WO2019080539A1 - 一种复合材料风扇叶片金属加强边的制造方法 - Google Patents

一种复合材料风扇叶片金属加强边的制造方法

Info

Publication number
WO2019080539A1
WO2019080539A1 PCT/CN2018/094761 CN2018094761W WO2019080539A1 WO 2019080539 A1 WO2019080539 A1 WO 2019080539A1 CN 2018094761 W CN2018094761 W CN 2018094761W WO 2019080539 A1 WO2019080539 A1 WO 2019080539A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
wall panel
manufacturing
fan blade
metal reinforcing
Prior art date
Application number
PCT/CN2018/094761
Other languages
English (en)
French (fr)
Inventor
戴磊
黄建
时起珍
Original Assignee
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发商用航空发动机有限责任公司 filed Critical 中国航发商用航空发动机有限责任公司
Publication of WO2019080539A1 publication Critical patent/WO2019080539A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • the invention relates to the field of aircraft engines, and in particular to a method for manufacturing a metal reinforcing edge of a composite fan blade.
  • composite material has high strength but is not ideal for impact resistance.
  • composite fan blades are designed with a metal reinforced edge that includes a leading edge reinforcement edge, a tip edge reinforcement edge, and a trailing edge reinforcement edge.
  • the reinforcing side structure has a large size and a large degree of bending
  • leading edge reinforcing edge is matched with the composite body, the section is "V" type, the opening is narrow, the opening depth is large, and the thickness of the side wall plate is very thin, resulting in low overall rigidity, which is not suitable for mechanical processing;
  • the traditional machining method has the problems of low processing precision, long cycle and easy deformation of the reinforcing edge in the process of processing the reinforcing edge; the laser front melting technology / 3D printing technology is used to prepare the leading edge Due to the insufficient surface precision, the metal reinforcement edge needs to finish the inner and outer surfaces by using EDM, machining and other processes after the blank is formed. It also faces the problem of strengthening the inner cavity processing and the deformation problem of the molding.
  • An object of the present invention is to provide a method for manufacturing a metal reinforcing edge of a composite fan blade, which can reduce the difficulty in processing the inner surface of the metal reinforcing edge.
  • the metal sheet is processed by a hot press forming process to obtain the blanks of the first side wall panel and the second side wall panel.
  • the manufacturing method of the composite fan blade metal reinforcing edge is further characterized in that, in the hot press forming process, the first side wall plate and the second side are manufactured by using a side wall plate forming mold Side wall plate
  • the side wall plate forming mold has a shape that shapes an inner side surface of the first side wall panel and an inner side surface of the second side wall panel.
  • the manufacturing method of the composite fan blade metal reinforcing edge is further characterized in that the blank member is cut using a multi-degree of freedom laser cutting process, and the laser for cutting is perpendicular to the first side wall plate And a profile of the second side wall panel to ensure the flatness of the joint of the first side wall panel and the second side wall panel.
  • Welding is performed along a splicing seam of the joint of the first side wall panel and the second side wall panel to splicing the first side wall panel and the second side wall panel together.
  • the manufacturing method of the metal reinforcing edge of the composite fan blade is further characterized in that the welding is laser welding; the laser power is adjusted before welding to avoid the occurrence of leakage welding or welding.
  • the nose cone is laminated on the machined surface using an additive manufacturing process.
  • the manufacturing method of the metal reinforced edge of the composite fan blade is further characterized in that the nose cone formed in the process of manufacturing the additive is post-processed until the size of the nose cone meets the design size Claim.
  • the method for manufacturing a metal reinforced edge of a composite fan blade is further characterized in that the post-treatment process comprises one or more of machining, electric discharge machining, grinding, and chemical etching.
  • the positive progressive effect of the present invention is that the method for manufacturing the metal reinforcing edge of the composite fan blade provided by the present invention is manufactured by dividing the metal reinforcing edge into three parts, which are a first side wall plate, a second side wall plate and a nose cone, respectively.
  • the inner side surface of the first side wall panel and the inner side surface of the second side wall panel already have the shape of the inner surface of the metal reinforcing side, and therefore, when the first side wall panel and the second side wall panel are spliced together Thereafter, the shape of the inner surface of the metal reinforcing edge formed by the inner side surface of the formed first side wall panel and the inner side surface of the second side wall panel has also been processed, thereby avoiding the additional inner side of the metal reinforcing side.
  • the processing steps of the surface significantly reduce the processing difficulty of the inner surface of the metal reinforcing edge.
  • the outer side surface of the first side wall panel and the outer side surface of the second side wall panel are joined together to form a processing surface of a metal reinforced side nose cone, and the processing surface is used to construct a nose cone.
  • Figure 1 is a schematic view of a fan blade of an aircraft engine
  • FIG. 2 is a cross-sectional view of a fan blade of an aeroengine, showing the positional relationship between the metal reinforcing edge and the blade;
  • Figure 3 is a schematic view of a metal reinforcing edge
  • Figure 4 is a schematic view of a side wall plate forming mold
  • Figure 5 is a schematic view showing the first side wall panel and the second side wall panel being spliced together.
  • FIGS. 1 through 5 are only examples, and are not drawn to the same scale conditions, and should not be construed as limiting the scope of protection required by the present invention.
  • "front” and “rear” have been identified in Figure 1, during which the air flow flows from the "front” side of the blade to the "rear” side.
  • the fan blade of the aircraft engine includes a blade body 10 made of a composite material, and metal reinforcing edges 20 respectively wrapped around the leading and trailing edges of the blade body 10, and the metal reinforcing edge 20 may be a leading edge.
  • the metal reinforcing edge 20 may also be the metal reinforcing edge 20 of the trailing edge.
  • the metal reinforcing edge 20 includes a first side wall panel 201, a second side wall panel 202, and a nose cone 203.
  • the metal reinforcing side 20 has a "V" shape in cross section, the opening is narrow, and the opening depth is large, while the thickness of the first side wall plate 201 and the second side wall plate 202 is thin, resulting in low overall rigidity, which is disadvantageous for machining.
  • the metal reinforcing edge 20 is integrally manufactured by laser direct melting technology and 3D printing technology, but due to insufficient surface precision, it is necessary to use a process such as electric sparking, machining, etc. to form a metal reinforcing edge 20 after the blank forming is completed. It is difficult to finish the inner and outer surfaces.
  • the present invention provides a method of manufacturing a metal reinforcing edge 20 of a new composite fan blade by the following embodiments which is capable of reducing the processing difficulty of the inner surface of the metal reinforcing edge.
  • the manufacturing method of the composite fan blade metal reinforcing edge includes:
  • the first side wall panel 201 and the second side wall panel 202 are fabricated, and the inner side surface 201a of the first side wall panel 201 and the inner side surface 202a of the second side wall panel 202 are respectively formed;
  • the above step a can be realized by a hot press forming process, and the metal plate 6 is processed by a hot press forming process to obtain a blank of the first side wall plate 201 and the second side wall plate 202; in the hot press forming process
  • the inner side surface 201a of the first side wall panel 201 and the inner side surface 202a of the second side wall panel 202 are respectively formed.
  • the first side wall plate 201 and the second side wall plate 202 are manufactured using the side wall plate forming mold 4; the side wall plate forming mold 4 has the first side wall plate
  • the inner side surface 201a of 201 and the inner side surface 202a of the second side wall panel 202 are shaped.
  • the side wall panel forming mold 4 includes an upper mold 41 and a lower mold 42 placed between the upper mold 41 and the lower mold 42, and the upper mold 41 and the lower mold 42 are clamped by the positioning pins 5.
  • the cavity in which the upper mold 41 and the lower mold 42 are clamped is designed in accordance with the shapes of the first side wall panel 201 and the second side wall panel 202.
  • the metal plate 6 is plastically deformed by heating, thereby obtaining the blanks of the first side wall plate 201 and the second side wall plate 202.
  • the inner side surface 201a of the first side wall panel 201 and the inner side surface 202a of the second side wall panel 202 are directly press-formed without additional processing.
  • first side wall panel 201 and the inner side surface 202a of the second side wall panel 202 may also be processed in other manners, such as machining or the like. Since the first side wall panel 201 and the second side wall panel 202 are in a separated state during processing, they are advantageous in processing regardless of the manner in which they are processed.
  • the cutting is performed by cutting the blank using a multi-degree of freedom laser cutting process and causing the laser for cutting to be perpendicular to the profiles of the first sidewall panel 201 and the second sidewall panel 202 to ensure The flatness of the splicing seam 3 at the splicing of the first side wall panel 201 and the second side wall panel 202.
  • the seams 3 are formed at the edges of the two boards.
  • the precision of the edge portions of the first side wall panel 201 and the second side wall panel 202 is ensured in advance, so that the flatness of the splicing seam 3 can be ensured.
  • the first side wall panel 201 and the second side wall panel 202 need to be put together. Then, welding is performed along the joint seam 3 of the joint of the first side wall panel 201 and the second side wall panel 202 to splicing the first side wall panel 201 and the second side wall panel 202 together.
  • the welding may be laser welding. As shown in FIG. 5, before welding, the first side wall plate 201 and the second side wall plate 202 need to be placed on the core mold 7 for fixing, and the first side wall is used by the 3D printing laser 8.
  • the splicing seams 3 of the plate 201 and the second side wall panel 202 are welded to calibrate the laser power prior to welding to avoid leakage or weld penetration.
  • the inner side surface 201a of the first side wall panel 201 and the inner side surface 202a of the second side wall panel 202 are spliced to form the inner surface 20a of the metal reinforcing edge 20,
  • the outer side surface 201b of the first side wall panel 201 and the outer side surface 202b of the second side wall panel 202 are joined to form a machined surface 20b of the nose cone 203 of the metal reinforcing side 20.
  • the inner side surface 201a of the first side wall panel 201 and the inner side surface 202a of the second side wall panel 202 have been formed, and therefore, the splicing forms a metal reinforcement.
  • the inner surface 20a of the edge 20 has also been formed, thereby avoiding additional processing steps on the inner surface 20a of the metal reinforcing edge 20, significantly reducing the processing difficulty of the inner surface of the metal reinforcing edge.
  • the outer side surface 201b of the first side wall panel 201 and the outer side surface 202b of the second side wall panel 202 are joined to form a machined surface 20b of the nose cone 203 forming the metal reinforcing edge 20, and the machined surface 20b is used to construct the nose cone 203.
  • the step of constructing the nose cone 203 mentioned in the above step c includes laminating the nose cone 203 on the processing surface 20b using an additive manufacturing process. After the welding of the first side wall panel 201 and the second side wall panel 202 is completed, the formation of the nose cone 203 is performed on the processing surface 20b using the 3D printing laser 8. During the molding process, the test piece is subjected to a proper number of heat treatments to eliminate the influence of thermal stress and control the deformation of the test piece. The use of additive to make the formed nose cone 203 requires a certain margin than the size required for the design to facilitate subsequent processing.
  • the nose cone 203 formed in the process of additive manufacturing is also post-treated until the size of the nose cone 203 meets the design dimensions.
  • Post-treatment includes one or more of machining, electrical discharge machining, sanding, and chemical etching.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种复合材料风扇叶片金属加强边的制造方法,将金属加强边(20)分成三部分来制造,分别是第一侧壁板(201)、第二侧壁板(202)和鼻锥(203)。在制造过程中,第一侧壁板的内侧面(201a)和第二侧壁板的内侧面(202a)分别成型,第一侧壁板和第二侧壁板拼接在一起后,第一侧壁板的外侧面(201b)和第二侧壁板的外侧面(202b)拼接形成金属加强边的鼻锥的加工面(20B),用于构建鼻锥(203)。避免了额外的对金属加强边的内表面的加工步骤,显著降低了金属加强边的内表面的加工难度。

Description

一种复合材料风扇叶片金属加强边的制造方法 技术领域
本发明涉及航空发动机领域,具体涉及一种复合材料风扇叶片金属加强边的制造方法。
背景技术
随着复合材料制备技术的不断提高,复合材料的材料性能也在不断增强,复合材料在航空发动机领域的应用范围也越来越广泛。复合材料的大量使用,能够满足新一代航空发动机“低噪声、低污染、低成本”的要求,提高市场竞争力。复合材料的强度高,但是抗冲击性能不理想。为了能够经受住鸟或硬物的撞击,复合材料风扇叶片均采用了金属加强边的设计,金属加强边包括前缘加强边、叶尖加强边和尾缘加强边。
受复合材料风扇叶片特殊结构的影响,金属加强边的设计和加工难度很高,主要包括:
1)加强边结构尺寸较大,且弯掠程度较大;
2)前缘加强边与复材本体配合,截面为“V”型,开口窄,开口深度大,同时侧壁板厚度很薄,导致整体刚度较低,不利于机械加工;
3)加强边的加工精度要求较高。
针对加强边在加工过程存在的这些问题,传统机加方式在加工加强边的过程中存在加工精度低、周期长和加强边整体易变形等问题;采用激光直接熔化技术/3D打印技术制备前缘金属加强边,由于表面精度不够,在完成毛坯件成型后还需要使用电火花、机加等工艺对内外表面进行精加工,同样面临着加强边内腔加工的难题以及成型的变形问题。
本领域需要一种能够降低金属加强边内表面加工难度的复合材料风扇叶片金属加强边的制造方法。
发明内容
本发明的目的在于提供一种复合材料风扇叶片金属加强边的制造方法,所述复合材料风扇叶片金属加强边的制造方法能够降低金属加强边内表面加工难度。
为实现所述目的的复合材料风扇叶片金属加强边的制造方法,用于制造航空发动机的风扇叶片的金属加强边,其特征在于,所述复合材料风扇叶片金属加强边的制造方法包括:
a.分别制造第一侧壁板和第二侧壁板;
b.将所述第一侧壁板和所述第二侧壁板拼接在一起,以使所述第一侧壁板的内侧面和所述第二侧壁板的内侧面拼接形成所述金属加强边的内表面,并使所述第一侧壁板的外侧面和所述第二侧壁板的外侧面拼接形成所述金属加强边的鼻锥的加工面;
c.在所述加工面上构建所述鼻锥。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,制造所述第一侧壁板和所述第二侧壁板的步骤包括:
采用热压成型的工艺来加工金属板,以获得所述第一侧壁板和所述第二侧壁板的毛坯件。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,制造所述第一侧壁板和所述第二侧壁板的步骤还包括:
对所述毛坯件的边缘轮廓进行切割,以形成所述第一侧壁板和所述第二侧壁板,并保证成所述第一侧壁板和所述第二侧壁板的拼接处的拼接缝的平整度。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,在所述热压成型的工艺中,使用侧壁板成型模具来制造所述第一侧壁板和所述第二侧壁板;
所述侧壁板成型模具具有使所述第一侧壁板的内侧面和所述第二侧壁板的内侧面成型的形状。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,使用多自由度激光切割工艺对所述毛坯件进行切割,并使用于切割的激光垂直于所述第一侧壁板和所述第二侧壁板的型面,以保证所述第一侧壁板和所述第二侧壁板的拼接处的拼接缝的平整度。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,将所述第一侧壁板和所述第二侧壁板拼接在一起的步骤包括:
沿所述第一侧壁板和所述第二侧壁板的拼接处的拼接缝进行焊接,以将所述第一侧壁板和所述第二侧壁板拼接在一起。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,所述焊接为激光焊接;在焊接前调试激光功率,以避免出现漏焊或焊穿的情况。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,在所述加工面上构建所述鼻锥的步骤包括:
使用增材制造工艺在所述加工面上层叠构建所述鼻锥。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,对在所述增材制造的工艺中形成的所述鼻锥进行后处理,直至所述鼻锥的尺寸满足设计尺寸要求。
所述的复合材料风扇叶片金属加强边的制造方法,其进一步的特点是,所述后处理工艺包括机加工、电火花加工、打磨和化学腐蚀中的一种或者多种。
本发明的积极进步效果在于:本发明提供的复合材料风扇叶片金属加强边的制造方法,将金属加强边分成三部分来制造,分别是第一侧壁板、第二侧壁板和鼻锥。在制造过程中,第一侧壁板的内侧面和第二侧壁板的内侧面已经具有金属加强边的内表面的形状,因此,当第一侧壁板和第二侧壁板拼接在一起后,由已经成型的第一侧壁板的内侧面和第二侧壁板的内侧面拼接形成金属加强边的内表面的形状也已经被加工出来,从而避免了额外的对金属加强边的内表面的加工步骤,显著降低了金属加强边的内表面的加工难度。第一侧壁板的外侧面和第二侧壁板的外侧面拼接形成金属加强边的鼻锥的加工面,加工面用于构建鼻锥。
附图说明
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1为航空发动机的风扇叶片的示意图;
图2为航空发动机的风扇叶片的剖面图,显示了金属加强边与叶片的位置关系;
图3为金属加强边的示意图;
图4为侧壁板成型模具的示意图;
图5为第一侧壁板和第二侧壁板拼接在一起的示意图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本发明,但是本发明显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施例的内容限制本发明的保护范围。
需要注意的是,图1至图5均仅作为示例,其并非是按照等比例的条件绘制的,并且不应该以此作为对本发明实际要求的保护范围构成限制。本发明中“前”、“后”已标识在附图1中,在工作过程中,气流从叶片“前”侧流向“后”侧。
如图1所示,航空发动机的风扇叶片包括采用复合材料制作的叶片本体10,以及分别包覆在叶片本体10的前缘和后缘的金属加强边20,金属加强边20可以是前缘的金属加强边20,也可以是后缘的金属加强边20。以前缘的金属加强边为例,如图2、3所示,金属加强边20包括第一侧壁板201、第二侧壁板202和鼻锥203。金属加强边20的截面为“V”型,开口窄,开口深度大,同时第一侧壁板201和第二侧壁板202的厚度很薄,导致整体刚度较低,不利于机械加工。
在一个比较例中,金属加强边20通过激光直接熔化技术和3D打印技术来一体制造,但是由于表面精度不够,在完成毛坯件成型后还需要使用电火花、机加等工艺对金属加强边20的内外表面进行精加工,难度较大。
本发明通过以下实施例提供了一种新的复合材料风扇叶片的金属加强边20的制造方法,该方法能够降低金属加强边内表面的加工难度。
复合材料风扇叶片金属加强边的制造方法包括:
a.制造第一侧壁板201和第二侧壁板202,并使第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a分别成型;
b.将第一侧壁板201和第二侧壁板202拼接在一起,以使第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a拼接形成金属加强边20的内表面20a,并使第一侧壁板201的外侧面201b和第二侧壁板202的外侧面202b拼接形成金属加强边20的鼻锥203的加工面20b;
c.在加工面20b上构建鼻锥203。
上述步骤a可通过热压成型的工艺来实现,采用热压成型的工艺来加工金属板6,以获得第一侧壁板201和第二侧壁板202的毛坯件;在热压成型的工艺中,第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a分别成型。
如图4所示,在热压成型的工艺中,使用侧壁板成型模具4来制造第一侧壁板201和第二侧壁板202;侧壁板成型模具4具有使第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a成型的形状。
在一个实施例中,侧壁板成型模具4包括上模41和下模42,金属板6放置在上模41和下模42之间,上模41和下模42通过定位销钉5合模,上模41和下模42合模后的型腔按照第一侧壁板201和第二侧壁板202的形状来设计。上模41和下模42合模后采用加热的方式,使金属板6发生塑性变形,从而获得第一侧壁板201和第二侧壁板202的毛坯件。通过热压成型后,第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a直接被压制成型,无需额外加工。
需要说明的是第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a也可以采用其他方式加工,如机加工等。由于第一侧壁板201和第二侧壁板202在加工时处于分离的状态,所以不管采用何种方式加工,其都具有加工方便的优点。
在获得毛坯件后,接下来需要对毛坯件的边缘轮廓按照设计形状进行切割,以形成第一侧壁板201和第二侧壁板202。在一个实施例中,切割的方式为使用多自由度激光切割工艺对毛坯件进行切割,并使用于切割的激光垂直于第一侧壁板201和第二侧壁板202的型面,以保证第一侧壁板201和第二侧壁板202的拼接处的拼接缝3的平整度。
第一侧壁板201和第二侧壁板202拼放在一起后,两块板的边缘就就会形成拼接缝3。在对毛坯件进行切割时,需按照预先设计,保证第一侧壁板201和第二侧壁板202边缘部分的精度,这样就能保证拼接缝3的平整度。
继续参考图5,如上述步骤b所叙述的,在第一侧壁板201和第二侧壁板202成型完毕后,需要将第一侧壁板201和第二侧壁板202拼放在一起,再沿着第一侧壁板201和第二侧壁板202的拼接处的拼接缝3进行焊接,以将第一侧壁板201和第二侧壁板202拼接在一起。
焊接可以为激光焊接,如图5所示,在焊接之前,需要将第一侧壁板201和第二侧壁板202置于芯模7上进行固定,使用3D打印激光器8对第一侧壁板201和第二侧壁板202的拼接缝3进行焊接,在焊接前调试激光功率,以避免出现漏焊或焊穿的情况。
第一侧壁板201和第二侧壁板202拼接在一起后,第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a拼接形成金属加强边20的内表面20a,并使第一侧壁板201的外侧面201b和第二侧壁板202的外侧面202b拼接形成金属加强边20的鼻锥203的加工面20b。
当第一侧壁板201和第二侧壁板202拼接在一起后,第一侧壁板201的内侧面201a和第二侧壁板202的内侧面202a已经成型,因此,其拼接形成金属加强边20的内表面20a也已经成型,从而避免了额外的对金属加强边20的内表面20a的加工步骤,显著降低了金属加强边的内表面的加工难度。
第一侧壁板201的外侧面201b和第二侧壁板202的外侧面202b拼接形成金属加强边20的鼻锥203的加工面20b,加工面20b用于构建鼻锥203。
上述步骤c中提到的构建鼻锥203的步骤包括:使用增材制造工艺在加工面20b上层叠构建鼻锥203。在第一侧壁板201和第二侧壁板202的焊接完成后,在加工面20b上使用3D打印激光器8进行鼻锥203的成型。在成型过程中,需要对试验件进行适当次数的热处理,以消除热应力影响,控制试验件变形。使用增材制造成型的鼻锥203,要比设计要求的尺寸留出一定的余量,方便后续加工。
增材制造的过程结束后,还需要对在增材制造的工艺中形成的鼻锥203进行后处理,直至鼻锥203的尺寸满足设计尺寸要求。后处理包括机加工、电火花加工、打磨和化学腐蚀中的一种或者多种。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (10)

  1. 一种复合材料风扇叶片金属加强边的制造方法,用于制造航空发动机的风扇叶片(10)的金属加强边(20),其特征在于,所述复合材料风扇叶片金属加强边的制造方法包括:
    a.分别制造第一侧壁板(201)和第二侧壁板(202);
    b.将所述第一侧壁板(201)和所述第二侧壁板(202)拼接在一起,以使所述第一侧壁板(201)的内侧面(201a)和所述第二侧壁板(202)的内侧面(202a)拼接形成所述金属加强边(20)的内表面(20a),并使所述第一侧壁板(201)的外侧面(201b)和所述第二侧壁板(202)的外侧面(202b)拼接形成所述金属加强边(20)的鼻锥(203)的加工面(20b);
    c.在所述加工面(20b)上构建所述鼻锥(203)。
  2. 如权利要求1所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,制造所述第一侧壁板(201)和所述第二侧壁板(202)的步骤包括:
    采用热压成型的工艺来加工金属板(6),以获得所述第一侧壁板(201)和所述第二侧壁板(202)的毛坯件。
  3. 如权利要求2所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,制造所述第一侧壁板(201)和所述第二侧壁板(202)的步骤还包括:
    对所述毛坯件的边缘轮廓进行切割,以形成所述第一侧壁板(201)和所述第二侧壁板(202),并保证成所述第一侧壁板(201)和所述第二侧壁板(202)的拼接处的拼接缝(3)的平整度。
  4. 如权利要求2所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,在所述热压成型的工艺中,使用侧壁板成型模具(4)来制造所述第一侧壁板(201)和所述第二侧壁板(202);
    所述侧壁板成型模具(4)具有使所述第一侧壁板(201)的内侧面(201a)和所述第二侧壁板(202)的内侧面(202a)成型的形状。
  5. 如权利要求3所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,使用多自由度激光切割工艺对所述毛坯件进行切割,并使用于切割的激光垂直于所述第一侧壁板(201)和所述第二侧壁板(202)的型面,以保证所述第一侧壁板(201)和所述第二侧壁板(202)的拼接处的拼接缝(3)的平整度。
  6. 如权利要求1所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,将所述第一侧壁板(201)和所述第二侧壁板(202)拼接在一起的步骤包括:
    沿所述第一侧壁板(201)和所述第二侧壁板(202)的拼接处的拼接缝(3)进行焊接,以将所述第一侧壁板(201)和所述第二侧壁板(202)拼接在一起。
  7. 如权利要求6所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,所述焊接为激光焊接;在焊接前调试激光功率,以避免出现漏焊或焊穿的情况。
  8. 如权利要求1所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,在所述加工面(20b)上构建所述鼻锥(203)的步骤包括:
    使用增材制造工艺在所述加工面(20b)上层叠构建所述鼻锥(203)。
  9. 如权利要求8所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,对在所述增材制造的工艺中形成的所述鼻锥(203)进行后处理,直至所述鼻锥(203)的尺寸满足设计尺寸要求。
  10. 如权利要求9所述的复合材料风扇叶片金属加强边的制造方法,其特征在于,所述后处理包括机加工、电火花加工、打磨和化学腐蚀中的一种或者多种。
PCT/CN2018/094761 2017-10-27 2018-07-06 一种复合材料风扇叶片金属加强边的制造方法 WO2019080539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711026455.0A CN109723671A (zh) 2017-10-27 2017-10-27 一种复合材料风扇叶片金属加强边的制造方法
CN201711026455.0 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019080539A1 true WO2019080539A1 (zh) 2019-05-02

Family

ID=66246167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094761 WO2019080539A1 (zh) 2017-10-27 2018-07-06 一种复合材料风扇叶片金属加强边的制造方法

Country Status (2)

Country Link
CN (1) CN109723671A (zh)
WO (1) WO2019080539A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239126B (zh) * 2019-06-10 2021-06-08 中国科学院工程热物理研究所 用于航空发动机风扇叶片的制造方法
CN111774876B (zh) * 2020-07-13 2021-06-22 安徽奔腾五金制造有限公司 一种电风扇叶片加工装置及其工作方法
CN114439614A (zh) * 2020-10-30 2022-05-06 中国航发商用航空发动机有限责任公司 航空发动机的风扇叶片和航空发动机
CN114535598B (zh) * 2020-11-18 2024-06-18 中国航发商用航空发动机有限责任公司 叶片金属加强边的制造方法、制造系统和风扇叶片
CN113263250B (zh) * 2021-04-20 2022-07-19 上海交通大学 航空发动机风扇叶片金属加强边的复合制造方法
CN113459526B (zh) * 2021-06-30 2022-06-10 中国航空制造技术研究院 一种复合材料风扇叶片与金属包边的胶接成型方法
CN114000923A (zh) * 2021-09-28 2022-02-01 中国船舶工业集团公司第七0八研究所 一种复合材料透平机械叶轮
CN114535935A (zh) * 2022-02-23 2022-05-27 上海涵鲲科技有限公司 一种风扇叶片金属封边及其加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429780A (zh) * 2011-03-01 2013-12-04 斯奈克玛 用于制造金属部件,诸如涡轮发动机叶片加强件的方法
CN103781588A (zh) * 2011-08-10 2014-05-07 斯奈克玛 为叶片前缘制作保护加强件的方法
CN104364031A (zh) * 2012-06-01 2015-02-18 斯奈克玛 制造用于涡轮引擎的叶片的金属加强件的方法
CN105436819A (zh) * 2014-09-01 2016-03-30 中航商用航空发动机有限责任公司 航空发动机风扇叶片金属加强边的加工方法
CN205349855U (zh) * 2015-12-10 2016-06-29 中航商用航空发动机有限责任公司 具有分段式金属加强片的风扇叶片

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120233859A1 (en) * 2009-11-30 2012-09-20 Snecma Method for producing a metal reinforcement for a turbine engine blade
US9157327B2 (en) * 2010-02-26 2015-10-13 United Technologies Corporation Hybrid metal fan blade
FR2961866B1 (fr) * 2010-06-24 2014-09-26 Snecma Procede de realisation d’un renfort metallique d’aube de turbomachine
RU2566696C2 (ru) * 2010-07-12 2015-10-27 Снекма Способ изготовления массивной детали

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429780A (zh) * 2011-03-01 2013-12-04 斯奈克玛 用于制造金属部件,诸如涡轮发动机叶片加强件的方法
CN103781588A (zh) * 2011-08-10 2014-05-07 斯奈克玛 为叶片前缘制作保护加强件的方法
CN104364031A (zh) * 2012-06-01 2015-02-18 斯奈克玛 制造用于涡轮引擎的叶片的金属加强件的方法
CN105436819A (zh) * 2014-09-01 2016-03-30 中航商用航空发动机有限责任公司 航空发动机风扇叶片金属加强边的加工方法
CN205349855U (zh) * 2015-12-10 2016-06-29 中航商用航空发动机有限责任公司 具有分段式金属加强片的风扇叶片

Also Published As

Publication number Publication date
CN109723671A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2019080539A1 (zh) 一种复合材料风扇叶片金属加强边的制造方法
CN103328150B (zh) 制造金属增强件的方法
US9663238B2 (en) Nacelle inlet lip skin with pad-up defining a developable surface having parallel ruling lines
CN101985200B (zh) 用于涡轮机翼的加强边缘的制造方法
JP5805678B2 (ja) 複合材料から作製された前縁を保護する金属インサートを作り出すための方法
US9321100B2 (en) Method for producing a metal reinforcement for a turbomachine blade
CN101418811B (zh) 一种航空发动机空心风扇叶片
CN110625344B (zh) 一种不等壁厚曲面构件的制造方法
CN103639649B (zh) 一种发动机进气道的制造方法
US20120317810A1 (en) Method for making a metal reinforcement for the blade of a turbine engine
CN109483183A (zh) 一种航空发动机复材风扇叶片金属加强边的制造方法
CN110238617B (zh) 一种提高环形火焰筒头部转接段组件制造精度的方法
CN116329383A (zh) 一种双曲双向凹陷不锈钢对接蒙皮的拉深成形方法
CN105364292A (zh) 一种薄壁双层钛合金封严座的焊接变形控制方法
CN104438480B (zh) 一种采用工程拼焊板实现复杂零件渐进成形的加工方法
CN107812870B (zh) 一种锻造叶片预锻制坯件的制造方法
CN109909692A (zh) 一种水泵扭曲叶片闭式叶轮及其加工工艺
US11759895B2 (en) Method for producing a metal reinforcement for a turbomachine blade
US9694438B2 (en) Hollow component manufacture
US10066492B1 (en) Turbomachine blade and relative production method
CN113868802B (zh) 一种变壁厚约束下的空心叶片余量优化模型建立及求解方法
CN110421077B (zh) 具有大角度薄壁扭曲窄深腔特征的构件的复合成形方法
CN111687606B (zh) 复合材料风扇叶片前缘金属加强边的制备方法
EP3060703B1 (en) Method for creating airfoil leading and trailing edges
US20160375513A1 (en) Cutting tool and method for producing such a cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18869950

Country of ref document: EP

Kind code of ref document: A1