WO2019080633A1 - 微镜结构及微镜阵列芯片 - Google Patents

微镜结构及微镜阵列芯片

Info

Publication number
WO2019080633A1
WO2019080633A1 PCT/CN2018/102703 CN2018102703W WO2019080633A1 WO 2019080633 A1 WO2019080633 A1 WO 2019080633A1 CN 2018102703 W CN2018102703 W CN 2018102703W WO 2019080633 A1 WO2019080633 A1 WO 2019080633A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
electrode
inner frame
rotating shaft
micromirror
Prior art date
Application number
PCT/CN2018/102703
Other languages
English (en)
French (fr)
Inventor
姚丹阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18871264.0A priority Critical patent/EP3683612A4/en
Publication of WO2019080633A1 publication Critical patent/WO2019080633A1/zh
Priority to US16/855,051 priority patent/US20200249468A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0866Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by thermal means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors

Definitions

  • the present application relates to micromirror driving technology, and in particular to a micromirror structure and a micromirror array chip.
  • thermoelectric MEMS Micro-Electro-Mechanical System
  • thermoelectric MEMS driving has the advantages of strong driving force and large displacement, and has a broad application prospect.
  • thermoelectric MEMS micromirrors are fabricated into an array form, and two MEMS micromirror array chips are used to form an optical path, and the MEMS micromirrors on the drive array are deflected to a suitable position to realize communication.
  • Light is switched from the input port to the OXC (Optical Cross-Connect) function of any output port.
  • OXC Optical Cross-Connect
  • the embodiment of the present application provides a micromirror structure, which can ensure a more precise position of the micromirror deflection process.
  • the embodiment of the present application further provides a micromirror array chip including the micromirror structure.
  • an embodiment of the present application provides a micromirror structure, including: an outer frame, an inner frame, a lens, a pair of first hinges, a pair of second hinges, a first driving module, and a second driving module.
  • the lens refers to a MEMS micromirror.
  • the pair of first hinges are respectively located at opposite ends of the lens, and the pair of first hinges are connected between the lens and the inner wall of the inner frame, and the pair of first hinges are connected
  • the wire forms a first rotating shaft
  • the pair of second hinges are respectively located at opposite ends of the inner frame, and the pair of second hinges are connected between the outer wall of the inner frame and the inner wall of the outer frame a line connecting the pair of second hinges to form a second rotating shaft, the first rotating shaft is perpendicular to the second rotating shaft
  • the first driving module is coupled to the inner frame for driving the inner frame together with the The lens rotates around the second rotating shaft
  • the second driving module is coupled to the lens for driving the lens to rotate around the first rotating shaft.
  • a pair of second hinges are connected to the inner frame and the outer frame by connecting an inner frame between the lens and the outer frame, and connecting a pair of first hinges to form a first rotating shaft between the inner frame and the lens.
  • a second rotating shaft is formed between the first rotating shaft and the first rotating shaft is perpendicular to the second rotating shaft, so that when the lens rotates around the first rotating shaft, it is restrained by a pair of first hinges, and the displacement perpendicular to the lens direction cannot be generated, and the lens surrounds the second rotating shaft When rotated, it is constrained by a pair of second hinges to produce a displacement perpendicular to the direction of the lens. In this way, a more precise position during lens deflection can be ensured.
  • the rotational structure of the lens about the first axis of rotation and the rotational structure about the second axis of rotation are independent of each other, so that there is no mechanical crosstalk between the deflection about the first axis of rotation and the deflection about the second axis of rotation.
  • the pair of first hinges achieve a rigid connection between the lens and the inner frame along a direction of the first rotating shaft, so that the first driving module drives the inner frame together with the When the lens is rotated about the second rotating shaft, no displacement occurs between the inner frame and the lens to ensure accurate position of the lens. Furthermore, along the direction of the first rotating shaft, the pair of first hinges achieve a rigid connection between the lens and the inner frame, and can determine the stability of the position of the first rotating shaft, if the first hinge Flexibly connected between the lens and the inner frame in the direction of the first rotating shaft.
  • the second driving assembly drives the lens to rotate around the first rotating shaft, it is easy to cause the positional change of the first rotating shaft due to the elastic deformation of the first hinge. (This position change can be called illegal offset, existence direction and uncertainty of displacement), resulting in inaccurate lens positioning.
  • the pair of second hinges achieve a rigid connection between the inner frame and the outer frame along the direction of the second rotating shaft, in order to be able to determine the position of the second rotating shaft Sexuality, so that the lens is positioned accurately when it is rotated around the second axis of rotation.
  • the deflection position of the lens is maintained by the elastic deformation of a pair of first hinges. That is, in the direction of rotation of the first hinge, the first hinge is flexibly connected between the inner frame and the lens.
  • the deflection of the inner frame together with the lens is maintained by the elastic deformation of the pair of second hinges. That is, in the direction in which the second hinge is transported, the second hinge is flexibly connected between the inner frame and the outer frame.
  • the first driving module includes a first thermoelectric driving arm, and the first thermoelectric driving arm is connected between the outer frame and the inner frame, and the first thermoelectric driving arm and the The connecting end of the inner frame is a first connecting end, and the center of the first connecting end is located on the first rotating shaft.
  • the first driving module is designed as a thermoelectric driving arm, and when the first thermoelectric driving arm is heated, deformation is generated such that the first connecting end is displaced in a direction perpendicular to the mirror surface.
  • the first rotation axis is set to the X direction
  • the second rotation axis is set to the Y direction
  • the direction perpendicular to the mirror surface is the Z direction.
  • the movement of the first connecting end of the first thermoelectric driving arm in the Z direction drives the inner frame together with the lens to rotate around the second rotating shaft.
  • the number of the first connecting ends is one, and the first connecting end is located on the first rotating shaft.
  • the first thermoelectric driving arm includes a first electrode end, a first elastic arm and a first connecting end, and the first electrode end and the first connecting end are respectively located at two sides of the first elastic arm, and the first electrode end is used for
  • the first electrode is electrically connected to the first thermoelectric driving arm to generate a voltage or a current, and the first elastic arm generates thermal deformation under the action of the pressure difference or the current to drive the first connecting end to move in the Z direction.
  • the first elastic arm has a sealed annular structure.
  • the number of the first connecting ends is at least two, and the at least two first connecting ends are symmetrically distributed around the first rotating shaft, so that the center of the first connecting end is located at the On the first rotating shaft, this facilitates the uniform force of the first thermoelectric driving arm acting on the inner frame.
  • the first thermoelectric driving arm includes a first electrode end, two first elastic arms, and two first connecting ends, and one ends of the two first elastic arms are respectively connected to the two first connections. At the end, the other ends of the two first elastic arms are connected to the first electrode end.
  • the first driving module further includes a first electrode, the first electrode is disposed on the outer frame, and the first electrode is electrically connected to the first thermoelectric driving arm.
  • the first electrode is electrically connected to the first electrode end
  • the outer frame can be designed as a circuit board, and the first electrode is electrically connected to the first electrode end through a trace on the circuit board.
  • the center of the first electrode end is located on an extension line of the first rotating shaft.
  • the second driving module includes a second thermoelectric driving arm, the second thermoelectric driving arm is connected between the inner frame and the lens, and the connecting end of the second thermoelectric driving arm and the inner frame is a second electrode end, the center of the second electrode end being located on an extension line of the second rotating shaft.
  • the second driving module can be the same as the first driving module, except that the setting position is different, and the second driving module is disposed between the inner frame and the lens.
  • the second thermoelectric driving arm includes a second electrode end and a second connecting end and a second elastic arm connected between the second electrode end and the second connecting end, and the second electrode end is connected to the inner frame.
  • the second driving module further includes a second electrode, the second electrode is disposed on the outer frame, and the second electrode is electrically connected to the second thermoelectric driving arm. Specifically, the second electrode is electrically connected to the second electrode terminal.
  • the second electrode end and one of the second hinges are respectively disposed on opposite sides of the inner frame, that is, the second electrode end is located on the extension line of the second hinge, in other words, the second hinge is located on the second rotating shaft.
  • the second electrode and the second thermoelectric drive arm are electrically connected by a lead extending from the outer frame to one of the second hinges and extending along the second hinge to the The second thermoelectric drive arm.
  • the connecting end between the second thermoelectric driving arm and the lens is a second connecting end, and the center of the second connecting end is located on the second rotating shaft.
  • the number of the second connecting ends is at least two, and the at least two second connecting ends are symmetrically distributed around the second rotating shaft such that the center of the second connecting end is located on the first rotating shaft, such that The force that the second drive module acts on the lens can be made uniform.
  • the first electrode end is connected to the surface of the outer frame, and the first connection end is connected to the surface of the inner frame, because the thermoelectric driving arm is additionally fabricated by a semiconductor process in the silicon material (the inner frame and the mirror surface belong to the base structure) ) on the surface, therefore, the connection end is located on the surface of the inner frame.
  • the second electrode end is attached to the surface of the inner frame and the second connection end is attached to the surface of the lens.
  • the inner frame is an axisymmetric structure, and the first rotating shaft and the second rotating shaft both form an axis of symmetry of the inner frame.
  • the inner frame may be any axisymmetric structure such as a square frame shape, a circular ring shape, or the like.
  • the embodiment of the present application provides a micromirror array chip, comprising a plurality of micromirror structures according to any one of the foregoing embodiments distributed in an array.
  • the micromirror array chip is divided into a plurality of regions distributed in an array, and the plurality of regions distributed in an array include a first region and a second region disposed adjacent to each other, and the micromirror structure in the first region
  • the distribution direction is mirror symmetrical with the distribution direction of the micromirror structure in the second region.
  • FIG. 1 is a schematic structural diagram of a 3D-MEMS optical switch module in which a micromirror array chip provided by the present application is located;
  • FIG. 2 is a schematic diagram of a micromirror structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a micromirror structure provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a layout manner of a micromirror array chip according to an embodiment of the present application.
  • FIG. 5 is a diagram showing a relationship between a corner and a power consumption of a micromirror array chip according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a 3D-MEMS optical switch module (ie, a MEMS photonic switch 100) in which a micromirror array chip provided by the present application is located.
  • the MEMS photonic switch 100 includes a first mirror array 104 and a second mirror array 106.
  • Light enters through the collimator array 102 (e.g., from the fiber) and strikes the micromirrors in the first mirror array 104.
  • the light is further applied to a suitable micromirror in the second mirror array 106 by adjusting the angle of the micromirrors in the first mirror array 104.
  • the micromirrors in the second mirror array 106 are associated with a particular output port in the collimator array 108.
  • the angle of the micromirrors in the mirror array 106 is adjusted to couple with a suitable output port in the collimator array 108.
  • Light is then emitted in a collimator (e.g., coupled to a fiber) in the collimator array 108.
  • a collimator e.g., coupled to a fiber
  • light can also be input from the side of the collimator array 108, reflected from the micromirrors in the second mirror array 106 to the micromirrors in the first mirror array 104, further reflected to the collimator array 102, and ejected.
  • the micromirror structure and micromirror array chip provided by the present application are applied in the first mirror array 104 or the second mirror array 106.
  • the micromirror structure provided by the embodiment of the present application includes: an outer frame 10 , an inner frame 20 , a lens 30 , a pair of first hinges 40 , a pair of second hinges 50 , a first driving module and a second driving Module.
  • the lens 30 is located in the enclosed space of the inner frame 20, and the inner frame 20 is located in the enclosed space of the outer frame 10.
  • the lens 30, the inner frame 20 and the outer frame 10 form a layered stack structure, and a certain gap is maintained between each other.
  • the first hinge 40, the second hinge 50, the first driving module and the second driving module are accommodated.
  • the outer frame 10 can be formed by digging holes in the substrate, and the outer frame 10 can be made of silicon material.
  • the surrounding space of the outer frame 10 may be a square shape, and a plurality of array-distributed receiving holes may be disposed on a substrate.
  • the receiving holes serve as surrounding spaces of the outer frame 10, and the inner frame 20 and the lens 30, the first hinge 40, and the first The second hinge 50 and the first driving module and the second driving module.
  • the inner frame 20 is a closed annular structure, and may be a square or a circular axisymmetric structure (understandably, the shape of the inner frame 20 may be any other shape, which is not limited herein), and the material of the inner frame 20
  • the material of the outer frame 10 can be the same, and the inner frame 20 has a rigid structure.
  • the pair of first hinges 40 are respectively located at opposite ends of the lens 30, and the pair of first hinges 40 are connected between the lens 30 and the inner wall of the inner frame 20, the pair The line of the first hinge 40 forms a first axis of rotation A1.
  • the first hinge 40 is similar to the structure of the rotating shaft or the hinge, and can realize the rotation of the lens 30 relative to the inner frame 20, and the first hinge 40 can ensure the rigid connection between the lens 30 and the inner frame 20 in a direction other than the rotational direction. In order to prevent the deflection of the lens 30 relative to the inner frame 20, the deflection accuracy of the lens 30 is ensured.
  • the pair of second hinges 50 are respectively located at opposite ends of the inner frame 20, and the pair of second hinges 50 are connected between the outer wall of the inner frame 20 and the inner wall of the outer frame 10,
  • the line connecting the pair of second hinges 50 forms a second axis of rotation A2, which is perpendicular to the second axis of rotation A2.
  • the second hinge 50 is similar to the structure of the rotating shaft or the hinge, and enables the rotation of the inner frame 20 relative to the outer frame 10, and the first hinge 40 can ensure the rigidity between the inner frame 20 and the outer frame 10 in a direction other than the rotational direction.
  • the connection is made to prevent the offset of the inner frame 20 relative to the outer frame 10, thereby ensuring the deflection accuracy of the lens 30.
  • the inner frame 20 is an axisymmetric structure, and the first rotating shaft A1 and the second rotating shaft A2 both form an axis of symmetry of the inner frame 20.
  • the inner frame 20 may be any axisymmetric structure such as a square frame shape, a circular ring shape, or the like.
  • the inner frame 20 has a square frame shape and includes four sides perpendicular to each other, and the first rotation axis A1 and the second rotation axis A2 are respectively the center lines of the adjacent two sides.
  • the lens 30 refers to a MEMS micromirror, and the lens 30 has a circular shape. In other embodiments, the lens 30 may also have a square shape. When the lens 30 is circular, the first axis of rotation A1 coincides with the diameter of the lens 30. When the lens 30 is square, the first axis of rotation A1 coincides with the center line of the lens 30. It should be understood that the lens 30 can be any shape, which is not limited herein.
  • the first driving module is coupled to the inner frame 20 for driving the inner frame 20 together with the lens 30 to rotate about the second rotating shaft A2.
  • the second driving module is coupled to the lens 30 for driving the lens 30 to rotate about the first rotating shaft A1.
  • the embodiment of the present application forms a first rotating shaft A1 by connecting the inner frame 20 between the lens 30 and the outer frame 10, and connecting a pair of first hinges 40 between the inner frame 20 and the lens 30, and a pair of second hinges. 50 is connected between the inner frame 20 and the outer frame 10 to form a second rotating shaft A2, and the first rotating shaft A1 is perpendicular to the second rotating shaft A2, so that when the lens 30 rotates around the first rotating shaft A1, it is bound by a pair of first hinges 40.
  • the displacement perpendicular to the direction of the lens 30 cannot be generated.
  • the lens 30 is rotated about the second rotation axis A2, it is restricted by the pair of second hinges 50, and displacement perpendicular to the direction of the lens 30 cannot be generated. In this way, a more precise positioning of the lens 30 during deflection can be ensured.
  • the pair of first hinges 40 achieve a rigid connection between the lens 30 and the inner frame 20 along the direction of the first rotating shaft A1, so that the first driving module drives When the inner frame 20 and the lens 30 are rotated about the second axis of rotation A2, no displacement occurs between the inner frame 20 and the lens 30 to ensure the position of the lens 30 is accurate. Furthermore, along the direction of the first axis of rotation A1, the pair of first hinges 40 achieve a rigid connection between the lens 30 and the inner frame 20, and the stability of the position of the first axis of rotation A1 can be determined.
  • first hinge 40 is flexibly connected between the lens 30 and the inner frame 20 in the direction of the first rotating shaft A1, when the second driving assembly drives the lens 30 to rotate around the first rotating shaft A1, it is easy to be caused by the first hinge.
  • the elastic deformation of 40 causes the positional change of the first rotating shaft A1 (this positional change can be called illegal offset, the existence direction and the uncertainty of the displacement amount), resulting in inaccurate positioning of the lens 30.
  • the pair of second hinges 50 achieve a rigid connection between the inner frame 20 and the outer frame 10 along the direction of the second axis of rotation A2, in order to be able to determine the second The position of the rotating shaft A2 is stable, so that the positioning of the lens 30 is accurate when it is rotated around the second rotating shaft A2.
  • the deflection position of the lens 30 is maintained by the elastic deformation of the pair of first hinges 40. That is, in the direction of rotation of the first hinge 40, the first hinge 40 is flexibly coupled between the inner frame 20 and the lens 30.
  • the deflection position of the inner frame 20 together with the lens 30 is maintained by the elastic deformation of the pair of second hinges 50. That is, in the direction in which the second hinge 50 is transported, the second hinge 50 is flexibly coupled between the inner frame 20 and the outer frame 10.
  • the first driving module and the second driving module are used to drive the deflection of the lens 30.
  • the driving lens 30 is deflected by means of thermoelectric driving. The details are as follows.
  • the first driving module includes a first thermoelectric driving arm 60, and the first thermoelectric driving arm 60 is connected between the outer frame 10 and the inner frame 20, the first thermoelectric The connecting end of the driving arm 60 and the inner frame 20 is a first connecting end 61, and the center of the first connecting end 61 is located on the first rotating shaft A1.
  • the first driving module is designed as a thermoelectric driving arm, and when the first thermoelectric driving arm 60 is heated, deformation occurs, so that the first connecting end 61 is displaced in a direction perpendicular to the lens 30.
  • the first rotation axis A1 is set to the X direction
  • the second rotation axis A2 is set to the Y direction
  • the direction perpendicular to the lens 30 is the Z direction.
  • the movement of the first connecting end 61 of the first thermoelectric driving arm 60 in the Z direction causes the inner frame 20 and the lens 30 to rotate about the second rotating shaft A2.
  • the number of the first connecting ends 61 is one, and the first connecting end 61 is located on the first rotating shaft A1.
  • the first thermoelectric driving arm 60 includes a first electrode end 62, a first elastic arm 63, and a first connecting end 61.
  • the first electrode end 62 and the first connecting end 61 are respectively located at two sides of the first elastic arm 63.
  • the first electrode end 62 is configured to be electrically connected to the first electrode 80 disposed on the outer frame 10 to apply a voltage or current to the first thermoelectric driving arm 60.
  • the first elastic arm 63 is under the action of a differential pressure or current. The thermal deformation is generated to drive the first connecting end 61 to move in the Z direction.
  • the first elastic arm 63 has a sealed annular structure.
  • the number of the first connecting ends 61 is at least two, and the at least two first connecting ends 61 are symmetrically distributed around the first rotating axis A1, so that The center of the first connecting end 61 is located on the first rotating shaft A1, which is advantageous for the force of the first thermoelectric driving arm 60 to act on the inner frame 20.
  • the first thermoelectric driving arm 60 includes a first electrode end 62, two first elastic arms 63, and two first connecting ends 61. One ends of the two first elastic arms 63 are respectively connected to Two first connecting ends 61 and the other ends of the two first resilient arms 63 are connected to the first electrode end 62.
  • the first driving module further includes a first electrode 80, the first electrode 80 is disposed on the outer frame 10, and the first electrode 80 and the first thermoelectric driving arm 60 are electrically connection.
  • the first electrode 80 is electrically connected to the first electrode end 62, and the outer frame 10 can be designed as a circuit board.
  • the first electrode 80 is electrically connected to the first electrode end 62 through the wires 83, 84 on the circuit board.
  • the center of the first electrode end 62 is located on the extension line of the first rotation axis A1.
  • the first electrode 80 includes a positive stage 81 and a negative stage 82, and the first thermoelectric drive arm 60 is connected in series between the positive stage 81 and the negative stage 82 to form a loop.
  • a voltage or current is applied to the first thermoelectric driving arm 60 through the first electrode 80 to cause thermal deformation of the first elastic arm 63, and one end of the first elastic arm 63 connected to the first connecting end 61 is moved in the Z direction.
  • the material of the first elastic arm 63 includes a multilayer metal film and a dielectric film, including two materials having different coefficients of thermal expansion for generating displacement, such as Cu and SiO2 (or Al and SiO2, etc.), and also includes In the temperature-generating heating resistor layer, such as W or Ti or Pt or polysilicon, the heating resistor layer is electrically connected to the positive electrode 81 and the negative electrode 82 respectively, and when the first electrode 80 has power injection, the heating resistor layer is The upper heat generates a temperature change.
  • the temperature-generating heating resistor layer such as W or Ti or Pt or polysilicon
  • the first electrode end 62 includes two terminals electrically connected to the positive stage 81 and the negative stage 82, respectively.
  • the first elastic arm 63 is at the first electrode end.
  • the two terminals of 62 extend continuously, and the first connecting end 61 is located at a midpoint of the first resilient arm 63.
  • the number of the first elastic arms 63 and the first connecting end 61 is two, one of the first elastic arms 63 is connected between one of the terminals and one of the first connecting ends 61, and the other first elastic arm 63 is connected. Between the other terminal and the other first connection end 61.
  • the second driving module includes a second thermoelectric driving arm 70 connected between the inner frame 20 and the lens 30, and the second thermoelectric driving arm 70 and the inner
  • the connection end of the frame 20 is the second electrode end 72, and the center of the second electrode end 72 is located on the extension line of the second rotation axis A2.
  • the second thermoelectric driving arm 70 includes a second electrode end 72 and a second connecting end 71 and a second elastic arm 73 connected between the second electrode end 72 and the second connecting end 71, and the second electrode end 72 Connected to the inner frame 20, the second connection end 71 is connected to the lens 30.
  • the second driving module can be the same as the first driving module, except that the setting position is different, and the second driving module is disposed between the inner frame 20 and the lens 30.
  • the second driving module further includes a second electrode 90
  • the second electrode 90 is disposed on the outer frame 10
  • the second electrode 90 and the second thermoelectric driving arm 70 are electrically connection.
  • the second electrode 90 is electrically connected to the second electrode terminal 72.
  • the second electrode 90 also includes a positive electrode 91 and a negative electrode 92.
  • the second electrode end 72 also includes two terminals, and the electrical connection between the positive electrode 91 of the second electrode 90 and one of the terminals of the second electrode end 72 is realized by a lead wire, respectively. And an electrical connection between the negative electrode 92 of the second electrode 90 and the other terminal of the second electrode terminal 72.
  • the second electrode end 72 and one of the second hinges 50 are respectively disposed on opposite sides of the inner frame 20, that is, the second electrode end 72 is located on the extension line of the second hinge 50, in other words, the second hinge 50 is located on the second rotating shaft A2.
  • the second electrode 90 and the second thermoelectric driving arm 70 are electrically connected by leads 93, 94 extending from the outer frame 10 to one of the second hinges 50, and along The second hinge 50 extends to the second thermoelectric drive arm 70.
  • the connecting end between the second thermoelectric driving arm 70 and the lens 30 is a second connecting end 71, and the center of the second connecting end 71 is located on the second rotating shaft A2, and The force on the lens 30 is made more uniform.
  • the number of the second connecting ends 71 is at least two, and the at least two second connecting ends 71 are symmetrically distributed around the second rotating axis A2, so that The center of the second connecting end 71 is located on the first rotating shaft A1. Accordingly, the number of the second elastic arms 73 is also at least two, which are respectively connected to the at least two second connecting ends 71 and the second electrode ends. Between 72, this allows the force of the second drive module to act on the lens 30 to be uniform.
  • the first electrode end 62 is connected to the surface of the outer frame 10, and the first connection end 61 is connected to the surface of the inner frame 20 because the thermoelectric driving arm is additionally fabricated by a semiconductor process in the silicon material (the inner frame 20)
  • the lens 30 and the lens 30 are on the surface of the base structure. Therefore, the first connection end 61 is located on the surface of the inner frame 20.
  • the second electrode end 72 is coupled to the surface of the inner frame 20 and the second connection end 71 is coupled to the surface of the lens 30.
  • Embodiments of the present application provide a micromirror array chip including a plurality of micromirror structures distributed in an array. Specifically, all the micro-mirror structure outer frames 10 are interconnected, and a plurality of receiving holes distributed in the array may be disposed on the same substrate, and an inner frame 20 and a lens 30 are disposed in each of the receiving holes.
  • the micromirror array chip is divided into a plurality of regions distributed in an array, and the plurality of regions distributed in an array comprise first and second regions disposed adjacent to each other, wherein the first region is The distribution direction of the micromirror structure is mirror symmetrical with the distribution direction of the micromirror structure in the second region.
  • a plurality of array-distributed micro-mirror structures may be included in each region. Referring to FIG. 4, the micromirror array chip is divided into four regions S1, S2, S3, and S4, and the region adjacent to the region S1 is the region S2 and the region S3, and the distribution direction and region of the micromirror structure in the region S1.
  • the distribution direction of the micromirror structure in S2 is mirror symmetrical about the first boundary line X1, and the first boundary line X1 is located between the regions S1 and S2.
  • the distribution direction of the micromirror structure in the region S1 is mirror-symmetric with the distribution direction of the micromirror structure in the region S3 centered on the second boundary line X2, and the second boundary line X2 is located between the region S1 and the region S3. .
  • the first boundary line X1 is perpendicular to the second boundary line X2.
  • the micromirror structures in each of the regions S1, S2, S3, and S4 are distributed in a 2x2 array.
  • the micromirror array chip can divide more regions, not limited to four regions S1, S2, S3, S4, and the micromirror structures in each region can also be distributed to other array layouts, such as 3x3 array distribution, 4x4 array. Distribution, etc.
  • Fig. 5 it can be seen from the relationship between the lens corner and the power consumption that there is a low power consumption region of the lens corner.
  • the lens rotation angle requirements of the micromirror structures in the four regions, S1, S2, S3, and S4 are all in a low power consumption state. Therefore, the embodiment of the present application can realize a micro-mirror array chip layout with low power consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种微镜结构和微镜阵列芯片。该微镜结构包括:外框(10)、内框(20)、镜片(30)、一对第一铰链(40)、一对第二铰链(50)、第一驱动模组和第二驱动模组。一对第一铰链相对设置,且分别连接在镜片两端和内框的内壁之间,一对第一铰链的连线形成第一转轴(A1)。一对第二铰链相对设置,且分别连接在内框的外壁和外框的内壁之间,一对第二铰链的连线形成第二转轴(A2),第一转轴垂直于第二转轴。第一驱动模组连接至内框,用于驱动内框连同镜片以第二转轴为中心转动。第二驱动模组连接至镜片,用于驱动镜片以第一转轴为中心转动。该微镜结构能够防止镜片转动时在垂直于镜片的方向上移动,保证镜片在转动过程中的精确位置。

Description

微镜结构及微镜阵列芯片
本申请要求于2017年10月27日提交中国专利局、申请号为201711033201.1,发明名称为“微镜结构及微镜阵列芯片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及微镜驱动技术,特别涉及一种微镜结构及微镜阵列芯片。
背景技术
热电MEMS(Micro-Electro-Mechanical System,微机电系统)驱动技术是一种依靠材料热形变产生驱动力的技术。相比其他MEMS驱动技术,热电MEMS驱动具有驱动力强,位移量大等优点,拥有很广阔的应用前景。特别是在光通信领域,采用热电驱动技术,将热电MEMS微镜制作成阵列形式,采用两块MEMS微镜阵列芯片组建光路,通过驱动阵列上的MEMS微镜偏转至合适的位置,可以实现通信光由输入端口切换至任意输出端口的OXC(Optical Cross-Connect,光交叉连接)功能。由于热电MEMS微镜具备大转角的优势,因而可以支持大端口的OXC模块的组装,将极大的扩展OXC模块的交换容量,应对高速增长的通信数据传输需求。
如何设计一种微镜结构,能够保证微镜偏转过程得到更精确的位置,为业界持续研究的方向。
发明内容
本申请实施例提供一种微镜结构,能够保证微镜偏转过程得到更精确的位置,本申请实施例还提供一种包括所述微镜结构的微镜阵列芯片。
第一方面,本申请实施例提供了一种微镜结构,包括:外框、内框、镜片、一对第一铰链、一对第二铰链、第一驱动模组和第二驱动模组。所述镜片指的是MEMS微镜。所述一对第一铰链分别位于所述镜片的相对的两端,所述一对第一铰链均连接在所述镜片和所述内框的内壁之间,所述一对第一铰链的连线形成第一转轴;所述一对第二铰链分别位于所述内框的相对的两端,所述一对第二铰链均连接在所述内框的外壁和所述外框的内壁之间,所述一对第二铰链的连线形成第二转轴,所述第一转轴垂直于所述第二转轴;所述第一驱动模组连接至所述内框,用于驱动内框连同所述镜片以所述第二转轴为中心转动;所述第二驱动模组连接至所述镜片,用于驱动所述镜片以所述第一转轴为中心转动。本申请实施例通过设置在镜片和外框之间的内框,以及将一对第一铰链连接在内框和镜片之间形成第一转轴,将一对第二铰链连接在内框和外框之间形成第二转轴,且第一转轴垂直于第二转轴,使得镜片围绕第一转轴转动时,受一对第一铰链的约束,无法产生垂直于镜片方向上的位移,镜片围绕第二转轴转动时,受一对第二铰链的约束,无法产生垂直于镜片方向上的位移。这样,可以保证镜片偏转过程中的更精确的位置。此外,镜片围绕第一转轴的转动结构和围绕第二转轴的转动结构是相互独立的,因此,围绕第一转轴的偏转和围绕 第二转轴的偏转没有机械串扰。
一种实施方式中,沿着所述第一转轴的方向,所述一对第一铰链在所述镜片和所述内框之间实现刚性连接,以使得第一驱动模组带动内框连同所述镜片以所述第二转轴为中心转动时,内框和镜片之间不会产生位移,以确保镜片的位置精确。再者,沿着所述第一转轴的方向,所述一对第一铰链在所述镜片和所述内框之间实现刚性连接,能够确定第一转轴的位置的稳固性,若第一铰链在第一转轴的方向上柔性连接在镜片和内框之间,当第二驱动组件驱动镜片围绕第一转轴为中心转动时,很容易因第一铰链的弹性形变,引起第一转轴的位置变动(这个位置变动可以称为非法偏移,存在方向及位移量的不确定性),导致镜片定位不准确
一种实施方式中,沿着所述第二转轴的方向,所述一对第二铰链在所述内框和所述外框之间实现刚性连接,目的是为了能够确定第二转轴的位置稳固性,使得镜片围绕第二转轴转动时,定位准确。
镜片以第一转轴为中心转动的过程中,通过一对第一铰链的弹性形变,维持镜片的偏转位置。即在第一铰链转动方向上,第一铰链在内框和镜片之间柔性连接。
内框连同镜片以第二转轴为中心转动的过程中,通过一对第二铰链的弹性形变,维持内框连同镜片的偏转位置。即在第二铰链转运的方向上,第二铰链在内框和外框之间柔性连接。
一种实施方式中,所述第一驱动模组包括第一热电驱动臂,所述第一热电驱动臂连接在所述外框和所述内框之间,所述第一热电驱动臂与所述内框的连接端为第一连接端,所述第一连接端的中心位于所述第一转轴上。本实施例子将第一驱动模组设计为热电驱动臂,第一热电驱动臂受热时,产生形变,使得第一连接端在垂直于镜面的方向上产生位移。第一转轴设为X方向,第二转轴设为Y方向,垂直于镜面的方向为Z方向。本实施方式中,通过第一热电驱动臂第一连接端在Z方向上的移动,带动内框连同镜片以第二转轴为中心转动。
一种实施方式中,所述第一连接端的数量为一个,所述第一连接端位于所述第一转轴上。具体而言,第一热电驱动臂包括第一电极端、第一弹性臂及第一连接端,第一电极端和第一连接端分别位于第一弹性臂的两侧,第一电极端用于与第一电极电连接,以对第一热电驱动臂施加电压或电流,在压差或电流的作用下,第一弹性臂产生热变形,带动第一连接端在Z方向上移动。本实施方式中,第一弹性臂呈封装的环状结构。
一种实施方式中,所述第一连接端的数量为至少两个,所述至少两个第一连接端以所述第一转轴为中心对称分布,以使所述第一连接端的中心位于所述第一转轴上,这样有利于第一热电驱动臂作用在内框上的力均匀。具体而言,本实施方式中,第一热电驱动臂包括第一电极端、两个第一弹性臂和两个第一连接端,两个第一弹性臂的一端分别连接在两个第一连接端,两个第一弹性臂的另一端均连接至第一电极端。
一种实施方式中,所述第一驱动模组还包括第一电极,所述第一电极设于所述外框,所述第一电极与所述第一热电驱动臂电连接。具体而言,第一电极电连至第一电极端,外框可以设计为电路板,第一电极通过电路板上的走线电连接于第一电极端。
具体而言,第一电极端的中心位于第一转轴的延伸线上。
所述第二驱动模组包括第二热电驱动臂,所述第二热电驱动臂连接在所述内框和所述镜片之间,所述第二热电驱动臂与所述内框的连接端为第二电极端,所述第二电极端的中心位于所述第二转轴的延伸线上。第二驱动模组可以与第一驱动模组的架构相同,只是设置位置不同,第二驱动模组设置在内框和镜片之间。具体而言,第二热电驱动臂包括第二电极端和第二连接端及连接在第二电极端和第二连接端之间的第二弹性臂,第二电极端连接至内框。
一种实施方式中,所述第二驱动模组还包括第二电极,所述第二电极设于所述外框,所述第二电极与所述第二热电驱动臂电连接。具体而言,第二电极电连接至第二电极端。
一种实施方式中,第二电极端和其中一个第二铰链相对分别设置在内框的两侧,即第二电极端位于第二铰链的延伸线上,换言之,第二铰链位于第二转轴上。所述第二电极和所述第二热电驱动臂之间通过引线电连接,所述引线从所述外框延伸至其中一个所述第二铰链,且沿着所述第二铰链延伸至所述第二热电驱动臂。
所述第二热电驱动臂与所述镜片之间的连接端为第二连接端,所述第二连接端的中心位于所述第二转轴上。
所述第二连接端的数量为至少两个,所述至少两个第二连接端以所述第二转轴为中心对称分布,以使所述第二连接端的中心位于所述第一转轴上,这样可以使得第二驱动模组作用在镜片上的力是均匀的。
具体而言,第一电极端连接至所述外框的表面,第一连接端连接至内框的表面,因为热电的驱动臂是额外通过半导体工艺制作在硅材料(内框和镜面属于基底结构)表面上的,因此,连接端位于内框的表面。同样,第二电极端连接至内框的表面,第二连接端连接至镜片的表面。
一种实施方式中,所述内框为轴对称结构,所述第一转轴和所述第二转轴均形成所述内框的对称轴。所述内框可以为正方形框状、圆形环状等任何轴对称结构。
第二方面,本申请实施例提供了一种微镜阵列芯片,包括多个呈阵列分布的如前述任意一种实施方式所述的微镜结构。
所述微镜阵列芯片划分为多个呈阵列分布的区域,所述多个呈阵列分布的区域包括相邻设置的第一区域和第二区域,所述第一区域中的所述微镜结构的分布方向与所述第二区域中的所述微镜结构的分布方向呈镜像对称。
附图说明
图1是本申请提供的微镜阵列芯片所在的3D-MEMS光交换模块的结构示意图;
图2是本申请一种实施方式提供的微镜结构的示意图;
图3是本申请另一种实施方式提供的微镜结构的示意图;
图4是本申请一种实施方式提供的微镜阵列芯片布局方式示意图;
图5是本申请一种实施方式提供的微镜阵列芯片的转角和功耗关系图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请涉及一种微镜结构及微镜阵列芯片,为光交换领域中的核心器件。图1所示为本申请提供的微镜阵列芯片所在的3D-MEMS光交换模块(即MEMS光子交换机100)的结构示意图。MEMS光子交换机100包括第一镜阵列104和第二镜阵列106。光经由准直器阵列102(例如从光纤引出)进入,并且打在第一镜阵列104中的微镜上。通过调整第一镜阵列104中的微镜的角度以使光进一步打在第二镜阵列106中的合适的微镜上。第二镜阵列106中的微镜与准直器阵列108中的特定输出端口相关联。通过调整镜阵列106中的微镜的角度以与准直器阵列108中合适的输出端口耦合。然后,光在准直器阵列108中的准直器(例如与光纤耦合)中出射。类似地,光也可以从准直器阵列108一侧输入,从第二镜阵列106中的微镜反射至第一镜阵列104中的微镜,进一步反射至准直器阵列102,并射出。本申请提供的微镜结构及微镜阵列芯片应用在第一镜阵列104或第二镜阵列106中。
请参阅图2,本申请实施例提供的微镜结构包括:外框10、内框20、镜片30、一对第一铰链40、一对第二铰链50、第一驱动模组和第二驱动模组。镜片30位于内框20的包围空间内,内框20位于外框10的包围空间内,镜片30、内框20和外框10形成层层叠套的架构,且彼此之间均保持一定的间隙,以用于收容第一铰链40、第二铰链50、第一驱动模组和第二驱动模组。一种具体的实施方式中,外框10可以通过在基板上挖孔形成,外框10的材质可以为硅材料。外框10的包围空间可以为方形,一块基板上可以设置多个阵列分布的收容孔,这些收容孔作为外框10的包围空间,在其中设置内框20和镜片30、第一铰链40、第二铰链50及第一驱动模组和第二驱动模组。
内框20为封闭的环状结构,可以为:方形、圆形等轴对称结构(可理解地,内框20的形状可以为其它任意的形状,本申请不做限定),内框20的材料可以与外框10的材质相同,内框20为刚性结构。
所述一对第一铰链40分别位于所述镜片30的相对的两端,所述一对第一铰链40均连接在所述镜片30和所述内框20的内壁之间,所述一对第一铰链40的连线形成第一转轴A1。第一铰链40类似转轴或合叶的结构,能够实现镜片30相对内框20的转动,除了转动方向之外的方向上,第一铰链40能够保证镜片30和内框20之间的刚性连接,以防止镜片30相对内框20的偏移,从而保证镜片30偏转精度。
所述一对第二铰链50分别位于所述内框20的相对的两端,所述一对第二铰链50均连接在所述内框20的外壁和所述外框10的内壁之间,所述一对第二铰链50的连线形成第二转轴A2,所述第一转轴A1垂直于所述第二转轴A2。第二铰链50类似转轴或合叶的结构,能够实现内框20相对外框10的转动,除了转动方向之外的方向上,第一铰链40能够保证内框20和外框10之间的刚性连接,以防止内框20相对外框10的偏移,从而保证镜片30偏转精度。
具体而言,所述内框20为轴对称结构,所述第一转轴A1和所述第二转轴A2均形成所述内框20的对称轴。所述内框20可以为正方形框状、圆形环状等任何轴对称结构。图2和图3所示的实施例中,内框20呈方形框状,包括四条彼此垂直的边,第一转轴A1和第二转轴A2分别为相邻的两条边的中线。
一种实施方式中,所述镜片30指的是MEMS微镜,镜片30呈圆形,其它实施方式 中,镜片30也可以呈方形。当镜片30为圆形时,第一转轴A1与镜片30的直径重合,当镜片30为正方形时,第一转轴A1与镜片30的中心线重合。应理解,镜片30可以为任意形状,本申请不做限定。
所述第一驱动模组连接至所述内框20,用于驱动内框20连同所述镜片30以所述第二转轴A2为中心转动。所述第二驱动模组连接至所述镜片30,用于驱动所述镜片30以所述第一转轴A1为中心转动。本申请实施例通过设置在镜片30和外框10之间的内框20,以及将一对第一铰链40连接在内框20和镜片30之间形成第一转轴A1,将一对第二铰链50连接在内框20和外框10之间形成第二转轴A2,且第一转轴A1垂直于第二转轴A2,使得镜片30围绕第一转轴A1转动时,受一对第一铰链40的约束,无法产生垂直于镜片30方向上的位移,镜片30围绕第二转轴A2转动时,受一对第二铰链50的约束,无法产生垂直于镜片30方向上的位移。这样,可以保证镜片30偏转过程中的更精确的定位。
一种实施方式中,沿着所述第一转轴A1的方向,所述一对第一铰链40在所述镜片30和所述内框20之间实现刚性连接,以使得第一驱动模组带动内框20连同所述镜片30以所述第二转轴A2为中心转动时,内框20和镜片30之间不会产生位移,以确保镜片30的位置精确。再者,沿着所述第一转轴A1的方向,所述一对第一铰链40在所述镜片30和所述内框20之间实现刚性连接,能够确定第一转轴A1的位置的稳固性,若第一铰链40在第一转轴A1的方向上柔性连接在镜片30和内框20之间,当第二驱动组件驱动镜片30围绕第一转轴A1为中心转动时,很容易因第一铰链40的弹性形变,引起第一转轴A1的位置变动(这个位置变动可以称为非法偏移,存在方向及位移量的不确定性),导致镜片30定位不准确
一种实施方式中,沿着所述第二转轴A2的方向,所述一对第二铰链50在所述内框20和所述外框10之间实现刚性连接,目的是为了能够确定第二转轴A2的位置稳固性,使得镜片30围绕第二转轴A2转动时,定位准确。
镜片30以第一转轴A1为中心转动的过程中,通过一对第一铰链40的弹性形变,维持镜片30的偏转位置。即在第一铰链40转动方向上,第一铰链40在内框20和镜片30之间柔性连接。
内框20连同镜片30以第二转轴A2为中心转动的过程中,通过一对第二铰链50的弹性形变,维持内框20连同镜片30的偏转位置。即在第二铰链50转运的方向上,第二铰链50在内框20和外框10之间柔性连接。
第一驱动模组和第二驱动模组用于驱动镜片30的偏转,本申请实施例中,通过热电驱动的方式实现驱动镜片30偏转。具体描述如下。
一种实施方式中,所述第一驱动模组包括第一热电驱动臂60,所述第一热电驱动臂60连接在所述外框10和所述内框20之间,所述第一热电驱动臂60与所述内框20的连接端为第一连接端61,所述第一连接端61的中心位于所述第一转轴A1上。本实施例将第一驱动模组设计为热电驱动臂,第一热电驱动臂60受热时,产生形变,使得第一连接端61在垂直于镜片30的方向上产生位移。第一转轴A1设为X方向,第二转轴A2设为Y方向,垂直于镜片30的方向为Z方向。本实施方式中,通过第一热电驱动臂60第一连接端61在Z方向上的移动,带动内框20连同镜片30以第二转轴A2为中心转动。
一种实施方式中,如图2所示,所述第一连接端61的数量为一个,所述第一连接端61位于所述第一转轴A1上。具体而言,第一热电驱动臂60包括第一电极端62、第一弹性臂63及第一连接端61,第一电极端62和第一连接端61分别位于第一弹性臂63的两侧,第一电极端62用于与设于外框10上的第一电极80电连接,以对第一热电驱动臂60施加电压或电流,在压差或电流的作用下,第一弹性臂63产生热变形,带动第一连接端61在Z方向上移动。本实施方式中,第一弹性臂63呈封装的环状结构。
一种实施方式中,如图3所示,所述第一连接端61的数量为至少两个,所述至少两个第一连接端61以所述第一转轴A1为中心对称分布,以使所述第一连接端61的中心位于所述第一转轴A1上,这样有利于第一热电驱动臂60作用在内框20上的力均匀。具体而言,本实施方式中,第一热电驱动臂60包括第一电极端62、两个第一弹性臂63和两个第一连接端61,两个第一弹性臂63的一端分别连接在两个第一连接端61,两个第一弹性臂63的另一端均连接至第一电极端62。
一种实施方式中,所述第一驱动模组还包括第一电极80,所述第一电极80设于所述外框10,所述第一电极80与所述第一热电驱动臂60电连接。具体而言,第一电极80电连至第一电极端62,外框10可以设计为电路板,第一电极80通过电路板上的走线83,84电连接于第一电极端62。
具体而言,第一电极端62的中心位于第一转轴A1的延伸线上。第一电极80包括正级81和负级82,第一热电驱动臂60串联在正级81和负级82之间,以形成回路。通过第一电极80对第一热电驱动臂60施加电压或电流,以使得第一弹性臂63产生热变形,第一弹性臂63与第一连接端61连接的一端产生Z向移动。具体而言,第一弹性臂63的材料包括多层金属膜和介质膜,包括用于产生位移的两种热膨胀系数不同的材料,例如Cu和SiO2(或者Al和SiO2等),同时也包括用于产生温度的加热电阻层,如W或者Ti或者Pt或者多晶硅等,加热电阻层两端分别与正级81和负极82电连接,当第一电极80侧有功率注入时,会在加热电阻层上生热产生温度变化,由于第一弹性臂63上存在两种热膨胀系数不同的材料,这两种材料的膨胀量差异会发生变化,从而引起第一弹性臂63的形变量的变化,导致第一连接端61产生位移。
第一电极端62包括分别与正级81和负级82电连接的两个端子,当第一弹性臂63和第一连接端61的数量为一个时,第一弹性臂63在第一电极端62的两个端子之间连续延伸,第一连接端61位于第一弹性臂63的中点位置处。当第一弹性臂63和第一连接端61的数量为两个时,其中一个第一弹性臂63连接在其中一个端子和其中一个第一连接端61之间,另一个第一弹性臂63连接在另一个端子和另一个第一连接端61之间。
所述第二驱动模组包括第二热电驱动臂70,所述第二热电驱动臂70连接在所述内框20和所述镜片30之间,所述第二热电驱动臂70与所述内框20的连接端为第二电极端72,所述第二电极端72的中心位于所述第二转轴A2的延伸线上。具体而言,第二热电驱动臂70包括第二电极端72和第二连接端71及连接在第二电极端72和第二连接端71之间的第二弹性臂73,第二电极端72连接至内框20,第二连接端71是连接至镜片30的。第二驱动模组可以与第一驱动模组的架构相同,只是设置位置不同,第二驱动模组设置在内框20和镜片30之间。
一种实施方式中,所述第二驱动模组还包括第二电极90,所述第二电极90设于所述外框10,所述第二电极90与所述第二热电驱动臂70电连接。具体而言,第二电极90电连接至第二电极端72。第二电极90亦包括正极91和负极92,第二电极端72亦包括两个端子,分别通过引线实现第二电极90的正极91和第二电极端72的其中一个端子之间的电连接,及第二电极90的负极92和第二电极端72的另一个端子之间的电连接。
一种实施方式中,第二电极端72和其中一个第二铰链50相对分别设置在内框20的两侧,即第二电极端72位于第二铰链50的延伸线上,换言之,第二铰链50位于第二转轴A2上。所述第二电极90和所述第二热电驱动臂70之间通过引线93,94电连接,所述引线93,94从所述外框10延伸至其中一个所述第二铰链50,且沿着所述第二铰链50延伸至所述第二热电驱动臂70。
一种实施方式中,所述第二热电驱动臂70与所述镜片30之间的连接端为第二连接端71,所述第二连接端71的中心位于所述第二转轴A2上,可以使得镜片30的受力更均匀。
一种实施方式中,如图3所示,所述第二连接端71的数量为至少两个,所述至少两个第二连接端71以所述第二转轴A2为中心对称分布,以使所述第二连接端71的中心位于所述第一转轴A1上,相应地,第二弹性臂73的数量也为至少两个,分别连接在至少两个第二连接端71和第二电极端72之间,这样可以使得第二驱动模组作用在镜片30上的力是均匀的。
具体而言,第一电极端62连接至所述外框10的表面,第一连接端61连接至内框20的表面,因为热电的驱动臂是额外通过半导体工艺制作在硅材料(内框20和镜片30属于基底结构)表面上的,因此,第一连接端61位于内框20的表面。同样,第二电极端72连接至内框20的表面,第二连接端71连接至镜片30的表面。
本申请实施例提供了一种微镜阵列芯片,包括多个呈阵列分布的微镜结构。具体而言,所有的微镜结构外框10互连为一体,可以在同一块基板上通过设置阵列分布的多个收容孔,每个收容孔内均设置一个内框20和一个镜片30。
一种实施方式中,所述微镜阵列芯片划分为多个呈阵列分布的区域,所述多个呈阵列分布的区域包括相邻设置的第一区域和第二区域,所述第一区域中的所述微镜结构的分布方向与所述第二区域中的所述微镜结构的分布方向呈镜像对称。每个区域中可以包括多个阵列分布的微镜结构。请参阅图4,微镜阵列芯片划分为四个区域S1,S2,S3,S4,与区域S1相邻的区域为区域S2和区域S3,区域S1中的所述微镜结构的分布方向与区域S2中的所述微镜结构的分布方向以第一分界线X1为中心呈镜像对称,第一分界线X1位于区域S1和S2之间。区域S1中的所述微镜结构的分布方向与区域S3中的所述微镜结构的分布方向以第二分界线X2为中心呈镜像对称,第二分界线X2位于区域S1和区域S3之间。第一分界线X1垂直于第二分界线X2。各区域S1,S2,S3,S4中的微镜结构均呈2x2阵列分布。
微镜阵列芯片可以划分出更多的区域,不局限于四个区域S1,S2,S3,S4,而且各区域中的微镜结构也可以分布为其它的阵列布局,例如3x3阵列分布、4x4阵列分布等。
参照图5,从镜片转角和功耗的关系图中,可以看出,镜片转角存在低功耗的区域。图4所示的实施方式中,四个区域,S1,S2,S3,S4内的微镜结构的镜片转动角度需求均 处于低功耗状态。因此,本申请实施例能够实现低功耗的微镜阵列芯片布局。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种微镜结构,其特征在于,包括:外框、内框、镜片、一对第一铰链、一对第二铰链、第一驱动模组和第二驱动模组;所述一对第一铰链分别位于所述镜片的相对的两端,所述一对第一铰链均连接在所述镜片和所述内框的内壁之间,所述一对第一铰链的连线形成第一转轴;所述一对第二铰链分别位于所述内框的相对的两端,所述一对第二铰链均连接在所述内框的外壁和所述外框的内壁之间,所述一对第二铰链的连线形成第二转轴,所述第一转轴垂直于所述第二转轴;所述第一驱动模组连接至所述内框,用于驱动内框连同所述镜片以所述第二转轴为中心转动;所述第二驱动模组连接至所述镜片,用于驱动所述镜片以所述第一转轴为中心转动。
  2. 如权利要求1所述的微镜结构,其特征在于,沿着所述第一转轴的方向,所述一对第一铰链在所述镜片和所述内框之间实现刚性连接。
  3. 如权利要求2所述的微镜结构,其特征在于,沿着所述第二转轴的方向,所述一对第二铰链在所述内框和所述外框之间实现刚性连接。
  4. 如权利要求1所述的微镜结构,其特征在于,所述第一驱动模组包括第一热电驱动臂,所述第一热电驱动臂连接在所述外框和所述内框之间,所述第一热电驱动臂与所述内框的连接端为第一连接端,所述第一连接端的中心位于所述第一转轴上。
  5. 如权利要求4所述的微镜结构,其特征在于,所述第一连接端的数量为一个,所述第一连接端位于所述第一转轴上。
  6. 如权利要求4所述的微镜结构,其特征在于,所述第一连接端的数量为至少两个,所述至少两个第一连接端以所述第一转轴为中心对称分布,以使所述第一连接端的中心位于所述第一转轴上。
  7. 如权利要求4所述的微镜结构,其特征在于,所述第一驱动模组还包括第一电极,所述第一电极设于所述外框,所述第一电极与所述第一热电驱动臂电连接。
  8. 如权利要求7所述的微镜结构,其特征在于,所述第一热电驱动臂还包括第一电极端和第一弹性臂,所述第一电极端与所述第一电极电连接,所述第一弹性臂连接在所述第一电极端和所述第一连接端之间,所述第一电极端的中心位于所述第一转轴的延伸线上。
  9. 如权利要求4-8任意一项所述的微镜结构,其特征在于,所述第二驱动模组包括第二热电驱动臂,所述第二热电驱动臂连接在所述内框和所述镜片之间,所述第二热电驱动臂与所述内框的连接端为第二电极端,所述第二电极端的中心位于所述第二转轴的延伸线 上。
  10. 如权利要求9所述的微镜结构,其特征在于,所述第二驱动模组还包括第二电极,所述第二电极设于所述外框,所述第二电极与所述第二电极端电连接。
  11. 如权利要求10所述的微镜结构,其特征在于,所述第二电极和所述第二电极端之间通过引线电连接,所述引线从所述外框延伸至其中一个所述第二铰链,且沿着所述第二铰链延伸至所述第二电极端。
  12. 如权利要求8所述的微镜结构,其特征在于,所述第二热电驱动臂与所述镜片之间的连接端为第二连接端,所述第二连接端的中心位于所述第二转轴上。
  13. 如权利要求12所述的微镜结构,其特征在于,所述第二连接端的数量为至少两个,所述至少两个第二连接端以所述第二转轴为中心对称分布,以使所述第二连接端的中心位于所述第二转轴上。
  14. 如权利要求13所述的微镜结构,其特征在于,所述第二热电驱动臂包括至少两个第二弹性臂,所有的所述第二弹性臂的一端均连接至所述第二电极端,所述至少两个第二弹性臂的另一端一一对应地连接至所述至少两个第二连接端。
  15. 如权利要求1所述的微镜结构,其特征在于,所述内框为轴对称结构,所述第一转轴和所述第二转轴均形成所述内框的对称轴。
  16. 一种微镜阵列芯片,其特征在于,包括多个呈阵列分布的如权利要求1至15任意一项所述的微镜结构。
  17. 如权利要求16所述的微镜阵列芯片,其特征在于,所述微镜阵列芯片包括多个呈阵列分布的区域,所述多个呈阵列分布的区域包括相邻设置的第一区域和第二区域,所述第一区域中的所述微镜结构的分布方向与所述第二区域中的所述微镜结构的分布方向呈镜像对称。
PCT/CN2018/102703 2017-10-27 2018-08-28 微镜结构及微镜阵列芯片 WO2019080633A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18871264.0A EP3683612A4 (en) 2017-10-27 2018-08-28 MICROMIRROR STRUCTURE AND MICROMIRROR NETWORK CHIP
US16/855,051 US20200249468A1 (en) 2017-10-27 2020-04-22 Micromirror structure and micromirror array chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711033201.1A CN109725413A (zh) 2017-10-27 2017-10-27 微镜结构及微镜阵列芯片
CN201711033201.1 2017-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/855,051 Continuation US20200249468A1 (en) 2017-10-27 2020-04-22 Micromirror structure and micromirror array chip

Publications (1)

Publication Number Publication Date
WO2019080633A1 true WO2019080633A1 (zh) 2019-05-02

Family

ID=66246176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102703 WO2019080633A1 (zh) 2017-10-27 2018-08-28 微镜结构及微镜阵列芯片

Country Status (4)

Country Link
US (1) US20200249468A1 (zh)
EP (1) EP3683612A4 (zh)
CN (1) CN109725413A (zh)
WO (1) WO2019080633A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608907A (zh) * 2019-09-18 2019-12-24 广州大学 提供面内或面外弹性扭转约束的支座及包含其的实验装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591029B1 (en) * 2001-01-05 2003-07-08 Tellium, Inc Optical switch and method for aligning optical switch components
CN105223657A (zh) * 2014-05-27 2016-01-06 华为技术有限公司 光开关和波分复用光系统
CN105408788A (zh) * 2013-08-12 2016-03-16 华为技术有限公司 用于微机电系统光开关的设备和方法
CN106094064A (zh) * 2016-06-08 2016-11-09 无锡微奥科技有限公司 一种热驱动mems微镜阵列器件及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519726A (ja) * 1997-04-01 2001-10-23 クセロス・インク 微細加工捩り振動子の動的特性の調整
DE102007001516B3 (de) * 2007-01-10 2008-04-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanisches Bauelement mit einstellbarer Resonanzfrequenz durch Geometrieänderung und Verfahren zum Betreiben desselben
WO2011095231A1 (en) * 2010-02-08 2011-08-11 Lemoptix Sa Method and apparatus for controlling a mems micro-mirror device
CN102262293B (zh) * 2010-05-27 2013-04-24 华为技术有限公司 光开关和光开关阵列
CN102540456B (zh) * 2012-02-24 2014-07-02 无锡微奥科技有限公司 一种自倾斜微机电系统微镜
CN202720387U (zh) * 2012-06-04 2013-02-06 凝辉(天津)科技有限责任公司 直接光驱动扫描微镜
CN104049361A (zh) * 2014-06-06 2014-09-17 无锡微奥科技有限公司 一种面内mems驱动运动装置
ITUB20155997A1 (it) * 2015-11-30 2017-05-30 St Microelectronics Srl Struttura micromeccanica ad attuazione biassiale e relativo dispositivo mems
CN106066535A (zh) * 2016-06-08 2016-11-02 无锡微奥科技有限公司 一种高均匀性的电热mems微镜/微镜阵列及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591029B1 (en) * 2001-01-05 2003-07-08 Tellium, Inc Optical switch and method for aligning optical switch components
CN105408788A (zh) * 2013-08-12 2016-03-16 华为技术有限公司 用于微机电系统光开关的设备和方法
CN105223657A (zh) * 2014-05-27 2016-01-06 华为技术有限公司 光开关和波分复用光系统
CN106094064A (zh) * 2016-06-08 2016-11-09 无锡微奥科技有限公司 一种热驱动mems微镜阵列器件及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683612A4 *

Also Published As

Publication number Publication date
EP3683612A4 (en) 2020-12-02
EP3683612A1 (en) 2020-07-22
US20200249468A1 (en) 2020-08-06
CN109725413A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
US7005775B2 (en) Microfabricated torsional drive utilizing lateral electrostatic force
US6603182B1 (en) Packaging micromechanical devices
JP5373555B2 (ja) ミラー装置
US6253001B1 (en) Optical switches using dual axis micromirrors
KR101659638B1 (ko) 층상형 mems 구조 및 그 방법
Jung et al. High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic combdrives
KR20040035116A (ko) 2-d 액튜에이터 및 그 제조방법
JP2019521381A (ja) マイクロミラーユニットおよびその製造方法、マイクロミラーアレイ、ならびに光クロスコネクトモジュール
TW535016B (en) Optical switching element having movable optical transmissive microstructure and method of switching an optical signal
WO2019080633A1 (zh) 微镜结构及微镜阵列芯片
JP4019847B2 (ja) 機能デバイス
US11713239B2 (en) MEMS chip structure
US6549703B1 (en) High bandwidth, compact N×N optical switch
JP4982595B2 (ja) 光ファイバスイッチ構造
CN114408854A (zh) 一种二维微机械双向扭转镜阵列及其制作方法
JP2009071663A (ja) 移動機構および撮像装置
WO2019084710A1 (zh) 一种多级mems光开关单元和光交叉装置
JP2003248183A (ja) マイクロミラーアクチュエータ及びその製造方法
JP6052901B2 (ja) マイクロミラー素子およびミラーアレイ
JPH0942928A (ja) 走査型寸法測定装置
JP2004279881A (ja) 光スイッチ装置
JP2004151647A (ja) 光スイッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018871264

Country of ref document: EP

Effective date: 20200417

NENP Non-entry into the national phase

Ref country code: DE