of an edge of an object included in an operation part image, thereby enabling a surgical tool such as forceps, a specific living part, bleeding, mist when using the energy treatment tool 5135, etc. It can be recognized. When displaying the image of the operation unit on the display device 5155, the control unit 5177 uses the recognition result to superimpose various operation support information on the image of the operation unit. The operation support information is superimposed and presented to the operator 5181, which makes it possible to proceed with the operation more safely and reliably.
 カメラヘッド5119及びCCU5153を接続する伝送ケーブル5179は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 A transmission cable 5179 connecting the camera head 5119 and the CCU 5153 is an electric signal cable corresponding to communication of an electric signal, an optical fiber corresponding to optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル5179を用いて有線で通信が行われていたが、カメラヘッド5119とCCU5153との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5179を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5179によって妨げられる事態が解消され得る。 Here, in the illustrated example, communication is performed by wire communication using the transmission cable 5179, but communication between the camera head 5119 and the CCU 5153 may be performed wirelessly. When the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5179 in the operating room, so that the movement of the medical staff in the operating room can be eliminated by the transmission cable 5179.
 以上、本開示に係る技術が適用され得る手術室システム5100の一例について説明した。なお、ここでは、一例として手術室システム5100が適用される医療用システムが内視鏡手術システム5113である場合について説明したが、手術室システム5100の構成はかかる例に限定されない。例えば、手術室システム5100は、内視鏡手術システム5113に代えて、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。 Heretofore, an example of the operating room system 5100 to which the technology according to the present disclosure can be applied has been described. Although the case where the medical treatment system to which the operating room system 5100 is applied is the endoscopic surgery system 5113 is described here as an example, the configuration of the operating room system 5100 is not limited to such an example. For example, the operating room system 5100 may be applied to a flexible endoscopic system for examination or a microsurgery system instead of the endoscopic surgery system 5113.
 図1乃至図27を用いて説明した本実施形態に係るカメラシステムは、以上説明した構成のうち、シーリングカメラ5187、術場カメラ5189、内視鏡5115のカメラヘッド5119に好適に適用され得る。シーリングカメラ5187、術場カメラ5189、内視鏡5115のカメラヘッド5119に、本開示に係る技術を適用することにより、血中のヘモグロビンを正確に観察することができたり、内臓の奥行きなどを正確に測定することができる。 The camera system according to the present embodiment described with reference to FIGS. 1 to 27 can be suitably applied to the ceiling camera 5187, the surgical site camera 5189, and the camera head 5119 of the endoscope 5115 among the configurations described above. By applying the technology according to the present disclosure to the ceiling camera 5187, the operation room camera 5189, and the camera head 5119 of the endoscope 5115, hemoglobin in the blood can be accurately observed, the depth of internal organs, etc. can be accurately determined. Can be measured.
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。従って、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、および、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 In the present specification, a system means a set of a plurality of components (apparatus, modules (parts), etc.), and it does not matter whether all the components are in the same case. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing are all systems. .
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 In addition, the effects described in the present specification are merely examples and are not limited, and may have other effects.
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present technology.
 なお、本技術は以下のような構成も取ることができる。
(1)
 被写体を撮像する撮像部と、
 ストラクチャードライト光源からの所定のパターンの光が、前記撮像部の特定の画素の投影領域に照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する画像生成部と
 を備える撮像装置。
(2)
 前記所定のパターンは、前記特定の画素の投影領域に照射されるドットからなるドットパターンである
 前記(1)に記載の撮像装置。
(3)
 前記画像生成部は、前記ストラクチャードライト光源から、IR画素の投影領域にIR光が照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
 前記(1)または(2)に記載の撮像装置。
(4)
 前記画像生成部は、前記ストラクチャードライト光源からの前記IR光が照射されている前記IR画素からの信号に基づいてIR画像を生成し、前記IR光が照射されていない画素からの信号に基づいて可視画像を生成する
 前記(3)に記載の撮像装置。
(5)
 前記画像生成部は、波長帯の異なる複数の前記ストラクチャードライト光源から、前記複数のストラクチャードライト光源がそれぞれ対応する画素の投影領域に、前記複数のストラクチャードライト光源からの所定のパターンの光がそれぞれ照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
 前記(1)または(2)に記載の撮像装置。
(6)
 前記画像生成部は、前記ストラクチャードライト光源から、TOF用画素の投影領域にIR光が照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
 前記(1)または(2)に記載の撮像装置。
(7)
 前記画像生成部は、前記ストラクチャードライト光源からの前記IR光が照射されている前記TOF用画素からの信号に基づいてAF制御用の距離を算出し、前記IR光が照射されていない画素からの信号に基づいて可視画像を生成する
 前記(6)に記載の撮像装置。
(8)
 前記画像生成部は、前記ストラクチャードライト光源から、三角測量用画素の投影領域にIR光が照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
 前記(1)または(2)に記載の撮像装置。
(9)
 前記画像生成部は、前記ストラクチャードライト光源からの前記IR光が照射されている前記三角測量用画素からの信号に基づいてAF制御用の距離を算出し、前記IR光が照射されていない画素からの信号に基づいて可視画像を生成する
 前記(8)に記載の撮像装置。
(10)
 前記ストラクチャードライト光源は、前記撮像部のレンズに近接して配置される
 前記(1)乃至(9)のいずれかに記載の撮像装置。
(11)
 前記ストラクチャードライト光源となる光照射部をさらに備える
 前記(1)乃至(10)のいずれかに記載の撮像装置。
(12)
 前記光照射部の照射領域境界を前記撮像部の画角にほぼ一致させるために、前記光照射部から照射される光を反射させ、前記画素の投影領域で反射された光を透過させるミラーを
 さらに備える前記(11)に記載の撮像装置。
(13)
 前記光照射部は、前面に回折格子を備える
 前記(11)に記載の撮像装置。
(14)
 前記光照射部は、前記撮像装置と一体化して構成される
 前記(11)乃至(13)のいずれかに記載の撮像装置。
(15)
 前記光照射部は、前記撮像装置に対して取り替え可能に装着されている
 前記(11)乃至(13)のいずれかに記載の撮像装置。
Note that the present technology can also have the following configurations.
(1)
An imaging unit for imaging a subject;
An image of the subject is generated based on a pixel signal obtained by performing imaging in a state in which light of a predetermined pattern from a structured light source is emitted to a projection area of a specific pixel of the imaging unit. And an image generation unit.
(2)
The imaging device according to (1), wherein the predetermined pattern is a dot pattern composed of dots irradiated to a projection area of the specific pixel.
(3)
The image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is irradiated to the projection region of the IR pixel from the structured light source. 1) or the imaging device as described in (2).
(4)
The image generation unit generates an IR image based on a signal from the IR pixel irradiated with the IR light from the structured light source, and based on a signal from a pixel not irradiated with the IR light. The imaging device according to (3), which generates a visible image.
(5)
The image generation unit irradiates light of a predetermined pattern from the plurality of structured light sources on a projection area of a pixel corresponding to each of the plurality of structured light sources from the plurality of structured light sources having different wavelength bands. The imaging device according to (1) or (2), wherein an image of the subject is generated based on a pixel signal obtained by performing imaging in a state where the image is captured.
(6)
The image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is irradiated to the projection region of the TOF pixel from the structured light source. The imaging device according to (1) or (2).
(7)
The image generation unit calculates a distance for AF control based on a signal from the TOF pixel on which the IR light from the structured light source is irradiated, and the image generation unit calculates the distance from the pixel on which the IR light is not irradiated. The imaging device according to (6), which generates a visible image based on a signal.
(8)
The image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is emitted from the structured light source to the projection area of the triangulation pixel. The imaging device according to (1) or (2).
(9)
The image generation unit calculates a distance for AF control based on a signal from the triangulation pixel irradiated with the IR light from the structured light source, and the pixel not irradiated with the IR light An imaging device given in the above (8) which generates a visible picture based on a signal of.
(10)
The imaging device according to any one of (1) to (9), wherein the structured light source is disposed close to a lens of the imaging unit.
(11)
The imaging device according to any one of (1) to (10), further including: a light irradiation unit which is the structured light source.
(12)
In order to make the irradiation area boundary of the light irradiation part substantially coincide with the angle of view of the imaging part, a mirror which reflects the light irradiated from the light irradiation part and transmits the light reflected by the projection area of the pixel The imaging device according to (11), further comprising:
(13)
The imaging apparatus according to (11), wherein the light irradiation unit includes a diffraction grating on a front surface.
(14)
The imaging apparatus according to any one of (11) to (13), wherein the light emitting unit is configured integrally with the imaging apparatus.
(15)
The imaging device according to any one of (11) to (13), wherein the light emitting unit is mounted exchangeably to the imaging device.
 1 カメラシステム, 11 IR光照射装置, 11A IR光照射部, 12 撮像装置, 21 レーザ光源, 22 回折格子, 31 光学系, 32 イメージセンサ, 33 画像生成部, 41 信号分離部, 42-1 可視信号補間処理部, 42-2 IR信号補間処理部, 43-1 可視信号高画質化信号処理部, 43-2 IR信号高画質化信号処理部, 51 カメラシステム, 61 光照射装置, 61A-1乃至61A-4 光照射部, 62 撮像装置, 71 光学系, 72 イメージセンサ, 73 画像生成部, 81 信号分離部, 82-1乃至82-4 信号補間処理部, 83-1乃至83-4 高画質化信号処理部 DESCRIPTION OF SYMBOLS 1 Camera system, 11 IR light irradiation apparatus, 11A IR light irradiation part, 12 imaging apparatus, 21 laser light source, 22 diffraction grating, 31 optical system, 32 image sensor, 33 image generation part, 41 signal separation part, 42-1 visible Signal interpolation processing unit, 42-2 IR signal interpolation processing unit, 43-1 Visible signal high quality processing signal processing section, 43-2 IR signal high quality processing signal processing section, 51 camera system, 61 light irradiation apparatus, 61A-1 To 61A-4 light irradiation unit, 62 imaging device, 71 optical system, 72 image sensor, 73 image generation unit, 81 signal separation unit, 82-1 to 82-4 signal interpolation processing unit, 83-1 to 83-4 high Image Quality Signal Processing Unit

Claims (15)

  1.  被写体を撮像する撮像部と、
     ストラクチャードライト光源からの所定のパターンの光が、前記撮像部の特定の画素の投影領域に照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する画像生成部と
     を備える撮像装置。
    An imaging unit for imaging a subject;
    An image of the subject is generated based on a pixel signal obtained by performing imaging in a state in which light of a predetermined pattern from a structured light source is emitted to a projection area of a specific pixel of the imaging unit. And an image generation unit.
  2.  前記所定のパターンは、前記特定の画素の投影領域に照射されるドットからなるドットパターンである
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, wherein the predetermined pattern is a dot pattern composed of dots irradiated to a projection area of the specific pixel.
  3.  前記画像生成部は、前記ストラクチャードライト光源から、IR画素の投影領域にIR光が照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
     請求項1に記載の撮像装置。
    The image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is emitted from the structured light source to a projection area of an IR pixel. The imaging device according to 1.
  4.  前記画像生成部は、前記ストラクチャードライト光源からの前記IR光が照射されている前記IR画素からの信号に基づいてIR画像を生成し、前記IR光が照射されていない画素からの信号に基づいて可視画像を生成する
     請求項3に記載の撮像装置。
    The image generation unit generates an IR image based on a signal from the IR pixel irradiated with the IR light from the structured light source, and based on a signal from a pixel not irradiated with the IR light. The imaging device according to claim 3, which generates a visible image.
  5.  前記画像生成部は、波長帯の異なる複数の前記ストラクチャードライト光源から、前記複数のストラクチャードライト光源がそれぞれ対応する画素の投影領域に、前記複数のストラクチャードライト光源からの所定のパターンの光がそれぞれ照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
     請求項1に記載の撮像装置。
    The image generation unit irradiates light of a predetermined pattern from the plurality of structured light sources on a projection area of a pixel corresponding to each of the plurality of structured light sources from the plurality of structured light sources having different wavelength bands. The imaging device according to claim 1, wherein an image of the subject is generated based on a pixel signal obtained by performing imaging in a state where the image is captured.
  6.  前記画像生成部は、前記ストラクチャードライト光源から、TOF用画素の投影領域にIR光が照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
     請求項1に記載の撮像装置。
    The image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is irradiated to the projection region of the TOF pixel from the structured light source. An imaging device according to Item 1.
  7.  前記画像生成部は、前記ストラクチャードライト光源からの前記IR光が照射されている前記TOF用画素からの信号に基づいてAF制御用の距離を算出し、前記IR光が照射されていない画素からの信号に基づいて可視画像を生成する
     請求項6に記載の撮像装置。
    The image generation unit calculates a distance for AF control based on a signal from the TOF pixel on which the IR light from the structured light source is irradiated, and the image generation unit calculates the distance from the pixel on which the IR light is not irradiated. The imaging device according to claim 6, which generates a visible image based on a signal.
  8.  前記画像生成部は、前記ストラクチャードライト光源から、三角測量用画素の投影領域にIR光が照射されている状態で撮像が行われることによって得られた画素信号に基づいて前記被写体の画像を生成する
     請求項1に記載の撮像装置。
    The image generation unit generates an image of the subject based on a pixel signal obtained by performing imaging in a state where IR light is emitted from the structured light source to the projection area of the triangulation pixel. The imaging device according to claim 1.
  9.  前記画像生成部は、前記ストラクチャードライト光源からの前記IR光が照射されている前記三角測量用画素からの信号に基づいてAF制御用の距離を算出し、前記IR光が照射されていない画素からの信号に基づいて可視画像を生成する
     請求項8に記載の撮像装置。
    The image generation unit calculates a distance for AF control based on a signal from the triangulation pixel irradiated with the IR light from the structured light source, and the pixel not irradiated with the IR light The imaging device according to claim 8, wherein a visible image is generated based on a signal of
  10.  前記ストラクチャードライト光源は、前記撮像部のレンズに近接して配置される
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, wherein the structured light source is disposed in proximity to a lens of the imaging unit.
  11.  前記ストラクチャードライト光源となる光照射部をさらに備える
     請求項1に記載の撮像装置。
    The imaging device according to claim 1, further comprising: a light emitting unit which is the structured light source.
  12.  前記光照射部の照射領域境界を前記撮像部の画角にほぼ一致させるために、前記光照射部から照射される光を反射させ、前記画素の投影領域で反射された光を透過させるミラーを
     さらに備える請求項11に記載の撮像装置。
    In order to make the irradiation area boundary of the light irradiation part substantially coincide with the angle of view of the imaging part, a mirror which reflects the light irradiated from the light irradiation part and transmits the light reflected by the projection area of the pixel The imaging device according to claim 11, further comprising:
  13.  前記光照射部は、前面に回折格子を備える
     請求項11に記載の撮像装置。
    The imaging apparatus according to claim 11, wherein the light irradiation unit includes a diffraction grating on a front surface.
  14.  前記光照射部は、前記撮像装置と一体化して構成される
     請求項11に記載の撮像装置。
    The imaging device according to claim 11, wherein the light emitting unit is configured to be integrated with the imaging device.
  15.  前記光照射部は、前記撮像装置に対して取り替え可能に装着されている
     請求項11に記載の撮像装置。
    The imaging device according to claim 11, wherein the light emitting unit is mounted replaceably to the imaging device.
PCT/JP2018/038042 2017-10-27 2018-10-12 Imaging device WO2019082686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/756,171 US11372200B2 (en) 2017-10-27 2018-10-12 Imaging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-208111 2017-10-27
JP2017208111 2017-10-27
JP2018008193A JP2019083501A (en) 2017-10-27 2018-01-22 Imaging device
JP2018-008193 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019082686A1 true WO2019082686A1 (en) 2019-05-02

Family

ID=66246327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038042 WO2019082686A1 (en) 2017-10-27 2018-10-12 Imaging device

Country Status (1)

Country Link
WO (1) WO2019082686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220319013A1 (en) * 2019-06-25 2022-10-06 Sony Group Corporation Image processing device, image processing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117508A1 (en) * 2011-02-28 2012-09-07 株式会社Pfu Information processing device, method and program
WO2016157593A1 (en) * 2015-03-27 2016-10-06 富士フイルム株式会社 Range image acquisition apparatus and range image acquisition method
WO2016199518A1 (en) * 2015-06-09 2016-12-15 富士フイルム株式会社 Distance image acquisition device and distance image acquisition method
JP2017187471A (en) * 2016-03-31 2017-10-12 パナソニックIpマネジメント株式会社 Imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117508A1 (en) * 2011-02-28 2012-09-07 株式会社Pfu Information processing device, method and program
WO2016157593A1 (en) * 2015-03-27 2016-10-06 富士フイルム株式会社 Range image acquisition apparatus and range image acquisition method
WO2016199518A1 (en) * 2015-06-09 2016-12-15 富士フイルム株式会社 Distance image acquisition device and distance image acquisition method
JP2017187471A (en) * 2016-03-31 2017-10-12 パナソニックIpマネジメント株式会社 Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220319013A1 (en) * 2019-06-25 2022-10-06 Sony Group Corporation Image processing device, image processing method, and program

Similar Documents

Publication Publication Date Title
US11372200B2 (en) Imaging device
WO2018135315A1 (en) Image capturing device, image processing method, and image processing system
CN111108436B (en) Lens barrel and imaging device
JP7229988B2 (en) Manufacturing method of distance measuring system, light receiving module, and bandpass filter
JP7248037B2 (en) Image processing device, image processing method, and program
US11119633B2 (en) Information processing device and method
WO2018003245A1 (en) Signal processing device, imaging device, and signal processing method
WO2018016344A1 (en) Solid-state image capturing device and electronic instrument
JP7131554B2 (en) Image processing device, image processing method, and program
WO2018037680A1 (en) Imaging device, imaging system, and signal processing method
WO2018100992A1 (en) Imaging optical system, camera module, and electronic apparatus
US11482159B2 (en) Display control device, display control method, and display control program
WO2019082686A1 (en) Imaging device
JP7081609B2 (en) Lens device and image pickup device
US11470295B2 (en) Signal processing device, signal processing method, and imaging device
JP7405132B2 (en) Lens barrel and imaging device
WO2022124166A1 (en) Liquid crystal display element, display device, electronic device, driving substrate, and method for manufacturing driving substrate
US20240310648A1 (en) Lens array and stereoscopic display apparatus
US20240118571A1 (en) Liquid crystal display element, display device, electronic device, drive substrate, and method for manufacturing drive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869802

Country of ref document: EP

Kind code of ref document: A1