WO2019080355A1 - 磁控管灯丝控制电路及磁控管供电电路 - Google Patents

磁控管灯丝控制电路及磁控管供电电路

Info

Publication number
WO2019080355A1
WO2019080355A1 PCT/CN2017/119922 CN2017119922W WO2019080355A1 WO 2019080355 A1 WO2019080355 A1 WO 2019080355A1 CN 2017119922 W CN2017119922 W CN 2017119922W WO 2019080355 A1 WO2019080355 A1 WO 2019080355A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
magnetron
circuit
temperature
control circuit
Prior art date
Application number
PCT/CN2017/119922
Other languages
English (en)
French (fr)
Inventor
覃承勇
黎青海
郑年重
艾军亮
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Publication of WO2019080355A1 publication Critical patent/WO2019080355A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/662Aspects related to the boost transformer of the microwave heating apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/043Methods or circuits intended to extend the life of the magnetron

Definitions

  • the invention relates to the field of home appliance design, in particular to a magnetron filament control circuit, a magnetron power supply circuit and a microwave heating device.
  • a magnetron is an electrical vacuum device used to generate microwave energy. Essentially a diode placed in a constant magnetic field. The electrons in the tube interact with the high-frequency electromagnetic field under the control of a constant magnetic field and a constant electric field perpendicular to each other to convert the energy obtained from the constant electric field into microwave energy.
  • the electrons in the magnetron are generated by the filament (or cathode).
  • the power supply method of the magnetron filament of the existing inverter microwave oven has the following two main methods: one is to provide a basic stable AC voltage, and the continuous maximum power supply is provided during the whole working process. In order to maintain the continuous electronic transition of the magnetron filament; another way is to adjust the output AC voltage by connecting a switching device (relay) in series in the filament current rectifying circuit on the basis of the former method.
  • the size of the filament in order to achieve different operating states of the microwave to provide different effective voltage values of the filament supply voltage.
  • the first method in the prior art is to add an output winding from the high frequency transformer of the inverter microwave oven to provide a substantially stable AC voltage, and then apply the AC voltage to both ends of the magnetron of the magnetron.
  • the filament power supply method is relatively simple and straightforward, but it is the continuous maximum power supply during the whole working process, and the filament is kept at a high temperature state, which will inevitably reduce the service life of the magnetron filament, and the magnetron filament keeps the maximum power. It is also a waste of energy, which makes the overall efficiency of the microwave oven drop.
  • a switching device is connected in series to provide an adjustable power supply voltage in different working states of the microwave oven, although the first method is solved.
  • One way of energy waste problem and improved service life but because the work is in the on-off mode, when the magnetron is disconnected, there is a possibility that the magnetron may not be able to transition, and the work stability is not strong.
  • the present invention provides a magnetron filament control circuit, wherein the circuit comprises:
  • a temperature sensor configured to detect a temperature of the magnetron
  • a switch control circuit configured to control the switch tube to be closed or opened according to a temperature of the magnetron, such that when the temperature of the magnetron is within a predetermined threshold range, a direct current flowing through the alternating current level The filament of the magnetron.
  • the circuit includes: a filter capacitor in parallel with the filament of the magnetron.
  • one end of the filament of the magnetron is connected to the negative pole of the DC input end, and the other end is connected to the anode of the DC input terminal via the switch tube.
  • the inductance is connected between a negative pole of the freewheeling diode and a filament of the magnetron.
  • the invention provides a magnetron power supply circuit, wherein the circuit comprises:
  • a primary circuit a transformer, and a secondary circuit, wherein the primary circuit and the secondary circuit are coupled by the transformer;
  • the transformer includes a filament winding and a high voltage winding, the filament winding having a center tap;
  • the secondary circuit includes a high voltage rectifier circuit, a filament current rectifier circuit, and a filament control circuit, wherein:
  • the input end of the high voltage rectifier circuit is connected to the high voltage winding, and the output end is respectively connected to the anode and the filament of the magnetron;
  • the first diode and the second diode of the filament current rectifying circuit are electrically connected to the filament winding to form a full-wave rectifying circuit of the filament winding output;
  • An input end of the filament control circuit is connected to an output end of the full-wave rectifying circuit and the center tap, and an output terminal is connected to the filament, wherein the filament control circuit is configured to adjust an output according to a temperature of the filament The current of the filament.
  • the filament control circuit comprises:
  • a temperature sensor configured to detect a temperature of the magnetron
  • a switch control circuit configured to control the switch tube to be closed or opened according to a temperature of the magnetron, such that when the temperature of the magnetron is within a predetermined threshold range, a direct current flowing through the alternating current level The filament of the magnetron.
  • the circuit includes a first capacitor that is coupled in parallel with the filament of the magnetron.
  • the circuit includes a second capacitor connected in parallel between the output of the full-wave rectifier circuit and the center tap.
  • one end of the filament of the magnetron is connected to the center tap, and the other end is connected to the output end of the full-wave rectifying circuit via the switch tube.
  • the inductance is connected between a negative pole of the freewheeling diode and a filament of the magnetron.
  • the invention provides a microwave heating apparatus, wherein the apparatus comprises the circuit described above.
  • the temperature sensor and the switch control circuit cooperate to control the current input to the magnetron filament according to the temperature of the magnetron, so as to ensure that the filament can stably transition the electron.
  • FIG. 1 is a schematic diagram of a magnetron filament control circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a magnetron power supply circuit according to an embodiment of the present invention.
  • first, second and the like are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • FIG. 1 is a schematic diagram of a magnetron filament control circuit according to an embodiment of the present invention.
  • the magnetron 10 filament control circuit 31 may include: a switch tube 27 connected in series with the freewheeling diode 25 between the DC DC input terminals; an inductor 24, which is coupled with the magnetron The filament 11 of the tube 10 is connected in series between the two ends of the freewheeling diode 25; the freewheeling diode 25 is turned off when the switching tube 27 is closed; the temperature sensor 29 can be configured to detect the temperature of the magnetron 10; the switch control circuit 28, can be configured to control the switch tube 27 to be closed or opened according to the temperature of the magnetron 10, thereby controlling the on-time of the switch tube 27, so that a direct current of varying current flows through the filament 11 of the magnetron 10 to cause magnetron control The temperature of the tube 10 is maintained within a predetermined range.
  • the switch tube 27 when the switch tube 27 is closed, the current flowing into the filament 11 is slowly increased due to the self-inductance of the inductor 24, thereby preventing the current from damaging the filament 11, and when the switch tube 27 is turned off, the inductor 24 is also the same.
  • the self-inductance can be used to supply power to the filament 11 through the freewheeling diode 25, and the on-time of the switch tube 27 can be controlled by the switch control circuit 28 to control the current supplied to the filament 11 by the circuit, thereby preventing the filament of the magnetron from being kept at all times.
  • the switch control circuit 28 In the high temperature state, and when the temperature of the magnetron is stable, the electric power supplied to the filament is maintained at a relatively low state, which ensures that the filament can stably transition the electrons and reduce the power consumption.
  • DC DC can be obtained by full-wave rectification of the AC AC.
  • the temperature control sensor 31 may not include the temperature sensor 29.
  • the temperature sensor 29 may be a temperature sensor disposed on an electronic control board such as a device, and the switch control circuit 28 may be directly obtained from the electronic control board. Temperature sensor temperature sensor.
  • the filament control circuit 31 and the temperature sensor 29 form a negative feedback filament control, that is, the electric power supplied to the filament 11 is reduced when the temperature of the magnetron 10 rises, and is increased when the temperature of the magnetron 10 is lowered.
  • the electric energy to the filament 11 is such that the magnetron is in an alternating state of current and its temperature is maintained within a certain range.
  • the supply current of the filament 11 is maximum.
  • the filament control circuit 31 passes.
  • the signal fed back by the temperature sensor 29 linearly reduces the output current value of the filament control circuit 31, thereby lowering the temperature of the filament 11 (or the magnetron 10), and the filament control circuit 31 will supply current when the temperature is lowered to a certain threshold range.
  • the DC current alternates in size and height to ensure that the filament 11 can stably transition electrons.
  • the filament control circuit 31 may comprise a filter capacitor 26 in parallel with the filament 11 of the magnetron 10. The current supplied to the filament 11 can be filtered by the filter capacitor 26 to provide a more stable direct current to the filament 11.
  • one end of the filament 11 of the magnetron 10 is connected to the negative pole of the DC input terminal, and the other end is connected to the anode of the DC input terminal via the switch tube 27 (as shown in FIG. 1).
  • one end of the filament 11 of the magnetron 10 is connected to the positive terminal of the DC input terminal, and the other end is connected to the negative terminal of the DC input terminal via the switching transistor 27.
  • the inductor 24 can be connected between the negative pole of the freewheeling diode 25 and the filament 11 of the magnetron 10. In an alternative embodiment, the inductor 24 can be connected between the positive pole of the freewheeling diode 25 and the filament 11 of the magnetron 10.
  • the temperature sensor and the switch control circuit cooperate to control the current input to the magnetron filament according to the temperature of the magnetron, so as to ensure that the filament can stably transition the electron.
  • a magnetron 10 power supply circuit is provided.
  • FIG. 2 is a schematic diagram of a power supply circuit of a magnetron 10 according to an embodiment of the present invention.
  • the present invention provides a power supply circuit for a magnetron 10, which may include: a primary side circuit, a transformer 12, and a secondary side circuit.
  • the primary side circuit and the secondary side circuit are coupled by a transformer 12; wherein the primary side circuit is located In the right side of the transformer 12 in Fig. 2, the secondary circuit is located on the left side of the transformer 12 in Fig. 2.
  • the transformer 12 may include a filament winding 30 and a high voltage winding 13, the filament winding 30 having a center tap; the secondary circuit may include a high voltage rectifying circuit 33, a filament current rectifying circuit 32, and a filament control circuit 31, wherein:
  • the input end of the filament control circuit 31 is connected to the filament current rectifying circuit 32, that is, the output end of the full-wave rectifying circuit and the center tap, and the output terminal is connected to the filament 11, wherein the filament control circuit 31 is configured to adjust the output to the filament 11 according to the temperature of the filament 11. Current.
  • the circuit includes a first capacitor 26 that is in parallel with the filament 11 of the magnetron 10.
  • the current supplied to the filament 11 can be filtered by the first capacitor 26 to provide a more stable direct current to the filament 11.
  • the circuit may further include a second capacitor 23 connected in parallel between the output of the full-wave rectifier circuit and the center tap.
  • the current supplied to the filament control circuit 31 can be filtered by the second capacitor 23 to provide a more stable direct current to the filament control circuit 31.
  • one end of the filament 11 of the magnetron 10 is connected to the center tap, and the other end is connected to the output end of the full-wave rectifying circuit via the switch tube 27.
  • one end of the filament 11 of the magnetron 10 is connected to the output of the full-wave rectifying circuit and the other end is connected to the center tap via the switching tube 27.
  • the inductor 24 can be connected between the negative pole of the freewheeling diode 25 and the filament 11 of the magnetron 10. In an alternative embodiment, the inductor 24 can be connected between the positive pole of the freewheeling diode 25 and the filament 11 of the magnetron 10.
  • the high-frequency alternating current voltage outputted by the filament winding 30 is full-wave rectified by the diodes 21 and 22, and then smoothed to a stable direct current through the filter capacitor 23; the stable direct current passes through the switch tube 27,
  • the switch control circuit 28 can control the switching state of the switch tube 27; when the switch tube 27 is in the closed state, the stable DC power is supplied to the inductor 24, and at the same time, the filter 26 is filtered to provide a stable DC power to the filament 11; When the 27 is in the off state, the inductor 24 can discharge power through the freewheeling diode 25 to supply power to the filament 11.
  • the switch control circuit 28 can control the amount of current supplied to the filament 11 by controlling the on-time of the switch tube 27.
  • the filament control circuit 31 and the temperature sensor 29 form a negative feedback magnetron filament current rectifying circuit.
  • the temperature sensor 29 can be mounted on the magnetron body. The temperature of the magnetron body is detected by the temperature sensor 29, and the temperature value of the magnetron 10 can be converted into an analog electrical signal for transmission to the switch control circuit 28.
  • the switch control circuit 28 can calculate the analog electric signal transmitted from the temperature sensor 29 according to a preset program or a calculation formula, thereby controlling the magnitude of the direct current output from the filament control circuit 31.
  • a microwave device which may include the above-described magnetron filament control circuit or magnetron power supply circuit.
  • the magnetron filament is not always in a high temperature state, can reduce the aging of the magnetron filament, thereby increasing the service life of the magnetron filament; the magnetron is in the normal process The power supplied to the filament is maintained at a relatively low state, reducing the power consumption, thereby improving the efficiency of the microwave oven; in addition, the power supplied to the magnetron filament of the power supply circuit is a continuous constant current, thereby ensuring that the filament can The energy of the electronic transition is continuously provided, and the stability of the magnetron is guaranteed.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

一种磁控管灯丝控制电路及磁控管供电电路,属于家用电器设计领域。磁控管(10)灯丝控制电路(31),包括:开关管(27),其与续流二极管(25)串联在直流输入端之间;电感(24),其与磁控管(10)的灯丝(11)串联在续流二极管(25)的两端之间;续流二极管(25),其在开关管(27)闭合时截止;温度传感器(29),被配置成检测磁控管(10)的温度;开关控制电路(28),被配置成根据磁控管(10)的温度控制开关管(27)闭合或断开,使得当磁控管(10)的温度在预定阈值范围时,电流大小高低交替变化的直流流经磁控管(10)的灯丝(11)。通过温度传感器(29)和开关控制电路(28)相配合,根据磁控管(10)的温度控制输入磁控管灯丝(11)的电流,保证灯丝(11)能够稳定跃迁电子。

Description

磁控管灯丝控制电路及磁控管供电电路 技术领域
本发明涉及家用电器设计领域,具体地涉及一种磁控管灯丝控制电路、磁控管供电电路及微波加热装置。
背景技术
磁控管是一种用来产生微波能的电真空器件。实质上是一个置于恒定磁场中的二极管。管内电子在相互垂直的恒定磁场和恒定电场的控制下,与高频电磁场发生相互作用,把从恒定电场中获得能量转变成微波能量。
磁控管中的电子由灯丝(或阴极)产生,现有变频微波炉的磁控管灯丝供电方式主要有以下两种:一种方式是提供一个基本稳定的交流电压,全工作过程连续最大功率供电,以此维持磁控管灯丝持续电子跃迁的活力;另一种方式是在前一种方式的基础上在灯丝电流整流电路中串联一个开关装置(继电器)通过通断的方式调节输出交流电压的大小,从而达到微波炉不同工作状态提供不同有效电压值的灯丝供电电压。
本申请发明人在实现本发明的过程中发现,现有技术的上述方案存在缺陷。其中,现有技术中第一种方式是从变频微波炉的高频变压器上增加一路输出绕组,以此提供一个基本稳定的交流电压,然后将此交流电压加到磁控管的灯丝的两端,提供能量给灯丝自身发热,当灯丝到达一定温度的时候,在磁控管外加高压下,使得灯丝的电子产生跃迁,电子在磁控管外加电场以及磁场的作用下通过磁控管的真空谐振腔而产生微波。这种灯丝供电方法相对比较简单直接,但是其是全工作过程连续最大功率供电,始终让灯丝保持在高温状态,势必会降低磁控管灯丝的使用寿命,同时磁控管灯丝一直保持最大功率工作也是一种能源浪费,从而使得微波炉整机 效率下降。而现有技术中第二种方式在第一种方式的基础上在灯丝电流整流电路中串联一个开关装置通过通断的方式在微波炉的不同工作状态下提供可调的供电电压,虽然解决了第一种方式的能源浪费问题以及提升了使用寿命,但是此方案因为工作在通断模式,在断开的时候,磁控管有可能会出现电子无法跃迁的可能,则工作稳定性不强。
针对上述问题,现有技术中尚无良好解决方案。
发明内容
本发明的目的是提供一种磁控管灯丝控制电路、磁控管供电电路及微波加热装置,能够向磁控管灯丝提供稳定电流且节能。
为了实现上述目的,本发明提供一种磁控管灯丝控制电路,其中,该电路包括:
开关管,其与续流二极管串联在直流输入端之间;
电感,其与磁控管的灯丝串联在续流二极管的两端之间;
续流二极管,其在开关管闭合时截止;
温度传感器,被配置成检测所述磁控管的温度;
开关控制电路,被配置成根据所述磁控管的温度控制所述开关管闭合或断开,使得当所述磁控管的温度在预定阈值范围时,电流大小高低交替变化的直流流经所述磁控管的灯丝。
可选地,该电路包括:滤波电容,该滤波电容与所述磁控管的灯丝并联。
可选地,所述磁控管的灯丝的一端接所述直流输入端的负极,另一端经由所述开关管接所述直流输入端的正极。
可选地,所述电感连接在所述续流二极管的负极和所述磁控管的灯丝之间。
另一方面,本发明提供一种磁控管供电电路,其中,该电路包括:
原边电路、变压器和副边电路,所述原边电路和所述副边电路通过所述变压器耦合;
所述变压器包括灯丝绕组和高压绕组,所述灯丝绕组具有中心抽头;
所述副边电路包括高压整流电路、灯丝电流整流电路和灯丝控制电路,其中:
所述高压整流电路的输入端接所述高压绕组,输出端分别接所述磁控管的阳极和灯丝;
所述灯丝电流整流电路的第一二极管和第二二极管与灯丝绕组电连接,构成灯丝绕组输出的全波整流电路;
所述灯丝控制电路的输入端接所述全波整流电路的输出端和所述中心抽头,输出端接所述灯丝,其中所述灯丝控制电路被配置成根据所述灯丝的温度调节输出到所述灯丝的电流。
可选地,其中,所述灯丝控制电路包括:
开关管,其与续流二极管串联在全波整流电路的输出端和中心抽头之间;
电感,其与磁控管的灯丝串联在续流二极管的两端之间;
续流二极管,其在开关管闭合时截止;
温度传感器,被配置成检测所述磁控管的温度;
开关控制电路,被配置成根据所述磁控管的温度控制所述开关管闭合或断开,使得当所述磁控管的温度在预定阈值范围时,电流大小高低交替变化的直流流经所述磁控管的灯丝。
可选地,该电路包括:第一电容,该第一电容与所述磁控管的灯丝并联。
可选地,该电路包括:第二电容,该第二电容并联在所述全波整流电路的输出端和所述中心抽头之间。
可选地,所述磁控管的灯丝的一端接所述中心抽头,另一端经由所述 开关管接所述全波整流电路的输出端。
可选地,所述电感连接在所述续流二极管的负极和所述磁控管的灯丝之间。
另一方面,本发明提供一种微波加热装置,其中,该装置包括上述的电路。
通过上述技术方案,通过温度传感器和开关控制电路相配合,根据磁控管的温度控制输入磁控管灯丝的电流,保证灯丝能够稳定跃迁电子。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明实施例提供的磁控管灯丝控制电路示意图;
图2是本发明实施例提供的磁控管供电电路示意图。
附图标记说明
10        磁控管            11        灯丝
12        变压器            13        高压绕组
21,22,25 二极管           23,26    电容
24        电感              27        开关管
28        开关控制电路      29        温度传感器
30        灯丝绕组          31        灯丝控制电路
32        灯丝电流整流电路      33        高压整流电路
具体实施方式
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“内”、“外”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本技术领域技术人员可以理解,本发明的说明书中使用的措辞“包括”是指存在上述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组合。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
在本发明中,所提到的“第一、第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
图1是本发明实施例提供的磁控管灯丝控制电路示意图。
如图1所示,本发明实施例提供的磁控管10灯丝控制电路31,可以包括:开关管27,其与续流二极管25串联在直流DC输入端之间;电感24,其与磁控管10的灯丝11串联在续流二极管25的两端之间;续流二极管25,其在开关管27闭合时截止;温度传感器29,可以被配置成检测磁控管10的温度;开关控制电路28,可以被配置成根据磁控管10的温度控制开关管27闭合或断开,从而控制开关管27的导通时间,使电流高低变化的直流流经磁控管10的灯丝11使得磁控管10的温度保持在预定范围内。
在实施方式中,当开关管27闭合导通时由于电感24的自感作用会使流入灯丝11的电流缓慢增加,从而防止电流冲击损伤灯丝11,而当开关管27断开时,电感24同样可以通过自感作用通过续流二极管25释放电能给 灯丝11供电,通过开关控制电路28来控制开关管27的导通时间能够控制电路提供给灯丝11的电流大小,防止磁控管的灯丝一直处于高温状态,并且在磁控管的温度稳定时,使得提供给灯丝的电能维持在一个比较低的状态,既能保证灯丝能够稳定跃迁电子又能减少电能消耗。
在该实施方式中,直流DC可以通过对交流AC进行全波整流获得。在该实施方式中,上述灯丝控制电路31中可以不包含温度传感器29,例如,温度传感器29可以是设置在诸如设备的电控板的温度传感器,可以使开关控制电路28直接从电控板获得温度传感器的温度检测信号。在该实施方式中,灯丝控制电路31与温度传感器29形成负反馈灯丝控制,即当磁控管10的温度升高时减少提供给灯丝11的电能,当磁控管10的温度降低时增加提供给灯丝11的电能,使得磁控管处于电流大小高低交替的供电状态而使其温度维持在一定范围内。在磁控管的实际使用中,当磁控管10冷态启动时,灯丝11的供电电流最大,当磁控管10工作后,随着磁控管10的温度上升,灯丝控制电路31将通过温度传感器29反馈的信号线性的降低灯丝控制电路31的输出电流值,从而降低灯丝11(或磁控管10)的温度,当温度降低到一定的阈值范围时,灯丝控制电路31将会提供电流大小高低交替变化的直流电流,以此保证灯丝11能够稳定地跃迁电子。
在实施方式中灯丝控制电路31可以包括滤波电容26,该滤波电容26与磁控管10的灯丝11并联。通过该滤波电容26能够对提供给灯丝11的电流进行滤波,从而向灯丝11提供更稳定的直流电。
在实施方式中,磁控管10的灯丝11的一端接直流输入端的负极,另一端经由开关管27接直流输入端的正极(如图1所示)。在可替换的实施方式中,磁控管10的灯丝11的一端接直流输入端的正极,另一端经由开关管27接直流输入端的负极。
在优选的实施方式中,电感24可以连接在续流二极管25的负极和磁控管10的灯丝11之间。在可替换的实施方式中,电感24可以连接在续流 二极管25的正极和磁控管10的灯丝11之间。
通过上述技术方案,通过温度传感器和开关控制电路相配合,根据磁控管的温度控制输入磁控管灯丝的电流,保证灯丝能够稳定跃迁电子。
本发明实施例的另一方面,提供一种磁控管10供电电路。
图2是本发明实施例提供的磁控管10供电电路示意图。如图2所示,本发明提供一种磁控管10供电电路,可以包括:原边电路、变压器12和副边电路,原边电路和副边电路通过变压器12耦合;其中,原边电路位于图2中变压器12的右侧,副边电路位于图2中变压器12的左侧。
变压器12可以包括灯丝绕组30和高压绕组13,灯丝绕组30具有中心抽头;副边电路可以包括高压整流电路33、灯丝电流整流电路32和灯丝控制电路31,其中:
高压整流电路33的输入端接高压绕组13,输出端分别接磁控管10的阳极和灯丝11;灯丝电流整流电路32的二极管21和二极管22与灯丝绕组30电连接,构成灯丝绕组30输出的全波整流电路;
灯丝控制电路31的输入端接灯丝电流整流电路32,即全波整流电路的输出端和中心抽头,输出端接灯丝11,其中灯丝控制电路31被配置成根据灯丝11的温度调节输出到灯丝11的电流。
在实施方式中,变压器12可以为高频变压器。在实施方式中,灯丝控制电路31可以包括:开关管27,其与续流二极管25串联在全波整流电路的输出端和中心抽头之间,电感24,其与磁控管10的灯丝11串联在续流二极管25的两端之间;续流二极管25,其在开关管27闭合时截止;温度传感器29,被配置成检测磁控管10的温度;开关控制电路28,被配置成根据磁控管10的温度控制开关管27闭合或断开,使得当磁控管10的温度在预定阈值时,稳定的直流流经磁控管10的灯丝11。
在实施方式中,电路包括:第一电容26,该第一电容26与磁控管10的灯丝11并联。通过该第一电容26能够对提供给灯丝11的电流进行滤波, 从而向灯丝11提供更稳定的直流电。
在实施方式中,电路还可以包括:第二电容23,该第二电容23并联在全波整流电路的输出端和中心抽头之间。通过该第二电容23能够对提供给灯丝控制电路31的电流进行滤波,从而向灯丝控制电路31提供更稳定的直流电。
在实施方式中,磁控管10的灯丝11的一端接中心抽头,另一端经由开关管27接全波整流电路的输出端。在可替换的实施方式中,磁控管10的灯丝11的一端接全波整流电路的输出端,另一端经由开关管27接中心抽头。
在优选的实施方式中,电感24可以连接在续流二极管25的负极和磁控管10的灯丝11之间。在可替换的实施方式中,电感24可以连接在续流二极管25的正极和磁控管10的灯丝11之间。
通过上述实施方式提供的磁控管供电电路,灯丝绕组30输出的高频交流电压通过二极管21、22进行全波整流,然后通过滤波电容23平滑成稳定的直流;稳定的直流通过开关管27,其中,开关控制电路28可以控制开关管27的开关状态;在开关管27处于闭合状态时,稳定的直流给电感24储能,同时通过电容26滤波后给灯丝11提供稳定的直流电;在开关管27处于断开状态时,电感24可以通过续流二极管25释放电能给灯丝11供电。
在实施方式中,开关控制电路28可以通过控制开关管27的导通时间控制提供给灯丝11的电流大小。灯丝控制电路31与温度传感器29组成一个负反馈的磁控管灯丝电流整流电路。在实施方式中,温度传感器29可以安装在磁控管本体上。通过温度传感器29检测磁控管本体温度,可以将磁控管10的温度值转换成模拟电信号传输给开关控制电路28。开关控制电路28可以根据预设程序或计算公式对温度传感器29传输过来的模拟电信号进行计算,从而控制灯丝控制电路31输出的直流电流的大小。
本发明实施例的另一方面,提供一种微波装置,该装置可以包括上述 的磁控管灯丝控制电路或磁控管供电电路。
本发明实施例提供的技术方案,具有以下优势:磁控管灯丝没有一直处于过高温状态,可以降低磁控管灯丝的老化,从而增加了磁控管灯丝的使用寿命;磁控管正常过程中,提供给灯丝的电能维持在一个比较低的状态,减少了电能消耗,从而可以提升微波炉的效率;此外,供电电路提供给磁控管灯丝的电能是一个连续的恒定电流,从而保证了灯丝能够持续的提供电子跃迁的能量,最终保证的磁控管的工作稳定性。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本发明实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。

Claims (10)

  1. 一种磁控管灯丝控制电路,其特征在于,该电路包括:
    开关管,其与续流二极管串联在直流输入端之间;
    电感,其与磁控管的灯丝串联在所述续流二极管的两端之间;
    所述续流二极管,其在所述开关管闭合时截止;
    温度传感器,被配置成检测所述磁控管的温度;
    开关控制电路,被配置成根据所述磁控管的温度控制所述开关管闭合或断开,使得当所述磁控管的温度在预定阈值范围时,电流大小高低交替变化的直流流经所述磁控管的灯丝。
  2. 根据权利要求1所述的电路,其特征在于,该电路包括:滤波电容,该滤波电容与所述磁控管的灯丝并联。
  3. 根据权利要求1所述的电路,其特征在于,所述磁控管的灯丝的一端接所述直流输入端的负极,另一端经由所述开关管接所述直流输入端的正极。
  4. 根据权利要求1所述的电路,其特征在于,所述电感连接在所述续流二极管的负极和所述磁控管的灯丝之间。
  5. 一种磁控管供电电路,其特征在于,该电路包括:
    原边电路、变压器和副边电路,所述原边电路和所述副边电路通过所述变压器耦合;
    所述变压器包括灯丝绕组和高压绕组,所述灯丝绕组具有中心抽头;
    所述副边电路包括高压整流电路、灯丝电流整流电路和灯丝控制电路,其中:
    所述高压整流电路的输入端接所述高压绕组,输出端分别接所述磁控管的阳极和灯丝;
    所述灯丝电流整流电路的第一二极管和第二二极管与灯丝绕组电连接,构成灯丝绕组输出的全波整流电路;
    所述灯丝控制电路的输入端接所述全波整流电路的输出端和所述中心抽头,输出端接所述灯丝,其中所述灯丝控制电路被配置成根据所述灯丝的温度调节输出到所述灯丝的电流。
  6. 根据权利要求5所述的电路,其特征在于,所述灯丝控制电路包括:
    开关管,其与续流二极管串联在所述全波整流电路的输出端和所述中心抽头之间;
    电感,其与磁控管的灯丝串联在所述续流二极管的两端之间;
    所述续流二极管,其在所述开关管闭合时截止;
    温度传感器,被配置成检测所述磁控管的温度;
    开关控制电路,被配置成根据所述磁控管的温度控制所述开关管闭合或断开,使得当所述磁控管的温度在预定阈值范围时,电流大小高低交替变化的直流流经所述磁控管的灯丝。
  7. 根据权利要求6所述的电路,其特征在于,该电路包括:第一电容,该第一电容与所述磁控管的灯丝并联。
  8. 根据权利要求5所述的电路,其特征在于,该电路包括:第二电容,该第二电容并联在所述全波整流电路的输出端和所述中心抽头之间。
  9. 根据权利要求6所述的电路,其特征在于,所述磁控管的灯丝的一端接所述中心抽头,另一端经由所述开关管接所述全波整流电路的输出端。
  10. 根据权利要求6所述的电路,其特征在于,所述电感连接在所述续流二极管的负极和所述磁控管的灯丝之间。
PCT/CN2017/119922 2017-10-25 2017-12-29 磁控管灯丝控制电路及磁控管供电电路 WO2019080355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711006208.4 2017-10-25
CN201711006208.4A CN107770891B (zh) 2017-10-25 2017-10-25 磁控管灯丝控制电路、磁控管供电电路

Publications (1)

Publication Number Publication Date
WO2019080355A1 true WO2019080355A1 (zh) 2019-05-02

Family

ID=61270655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119922 WO2019080355A1 (zh) 2017-10-25 2017-12-29 磁控管灯丝控制电路及磁控管供电电路

Country Status (2)

Country Link
CN (1) CN107770891B (zh)
WO (1) WO2019080355A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212491B (zh) * 2020-02-20 2020-11-24 烟台长青微波科技有限公司 一种变频微波发生源灯丝电流控制装置
CN112714528B (zh) * 2020-12-31 2023-04-21 广东美的厨房电器制造有限公司 变频器电路的控制方法、控制装置、磁控管驱动电路
WO2022267689A1 (zh) * 2021-06-21 2022-12-29 广东美的厨房电器制造有限公司 微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060756A (zh) * 1990-09-11 1992-04-29 松下电器产业株式会社 使用逆变器电源的高频加热装置
CN102891613A (zh) * 2011-07-21 2013-01-23 台达电子企业管理(上海)有限公司 一种ac-dc 电源转换器及其dc 充电站
CN102904444A (zh) * 2012-08-07 2013-01-30 上海交通大学 基于质子交换膜燃料电池的dc/dc变换和控制系统
CN202750315U (zh) * 2012-08-28 2013-02-20 深圳麦格米特电气股份有限公司 一种磁控管灯丝供电电路
CN105142254A (zh) * 2015-07-20 2015-12-09 广东美的厨房电器制造有限公司 微波炉中磁控管工作状态的检测装置、方法和微波炉

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073395A (ja) * 2005-09-08 2007-03-22 Tokyo Electron Ltd マグネトロンの制御方法、マグネトロンの寿命判定方法、マイクロ波発生装置、マグネトロンの寿命判定装置、処理装置及び記憶媒体
CN103220834B (zh) * 2013-04-22 2015-10-14 刘新保 一种微波炉磁控管预热控制方法及控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060756A (zh) * 1990-09-11 1992-04-29 松下电器产业株式会社 使用逆变器电源的高频加热装置
CN102891613A (zh) * 2011-07-21 2013-01-23 台达电子企业管理(上海)有限公司 一种ac-dc 电源转换器及其dc 充电站
CN102904444A (zh) * 2012-08-07 2013-01-30 上海交通大学 基于质子交换膜燃料电池的dc/dc变换和控制系统
CN202750315U (zh) * 2012-08-28 2013-02-20 深圳麦格米特电气股份有限公司 一种磁控管灯丝供电电路
CN105142254A (zh) * 2015-07-20 2015-12-09 广东美的厨房电器制造有限公司 微波炉中磁控管工作状态的检测装置、方法和微波炉

Also Published As

Publication number Publication date
CN107770891B (zh) 2019-06-18
CN107770891A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
US11069499B2 (en) Power-saving circuit for contactor
WO2019080355A1 (zh) 磁控管灯丝控制电路及磁控管供电电路
EP1254590A2 (en) Magnetron drive power supply
CN201054545Y (zh) 中功率多路输出薄型开关电源
US6791279B1 (en) Single-switch electronic dimming ballast
CN104578885A (zh) 一种用于家庭备用电源的大功率逆变电路
KR100399134B1 (ko) 전자렌지
CN203785025U (zh) 一种宽电压恒功率电磁炉
CN201878361U (zh) 一种微波发生器的控制电路
CN210807711U (zh) 一种驱动定频磁控管的变频电源电路以及微波炉
CN211531341U (zh) 加热电路
CN113037071B (zh) 一种pfc电路的软启动装置、pfc电路及电器
CN210120483U (zh) 一种开关电源的启动电路
CN208806767U (zh) 单相电机的节电器
CN202963736U (zh) 一种微处理器控制铝基电路板逆变焊机的结构
Ozawa et al. Implementation and evaluation of pre-and post-regulation control with class-E 2 wireless power transfer system
CN203859680U (zh) 新型高压大功率开关电源
CN216751545U (zh) 一种反向馈能自适应微波电源
Woo et al. Voltage-clamped class-E inverter with harmonic tuning network for magnetron drive
CN220711359U (zh) 一种高频开关管控制的微波电源
CN110707947B (zh) 一种无桥单极pfc电路
CN216016724U (zh) 25wpd快充电源
CN210986481U (zh) 一种双频感应加热电源
CN216852411U (zh) 一种ih加热控制电路
CN209936083U (zh) 一种可自动调整脉宽的点焊机引弧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17929817

Country of ref document: EP

Kind code of ref document: A1