WO2019080372A1 - 电源负载电流评估方法和usb类型转换器 - Google Patents

电源负载电流评估方法和usb类型转换器

Info

Publication number
WO2019080372A1
WO2019080372A1 PCT/CN2018/071846 CN2018071846W WO2019080372A1 WO 2019080372 A1 WO2019080372 A1 WO 2019080372A1 CN 2018071846 W CN2018071846 W CN 2018071846W WO 2019080372 A1 WO2019080372 A1 WO 2019080372A1
Authority
WO
WIPO (PCT)
Prior art keywords
input port
value
load current
voltage value
port
Prior art date
Application number
PCT/CN2018/071846
Other languages
English (en)
French (fr)
Inventor
刘小灵
Original Assignee
深圳市乐得瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市乐得瑞科技有限公司 filed Critical 深圳市乐得瑞科技有限公司
Priority to US16/758,266 priority Critical patent/US11041889B2/en
Publication of WO2019080372A1 publication Critical patent/WO2019080372A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F5/00Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6675Structural association with built-in electrical component with built-in electronic circuit with built-in power supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • H01R31/065Intermediate parts for linking two coupling parts, e.g. adapter with built-in electric apparatus

Definitions

  • the present disclosure relates to the field of charging and USB type conversion, and more particularly to a power supply load current evaluation method and a USB type converter.
  • USB Universal Serial Bus
  • USB interfaces In order to be able to convert different types of USB interfaces into C-type USB interfaces, one way is to do an interface form conversion, which can directly convert different types of USB interfaces. However, since this type of interface conversion cannot accurately inform the power supply of the output capability of the power supply, it is impossible to implement smart charging or even damage the USB interface.
  • Embodiments of the present invention provide a power supply load current evaluation method and a USB type converter to implement real-time monitoring and evaluation of the power outputted by an input port, and provide power to an output port without damaging an adapter connected to the input port. Power is supplied to the load as a power source.
  • Embodiments of the present invention provide a power supply load current evaluation method, which is applied to a USB connection line, and the power load current evaluation method includes:
  • the power source supplies power to the load through the USB cable to obtain an initial load current value
  • the method further includes:
  • the input port is at least one;
  • the actual voltage value of the input port is an actual voltage value of the one input port
  • the preset voltage value is a voltage value corresponding to the power source connected to the one input port
  • the actual voltage value of the input port is a sum of actual voltage values of the at least two input ports
  • the preset voltage value is the at least The sum of the voltage values corresponding to the two power supplies.
  • the output port is at least one
  • At least two output ports are connected in one-to-one correspondence with at least two loads, then at least two loads connected to the at least two output ports are powered to obtain at least two sub-initial load current values, wherein the initial load The current value is the sum of at least two sub-initial load current values.
  • the embodiment of the invention further provides a USB type converter, the USB type converter comprising: an input port, an output port and a power load capacity evaluation unit;
  • the input port is configured to be connected to a power source
  • the output port is configured to be connected to a load
  • a power load capacity evaluation unit configured to detect an actual voltage value of the input port when the power source supplies power to the load through the USB connection line to obtain an initial load current value; when an actual voltage of the input port When the value is less than the preset voltage value, adjusting the initial load current value until the actual voltage value of the input port corresponding to the adjusted load current value is not less than the preset voltage value, outputting the adjusted load current The value is used as the power load current value.
  • the power load capacity evaluation unit includes: a control circuit, a switch circuit, and a voltage detection circuit.
  • the control circuit includes a set value transmitting port, a voltage collecting port, an enable output end, and a comparison circuit;
  • the set value transmitting port is connected to the output port, and is set to obtain an initial load current value;
  • the voltage collecting port As a first input end of the control circuit, connected to the voltage detecting circuit, configured to collect an actual voltage value of the input port;
  • the comparison circuit is connected to the voltage collecting port, and is configured to receive the input port Actual voltage value, and comparing the actual voltage value of the input port with a preset voltage value stored in the control circuit to form a control signal, and outputted by the enable output end of the control circuit;
  • the enable output end of the control circuit When the actual voltage value of the input port is less than the preset voltage value, the enable output end of the control circuit outputs a first control signal to adjust the initial load current value, and obtain the adjusted load current value; When the actual voltage value of the input port is not less than the preset voltage value, the enable output end of the control circuit outputs a second control signal;
  • the switching circuit is connected to the power line, and an enable output end of the control circuit is connected to an enable input end of the switch circuit;
  • the voltage detecting circuit is connected between the power line and the ground line, and is connected to the voltage collecting port of the control circuit, and is configured to detect an actual voltage value of the input port, and the actual value of the input port The voltage value is sent to the voltage acquisition port of the control circuit.
  • the voltage detecting circuit includes a first resistor and a second resistor, wherein the voltage detecting circuit includes a first resistor and a second resistor, wherein the first resistor and the second resistor are connected in series, in series The latter end is connected to the power line, the other end is connected to the ground line, and the voltage collecting port is connected between the first resistor and the second resistor.
  • control circuit further includes a second input end
  • the power load capacity evaluation unit further includes:
  • a current detecting circuit configured to detect an actual load current value of the output port and send it to a second input end of the control circuit, so that the control circuit determines whether the actual load current value reaches an initial load current value;
  • the voltage detecting circuit detects an actual voltage value of the input port when the actual load current value reaches the initial load current value;
  • the current detecting circuit is connected to the power line or the ground line, so that the current detecting circuit and the load form a series branch, and the second input end of the control circuit is connected to the current detecting circuit. Between the output port and the output port.
  • the input port is one of a USB-A male connector, a USB-B male connector, a USB-C male connector, a Lightning interface male connector, a Micro USB female connector, or a Lightning female connector. .
  • the output port is a USB-C female socket; and the set value sending port of the control circuit outputs a load current through a first control line or a second control line of the USB-C female socket.
  • the actual voltage value outputted by the input port is monitored by real-time monitoring.
  • the initial load current value of the current load current is adjusted until the adjusted load current value corresponds to
  • the adjusted load current value is output as the power load current value, thereby ensuring that the input port is not damaged by overload, and the effect of intelligent charging is achieved.
  • the USB type converter enables intelligent conversion of different types of USB interfaces, allowing different types of adapters to be utilized to a greater extent.
  • FIG. 1 is a flow chart of a method for evaluating a load current of a power supply according to an embodiment.
  • FIG. 2 is a schematic diagram of an internal structure of a USB type converter according to an embodiment.
  • FIG. 3 is a schematic diagram of an internal structure of a USB type converter according to another embodiment.
  • FIG. 4 is a schematic diagram of an internal structure of a USB type converter according to still another embodiment.
  • FIG. 5 is a schematic structural diagram of a USB type converter according to an embodiment.
  • FIG. 6 is a schematic structural diagram of a USB type converter according to another embodiment.
  • FIG. 7 is a schematic structural diagram of another USB type converter provided by still another embodiment.
  • FIG. 8 is a schematic structural diagram of another USB type converter provided by another embodiment.
  • FIG. 1 is a flowchart of a method for evaluating a load current of a power supply according to an embodiment.
  • the present embodiment is applicable to a USB connection line, and is applicable to a situation in which a USB interface type needs to be converted.
  • the method can be performed by a USB type converter. Specifically, the steps include the following steps:
  • the power source supplies power to the load through the USB cable to obtain an initial load current value.
  • the initial load current value in the embodiment of the present invention may also be used as the set value of the current load capability.
  • the input port is connected to the power source, and the output port is connected to the load to form a circuit between the power source and the load (that is, the input port of the USB cable can be connected to the power source, and the output port of the USB cable can be connected to the load. Form the circuit between the power supply and the load).
  • the setting value of the current load capacity is a preset preset value, which can be any positive number.
  • the set value of the power output current load capacity is The electrical energy to the load (that is, the set value of the current load capability may be a preset value obtained under the pre-set electrical energy condition provided by the power supply to the load, for example, may be any positive number.
  • the power supply supplies power to the load through the USB cable.
  • the set value of the current load capability obtained may be 3A or 5A, and the embodiment of the present invention does not limit the value of the set value of the current load capability.
  • the actual voltage value of the input port is detected.
  • the initial load current value is adjusted until the actual voltage value of the input port corresponding to the adjusted load current value is not less than The preset voltage value.
  • the load current value in the embodiment of the present invention may also be used as the current load capability.
  • the actual voltage value of the input port can be detected after the power source supplies power to the load through the USB connection line to obtain the initial load current value.
  • the preset voltage value may be 4.75V as defined by the USB standard. If the actual voltage value of the input port is less than 4.75V, it can be stated that the set value of the current load capacity at this time exceeds the load capacity of the input port, so the set value of the current load capacity can be adjusted (that is, the initial load current value is adjusted). ).
  • adjusting the initial load current value may be to communicate with the load through a USB Power Delivery (USB PD) communication protocol to reduce the initial load current value.
  • USB PD USB Power Delivery
  • the set value of the adjusted current load capacity can be made smaller than the set value of the current load capacity before the adjustment.
  • the actual voltage value of the input port is re-detected, and the above-mentioned judging process is continued until the actual voltage value of the input port corresponding to the set value of the adjusted current load capacity is not less than The preset voltage value, at which time the set value of the current load capacity is within the load capacity of the input port.
  • the resistance value in the circuit does not change, when the actual voltage value of the detected input port is not less than the preset voltage value, the circuit in which the power source is connected to the load can be effectively avoided, and the circuit device and the power source are caused by excessive current. Bad effects.
  • the adjusted load current value is output as the power supply load current value.
  • the power load current value in the embodiment of the present invention may also be used as the power load capacity.
  • the power load current value may be the most suitable current value when the power supply voltage is supplied to the load through the USB cable, and the obtained load current value does not adversely affect any device and power supply in the circuit. Therefore, the load current value can be continuously adjusted to detect the actual voltage value of the USB cable input port, and the load current value corresponding to the preset voltage value is used as the power source load current value.
  • the actual voltage value of the input port is detected in real time, and when the actual voltage value of the input port is less than the preset voltage value, the set value of the current load capability is adjusted until the actual voltage value of the input port of the adjusted current load capability is adjusted. When the voltage is not less than the preset voltage value, the set value of the adjusted current load capacity is output as the power load capacity.
  • the method provided in this embodiment can accurately inform the load of the voltage and current output capability of the power adapter connected to the input port of the USB cable, and ensure that the power adapter connected to the input port of the USB cable is not damaged by overload, and realizes intelligence. The effect of charging.
  • the method may further include:
  • the reset load is reset, and the reset may be to disconnect the input port and the output port in the USB cable;
  • the method may further include:
  • the set value of the current load capacity at this time exceeds the load capacity of the input port, so in order to avoid overload operation of the input port, the USB cable can be disconnected in time.
  • the connection between the input port and the output port is not limited
  • the input current output capability of the input port output adjustment is required.
  • the valued power is passed to the output port, so the connection between the input port and the output port can be restored. That is, after adjusting the initial load current value, the connection between the input port and the output port in the USB cable can be restored, so that the power supply supplies power to the load to verify whether the adjusted load current value can be used as the power load current value.
  • the input port is at least one.
  • the actual voltage value of the input port may be an actual voltage value of an input port connected to the power source
  • the preset voltage value may be a voltage preset value corresponding to the power source connected to one input port
  • the actual voltage value of the input port may be the sum of actual voltage values of the at least two input ports, and the preset voltage value may be corresponding to at least two power sources. The sum of the voltage presets.
  • the default voltage value of the power source in the embodiment of the present invention may also be used as a voltage preset value corresponding to the power source.
  • the preset voltage value when an input port is connected to the power source, the preset voltage value may be an initial phase, a default voltage value at which the power source supplies power to the load, or a voltage value requested by the load obtained by the USB PD protocol communication. For example, if the default voltage value of the power supply is 5V, the preset voltage value can be the default voltage value of the power supply of 5V. However, when the actual voltage value of the detected input port is less than the preset voltage value, the initial load current is adjusted. Therefore, the preset voltage value may be a voltage value requested by the load after the control circuit and the load communicate through the USB PD protocol, for example, 9V.
  • the actual voltage value of the input port may be the sum of the actual voltage values of all input ports connected to the power source. Therefore, if you do not want to change the set value of the current load capacity (initial load current value), you can increase the input port so that the actual voltage value of each input port is less than the preset voltage value. Since a plurality of power sources collectively supply power to the load, the plurality of input ports connected to the power source are divided, so that the set value of the current load capacity can be adjusted, and the actual voltage value of the input port of the USB cable can be increased, and the input port can be increased. Load capacity.
  • the output port is at least one.
  • the set value of the current load capability can be sent to the output port connected to the load
  • the set value of the current load capability can be sent to at least two output ports, and then the sub-sets of the current load capacity corresponding to the at least two output ports The sum of the settings is equal to the set value of the current load capacity.
  • the load connected to one output port is supplied with power to obtain an initial load current value; when at least two output ports are connected to at least two loads one by one, at least two The at least two loads connected to the output ports are powered to obtain at least two sub-initial load current values, wherein the initial load current value is a sum of at least two sub-initial load current values.
  • the sum of the sub-set values of the current load capacities corresponding to the plurality of output ports may be equal to the set value of the current load capability. That is, since one input port of the USB cable corresponds to a plurality of output ports, the plurality of output ports connected to the load are divided, so that the power source can simultaneously supply power to the plurality of loads, thereby saving charging time.
  • FIG. 2 is a schematic diagram of an internal structure of a USB type converter according to an embodiment.
  • the present embodiment is applicable to a situation in which a USB interface type needs to be converted.
  • the specific structure of the USB type converter may include: an input port 310 and an output port. 320.
  • Input port 310 set to be connected to a power source
  • Output port 320 set to be connected to the load
  • the input port 310 and the output port 320 are connected by a power line (VBUS) and a ground line (Ground, GND);
  • the power load capacity evaluation unit 330 is configured to detect an actual voltage value of the input port when the power source supplies power to the load through the USB cable to obtain an initial load current value; and adjust when the actual voltage value of the input port is less than the preset voltage value The initial load current value is output to the adjusted load current value as the power supply load current value until the actual voltage value of the input port corresponding to the adjusted load current value is not less than the preset voltage value.
  • the USB type converter provided in this embodiment can accurately inform the output port of the output capability of the USB cable input port, ensuring that the input port is not damaged by overload, and the effect of intelligent charging is realized.
  • the USB type converter enables intelligent conversion of different types of USB interfaces, allowing different types of adapters to be utilized to a greater extent.
  • FIG. 3 is a schematic diagram of an internal structure of a USB type converter according to an embodiment.
  • the power load capability evaluation unit 330 may further include: an input port 310, an output port 320, a power load capability evaluation unit 330, and a control circuit. 331.
  • control circuit 331 may include a set value transmitting port 335, a voltage collecting port 336, and a comparing circuit 337.
  • the set value transmit port 335 is coupled to the output port 320 and can be configured to transmit a set value of the current load capability to the output port 320 (ie, can be set to obtain an initial load current value).
  • the voltage collecting port 336 is connected to the voltage detecting circuit 333 as the first input terminal A of the control circuit 331, and can be set to collect the actual voltage value of the input port 310 under the set value of the current load capability by the voltage detecting circuit 333.
  • the comparison circuit 337 is connected to the voltage collection port 336, and can be configured to receive the actual voltage value sent by the voltage collection port 336 with respect to the input port 310, and compare the actual voltage value of the input port 310 with the preset voltage value stored by the control circuit 331.
  • the control signal is output by the enable output C of the control circuit 331.
  • the preset voltage value stored in the control circuit 331 may be stored in the comparison circuit 337 or may be stored in a separate memory chip (the memory chip is not shown in FIG. 3), which is not limited in this embodiment.
  • the control circuit 331 when the actual voltage value of the input port 310 is less than the preset voltage value, it indicates that the set value of the current load capability at this time exceeds the load capacity of the input port 310, and the control circuit 331 can be enabled by the output.
  • the terminal C outputs the first control signal and communicates with the load terminal through the USB PD protocol to adjust the set value of the current load capability.
  • the actual voltage value of the input port 310 under the adjusted current load capacity setting value is re-acquired, and the comparison circuit 337 continues the above comparison process until the adjusted current load capacity setting value corresponds to the actual voltage of the input port 310.
  • the value is not less than the preset voltage value.
  • the control circuit 331 may output the second control signal by the enable output terminal C, and output the output of the output port 320 after the adjustment.
  • the set value of the current load capacity as the power load capacity.
  • the switch circuit 332 is connected to the power line VBUS, and the enable output C of the control circuit 331 is connected to the enable input terminal D of the switch circuit 332.
  • the voltage detecting circuit 333 is connected between the power line VBUS and the ground, and is connected to the voltage collecting port 336 of the control circuit 331, and can be set to detect the actual voltage value of the input port 310, and the actual input port 310 is The voltage value is sent to the voltage acquisition port 336 of the control circuit 331.
  • the switch circuit 332 is at On state.
  • the set value transmission port 335 of the control circuit 331 can transmit a load current to the output port 320 to detect a set value of the current load capability, while the voltage detecting circuit 333 can detect the actual voltage value of the input port 310.
  • the set value transmission port 335 of the control circuit 331 receives the signal detected by the voltage detecting circuit 333, compares it with the preset voltage value stored in the control circuit 331 to form a control signal, and outputs it by the enable output terminal C of the control circuit 331.
  • the control circuit 331 may output the first control signal by the enable output terminal C, and the first control signal may cause the switch circuit 332 to be in an off state, that is, the load to be accessed. Reset.
  • the reset may be to disconnect the input port 310 and the output port 320 in the USB cable.
  • the control circuit 331 may output the second control signal from the enable output terminal C. Wherein, the second control signal may cause the switch circuit 332 to be in an on state to restore the connection between the input port 310 and the output port 320.
  • the voltage detection circuit detects the actual voltage value of the input port, and the control circuit compares the actual voltage value of the input port with the preset voltage value to form a control signal to control the on and off of the switch circuit, so that the embodiment
  • the USB type converter can provide power to the output port (ie, power the load) without damaging the input port, enabling smart charging.
  • FIG. 4 is a schematic diagram of an internal structure of a USB type converter according to an embodiment.
  • the power load capacity evaluation unit 330 may further include: an input port 310, an output port 320, a power load capacity evaluation unit 330, a control circuit 331, a switch circuit 332, a voltage detection circuit 333, a set value transmission port 335, and a voltage.
  • FIG. 4 shows a schematic diagram of a switching circuit 332 and internal components of the voltage detecting circuit 333.
  • FIG. 4 may further include a current detecting circuit 334 and a second input terminal B of the control circuit 331.
  • the voltage detecting circuit 333 may include a first resistor R 1 and a second resistor R 2 ; the switching circuit 332 may include a P-type MOS transistor; and the current detecting circuit 334 may include a third resistor R 3 .
  • the first resistor R 1 may be connected in series with the second resistor R 2 , and one end of the series connection may be connected to the power line VBUS and the other end may be connected to the ground.
  • the voltage acquisition port 336 can be connected between the first resistor R 1 and the second resistor R 2 .
  • the actual voltage output by the input port 310 can be loaded at both ends of the voltage detecting circuit 333, and the first resistor R 1 and the second resistor R 2 can divide the actual voltage value of the input port 310, and the control circuit
  • the function of the control circuit 331 can be implemented using a control chip (not shown in FIG. 4).
  • the control chip may be disposed in the control circuit 331, for example, may be connected to at least one of the voltage detecting circuit 336, the comparison circuit 337, and the set value transmitting port 335. 4, since the first resistor R 1 and a second resistor R 2 to the input port 310 of the actual voltage value of the partial pressure, causing the input voltage to the control chip may be a voltage value of the second resistor 2 R.
  • the switch circuit 332 may illustratively be a P-type MOS transistor.
  • the P-type MOS transistor divides the power supply line VBUS into two parts, the source of the P-type MOS tube can be connected to the input port 310 through a part of the power supply line VBUS, and the drain thereof can be connected to the output port through another part of the power supply line VBUS 320, its gate can be connected to the enable output C of the control circuit 331.
  • the first control signal outputted by the enable output terminal C of the control circuit 331 is at a high level to make the P-type MOS transistor in an off state;
  • the second control signal outputted by the enable output terminal C of the control circuit 331 is at a low level, so that the P-type MOS transistor is in an on state.
  • the switch circuit 332 can also be an N-type MOS transistor. Then, the corresponding first control signal can be a low level, and the second control signal can be a high level.
  • the switch circuit 332 can also be a device such as a triode, a relay, or a thyristor that can implement the function of the switch circuit 332.
  • the switch circuit 332 can be controlled to be turned on or off by adjusting the high level or the low level of the control signal.
  • control circuit 331 may further include a second input terminal B;
  • the power load capability evaluation unit 330 may further include: a current detecting circuit 334.
  • the current detection circuit 334 can be configured to detect the actual value of the current load capability of the output port 320 and send it to the control circuit 331 to cause the comparison circuit 337 in the control circuit 331 to determine whether the actual value of the current load capability of the output port 320 reaches the current load.
  • the set value of the capability and when the actual value of the current load capability of the output port 320 reaches the set value of the current load capability, the voltage detecting circuit 333 detects the actual voltage value of the input port 310.
  • the control signal outputted by the control circuit 331 may be the first control signal to turn off the switch circuit 332; when the actual value of the current load capability of the output port 320 detected by the current detecting circuit 334 reaches the set value of the current load capability The load capacity provided by the input port 310 satisfies the load capacity required by the output port 320.
  • the control signal outputted by the control circuit 331 can be the second control signal, the switch circuit 332 is turned on, and the output port 320 receives the actual input port 310.
  • Voltage value That is, when the initial load current value of the output port 320 detected by the current detecting circuit 334 is greater than the current value specified by the load, the power supply cannot be normally supplied. Therefore, the control circuit 331 can output a first control signal to control the switching circuit 332 to be turned off to adjust the initial load current value. The initial load current value is adjusted, and the control circuit 331 can output a second control signal to control the switch circuit 332 to be turned on.
  • the power source can normally supply power to the load and detect the actual voltage value of the input port 310.
  • the current detecting circuit 334 can be connected to the power line VBUS or the ground line GND, so that the current detecting circuit 334 and the load form a series branch, and the second input terminal B can be connected between the current detecting circuit 334 and the output port 320, which can make The current detected by the current detecting circuit 334 is output to the control circuit 331 to cause the comparison circuit 337 to compare the received load current. .
  • the current passing through the current detecting circuit 334 is equal to the current passing through the load.
  • the current detection circuit 334 may include a third resistor R 3, R 3 may be a third resistor connected in series to the power source line VBUS or ground the GND, a second control circuit 331 may be connected to the input terminal B of the third resistor R 3 and between the output port 320.
  • the resistance of the third resistor R 3 may be set to a constant value and connected in series to the ground line GND.
  • the current detection circuit 334 in FIG. 4 is merely exemplary shows a third resistor R 3.
  • the current detecting circuit 334 can be R 3 or other electronic devices.
  • control line CC1 and the control line CC2 of FIG. 4 may be set to connect the set value transmission port 335 and the output port 320.
  • the current detecting circuit is used to detect the initial load current value of the output port, and when the initial load current does not satisfy the condition, the power supply can normally supply power to the load.
  • FIG. 5 is a schematic structural diagram of a USB type converter according to an embodiment.
  • the input port 310 can be a USB-A male connector
  • the output port 320 can be a USB-C female.
  • the function of the USB type converter can be to intelligently supply the USB-C female seat while ensuring that the male end of the USB-A is not damaged, and realize the charging of converting the type A USB charger interface into the C type USB interface. And can dynamically evaluate the power supply capability of the Type A USB charger, inform the consumer, and thus make greater use of the Type A USB charger.
  • the set value sending port 335 of the control circuit 331 can be sent to the output port 320 through the first control line CC1 or the second control line CC2 of the USB-C socket.
  • the set value of the current load capacity can be sent to the output port 320 through the first control line CC1 or the second control line CC2 of the USB-C socket.
  • the input port 310 in the foregoing embodiment may be a USB-A male connector, a USB-B male connector, a USB-C male connector, a Lightning interface male connector, a Micro USB female connector, or a Lightning female connector.
  • a USB-A male connector may be a USB-A male connector, a USB-B male connector, a USB-C male connector, a Lightning interface male connector, a Micro USB female connector, or a Lightning female connector.
  • FIG. 6 is a schematic structural diagram of another USB type converter according to an embodiment of the present invention.
  • the input port can be two, including an input port 610 and an input port 611; the output port can be one, including an output port 620.
  • the input port 610 can be a USB-A male connector; the input port 611 can be any one of a Micro USB female socket and a Lightning female socket.
  • the actual voltage value of the input port may be the sum of the actual voltage values detected by the input port 610 and the input port 611, and the pre-stored in the control circuit
  • the voltage value may be the sum of voltage values corresponding to the power sources respectively connected to the input port 610 and the input port 611.
  • the function of the USB type converter of the embodiment may implement the conversion of the load capability between the C-type USB interfaces.
  • the USB type converter provided in this embodiment may be capable of simultaneously supplying power to the USB-C female socket while ensuring that the USB-A male connector and the Micro USB female socket or the Lightning female socket are not damaged.
  • the USB type converter of the embodiment improves the set value of the current load capability, increases the power supply capability to the load, and realizes charging the type A USB.
  • the type interface of the device interface, Micro USB socket and Lightning charger interface is changed to the function of the charger of the C type USB interface.
  • FIG. 7 is a schematic structural diagram of another USB type converter according to an embodiment of the present invention.
  • the input port can be one, including the input port 710; the output port can be two, including the output port 720 and the output port 721.
  • the input port 710 can be a male of the USB-A; the output port 720 and the output port can be a USB-C female.
  • the set value of the detected current load capability may be two USB-C sockets (ie, The sum of the sub-set values of the current load capability corresponding to the output port 720 and the output port 721).
  • the USB type converter provided in this embodiment can realize intelligent power supply to two USB-C sockets while ensuring that the male connector of the USB-A is not damaged, thereby realizing the conversion of the type A USB charger interface to The charger of the C-type USB interface can charge multiple loads at the same time, enhancing the function of the charger.
  • FIG. 8 is a schematic structural diagram of another USB type converter according to an embodiment of the present invention.
  • the input port 810 can be a USB-A male connector
  • the input port 821 can be a Micro USB female socket, which are respectively connected to the two power supplies one-to-one.
  • the output port 820 and the output port 821 can be USB-C female sockets, and are respectively connected to the load one-to-one.
  • the sum of the actual voltage value of the male of the USB-A and the actual voltage of the Micro USB female is the actual voltage value of the input port
  • the preset voltage value stored in the control circuit is the two input ports.
  • the sum of the sub-set values of the current load capacities corresponding to the two USB-C female seats is equal to the set value of the current load capacity.
  • the actual voltage value of the input port may be the sum of the actual voltage values detected by the input port 810 and the input port 811
  • the preset voltage value stored in the control circuit may be a power source connected to the input port 810 and the input port 811, respectively.
  • the sum of the corresponding voltage values; the set value of the detected current load capacity may be the sum of the sub-set values of the current load capability corresponding to the output port 820 and the output port 821.
  • the USB type converter provided in this embodiment may be capable of intelligently supplying power to a plurality of USB-C sockets while ensuring that the USB-A male and the Micro USB socket are not damaged, thereby increasing the power supply to the load. ability.
  • the USB type converter in this embodiment can also charge multiple loads at the same time, and realizes a charger in which the A-type USB charger interface and the Micro USB female charger interface are converted into multiple C-type USB interfaces.
  • the networking device of the shared device provided by the embodiment of the present invention, by setting an intermediate device between the target shared device and the target service terminal, so that when there is a communication failure in the communication connection between the target shared device and the target service terminal, the target shared device
  • the intermediate device can communicate with the target service terminal, which improves the information transmission success rate between the shared device and the service terminal, improves the user experience, and avoids waste of shared device resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Sources (AREA)

Abstract

公开了一种电源负载电流评估方法和USB类型转换器。该电源负载电流评估方法包括:在USB连接线的输入端口与电源连接以及所述USB连接线的输出端口与负载连接之后,所述电源通过所述USB连接线向所述负载供电,以获得初始负载电流值;检测所述输入端口的实际电压值,当所述输入端口的实际电压值小于预设电压值时,调整所述初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于所述预设电压值时,输出所述调整后的负载电流值,以作为电源负载电流值。

Description

电源负载电流评估方法和USB类型转换器 技术领域
本公开涉及充电和USB类型转换的领域,尤其涉及一种电源负载电流评估方法和USB类型转换器。
背景技术
随着越来越多的智能终端支持基于C型通用串行总线(Universal Serial Bus,USB)接口的智能供电方式,传统类型USB接口充电器将逐渐被淘汰,这将大量浪费社会存量资源。
为了能够将不同类型的USB接口转换成C型USB接口,一种方式是做一个接口形式转换,能够直接实现不同类型USB接口的转换。但是,由于这种接口形式的转换无法准确的把电源的输出能力告知用电器,因此不能实现智能充电,甚至损坏USB接口。
发明内容
本发明实施例提供了一种电源负载电流评估方法和USB类型转换器,以实现实时监测评估输入端口输出的电能的能力,在不破坏输入端口所连接的适配器的情况下为输出端口提供电能,作为电源给负载供电。
本发明实施例提供了一种电源负载电流评估方法,应用于USB连接线上,该电源负载电流评估方法包括:
在USB连接线的输入端口与电源连接以及所述USB连接线的输出端口与负载连接之后,所述电源通过所述USB连接线向所述负载供电,以获得初始负载电流值;
检测所述输入端口的实际电压值,当所述输入端口的实际电压值小于预设电压值时,调整所述初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于所述预设电压值时,输出所述调整后的负载电流值,以作为电源负载电流值。
可选的,在每次调整所述初始负载电流值之前,还包括:
断开所述USB连接线中所述输入端口和所述输出端口之间的连接;
在每次获得调整后的负载电流值所对应的输入端口的实际电压值之前,还包括:
恢复所述USB连接线中所述输入端口和所述输出端口之间的连接。
可选的,所述输入端口为至少一个;
当一个输入端口与电源连接时,所述输入端口的实际电压值为所述一个输入端口的实际电压值,所述预设电压值为与所述一个输入端口连接的电源所对应的电压值;
当至少两个输入端口与至少两个电源一一对应连接时,所述输入端口的实际电压值为所述至少两个输入端口的实际电压值之和,所述预设电压值为所述至少两个电源所对应的电压值之和。
可选的,所述输出端口为至少一个;
当一个输出端口与负载连接时,则向所述一个输出端口连接的负载供电,以获得初始负载电流值;
当至少两个输出端口与至少两个负载一一对应连接时,则向所述至少两个输出端口连接的至少两个负载供电,以获得至少两个子初始负载电流值,其中,所述初始负载电流值为至少两个子初始负载电流值之和。
本发明实施例还提供一种USB类型转换器,该USB类型转换器包括:输入端口、输出端口和电源负载能力评估单元;
所述输入端口,设置为与电源连接;
所述输出端口,设置为与负载连接;
电源负载能力评估单元,设置为当所述电源通过所述USB连接线向所述负载供电,以获得初始负载电流值时,检测所述输入端口的实际电压值;当所述输入端口的实际电压值小于预设电压值时,调整所述初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于所述预设电压值时,输出所述调整后的负载电流值,以作为电源负载电流值。
可选的,所述电源负载能力评估单元包括:控制电路、开关电路和电压检测电路。
所述控制电路包括设定值发送端口、电压采集端口、使能输出端和比较电路;所述设定值发送端口与所述输出端口连接,设置为获得初始负载电流值;所述电压采集端口作为所述控制电路的第一输入端,与所述电压检测电路连接, 设置为采集所述输入端口的实际电压值;所述比较电路与所述电压采集端口连接,设置为接收所述输入端口的实际电压值,并将所述输入端口的实际电压值与所述控制电路内存储的预设电压值进行比较,以形成控制信号,并由所述控制电路的使能输出端输出;
当所述输入端口的实际电压值小于预设电压值时,所述控制电路的使能输出端输出第一控制信号,以调整所述初始负载电流值,并获得调整后的负载电流值;当所述输入端口的实际电压值不小于预设电压值时,所述控制电路的使能输出端输出第二控制信号;
所述开关电路,连接于所述电源线上,所述控制电路的使能输出端与所述开关电路的使能输入端连接;
所述电压检测电路,连接于所述电源线和地线之间,并与所述控制电路的电压采集端口连接,设置为检测所述输入端口的实际电压值,并将所述输入端口的实际电压值发送至所述控制电路的电压采集端口。
可选的,所述电压检测电路包括第一电阻和第二电阻,其中,所述电压检测电路包括第一电阻和第二电阻,其中,所述第一电阻和所述第二电阻串联,串联后的一端连接至所述电源线,另一端连接至所述地线,所述电压采集端口连接于所述第一电阻和所述第二电阻之间。
可选的,所述控制电路还包括第二输入端;
所述电源负载能力评估单元还包括:
电流检测电路,设置为检测所述输出端口的实际负载电流值,并发送至所述控制电路的第二输入端,以使所述控制电路判断所述实际负载电流值是否达到初始负载电流值;当所述实际负载电流值达到所述初始负载电流值时,所述电压检测电路检测所述输入端口的实际电压值;
其中,所述电流检测电路连接于所述电源线或地线上,以使所述电流检测电路和所述负载构成串联支路,所述控制电路的第二输入端连接于所述电流检测电路和所述输出端口之间。
可选的,所述输入端口为USB-A的公头、USB-B的公头、USB-C的公头、Lightning接口的公头、Micro USB母座或者Lightning母座的一种或几种。
可选的,所述输出端口为USB-C母座;所述控制电路的设定值发送端口通过USB-C母座的第一控制线或者第二控制线输出负载电流。
本发明实施例通过实时监测评估输入端口输出的实际电压值,当输入端口的实际电压值小于预设电压值时,调整电流负载电流的初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于所述预设电压值时,输出所述调整后的负载电流值,以作为电源负载电流值,保证了输入端口不因过载而损坏,实现了智能充电的效果。USB类型转换器实现了不同类型的USB接口的智能转换,使得不同类型的适配器可以更大限度的得到利用。
附图说明
图1是一实施例提供的一种电源负载电流评估方法的流程图。
图2是一实施例提供的一种USB类型转换器的内部结构示意图。
图3是另一实施例提供的一种USB类型转换器的内部结构示意图。
图4是又一实施例提供的一种USB类型转换器的内部结构示意图。
图5是一实施例提供的一种USB类型转换器的结构示意图。
图6是另一实施例提供的一种USB类型转换器的结构示意图。
图7是又一实施例提供的另一种USB类型转换器的结构示意图。
图8是又一实施例提供的另一种USB类型转换器的结构示意图。
具体实施方式
图1是一实施例提供的一种电源负载电流评估方法的流程图,本实施例用于USB连接线上,可适用于需要转换USB接口类型的情况,该方法可以由USB类型转换器来执行,具体包括如下步骤:
在S110中,在USB连接线的输入端口与电源连接以及USB连接线的输出端口与负载连接之后,电源通过USB连接线向负载供电,以获得初始负载电流值。
可选的,本发明实施例中的初始负载电流值也可作为电流负载能力的设定值。
可选的,输入端口与电源连接,输出端口与负载连接,形成电源和负载之间的电路(也即,USB连接线的输入端口可与电源连接,USB连接线的输出端口可与负载连接,形成电源和负载之间的电路)。电流负载能力的设定值为预先设定的预设值,可以为任意正数,当USB连接线的输入端口和输出端口分别与电源和负载连接后,电源输出电流负载能力的设定值的电能到负载(也即,电流负 载能力的设定值可以是电源向负载提供的预先设定的电能条件下获得的预设值,例如可以为任意正数。当USB连接线的输入端口与电源连接以及USB连接线的输出端口与负载连接之后,电源通过USB连接线向负载供电)。例如可以是,当电源通过USB连接线向负载供电时,获得的电流负载能力的设定值可以是3A,也可以是5A,本发明实施例不对电流负载能力的设定值的数值进行限定。
在S120中,检测输入端口的实际电压值,当输入端口的实际电压值小于预设电压值时,调整初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于预设电压值。
可选的,本发明实施例中的负载电流值也可作为电流负载能力。
在一实施例中,在电源通过USB连接线向负载供电,以获得初始负载电流值之后,可以检测输入端口的实际电压值。当输入端口的实际电压值小于预设电压值时,例如预设电压值可以是USB标准定义的4.75V。若输入端口的实际电压值小于4.75V,可以说明在此时的电流负载能力的设定值超出了输入端口的负载能力,因此可以调整电流负载能力的设定值(也即调整初始负载电流值)。可选的,调整初始负载电流值可以是通过功率传输协议(USB Power Delivery,USB PD)通讯协议与负载进行通信,从而降低初始负载电流值。为了提高输入端口的实际电压值,根据输入功率与输出功率相等的理论依据,可以使得调整后的电流负载能力的设定值小于调整前的电流负载能力的设定值。在调整后的电流负载能力的设定值的条件下,重新检测输入端口的实际电压值,继续上述判断过程,直至调整后的电流负载能力的设定值对应的输入端口的实际电压值不小于预设电压值,此时电流负载能力的设定值在输入端口的负载能力范围内。也即,由于电路中的阻值不变,当检测的输入端口的实际电压值不小于预设电压值时,可以有效避免电源与负载相连的电路中,由于电流过大造成对电路器件以及电源的不良影响。
在S130中,输出调整后的负载电流值,以作为电源负载电流值。
可选的,本发明实施例中的电源负载电流值也可作为电源负载能力。
其中,电源负载电流值可以是当电源通过USB连接线向负载供电时,获得的负载电流值不会对电路中任何器件以及电源造成不良影响的最适合电流值。因此,可通过不断调整负载电流值,以检测USB连接线输入端口的实际电压值,将满足预设电压值所对应的负载电流值作为电源负载电流值。
本实施例通过实时检测输入端口的实际电压值,当输入端口的实际电压值小于预设电压值时,调整电流负载能力的设定值,直至调整后的电流负载能力的输入端口的实际电压值不小于预设电压值时,输出调整后的电流负载能力的设定值,作为电源负载能力。本实施例提供的方法可以准确的把USB连接线输入端口所连接的电源适配器的电压和电流输出能力告知负载,保证了USB连接线输入端口所连接的电源适配器不因过载而损坏,实现了智能充电的效果。
可选的,每次调整电流负载能力的设定值之前,还可以包括:
对接入的负载进行复位,复位可以是断开USB连接线中输入端口和输出端口之间的连接;
对应地,每次获得调整后的电流负载能力的设定值对应的输入端口的实际电压值之前,还可以包括:
恢复USB连接线中的输入端口和输出端口之间的连接。
当输入端口的实际电压值小于预设电压值时,此时的电流负载能力的设定值超出了输入端口的负载能力,因此为了避免输入端口的超负荷运行,可以及时的断开USB连接线中的输入端口和输出端口之间的连接。
在一实施例中,当调整电流负载能力的设定值之后,为了检测调整后的电流负载能力的设定值对应的输入端口的实际电压值,需要输入端口输出调整后的电流负载能力的设定值的电能到输出端口,因此可以恢复输入端口和输出端口之间的连接。也即,在调整初始负载电流值之后,可以恢复USB连接线中的输入端口和输出端口之间的连接,使得电源向负载供电,以验证调整后的负载电流值是否可以作为电源负载电流值。
可选的,输入端口为至少一个。
当有一个输入端口与电源连接时,输入端口的实际电压值可以为与电源连接的一个输入端口的实际电压值,预设电压值可以为与一个输入端口连接的电源对应的电压预设值;
当有至少两个输入端口与至少两个电源一一对应连接时,输入端口的实际电压值可以为至少两个输入端口的实际电压值之和,预设电压值可以为至少两个电源对应的电压预设值之和。
可选的,本发明实施例中电源的默认电压值也可作为电源对应的电压预设值。
在一实施例中,当一个输入端口与电源连接时,预设电压值可以为初始阶段,电源向负载供电的默认电压值,或者是通过USB PD协议通讯而获得的负载所请求的电压值。例如,若电源的默认电压值为5V,预设电压值则可以是电源的默认电压值5V。但是当检测的输入端口的实际电压值小于预设电压值时,调整初始负载电流,因此,预设电压值则可以是控制电路与负载通过USB PD协议通信后,负载所请求的电压值,例如9V。
在一实施例中,当USB连接线采用多个输入端口时,输入端口的实际电压值可以为所有与电源连接的输入端口的实际电压值之和。因此,若不想改变电流负载能力的设定值(初始负载电流值),则可以通过增加输入端口,使得每个输入端口的实际电压值小于预设电压值。由于多个电源共同为负载供电,与电源相连接的多个输入端口分压,因此可以实现不调整电流负载能力的设定值,也能够增加USB连接线输入端口的实际电压值,提高输入端口的负载能力。
可选的,输出端口为至少一个。
当有一个输出端口与负载连接时,可以将电流负载能力的设定值发送至与负载连接的输出端口;
当有至少两个输出端口与至少两个负载一一对应连接时,可以将电流负载能力的设定值发送至至少两个输出端口,那么,至少两个输出端口对应的电流负载能力的子设定值之和等于电流负载能力的设定值。
也即,当一个输出端口与负载连接时,则向一个输出端口连接的负载供电,以获得初始负载电流值;当至少两个输出端口与至少两个负载一一对应连接时,则向至少两个输出端口连接的至少两个负载供电,以获得至少两个子初始负载电流值,其中,初始负载电流值为至少两个子初始负载电流值之和。
在一实施例中,当有多个输出端口与负载一一对应连接时,多个输出端口对应的电流负载能力的子设定值之和可以等于电流负载能力的设定值。也即,由于USB连接线的一个输入端口对应于多个输出端口,使得与负载相连接的多个输出端口分压,因此电源可以同时对多个负载进行供电,节约充电时间。
图2是一实施例提供的一种USB类型转换器的内部结构示意图,本实施例可适用于需要转换USB接口类型的情况,该USB类型转换器的具体结构可以包括:输入端口310、输出端口320、电源负载能力评估单元330
输入端口310,设置为与电源连接;
输出端口320,设置为与负载连接;
输入端口310和输出端口320之间通过电源线(Voltage Bus,VBUS)和地线(Ground,GND)连接;
电源负载能力评估单元330,设置为当电源通过USB连接线向负载供电,以获得初始负载电流值时,检测输入端口的实际电压值;当输入端口的实际电压值小于预设电压值时,调整初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于预设电压值时,输出调整后的负载电流值,以作为电源负载电流值。
本实施例所提供的USB类型转换器可准确的将USB连接线输入端口的输出能力告知输出端口,保证了输入端口不因过载而损坏,实现了智能充电的效果。USB类型转换器实现了不同类型的USB接口的智能转换,使得不同类型的适配器可以更大限度的得到利用。
图3为一实施例提供的一种USB类型转换器的内部结构示意图,可选的,电源负载能力评估单元330还可以包括:输入端口310、输出端口320、电源负载能力评估单元330、控制电路331、开关电路332、电压检测电路333、设定值发送端口335、电压采集端口336、比较电路337、第一输入端A、使能输出端C和使能输入端D。
可选的,控制电路331可以包括设定值发送端口335、电压采集端口336和比较电路337。设定值发送端口335与输出端口320连接,可以设置为向输出端口320发送电流负载能力的设定值(也即可以设置为获得初始负载电流值)。电压采集端口336作为控制电路331的第一输入端A,与电压检测电路333连接,可以设置为通过电压检测电路333采集电流负载能力的设定值下的输入端口310的实际电压值。比较电路337与电压采集端口336连接,可以设置为接收电压采集端口336发送的关于输入端口310的实际电压值,将输入端口310的实际电压值和控制电路331存储的预设电压值进行比较形成控制信号,并由控制电路331的使能输出端C输出。其中,控制电路331存储的预设电压值可以存储于比较电路337中,也可以存储于单独的存储芯片(图3未示出存储芯片)中,本实施例不对其进行限定。
在一实施例中,当输入端口310的实际电压值小于预设电压值时,说明在此时的电流负载能力的设定值超出了输入端口310的负载能力,控制电路331 可以由使能输出端C输出第一控制信号,并与负载端通过USB PD协议进行通信协商,以调整电流负载能力的设定值。重新采集在调整后的电流负载能力的设定值下的输入端口310的实际电压值,比较电路337继续上述比较过程,直至调整后的电流负载能力的设定值对应的输入端口310的实际电压值不小于预设电压值。当调整后的电流负载能力的设定值对应的输入端口310的实际电压值不小于预设电压值时,控制电路331可以由使能输出端C输出第二控制信号,输出端口320输出调整后的电流负载能力的设定值,作为电源负载能力。
可选的,开关电路332连接于电源线VBUS上,控制电路331的使能输出端C与开关电路332的使能输入端D连接。
可选的,电压检测电路333连接于电源线VBUS和地线之间,并与控制电路331的电压采集端口336连接,可以设置为检测输入端口310的实际电压值,并将输入端口310的实际电压值发送至控制电路331的电压采集端口336。
在一实施例中,输入端口310和输出端口320分别与电源和负载连接后(也即,USB连接线的输入端口与电源连接以及USB连接线的输出端口与负载连接之后),开关电路332处于导通状态。控制电路331的设定值发送端口335可以向输出端口320传输负载电流,以检测电流负载能力的设定值,同时电压检测电路333可以检测输入端口310的实际电压值。控制电路331的设定值发送端口335接收电压检测电路333检测到的信号,与控制电路331内存储的预设电压值进行比较形成控制信号,并由控制电路331的使能输出端C输出。当输入端口310的实际电压值小于预设电压值时,控制电路331可以由使能输出端C输出第一控制信号,第一控制信号可使得开关电路332处于截止状态,即对接入的负载进行复位。其中,复位可以为断开USB连接线中输入端口310和输出端口320之间的连接。在调整电流负载能力的设定值之后,可以恢复输入端口310和输出端口320之间的连接,以获取调整后的电流负载能力的设定值,并检测输入端口的实际电压值,重复上述过程。当输入端口310的实际电压值不小于预设电压值时,控制电路331可以由使能输出端C输出第二控制信号。其中,第二控制信号可使得开关电路332处于导通状态,以恢复输入端口310和输出端口320之间的连接。
本实施例通过电压检测电路检测输入端口的实际电压值,控制电路通过将输入端口的实际电压值与预设电压值进行比较,形成控制信号以控制开关电路 的导通与截止,使得本实施例中的USB类型转换器能够在不破坏输入端口的情况下为输出端口提供电能(也即为负载供电),实现智能充电。
图4为一实施例提供的一种USB类型转换器的内部结构示意图。可选的,电源负载能力评估单元330还可以包括:输入端口310、输出端口320、电源负载能力评估单元330、控制电路331、开关电路332、电压检测电路333、设定值发送端口335、电压采集端口336、比较电路337、第二输入端B、使能输出端C。
图4示出了一种开关电路332以及电压检测电路333内部器件的示意图。可选的,图4还可以包括电流检测电路334和控制电路331的第二输入端B。其中,电压检测电路333可以包括第一电阻R 1和第二电阻R 2;开关电路332可以包括P型MOS管;电流检测电路334可以包括第三电阻R 3
可选的,第一电阻R 1可以和第二电阻R 2串联,串联后的一端可以连接至电源线VBUS,另一端可以连接至地线。电压采集端口336可以连接于第一电阻R 1和第二电阻R 2之间。
在一实施例中,输入端口310输出的实际电压可以加载在电压检测电路333的两端,第一电阻R 1和第二电阻R 2可以对输入端口310的实际电压值进行分压,控制电路331可以使用控制芯片(图4中未示出)实现控制电路331的功能。其中,控制芯片可以设置在控制电路331中,例如可以与电压检测电路336、比较电路337和设定值发送端口335中的至少一个相连接。如图4所示,由于第一电阻R 1和第二电阻R 2对输入端口310的实际电压值的分压,导致输入到控制芯片的电压值可以为第二电阻R 2上的电压值。
本实施例对电压检测电路333和控制电路331中内部结构的举例仅仅是一种示例,而不是限定,其他可以达到相同功能的器件也属于本发明实施例的保护范围。
在一实施例中,如图4所示,开关电路332示例性的可以为P型MOS管。其中,P型MOS管将电源线VBUS分成两部分,P型MOS管的源极可通过其中一部分的电源线VBUS连接至输入端口310,其漏极可通过另外一部分的电源线VBUS连接至输出端口320,其栅极可连接至控制电路331的使能输出端C。例如,当输入端口310的实际电压值小于预设电压值时,控制电路331的使能输出端C输出的第一控制信号为高电平,以使P型MOS管处于截止状态;当输入 端口310的实际电压值不小于预设电压值时,控制电路331的使能输出端C输出的第二控制信号为低电平,以使P型MOS管处于导通状态。可选的,开关电路332也可以是N型MOS管,那么,相应的第一控制信号可为低电平,第二控制信号可为高电平。
在一实施例中,开关电路332还可以是三极管、继电器或可控硅等其他可以实现开关电路332功能的器件。可选的,当开关电路332为不同器件时,可以通过调整控制信号的高电平或低电平,以对开关电路332进行导通或截止状态的控制。
在一实施例中,如图4所示,控制电路331还可以包括第二输入端B;
可选的,电源负载能力评估单元330还可以包括:电流检测电路334。
电流检测电路334可以设置为检测输出端口320的电流负载能力的实际值并发送至控制电路331,以使控制电路331中的比较电路337判断输出端口320的电流负载能力的实际值是否达到电流负载能力的设定值,并在输出端口320的电流负载能力的实际值达到电流负载能力的设定值时,电压检测电路333检测输入端口310的实际电压值。
在一实施例中,当电流检测电路334检测到的输出端口320的电流负载能力的实际值小于电流负载能力的设定值时,输入端口310提供的负载能力不能满足输出端口320所需要的负载能力。此时,控制电路331输出的控制信号可以为第一控制信号,使开关电路332截止;当电流检测电路334检测到的输出端口320的电流负载能力的实际值达到电流负载能力的设定值时,输入端口310提供的负载能力满足输出端口320所需要的负载能力,此时控制电路331输出的控制信号可以为第二控制信号,使开关电路332导通,输出端口320接收输入端口310的实际电压值。也即,当电流检测电路334检测到的输出端口320的初始负载电流值大于负载规定的电流值时,电源不能正常供电。因此,控制电路331可以输出第一控制信号,以控制开关电路332截止,调整初始负载电流值。调整初始负载电流值,控制电路331可以输出第二控制信号,以控制开关电路332导通。当电流检测电路334检测到的输出端口320的负载电流值小于负载规定的电流值时,电源能够向负载正常供电,并检测输入端口310的实际电压值。
电流检测电路334可连接于电源线VBUS或地线GND上,可使电流检测电路 334和负载构成串联支路,第二输入端B可连接于电流检测电路334和输出端口320之间,可使得将电流检测电路334检测的电流输出至控制电路331,以使比较电路337对接收的负载电流进行比较。。
由于电流检测电路334和负载构成串联支路,因此经过电流检测电路334的电流和经过负载的电流相等。
继续参考图4,电流检测电路334可以包括第三电阻R 3,第三电阻R 3可串联于电源线VBUS或地线GND上,控制电路331的第二输入端B可连接至第三电阻R 3和输出端口320之间。可选的,如图4所示,第三电阻R 3的阻值可以设定为定值,串联于地线GND上。当第三电阻R 3的阻值确定后,电流检测电路334输出到控制电路331的第二输入端B的信号可由电流值确定。
在一实施例中,图4中的电流检测电路334仅是示例性的示出了第三电阻R 3。可选的,电流检测电路334可以为R 3,也可以为其他电子器件。
在一实施例中,图4中控制线CC1和控制线CC2可设置为连接设定值发送端口335和输出端口320。
在本实施例中,采用电流检测电路检测输出端口的初始负载电流值,当初始负载电流不满足条件时进行调整,使得电源能够正常向负载进行供电。
图5为一实施例提供的一种USB类型转换器的结构示意图。可选的,输入端口310示例性的可为USB-A的公头,输出端口320可为USB-C母座。此时USB类型转换器的功能可以是在保证USB-A的公头不被损坏的情况下对USB-C母座智能供电,实现了把A型USB充电器接口转变为C型USB接口的充电器,并能动态评估A型USB充电器的供电能力,告知用电器,从而更大限度的利用A型USB充电器。
可选的,当输出端口320是USB-C母座时,控制电路331的设定值发送端口335可通过USB-C母座的第一控制线CC1或者第二控制线CC2向输出端口320发送电流负载能力的设定值。
可选的,上述实施例中的输入端口310可以为USB-A的公头、USB-B的公头、USB-C的公头、Lightning接口的公头、Micro USB母座或者Lightning母座的一种或几种。
图6为一发明实施例提供的另一种USB类型转换器的结构示意图。可选的,输入端口可以有多个。如图6所示,输入端口可为两个,包括输入端口610和 输入端口611;输出端口可为一个,包括输出端口620。其中,输入端口610可以是USB-A的公头;输入端口611可以是Micro USB母座和Lightning母座中的任意一个。
在一实施例中,由于输入端口610和输入端口611分别对应于一个电源,因此输入端口的实际电压值可以是输入端口610与输入端口611检测的实际电压值之和,控制电路内存储的预设电压值可以是分别与输入端口610和输入端口611连接的电源所对应的电压值之和。
可选的,当输入端口610和输入端口611为C型USB接口时,本实施例的USB类型转换器的功能可以实现C型USB接口之间的负载能力的转换。
本实施例的提供的USB类型转换器,可以是在保证USB-A的公头以及Micro USB母座或Lightning母座不被损坏的情况下同时对USB-C母座智能供电。另外,在输入端口的实际电压值不小于预设电压值时,本实施例的USB类型转换器提高了电流负载能力的设定值,增加了对负载的供电能力,实现了把A型USB充电器接口、Micro USB母座以及Lightning充电器接口等类型接口转变为C型USB接口的充电器的功能。
图7为一本发明实施例提供的另一种USB类型转换器的结构示意图。可选的,输出端口可以有多个。如图7所示,输入端口可为一个,包括输入端口710;输出端口可为两个,包括输出端口720和输出端口721。其中,输入端口710可以是USB-A的公头;输出端口720与输出端口可以是USB-C母座。
在一实施例中,由于输出端口720和输出端口721分别与负载一一对应连接,因此电源向负载供电时,检测的电流负载能力的设定值可以为两个USB-C母座(也即输出端口720和输出端口721)对应的电流负载能力的子设定值之和。
本实施例提供的USB类型转换器,可以是在保证USB-A的公头不被损坏的情况下,同时对两个USB-C母座智能供电,实现了把A型USB充电器接口转变为C型USB接口的充电器,并可以同时对多个负载进行充电,加强了充电器的功能。
图8为一发明实施例提供的另一种USB类型转换器的结构示意图。可选的,输入端口可以有多个,输出端口可以有多个。如图8所示,输入端口可以有两个,包括输入端口810和输入端口811,输入端口有两个,包括输出端口820 和输出端口821。其中,输入端口810可以为USB-A的公头,输入端口821可以为Micro USB母座,分别与两个电源一一对应连接。其中输出端口820和输出端口821可以为USB-C母座,并分别与负载一一对应连接。
在一实施例中,USB-A的公头的实际电压值和Micro USB母座的实际电压值之和为输入端口的实际电压值,控制电路内存储的预设电压值为与两个输入端口分别连接的两个电源对应的电压值之和。两个USB-C母座对应的电流负载能力的子设定值之和等于电流负载能力的设定值。也即,输入端口的实际电压值可以是输入端口810与输入端口811检测的实际电压值之和,控制电路内存储的预设电压值可以是分别与输入端口810和输入端口811连接的电源所对应的电压值之和;检测的电流负载能力的设定值可以为输出端口820和输出端口821对应的电流负载能力的子设定值之和。
本实施例提供的USB类型转换器,可以是在保证USB-A的公头和Micro USB母座不被损坏的情况下,同时对多个USB-C母座智能供电,增加了对负载的供电能力。另外,本实施例中的USB类型转换器也可以同时对多个负载进行充电,实现了A型USB充电器接口和Micro USB母座充电器接口转变为多个C型USB接口的充电器。
工业实用性
本发明实施例提供的共享设备的组网系统,通过在目标共享设备与目标服务终端之间设置中间设备,使得当目标共享设备与目标服务终端之间的通信连接存在通信故障时,目标共享设备可以通过中间设备与目标服务终端进行通信,提高了共享设备与服务终端之间的信息传递成功率,提升了用户体验,同时避免了共享设备资源的浪费。

Claims (10)

  1. 一种电源负载电流评估方法,应用于通用串行总线USB连接线上,包括:
    在USB连接线的输入端口与电源连接以及所述USB连接线的输出端口与负载连接之后,所述电源通过所述USB连接线向所述负载供电,以获得初始负载电流值;
    检测所述输入端口的实际电压值,当所述输入端口的实际电压值小于预设电压值时,调整所述初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于所述预设电压值时,输出所述调整后的负载电流值,以作为电源负载电流值。
  2. 根据权利要求1所述的电源负载电流评估方法,在每次调整所述初始负载电流值之前,还包括:
    断开所述USB连接线中所述输入端口和所述输出端口之间的连接;
    在每次获得调整后的负载电流值所对应的输入端口的实际电压值之前,还包括:
    恢复所述USB连接线中所述输入端口和所述输出端口之间的连接。
  3. 根据权利要求1-2中任一所述的电源负载电流评估方法,其中,所述输入端口为至少一个;
    当有一个输入端口与电源连接时,所述输入端口的实际电压值为所述一个输入端口的实际电压值,所述预设电压值为所述电源与所述一个输入端口连接的所述电源所对应的默认电压值;
    当有至少两个输入端口与至少两个电源一一对应连接时,所述输入端口的实际电压值为所述至少两个输入端口的实际电压值之和,所述预设电压值为所述至少两个电源所对应的默认电压值之和。
  4. 根据权利要求1-3中任一所述的电源负载电流评估方法,其中,所述输出端口为至少一个;
    当有一个输出端口与负载连接时,则向所述一个输出端口连接的负载供电,以获得初始负载电流值;
    当有至少两个输出端口与至少两个负载一一对应连接时,则向所述至少两个输出端口连接的至少两个负载供电,以获得至少两个子初始负载电流值,其中,所述初始负载电流值为至少两个子初始负载电流值之和。
  5. 一种USB类型转换器,包括:输入端口、输出端口和电源负载能力评估 单元;
    所述输入端口,设置为与电源连接;
    所述输出端口,设置为与负载连接;
    电源负载能力评估单元,设置为当所述电源通过所述USB连接线向所述负载供电,以获得初始负载电流值时,检测所述输入端口的实际电压值;当所述输入端口的实际电压值小于预设电压值时,调整所述初始负载电流值,直至调整后的负载电流值所对应的输入端口的实际电压值不小于所述预设电压值时,输出所述调整后的负载电流值,以作为电源负载电流值。
  6. 根据权利要求5所述的USB类型转换器,其中,所述电源负载能力评估单元包括:控制电路、开关电路和电压检测电路;
    所述控制电路包括设定值发送端口、电压采集端口、使能输出端和比较电路;所述设定值发送端口与所述输出端口连接;所述电压采集端口作为所述控制电路的第一输入端,与所述电压检测电路连接,设置为采集所述输入端口的实际电压值;所述比较电路与所述电压采集端口连接,设置为接收所述输入端口的实际电压值,并将所述输入端口的实际电压值与所述控制电路内存储的预设电压值进行比较,以形成控制信号,并由所述控制电路的使能输出端输出;
    当所述输入端口的实际电压值小于预设电压值时,所述控制电路的使能输出端输出第一控制信号,以调整所述初始负载电流值,并获得调整后的负载电流值;当所述输入端口的实际电压值不小于预设电压值时,所述控制电路的使能输出端输出第二控制信号;
    所述开关电路,连接于所述电源线上,所述控制电路的使能输出端与所述开关电路的使能输入端连接;
    所述电压检测电路,连接于所述电源线和地线之间,并与所述控制电路的电压采集端口连接,设置为检测所述输入端口的实际电压值,并将所述输入端口的实际电压值发送至所述控制电路的电压采集端口。
  7. 根据权利要求6所述的USB类型转换器,其中,所述电压检测电路包括第一电阻和第二电阻,其中,所述第一电阻和所述第二电阻串联,串联后的一端连接至所述电源线,另一端连接至所述地线,所述电压采集端口连接于所述第一电阻和所述第二电阻之间。
  8. 根据权利要求6-7中任一所述的USB类型转换器,其中,所述控制电路 还包括第二输入端;
    所述电源负载能力评估单元还包括:
    电流检测电路,设置为检测所述输出端口的实际负载电流值,并发送至所述控制电路的第二输入端,以使所述控制电路判断所述实际负载电流值是否达到初始负载电流值;当所述实际负载电流值达到所述初始负载电流值时,所述电压检测电路检测所述输入端口的实际电压值;
    其中,所述电流检测电路连接于所述电源线或地线上,以使所述电流检测电路和所述负载构成串联支路,所述控制电路的第二输入端连接于所述电流检测电路和所述输出端口之间。
  9. 根据权利要求5-8中任一所述的USB类型转换器,所述输入端口为USB-A的公头、USB-B的公头、USB-C的公头、Lightning接口的公头、Micro USB母座或者Lightning母座的一种或几种。
  10. 根据权利要求5-9中任一所述的USB类型转换器,所述输出端口为USB-C母座;所述控制电路的设定值发送端口通过USB-C母座的第一控制线或者第二控制线输出负载电流。
PCT/CN2018/071846 2017-10-23 2018-01-09 电源负载电流评估方法和usb类型转换器 WO2019080372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/758,266 US11041889B2 (en) 2017-10-23 2018-01-09 Method for estimating load current of power supply, and USB-type converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710992039.XA CN107623357B (zh) 2017-10-23 2017-10-23 一种电源负载能力评估方法和usb类型转换器
CN201710992039.X 2017-10-23

Publications (1)

Publication Number Publication Date
WO2019080372A1 true WO2019080372A1 (zh) 2019-05-02

Family

ID=61092954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071846 WO2019080372A1 (zh) 2017-10-23 2018-01-09 电源负载电流评估方法和usb类型转换器

Country Status (3)

Country Link
US (1) US11041889B2 (zh)
CN (1) CN107623357B (zh)
WO (1) WO2019080372A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421601A (zh) * 2020-10-20 2021-02-26 安克创新科技股份有限公司 一种用于接口转接设备的电路以及接口转接设备
US11041889B2 (en) * 2017-10-23 2021-06-22 Shenzhen Legendary Technology Co., Ltd Method for estimating load current of power supply, and USB-type converter
CN114706801A (zh) * 2022-06-06 2022-07-05 深圳英集芯科技股份有限公司 Usb输出路径转换电路及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388331A (zh) * 2018-03-06 2018-08-10 合肥联宝信息技术有限公司 I/o端口控制电路及控制方法、电子设备及其控制方法
US20220413580A1 (en) * 2019-11-22 2022-12-29 Hewlett-Packard Development Company, L.P. Power adapters
CN113794253A (zh) * 2020-10-29 2021-12-14 威锋电子股份有限公司 多端口电力供应装置及其操作方法
US11640192B2 (en) * 2021-01-12 2023-05-02 Siliconch Systems Pvt Ltd Method and apparatus for implementing a programmable power supply on a USB-C port supporting power delivery
JP2023552245A (ja) * 2021-06-29 2023-12-14 深▲セン▼市質友精密電子有限公司 lightningレセプタクル付き電源アダプタ、充電装置及びシステム
CN114035100B (zh) * 2021-12-03 2022-12-13 深圳市鼎阳科技股份有限公司 一种用于电子负载的稳态输出控制方法及电子负载
TWI813116B (zh) * 2021-12-29 2023-08-21 瑞昱半導體股份有限公司 電源能力判斷裝置、電子裝置及電源能力判斷方法
CN114815978B (zh) * 2022-04-01 2024-02-23 深圳市倍思科技有限公司 一种扩展坞和提高扩展坞设备兼容性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066666A (zh) * 2013-01-22 2013-04-24 矽力杰半导体技术(杭州)有限公司 一种升压型电池充电管理系统及其控制方法
CN106340910A (zh) * 2015-07-14 2017-01-18 华为终端(东莞)有限公司 一种辅助充电装置
CN106972736A (zh) * 2017-05-26 2017-07-21 深圳市乐得瑞科技有限公司 电源适配设备、控制方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493657A (en) * 1993-06-21 1996-02-20 Apple Computer, Inc. High speed dominant mode bus for differential signals
US6252375B1 (en) * 2000-07-24 2001-06-26 In-System Design, Inc. Power management system and current augmentation and battery charger method and apparatus for a computer peripheral
US7525291B1 (en) * 2003-01-21 2009-04-28 Microsemi Corporation Linearly regulated battery charger
FR2913508B1 (fr) * 2007-03-09 2009-07-24 Archos Sa Dispositif pour alimenter un appareil electronique portable par combinaison de ports d'entree/sortie d'au moins un autre equipement electronique,systeme,procede et application associes.
TWI351802B (en) * 2007-10-19 2011-11-01 Richtek Technology Corp Universal serial bus charger circuit and charging
US20100133908A1 (en) * 2008-11-28 2010-06-03 Lite-On It Corp. Usb device with internal assisting power
US8138731B2 (en) * 2009-03-25 2012-03-20 Silergy Technology Power regulation for large transient loads
TWI554887B (zh) * 2010-12-30 2016-10-21 群邁通訊股份有限公司 電子裝置充電系統及方法
WO2013136751A1 (ja) * 2012-03-16 2013-09-19 キヤノン電子株式会社 計測モジュール、電子機器、電源タップ及び電源ユニット、並びに組込型計測モジュール
US20140101345A1 (en) * 2012-10-08 2014-04-10 Analog Devices, Inc. Universal serial bus (usb) plug-in event detection system and associated method
CN203326671U (zh) * 2013-07-10 2013-12-04 向智勇 一种用于电子烟盒的控制电路
CN203491727U (zh) * 2013-07-11 2014-03-19 向智勇 用于电子烟的usb充电器
US10445281B2 (en) * 2016-04-20 2019-10-15 Active-Semi (BVI) Inc. Load detection apparatus and method for USB systems
FR3051570B1 (fr) * 2016-05-23 2019-11-22 STMicroelectronics (Alps) SAS Dispositif de regulation a faible chute de tension, en particulier capable de supporter des tensions d'alimentation compatibles avec la norme usb type c
US11522379B2 (en) * 2017-02-10 2022-12-06 Samsung Electronics Co., Ltd. Device for supplying power to external device and method therefor
US10958019B2 (en) * 2017-08-29 2021-03-23 Computime Ltd. Smart and robust wall socket with integrated universal serial bus (USB)
CN107623357B (zh) * 2017-10-23 2020-04-10 深圳市乐得瑞科技有限公司 一种电源负载能力评估方法和usb类型转换器
US11283275B2 (en) * 2018-03-07 2022-03-22 Isac Tabib Smart uninterruptible power supply and method
TWI652580B (zh) * 2018-04-13 2019-03-01 緯創資通股份有限公司 集線裝置與其電源供應方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066666A (zh) * 2013-01-22 2013-04-24 矽力杰半导体技术(杭州)有限公司 一种升压型电池充电管理系统及其控制方法
CN106340910A (zh) * 2015-07-14 2017-01-18 华为终端(东莞)有限公司 一种辅助充电装置
CN106972736A (zh) * 2017-05-26 2017-07-21 深圳市乐得瑞科技有限公司 电源适配设备、控制方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11041889B2 (en) * 2017-10-23 2021-06-22 Shenzhen Legendary Technology Co., Ltd Method for estimating load current of power supply, and USB-type converter
CN112421601A (zh) * 2020-10-20 2021-02-26 安克创新科技股份有限公司 一种用于接口转接设备的电路以及接口转接设备
CN114706801A (zh) * 2022-06-06 2022-07-05 深圳英集芯科技股份有限公司 Usb输出路径转换电路及装置

Also Published As

Publication number Publication date
CN107623357A (zh) 2018-01-23
CN107623357B (zh) 2020-04-10
US11041889B2 (en) 2021-06-22
US20200341036A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019080372A1 (zh) 电源负载电流评估方法和usb类型转换器
US10862321B2 (en) Power adaptor, control method and device
US10236701B2 (en) System, mobile device, and charging device
JP6266174B2 (ja) デジタル電力レシーバシステム
CN107231014B (zh) 一种充电电路、终端以及充电系统
US10461556B2 (en) Charger, electronic device, and charging method
US20160336779A1 (en) Charging Method, Alternating Current Adaptor, Charging Management Device and Terminal
CN109150551B (zh) 用于网口的非标准poe供电电路、供电设备及供电方法
US20180097385A1 (en) Hub
TWI495226B (zh) 充電器及電子裝置
CN103888170A (zh) 电力线通讯装置、电力线通讯系统及其监控电力的方法
CN104253456A (zh) 一种充电设备和供电方法、终端设备和充电方法
WO2019242020A1 (zh) 充电装置、移动终端和充电控制方法
CN106292343A (zh) 电子装置供电系统
CN111993942B (zh) 电动汽车的充放电控制设备、方法、装置和充电枪
CN105552973B (zh) 电能传输系统及其供电系统和充电组合
CN103855781B (zh) 充电器及电子装置
CN105098890A (zh) 充电数据线及充电器
CN107942125B (zh) 内置电池式电子产品的用电测试电路及其控制方法
US20210075251A1 (en) Power supplying system, electronic apparatus, and power supplying method
CN210246359U (zh) 一种可以自动调节功率的快充电路
WO2020114028A1 (zh) 插座
CN105490333A (zh) 电池快速充电控制电路、适配器及移动设备
TWI774207B (zh) 通用序列匯流排的充電系統與方法
CN107395175A (zh) 一种mos管过流保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18870628

Country of ref document: EP

Kind code of ref document: A1