WO2019080681A1 - 用于控制移动机器人建图的方法与系统 - Google Patents

用于控制移动机器人建图的方法与系统

Info

Publication number
WO2019080681A1
WO2019080681A1 PCT/CN2018/106810 CN2018106810W WO2019080681A1 WO 2019080681 A1 WO2019080681 A1 WO 2019080681A1 CN 2018106810 W CN2018106810 W CN 2018106810W WO 2019080681 A1 WO2019080681 A1 WO 2019080681A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile robot
mapping
map
state
current
Prior art date
Application number
PCT/CN2018/106810
Other languages
English (en)
French (fr)
Inventor
赵永华
白静
李宇翔
陈士凯
Original Assignee
上海思岚科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海思岚科技有限公司 filed Critical 上海思岚科技有限公司
Publication of WO2019080681A1 publication Critical patent/WO2019080681A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the present application relates to the field of computer technology, and in particular, to a technology for controlling a mobile robot to construct a picture.
  • map construction is an important part of it. Most of the current service robots are simply moving or not moving, or relying on simple ultrasound and collision sensor random motion, regardless of the construction of the environment map, this way is often more random, lacking real Awareness maps and overall planning of tasks.
  • the mobile robot with map function has a relatively fixed pattern switch mode, and the whole process is completely open or closed. This way of drawing makes the robot not adapt to environmental changes well during the completion of the task, and the flexibility is not enough. .
  • a method for controlling a mobile robot to construct a map includes:
  • the drawing state information includes a mapable state, automatically opening a master switch to control the mobile robot to open a grid map for the current map block;
  • the drawing master switch When the closing condition of the drawing master switch is satisfied, the drawing master switch is turned off to control the mobile robot to close the current map block to establish a grid map.
  • the method further includes:
  • the determining the state of the mapping state of the current map block where the mobile robot is located includes:
  • the closing condition comprises at least one of the following: acquiring an instruction determined by the user to close the drawing; when the current map block is completed.
  • automatically opening a drawing master switch to control the mobile robot to open the grid map to the current map block comprises:
  • the drawing state information includes the unpaintable state, determining whether the drawing state information can be converted into a mapable state according to the pose of the mobile robot and the current laser data.
  • the determining, according to the pose of the mobile robot and the current laser data, whether the mapping state information can be converted into a mapable state comprises:
  • the map state information can be converted into a mapable state.
  • a system for controlling a mobile robot to construct a map comprising:
  • a client configured to acquire a mapping instruction determined by the user, and send the mapping instruction to the system end;
  • the system is configured to receive the mapping instruction determined by the user, and start to establish a raster map or close to establish a raster map based on the mapping instruction.
  • the client comprises:
  • a user interaction module configured to acquire a mapping instruction determined by the user
  • the first communication module is configured to send the mapping instruction to the system end.
  • system side comprises:
  • a second communication module configured to receive a mapping instruction sent by the client, and send the mapping instruction to a map construction module
  • a positioning module configured to acquire pose information of the mobile robot
  • a data acquisition module acquiring sensor information of the mobile robot
  • the map construction module is configured to control the construction master switch to open the grid map or close the grid map based on the drawing instruction, the pose information, the sensor information, and the drawing switch management strategy.
  • the present application determines the construction state information of the current map block where the mobile robot is located, and when the construction state information includes the mapable state, automatically opens the construction master switch to control the mobile robot. Opening a grid map for the current map block, and when the closing condition of the total switch of the drawing is met, closing the total switch of the drawing to control the mobile robot to close the current map block to establish a grid map .
  • the construction switch can be automatically controlled to realize the construction of the map, so that the process of constructing the mobile robot is more intelligent, and the construction process is not required by excessive human intervention, so that the robot can better adapt to the environmental changes in the process of completing the task.
  • the effect of drawing is better, more efficient and accurate, and the system resources for drawing are saved.
  • FIG. 1 shows a flow chart of a method of controlling a mobile robot to construct a map according to an aspect of the present application
  • FIG. 2 shows a schematic diagram of a system for controlling the construction of a mobile robot in accordance with a preferred embodiment of the present application.
  • the terminal, the device of the service network, and the trusted party each include one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage,
  • computer readable media does not include non-transitory computer readable media, such as modulated data signals and carrier waves.
  • FIG. 1 illustrates a method for controlling a mobile robot to construct a map, in accordance with an aspect of the present application, wherein the method includes:
  • the construction state information of the current map block where the mobile robot is located is determined.
  • the construction includes establishing a raster map.
  • the mapping method of the mobile robot is to divide the map block into blocks, that is, the entire environment that needs to be built is divided into a plurality of map blocks, where the plurality of map blocks may be in the process of constructing the map.
  • the current map block includes the map block where the mobile robot is currently located, where the current map block may be determined based on the pose information of the mobile robot, for example, including the current pose Within a certain range, it is the current map block, and the range may be preset.
  • the drawing state information includes a mapable state and a non-imageable state
  • the mapable state indicates that the current map block can be created by using a grid map
  • the mapless state indicates that the The current map block is used for raster map creation.
  • the manner of determining the mapping state information of the current map block where the mobile robot is located may be completed by querying whether the current map block is built in the record, that is, whether the drawing state information is a mapable state.
  • the method further comprises: S14 (not shown) determining whether the current map block has been created, and if the current map block is not created, creating the current map block. That is, in this embodiment, it is detected whether the current map block has been explored. If the current map block has not been created, the current map block is created. And setting the mapping state information of the current map block to a mapable state. That is, in the step S11, it is determined that the construction state information of the current map block where the mobile robot is located is a mapable state.
  • the drawing master switch is automatically turned on to control the mobile robot to open the grid for the current map block. map.
  • the master switch when the current map block is in a mapable state, the master switch is automatically turned on, and the mobile robot constructs a map of the current map, where the mobile robot is based on the current bit.
  • the pose and the surrounding environment information acquired by the sensor map the current map block.
  • the step S12 includes: determining, according to the pose of the mobile robot and the current laser data, whether the mapping state information can be converted into a mapable state according to the pose of the mobile robot and the current laser data. .
  • the mapping of the current map block may not be completed, but the mapping state information is in a non-image state.
  • the mapping state information may be unavailable due to user operations.
  • the drawing state therefore, can determine whether the drawing state information can be converted into a mapable state according to the pose of the mobile robot and the current laser data.
  • the determining, according to the pose of the mobile robot and the current laser data, whether the mapping state information can be converted into a mapable state comprises: if the current map is penetrated, the current The number of rays corresponding to the laser data exceeds a preset value, and it is determined that the drawing state information can be converted into a mapable state.
  • the current laser data is mapped into a corresponding laser beam. If the number of laser rays penetrating the grid map exceeds a preset value, that is, the mapping of the current map block is not completed, then the determination is performed.
  • the construction state information can be transformed into a mapable state, so that the current map block can be continuously constructed.
  • step S13 when the closing condition of the drawing main switch is satisfied, the drawing main switch is turned off to control the mobile robot to close the current map block to establish a grid. Map.
  • the closing condition comprises at least one of: acquiring an instruction determined by the user to close the drawing; when the current map block is completed.
  • the closing condition indicates a condition for closing the drawing, for example, when an instruction for closing the drawing determined by the user is acquired, the main switch of the drawing is closed, that is, the user can control the entire drawing process.
  • the start and end of the construction and when the user opens the construction instruction, the construction master switch will automatically control the start and end of the construction.
  • the master switch when the current map block is completed, that is, the current map block has all been completed, the master switch is closed to control the mobile robot to the current map.
  • the block closes to create a raster map.
  • the manner of determining whether the current map block has been completed may be based on historical entropy information stored in the current map block. If the current entropy value reaches a certain threshold and the change of the previous entropy is within a certain range, The condition for closing the drawing is met, and here, the entropy value is an amount describing the degree of completion of the drawing.
  • the present application determines the construction state information of the current map block where the mobile robot is located, and when the construction state information includes the mapable state, automatically opens the construction master switch to control the mobile robot. Opening a grid map for the current map block, and when the closing condition of the total switch of the drawing is met, closing the total switch of the drawing to control the mobile robot to close the current map block to establish a grid map .
  • the construction switch can be automatically controlled to realize the construction of the map, so that the process of constructing the mobile robot is more intelligent, and the construction process is not required by excessive human intervention, so that the robot can better adapt to the environmental changes in the process of completing the task.
  • the effect of drawing is better, more efficient and accurate, and the system resources for drawing are saved.
  • a system for controlling a mobile robot to construct a map includes:
  • a client configured to acquire a mapping instruction determined by the user, and send the mapping instruction to the system end;
  • the system is configured to receive the mapping instruction determined by the user, and start to establish a raster map or close to establish a raster map based on the mapping instruction.
  • the client user can determine the mapping instruction through the interface presented by the client, for example, opening the drawing or closing the drawing instruction, etc., and then the client obtains the drawing instruction and sends it to the system.
  • the system may establish a raster map according to the specific instruction information, or if the system is drawing a map, when the user closes the mapping instruction, the grid map is closed. .
  • the client includes: a user interaction module, configured to acquire a mapping instruction determined by the user; and a first communication module, configured to send the mapping instruction to the system end.
  • a user interaction module configured to acquire a mapping instruction determined by the user
  • a first communication module configured to send the mapping instruction to the system end.
  • system end comprises:
  • a second communication module configured to receive a mapping instruction sent by the client, and send the mapping instruction to a map construction module
  • a positioning module configured to acquire pose information of the mobile robot
  • a data acquisition module acquiring sensor information of the mobile robot
  • the map construction module is configured to control the construction master switch to open the grid map or close the grid map based on the drawing instruction, the pose information, the sensor information, and the drawing switch management strategy.
  • the system includes an interaction portion and an algorithm processing portion, where the interaction portion is equivalent to a client, and the algorithm processing portion is equivalent to System side.
  • the communication module of the interaction part is the first communication module, and the communication module of the algorithm processing part is equivalent to the second communication module.
  • the user opens or closes the mapping through the user interaction module, and the communication module of the interaction part sends the corresponding instruction to open or close the configuration to the algorithm processing part, and the communication module of the algorithm processing part receives the instruction, and the instruction is received.
  • the information is sent to the map construction module, wherein the communication module of the algorithm processing part further sends the status information of the mapping instruction corresponding to the current device to the interface of the user interaction module for display to be presented to the user.
  • the data acquisition module sends the collected sensor information and the positioning module to the map construction module of the robot, and then the map construction module analyzes and determines whether the current environment is based on the acquired mapping instruction, pose information, and sensor information. Need to build a picture, the corresponding control of the construction of the main switch. If you need to build a map, you can use the algorithm of synchronous positioning and charting to build a grid map.
  • the present application determines the construction state information of the current map block where the mobile robot is located, and when the construction state information includes the mapable state, automatically opens the construction master switch to control the mobile robot. Opening a grid map for the current map block, and when the closing condition of the total switch of the drawing is met, closing the total switch of the drawing to control the mobile robot to close the current map block to establish a grid map .
  • the construction switch can be automatically controlled to realize the construction of the map, so that the process of constructing the mobile robot is more intelligent, and the construction process is not required by excessive human intervention, so that the robot can better adapt to the environmental changes in the process of completing the task.
  • the effect of drawing is better, more efficient and accurate, and the system resources for drawing are saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种用于控制移动机器人建图的方法与系统。确定移动机器人所在的当前地图块的建图状态信息(S11),当建图状态信息包括可建图状态,自动开启建图总开关,以控制移动机器人对当前地图块开启建立栅格地图(S12),当满足建图总开关的关闭条件,则关闭建图总开关,以控制移动机器人对当前地图块关闭建立栅格地图(S13)。能够自动控制建图开关来实现建图,使移动机器人建图过程更加智能,无需过多的人为干预建图过程,使机器人在完成任务的过程中更好的适应环境的变化,而且建图的效果更佳高效与准确,节省用于建图的系统资源。

Description

用于控制移动机器人建图的方法与系统 技术领域
本申请涉及计算机技术领域,尤其涉及一种用于控制移动机器人建图的技术。
背景技术
目前,移动机器人的使用越来越普遍,特别是家庭服务类和商场导购类机器人,自主定位与建图和导航是其实现移动服务的关键技术。地图构建是其中重要组成部分,当前的服务机器人大部分还是简单的移动或不动,或是依据简单的超声和碰撞传感器随机运动,不考虑构建环境地图,这种方式运动往往比较随机,缺乏真正的认识地图和对任务的整体规划。另外,带建图功能的移动机器人,采用的建图开关方式相对固定,整个过程完全打开或关闭,这种建图方式使机器人在完成任务的过程中不能很好的适应环境变化,灵活度不够。
发明内容
本申请的目的是提供一种用于控制移动机器人建图的方法与系统。
根据本申请的一个方面,提供了一种用于控制移动机器人建图的方法,其中,该方法包括:
确定移动机器人所在的当前地图块的建图状态信息;
当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图;
当满足所述建图总开关的关闭条件,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关闭建立栅格地图。
进一步地,其中,所述方法还包括:
确定所述当前地图块是否已创建;
若所述当前地图块未创建,则创建所述当前地图块;
其中,所述确定移动机器人所在的当前地图块的建图状态信息包括:
确定移动机器人所在的当前地图块的建图状态信息,其中,所述建图状态信息包括可建图状态。
进一步地,其中,所述关闭条件包括以下至少任一项:获取到用户确定的关闭建图的指令;当所述当前地图块建图完成。
进一步地,其中,所述当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图包括:
当所述建图状态信息包括不可建图状态,根据所述移动机器人的位姿及当前激光数据,确定所述建图状态信息是否可变换为可建图状态。
进一步地,其中,所述根据所述移动机器人的位姿及当前激光数据,确定所述建图状态信息是否可变换为可建图状态包括:
若穿透所述栅格地图的、所述当前激光数据对应的射线数目超过预设值,确定所述建图状态信息可变换为可建图状态。
根据本申请的另一个方面,还提供了一种用于控制移动机器人建图的系统,其中,该系统包括:
客户端,用于获取用户确定的建图指令,并将所述建图指令发送至系统端;
系统端,用于接收所述用户确定的建图指令,并基于所述建图指令开启建立栅格地图或关闭建立栅格地图。
进一步地,其中,所述客户端包括:
用户交互模块,用于获取用户确定的建图指令;
第一通信模块,用于将所述建图指令发送至所述系统端。
进一步地,其中,所述系统端包括:
第二通信模块,用于接收所述客户端发送的建图指令,并将所述建图指令发送至地图构建模块;
定位模块,用于获取所述移动机器人的位姿信息;
数据采集模块,获取所述移动机器人的传感器信息;
地图构建模块,用于基于所述建图指令、位姿信息、传感器信息以及建图开关管理策略,控制建图总开关开启建立栅格地图或者关闭建立栅格地图。
与现有技术相比,本申请通过确定移动机器人所在的当前地图块的建图状态信息,当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图,当满足所述建图总开关的关闭条件,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关闭建立栅格地图。通过这种方式能够自动控制建图开关来实现建图,使移动机器人建图过程更加智能,无需过多的人为干预建图过程,使机器人在完成任务的过程中更好的适应环境的变化,而且建图的效果更佳高效与准确,节省用于建图的系统资源。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1示出根据本申请一个方面的一种控制移动机器人建图的方法流程图;
图2示出根据本申请一个优选实施例的一种用于控制移动机器人建图的系统示意图。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
下面结合附图对本发明作进一步详细描述。
在本申请一个典型的配置中,终端、服务网络的设备和可信方均包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器 (DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括非暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
为更进一步阐述本申请所采取的技术手段及取得的效果,下面结合附图及较佳实施例,对本申请的技术方案,进行清楚和完整的描述。
图1示出根据本申请一个方面的一种用于控制移动机器人建图的方法,其中,所述方法包括:
S11确定移动机器人所在的当前地图块的建图状态信息;
S12当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图;
S13当满足所述建图总开关的关闭条件,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关闭建立栅格地图。
在该实施例中,在所述步骤S11中,确定移动机器人所在的当前地图块的建图状态信息,在本申请中,所述建图包括建立栅格地图。所述移动机器人的建图方式是通过对地图块进行分块建图,即将需要建图的整个环境会划分成多个地图块,在此,所述多个地图块可以是在建图的过程中创建的,在此,所述当前地图块包括所述移动机器人当前所在的地图块,在此,可以基于所述移动机器人的位姿信息,确定所述当前地图块,例如,包含当前位姿的一定范围内,为当前地图块,在此,所述范围可以是预设好的。
在此,所述建图状态信息包括可建图状态以及不可建图状态,所述可建图状态表示可以对所述当前地图块进行栅格地图创建,而不可建图状态表示无需对所述当前地图块进行栅格地图创建。
在此,确定移动机器人所在的当前地图块的建图状态信息的方式,可以通过在记录中查询所述当前地图块是否建图完成,即所述建图状态信息是否为可建图状态。
优选地,其中,所述方法还包括:S14(未示出)确定所述当前地图块是否已创建,若所述当前地图块未创建,则创建所述当前地图块。也即在该实施例中,会检测所述当前地图块是否探索过,若未探索过,则所述当前地图块未创建过,则创建所述当前地图块。并将所述当前地图块的建图状态信息设置为可建图状态。也即在所述步骤S11中,确定移动机器人所在的当前地图块的建图状态信息为可建图状态。
继续在该实施例中,在所述步骤S12中,当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图。
具体地,当所述当前地图块处于可建图状态时,建图总开关会自动开启,所述移动机器人会对所述当前地图块进行建图,在此,所述移动机器人会根据当前位姿以及传感器获取到的周围环境信息对所述当前地图块进行建图。
优选地,所述步骤S12包括:当所述建图状态信息包括不可建图状态,根据所述移动机器人的位姿及当前激光数据,确定所述建图状态信息是否可变换为可建图状态。
在该实施例中,可能存在所述当前地图块的建图并未完成,但是所述建图状态信息为不可建图状态,例如,可能是由于用户操作导致的所述建图状态信息为不可建图状态,因此,可以根据所述移动机器人的位姿及当前激光数据,确定所述建图状态信息是否可变换为可建图状态。
优选地,其中,所述根据所述移动机器人的位姿及当前激光数据,确定所述建图状态信息是否可变换为可建图状态包括:若穿透所述栅格地图的、所述当前激光数据对应的射线数目超过预设值,确定所述建图状态信息可变换为可建图状态。
具体地,将当前激光数据映射成相应的激光射线,若穿透所述栅格地图的激光射线的数目超过预设值,也即,所述当前地图块的建图并未完成,则确定所述建图状态信息可变换为可建图状态,因而可以继续对所述当前地图块进行建图。
继续在该实施例中,在所述步骤S13中,当满足所述建图总开关的关闭条件,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关 闭建立栅格地图。
优选地,其中,所述关闭条件包括以下至少任一项:获取到用户确定的关闭建图的指令;当所述当前地图块建图完成。
在该实施例中,所述关闭条件表示关闭建图的条件,例如,当获取到用户确定的关闭建图的指令时,则关闭所述建图总开关,也即用户可以控制整个建图过程的开始和结束,而当用户开启了建图指令之后,建图总开关会自动控制建图的开始和结束。
在另一个实施例中,当所述当前地图块建图完成,也即所述当前地图块已经全部完成建图,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关闭建立栅格地图。
具体地,判断所述当前地图块是否已建图完成的方式,可以依据当前地图块储存的历史熵信息,若当前熵值达到一定阈值,且与前几次熵的变化保持在一定范围内,符合关闭建图条件,在此,所述熵值是描述建图完成度的量。
与现有技术相比,本申请通过确定移动机器人所在的当前地图块的建图状态信息,当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图,当满足所述建图总开关的关闭条件,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关闭建立栅格地图。通过这种方式能够自动控制建图开关来实现建图,使移动机器人建图过程更加智能,无需过多的人为干预建图过程,使机器人在完成任务的过程中更好的适应环境的变化,而且建图的效果更佳高效与准确,节省用于建图的系统资源。
根据本申请的另一个方面提供了一种用于控制移动机器人建图的系统,其中,所述系统包括:
客户端,用于获取用户确定的建图指令,并将所述建图指令发送至系统端;
系统端,用于接收所述用户确定的建图指令,并基于所述建图指令开启建立栅格地图或关闭建立栅格地图。
具体地,在客户端用户可以通过客户端呈现的界面来确定建图指令,例 如,开启建图或者关闭建图指令等等,然后客户端获取该建图指令,并发送至系统端。
系统端在接收到用户确定的建图指令后,可以根据具体的指令信息来建立栅格地图,或者,若系统端正在建图,当接收到用户的关闭建图指令时,关闭建立栅格地图。
优选地,其中,所述客户端包括:用户交互模块,用于获取用户确定的建图指令;第一通信模块,用于将所述建图指令发送至所述系统端。
优选地,其中,所述系统端包括:
第二通信模块,用于接收所述客户端发送的建图指令,并将所述建图指令发送至地图构建模块;
定位模块,用于获取所述移动机器人的位姿信息;
数据采集模块,获取所述移动机器人的传感器信息;
地图构建模块,用于基于所述建图指令、位姿信息、传感器信息以及建图开关管理策略,控制建图总开关开启建立栅格地图或者关闭建立栅格地图。
如图2示出一种优选实施例的一种用于控制移动机器人建图的系统,该系统包括交互部分以及算法处理部分,在此,所述交互部分相当于客户端,算法处理部分相当于系统端。交互部分的通信模块为第一通信模块,算法处理部分的通信模块相当于第二通信模块。
具体地,用户通过用户交互模块开启或关闭建图,交互部分的通信模块将相应的对应开启或关闭建的指令发送至算法处理部分,算法处理部分的通信模块收到该指令,并将该指令信息发送至地图构建模块,其中,算法处理部分的通信模块还会将当前设备对应的建图指令的状态信息发送至用户交互模块的界面进行显示,以呈现给用户。
进一步地,数据采集模块将采集的传感器信息和定位模块将机器人的位姿信息发送至地图构建模块,然后地图构建模块依据获取到的建图指令、位姿信息以及传感器信息,分析判断当前环境是否需要建图,对建图总开关进行相应的控制。如果需要建图就利用同步定位与制图的算法构建栅格地图。
与现有技术相比,本申请通过确定移动机器人所在的当前地图块的建 图状态信息,当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图,当满足所述建图总开关的关闭条件,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关闭建立栅格地图。通过这种方式能够自动控制建图开关来实现建图,使移动机器人建图过程更加智能,无需过多的人为干预建图过程,使机器人在完成任务的过程中更好的适应环境的变化,而且建图的效果更佳高效与准确,节省用于建图的系统资源。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (8)

  1. 一种用于控制移动机器人建图的方法,其中,该方法包括:
    确定移动机器人所在的当前地图块的建图状态信息;
    当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图;
    当满足所述建图总开关的关闭条件,则关闭所述建图总开关,以控制所述移动机器人对所述当前地图块关闭建立栅格地图。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    确定所述当前地图块是否已创建;
    若所述当前地图块未创建,则创建所述当前地图块;
    其中,所述确定移动机器人所在的当前地图块的建图状态信息包括:
    确定移动机器人所在的当前地图块的建图状态信息,其中,所述建图状态信息包括可建图状态。
  3. 根据权利要求1所述的方法,其中,所述关闭条件包括以下至少任一项:
    获取到用户确定的关闭建图的指令;
    当所述当前地图块建图完成当所述当前地图块建图完成。
  4. 根据权利要求1所述的方法,其中,所述当所述建图状态信息包括可建图状态,自动开启建图总开关,以控制所述移动机器人对所述当前地图块开启建立栅格地图包括:
    当所述建图状态信息包括不可建图状态,根据所述移动机器人的位姿及当前激光数据,确定所述建图状态信息是否可变换为可建图状态。
  5. 根据权利要求4所述的方法,其中,所述根据所述移动机器人的位姿及当前激光数据,确定所述建图状态信息是否可变换为可建图状态包括:
    若穿透所述栅格地图的、所述当前激光数据对应的射线数目超过预设值,确定所述建图状态信息可变换为可建图状态。
  6. 一种用于控制移动机器人建图的系统,其中,该系统包括:
    客户端,用于获取用户确定的建图指令,并将所述建图指令发送至系统端;
    系统端,用于接收所述用户确定的建图指令,并基于所述建图指令开启 建立栅格地图或关闭建立栅格地图。
  7. 根据权利要求6所述的系统,其中,所述客户端包括:
    用户交互模块,用于获取用户确定的建图指令;
    第一通信模块,用于将所述建图指令发送至所述系统端。
  8. 根据权利要求6所述的系统,其中,所述系统端包括:
    第二通信模块,用于接收所述客户端发送的建图指令,并将所述建图指令发送至地图构建模块;
    定位模块,用于获取所述移动机器人的位姿信息;
    数据采集模块,获取所述移动机器人的传感器信息;
    地图构建模块,用于基于所述建图指令、位姿信息、传感器信息以及建图开关管理策略,控制建图总开关开启建立栅格地图或者关闭建立栅格地图。
PCT/CN2018/106810 2017-10-25 2018-09-20 用于控制移动机器人建图的方法与系统 WO2019080681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711006124.0A CN107817795B (zh) 2017-10-25 2017-10-25 用于控制移动机器人建图的方法与系统
CN201711006124.0 2017-10-25

Publications (1)

Publication Number Publication Date
WO2019080681A1 true WO2019080681A1 (zh) 2019-05-02

Family

ID=61608512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106810 WO2019080681A1 (zh) 2017-10-25 2018-09-20 用于控制移动机器人建图的方法与系统

Country Status (2)

Country Link
CN (1) CN107817795B (zh)
WO (1) WO2019080681A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817795B (zh) * 2017-10-25 2019-11-19 上海思岚科技有限公司 用于控制移动机器人建图的方法与系统
CN107807641B (zh) * 2017-10-25 2019-11-19 上海思岚科技有限公司 用于移动机器人避障的方法
CN113674351B (zh) * 2021-07-27 2023-08-08 追觅创新科技(苏州)有限公司 一种机器人的建图方法及机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551250A (zh) * 2008-04-02 2009-10-07 南开大学 面向未知环境探索的移动机器人陆标动态配置方法及装置
CN105182980A (zh) * 2015-09-23 2015-12-23 上海物景智能科技有限公司 一种自动清洁设备的控制系统及控制方法
CN105928505A (zh) * 2016-04-19 2016-09-07 深圳市神州云海智能科技有限公司 移动机器人的位姿确定方法和设备
CN106679661A (zh) * 2017-03-24 2017-05-17 山东大学 搜救机器人手臂辅助同时定位及构建环境地图系统及方法
CN106919174A (zh) * 2017-04-10 2017-07-04 江苏东方金钰智能机器人有限公司 一种智能引导机器人的引导方法
CN107817795A (zh) * 2017-10-25 2018-03-20 上海思岚科技有限公司 用于控制移动机器人建图的方法与系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551250A (zh) * 2008-04-02 2009-10-07 南开大学 面向未知环境探索的移动机器人陆标动态配置方法及装置
CN105182980A (zh) * 2015-09-23 2015-12-23 上海物景智能科技有限公司 一种自动清洁设备的控制系统及控制方法
CN105928505A (zh) * 2016-04-19 2016-09-07 深圳市神州云海智能科技有限公司 移动机器人的位姿确定方法和设备
CN106679661A (zh) * 2017-03-24 2017-05-17 山东大学 搜救机器人手臂辅助同时定位及构建环境地图系统及方法
CN106919174A (zh) * 2017-04-10 2017-07-04 江苏东方金钰智能机器人有限公司 一种智能引导机器人的引导方法
CN107817795A (zh) * 2017-10-25 2018-03-20 上海思岚科技有限公司 用于控制移动机器人建图的方法与系统

Also Published As

Publication number Publication date
CN107817795A (zh) 2018-03-20
CN107817795B (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6664551B1 (ja) マルチブロックチェーンネットワークデータ処理方法、装置、およびサーバ
WO2019080681A1 (zh) 用于控制移动机器人建图的方法与系统
WO2019062651A1 (zh) 一种定位建图的方法及系统
US20140289414A1 (en) Api for resource discovery and utilization
TW201942766A (zh) 設備型號識別方法、裝置及處理設備
CN106886434B (zh) 一种分布式应用安装方法与装置
US20140317168A1 (en) System, method, and device for exposing wireless module data storage
WO2021159959A1 (zh) 定位信息的处理方法、装置及存储介质
WO2020024650A1 (zh) 数据处理方法和装置、客户端
Krejcar Problem solving of low data throughput on mobile devices by artefacts prebuffering
CN107741964A (zh) 一种兴趣点显示方法、装置、设备和介质
EP3812998A1 (en) Data storage and attestation method and system based on multiple blockchain networks
WO2019037596A1 (zh) 一种用于对用户设备进行无线连接预授权的方法与设备
CN108024308B (zh) 无线接入点分享、连接的方法及设备
WO2020024648A1 (zh) 数据处理方法和装置、客户端、服务器
CN108833504B (zh) 跨站点信息同步方法及装置
Sossalla et al. DynNetSLAM: Dynamic visual SLAM network offloading
CN111510857B (zh) 一种用于实现用户间协同移动的方法与设备
WO2021195956A1 (zh) 时钟校准方法及装置
JP2018129074A5 (ja) ストレージシステム、およびストレージシステムの制御方法
CN112150491A (zh) 图像检测方法、装置、电子设备和计算机可读介质
KR20200134807A (ko) 이미지 기반 실내 측위 서비스 시스템 및 방법
CN104378396A (zh) 数据管理装置及方法
WO2020024649A1 (zh) 数据处理方法和装置、服务器
CN107404397B (zh) 一种用于确定用户业务状态信息的方法与设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871348

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871348

Country of ref document: EP

Kind code of ref document: A1