WO2019082367A1 - 基地局、端末、通信方法、及び無線通信システム - Google Patents

基地局、端末、通信方法、及び無線通信システム

Info

Publication number
WO2019082367A1
WO2019082367A1 PCT/JP2017/038809 JP2017038809W WO2019082367A1 WO 2019082367 A1 WO2019082367 A1 WO 2019082367A1 JP 2017038809 W JP2017038809 W JP 2017038809W WO 2019082367 A1 WO2019082367 A1 WO 2019082367A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
radio resource
base station
terminal
wireless communication
Prior art date
Application number
PCT/JP2017/038809
Other languages
English (en)
French (fr)
Inventor
裕明 渡辺
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/038809 priority Critical patent/WO2019082367A1/ja
Priority to JP2019549794A priority patent/JP6965940B2/ja
Publication of WO2019082367A1 publication Critical patent/WO2019082367A1/ja
Priority to US16/845,141 priority patent/US11178644B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the disclosed technology relates to a base station, a terminal, a communication method, and a wireless communication system.
  • SR Scheduling Request
  • the base station receives the SR transmitted from the terminal, the base station transmits information including Grant for permitting use of the allocated radio resource to the terminal.
  • the terminal receives the information including Grant transmitted from the base station, the terminal transmits data to the base station using the allocated radio resource.
  • the time required for the terminal to transmit SR to the base station at least before transmitting data to the base station by wireless communication and to receive information including Grant transmitted from the base station (see FIG. 13).
  • a Grant-free method is under consideration for the wireless communication system of the next generation communication standard (5th Generation (5G)).
  • 5G next generation communication standard
  • the grant-free scheme as shown in FIG. 14 as an example, uplink data transmission is enabled without the terminal transmitting SR to the base station.
  • 3GPP has agreed to allocate in advance radio resources used by terminals for data transmission to each terminal or each terminal group.
  • a periodic radio resource arranged at a constant cycle in the time domain may be mentioned.
  • information on radio resources allocated to terminals (for example, position in time domain, time period, position in frequency domain, etc.) is transmitted to each terminal in advance using upper layer signaling. Be notified.
  • the disclosed technology aims at suppressing the number of retransmissions in one aspect.
  • a base station capable of performing wireless communication with a wireless communication device in a Grant-free scheme uses the shared wireless resource allocated to the wireless communication device from the wireless communication device. And a receiver configured to receive the transmitted first signal.
  • the base station when the base station requests the wireless communication apparatus to retransmit the first signal, the base station further transmits, to the wireless communication apparatus, a transmitting unit that transmits a second signal including information on a wireless resource used for retransmission.
  • the wireless communication system 10 includes a base station 12 provided with a plurality of antenna elements 11 and a plurality of terminals 14 provided with one antenna element 13 respectively.
  • the terminal 14 is also called User Equipment (UE).
  • the terminal 14 may include a plurality of antenna elements 13.
  • Each of the plurality of terminals 14 is located in an area covered by the base station 12 and wireless communication with the base station 12 is enabled.
  • the base station 12 and the terminal 14 can perform wireless communication in a Grant-free scheme via the antenna element 11 and the antenna element 13.
  • each terminal 14 is notified in advance by the base station 12 of a radio resource shared by a plurality of terminals 14 used when the terminal 14 transmits data to the base station 12. It is assigned.
  • the shared radio resource is allocated, for example, using System-Information-Block (SIB).
  • SIB System-Information-Block
  • the terminal 14 is an example of a wireless communication apparatus according to the disclosed technology.
  • the base station 12 includes a receiving unit 20, a reception state determination unit 22, a priority determination unit 24, a response signal generation unit 26, and a transmission unit 28.
  • the receiving unit 20 receives a signal transmitted from the terminal 14 via the antenna element 13 via the antenna element 11.
  • the receiving unit 20 receives, via the antenna element 11, a first signal including data to be transmitted by the terminal 14 transmitted from the terminal 14 via the antenna element 13. Then, the receiving unit 20 performs, for the received first signal, processing of converting an analog signal into a digital signal, and predetermined reception processing such as fast Fourier transform.
  • the reception state determination unit 22 determines whether the first signal has been successfully received based on the reception state of the first signal that has undergone the reception process by the reception unit 20. Note that the reception state determination unit 22 performs, for example, a hybrid ARQ (HARQ) process, and determines whether the first signal has been successfully received.
  • HARQ hybrid ARQ
  • the receiving unit 20 may receive the first signal affected by interference. Therefore, in the present embodiment, the reception state determination unit 22 transmits the first signal at the same timing as the plurality of terminals 14 according to the reception state of the first signal subjected to the reception process by the reception unit 20. It is determined whether a collision of the first signal has occurred without successfully receiving the one signal.
  • the reception state determination unit 22 may not perform the collision determination if all the first signals received in a certain slot can be normally received.
  • the reception state determination unit 22 determines that a collision of the first signal has occurred, the plurality of terminals 14 of the transmission source of the first signal using each of the first signals subjected to the reception process by the reception unit 20. Identify
  • the priority determination unit 24 determines the first of the plurality of terminals 14 that are the transmission sources of the first signal identified by the reception state determination unit 22. Determine the priority of retransmission of the signal. In the present embodiment, the priority determination unit 24 determines the priority of the retransmission of the first signal in two steps, for example, according to Quality of Service (QoS) predetermined for each terminal 14. Specifically, the priority determination unit 24 determines that the terminal 14 having the highest QoS among the plurality of terminals 14 that are the transmission source of the first signal has a high priority, and a terminal other than the terminal 14 having the highest QoS. It is determined that 14 is low in priority.
  • QoS Quality of Service
  • the priority determination unit 24 determines that the terminal 14 with the earliest timing of the reception start of the first signal by the reception unit 20 among the plurality of terminals 14 of the transmission source of the first signal has the highest priority, and The terminals 14 other than the early terminal 14 may be determined to have low priority.
  • the priority determination unit 24 determines that at least one of the plurality of terminals 14 of the transmission source of the first signal has a high priority, and the priority of at least one of the terminals 14 is low. If it determines, two or more terminals 14 which determine with high priority may exist. For example, the priority determination unit 24 may determine that the terminal 14 whose QoS is equal to or higher than a predetermined value is high in priority, and may determine that the terminal 14 whose QoS is less than the predetermined value is low in priority.
  • the response signal generation unit 26 generates a second signal as a response to the first signal transmitted from the terminal 14.
  • the acknowledgment signal generation unit 26 acknowledges that the first signal has been successfully received as the second signal. (ACK) is generated.
  • the response signal generation unit 26 determines that the transmission source of the first signal is transmitted according to Hybrid Automatic Repeat request (HARQ) as a second signal. It generates a negative acknowledgment (NACK) that requests the terminal 14 to retransmit.
  • the response signal generation unit 26 includes, in NACK, information on a radio resource used by the terminal 14 that is the transmission source of the first signal to retransmit the first signal. Specifically, the response signal generation unit 26 generates NACK in accordance with the priority of retransmission by the priority determination unit 24 for each terminal 14 that is the transmission source of the first signal.
  • the response signal generation unit 26 transmits the first transmission timing (e.g., the next transmission timing) to the terminal 14 determined by the priority determination unit 24 to have a low priority of retransmission.
  • NACK (hereinafter, referred to as “NACK 0”) including information indicating that retransmission of R.sup.
  • the response signal generation unit 26 includes information indicating that retransmission at the first transmission timing is possible for the terminal 14 determined by the priority determination unit 24 to have a high priority of retransmission.
  • NACK (hereinafter referred to as "NACK1”) is generated.
  • the transmission unit 28 performs, for the second signal generated by the response signal generation unit 26, a predetermined transmission process such as an inverse fast Fourier transform and a process of converting a digital signal into an analog signal. Then, the transmission unit 28 transmits the second signal subjected to the transmission processing to the terminal 14 of the transmission source of the corresponding first signal via the antenna element 11.
  • a predetermined transmission process such as an inverse fast Fourier transform and a process of converting a digital signal into an analog signal. Then, the transmission unit 28 transmits the second signal subjected to the transmission processing to the terminal 14 of the transmission source of the corresponding first signal via the antenna element 11.
  • the terminal 14 includes a transmitter 40, a receiver 42, a detector 44, and a controller 46.
  • the transmission unit 40 includes a transmission buffer, and temporarily holds the input data in the transmission buffer when the data generated in the upper layer such as the application is input.
  • the transmission unit 40 transmits the first signal including the data held in the transmission buffer to the base via the antenna element 13 using the shared radio resource allocated to the terminal 14 under the control of the control unit 46 described later. Transmit to station 12
  • the transmission unit 40 performs, for the first signal, predetermined transmission processing such as inverse fast Fourier transform and processing for converting a digital signal into an analog signal. Then, the transmitting unit 40 transmits the first signal subjected to the transmission processing to the base station 12 via the antenna element 13.
  • the transmitting unit 40 transmits the first signal including the data stored in the transmission buffer according to the input retransmission timing. , Retransmit to the base station 12 via the antenna element 13.
  • the receiving unit 42 receives a signal transmitted from the base station 12 via the antenna element 11 via the antenna element 13.
  • the receiving unit 42 receives the second signal transmitted from the base station 12 via the antenna element 11 via the antenna element 13. Then, the receiving unit 42 performs, on the received second signal, processing of converting an analog signal into a digital signal, and predetermined reception processing such as fast Fourier transform.
  • the detection unit 44 detects whether the second signal subjected to the reception process by the reception unit 42 is an ACK, a NACK0, or a NACK1.
  • control unit 46 When data is generated in the upper layer such as an application, the control unit 46 causes the transmitting unit 40 to use the shared radio resource allocated to the terminal 14 to transmit to the base station 12 a first signal including the generated data. Control sending. Further, when the detection unit 44 detects that the second signal is an ACK, the control unit 46 notifies the upper layer that the transmission of the first signal has ended normally.
  • the control unit 46 transmits a first transmission timing to the transmission unit 40 without retransmitting the first signal at the first transmission timing. And an instruction to retransmit the first signal at a second transmission timing different from the first transmission timing (for example, a timing N slots after the first transmission timing (N is an integer)). Further, when the detection unit 44 detects that the second signal is NACK1, the control unit 46 outputs, to the transmission unit 40, an instruction to retransmit the first signal at the first transmission timing.
  • the base station 12 includes a central processing unit (CPU) 61, a memory 62 as a temporary storage area, and a non-volatile storage unit 63.
  • the base station 12 also includes a network I / F 64 connected to a core network or the like, and a wireless processing circuit 65.
  • the CPU 61, the memory 62, the storage unit 63, the network I / F 64, and the wireless processing circuit 65 are connected to one another via a bus 66.
  • the storage unit 63 can be realized by a hard disk drive (HDD), a solid state drive (SSD), a flash memory, or the like.
  • a base station control program 70 is stored in the storage unit 63 as a storage medium.
  • the CPU 61 reads out the base station control program 70 from the storage unit 63, develops the read out base station control program 70 in the memory 62, and then executes the program.
  • the CPU 61 functions as the reception state determination unit 22, the priority determination unit 24, and the response signal generation unit 26 illustrated in FIG. 2 by executing the base station control program 70.
  • the receiving unit 20 and the transmitting unit 28 are realized by the wireless processing circuit 65.
  • the CPU 61 is a hardware processor.
  • the functions realized by the base station control program 70 can also be realized by, for example, a semiconductor integrated circuit, more specifically, an application specific integrated circuit (ASIC) or the like.
  • ASIC application specific integrated circuit
  • the terminal 14 includes a CPU 81, a memory 82 as a temporary storage area, a non-volatile storage unit 83, and a wireless processing circuit 85.
  • the CPU 81, the memory 82, the storage unit 83, and the wireless processing circuit 85 are connected to one another via a bus 86.
  • the storage unit 83 can be realized by a flash memory or the like.
  • a terminal control program 90 is stored in the storage unit 83 as a storage medium.
  • the CPU 81 reads out the terminal control program 90 from the storage unit 83, develops the read out terminal control program 90 in the memory 82, and then executes the program.
  • the CPU 81 functions as the detection unit 44 and the control unit 46 illustrated in FIG. 3 by executing the terminal control program 90.
  • the transmission unit 40 and the reception unit 42 are realized by the wireless processing circuit 85.
  • the CPU 81 is a hardware processor.
  • the functions realized by the terminal control program 90 can also be realized by, for example, a semiconductor integrated circuit, more specifically, an ASIC or the like.
  • FIGS. 6A and 6B the operation of the wireless communication system 10 according to the present embodiment will be described with reference to FIGS. 6A and 6B.
  • the present embodiment as an example, a case will be described in which two terminals 14 are pre-assigned shared radio resources as the same group. Further, in the present embodiment, when the two terminals 14 are distinguished, one is described as a terminal 14 # A-1 and the other is described as a terminal 14 # A-2.
  • FIG. 6B shows a chart of processing of the base station 12, the terminal 14 # A-1, and the terminal 14 # A-2.
  • FIG. 6A shows a conceptual view of each slot, in which the vertical direction is the frequency axis and the horizontal direction is the time axis.
  • the n-th slot is denoted as slot #n (slot #n). That is, for example, the slot following slot #n is described as slot # n + 1.
  • “UEG-A resource” in FIG. 6A indicates a shared radio resource allocated to both the terminal 14 # A-1 and the terminal 14 # A-2 in each slot.
  • “ACK / NACK” in FIG. 6A transmits a second signal corresponding to the first signal transmitted from the terminal 14 using the “UEG-A resource” of each slot from the base station 12 to the terminal 14 Represents timing.
  • FIG. 7 shows an example of allocation of radio resources of the second signal.
  • Resource Element (RE) is allocated to each of the terminal 14 # A-1 and the terminal 14 # A-2 as a radio resource for the second signal.
  • the base station 12 may use any of the information in which different 2-bit bit strings are mapped to ACK, NACK0, and NACK1 by Quadrature Phase Shift Keying (QPSK). 2 Include in the signal. Therefore, the terminal 14 can determine from the received second signal whether transmission of the first signal has ended normally or whether retransmission of the first signal is requested.
  • QPSK Quadrature Phase Shift Keying
  • the terminal 14 can determine which radio resource should be used to retransmit the first signal at which timing.
  • FIG. 7 describes the case where QPSK is used as an example, another modulation scheme (for example, BPSK, QAM, etc.) may be used.
  • steps S10 and S11 shown in FIG. 6B data to be transmitted is generated in the upper layer in each of the terminal 14 # A-1 and the terminal 14 # A-2, and the data is input to the transmitting unit 40.
  • the transmitting unit 40 temporarily holds the input data in the transmission buffer.
  • the control unit 46 controls the transmission unit 40 to transmit the first signal including the generated data to the base station 12 using the shared radio resource allocated to the terminal 14.
  • the data generation timings (S10 and S11) of the terminal 14 # A-1 and the terminal 14 # A-2 may be simultaneous or different.
  • the transmitting units 40 of the terminal 14 # A-1 and the terminal 14 # A-2 share the slot #n allocated to each terminal 14 under the control of the control unit 46.
  • the first signal is transmitted to the base station 12 using the radio resource.
  • the receiving unit 20 of the base station 12 receives the first signal transmitted from the terminal 14 # A-1 and the terminal 14 # A-2 in steps S12 and S13.
  • the first signal transmitted from each of the terminal 14 # A-1 and the terminal 14 # A-2 in steps S12 and S13 uses a radio resource (shared radio resource) of the same frequency band in slot #n.
  • the interference lowers the reception quality of the first signal of the base station 12. Therefore, in step S14, as described above, the reception state determination unit 22 of the base station 12 determines that the collision of the first signal has occurred. Further, as described above, the reception state determination unit 22 specifies the terminal 14 # A-1 and the terminal 14 # A-2 of the transmission source of the first signal received by the reception unit 20.
  • the priority determination unit 24 determines the priority of retransmission of the first signal in the terminal 14 # A-1 and the terminal 14 # A-2 specified by the reception state determination unit 22.
  • priority determination unit 24 determines that terminal 14 # A-1 has high priority and determines that terminal 14 # A-2 has low priority.
  • the response signal generation unit 26 generates NACK1 for the terminal 14 # A-1 determined to have a high priority by the priority determination unit 24, and the priority determination unit 24 determines that the priority is low.
  • a NACK 0 is generated for the terminal 14 # A- 2.
  • step S16 the transmission unit 28 transmits NACK1 generated by the response signal generation unit 26 to the terminal 14 # A-1. Also, in step S18, as described above, the transmission unit 28 transmits NACK0 generated by the response signal generation unit 26 to the terminal 14 # A-2.
  • the receiving unit 42 of the terminal 14 # A-1 receives NACK1 transmitted from the base station 12 in step S16. That is, the detection unit 44 of the terminal 14 # A-1 detects that the second signal is NACK1, and the control unit 46 instructs the transmission unit 40 at the first transmission timing (in this embodiment, slot # n + 1). An instruction to retransmit the first signal is output. Then, in step S20, the transmission unit 40 of the terminal 14 # A-1 retransmits the first signal to the base station 12 using the radio resource of slot # n + 1 as described above.
  • the first signal transmitted from terminal 14 # A-1 in step S20 is normally received by base station 12, and reception state determination unit 22 of base station 12 determines that the first signal has been successfully received. That is, the response signal generation unit 26 of the base station 12 generates an ACK for the terminal 14 # A-1. Then, in step S22, as described above, the transmission unit 28 transmits the ACK generated by the response signal generation unit 26 to the terminal 14 # A-1.
  • the receiving unit 42 of the terminal 14 # A-2 receives NACK0 transmitted from the base station 12 in step S18. That is, the detection unit 44 of the terminal 14 # A-2 detects that the second signal is NACK0, and the control unit 46 sends the first transmission timing to the transmission unit 40 without retransmitting the first signal. An instruction to retransmit the first signal is output at two transmission timings (in this embodiment, slot # n + 2). Then, in step S24, the transmission unit 40 of the terminal 14 # A-2 retransmits the first signal to the base station 12 using the radio resource of slot # n + 2, as described above.
  • the first signal transmitted from terminal 14 # A-2 in step S24 is normally received by base station 12, and reception state determination unit 22 of base station 12 determines that the first signal has been successfully received. That is, the response signal generation unit 26 of the base station 12 generates an ACK for the terminal 14 # A-2. Then, in step S26, as described above, the transmission unit 28 transmits the ACK generated by the response signal generation unit 26 to the terminal 14 # A-2.
  • the second signal when the base station 12 requests retransmission of the first signal, the second signal includes information on a radio resource used for retransmission. Further, the information on the radio resource used for the retransmission includes information indicating whether or not the retransmission at the first transmission timing is possible. Therefore, as a result of the occurrence of collision at the time of retransmission being suppressed, the possibility of occurrence of retransmission is reduced, and it is possible to suppress an increase in transmission delay time.
  • FIG. 6 describes the case where there are two terminals 14 to which shared wireless resources are allocated, the present invention is not limited to this. Three or more terminals 14 may be allocated shared radio resources.
  • the base station 12 transmits NACK1 to one terminal 14 and transmits NACK0 to another terminal 14 The form is illustrated. In this case, there is a possibility that a collision may occur again when another terminal 14 retransmits the first signal, but the collision is finally resolved by repeating the process of transmitting the same NACK0 and NACK1 to the terminal 14 Be done.
  • the information which shows whether resending in a 1st transmission timing is possible is included in a 2nd signal
  • information indicating how many slots can be retransmitted after may be included in the second signal.
  • the second signal including information indicating that retransmission in slot # n + 1) is possible is transmitted.
  • a second signal including information indicating that retransmission in a slot two slots later is possible is transmitted to the second terminal 14 among the three terminals.
  • a second signal including information indicating that retransmission in a slot three slots later is possible is transmitted to the third terminal 14 among the three terminals.
  • a NACK signal to the terminal 14 # A-1 is received.
  • a NACK signal including a transmission timing different from the transmission timing (second transmission timing) of the terminal 14 # A-2 may be transmitted. By doing this, it becomes possible to separate the transmission timing (transmission slot) of the retransmission of the retransmission of the terminal 14 # A-1 and the retransmission of the terminal 14 # A-2.
  • the terminal 14 Instruction information may be sent to # A-2 to further change the transmission timing. Also, when transmitting an ACK for the first signal transmitted at the first transmission timing, the base station 12 transmits to the terminal 14 # A-2 transmitting the first signal at the second transmission timing. In this case, the instruction information may be transmitted to advance the transmission timing of the first signal.
  • each of the terminals 14 has a plurality of (two in the present embodiment) radio resources shared by the plurality of terminals 14 used when the terminals 14 transmit data to the base station 12. Assigned in advance. Also, it is assumed that the plurality of radio resources have different frequency bands.
  • the base station 12 includes a receiving unit 20, a reception state determining unit 22, a priority determining unit 24, a response signal generating unit 26A, and a transmitting unit 28.
  • the response signal generation unit 26A generates a second signal as a response to the first signal transmitted from the terminal 14.
  • the response signal generation unit 26A is an ACK indicating that the first signal has been successfully received as the second signal.
  • the response signal generation unit 26A performs, as a second signal, NACK for requesting the terminal 14 of the transmission source of the first signal to retransmit according to HARQ.
  • the response signal generation unit 26A includes, in NACK, information on a radio resource used by the terminal 14 that is the transmission source of the first signal to retransmit the first signal.
  • the response signal generation unit 26A transmits a radio signal corresponding to the radio resource used for the transmission of the first signal of this time to the terminal 14 determined by the priority determination unit 24 to have a high priority of retransmission.
  • a NACK (hereinafter, referred to as “NACK2”) including information indicating retransmission of the first signal using a resource is generated.
  • the response signal generation unit 26A generates a NACK shown below for the terminal 14 determined by the priority determination unit 24 to have a low priority of retransmission.
  • the response signal generation unit 26A includes NACK including information indicating that the first signal is to be retransmitted using a radio resource corresponding to a radio resource different from the radio resource used for the transmission of the first signal this time. (Hereafter, it is called "NACK3").
  • the response signal generation unit 26A generates NACK 3 for the terminal 14 determined by the priority determination unit 24 to have a high priority of retransmission, and the terminal 14 determined to have a low priority of retransmission. NACK2 may be generated.
  • the terminal 14 includes a transmitter 40, a receiver 42, a detector 44A, and a controller 46A.
  • the detection unit 44A detects whether the second signal subjected to reception processing by the reception unit 42 is an ACK, a NACK2, or a NACK3.
  • control unit 46A transmits a first signal including generated data to transmitting unit 40 using any one of the shared radio resources allocated to terminal 14 as a base signal. Control to transmit to the station 12 is performed. Further, when the detection unit 44A detects that the second signal is an ACK, the control unit 46A notifies the upper layer that the transmission of the first signal has ended normally.
  • the control unit 46A causes the transmission unit 40 to use the radio resource corresponding to the radio resource used this time at the next transmission timing. Output an instruction to retransmit one signal.
  • the control unit 46A instructs the transmission unit 40 to use a radio corresponding to a radio resource different from the radio resource used this time at the next transmission timing. An instruction to retransmit the first signal is output using the resource.
  • the hardware configurations of the base station 12 and the terminal 14 are the same as those of the first embodiment (see FIGS. 4 and 5), and therefore the description thereof is omitted.
  • FIGS. 8A and 8B a case will be described in which two terminals 14 are allocated two shared radio resources in advance as the same group. Further, in the present embodiment, when the two terminals 14 are distinguished, one is described as a terminal 14 # A-1 and the other is described as a terminal 14 # A-2. Further, “UEG-A1 resource” and “UEG-A2 resource” in FIG. 8A indicate two shared radio resources allocated to both the terminal 14 # A-1 and the terminal 14 # A-2 in each slot. Also, the steps in FIG. 8B that execute the same processing as FIG. 6B are assigned the same reference numerals and descriptions thereof will be omitted.
  • the transmitters 40 of the terminals 14 # A-1 and A-2 share the slot #n allocated to each terminal 14 under the control of the controller 46A.
  • the first signal is transmitted to the base station 12 using any of the radio resources.
  • the case where both of the terminal 14 # A-1 and the terminal 14 # A-2 transmit the first signal to the base station 12 using the UEG-A1 resource in steps S12A and S13A will be described.
  • the receiving unit 20 of the base station 12 receives the first signal transmitted from the terminal 14 in steps S12A and S13A.
  • the first signals transmitted from each of the terminal 14 # A-1 and the terminal 14 # A-2 in steps S12A and S13A are interfered by interference because radio resources of the same frequency band are used at the same timing (slot).
  • the reception quality of the first signal of the base station 12 is degraded. Therefore, in step S14, the processing of the reception state determination unit 22 and the priority determination unit 24 of the base station 12 similar to those of the first embodiment is performed.
  • the response signal generation unit 26A generates NACK2 for the terminal 14 # A-1 determined to have a high priority by the priority determination unit 24, and the priority determination unit 24 determines that the priority is low.
  • a NACK 3 is generated for the terminal 14 # A- 2.
  • step S16A the transmission unit 28 transmits NACK2 generated by the response signal generation unit 26A to the terminal 14 # A-1. Also, in step S18A, the transmission unit 28 transmits NACK3 generated by the response signal generation unit 26A to the terminal 14 # A-2.
  • the receiving unit 42 of the terminal 14 # A-1 receives the NACK2 transmitted from the base station 12 in step S16A. That is, the detection unit 44A of the terminal 14 # A-1 detects that the second signal is NACK2. As a result of this detection, the control unit 46A of the terminal 14 # A-1 sends the radio resource (this resource) corresponding to the radio resource used this time at the first transmission timing (in this embodiment, slot # n + 1) to the transmission unit 40. In the embodiment, an instruction to retransmit the first signal is output using the UEG-A1 resource). Then, in step S20A, as described above, the transmission unit 40 of the terminal 14 # A-1 retransmits the first signal to the base station 12 using the UEG-A1 resource in slot # n + 1.
  • the receiving unit 42 of the terminal 14 # A-2 receives the NACK 3 transmitted from the base station 12 in step S18A. That is, the detection unit 44A of the terminal 14 # A-2 detects that the second signal is NACK3. As a result of this detection, the control unit 46A of the terminal 14 # A-2 transmits a radio resource corresponding to a radio resource different from the radio resource used this time to the transmission unit 40 at the first transmission timing (in this embodiment, An instruction to retransmit the first signal is output using the UEG-A2 resource). Then, in step S24A, the transmission unit 40 of the terminal 14 # A-2 retransmits the first signal to the base station 12 using the UEG-A2 resource in slot # n + 1 as described above.
  • the transmitting unit 28 transmits an ACK to the terminal 14 Send to # A-1.
  • the transmitting unit 28 transmits an ACK to the terminal 14 # A-2.
  • the second signal when the base station 12 requests retransmission of the first signal, the second signal includes information on a radio resource used for retransmission. Further, the information on the radio resource used for this retransmission is information indicating whether it is a radio resource corresponding to the radio resource used this time or a radio resource corresponding to a radio resource different from the radio resource used this time including. Therefore, the transmission delay time can be shortened compared to the first embodiment.
  • the first embodiment and the second embodiment may be combined.
  • an embodiment is exemplified in which the information shown below is included in the second signal for the terminal 14 in the descending order of the priority of retransmission.
  • Retransmission is possible at the next transmission timing, and the first signal is retransmitted using a radio resource corresponding to the radio resource used for the transmission of the first signal this time.
  • Retransmission is possible at the next transmission timing, and the first signal is retransmitted using a radio resource corresponding to a radio resource different from the radio resource used for the transmission of the first signal this time.
  • the retransmission at the next transmission timing is not possible, and the first signal is retransmitted using the radio resource corresponding to the radio resource used for the transmission of the first signal this time.
  • the terminal 14 belongs to any one of a plurality of groups. Then, a plurality of shared radio resources used when the terminal 14 transmits data to the base station 12 are allocated in advance by the base station 12 for each group. Also, each radio resource has a different frequency band.
  • the terminal 14 when no shared wireless resource is used, the use efficiency of the wireless resource is reduced. Therefore, when using the allocated radio resource, the terminal 14 according to the present embodiment transmits the third signal including the information indicating that the allocated radio resource is used before transmitting the first signal to the base station 12. Send to
  • the base station 12 includes a reception unit 20A, a reception state determination unit 22, a priority determination unit 24, a response signal generation unit 26A, and a transmission unit 28A. Further, the base station 12 further includes a detection unit 30 and a resource free signal generation unit 32.
  • the receiving unit 20A has the following functions in addition to the functions of the receiving unit 20 according to the second embodiment.
  • the receiving unit 20A receives a third signal including information indicating use of the shared radio resource assigned to the terminal 14 transmitted from the terminal 14 before transmission of the first signal. Then, the receiving unit 20A performs, on the received third signal, processing of converting an analog signal into a digital signal, and predetermined reception processing such as fast Fourier transform.
  • the detection unit 30 detects that the third signal has been received by the reception unit 20A.
  • the resource empty signal generation unit 32 generates a fourth signal described below. That is, in this case, the resource availability signal generation unit 32 generates a fourth signal including information indicating that the radio resource allocated to the terminal 14 corresponding to the third signal is available.
  • the resource empty signal generation unit 32 does not generate the fourth signal when the detection unit 30 detects that the third signal is received by the reception unit 20A.
  • the transmitting unit 28A has the following functions in addition to the functions of the transmitting unit 28 according to the second embodiment.
  • the transmitting unit 28A transmits the fourth signal generated by the resource availability signal generating unit 32 to the terminal 14 to which a radio resource different from the radio resource allocated to the terminal 14 corresponding to the third signal is allocated.
  • the terminal 14 includes a transmitter 40A, a receiver 42A, a detector 44B, and a controller 46B.
  • the transmitting unit 40A has the following functions in addition to the functions of the transmitting unit 40 according to the second embodiment.
  • the transmitter 40A transmits the third signal to the base station 12 via the antenna element 13 under the control of the controller 46B.
  • the receiving unit 42A has the following functions in addition to the functions of the receiving unit 42 according to the second embodiment.
  • the receiver 42A receives the fourth signal transmitted from the base station 12 via the antenna element 11 via the antenna element 13.
  • the detection unit 44B has the following functions in addition to the functions of the detection unit 44A according to the second embodiment.
  • the detection unit 44B detects that the fourth signal has been received by the reception unit 42A.
  • the control unit 46B has the following functions in addition to the functions of the control unit 46A according to the second embodiment.
  • the control unit 46B controls the transmitting unit 40A to transmit the third signal to the base station 12 before transmitting the first signal.
  • the control unit 46B instructs the transmission unit 40A to be vacant, which is specified by the information included in the fourth signal.
  • An instruction to transmit the first signal is output using the radio resource.
  • the hardware configurations of the base station 12 and the terminal 14 are the same as in the first and second embodiments (see FIG. 4 and FIG. 5), and therefore the description thereof is omitted.
  • the detection unit 30 and the resource availability signal generation unit 32 are also realized by the CPU 61 executing the base station control program 70.
  • FIGS. 10A and 10B the operation of the wireless communication system 10 according to the present embodiment will be described with reference to FIGS. 10A and 10B.
  • group A the case where two terminals 14 # A-1 and 14 # A-2 are previously allocated two shared radio resources as the same group (hereinafter referred to as "group A").
  • “UEG-A1 resource” and “UEG-A2 resource” in FIG. 10A indicate two shared radio resources allocated to both the terminal 14 # A-1 and the terminal 14 # A-2 in each slot.
  • shared radio resources are allocated to the two terminals 14 # B-1 and 14 # B-2 as a group different from the group A (hereinafter referred to as "group B"). Although illustration is omitted, for the two terminals 14 # B-1 and 14 # B-2, radio resources of frequency bands different from those of the “UEG-A1 resource” and the “UEG-A2 resource” (for example, , “UEG-B1 resource” and “UEG-B2 resource” are allocated.
  • the “third signal” in FIG. 10A indicates the timing at which the terminal 14 transmits the third signal before transmitting the first signal using the “UEG-A1 resource” and the “UEG-A2 resource” of each slot.
  • the “fourth signal” in FIG. 10A represents the timing at which the base station 12 transmits the fourth signal in response to the third signal transmitted from the terminal 14 in each slot.
  • FIG. 10B shows a processing chart of the third embodiment.
  • data to be transmitted is generated in the upper layer in the terminal 14 # A-1 and the terminal 14 # B-1, and the data is input to the transmitting unit 40A.
  • the transmitting unit 40A temporarily holds the input data in the transmission buffer.
  • control unit 46B of terminal 14 # A-1 controls transmitting unit 40A to transmit to base station 12 a third signal including information indicating that the radio resource allocated to group A is to be used. I do.
  • the transmitting unit 40A of the terminal 14 # A-1 transmits the third signal to the base station 12.
  • the terminal 14 # B-1 does not transmit the first signal to the base station 12 because the allocated radio resource is congested or the like.
  • the terminal 14 # A-2 does not transmit the third signal to the base station 12 because no data to be transmitted is generated. It is assumed that the data generated in step S31 can not be transmitted using the shared radio resources "UEG-B1 resource” and "UEG-B2 resource” due to some influence (for example, the influence of transmission control).
  • the receiver 20A of the base station 12 receives the third signal transmitted from the terminal 14 # A-1 in step S32.
  • the detection unit 30 detects that the third signal has been received by the reception unit 20A. Therefore, the fourth signal is not generated by the resource idle signal generation unit 32.
  • transmitting section 40A of terminal 14 # A-1 transmits the first signal to base station 12 using the allocated shared radio resource (here, UEG-A1 resource).
  • the base station 12 performs collision determination in step S35 on the first signal transmitted from the terminal 14 # A-1 in step S34 as in step S14. When it is determined that the first signal is normally received before the collision determination, the collision determination in step S35 may not be performed.
  • the transmitter unit 28A of the base station 12 transmits an ACK to the terminal 14 # A-1 in step S36, as in step S22 of the first embodiment. If the base station 12 can not normally receive the first signal, the transmitter unit 28A of the base station 12 transmits a NACK to the terminal 14 # A-1 in step S36. In FIG. 10B, it is assumed that the base station 12 transmits an ACK in step S36.
  • step S36 Since the ACK transmitted in step S36 is received by the terminal 14 # A-1, no data to be transmitted exists at the terminal 14 # A-1. Also, no data to be transmitted is generated at the terminal 14 # A-2. That is, in the slot # n + 1, the third signal is not transmitted from the terminal 14 # A-1 and the terminal # A-2.
  • the detection unit 30 of the base station 12 does not detect that the third signal is received in the slot # n + 1 by the reception unit 20A. Therefore, the resource availability signal generation unit 32 generates a fourth signal including information indicating that the radio resource allocated to the group A is available (step S37). Then, in steps S38 and S39, as described above, the transmitting unit 28A of the base station 12 sends the fourth signal generated by the resource empty signal generating unit 32 to the terminal 14 # B-1 and the terminal 14 # B-2. Send.
  • the receiving unit 42A of the terminal 14 # B-1 and the terminal 14 # B-2 receives the fourth signal transmitted from the base station 12 in steps S38 and S39.
  • the detection unit 44B also detects that the fourth signal has been received by the reception unit 42A.
  • data to be transmitted is not generated, but in the terminal 14 # B-1, data to be transmitted is generated in step S31.
  • control unit 46B of terminal 14 # B-1 causes transmitting unit 40A to use the idle radio resource (here, UEG-A1 resource) specified by the information included in the fourth signal. 1 Output an instruction to transmit a signal. Then, in step S40, the transmitting unit 40A of the terminal 14 # B-1 transmits the first signal including the data generated in step S31 to the base station 12.
  • the idle radio resource here, UEG-A1 resource
  • step S41 the base station 12 performs collision determination on the first signal transmitted from the terminal 14 # B-1 in step S40, as in step S35. If it is determined that the first signal is normally received before the collision determination, the collision determination in step S41 may not be performed. If the base station 12 normally receives the first signal, the transmitter unit 28A of the base station 12 transmits an ACK to the terminal 14 # B-1 in step S42, as in step S36. If the base station 12 can not normally receive the first signal, the transmitter unit 28A of the base station 12 transmits NACK to the terminal 14 # B-1 in step S42.
  • the base station 12 when the base station 12 does not receive the third signal, a radio resource different from the radio resource allocated to the terminal 14 corresponding to the third signal is allocated.
  • the fourth signal is transmitted to the terminal 14. Therefore, it is possible to suppress a decrease in the use efficiency of the radio resource.
  • a radio resource is allocated including said shared radio resource. It is good.
  • the configuration of the wireless communication system 10 according to the present embodiment is the same as that of the third embodiment, so the description will be omitted.
  • the first signal is transmitted using the radio resource allocated to the terminal 14 of group A, and a collision of the first signal occurs.
  • the following may occur. That is, in this case, a collision may occur when the terminal 14 of group A tries to transmit the first signal using the allocated radio resource.
  • the base station 12 when transmitting the 2nd signal corresponding to the 1st signal transmitted from the terminal 14 of the group B to the terminal 14 of the group B, the base station 12 makes the 5th signal shown below a group It transmits to the terminal 14 of A. That is, in this case, the base station 12 transmits, to the terminal 14 of group A, a fifth signal including information for suppressing the use of the radio resource allocated to the terminal 14 of group A.
  • the base station 12 includes a receiver 20A, a reception state determiner 22, a priority determiner 24A, a response signal generator 26B, a transmitter 28B, a detector 30, a resource free signal generator 32, and A suppression signal generation unit 34 is included.
  • the priority determination unit 24A determines the first of the plurality of terminals 14 that are the transmission sources of the first signal identified by the reception state determination unit 22. Determine the priority of retransmission of the signal. In the present embodiment, the priority determination unit 24A determines the priority of the retransmission of the first signal in three steps in accordance with the QoS predetermined for each terminal 14.
  • the response signal generation unit 26B generates a second signal as a response to the first signal transmitted from the terminal 14.
  • the response signal generation unit 26B is an ACK indicating that the first signal has been successfully received as the second signal.
  • the response signal generation unit 26B performs, as a second signal, NACK for requesting the terminal 14 of the transmission source of the first signal to retransmit according to HARQ.
  • the response signal generation unit 26B includes, in NACK, information on a radio resource used by the terminal 14 that is the transmission source of the first signal to retransmit the first signal.
  • the response signal generation unit 26B generates a NACK according to the priority of retransmission by the priority determination unit 24A for each terminal 14 that is the transmission source of the first signal.
  • the response signal generation unit 26B can perform retransmission when the fourth signal is received, for the terminal 14 determined by the priority determination unit 24A to have the lowest priority of retransmission.
  • NACK (hereinafter, referred to as "NACK 4") including information indicating that is generated.
  • the response signal generation unit 26B generates a NACK shown below for the terminal 14 determined by the priority determination unit 24A to have the highest priority of retransmission. That is, in this case, the response signal generation unit 26B can retransmit the first signal using the radio resource corresponding to the radio resource used for the transmission of the first signal of this time without receiving the fourth signal.
  • a NACK (hereinafter referred to as "NACK5") including information indicating that there is a certain occurrence is generated.
  • the response signal generation unit 26B generates a NACK shown below for the terminal 14 determined by the priority determination unit 24A to be the second highest in priority of retransmission. That is, in this case, even if the response signal generation unit 26B does not receive the fourth signal, the first signal using a radio resource corresponding to a radio resource different from the radio resource used for the transmission of the first signal this time NACK (hereinafter, referred to as “NACK 6”) including information indicating that retransmission of N is possible.
  • NACK 6 a radio resource corresponding to a radio resource different from the radio resource used for the transmission of the first signal this time NACK
  • the suppression signal generation unit 34 uses the radio resource allocated to the terminal 14 to which the radio resource in which the collision has occurred is allocated. To generate a fifth signal including information for suppressing.
  • the transmitting unit 28B has the following functions in addition to the functions of the transmitting unit 28A according to the third embodiment.
  • the transmission unit 28B transmits the fifth signal generated by the suppression signal generation unit 34 to the terminal 14 described below. That is, in this case, the transmitting unit 28B transmits the fifth signal to the terminal 14 to which the radio resource used by the terminal 14 of the transmission source of the first signal for transmitting the first signal is allocated.
  • the terminal 14 includes a transmitter 40A, a receiver 42B, a detector 44C, and a controller 46C.
  • the receiving unit 42B has the following functions in addition to the functions of the receiving unit 42A according to the third embodiment.
  • the receiving unit 42 B receives the fifth signal transmitted from the base station 12 via the antenna element 11 via the antenna element 13.
  • the detection unit 44C has the following functions in addition to the functions of the detection unit 44B according to the third embodiment.
  • the detection unit 44C detects whether the second signal subjected to the reception process by the reception unit 42B is an ACK, a NACK4, a NACK5, or a NACK6. In addition, the detection unit 44C detects that the fifth signal has been received by the reception unit 42B.
  • the control unit 46C has the following functions in addition to the functions of the control unit 46B according to the third embodiment.
  • the control unit 46C performs control not to transmit the first signal even though transmission of the first signal is possible at the next transmission timing. I do.
  • the control unit 46C transmits the transmission unit when the reception unit 42B detects that the fourth signal is received.
  • the following control is performed on 40A. That is, in this case, the control unit 46C outputs, to the transmitting unit 40A, an instruction to retransmit the first signal using the radio resource corresponding to the radio resource used this time.
  • the control unit 46C causes the transmission unit 40A to use the radio resource corresponding to the radio resource used this time at the next transmission timing. Output an instruction to retransmit one signal.
  • the control unit 46C transmits a radio signal corresponding to a radio resource different from the radio resource used this time to the transmission unit 40A at the next transmission timing. An instruction to retransmit the first signal is output using the resource.
  • the hardware configurations of the base station 12 and the terminal 14 are the same as in the first to third embodiments (see FIG. 4 and FIG. 5), and therefore the description thereof is omitted.
  • the suppression signal generation unit 34 is also realized by the CPU 61 executing the base station control program 70.
  • FIG. 12A is a diagram showing an example of radio resource allocation in the fourth embodiment.
  • 12B is an example showing a processing sequence of the base station 12 and each terminal (terminals 14 # A-1 to A-3 and terminals 14 # B1-B3) corresponding to FIG. 12A.
  • group A three terminals 14 # A-1 to A-3 are pre-assigned two shared radio resources as the same group (hereinafter referred to as "group A").
  • “UEG-A1 resource” and “UEG-A2 resource” in FIG. 12A indicate two shared radio resources allocated to the terminals 14 # A-1 to A-3 in each slot.
  • shared radio resources are allocated to the three terminals 14 # B-1 to B-3 as a group different from the group A (hereinafter referred to as "group B"). Although illustration is omitted, the radio resources allocated to the three terminals 14 # B-1 to B-3 are radio resources of frequency bands different from those of the "UEG-A1 resource” and the "UEG-A2 resource”. It is assumed.
  • the “fifth signal” in FIG. 12A is the fifth signal when transmitting the second signal corresponding to the first signal transmitted using the “UEG-A1 resource” and the “UEG-A2 resource” in each slot. Represents the timing of transmitting a signal.
  • steps S50A to 50C shown in FIG. 12B data to be transmitted is generated in the upper layer in the terminals 14 # B-1 to B-3, and the data is input to the transmitting unit 40A.
  • the transmitting unit 40A temporarily holds the input data in the transmission buffer.
  • the terminals 14 # A-1 to A-3 do not transmit the third signal to the base station 12 because data to be transmitted is not generated. That is, the base station 12 does not receive the third signal in slot #n. It is assumed that the data generated in steps S50A to 50C can not be transmitted using the shared radio resources "UEG-B1 resource" and "UEG-B2 resource" under some influence (for example, the influence of transmission control).
  • the detection unit 30 of the base station 12 does not detect that the third signal has been received by the reception unit 20A. Therefore, the resource availability signal generation unit 32 generates a fourth signal including information indicating that the radio resource allocated to the group A is available (step S51). Then, in steps S52A to 52C, as described above, the transmission unit 28B of the base station 12 transmits the fourth signal generated by the resource empty signal generation unit 32 to the terminals 14 # B-1 to B-4.
  • the receiving units 42B of the terminals 14 # B-1 to B-3 receive the fourth signal transmitted from the base station 12 at steps S52A to 52C. Further, the detection unit 44C detects that the fourth signal has been received by the reception unit 42B. In addition, in the terminals 14 # B-1 to B-3, data to be transmitted are generated at steps S50A to 50C.
  • control unit 46C of terminals 14 # B-1 to B-3 sends a free radio resource (here, UEG-A1 resource) specified by the information included in the fourth signal to transmission unit 40A. And output an instruction to transmit the first signal. Then, in steps S54A to 54C, transmission units 40A of terminals 14 # B-1 to B-3 transmit the first signal including the data generated in steps S50A to 50C to base station 12.
  • a free radio resource here, UEG-A1 resource
  • the reception state determination unit 22 of the base station 12 determines that the collision of the first signal has occurred as described above. Further, as described above, the reception state determination unit 22 specifies the terminals 14 # B-1 to B-3 of the transmission source of the first signal received by the reception unit 20A.
  • the priority determination unit 24A determines the priority of retransmission of the first signal at the terminals 14 # B-1 to 14-3 of the transmission source of the first signal identified by the reception state determination unit 22. judge.
  • the priority determination unit 24A determines that the terminal 14 # B-3 has the lowest priority, and determines that the terminal 14 # B-1 has the highest priority, and the terminal 14 # B-2 The case where it is determined that the priority is the second highest will be described.
  • the response signal generation unit 26B generates NACK4 for the terminal 14 # B-3 according to the determination result of the priority by the priority determination unit 24A, and for the terminal 14 # B-2 The NACK 6 is generated, and the NACK 5 is generated for the terminal 14 # B-1.
  • the suppression signal generation unit 34 transmits the terminals 14 # A-1 to A-3 to the terminals 14 # A-1 to A-3 to which the "UEG-A1 resource” and the "UEG-A2 resource” are allocated.
  • a fifth signal is generated that includes information for suppressing the use of the assigned radio resource.
  • step S58 the transmitting unit 28B transmits the NACK 5 generated by the response signal generating unit 26B to the terminal 14 # B-1. Also, in step S60, the transmitting unit 28B transmits the NACK 6 generated by the response signal generating unit 26B to the terminal 14 # B-2. Also, in step S62, the transmitting unit 28B transmits the NACK 4 generated by the response signal generating unit 26B to the terminal 14 # B-3.
  • transmission unit 28B transmits the fifth signal generated by suppression signal generation unit 34 to terminals 14 # A-1 to A-3.
  • the receiving units 42B of the terminals 14 # A-1 to A-3 receive the fifth signal transmitted from the base station 12 at steps S64A to 64C. Therefore, the terminals 14 # A-1 to A-3 do not transmit the first signal to the base station 12 in slot # n + 1 even if data to be transmitted is generated.
  • the receiving unit 42B of the terminal 14 # B-1 receives the NACK 5 transmitted from the base station 12 in step S58. That is, the detection unit 44C of the terminal 14 # B-1 detects that the second signal is NACK5. As a result of this detection, the control unit 46C of the terminal 14 # B-1 sends a transmission resource corresponding to the radio resource used this time at the first transmission timing (in this embodiment, slot # n + 1) to the transmission unit 40A. In the embodiment, an instruction to retransmit the first signal is output using the UEG-A1 resource). Then, in step S66, the transmission unit 40A of the terminal 14 # B-1 retransmits the first signal to the base station 12 using the UEG-A1 resource in slot # n + 1 as described above.
  • the receiving unit 42B of the terminal 14 # B-2 receives the NACK 6 transmitted from the base station 12 in step S60. That is, the detection unit 44C of the terminal 14 # B-2 detects that the second signal is NACK6. As a result of this detection, the control unit 46C of the terminal 14 # B-2 sends the transmission unit 40A a radio resource different from the radio resource used this time at the first transmission timing (in this embodiment, slot # n + 1). An instruction to retransmit the first signal is output using the corresponding radio resource (in the present embodiment, the UEG-A2 resource). Then, in step S68, as described above, the transmission unit 40A of the terminal 14 # B-2 retransmits the first signal to the base station 12 using the UEG-A2 resource in slot # n + 1.
  • the receiving unit 42B of the terminal 14 # B-3 receives the NACK 4 transmitted from the base station 12 in step S62. That is, the detection unit 44C of the terminal 14 # B-3 detects that the second signal is NACK4. Also, the receiving unit 42B of the terminal 14 # B-3 has not received the fourth signal in the slot # n + 1. Therefore, the terminal 14 # B-3 does not retransmit the first signal in the slot # n + 1.
  • the transmitting unit 28B of the base station 12 transmits an ACK or NACK to the terminal 14 # B-1 and the terminal 14 # B-2 in steps S70A and 70B.
  • the transmitter 28B of the base station 12 transmits an ACK.
  • the terminals 14 # A-1 to A-3 do not transmit the third signal to the base station 12 because data to be transmitted is not generated. That is, the base station 12 does not receive the third signal in slot # n + 2.
  • the detection unit 30 of the base station 12 does not detect that the third signal has been received by the reception unit 20A. Therefore, the resource idle signal generation unit 32 generates a fourth signal. Then, in steps S72A to 72C, as described above, the transmission unit 28B of the base station 12 transmits the fourth signal generated by the resource empty signal generation unit 32 to the terminals 14 # B-1 to B-4.
  • the receiving units 42B of the terminals 14 # B-1 to B-3 receive the fourth signal transmitted from the base station 12 in steps S72A to 72C. Further, the detection unit 44C detects that the fourth signal has been received by the reception unit 42B.
  • control unit 46C of terminal 14 # B-3 causes transmitting unit 40A to use the idle radio resource (here, UEG-A1 resource) specified by the information included in the fourth signal. Output an instruction to retransmit one signal. Then, in step S74, as described above, the transmission unit 40A of the terminal 14 # B-3 retransmits the first signal to the base station 12 using the UEG-A1 resource of slot # n + 2.
  • step S76 the transmitting unit 28B of the base station 12 transmits ACK or NACK to the terminal 14 # B-3, as in step S70A.
  • the base station 12 transmits the second signal to the terminals 14 # B-1 to B-3, the terminals 14 # A-1 to A-3 are further transmitted. Sends the fifth signal to Therefore, as a result of suppressing the occurrence of the collision, it is possible to suppress the increase of the transmission delay time.
  • a radio resource is allocated including said shared radio resource. It is good.
  • the slot described in each of the above embodiments may be a slot in Long Term Evolution (LTE), or may be a mini slot in which the slot in LTE is divided into a plurality.
  • LTE Long Term Evolution
  • the base station control program 70 has been described as being stored (installed) in advance in the storage unit 63.
  • the base station control program 70 can also be provided in the form of being recorded on a recording medium such as a CD-ROM, a DVD-ROM, a USB memory, and a memory card.
  • the terminal control program 90 can also be provided in the form of being recorded on a recording medium such as a CD-ROM, a DVD-ROM, a USB memory, or a memory card.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

再送回数を抑制する。基地局は、Grant-free方式で無線通信装置と無線通信を行うことが可能な基地局であって、前記無線通信装置に割り当てられた共有無線リソースを用いて前記無線通信装置から送信された第1信号を受信する受信部と、前記無線通信装置に、前記第1信号に対しての再送要求する場合に、再送に用いる無線リソースに関する情報を含む第2信号を前記無線通信装置に送信する送信部と、を含む。

Description

基地局、端末、通信方法、及び無線通信システム
 開示の技術は、基地局、端末、通信方法、及び無線通信システムに関する。
 従来、一例として図13に示すように、端末がデータを無線通信によって基地局に送信する際に、Scheduling Request(SR)を送信することが行われている。基地局は、端末から送信されたSRを受信すると、割り当てた無線リソースの使用を許可するGrantを含む情報を端末に送信する。端末は、基地局から送信されたGrantを含む情報を受信すると、割り当てられた無線リソースを用いてデータを基地局に送信する。
 この方式では、端末が、少なくともデータを無線通信によって基地局に送信する前に、基地局にSRを送信し、基地局から送信されたGrantを含む情報を受信するまでに要する時間(図13における破線で囲まれた部分)がかかる。
 Third Generation Partnership Project(3GPP)では、次世代の通信規格(5th Generation(5G))の無線通信システムにむけて、データ伝送までの時間の短縮を目的としてGrant-free方式が検討されている。Grant-free方式では、一例として図14に示すように、端末が基地局にSRを送信しなくてもアップリンクのデータ送信が可能とされる。また、Grant-free方式では、端末がデータ送信に使用する無線リソースを各端末又は各端末グループに事前に割り当てることが3GPPにおいて合意されている。また、Grant-free方式では、無線リソースの例として、時間領域において一定周期で配置される周期型の無線リソースが挙げられる。また、Grant-free方式では、端末に割り当てられる無線リソースの情報(例えば、時間領域上の位置、時間周期、及び周波数領域上の位置等)は、上位層のシグナリングを用いて各端末に事前に通知される。
3GPP TSG RAN WG1 Meeting #88, R1-1701594, Athens Greece,"Basic Grant-free Transmission for URLLC", 13th-17th February 2017. 3GPP TSG RAN WG1 Meeting #88, R1-1703788, Athens Greece,"WF on grant-free for UL URLLC", 13th-17th February 2017.
 Grant-free方式での端末から基地局へのデータ送信において、同一の無線リソースが複数の端末で共有されて同時に使用された場合、複数の端末から送信されたデータの衝突が発生し、基地局でのデータ受信に影響を与えることがある。この場合、各端末からのデータの再送時においても更にデータが衝突する可能性があり、再送回数が増加してしまう場合がある。
 開示の技術は、一つの側面として、再送回数を抑制することを目的とする。
 開示の技術は、一つの態様として、Grant-free方式で無線通信装置と無線通信を行うことが可能な基地局が、前記無線通信装置に割り当てられた共有無線リソースを用いて前記無線通信装置から送信された第1信号を受信する受信部を含む。また、基地局は、前記無線通信装置に、前記第1信号に対しての再送要求する場合に、再送に用いる無線リソースに関する情報を含む第2信号を前記無線通信装置に送信する送信部を更に含む。
 一つの側面として、再送回数を抑制することができる、という効果を有する。
各実施形態に係る無線通信システムの概略構成を示すブロック図である。 第1及び第2実施形態に係る基地局の機能ブロック図である。 各実施形態に係る端末の機能ブロック図である。 各実施形態に係る基地局のハードウェア構成を示すブロック図である。 各実施形態に係る端末のハードウェア構成を示すブロック図である。 第1実施形態に係るスロットの概念図である。 第1実施形態に係る無線通信システムの処理の流れの一例を示すチャートである。 第1実施形態に係る第2信号を説明するための図である。 第2実施形態に係るスロットの概念図である。 第2実施形態に係る無線通信システムの処理の流れの一例を示すチャートである。 第3実施形態に係る基地局の機能ブロック図である。 第3実施形態に係るスロットの概念図である。 第3実施形態に係る無線通信システムの処理の流れの一例を示すチャートである。 第4実施形態に係る基地局の機能ブロック図である。 第4実施形態に係るスロットの概念図である。 第4実施形態に係る無線通信システムの処理の流れの一例を示すチャートである。 Grantを用いた方式での無線通信処理を説明するためのタイミングチャートである。 Grant-free方式での無線通信処理を説明するためのタイミングチャートである。
 以下、図面を参照して、開示の技術の実施形態の例を詳細に説明する。
 [第1実施形態]
 まず、図1を参照して、本実施形態に係る無線通信システム10の構成を説明する。図1に示すように、無線通信システム10は、複数のアンテナ素子11を備えた基地局12、及びそれぞれ1つのアンテナ素子13を備えた複数の端末14を含む。端末14は、User Equipment(UE)とも呼ばれる。なお、端末14は複数のアンテナ素子13を備えてもよい。
 複数の端末14の各々は、基地局12がカバーするエリア内に位置し、基地局12との無線通信が可能とされる。基地局12と端末14とは、アンテナ素子11及びアンテナ素子13を介して、Grant-free方式で無線通信を行うことが可能である。Grant-free方式での無線通信を実現するために、各端末14には、端末14が基地局12にデータを送信する際に用いられる複数の端末14が共有する無線リソースが基地局12によって予め割り当てられている。なお、共有無線リソースは、例えば、System-Information-Block(SIB)を用いて割り当てられる。端末14が、開示の技術の無線通信装置の一例である。
 次に、図2を参照して、本実施形態に係る基地局12の機能的な構成を説明する。図2に示すように、基地局12は、受信部20、受信状態判定部22、優先度判定部24、応答信号生成部26、及び送信部28を含む。
 受信部20は、端末14からアンテナ素子13を介して送信された信号を、アンテナ素子11を介して受信する。本実施形態では、受信部20は、端末14からアンテナ素子13を介して送信された端末14が送信対象とするデータを含む第1信号を、アンテナ素子11を介して受信する。そして、受信部20は、受信した第1信号に対し、アナログ信号をデジタル信号へ変換する処理、及び高速フーリエ変換等の定められた受信処理を行う。
 受信状態判定部22は、受信部20による受信処理を経た第1信号の受信状態に基づき、第1信号を正常に受信できたか否かの判定を行う。なお、受信状態判定部22は、例えばHybrid ARQ(HARQ)の処理を行い、第1信号が正常に受信できたか否かを判定する。複数の端末14の各々が、割り当てられた共有の無線リソースを用いて同じタイミングで第1信号を送信すると、受信部20は、干渉による影響を受けた第1信号を受信する可能性がある。そこで、本実施形態では、受信状態判定部22は、受信部20による受信処理を経た第1信号の受信状態に応じて、複数の端末14が同じタイミングで第1信号を送信したことにより、第1信号を正常に受信できずに、第1信号の衝突が発生したか否かを判定する。なお、受信状態判定部22は、あるスロットで受信した第1信号に対して、全て正常に受信できている場合は、衝突判定をしなくても良い。
 また、受信状態判定部22は、第1信号の衝突が発生したと判定した場合、受信部20による受信処理を経た第1信号の各々を用いて、第1信号の送信元の複数の端末14を特定する。
 優先度判定部24は、受信状態判定部22により第1信号の衝突が発生したと判定された場合、受信状態判定部22により特定された第1信号の送信元の複数の端末14における第1信号の再送の優先度を判定する。本実施形態では、優先度判定部24は、例えば、端末14毎に予め定められたQuality of Service(QoS)に従い、第1信号の再送の優先度を2段階で判定する。具体的には、優先度判定部24は、第1信号の送信元の複数の端末14のうち、QoSが最も高い端末14を優先度が高いと判定し、QoSが最も高い端末14以外の端末14を優先度が低いと判定する。
 なお、優先度判定部24は、第1信号の送信元の複数の端末14のうち、受信部20による第1信号の受信開始のタイミングが最も早い端末14を優先度が高いと判定し、最も早い端末14以外の端末14を優先度が低いと判定してもよい。
 また、優先度判定部24は、第1信号の送信元の複数の端末14のうち、少なくとも1台の端末14を優先度が高いと判定し、少なくとも1台の端末14を優先度が低いと判定すれば、優先度が高いと判定する端末14が複数存在してもよい。例えば、優先度判定部24は、QoSが所定値以上の端末14を優先度が高いと判定し、QoSが所定値未満の端末14を優先度が低いと判定してもよい。
 応答信号生成部26は、端末14から送信された第1信号に対する応答として、第2信号を生成する。本実施形態では、応答信号生成部26は、受信状態判定部22により第1信号が正常に受信できたと判定された場合、第2信号として、第1信号が正常に受信できたことを表すACKnowledgement(ACK)を生成する。
 また、応答信号生成部26は、受信状態判定部22により第1信号が正常に受信されなかったと判定された場合、第2信号として、Hybrid Automatic Repeat reQuest(HARQ)に従って第1信号の送信元の端末14に再送を要求するNegative ACKnowledgement(NACK)を生成する。本実施形態では、応答信号生成部26は、第1信号の送信元の端末14が第1信号の再送に用いる無線リソースに関する情報をNACKに含める。具体的には、応答信号生成部26は、第1信号の送信元の端末14毎に、優先度判定部24による再送の優先度に従ってNACKを生成する。
 より具体的には、応答信号生成部26は、優先度判定部24により再送の優先度が低いと判定された端末14に対しては、第1の送信タイミング(例えば、次の送信タイミング)での再送が不可であることを示す情報を含むNACK(以下、「NACK0」という)を生成する。一方、応答信号生成部26は、優先度判定部24により再送の優先度が高いと判定された端末14に対しては、第1の送信タイミングでの再送が可能であることを示す情報を含むNACK(以下、「NACK1」という)を生成する。
 送信部28は、応答信号生成部26により生成された第2信号に対し、逆高速フーリエ変換、及びデジタル信号をアナログ信号へ変換する処理等の定められた送信処理を行う。そして、送信部28は、送信処理を経た第2信号を、アンテナ素子11を介して、対応する第1信号の送信元の端末14に送信する。
 次に、図3を参照して、本実施形態に係る端末14の機能的な構成を説明する。図3に示すように、端末14は、送信部40、受信部42、検出部44、及び制御部46を含む。
 送信部40は、送信バッファを含み、アプリケーション等の上位層において発生したデータが入力された場合に、入力されたデータを送信バッファに一時的に保持する。また、送信部40は、後述する制御部46による制御により、端末14に割り当てられた共有の無線リソースを用いて、送信バッファに保持したデータを含む第1信号を、アンテナ素子13を介して基地局12に送信する。本実施形態では、送信部40は、第1信号に対し、逆高速フーリエ変換、及びデジタル信号をアナログ信号へ変換する処理等の定められた送信処理を行う。そして、送信部40は、送信処理を経た第1信号を、アンテナ素子13を介して基地局12に送信する。
 また、送信部40は、制御部46から第1信号の再送の指示及び再送のタイミングが入力された場合、入力された再送のタイミングに応じて、送信バッファに保持したデータを含む第1信号を、アンテナ素子13を介して基地局12に再送信する。
 受信部42は、基地局12からアンテナ素子11を介して送信された信号を、アンテナ素子13を介して受信する。本実施形態では、受信部42は、基地局12からアンテナ素子11を介して送信された第2信号を、アンテナ素子13を介して受信する。そして、受信部42は、受信した第2信号に対し、アナログ信号をデジタル信号へ変換する処理、及び高速フーリエ変換等の定められた受信処理を行う。
 検出部44は、受信部42による受信処理を経た第2信号が、ACKであるか、NACK0であるか、又はNACK1であるかを検出する。
 制御部46は、アプリケーション等の上位層においてデータが発生した場合、送信部40に対し、端末14に割り当てられた共有の無線リソースを用いて、発生したデータを含む第1信号を基地局12に送信する制御を行う。また、制御部46は、検出部44により第2信号がACKであると検出された場合、上位層に対して第1信号の送信が正常に終了したことを通知する。
 また、制御部46は、検出部44により第2信号がNACK0であると検出された場合、送信部40に対し、第1の送信タイミングでは第1信号を再送せずに、第1の送信タイミングと異なる第2の送信タイミング(例えば、第1の送信タイミングのNスロット後のタイミング(Nは、整数))で第1信号を再送する指示を出力する。また、制御部46は、検出部44により第2信号がNACK1であると検出された場合、送信部40に対し、第1の送信タイミングで第1信号を再送する指示を出力する。
 次に、図4を参照して、本実施形態に係る基地局12のハードウェア構成を説明する。図4に示すように、基地局12は、Central Processing Unit(CPU)61、一時記憶領域としてのメモリ62、及び不揮発性の記憶部63を備える。また、基地局12は、コアネットワーク等に接続されるネットワークI/F64、及び無線処理回路65を備える。CPU61、メモリ62、記憶部63、ネットワークI/F64、及び無線処理回路65は、バス66を介して互いに接続される。
 記憶部63は、Hard Disk Drive(HDD)、Solid State Drive(SSD)、及びフラッシュメモリ等によって実現することができる。記憶媒体としての記憶部63には、基地局制御プログラム70が記憶される。CPU61は、基地局制御プログラム70を記憶部63から読み出し、読み出した基地局制御プログラム70をメモリ62に展開してから実行する。CPU61が、基地局制御プログラム70を実行することによって、図2に示す受信状態判定部22、優先度判定部24、及び応答信号生成部26として機能する。また、受信部20及び送信部28は、無線処理回路65によって実現される。なお、CPU61は、ハードウェアプロセッサである。
 また、基地局制御プログラム70により実現される機能は、例えば半導体集積回路、より詳しくはApplication Specific Integrated Circuit(ASIC)等で実現することも可能である。
 次に、図5を参照して、本実施形態に係る端末14のハードウェア構成を説明する。図5に示すように、端末14は、CPU81、一時記憶領域としてのメモリ82、不揮発性の記憶部83、及び無線処理回路85を備える。CPU81、メモリ82、記憶部83、及び無線処理回路85は、バス86を介して互いに接続される。
 記憶部83は、フラッシュメモリ等によって実現することができる。記憶媒体としての記憶部83には、端末制御プログラム90が記憶される。CPU81は、端末制御プログラム90を記憶部83から読み出し、読み出した端末制御プログラム90をメモリ82に展開してから実行する。CPU81が、端末制御プログラム90を実行することによって、図3に示す検出部44及び制御部46として機能する。また、送信部40及び受信部42は、無線処理回路85によって実現される。なお、CPU81は、ハードウェアプロセッサである。
 また、端末制御プログラム90により実現される機能は、例えば半導体集積回路、より詳しくはASIC等で実現することも可能である。
 次に、図6A、6Bを参照して、本実施形態に係る無線通信システム10の作用を説明する。なお、本実施形態では、一例として、2台の端末14が、同じグループとして共有の無線リソースを予め割り当てられた場合について説明する。また、本実施形態では、2台の端末14を区別する場合は、一方を端末14#A-1と表記し、他方を端末14#A-2と表記する。
 なお、図6Bは、基地局12、端末14#A-1、及び端末14#A-2の処理のチャートを示す。また、図6Aは、各スロットの概念図を示し、縦方向が周波数軸であり、横方向が時間軸である。また、本実施形態では、n番目のスロットをスロット#n(slot#n)と表記する。すなわち、例えば、スロット#nの次のスロットはスロット#n+1と表記する。また、図6Aにおける「UEG-Aリソース」は各スロットにおいて端末14#A-1及び端末14#A-2の双方に割り当てられた共有の無線リソースを示す。また、図6Aにおける「ACK/NACK」は、各スロットの「UEG-Aリソース」を用いて端末14から送信された第1信号に対応する第2信号を、基地局12から端末14へ送信するタイミングを表す。
 図7に、第2信号の無線リソースの割り当ての一例を示す。図7に示すように、本実施形態では、第2信号用の無線リソースとして、端末14#A-1及び端末14#A-2の各々に対して、Resource Element(RE)が割り当てられる。また、基地局12は、端末14に第2信号を送信する際に、Quadrature Phase Shift Keying(QPSK)によって、それぞれ異なる2ビットのビット列をACK、NACK0、及びNACK1にマッピングした情報の何れかを第2信号に含める。従って、端末14は、受信した第2信号から、第1信号の送信が正常に終了したか、又は第1信号の再送が要求されているかを判別することができる。また、端末14は、第1信号の再送が要求されている場合に、どのタイミングでどの無線リソースを用いて第1信号を再送すればよいかも判別することができる。なお、図7では、一例としてQPSKを用いた場合について説明したが他の変調方式(例えば、BPSK、QAM等)を用いても良い。
 図6Bに示すステップS10及びS11で、端末14#A-1及び端末14#A-2それぞれにおいて、上位層で送信対象のデータが発生し、送信部40にデータが入力される。送信部40は、入力されたデータを送信バッファに一時的に保持する。また、制御部46は、送信部40に対し、端末14に割り当てられた共有の無線リソースを用いて、発生したデータを含む第1信号を基地局12に送信する制御を行う。なお、端末14#A-1及び端末14#A-2のデータ発生のタイミング(S10、S11)は、同時でも良いし、異なってもよい。
 ステップS12及びS13で、端末14#A-1及び端末14#A-2の送信部40は、前述したように、制御部46による制御により、各端末14に割り当てられたスロット#nの共有の無線リソースを用いて、第1信号を基地局12に送信する。基地局12の受信部20は、ステップS12及びS13で端末14#A-1及び端末14#A-2から送信された第1信号を受信する。
 ステップS12及びS13で端末14#A-1及び端末14#A-2の各々から送信された第1信号は、スロット#nの同じ周波数帯域の無線リソース(共有無線リソース)が用いられているため、干渉によって基地局12の第1信号の受信品質が低下する。従って、ステップS14で、基地局12の受信状態判定部22は、前述したように、第1信号の衝突が発生したと判定する。また、受信状態判定部22は、前述したように、受信部20により受信された第1信号の送信元の端末14#A-1及び端末14#A-2を特定する。
 また、優先度判定部24は、前述したように、受信状態判定部22により特定された端末14#A-1及び端末14#A-2における第1信号の再送の優先度を判定する。なお、ここでは、優先度判定部24が、端末14#A-1を優先度が高いと判定し、端末14#A-2を優先度が低いと判定した場合について説明する。
 そして、応答信号生成部26は、優先度判定部24により優先度が高いと判定された端末14#A-1に対してはNACK1を生成し、優先度判定部24により優先度が低いと判定された端末14#A-2に対してはNACK0を生成する。
 ステップS16で、送信部28は、前述したように、応答信号生成部26により生成されたNACK1を端末14#A-1に送信する。また、ステップS18で、送信部28は、前述したように、応答信号生成部26により生成されたNACK0を端末14#A-2に送信する。
 端末14#A-1の受信部42は、ステップS16で基地局12から送信されたNACK1を受信する。すなわち、端末14#A-1の検出部44により第2信号がNACK1であると検出され、制御部46が送信部40に対し、第1の送信タイミング(本実施形態では、スロット#n+1)で第1信号を再送する指示を出力する。そして、ステップS20で、端末14#A-1の送信部40は、前述したように、スロット#n+1の無線リソースを用いて、第1信号を基地局12に再送信する。
 ステップS20で端末14#A-1から送信された第1信号は、基地局12により正常に受信され、基地局12の受信状態判定部22により第1信号が正常に受信できたと判定される。すなわち、基地局12の応答信号生成部26は、端末14#A-1に対してACKを生成する。そして、ステップS22で、送信部28は、前述したように、応答信号生成部26により生成されたACKを端末14#A-1に送信する。
 端末14#A-2の受信部42は、ステップS18で基地局12から送信されたNACK0を受信する。すなわち、端末14#A-2の検出部44により第2信号がNACK0であると検出され、制御部46が送信部40に対し、第1の送信タイミングでは第1信号を再送せずに、第2の送信タイミング(本実施形態では、スロット#n+2)で第1信号を再送する指示を出力する。そして、ステップS24で、端末14#A-2の送信部40は、前述したように、スロット#n+2の無線リソースを用いて、第1信号を基地局12に再送信する。
 ステップS24で端末14#A-2から送信された第1信号は、基地局12により正常に受信され、基地局12の受信状態判定部22により第1信号が正常に受信できたと判定される。すなわち、基地局12の応答信号生成部26は、端末14#A-2に対してACKを生成する。そして、ステップS26で、送信部28は、前述したように、応答信号生成部26により生成されたACKを端末14#A-2に送信する。
 以上説明したように、本実施形態によれば、基地局12が、第1信号の再送を要求する場合に、再送に用いる無線リソースに関する情報を第2信号に含めている。また、この再送に用いる無線リソースに関する情報は、第1の送信タイミングでの再送が可能か否かを示す情報を含む。従って、再送時の衝突の発生が抑制される結果、再送発生の可能性が低減され、伝送遅延時間の増加を抑制することができる。
 なお、図6の例では、共有の無線リソースが割り当てられた端末14が2台である場合について説明したが、これに限定されない。共有の無線リソースが割り当てられる端末14は、3台以上でもよい。3台以上の端末14から同じタイミングで共有の無線リソースを用いて第1信号が送信された場合、基地局12は1台の端末14にNACK1を送信し、他の端末14にNACK0を送信する形態が例示される。この場合、他の端末14が第1信号を再送する際に再度衝突が発生する可能性はあるが、同様のNACK0及びNACK1を端末14に送信する処理を繰り返すことにより、最終的に衝突は解消される。
 また、本実施形態では、第1の送信タイミングでの再送が可能か否かを示す情報を第2信号に含める場合について説明したが、これに限定されない。例えば、何スロット後に再送が可能であるかを示す情報を第2信号に含める形態としてもよい。この場合、例えば、3台の端末14から同じタイミングで共有の無線リソースを用いて第1信号が送信された場合、3台のうちの1台目の端末14に、1スロット後のスロット(図6の例ではスロット#n+1)での再送が可能であることを示す情報を含めた第2信号を送信する。また、この場合、3台のうちの2台目の端末14に、2スロット後のスロットでの再送が可能であることを示す情報を含めた第2信号を送信する。さらに、この場合、3台のうちの3台目の端末14に、3スロット後のスロットでの再送が可能であることを示す情報を含めた第2信号を送信する。
 また、無線環境の影響等で、端末14#A-1がステップS20で送信した第1信号が基地局12で正常に受信されなかった場合、端末14#A-1に対してのNACK信号として、端末14#A-2の送信タイミング(第2の送信タイミング)と異なる送信タイミングを含めたNACK信号を送信するようにしても良い。このようにすることで、端末14#A-1の再送の再送と、端末14#A-2の再送との送信タイミング(送信スロット)を別々にすることが可能になる。なお、端末14#A-1を優先的に通信させるために、例えば、第1のタイミングで送信された第1信号に対してのNACKを端末14#A-1に送信する際に、端末14#A-2に対して、さらに送信タイミングを変更するような指示情報を送信しても良い。また、基地局12は、第1の送信タイミングで送信された第1信号に対してのACKを送信する際に、第2の送信タイミングで第1信号を送信する端末14#A-2に対して、第1信号の送信タイミングを早める指示情報を送信しても良い。
 [第2実施形態]
 開示の技術の第2実施形態について説明する。なお、本実施形態に係る無線通信システム10の構成は、第1実施形態と同様であるため、説明を省略する。本実施形態では、各端末14には、端末14が基地局12にデータを送信する際に用いられる複数の端末14が共有する複数(本実施形態では、2つ)の無線リソースが基地局12によって予め割り当てられている。また、この複数の無線リソースは、各々周波数帯域が異なるとする。
 次に、図2を参照して、本実施形態に係る基地局12の機能的な構成を説明する。なお、第1実施形態と同一の機能を有する機能部については、第1実施形態と同一の符号を付して説明を省略する。図2に示すように、基地局12は、受信部20、受信状態判定部22、優先度判定部24、応答信号生成部26A、及び送信部28を含む。
 応答信号生成部26Aは、端末14から送信された第1信号に対する応答として、第2信号を生成する。本実施形態では、応答信号生成部26Aは、受信状態判定部22により第1信号が正常に受信できたと判定された場合、第2信号として、第1信号が正常に受信できたことを表すACKを生成する。
 また、応答信号生成部26Aは、受信状態判定部22により第1信号が正常に受信されなかった場合、第2信号として、HARQに従って第1信号の送信元の端末14に再送を要求するNACKを生成する。本実施形態では、応答信号生成部26Aは、第1信号の送信元の端末14が第1信号の再送に用いる無線リソースに関する情報をNACKに含める。
 具体的には、応答信号生成部26Aは、優先度判定部24により再送の優先度が高いと判定された端末14に対して、今回の第1信号の送信に使用した無線リソースに対応する無線リソースを用いて第1信号を再送することを示す情報を含むNACK(以下、「NACK2」という)を生成する。また、応答信号生成部26Aは、優先度判定部24により再送の優先度が低いと判定された端末14に対して、以下に示すNACKを生成する。すなわち、この場合、応答信号生成部26Aは、今回の第1信号の送信に使用した無線リソースとは異なる無線リソースに対応する無線リソースを用いて第1信号を再送することを示す情報を含むNACK(以下、「NACK3」という)を生成する。なお、応答信号生成部26Aは、優先度判定部24により再送の優先度が高いと判定された端末14に対してNACK3を生成し、再送の優先度が低いと判定された端末14に対してNACK2を生成してもよい。
 次に、図3を参照して、本実施形態に係る端末14の機能的な構成を説明する。なお、第1実施形態と同一の機能を有する機能部については、第1実施形態と同一の符号を付して説明を省略する。図3に示すように、端末14は、送信部40、受信部42、検出部44A、及び制御部46Aを含む。
 検出部44Aは、受信部42による受信処理を経た第2信号が、ACKであるか、NACK2であるか、又はNACK3であるかを検出する。
 制御部46Aは、アプリケーション等の上位層においてデータが発生した場合、送信部40に対し、端末14に割り当てられた共有の無線リソースの何れかを用いて、発生したデータを含む第1信号を基地局12に送信する制御を行う。また、制御部46Aは、検出部44Aにより第2信号がACKであると検出された場合、上位層に対して第1信号の送信が正常に終了したことを通知する。
 また、制御部46Aは、検出部44Aにより第2信号がNACK2であると検出された場合、送信部40に対し、次の送信タイミングで、今回使用した無線リソースに対応する無線リソースを用いて第1信号を再送する指示を出力する。また、制御部46Aは、検出部44Aにより第2信号がNACK3であると検出された場合、送信部40に対し、次の送信タイミングで、今回使用した無線リソースとは異なる無線リソースに対応する無線リソースを用いて第1信号を再送する指示を出力する。
 基地局12及び端末14のハードウェア構成は、各々第1実施形態と同様(図4及び図5参照)であるため説明を省略する。
 次に、図8A、8Bを参照して、本実施形態に係る無線通信システム10の作用を説明する。なお、本実施形態では、2台の端末14が、同じグループとして2つの共有の無線リソースを予め割り当てられた場合について説明する。また、本実施形態では、2台の端末14を区別する場合は、一方を端末14#A-1と表記し、他方を端末14#A-2と表記する。また、図8Aにおける「UEG-A1リソース」及び「UEG-A2リソース」は各スロットにおいて端末14#A-1及び端末14#A-2の双方に割り当てられた2つの共有の無線リソースを示す。また、図8Bにおける図6Bと同一の処理を実行するステップについては、同一の符号を付して説明を省略する。
 図8BのステップS12A及びS13Aで、端末14#A-1、A-2の送信部40は、前述したように、制御部46Aによる制御により、各端末14に割り当てられたスロット#nの共有の無線リソースの何れかを用いて、第1信号を基地局12に送信する。なお、ここでは、ステップS12A及びS13Aで、端末14#A-1及び端末14#A-2の双方が、UEG-A1リソースを用いて第1信号を基地局12に送信した場合について説明する。基地局12の受信部20は、ステップS12A及びS13Aで端末14から送信された第1信号を受信する。
 ステップS12A及びS13Aで端末14#A-1及び端末14#A-2の各々から送信された第1信号は、同じタイミング(スロット)で同じ周波数帯域の無線リソースが用いられているため、干渉によって基地局12の第1信号の受信品質が低下する。従って、ステップS14で第1実施形態と同様の基地局12の受信状態判定部22及び優先度判定部24による処理が実行される。そして、応答信号生成部26Aは、優先度判定部24により優先度が高いと判定された端末14#A-1に対してはNACK2を生成し、優先度判定部24により優先度が低いと判定された端末14#A-2に対してはNACK3を生成する。
 ステップS16Aで、送信部28は、応答信号生成部26Aにより生成されたNACK2を端末14#A-1に送信する。また、ステップS18Aで、送信部28は、応答信号生成部26Aにより生成されたNACK3を端末14#A-2に送信する。
 端末14#A-1の受信部42は、ステップS16Aで基地局12から送信されたNACK2を受信する。すなわち、端末14#A-1の検出部44Aにより第2信号がNACK2であると検出される。この検出の結果、端末14#A-1の制御部46Aが送信部40に対し、第1の送信タイミング(本実施形態では、スロット#n+1)で今回使用した無線リソースに対応する無線リソース(本実施形態では、UEG-A1リソース)を用いて第1信号を再送する指示を出力する。そして、ステップS20Aで、端末14#A-1の送信部40は、前述したように、スロット#n+1のUEG-A1リソースを用いて、第1信号を基地局12に再送信する。
 端末14#A-2の受信部42は、ステップS18Aで基地局12から送信されたNACK3を受信する。すなわち、端末14#A-2の検出部44Aにより第2信号がNACK3であると検出される。この検出の結果、端末14#A-2の制御部46Aが送信部40に対し、第1の送信タイミングで、今回使用した無線リソースとは異なる無線リソースに対応する無線リソース(本実施形態では、UEG-A2リソース)を用いて第1信号を再送する指示を出力する。そして、ステップS24Aで、端末14#A-2の送信部40は、前述したように、スロット#n+1のUEG-A2リソースを用いて、第1信号を基地局12に再送信する。
 ステップS20Aで端末14#A-1から送信された第1信号、及びステップS24Aで端末14#A-2から送信された第1信号は、異なる周波数帯域の無線リソースを用いて送信されているため、衝突が発生しない。従って、第1実施形態と同様に、ステップS22で、基地局12が端末14#A-1から送信された第1信号を正常に受信できている場合に、送信部28は、ACKを端末14#A-1に送信する。また、ステップS26で、基地局12が端末14#A-2から送信された第1信号を正常に受信できている場合に、送信部28は、ACKを端末14#A-2に送信する。
 以上説明したように、本実施形態によれば、基地局12が、第1信号の再送を要求する場合に、再送に用いる無線リソースに関する情報を第2信号に含めている。また、この再送に用いる無線リソースに関する情報は、今回使用された無線リソースに対応する無線リソースであるか、又は今回使用された無線リソースとは異なる無線リソースに対応する無線リソースであるかを示す情報を含む。従って、第1実施形態に比較して、伝送遅延時間を短縮することができる。
 なお、第1実施形態と第2実施形態とを組み合わせてもよい。例えば、再送の優先度が高い順に、端末14に対する第2信号に以下に示す情報を含める形態が例示される。
 (1)次の送信タイミングでの再送が可能であり、かつ今回の第1信号の送信に使用した無線リソースに対応する無線リソースを用いて第1信号を再送する。
 (2)次の送信タイミングでの再送が可能であり、かつ今回の第1信号の送信に使用した無線リソースとは異なる無線リソースに対応する無線リソースを用いて第1信号を再送する。
 (3)次の送信タイミングでの再送が不可であり、かつ今回の第1信号の送信に使用した無線リソースに対応する無線リソースを用いて第1信号を再送する。
 (4)次の送信タイミングでの再送が不可であり、かつ今回の第1信号の送信に使用した無線リソースとは異なる無線リソースに対応する無線リソースを用いて第1信号を再送する。
 なお、再送の優先度が高い順に、(2)、(1)、(3)、(4)の順番でもよいし、(2)、(1)、(4)、(3)の順番でもよい。
 [第3実施形態]
 開示の技術の第3実施形態について説明する。なお、本実施形態に係る無線通信システム10の構成は、第2実施形態と同様であるため、説明を省略する。本実施形態では、複数のグループの何れかのグループに端末14が属する。そして、グループ毎に、端末14が基地局12にデータを送信する際に用いられる共有の複数の無線リソースが基地局12によって予め割り当てられている。また、各無線リソースは、各々周波数帯域が異なる。
 第1実施形態及び第2実施形態では、共有の無線リソースを何れの端末14も使用しなかった場合、無線リソースの使用効率が低下する。そこで、本実施形態に係る端末14は、割り当てられた無線リソースを使用する場合、第1信号の送信前に、割り当てられた無線リソースを使用することを示す情報を含む第3信号を基地局12に送信する。
 次に、図9を参照して、本実施形態に係る基地局12の機能的な構成を説明する。なお、第2実施形態に係る基地局12と同一の機能を有する機能部については図2と同一の符号を付して説明を省略する。図9に示すように、基地局12は、受信部20A、受信状態判定部22、優先度判定部24、応答信号生成部26A、及び送信部28Aを含む。また、基地局12は、検出部30及びリソース空き信号生成部32を更に含む。
 受信部20Aは、第2実施形態に係る受信部20が有する機能に加え、以下の機能を有する。受信部20Aは、端末14から第1信号の送信前に送信される、端末14に割り当てられた共有の無線リソースを使用することを示す情報を含む第3信号を受信する。そして、受信部20Aは、受信した第3信号に対し、アナログ信号をデジタル信号へ変換する処理、及び高速フーリエ変換等の定められた受信処理を行う。
 検出部30は、受信部20Aにより第3信号が受信されたことを検出する。リソース空き信号生成部32は、検出部30により受信部20Aによって第3信号が受信されたことが検出されなかった場合、以下に示す第4信号を生成する。すなわち、この場合、リソース空き信号生成部32は、第3信号に対応する端末14に割り当てられた無線リソースが空いていることを示す情報を含む第4信号を生成する。また、リソース空き信号生成部32は、検出部30により受信部20Aによって第3信号が受信されたことが検出された場合は第4信号を生成しない。
 送信部28Aは、第2実施形態に係る送信部28が有する機能に加え、以下の機能を有する。送信部28Aは、リソース空き信号生成部32により生成された第4信号を、第3信号に対応する端末14に割り当てられた無線リソースとは異なる無線リソースが割り当てられた端末14に送信する。
 次に、図3を参照して、本実施形態に係る端末14の機能的な構成を説明する。なお、第2実施形態と同一の機能を有する機能部については、第2実施形態と同一の符号を付して説明を省略する。図3に示すように、端末14は、送信部40A、受信部42A、検出部44B、及び制御部46Bを含む。
 送信部40Aは、第2実施形態に係る送信部40が有する機能に加え、以下の機能を有する。送信部40Aは、制御部46Bによる制御により、第3信号を、アンテナ素子13を介して基地局12に送信する。
 受信部42Aは、第2実施形態に係る受信部42が有する機能に加え、以下の機能を有する。受信部42Aは、基地局12からアンテナ素子11を介して送信された第4信号を、アンテナ素子13を介して受信する。
 検出部44Bは、第2実施形態に係る検出部44Aが有する機能に加え、以下の機能を有する。検出部44Bは、受信部42Aにより第4信号が受信されたことを検出する。
 制御部46Bは、第2実施形態に係る制御部46Aが有する機能に加え、以下の機能を有する。制御部46Bは、アプリケーション等の上位層においてデータが発生した場合、送信部40Aに対し、第1信号の送信前に、第3信号を基地局12に送信する制御を行う。
 また、制御部46Bは、検出部44Bにより受信部42Aによって第4信号が受信されたことが検出された場合、送信部40Aに対し、第4信号に含まれる情報により特定される、空いている無線リソースを用いて第1信号を送信する指示を出力する。
 基地局12及び端末14のハードウェア構成は、各々第1及び第2実施形態と同様(図4及び図5参照)であるため説明を省略する。なお、検出部30及びリソース空き信号生成部32も、CPU61が基地局制御プログラム70を実行することによって実現される。
 次に、図10A、10Bを参照して、本実施形態に係る無線通信システム10の作用を説明する。なお、本実施形態では、2台の端末14#A-1及び端末14#A-2が、同じグループ(以下、「グループA」という)として2つの共有の無線リソースを予め割り当てられた場合について説明する。図10Aにおける「UEG-A1リソース」及び「UEG-A2リソース」は各スロットにおいて端末14#A-1及び端末14#A-2の双方に割り当てられた2つの共有の無線リソースを示す。
 また、2台の端末14#B-1及び端末14#B-2には、グループAとは異なるグループ(以下、「グループB」という)として共有の無線リソースが割り当てられている。なお、図示は省略するが、2台の端末14#B-1及び端末14#B-2には、「UEG-A1リソース」及び「UEG-A2リソース」とは異なる周波数帯域の無線リソース(例えば、「UEG-B1リソース」及び「UEG-B2リソース」)が割り当てられている。
 また、図10Aにおける「第3信号」は、各スロットの「UEG-A1リソース」及び「UEG-A2リソース」を用いて端末14が第1信号を送信する前に第3信号を送信するタイミングを表す。また、図10Aにおける「第4信号」は、各スロットで端末14から送信された第3信号に対応して基地局12が第4信号を送信するタイミングを表す。
 図10Bに、第3実施形態の処理チャートを示す。図10Bに示すステップS30及びS31で、端末14#A-1及び端末14#B-1において、上位層で送信対象のデータが発生し、送信部40Aにデータが入力される。送信部40Aは、入力されたデータを送信バッファに一時的に保持する。ステップS32で、端末14#A-1の制御部46Bは、送信部40Aに対し、グループAに割り当てられた無線リソースを使用することを示す情報を含む第3信号を基地局12に送信する制御を行う。端末14#A-1の送信部40Aは、第3信号を基地局12に送信する。なお、ここでは、端末14#B-1は、割り当てられた無線リソースが混雑している等の理由で、第1信号を基地局12に送信しないものとする。また、端末14#A-2は、送信対象のデータが発生していないため、第3信号を基地局12に送信しない。なお、ステップS31で発生したデータについては、何かしらの影響(例えば、送信制御の影響)で共有の無線リソース「UEG-B1リソース」及び「UEG-B2リソース」を用いて送信できないとする。
 基地局12の受信部20Aは、ステップS32で端末14#A-1から送信された第3信号を受信する。また、検出部30は、受信部20Aにより第3信号が受信されたことを検出する。従って、リソース空き信号生成部32により第4信号は生成されない。そして、ステップS34で、端末14#A-1の送信部40Aは、割り当てられた共有の無線リソース(ここでは、UEG-A1リソース)を用いて、第1信号を基地局12に送信する。
 基地局12は、ステップS34で端末14#A-1から送信された第1信号に対して、ステップS14と同様に、ステップS35で衝突判定を行う。なお、衝突判定の前に第1信号が正常に受信されていると判定されている場合は、ステップS35の衝突判定を行わなくても良い。基地局12が正常に第1信号を受信した場合、第1実施形態のステップS22と同様に、ステップS36で、基地局12の送信部28Aは、ACKを端末14#A-1に送信する。また、基地局12が正常に第1信号を受信できなかった場合、ステップS36で、基地局12の送信部28Aは、NACKを端末14#A-1送信する。図10Bでは、ステップS36で基地局12がACKを送信したものとして説明する。ステップS36で送信されたACKは端末14#A-1により受信されるため、端末14#A-1では送信対象のデータは存在しなくなる。また、端末14#A-2でも送信対象のデータは発生していない。すなわち、スロット#n+1では、端末14#A-1及び端末#A-2から第3信号が送信されない。
 従って、基地局12の検出部30は、受信部20Aによりスロット#n+1で第3信号が受信されたことを検出しない。そこで、リソース空き信号生成部32は、グループAに割り当てられた無線リソースが空いていることを示す情報を含む第4信号を生成する(ステップS37)。そして、ステップS38及びS39で、基地局12の送信部28Aは、前述したように、リソース空き信号生成部32により生成された第4信号を端末14#B-1及び端末14#B-2に送信する。
 端末14#B-1及び端末14#B-2の受信部42Aは、ステップS38及びS39で基地局12から送信された第4信号を受信する。また、検出部44Bは、受信部42Aにより第4信号が受信されたことを検出する。端末14#B-2では、送信対象のデータが発生していないが、端末14#B-1では、ステップS31で送信対象のデータが発生している。
 そこで、端末14#B-1の制御部46Bは、送信部40Aに対し、第4信号に含まれる情報により特定される、空いている無線リソース(ここでは、UEG-A1リソース)を用いて第1信号を送信する指示を出力する。そして、ステップS40で、端末14#B-1の送信部40Aは、ステップS31で発生したデータを含む第1信号を基地局12に送信する。
 基地局12は、ステップS40で端末14#B-1から送信された第1信号に対してステップS41で、ステップS35と同様に衝突判定を行う。なお、衝突判定の前に第1信号が正常に受信されていると判定されている場合は、ステップS41の衝突判定をしなくても良い。基地局12が正常に第1信号を受信した場合、ステップS36と同様に、ステップS42で、基地局12の送信部28Aは、ACKを端末14#B-1に送信する。なお、基地局12が正常に第1信号を受信できていない場合は、基地局12の送信部28Aは、ステップS42でNACKを端末14#B-1に送信する。
 以上説明したように、本実施形態によれば、基地局12が、第3信号を受信しなかった場合、第3信号に対応する端末14に割り当てられた無線リソースとは異なる無線リソースが割り当てられた端末14に対し、第4信号を送信している。従って、無線リソースの使用効率の低下を抑制することができる。
 なお、共有の無線リソース「UEG-B1リソース」及び「UEG-B2リソース」を用いて第1信号を送信できないことを前提に説明したが、上記の共有無線リソースを含めて無線リソースの割り当てを行っても良い。
 [第4実施形態]
 開示の技術の第4実施形態について説明する。なお、本実施形態に係る無線通信システム10の構成は、第3実施形態と同様であるため、説明を省略する。第3実施形態では、グループBの端末14が第4信号を受信した後に、グループAの端末14に割り当てられた無線リソースを用いて第1信号を送信し、第1信号の衝突が発生して再送を行う場合に、以下に示すことが発生する場合がある。すなわち、この場合、グループAの端末14が割り当てられた無線リソースを用いて第1信号を送信しようとして、衝突が発生してしまう場合がある。そこで、本実施形態では、基地局12は、グループBの端末14から送信された第1信号に対応する第2信号をグループBの端末14に送信する場合に、以下に示す第5信号をグループAの端末14に送信する。すなわち、この場合、基地局12は、グループAの端末14に割り当てられた無線リソースの使用を抑止する情報を含む第5信号をグループAの端末14に送信する。
 次に、図11を参照して、本実施形態に係る基地局12の機能的な構成を説明する。なお、第3実施形態に係る基地局12と同一の機能を有する機能部については図9と同一の符号を付して説明を省略する。図11に示すように、基地局12は、受信部20A、受信状態判定部22、優先度判定部24A、応答信号生成部26B、送信部28B、検出部30、リソース空き信号生成部32、及び抑止信号生成部34を含む。
 優先度判定部24Aは、受信状態判定部22により第1信号の衝突が発生したと判定された場合、受信状態判定部22により特定された第1信号の送信元の複数の端末14における第1信号の再送の優先度を判定する。本実施形態では、優先度判定部24Aは、端末14毎に予め定められたQoSに従い、第1信号の再送の優先度を3段階で判定する。
 応答信号生成部26Bは、端末14から送信された第1信号に対する応答として、第2信号を生成する。本実施形態では、応答信号生成部26Bは、受信状態判定部22により第1信号が正常に受信できたと判定された場合、第2信号として、第1信号が正常に受信できたことを表すACKを生成する。
 また、応答信号生成部26Bは、受信状態判定部22により第1信号が正常に受信できなかった場合、第2信号として、HARQに従って第1信号の送信元の端末14に再送を要求するNACKを生成する。本実施形態では、応答信号生成部26Bは、第1信号の送信元の端末14が第1信号の再送に用いる無線リソースに関する情報をNACKに含める。具体的には、応答信号生成部26Bは、第1信号の送信元の端末14毎に、優先度判定部24Aによる再送の優先度に従ってNACKを生成する。
 より具体的には、応答信号生成部26Bは、優先度判定部24Aにより再送の優先度が最も低いと判定された端末14に対しては、第4信号を受信したときに再送が可能であることを示す情報を含むNACK(以下、「NACK4」という)を生成する。また、応答信号生成部26Bは、優先度判定部24Aにより再送の優先度が最も高いと判定された端末14に対しては、以下に示すNACKを生成する。すなわち、この場合、応答信号生成部26Bは、第4信号を受信しなくても、今回の第1信号の送信に使用した無線リソースに対応する無線リソースを用いた第1信号の再送が可能であることを示す情報を含むNACK(以下、「NACK5」という)を生成する。
 また、応答信号生成部26Bは、優先度判定部24Aにより再送の優先度が2番目に高いと判定された端末14に対しては、以下に示すNACKを生成する。すなわち、この場合、応答信号生成部26Bは、第4信号を受信しなくても、今回の第1信号の送信に使用した無線リソースとは異なる無線リソースに対応する無線リソースを用いた第1信号の再送が可能であることを示す情報を含むNACK(以下、「NACK6」という)を生成する。
 抑止信号生成部34は、受信状態判定部22により第1信号の衝突が発生したと判定された場合、衝突が発生した無線リソースが割り当てられた端末14に対して、割り当てられた無線リソースの使用を抑止する情報を含む第5信号を生成する。
 送信部28Bは、第3実施形態に係る送信部28Aが有する機能に加え、以下の機能を有する。送信部28Bは、第2信号を第1信号の送信元の端末14に送信する場合に、以下に示す端末14に、抑止信号生成部34により生成された第5信号を送信する。すなわち、この場合、送信部28Bは、第1信号の送信元の端末14が第1信号の送信に用いた無線リソースが割り当てられた端末14に第5信号を送信する。
 次に、図3を参照して、本実施形態に係る端末14の機能的な構成を説明する。なお、第3実施形態と同一の機能を有する機能部については、第3実施形態と同一の符号を付して説明を省略する。図3に示すように、端末14は、送信部40A、受信部42B、検出部44C、及び制御部46Cを含む。
 受信部42Bは、第3実施形態に係る受信部42Aが有する機能に加え、以下の機能を有する。受信部42Bは、基地局12からアンテナ素子11を介して送信された第5信号を、アンテナ素子13を介して受信する。
 検出部44Cは、第3実施形態に係る検出部44Bが有する機能に加え、以下の機能を有する。検出部44Cは、受信部42Bによる受信処理を経た第2信号が、ACKであるか、NACK4であるか、NACK5であるか、又はNACK6であるかを検出する。また、検出部44Cは、受信部42Bにより第5信号が受信されたことを検出する。
 制御部46Cは、第3実施形態に係る制御部46Bが有する機能に加え、以下の機能を有する。制御部46Cは、検出部44Cにより受信部42Bによって第5信号が受信されたことが検出された場合、次の送信タイミングで第1信号の送信が可能であっても第1信号を送信しない制御を行う。
 また、制御部46Cは、検出部44Bにより第2信号がNACK4であると検出された場合は、検出部44Cにより受信部42Bによって第4信号が受信されたことが検出された場合に、送信部40Aに対し、以下に示す制御を行う。すなわち、この場合、制御部46Cは、送信部40Aに対し、今回使用した無線リソースに対応する無線リソースを用いて第1信号を再送する指示を出力する。
 また、制御部46Cは、検出部44Cにより第2信号がNACK5であると検出された場合、送信部40Aに対し、次の送信タイミングで、今回使用した無線リソースに対応する無線リソースを用いて第1信号を再送する指示を出力する。また、制御部46Cは、検出部44Cにより第2信号がNACK6であると検出された場合、送信部40Aに対し、次の送信タイミングで、今回使用した無線リソースとは異なる無線リソースに対応する無線リソースを用いて第1信号を再送する指示を出力する。
 基地局12及び端末14のハードウェア構成は、各々第1~第3実施形態と同様(図4及び図5参照)であるため説明を省略する。なお、抑止信号生成部34も、CPU61が基地局制御プログラム70を実行することによって実現される。
 次に、図12A、12Bを参照して、本実施形態に係る無線通信システム10の作用を説明する。なお、図12Aは、第4実施形態における無線リソースの割り当ての一例を示す図である。また、図12Bは、図12Aに対応する基地局12及び各端末(端末14#A-1~A-3及び端末14#B1-B3)の処理シーケンスを示す一例である。なお、本実施形態では、3台の端末14#A-1~A-3が、同じグループ(以下、「グループA」という)として2つの共有の無線リソースを予め割り当てられた場合について説明する。図12Aにおける「UEG-A1リソース」及び「UEG-A2リソース」は各スロットにおいて端末14#A-1~A-3に割り当てられた2つの共有の無線リソースを示す。
 また、3台の端末14#B-1~B-3には、グループAとは異なるグループ(以下、「グループB」という)として共有の無線リソースが割り当てられている。なお、図示は省略するが、3台の端末14#B-1~B-3に割り当てられた無線リソースは、「UEG-A1リソース」及び「UEG-A2リソース」とは異なる周波数帯域の無線リソースとされる。
 また、図12Aにおける「第5信号」は、各スロットの「UEG-A1リソース」及び「UEG-A2リソース」を用いて送信された第1信号に対応する第2信号を送信する際に第5信号を送信するタイミングを表す。
 図12Bに示すステップS50A~50Cで、端末14#B-1~B-3において、上位層で送信対象のデータが発生し、送信部40Aにデータが入力される。送信部40Aは、入力されたデータを送信バッファに一時的に保持する。端末14#A-1~A-3は、送信対象のデータが発生していないため、第3信号を基地局12に送信しない。すなわち、基地局12は、スロット#nでは第3信号を受信しない。なお、ステップS50A~50Cで発生したデータについては、何かしらの影響(例えば、送信制御の影響)で共有の無線リソース「UEG-B1リソース」及び「UEG-B2リソース」を用いて送信できないとする。
 従って、基地局12の検出部30は、受信部20Aにより第3信号が受信されたことを検出しない。そこで、リソース空き信号生成部32は、グループAに割り当てられた無線リソースが空いていることを示す情報を含む第4信号を生成する(ステップS51)。そして、ステップS52A~52Cで、基地局12の送信部28Bは、前述したように、リソース空き信号生成部32により生成された第4信号を端末14#B-1~B-3に送信する。
 端末14#B-1~B-3の受信部42Bは、ステップS52A~52Cで基地局12から送信された第4信号を受信する。また、検出部44Cは、受信部42Bにより第4信号が受信されたことを検出する。また、端末14#B-1~B-3では、ステップS50A~50Cで送信対象のデータが発生している。
 そこで、端末14#B-1~B-3の制御部46Cは、送信部40Aに対し、第4信号に含まれる情報により特定される、空いている無線リソース(ここでは、UEG-A1リソース)を用いて第1信号を送信する指示を出力する。そして、ステップS54A~54Cで、端末14#B-1~B-3の送信部40Aは、ステップS50A~50Cで発生したデータを含む第1信号を基地局12に送信する。
 ステップS54A~54Cで端末14#B-1~B-3の各々から送信された第1信号は、第1の送信タイミングで同じ周波数帯域の無線リソースを用いて送信されているため、干渉によって基地局12の第1信号の受信品質が低下する。従って、ステップS56で、基地局12の受信状態判定部22は、前述したように、第1信号の衝突が発生したと判定する。また、受信状態判定部22は、前述したように、受信部20Aにより受信された第1信号の送信元の端末14#B-1~B-3を特定する。
 また、優先度判定部24Aは、前述したように、受信状態判定部22により特定された第1信号の送信元の端末14#B-1~B-3における第1信号の再送の優先度を判定する。なお、ここでは、優先度判定部24Aが、端末14#B-3を優先度が最も低いと判定し、端末14#B-1を最も優先度が高いと判定し、端末14#B-2を優先度が2番目に高いと判定した場合について説明する。応答信号生成部26Bは、前述したように、優先度判定部24Aによる優先度の判定結果に従い、端末14#B-3に対してはNACK4を生成し、端末14#B-2に対してはNACK6を生成し、端末14#B-1に対してはNACK5を生成する。
 また、抑止信号生成部34は、「UEG-A1リソース」及び「UEG-A2リソース」が割り当てられた端末14#A-1~A-3に対して端末14#A-1~A-3に割り当てられた無線リソースの使用を抑止する情報を含む第5信号を生成する。
 ステップS58で、送信部28Bは、応答信号生成部26Bにより生成されたNACK5を端末14#B-1に送信する。また、ステップS60で、送信部28Bは、応答信号生成部26Bにより生成されたNACK6を端末14#B-2に送信する。また、ステップS62で、送信部28Bは、応答信号生成部26Bにより生成されたNACK4を端末14#B-3に送信する。
 さらに、ステップS64A~64Cで、送信部28Bは、抑止信号生成部34により生成された第5信号を端末14#A-1~A-3に送信する。端末14#A-1~A-3の受信部42Bは、ステップS64A~64Cで基地局12から送信された第5信号を受信する。従って、端末14#A-1~A-3は、送信対象のデータが発生していたとしても、スロット#n+1で第1信号を基地局12に送信しない。
 また、端末14#B-1の受信部42Bは、ステップS58で基地局12から送信されたNACK5を受信する。すなわち、端末14#B-1の検出部44Cにより第2信号がNACK5であると検出される。この検出の結果、端末14#B-1の制御部46Cが送信部40Aに対し、第1の送信タイミング(本実施形態では、スロット#n+1)で今回使用した無線リソースに対応する無線リソース(本実施形態では、UEG-A1リソース)を用いて第1信号を再送する指示を出力する。そして、ステップS66で、端末14#B-1の送信部40Aは、前述したように、スロット#n+1のUEG-A1リソースを用いて、第1信号を基地局12に再送信する。
 また、端末14#B-2の受信部42Bは、ステップS60で基地局12から送信されたNACK6を受信する。すなわち、端末14#B-2の検出部44Cにより第2信号がNACK6であると検出される。この検出の結果、端末14#B-2の制御部46Cが送信部40Aに対し、第1の送信タイミング(本実施形態では、スロット#n+1)で、今回使用した無線リソースとは異なる無線リソースに対応する無線リソース(本実施形態では、UEG-A2リソース)を用いて第1信号を再送する指示を出力する。そして、ステップS68で、端末14#B-2の送信部40Aは、前述したように、スロット#n+1のUEG-A2リソースを用いて、第1信号を基地局12に再送信する。
 また、端末14#B-3の受信部42Bは、ステップS62で基地局12から送信されたNACK4を受信する。すなわち、端末14#B-3の検出部44Cにより第2信号がNACK4であると検出される。また、端末14#B-3の受信部42Bは、スロット#n+1で第4信号を受信していない。従って、端末14#B-3は、スロット#n+1では第1信号の再送を行わない。
 ステップS66で端末14#B-1から送信された第1信号、及びステップS68で端末14#B-2から送信された第1信号は、異なる周波数帯域の無線リソースを用いて送信されているため、衝突が発生しない。従って、第2実施形態と同様に、ステップS70A及び70Bで、基地局12の送信部28Bは、ACKまたは、NACKを端末14#B-1及び端末14#B-2に送信する。なお、以下では、基地局12の送信部28BがACKを送信したとして説明する。
 また、端末14#A-1~A-3は、送信対象のデータが発生していないため、第3信号を基地局12に送信しない。すなわち、基地局12は、スロット#n+2では第3信号を受信しない。
 従って、基地局12の検出部30は、受信部20Aにより第3信号が受信されたことを検出しない。そこで、リソース空き信号生成部32は、第4信号を生成する。そして、ステップS72A~72Cで、基地局12の送信部28Bは、前述したように、リソース空き信号生成部32により生成された第4信号を端末14#B-1~B-3に送信する。
 端末14#B-1~B-3の受信部42Bは、ステップS72A~72Cで基地局12から送信された第4信号を受信する。また、検出部44Cは、受信部42Bにより第4信号が受信されたことを検出する。
 そこで、端末14#B-3の制御部46Cは、送信部40Aに対し、第4信号に含まれる情報により特定される、空いている無線リソース(ここでは、UEG-A1リソース)を用いて第1信号を再送する指示を出力する。そして、ステップS74で、端末14#B-3の送信部40Aは、前述したように、スロット#n+2のUEG-A1リソースを用いて、第1信号を基地局12に再送信する。
 ステップS74で端末14#B-3から送信された第1信号は、衝突が発生しない。ステップS76で、ステップS70Aと同様に、基地局12の送信部28Bは、ACKまたは、NACKを端末14#B-3に送信する。
 以上説明したように、本実施形態によれば、基地局12が、端末14#B-1~B-3に第2信号を送信する場合に、更に、端末14#A-1~A-3に第5信号を送信する。従って、衝突の発生が抑制される結果、伝送遅延時間の増加を抑制することができる。
 なお、共有の無線リソース「UEG-B1リソース」及び「UEG-B2リソース」を用いて第1信号を送信できないことを前提に説明したが、上記の共有無線リソースを含めて無線リソースの割り当てを行っても良い。
 なお、上記各実施形態で説明したスロットは、Long Term Evolution(LTE)におけるスロットでもよいし、LTEにおけるスロットが複数に分割されたミニスロットでもよい。
 なお、上記各実施形態では、基地局制御プログラム70が記憶部63に予め記憶(インストール)されている態様を説明したが、これに限定されない。基地局制御プログラム70は、CD-ROM、DVD-ROM、USBメモリ、及びメモリカード等の記録媒体に記録された形態で提供することも可能である。
 また、上記各実施形態では、端末制御プログラム90が記憶部83に予め記憶されている態様を説明したが、これに限定されない。端末制御プログラム90は、CD-ROM、DVD-ROM、USBメモリ、メモリカード等の記録媒体に記録された形態で提供することも可能である。
10 無線通信システム
12 基地局
14 端末
20、20A、42、42A、42B 受信部
22 受信状態判定部
24、24A 優先度判定部
26、26A、26B 応答信号生成部
28、28A、28B、40、40A 送信部
30、44、44A、44B、44C 検出部
32 リソース空き信号生成部
34 抑止信号生成部
46、46A、46B、46C 制御部
61、81 CPU
63、83 記憶部
65、85 無線処理回路
70 基地局制御プログラム
90 端末制御プログラム

Claims (16)

  1.  Grant-free方式で無線通信装置と無線通信を行うことが可能な基地局であって、
     前記無線通信装置に割り当てられた共有無線リソースを用いて前記無線通信装置から送信された第1信号を受信する受信部と、
     前記無線通信装置に、前記第1信号に対しての再送要求する場合に、再送に用いる無線リソースに関する情報を含む第2信号を前記無線通信装置に送信する送信部と、
     を含む基地局。
  2.  前記再送に用いる無線リソースに関する情報は、再送における送信タイミングの情報を含む、
     請求項1に記載の基地局。
  3.  前記無線通信装置に複数の前記共有無線リソースが割り当てられており、
     前記再送に用いる無線リソースに関する情報は、第1の共有無線リソースに対応するか、又は前記第1の共有無線リソースと異なる第2の共有無線リソースに対応するかを示す情報を含む、
     請求項1又は請求項2に記載の基地局。
  4.  前記送信部は、前記受信部により、前記共有無線リソースを使用することを示す情報を含む第3信号が受信されなかった場合、前記共有無線リソースとは異なる無線リソースが割り当てられた他の無線通信装置に対し、前記共有無線リソースが空いていることを示す情報を含む第4信号を送信する、
     請求項1から請求項3の何れか1項に記載の基地局。
  5.  前記送信部は、前記共有無線リソースを用いて前記他の無線通信装置から送信されたデータ信号に対応する応答信号を前記他の無線通信装置に送信する場合に、更に、前記無線通信装置に対して前記共有無線リソースの使用を抑止する情報を含む第5信号を送信する、
     請求項4に記載の基地局。
  6.  Grant-free方式で基地局と無線通信が可能な端末であって、
     割り当てられた共有無線リソースを用いて第1信号を前記基地局に送信する送信部と、
     前記送信部により送信された第1信号に対する応答として前記基地局から送信された第2信号を受信する受信部と、
     を含み、
     前記送信部は、前記第2信号に再送に用いる無線リソースに関する情報が含まれる場合、前記再送に用いる無線リソースに関する情報に応じて、前記第1信号を前記基地局に再送信する、
     端末。
  7.  前記再送に用いる無線リソースに関する情報は、再送における送信タイミングの情報を含む、
     請求項6に記載の端末。
  8.  複数の前記共有無線リソースが割り当てられており、
     前記再送に用いる無線リソースに関する情報は、第1の共有無線リソースか、又は前記第1の共有無線リソースと異なる第2の共有無線リソースを示す情報を含む、
     請求項6又は請求項7に記載の端末。
  9.  前記送信部は、前記共有無線リソースを使用することを示す情報を含む第3信号を前記基地局に送信する、
     請求項6から請求項8の何れか1項に記載の端末。
  10.  前記受信部は、前記基地局から送信された、割り当てられた前記無線リソースの使用を抑止する情報を含む第5信号を受信し、
     前記送信部は、前記受信部により前記第5信号が受信された場合、前記第1信号を前記基地局に送信を抑制する、
     請求項9に記載の端末。
  11.  Grant-free方式で無線通信装置と無線通信を行う基地局が実行することが可能な通信方法であって、
     前記無線通信装置に割り当てられた共有無線リソースを用いて前記無線通信装置から送信された第1信号に対して、前記無線通信装置に再送を要求する場合に、再送に用いる無線リソースに関する情報を含む第2信号を前記無線通信装置に送信する、
     通信方法。
  12.  前記再送に用いる無線リソースに関する情報は、再送における送信タイミングを示す情報を含む、
     請求項11に記載の通信方法。
  13.  前記無線通信装置に複数の前記共有無線リソースが割り当てられており、
     前記再送に用いる無線リソースに関する情報は、第1の共有無線リソースか、又は前記第1の共有無線リソースと異なる第2の共有無線リソースを示す情報を含む、
     請求項11又は請求項12に記載の通信方法。
  14.  前記共有無線リソースが割り当てられた前記無線通信装置から前記第1信号の送信前に送信される、割り当てられた前記共有無線リソースを使用することを示す情報を含む第3信号を受信しなかった場合、前記共有無線リソースとは異なる無線リソースが割り当てられた他の無線通信装置に対し、前記共有無線リソースが空いていることを示す情報を含む第4信号を送信する、
     請求項11から請求項13の何れか1項に記載の通信方法。
  15.  前記共有無線リソースを用いて前記他の無線通信装置から送信された前記第1信号に対応する前記第2信号を前記他の無線通信装置に送信する場合に、更に、前記無線通信装置に対して前記無線通信装置に割り当てられた無線リソースの使用を抑止する情報を含む第5信号を送信する、
     請求項14に記載の通信方法。
  16.  Grant-free方式で無線通信装置と基地局とが無線通信が可能な無線通信システムであって、
     前記無線通信装置は、
     割り当てられた共有無線リソースを用いて第1信号を前記基地局に送信する第1送信部を備え、
     前記基地局は、
     前記第1信号を受信する受信部と、
    前記無線通信装置に前記第1信号に対しての再送要求する場合に、再送に用いる無線リソースに関する情報を含む第2信号を前記無線通信装置に送信する第2送信部と、を備える、
     無線通信システム。
PCT/JP2017/038809 2017-10-26 2017-10-26 基地局、端末、通信方法、及び無線通信システム WO2019082367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/038809 WO2019082367A1 (ja) 2017-10-26 2017-10-26 基地局、端末、通信方法、及び無線通信システム
JP2019549794A JP6965940B2 (ja) 2017-10-26 2017-10-26 基地局、端末、通信方法、及び無線通信システム
US16/845,141 US11178644B2 (en) 2017-10-26 2020-04-10 Base station, terminal, communication method, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038809 WO2019082367A1 (ja) 2017-10-26 2017-10-26 基地局、端末、通信方法、及び無線通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/845,141 Continuation US11178644B2 (en) 2017-10-26 2020-04-10 Base station, terminal, communication method, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2019082367A1 true WO2019082367A1 (ja) 2019-05-02

Family

ID=66246351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038809 WO2019082367A1 (ja) 2017-10-26 2017-10-26 基地局、端末、通信方法、及び無線通信システム

Country Status (3)

Country Link
US (1) US11178644B2 (ja)
JP (1) JP6965940B2 (ja)
WO (1) WO2019082367A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006080A (ja) * 2005-06-23 2007-01-11 Fujitsu Ltd 移動通信システムにおける通信方法並びに移動局及び基地局

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102693262B1 (ko) * 2016-09-22 2024-08-08 삼성전자주식회사 상향링크 데이터 재송신을 제어하기 위한 장치 및 방법
US10595336B2 (en) * 2016-11-15 2020-03-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006080A (ja) * 2005-06-23 2007-01-11 Fujitsu Ltd 移動通信システムにおける通信方法並びに移動局及び基地局

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Grant-free UL transmission prosedure", 3GPP TSG-RAN WG1 #90 R1-1712414, 20 August 2017 (2017-08-20), XP051315230 *
FUJITSU: "Discussions on HARQ for UL data transmission without grant", 3GPP TSG-RAN WG1 #90BIS R1-1717721, 8 October 2017 (2017-10-08), XP051340906 *
INTEL CORPORATION: "Uplink URLLC Transmission without Grant", 3GPP TSG-RAN WG1 NR AD-HOC R1-1700375, 10 January 2017 (2017-01-10), XP051202853 *

Also Published As

Publication number Publication date
US11178644B2 (en) 2021-11-16
JP6965940B2 (ja) 2021-11-10
JPWO2019082367A1 (ja) 2020-10-22
US20200245298A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
US10965407B2 (en) User equipments, base stations and communication methods
JP5065499B2 (ja) ダウンリンクリソースを関連のアップリンク伝送にマッピングするための方法、装置、およびコンピュータプログラム
AU2009265740B2 (en) Selecting between normal and virtual dual layer ACK/NACK
US8042018B2 (en) Method and apparatus for transmitting/receiving ACK/NACK in a frequency division multiple access system
RU2426245C2 (ru) Устройство радиосвязи и способ передачи пакета повторной передачи данных
US7873011B2 (en) Apparatus, method and computer program product for bi-directional resource allocation to decrease signaling for retransmissions
EP3566368A1 (en) Signaling, procedures, user equipment and base stations for uplink ultra reliable low latency communications
US20200107301A1 (en) Data transmitting method and device, and storage medium
WO2009022295A2 (en) Mapping of uplink ack in tdd with asymmetric frame structure
CN104243108A (zh) 上行混合自动重传请求反馈方法、装置和系统
KR20220125299A (ko) 다중 우선순위 채널 다중화
CA3050529A1 (en) User equipments, base stations and communication methods
CN111585718B (zh) 一种被用于免授予的ue、基站中的方法和设备
WO2022145397A1 (en) Joint reporting and uci multiplexing of harq-ack with different priorities and sr
WO2022145396A1 (en) Sr bits generation for harq-ack multiplexing with different priorities
KR20080076158A (ko) 무선통신시스템에서 재전송 장치 및 방법
JP6965940B2 (ja) 基地局、端末、通信方法、及び無線通信システム
CN111294143A (zh) Pdsch软合并方法及装置、存储介质、用户终端、基站
TWI851718B (zh) 終端、通訊方法、基地台及積體電路
KR101996596B1 (ko) Harq 버스트 스케쥴링 방법
KR20220146293A (ko) 사이드링크를 통해 피드백 신호를 송수신하는 통신 장치 및 이의 동작 방법
WO2011097810A1 (zh) 用户终端设备接入网络设备的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929471

Country of ref document: EP

Kind code of ref document: A1