WO2019080004A1 - 复合移动检测系统及其使用方法 - Google Patents
复合移动检测系统及其使用方法Info
- Publication number
- WO2019080004A1 WO2019080004A1 PCT/CN2017/107657 CN2017107657W WO2019080004A1 WO 2019080004 A1 WO2019080004 A1 WO 2019080004A1 CN 2017107657 W CN2017107657 W CN 2017107657W WO 2019080004 A1 WO2019080004 A1 WO 2019080004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motion
- motion detection
- doppler
- movement
- composite
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 1063
- 238000001514 detection method Methods 0.000 title claims abstract description 412
- 239000002131 composite material Substances 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title claims description 21
- 230000000694 effects Effects 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 description 15
- 230000005855 radiation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/415—Identification of targets based on measurements of movement associated with the target
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/19—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/505—Systems of measurement based on relative movement of target using Doppler effect for determining closest range to a target or corresponding time, e.g. miss-distance indicator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/56—Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/886—Radar or analogous systems specially adapted for specific applications for alarm systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/181—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
- G08B13/187—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interference of a radiation field
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/19—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
- G08B13/191—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/183—Single detectors using dual technologies
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/185—Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
- G01S7/0235—Avoidance by time multiplex
Definitions
- the present invention generally relates to an electronic monitoring system, and specifically relates to a plurality of composite motion detection systems that save power and have a very low false alarm rate.
- the motion detection device of the commonly used safety monitoring system includes a passive infrared motion detecting device and a radio frequency Doppler motion detecting device.
- Passive infrared motion detection devices have low power consumption and are suitable for battery-operated safety monitoring systems.
- the disadvantages of using passive infrared motion detection devices include high false alarm rates. As shown in FIG. 1, the cars 191, 193, 195, 197 parked outside a window 153 radiate a certain amount of infrared light.
- a passive infrared motion detecting device 10 is mounted on one side of the monitoring area 11, and this passive infrared motion detecting device 10 may detect infrared radiation of the vehicles 193 and 195 through the window 153. If the vehicles 193 and 195 drive into these parking spaces, the passive infrared motion detecting device 10 can detect the movement of these vehicles and trigger an alarm system connected to the passive infrared motion detecting device 10, causing a false alarm.
- the radio frequency Doppler motion detecting device detects the movement of the object by utilizing the Doppler effect generated by the reflection of the radio wave by the moving object.
- Such a radio frequency Doppler motion detecting device is insensitive to infrared radiation or thermal radiation, but due to the penetrating ability of the radio frequency, it is possible to detect the movement of an object other than the monitoring area, which also causes a false alarm.
- a radio frequency Doppler motion detecting device 10 is mounted on one side of the monitoring area 11, and plants 171, 173, 175, 177, and 179 other than the outer wall 151 of the monitoring area 11 are blown by the wind. When the shaking of these plants is caused, the shaking of these plants may also be detected by the radio frequency Doppler motion detecting device, causing false alarms.
- the power consumption of the RF Doppler motion detection device is relatively high, and such motion detection devices are not suitable for long-term continuous operation in a battery-powered safety monitoring system.
- these radio frequency Doppler motion detecting devices generate co-channel interference, which may further cause false alarms.
- the invention relates to a composite motion detection system.
- the composite motion detection system includes at least one passive infrared motion detection device, at least one radio frequency Doppler motion detection device, and a composite motion detection system controller.
- the passive infrared motion detecting device detects the movement of the object by detecting infrared rays radiated by a moving object, and generates an infrared movement detecting signal when detecting the movement of the object.
- the radio frequency Doppler motion detecting device detects the movement of an object by detecting the Doppler effect of a radio wave reflected by a moving object, and detects A Doppler motion detection signal is generated as the object moves.
- the composite motion detection system controller includes a power module for supplying power to the passive infrared motion detecting device and the radio frequency Doppler motion detecting device, a motion detecting output module for outputting a signal for actually detecting the movement of the object, and a Logic control module.
- the power module supplies power to the passive infrared motion detecting device.
- the passive infrared motion detecting device detects the movement of the object
- the passive infrared motion detecting device transmits the infrared motion detecting signal to the logic control module.
- the logic control module transmits a power-on signal to the power module, and the power of the RF Doppler motion detecting device is connected to the RF Doppler motion detecting device only for one time period TW, so that the RF Doppler motion detecting device performs object motion detection.
- the radio frequency Doppler motion detecting device detects the movement of the object
- the radio frequency Doppler motion detecting device transmits the Doppler motion detection signal to the logic control module.
- the motion detection output module When the logic control module simultaneously receives the infrared motion detection signal from the passive infrared motion detecting device and the Doppler motion detection signal from the radio frequency Doppler motion detecting device in the TW period, the motion detection output module outputs the composite motion detection system. A signal that the object is moving is detected.
- the power module supplies power to the passive infrared motion detecting device without interruption.
- the power module supplies power to the radio frequency Doppler motion detecting device within the time period TW only after the passive infrared motion detecting device detects the object movement.
- the radio frequency Doppler motion detecting device is configured to confirm the movement of the object detected by the passive infrared motion detecting device to reduce the false alarm rate generated by using the single motion detecting device.
- the logic control module includes: a motion detection input module for receiving an infrared motion detection signal and a Doppler motion detection signal, a processor and a memory.
- the memory includes firmware with computer-executable instructions that, when executed by the computer, cause the processor to perform the following functions: instructing the power module to move to the passive infrared motion detecting device
- the power supply enables the passive infrared motion detecting device to detect the movement of the object.
- the motion detecting input module receives the infrared motion detecting signal
- the power detecting module sends a power-on signal to the power module to instruct the power module to supply power to the RF Doppler motion detecting device.
- the detection input module simultaneously receives the infrared motion detection signal from the passive infrared motion detecting device and the radio frequency Doppler motion detection signal from the radio frequency Doppler motion detecting device during the TW time period, and instructs the motion detection output module to output the composite motion detection system.
- the signal that actually detects the movement of the object is simultaneously received from the passive infrared motion detecting device and the radio frequency Doppler motion detection signal from the radio frequency Doppler motion detecting device during the TW time period.
- the logic control module includes: a switching circuit and a signal combiner.
- the delay switch circuit sends a power-on signal to the power module to instruct the power module to supply power to the RF Doppler motion detection device, so that the RF Doppler motion detection device can The movement of the object is detected during the TW period.
- the signal combiner outputs an object when the signal combiner simultaneously receives the infrared motion detection signal from the passive infrared motion detecting device and the radio frequency Doppler motion detection signal from the radio frequency Doppler motion detecting device in the TW period
- the motion detection signal is transmitted to the motion detection output module, and the motion detection output module is instructed to output a signal that the composite motion detection system actually detects the movement of the object.
- the switch circuit includes a delay switch circuit that turns on the power of the RF Doppler motion detection device when the delay switch circuit receives the infrared motion detection signal, and ends at the TW period Turn off the power of the RF Doppler motion detection device.
- the signal combiner includes an AND gate circuit that outputs the object movement when the AND gate circuit simultaneously receives the infrared motion detection signal and the radio frequency Doppler motion detection signal during the TW period Detection signal.
- the invention in another aspect, relates to a motion detection system.
- the motion detection system includes: a composite motion detection system controller, and one or more composite motion detection devices.
- Each of the composite motion detecting devices includes a passive infrared motion detector that detects the movement of the object using infrared rays, and a radio frequency Doppler motion detector that detects the movement of the object using the Doppler effect.
- the composite motion detection system controller includes: a power module for supplying power to all of the composite motion detecting devices, a motion detecting input module for receiving the infrared motion detecting signal and the Doppler motion detecting signal, and one for outputting the actual A motion detection output module that detects an object movement signal, a processor and a memory.
- the memory includes firmware with computer-executable instructions that, when executed by the computer, cause the processor to perform the following functions: instructing the power module to move to all passive infrared
- the detector provides a passive infrared motion detector power supply to enable all passive infrared motion detectors to detect object movement, when the passive infrared motion detector of the first composite motion detection device detects object movement and will detect the first infrared motion
- the power module is instructed to provide the RF Doppler motion detector power to the first RF Doppler motion detector for a TW period of time so that the first RF Doppler motion detector can Detecting movement of the object during the TW period, when the motion detection input module simultaneously receives the first infrared motion detection signal from the first passive infrared motion detector and the first radio frequency Doppler motion detector during the TW period
- the first Doppler shifts the detection signal it indicates that the motion detection output module outputs the movement Signal measurement system actually detected object is moving.
- the computer executable instructions cause processing when the second passive infrared motion detector of the second composite motion detecting device detects the object movement and transmits the second infrared motion detection signal to the motion detection input module
- the device performs the following functions: instructing the power module to provide the second RF Doppler motion detector power to the second RF Doppler motion detector of the second composite motion detecting device during the TW period, and the second RF Doppler motion detection
- the power supply is turned on after a time delay TD is added after the end of the previous TW period, and the second infrared motion detection signal from the second passive infrared motion detector is simultaneously received by the motion detection input module during the TW period.
- the motion detection output module is instructed to output a signal that the motion detection system actually detects the movement of the object.
- the power module provides uninterrupted passive infrared motion detector power to passive infrared motion detectors in all of the composite motion detection devices.
- the passive infrared motion detector in a composite motion detecting device detects the movement of the object during the TW period
- the power module transmits the radio frequency to the composite motion detecting device in a time division manner.
- the Puller motion detector provides RF Doppler motion detector power, which only turns on one RF Doppler motion detector power supply in one TW period and detects objects in two passive infrared motion detectors.
- a time delay TD is added between the moving TW periods to avoid radio frequency interference between the two RF Doppler motion detectors.
- the radio frequency Doppler motion detector in all composite motion detecting devices is used to confirm the movement of the object detected by the passive infrared motion detector in the composite motion detecting device to reduce errors caused by the use of a single motion detector. Report rate.
- the present invention is directed to a method of detecting movement of an object using a motion detection system.
- the method includes installing a set of motion detection systems by a user, wherein the motion detection system includes a composite motion detection system controller, one or more composite motion detection devices, each of which The composite motion detecting device includes a passive infrared motion detector that detects the movement of the object by infrared rays, and a radio frequency Doppler motion detector that detects the movement of the object by using the Doppler effect, and a power module of the composite motion detection system controller.
- a passive infrared motion detector power supply is provided to all passive infrared motion detectors.
- the method includes moving when the passive infrared motion detector of the first composite motion detecting device detects an object movement and transmits the first infrared motion detection signal to the motion detection input module
- the detection input module sends a power-on signal to the power module to instruct the power module to provide the RF Doppler motion detector power to the first RF Doppler motion detector for one TW period to make the first RF Doppler motion detector
- the movement of the object can be detected during the TW time period, and when the corresponding first radio frequency Doppler motion detector detects the movement of the object, the motion detection input module receives the first Doppler shift from the first radio frequency Doppler motion detector Detecting a signal, when the motion detection input module simultaneously receives the first infrared motion detection signal from the first passive infrared motion detector and the first Doppler motion detection from the first radio frequency Doppler motion detector during the TW period
- the motion detection output module outputs a signal that the motion detection system actually detects the movement of the object.
- the method further includes: The power module provides a second RF Doppler motion detector power supply to the second RF Doppler motion detector of the second composite motion detecting device during the TW period, and the second RF Doppler motion detector power supply is in the previous TW time. After the end of the segment, a time delay is added after the TD is turned on. When the corresponding second RF Doppler motion detector detects the movement of the object, the motion detection input module receives the second most from the second RF Doppler motion detector.
- the Puller motion detection signal when the motion detection input module receives the second infrared motion detection signal from the second passive infrared motion detector and the second Doppler from the second radio frequency Doppler motion detector simultaneously in the TW period
- the motion detection output module When the motion detection signal is moved, the motion detection output module outputs a signal that the motion detection system actually detects the movement of the object.
- the composite motion detection system controller includes the power supply module that provides power to all of the composite motion detection devices.
- the power module continuously detects passive infrared motion in all composite motion detecting devices
- a passive infrared motion detector power supply is provided.
- the power module provides a radio frequency to a corresponding radio frequency Doppler motion detector in the composite motion detecting device in a time division manner in a TW period
- the Doppler motion detector power supply only turns on one RF Doppler motion detector power supply in one TW period at a time, and between successive TW time periods in which two passive infrared motion detectors detect object movement
- a time delay TD is added to avoid radio frequency interference between the two RF Doppler motion detectors.
- the radio frequency Doppler motion detectors in all composite motion detecting devices are used to confirm the movement of the object detected by the corresponding passive infrared motion detector in the composite motion detecting device to reduce the use of a single motion detector. Fal
- the composite motion detection system controller includes a motion detection input module and a motion detection output module.
- the motion detection input module receives infrared motion detection signals from passive infrared motion detectors in all composite motion detection devices and Doppler motion from radio frequency Doppler motion detectors in all composite motion detection devices. Detection signal.
- the motion detection input module receives the infrared motion detection signal from the passive infrared motion detector in the at least one composite motion detecting device and the radio frequency Doppler motion detector from the corresponding composite motion detecting device simultaneously in the TW period
- the motion detection output module outputs a signal that the motion detection system actually detects the movement of the object.
- Figure 1 shows a single passive infrared motion detector or radio frequency Doppler motion detector for detecting the movement of an object in a surveillance area, infrared radiation and Doppler reflection of an external object such as a plant or vehicle to the motion detector. influences.
- FIG. 2 shows a block diagram of a composite motion detection system in accordance with some embodiments of the present invention
- FIG. 3 shows a block diagram of yet another composite motion detection system in accordance with some embodiments of the present invention.
- FIGS. 2 and 3 shows voltage waveforms of a set of power supply and motion detection signals for a composite motion detection system as shown in FIGS. 2 and 3, in accordance with some embodiments of the present invention.
- Figure 5 shows a block diagram of a motion detection system with multiple sets of composite motion detection devices, in accordance with some embodiments of the present invention
- FIG. 6 shows a set of voltage waveforms of a power supply and a motion detection signal of a motion detection system with multiple sets of composite motion detecting devices as shown in FIG. 5, in accordance with some embodiments of the present invention
- Figure 7 shows a flow chart of a method of detecting movement of an object using a motion detection system.
- first, second, third, etc. may be used herein to describe various elements, devices, regions, layers and/or portions, these elements, devices, regions, layers and/or portions should not be Limitations of these terms. The terms are only used to distinguish one element, device, region, layer or portion, and another element, device, region, layer or portion. Therefore, a first element, device, region, layer or portion discussed below may be referred to as a second element, device, region, layer or portion, without departing from the teachings of the invention.
- the motion detecting device of the commonly used safety monitoring system includes a passive infrared motion detecting device and a radio frequency Doppler motion detecting device.
- Passive infrared motion detection devices have low power consumption and are suitable for battery-operated safety monitoring systems.
- the disadvantages of using passive infrared motion detection devices include high false alarm rates.
- the radio frequency Doppler motion detecting device detects the movement of the object by utilizing the Doppler effect generated by the reflection of the radio wave by the moving object.
- Such a radio frequency Doppler motion detecting device is insensitive to infrared radiation or thermal radiation, but due to the penetrating ability of the radio frequency, it is possible to detect the movement of an object other than the monitoring area, which also causes a false alarm.
- the power consumption of the RF Doppler motion detection device is relatively high, and such motion detection devices are not suitable for long-term continuous operation in a battery-powered safety monitoring system.
- these radio frequency Doppler motion detecting devices generate co-channel interference, which may further cause false alarms.
- the present invention is directed to a composite motion detection system 100.
- the composite motion detection system 100 includes at least one passive infrared motion detection device 110, at least one radio frequency Doppler motion detection device 120, and a composite motion detection system controller 130.
- the passive infrared motion detecting device 110 includes a passive infrared motion detecting device power supply 13021 input terminal and an infrared motion detecting signal 13041 output terminal.
- the passive infrared motion detecting device 110 detects the movement of the object by detecting infrared rays radiated by a moving object, and generates an infrared movement detecting signal 13041 upon detecting the movement of the object.
- the RF Doppler motion detecting device 120 includes an RF Doppler motion detecting device power supply 13022 input and an output of a Doppler motion detection signal 13042.
- the radio frequency Doppler motion detecting device 120 detects the movement of the object by detecting the Doppler effect of the radio frequency wave reflected by the moving object, and generates a Doppler motion detecting signal 13042 when the object is detected to move.
- Radio frequency Doppler motion detection The measuring device 120 is for confirming the movement of the object detected by the passive infrared motion detecting device 110 to reduce the false alarm rate generated by using the single motion detecting device.
- the composite motion detection system controller 130 includes a power module 1302 for supplying power to the passive infrared motion detecting device 110 and the radio frequency Doppler motion detecting device 120, and one for receiving infrared motion detection from the passive infrared motion detecting device 110.
- the motion detection output module 1306 When the logic control module 1304 simultaneously receives the infrared motion detection signal 13041 from the passive infrared motion detecting device 110 and the Doppler motion detection signal 13042 from the radio frequency Doppler motion detecting device 120, the motion detection output module 1306 outputs a composite The motion detection system 100 actually detects the signal of the object movement 13061.
- the power module 1302 provides the passive infrared motion detecting device power supply 13021 to the passive infrared motion detecting device 110 such that the passive infrared motion detecting device 110 is capable of detecting object movement.
- the passive infrared motion detecting device 110 detects the movement of the object, the passive infrared motion detecting device 110 transmits the infrared motion detecting signal 13041 to the logic control module 1304.
- the logic control module 1304 transmits a power-on signal 13023 to the power module 1302 to connect the RF Doppler motion detection device power supply 13022 to the RF Doppler motion detecting device 120 for only one time period TW such that the RF Doppler motion detecting device 120 is capable of detecting object movement.
- the RF Doppler motion detecting device power supply 13022 which is connected to the RF Doppler motion detecting device 120, maintains a TW period and then automatically turns off.
- the RF Doppler motion detecting device 120 detects the movement of the object, the RF Doppler motion detecting device 120 generates a Doppler motion detecting signal 13042 and transmits the Doppler motion detecting signal 13042 to the logic control module 1304.
- the motion detection output module 1306 When the logic control module 1304 simultaneously receives the infrared motion detection signal 13041 from the passive infrared motion detecting device 110 and the Doppler motion detection signal 13042 from the radio frequency Doppler motion detecting device 120 in the TW period, the motion detection output module 1306 outputs a signal 13061 that the composite motion detection system 100 actually detects the movement of the object.
- the power module 1302 provides the passive infrared motion detecting device power supply 13021 to the passive infrared motion detecting device 110 without interruption, as shown by waveform (A) in FIG.
- the power module 1302 transmits the radio frequency Doppler to the radio frequency Doppler within the time period TW only after the passive infrared motion detecting device 110 detects the object movement and generates the infrared motion detecting signal 13041 (as shown by the waveform (B) in FIG. 4).
- the motion detecting device 120 provides a radio frequency Doppler motion detecting device power supply 13022 as shown in waveform (C) of FIG.
- the RF Doppler motion detecting device 120 is energized in such a manner that the RF Doppler motion detecting device 120 is turned off most of the time, so that the power consumption of the composite motion detecting system 100 is greatly reduced, so that the composite motion detecting system 100 can be adapted to Long-term continuous operation in a battery-powered safety monitoring system.
- the logic control module 1304 includes a motion detection input module 13043, a processor 13044, and a memory 13045.
- the motion detection input module 13043 includes a first input for receiving an infrared motion detection signal 13041 from the passive infrared motion detecting device 110, and a receiving A second input of a radio frequency Doppler shift detection signal 13042 from the RF Doppler motion detection device 120.
- the motion detection input module 13043 further includes a first output that sends a power-on signal 13023 to the power module 1302, and a second output that sends a signal 130431 that actually detects the movement of the object to the processor 13044.
- the memory 13045 includes a firmware 130451 with computer executable instructions.
- the computer executable instructions When the computer executable instructions are executed on the processor 13044, the computer executable instructions cause the processor 13044 to perform the function of instructing the power module 1302 to provide the passive infrared motion detecting device power supply 13021 to the passive infrared motion detecting device 110 to enable passive infrared
- the movement detecting device 110 is capable of detecting the movement of the object.
- the passive infrared movement detecting device 110 detects the movement of the object, the passive infrared movement detecting device 110 generates an infrared movement detecting signal 13041 and transmits it to the movement detecting input module 13043.
- the motion detection input module 13043 When the motion detection input module 13043 receives the infrared motion detection signal 13041, the motion detection input module 13043 sends a power-on signal 13023 to the power module 1302 to instruct the power module 1302 to provide radio frequency Doppler to the radio frequency Doppler motion detection device 120.
- the motion detecting device power supply 13022 as shown by waveform (C) in FIG. 4, causes the radio frequency Doppler motion detecting device 120 to detect object movement in the TW period.
- the RF Doppler motion detecting device 120 detects the movement of the object, the RF Doppler motion detecting device 120 generates a Doppler motion detecting signal 13042, as shown in the front half of the waveform (D) in FIG. 4, and will Doppler.
- the motion detection signal 13042 is transmitted to the motion detection input module 10343.
- the motion detection input module 10343 sends a signal 130431 to the processor 13044 that detects the movement of the object, as shown by waveform (E) in FIG.
- the processor 13044 receives the infrared motion detection signal 13041 from the passive infrared motion detecting device 110 and the radio frequency Doppler motion detection signal 13042 from the radio frequency Doppler motion detecting device 120 in the TW period
- the processor 13044 The motion detection output module 1306 is instructed to output a signal 13061 that the composite motion detection system 100 actually detects the movement of the object, as shown by waveform (F) in FIG.
- the passive infrared motion detecting device 110 detects another object moving, as shown in the latter half of the waveform (B) in FIG. 4, the passive infrared motion detecting device 110 generates an infrared motion detecting signal 13041 and transmits it to the motion detecting input module. 13043.
- the motion detection input module 13043 receives the second infrared motion detection signal 13041
- the motion detection input module 13043 sends another power-on signal 13023 to the power module 1302 to instruct the power module 1302 to provide the RF Doppler motion detection device 120.
- the RF Doppler motion detecting device power supply 13022 as shown in the second half of the waveform (C) of FIG. 4, causes the RF Doppler motion detecting device 120 to detect object movement during the TW period.
- the radio frequency Doppler motion detecting device 120 does not detect the object movement, and the radio frequency Doppler motion detecting device 120 does not generate the Doppler motion detecting signal 13042, as shown in the latter half of the waveform (D) in FIG.
- the motion detection input module 10343 does not receive the Doppler motion detection signal 13042, and thus the motion detection input module 10343 does not send a signal 130431 to the processor 13044 that detects the movement of the object, as shown in the second half of the waveform (E) in FIG. . Therefore, as shown in the latter half of the waveform (F) in FIG. 4, the motion detection output module 1306 also does not output a signal 13061 in which the composite motion detecting system 100 actually detects the movement of the object.
- the logic control module 1304 includes a switch circuit 13046 and a signal combiner 13047.
- the switch circuit 13046 has an input for receiving the infrared movement detection signal 13041 from the passive infrared movement detecting device 110, and an output for transmitting the power-on signal 13023 to the power module 1032.
- the passive infrared motion detecting device 110 detects the movement of the object, the passive infrared motion detecting device 110 generates and transmits the infrared motion detecting signal 13041 to the motion detecting input module 13043.
- the switch circuit 13046 sends a power-on signal 13023 to the power module 1302, instructing the power module 1302 to provide radio frequency Doppler shift to the radio frequency Doppler motion detecting device 120.
- the detection device power supply 13022 as shown in the front half of the waveform (C) in FIG. 4, enables the radio frequency Doppler motion detecting device 120 to detect the movement of the object within the TW period.
- the signal combiner 13047 includes a first input of the receiver from the infrared motion detection signal 13041 of the passive infrared motion detecting device 110, and a receiver from the second of the Doppler motion detection signal 13042 of the RF Doppler motion detecting device 120.
- the input, and an output of a signal 130471 that detects the movement of the object is transmitted to the motion detection output module 1306.
- the signal combiner 13047 receives the infrared motion detection signal 13041 from the passive infrared motion detecting device 110 at the first input and the RF Doppler motion detecting device 120 from the second input terminal during the TW period.
- the signal combiner 13047 generates and outputs a signal 130471 detecting the movement of the object from the output terminal, and transmits the signal 130471 for detecting the movement of the object to the motion detection output module 1306, and instructs the motion detection.
- the output module 1306 outputs a signal 13061 that the composite motion detection system 100 actually detects the movement of the object.
- the passive infrared motion detecting device 110 When the passive infrared motion detecting device 110 detects another object moving, the passive infrared motion detecting device 110 generates and transmits another infrared motion detecting signal 13041 to the motion detecting input module 13043.
- the switch circuit 13046 sends a power-on signal 13023 to the power module 1302, instructing the power module 1302 to provide radio frequency Doppler shift to the radio frequency Doppler motion detecting device 120.
- the detecting device power supply 13022 as shown in the latter half of the waveform (C) in Fig. 4, enables the radio frequency Doppler shift detecting device 120 to detect the movement of the object within the TW period.
- the RF Doppler motion detecting device 120 does not detect any object movement, and the RF Doppler motion detecting device 120 does not generate the Doppler motion detecting signal 13042, as shown in the rear half of the waveform (D) in FIG. Shown.
- the motion detection input module 10343 does not receive the Doppler motion detection signal 13042, and thus the motion detection input module 10343 does not send a signal 130471 to the signal combiner 13047 that detects the movement of the object, as shown in the second half of the waveform (E) in FIG. Show. Therefore, as shown in the latter half of the waveform (F) in FIG. 4, the motion detection output module 1306 also does not output a signal 13061 in which the composite motion detecting system 100 actually detects the movement of the object.
- the switch circuit 13046 includes a delay switch circuit that turns on the RF Doppler motion detection device power supply 13022 when the delay switch circuit receives the infrared motion detection signal 13041, and at TW time. At the end of the segment, the RF Doppler motion detection device power supply 13022 is turned off.
- the signal combiner 13047 includes an AND gate circuit The AND gate receives the infrared movement detection signal 13041 from the passive infrared motion detecting device 110 at the first input and the RF received from the RF Doppler motion detecting device 120 at the second input during the TW period. When the Doppler shifts the detection signal 13042, the AND circuit outputs the signal 130471 that detects the movement of the object.
- the present invention is directed to a motion detection system 200.
- the motion detection system 200 includes: a composite motion detection system controller 230, and N composite motion detection devices, where N is a positive integer.
- the motion detecting system 200 includes a first composite motion detecting device 241, a second composite motion detecting device 242, ..., and an Nth composite motion detecting device 24N.
- Each of the composite motion detecting devices includes a passive infrared motion detector that detects the movement of the object using infrared rays, and a radio frequency Doppler motion detector that detects the movement of the object using the Doppler effect.
- the first composite motion detecting device 241 includes a first passive infrared motion detector 2101 and a first radio frequency Doppler motion detector 2201
- the second composite motion detecting device 242 includes a second passive infrared sensor.
- the motion detector 2102 and the second radio frequency Doppler motion detector 2202, ..., the Nth composite motion detecting device 24N include an Nth passive infrared motion detector 210N and an Nth radio frequency Doppler motion detector 220N.
- the first passive infrared motion detector 2101 includes an input of a passive infrared motion detector power supply 230111 and an output of a first infrared motion detection signal 230311.
- the first RF Doppler motion detector 2201 includes an input of a first RF Doppler motion detector power supply 230121 and an output of a first RF Doppler motion detection signal 230321.
- the second passive infrared motion detector 2102 includes an input of the passive infrared motion detector power supply 230111 and an output of the second infrared motion detection signal 230312.
- the second RF Doppler motion detector 2202 includes an input of a second RF Doppler motion detector power supply 230122 and an output of a second RF Doppler motion detection signal 230322.
- the Nth passive infrared motion detector 210N includes an input of the passive infrared motion detector power supply 230111 and an output of the Nth infrared motion detection signal 23031N.
- the Nth RF Doppler shift detector 220N includes an input of the Nth RF Doppler shift detector power supply 23012N and an output of the Nth RF Doppler shift detection signal 23032N.
- the composite motion detection system controller 230 includes a power module 2301, a motion detection input module 2303, and a motion detection output module 2309.
- the power module 2301 supplies power to all of the composite motion detecting devices.
- the power module 2301 continuously provides a passive infrared motion detector power supply 230111 to the passive infrared motion detectors in all of the composite motion detection devices.
- the passive infrared motion detector in a composite motion detecting device detects the movement of the object, the passive infrared motion detector sends an infrared motion detection signal 23031 to the motion detection input module 2303, and the motion detection input module 2303 sends a power transmission module 2301 to the power module 2301.
- the power signal 23011 is turned on, and the power module 2301 is instructed to turn on the radio frequency Doppler motion detector power in the composite motion detecting device during the TW period.
- the power module 2301 turns on the RF Doppler motion detector power supply in a time division manner in one TW period.
- a RF Doppler motion detector power supply is turned on only once during a TW period. Between two consecutive TW time ends, plus A delay time TD is taken to ensure that there is no co-channel interference between the RF Doppler motion detectors, reducing the false alarm rate.
- the radio frequency Doppler motion detector in all composite motion detecting devices is used to confirm the movement of the object detected by the passive infrared motion detector in the composite motion detecting device to reduce errors caused by the use of a single motion detector. Report rate.
- the motion detection input module 2303 includes a first input that receives an infrared motion detection signal 23031 from each passive infrared motion detector, and a radio frequency Doppler that receives radio frequency Doppler motion detectors. A second input of the detection signal 23032 is moved.
- the motion detection input module 2303 further includes a first output that transmits a power-on signal 23011 to the power module 2301, and a second output that transmits an object motion detection signal 23033 to the processor 2305.
- the first output end of the motion detecting input module 2303 sends a power-on signal 23011 to the power module 2301, instructing the power module 2301 to turn on the first radio frequency in the TW period.
- the Doppler motion detector power supply 23012I causes the first RF Doppler motion detector 220I to detect object movement during the TW period.
- a motion detection system 200 includes a first composite motion detection device 241, and a second composite motion detection device 242.
- the corresponding power supply waveform and motion detection signal waveform are as shown in waveform diagrams (A) to (I) in FIG.
- the first passive infrared motion detector 2101 of the first composite motion detecting device 241 and the second passive infrared motion detector 2102 of the second composite motion detecting device 242 receive the passive infrared motion detector power supply 230111, as shown in FIG. Shown.
- the first passive infrared motion detector 2101 detects object movement in the first time period T1 and the third time period T3, and the motion detection input module 2303 is in the first time period T1 and The first infrared motion detection signal 230311 is received within the three time period T3.
- the motion detection input module 2303 generates and transmits a power-on signal 23011 to the power module 2301.
- the power module 2301 turns on the first RF Doppler motion detector power of the first RF Doppler motion detector 2201 in one TW period.
- the 230121 enables the first radio frequency Doppler motion detector 2201 to detect object movement in two TW time periods corresponding to the first time period T1 and the third time period T3.
- the first RF Doppler motion detector power supply 230121 maintains the length of the TW time each time during the first time period T1 and the third time period T3, as shown by the waveform (C) in FIG.
- the first radio frequency Doppler motion detector 2201 does not detect the object movement in the first time period T1, but detects the object movement in the third time period T3, thereby generating the first Doppler motion detection signal 230321, such as The waveform (D) in Fig. 6 is shown.
- the second passive infrared motion detector 2102 detects object movement in the second time period T2 and the fourth time period T4, and the motion detection input module 2303 receives the second infrared movement in the second time period T2 and the fourth time period T4.
- the detection signal 230312 is as shown by waveform (E) in FIG.
- the motion detection input module 2303 generates and transmits a power-on signal 23011 to the power module 2301, and the power module 2301 turns on the second RF Doppler motion detector 2202 in one TW period.
- the second RF Doppler motion detector power supply 230122 enables the second RF Doppler motion detector 2202 to detect object movement during two TW time periods corresponding to the second time period T2 and the fourth time period T4.
- the second RF Doppler motion detector power supply 230122 maintains the TW time length each time during the second time period T2 and the fourth time period T4, as shown by the waveform (F) in FIG.
- the second radio frequency Doppler motion detector 2202 detects the object movement in the second time period T2, but does not detect the object movement in the fourth time period T4, thus generating the second Doppler motion detection signal 230322, such as The waveform (G) in Fig. 6 is shown.
- a time delay TD is added between all adjacent two TW time segments to avoid the occurrence of the same two RF Doppler motion detectors. Frequency interference.
- the motion detection system 200 does not detect object movement during the first time period T1.
- the second infrared movement detection signal 230312 and the second Doppler motion detection signal 230322 simultaneously exhibit positive values, and therefore, the motion detection system 200 detects object movement during the second time period T2.
- the motion detecting input module 2303 generates an object motion detecting signal 23033 as shown by a waveform (H) in FIG.
- the motion detection input module 2303 transmits the object motion detection signal 23033 to the processor 2305, and then the processor 2305 instructs the motion detection output module 2309 to output a signal 23091 that the motion detection system 200 actually detects the motion of the object, as shown in FIG. 6 (I). Shown.
- the motion detection system 200 detects object movement during the third time period T3.
- the motion detecting input module 2303 again generates an object motion detecting signal 23033 as shown by the waveform (H) in FIG.
- the motion detection input module 2303 transmits the object movement detection signal 23033 to the processor 2305, and then the processor 2305 instructs the motion detection output module 2309 to output a signal 23091 that the motion detection system 200 actually detects the movement of the object, as shown in FIG. (I) is shown.
- the second infrared movement detection signal 230312 and the second Doppler motion detection signal 230322 do not simultaneously exhibit a positive value, and therefore, the motion detection system 200 does not detect the object movement during the fourth time period T4.
- the present invention is directed to a method 700 of detecting movement of an object using a composite motion detection system 100.
- the method includes installing a set of motion detection systems 100 by a user, as shown in FIGS. 2 and 3.
- the composite motion detection system 100 includes at least one passive infrared motion detecting device 110, at least one radio frequency Doppler motion detecting device 120, and a composite motion detecting system controller 130.
- the passive infrared motion detecting device 110 includes a passive infrared motion detecting device power supply 13021 input terminal and an infrared motion detecting signal 13041 output terminal.
- the passive infrared motion detecting device 110 detects the movement of the object by detecting infrared rays radiated by a moving object, and generates an infrared movement detecting signal 13041 upon detecting the movement of the object.
- the measuring device 120 includes an RF Doppler motion detecting device power supply 13022 input and an output of a Doppler motion detection signal 13042.
- the radio frequency Doppler motion detecting device 120 detects the movement of the object by detecting the Doppler effect of the radio frequency wave reflected by the moving object, and generates a Doppler motion detecting signal 13042 when the object is detected to move.
- the radio frequency Doppler motion detecting device 120 is for confirming the movement of the object detected by the passive infrared motion detecting device 110 to reduce the false alarm rate generated by using the single motion detecting device.
- the composite motion detection system controller 130 includes a power module 1302 that provides power to the passive infrared motion detection device 110 and the RF Doppler motion detection device 120, one for receiving passive infrared movements.
- the motion detection output module 1306 When the logic control module 1304 simultaneously receives the infrared motion detection signal 13041 from the passive infrared motion detecting device 110 and the Doppler motion detection signal 13042 from the radio frequency Doppler motion detecting device 120, the motion detection output module 1306 outputs a composite The motion detection system 100 actually detects a signal 13061 that the object is moving.
- the power module 1302 includes a first output that provides the passive infrared motion detecting device power supply 13021 to the passive infrared motion detecting device 110, and a second output terminal of the radio frequency Doppler motion detecting device power supply 13022 to the radio frequency Doppler motion detecting device 120. And receiving an input of the power-on signal 13023 from the logic control module 1304.
- the power module 1302 of the composite motion detection system controller 130 provides the passive infrared motion detection device power supply 13021 to the passive infrared motion detection device 110 such that the passive infrared motion detection device 110 is capable of detecting movement of surrounding objects.
- the passive infrared motion detecting device 110 when the passive infrared motion detecting device 110 detects object movement, the passive infrared motion detecting device 110 generates an infrared motion detecting signal 13041 through its output. Passive infrared motion detection device 110 sends this infrared motion detection signal 13041 to logic control module 1304 to generate a power-on signal 13023.
- the logic control module 1304 sends the power-on signal 13023 to the power module 1302 to instruct the power module 1302 to connect the radio frequency Doppler motion detecting device power supply 13022 to the radio frequency Doppler motion detecting device 120 to enable the radio frequency Doppler motion detecting device 120 to Detect object movement.
- the RF Doppler motion detection device power supply 13022 is turned off after a TW period of time.
- the radio frequency Doppler motion detecting device 120 in the composite motion detecting system 100 is for confirming the movement of the object detected by the corresponding passive infrared motion detecting device 110 to reduce the false alarm rate generated by using
- the logic control module 1304 of the composite motion detection system controller 130 determines the radio frequency Doppler motion detection device 120 by detecting whether a Doppler motion detection signal 13042 from the radio frequency Doppler motion detection device 120 is received. Whether the object movement is also detected within the TW period at the same time.
- the logic control module 1304 receives the Doppler motion detection signal 13042 from the RF Doppler motion detection device 120, the method continues to block 710. Otherwise, when the logic control module 1304 does not receive the Doppler motion detection signal from the RF Doppler motion detecting device 120 At 13042, the method proceeds to block 704 and continues to detect object movement.
- the logic control module 1304 receives the Doppler motion detection signal 13042 from the RF Doppler motion detecting device 120
- the RF Doppler motion detecting device 120 confirms the detected by the passive infrared motion detecting device 110.
- the object moves, so the composite motion detection system 100 does detect object movement.
- the composite motion detecting system controller 130 instructs a motion detecting output module 1306 of the composite motion detecting system 100 to output a signal 13061 in which the composite motion detecting system 100 actually detects the movement of the object.
- the user can also install a set of motion detection system 200, wherein the motion detection system 200 includes a composite motion detection system controller 230, one or more composite motion detection devices, each composite movement
- the detecting device includes a passive infrared motion detector that detects the movement of the object by infrared rays, and a radio frequency Doppler motion detector that detects the movement of the object by using the Doppler effect, and a power module 2301 of the composite motion detecting system controller 230.
- a passive infrared motion detector power supply 230111 is provided to all passive infrared motion detectors.
- the method includes: when the passive infrared motion detector 2101 of the first composite motion detecting device 241 detects object movement, and transmits the first infrared motion detection signal 230311 to the motion detection input module At 2303, the motion detection input module 2303 sends a power-on signal 23011 to the power module 2301 indicating that the power module 2301 provides the RF Doppler motion detector power supply 230121 to the first RF Doppler motion detector 2201 for a TW period of time.
- the first RF Doppler motion detector 2201 is capable of detecting the movement of the object during the TW period, and when the corresponding first RF Doppler motion detector 2201 detects the movement of the object, the motion detection input module 2303 receives the first RF.
- the first Doppler motion detection signal 230321 of the Doppler motion detector 2201 when the motion detection input module 2303 simultaneously receives the first infrared motion detection signal 230311 from the first passive infrared motion detector 2101 and within the TW period
- the motion detection input Module 2309 outputs movement detection system 200 detects an actual movement of the object signal 23091.
- the The method further includes the power module 2301 providing a second RF Doppler motion detector power supply 230122 to the second RF Doppler motion detector 2202 of the second composite motion detecting device 242 during the TW period, the second RF Doppler shift
- the detector power supply 230122 is turned on after a time delay TD is added after the end of the previous TW period, and when the corresponding second RF Doppler motion detector 2202 detects the object movement, the motion detection input module 2303 receives the second from The second Doppler motion detection signal 230322 of the RF Doppler motion detector 2202, when the motion detection input module 2303 simultaneously receives the second infrared motion detection signal 230312 from the second passive infrared motion detector 2102 during the TW period And the detection output of the second Doppler motion detection
- the composite motion detection system controller 230 includes the power module 2301 that provides power to all of the composite motion detection devices.
- the power module 2301 continuously provides a passive infrared motion detector power supply 230111 to the passive infrared motion detectors in all of the composite motion detecting devices.
- the power module 2301 provides the corresponding radio frequency Doppler motion detector in the composite motion detecting device in a time division manner in a time division manner.
- the RF Doppler motion detector power supply only turns on one RF Doppler motion detector power supply in one TW period, and detects the TW time period of object movement in two passive infrared motion detectors.
- a time delay TD is added to avoid radio frequency interference between the two RF Doppler motion detectors.
- the radio frequency Doppler motion detectors in all composite motion detecting devices are used to confirm the movement of the object detected by the corresponding passive infrared motion detector in the composite motion detecting device to reduce the use of a single motion detector. False alarm rate.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Computer Security & Cryptography (AREA)
- Geophysics And Detection Of Objects (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
一种复合移动检测系统(100),包括:一个被动红外(PIR)移动检测装置(110),一个射频多普勒(RFD)移动检测装置(120)和一个控制器(130)。控制器(130)通过一个电源模块(1302)向PIR移动检测装置(110)连续提供电源使PIR移动检测装置(110)进行移动检测。当PIR移动检测装置(110)检测到物体/人体移动时,电源模块(1302)仅在一个时间段TW内向RFD移动检测装置(120)提供电源使RFD移动检测装置(120)进行移动检测。当PIR移动检测装置(110)和RFD移动检测装置(120)在TW时间段中同时检测到物体/人体移动时,复合移动检测系统(100)产生确定检测到物体/人体移动的信号。RFD移动检测装置(120)是用来复核PIR移动检测装置(110)检测到的物体/人体移动,以降低由于使用单个移动检测装置而产生的误报率,并降低复合移动检测系统(100)的整体功耗。
Description
本发明一般涉及电子监控系统,具体的涉及到多种节省功耗,虚警率极低的带有复合移动检测系统。
在安全监测系统中,移动检测装置和入侵检测装置精度是非常重要的。目前,常用的安全监测系统的移动检测装置包括被动红外移动检测装置和射频多普勒移动检测装置。被动红外移动检测装置的功耗很低,适用于电池供电的安全监测系统。但是使用被动红外移动检测装置的缺点包括虚警率高等。如图1所示,在一个窗口153外面停放的汽车191,193,195,197会辐射一定量的红外线。在监视区11内的一边装有一个被动红外移动检测装置10,这个被动红外移动检测装置10可能通过窗口153检测到车辆193和195的红外辐射。如果车辆193和195开进这几个停车位的话,被动红外移动检测装置10可以检测到这些车辆的移动,并触发连接这个被动红外移动检测装置10的报警系统,引发一场虚惊。另一方面,射频多普勒移动检测装置利用运动物体对射频电波的反射而产生的多普勒效应来检测物体的移动。这种射频多普勒移动检测装置对红外辐射或热辐射不敏感,但是由于射频的穿透能力,有可能检测到监视区以外的物体的移动,同样引起虚警。如图1所示,在监视区11内的一边装有一个射频多普勒移动检测装置10,如果有风吹到监视区11的外墙151以外的植物171,173,175,177,和179引起这些植物的摇动,那么这些植物的摇动也可能被射频多普勒移动检测装置检测到,而引起虚警。射频多普勒移动检测装置的功耗是相对较高,这类移动检测装置不适合于在电池供电的安全监测系统中长期连续运行。另外,当多个具有类似射频频率的射频多普勒移动检测装置在同一区域一起工作的时候,这些射频多普勒移动检测装置会产生同频干扰,也会进一步引起误报。这些高虚警率,高功耗,和同频干扰的问题有待解决。
发明内容
在一方面,本发明涉及一种复合移动检测系统。在某些实施例中,所述复合移动检测系统包括:至少一个被动红外移动检测装置,至少一个射频多普勒移动检测装置,和一个复合移动检测系统控制器。所述的被动红外移动检测装置通过检测一个移动物体辐射的红外线来检测物体的移动,并在检测到物体移动时产生一个红外移动检测信号。所述的射频多普勒移动检测装置通过检测一个移动物体反射的射频波的多普勒效应来检测物体的移动,并在检测
到物体移动时产生一个多普勒移动检测信号。所述的复合移动检测系统控制器包含一个向被动红外移动检测装置和射频多普勒移动检测装置提供电源的电源模块,一个用于输出实际检测到物体移动的信号的移动检测输出模块,和一个逻辑控制模块。
在某些实施例中,所述电源模块向被动红外移动检测装置供电。当被动红外移动检测装置检测到物体移动时,被动红外移动检测装置将红外移动检测信号传送给逻辑控制模块。逻辑控制模块传送一个接通电源信号给电源模块,将射频多普勒移动检测装置电源仅在一个时间段TW内接到射频多普勒移动检测装置使得射频多普勒移动检测装置进行物体移动检测。当射频多普勒移动检测装置检测到物体移动时,射频多普勒移动检测装置将多普勒移动检测信号传送给逻辑控制模块。当逻辑控制模块在TW时间段中同时收到来自被动红外移动检测装置的红外移动检测信号和来自射频多普勒移动检测装置的多普勒移动检测信号,移动检测输出模块输出复合移动检测系统实际检测到物体移动的信号。
在某些实施例中,所述电源模块不间断地向被动红外移动检测装置供电。所述电源模块仅在被动红外移动检测装置检测到物体移动以后在所述的时间段TW内向射频多普勒移动检测装置供电。所述射频多普勒移动检测装置是用于对被动红外移动检测装置检测到的物体移动进行确认以降低由于使用单一移动检测装置而产生的误报率。
在某些实施例中,所述逻辑控制模块包括:一个用于接收红外移动检测信号和多普勒移动检测信号的移动检测输入模块,一个处理器和一个存储器。所述的存储器包含带有计算机可执行的指令的固件,当计算机可执行的指令在处理器上执行时,计算机可执行的指令导致处理器完成以下的功能:指示电源模块向被动红外移动检测装置供电使被动红外移动检测装置能够检测物体的移动,当移动检测输入模块接收到红外移动检测信号时,向电源模块发送一个接通电源信号指示电源模块向射频多普勒移动检测装置供电,当移动检测输入模块在TW时间段内同时接收到来自被动红外移动检测装置的红外移动检测信号和来自射频多普勒移动检测装置的射频多普勒移动检测信号,指示移动检测输出模块输出复合移动检测系统实际检测到物体移动的信号。
在某些实施例中,所述逻辑控制模块包括:一个开关电路和一个信号组合器。当移动检测输入模块接收到红外移动检测信号时,所述延时开关电路向电源模块发出一个接通电源信号指示电源模块向射频多普勒移动检测装置供电使射频多普勒移动检测装置能够在TW时间段内检测物体的移动。当所述信号组合器在TW时间段内同时接收到来自被动红外移动检测装置的红外移动检测信号和来自射频多普勒移动检测装置的射频多普勒移动检测信号时,信号组合器输出一个物体移动检测信号,将这个物体移动检测信号传送给移动检测输出模块,并指示移动检测输出模块输出复合移动检测系统实际检测到物体移动的信号。
在某些实施例中,所述开关电路包含一个延时开关电路,当所述延时开关电路接收到红外移动检测信号时接通射频多普勒移动检测装置电源,并在TW时间段结束时关闭射频多普勒移动检测装置电源。所述信号组合器包含一个与门电路,当所述与门电路在TW时间段内同时接收到红外移动检测信号和射频多普勒移动检测信号时,所述与门电路输出所述的物体移动检测信号。
在另一方面,本发明涉及一种移动检测系统。在某些实施例中,所述移动检测系统包括:一个复合移动检测系统控制器,和一个或多个复合移动检测装置。其中每个复合移动检测装置均包含一个利用红外线检测物体移动的被动红外移动检测器,和一个利用多普勒效应检测物体移动的射频多普勒移动检测器。所述的复合移动检测系统控制器包含:一个向所有复合移动检测装置提供电源的电源模块,一个用于接收红外移动检测信号和多普勒移动检测信号的移动检测输入模块,一个用于输出实际检测到物体移动信号的移动检测输出模块,一个处理器和一个存储器。所述的存储器包含带有计算机可执行的指令的固件,当计算机可执行的指令在处理器上执行时,计算机可执行的指令导致处理器完成以下的功能:指示电源模块向所有的被动红外移动检测器提供被动红外移动检测器电源使所有的被动红外移动检测器能够检测物体的移动,当第一个复合移动检测装置的被动红外移动检测器检测到物体移动,并将第一个红外移动检测信号传送到移动检测输入模块时,指示电源模块向第一个射频多普勒移动检测器在一个TW时间段内提供射频多普勒移动检测器电源使第一个射频多普勒移动检测器能够在TW时间段内检测物体的移动,当移动检测输入模块在TW时间段内同时接收到来自第一被动红外移动检测器的第一红外移动检测信号和来自第一射频多普勒移动检测器的第一多普勒移动检测信号时,指示移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
在某些实施例中,当第二个复合移动检测装置的第二被动红外移动检测器检测到物体移动并将第二红外移动检测信号传送到移动检测输入模块时,计算机可执行的指令导致处理器完成以下的功能:指示电源模块在TW时间段内向第二复合移动检测装置的第二射频多普勒移动检测器提供第二射频多普勒移动检测器电源,第二射频多普勒移动检测器电源在前一个TW时间段结束之后再加上一个时间延迟TD以后接通,当移动检测输入模块在TW时间段内同时接收到来自第二被动红外移动检测器的第二红外移动检测信号和来自第二射频多普勒移动检测器的第二多普勒移动检测信号时,指示移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
在某些实施例中,所述电源模块不间断地向所有复合移动检测装置中的被动红外移动检测器提供被动红外移动检测器电源。当某个复合移动检测装置中的被动红外移动检测器在TW时间段内检测到物体移动时,所述电源模块以时分的方式向该复合移动检测装置中的射频多
普勒移动检测器提供射频多普勒移动检测器电源,每次只会在一个TW时间段中接通一个射频多普勒移动检测器电源,并在相继两个被动红外移动检测器检测到物体移动的TW时间段之间加入一个时间延迟TD,以避免这两个射频多普勒移动检测器之间的射频干扰。所有复合移动检测装置中的射频多普勒移动检测器都是用于对该复合移动检测装置中的被动红外移动检测器检测到的物体移动进行确认以降低由于使用单一移动检测器而产生的误报率。
在又一方面,本发明涉及一种使用移动检测系统检测物体移动的方法。在某些实施例中,所述的方法包括:由使用者安装一套移动检测系统,其中所述移动检测系统包含一个复合移动检测系统控制器,一个或多个复合移动检测装置,其中每个复合移动检测装置均包含一个利用红外线检测物体移动的被动红外移动检测器,和一个利用多普勒效应检测物体移动的射频多普勒移动检测器,并由复合移动检测系统控制器的一个电源模块向所有的被动红外移动检测器提供被动红外移动检测器电源。
在某些实施例中,所述的方法包括:当第一个复合移动检测装置的被动红外移动检测器检测到物体移动,并将第一个红外移动检测信号传送到移动检测输入模块时,移动检测输入模块向电源模块发出一个通电信号指示电源模块向第一个射频多普勒移动检测器在一个TW时间段内提供射频多普勒移动检测器电源使第一个射频多普勒移动检测器能够在TW时间段内检测物体的移动,当相应的第一射频多普勒移动检测器检测到物体移动,移动检测输入模块接收来自第一射频多普勒移动检测器的第一多普勒移动检测信号,当移动检测输入模块在TW时间段内同时接收到来自第一被动红外移动检测器的第一红外移动检测信号和来自第一射频多普勒移动检测器的第一多普勒移动检测信号时,移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
在某些实施例中,当第二个复合移动检测装置的第二被动红外移动检测器检测到物体移动并将第二红外移动检测信号传送到移动检测输入模块时,所述的方法进一步包括:电源模块在TW时间段内向第二复合移动检测装置的第二射频多普勒移动检测器提供第二射频多普勒移动检测器电源,第二射频多普勒移动检测器电源在前一个TW时间段结束之后再加上一个时间延迟TD以后接通,当相应的第二射频多普勒移动检测器检测到物体移动,移动检测输入模块接收来自第二射频多普勒移动检测器的第二多普勒移动检测信号,当移动检测输入模块在TW时间段内同时接收到来自第二被动红外移动检测器的第二红外移动检测信号和来自第二射频多普勒移动检测器的第二多普勒移动检测信号时,移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
在某些实施例中,所述复合移动检测系统控制器包括向所有复合移动检测装置提供电源的所述的电源模块。所述电源模块不间断地向所有复合移动检测装置中的被动红外移动检测
器提供被动红外移动检测器电源。当某个复合移动检测装置中的被动红外移动检测器检测到物体移动时,所述电源模块以时分的方式在TW时间段向该复合移动检测装置中相应的射频多普勒移动检测器提供射频多普勒移动检测器电源,每次只会在一个TW时间段中接通一个射频多普勒移动检测器电源,并在相继两个被动红外移动检测器检测到物体移动的TW时间段之间加入一个时间延迟TD,以避免这两个射频多普勒移动检测器之间的射频干扰。所有复合移动检测装置中的射频多普勒移动检测器都是用于对该复合移动检测装置中相应的被动红外移动检测器检测到的物体移动进行确认以降低由于使用单一移动检测器而产生的误报率。
在某些实施例中,所述的复合移动检测系统控制器包括:一个移动检测输入模块和一个移动检测输出模块。所述的移动检测输入模块接收来自所有复合移动检测装置中被动红外移动检测器发来的红外移动检测信号和来自所有的复合移动检测装置中射频多普勒移动检测器发来的多普勒移动检测信号。当移动检测输入模块在TW时间段内同时接收到来自至少一个复合移动检测装置中被动红外移动检测器发来的红外移动检测信号和来自相应复合移动检测装置中的射频多普勒移动检测器发来的多普勒移动检测信号时,所述的移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
本发明的这些和其它方面将通过结合以下图式获得的优选实施例的以下描述而变得清楚,但可以在不脱离本发明的新颖概念的精神和范围的情况下实现这些和其它方面的变化和修改。
附图说明本发明的一个或多个实施例,且与书面描述一起用以解释本发明的原理。在可能的情况下,相同的参考标号在所有图式中尽量用于指代实施例的相同或相似元件。附图并不能将本发明限于本文中所揭示和描述的具体实施例。附图不一定按适当的比例绘制,而是将重点放在清晰地说明本发明的原理上,并且其中:
图1显示了一个使用单一被动红外移动检测器或射频多普勒移动检测器检测在监视区中物体移动时,外部的物体如植物或车辆的红外辐射和多普勒反射对该移动检测器的影响。
图2根据本发明的某些实施例显示了一种复合移动检测系统的方框图;
图3根据本发明的某些实施例显示了又一种复合移动检测系统的方框图;
图4根据本发明的某些实施例显示一组如图2和图3所示的复合移动检测系统的供电电源和移动检测信号的电压波形。
图5根据本发明的某些实施例显示了一种带有多组复合移动检测装置的移动检测系统的方框图;
图6根据本发明的某些实施例显示一组如图5所示的带有多组复合移动检测装置的移动检测系统的供电电源和移动检测信号的电压波形;和
图7显示了一种使用移动检测系统检测物体移动的方法的流程图。
现将参考附图在下文中更加全面地描述本发明,在这些附图中示出了本发明的示例性实施例。然而,本发明可以用许多不同形式实施,并且不应被解释为限于本文所阐述的实施例。确切地说,提供这些实施例是为了使得本发明将为透彻且完整的,并且这些实施例将向所属领域的技术人员充分传达本发明的范围。类似参考标号通篇指代类似元件。
应理解,当元件被称作“在”另一元件“上”时,其可以直接在所述另一元件上或可在其之间存在中间元件。相比之下,当元件被称作“直接在”另一元件“上”时,不存在插入元件。如本文中所使用,术语“和/或”包含相关联的所列项中的一个或多个的任何以及所有组合。
应理解,虽然本文中可以使用术语第一、第二、第三等来描述各种元件、装置、区域、层和/或部分,但是这些元件、装置、区域、层和/或部分不应受到这些术语的限制。这些术语仅用于区分一个元件、装置、区域、层或部分与另一元件、装置、区域、层或部分。因此,在不脱离本发明的教示内容的情况下,下文所论述的第一元件、装置、区域、层或部分可以称为第二元件、装置、区域、层或部分。
本文中所使用的术语仅出于描述具体实施例的目的,且并不意图限制本发明。如本文中所使用,除非上下文另外明确指示,否则单数形式“一”和“所述”也既定包含复数形式。应进一步理解,当在本文中使用时,术语“包括”或“包含”或“具有”指明存在所陈述的特征、区域、整数、步骤、操作、元件和/或装置,但不排除存在或添加一个或多个其它特征、区域、整数、步骤、操作、元件、装置和/或其群组。
此外,本文中可以使用例如“下部”或“底部”、“上部”或“顶部”和“前部”或“后部”等相关术语来描述如图式中所示的一个元件与另一元件的关系。应理解,相关术语既定涵盖除图式中所描绘的定向以外的装置的不同定向。例如,如果一个图式中的装置翻转,那么描述成位于其它元件的“下部”侧面上的元件将定向在所述其它元件的“上部”侧面上。因此,示例性术语“下部”可取决于图式的具体定向而涵盖“下部”和“上部”的定向。类似地,如果一个图式中的装置翻转,那么描述成位于其它元件“之下”或“下方”的元件将定向在所述其它元件“上方”。因此,示例性术语“之下”或“下方”可涵盖上方和下方两种定向。
除非另外定义,否则本文中所用的所有术语(包含技术和科技术语)具有与本发明所属领域的技术人员的通常所理解相同的意义。将进一步理解,术语(如在常用词典中所定义的那些术语)应解释为具有与其在相关技术和本发明的上下文中的含义一致的含义,并且除非本文中明确地定义,否则将不会以理想化或过分正式意义进行解释。
在以下描述中提供许多具体细节以使本发明得到全面理解,但本发明还可以通过使用与本文中所描述的方式不同的其它方式来实施,因此本发明并不限于在下文中揭示的具体实施例。
在参考附图后,本发明在这里会被描述的更完整,因为附图中所示了本发明的实施例。但本发明可能用不同的形式被具体化,而且不能被理解为局限于这里阐述的这些实施例。相反地,提供这些实施例,本发明可以更加全面和完整,并且会充分传达本发明的范围给该领域的技术人员。相同的数字通常指的是相同的元件。
在安全监测系统中,常用的安全监测系统的移动检测装置包括被动红外移动检测装置和射频多普勒移动检测装置。被动红外移动检测装置的功耗是很低,适用于电池供电的安全监测系统中。但是使用被动红外移动检测装置的缺点包括虚警率高。另一方面,射频多普勒移动检测装置利用运动物体对射频电波的反射而产生的多普勒效应来检测物体的移动。这种射频多普勒移动检测装置对红外辐射或热辐射不敏感,但是由于射频的穿透能力,有可能检测到监视区以外的物体的移动,同样引起虚警。射频多普勒移动检测装置的功耗是相对较高,这类移动检测装置不适合于在电池供电的安全监测系统中长期连续运行。另外,当多个具有类似射频频率的射频多普勒移动检测装置在同一区域一起工作的时候,这些射频多普勒移动检测装置会产生同频干扰,也会进一步引起误报。这些高虚警率,高功耗,和同频干扰的问题有待解决。
下面将结合图2和图3来对本发明的某些实施例进行详细的描述。
在一方面,如图2所示,本发明涉及一种复合移动检测系统100。在某些实施例中,所述复合移动检测系统100包括:至少一个被动红外移动检测装置110,至少一个射频多普勒移动检测装置120,和一个复合移动检测系统控制器130。被动红外移动检测装置110包括一个被动红外移动检测装置电源13021输入端和一个红外移动检测信号13041的输出端。所述的被动红外移动检测装置110通过检测一个移动物体辐射的红外线来检测物体的移动,并在检测到物体移动时产生一个红外移动检测信号13041。射频多普勒移动检测装置120包括一个射频多普勒移动检测装置电源13022输入端和一个多普勒移动检测信号13042的输出端。所述的射频多普勒移动检测装置120通过检测一个移动物体反射的射频波的多普勒效应来检测物体的移动,并在检测到物体移动时产生一个多普勒移动检测信号13042。所述射频多普勒移动检
测装置120是用于对被动红外移动检测装置110检测到的物体移动进行确认以降低由于使用单一移动检测装置而产生的误报率。
所述的复合移动检测系统控制器130包含一个向被动红外移动检测装置110和射频多普勒移动检测装置120提供电源的电源模块1302,一个用于接收来自被动红外移动检测装置110的红外移动检测信号13041和来自射频多普勒移动检测装置120的多普勒移动检测信号13042的逻辑控制模块1304,以及一个用于输出实际检测到物体移动的信号13061的移动检测输出模块1306。当逻辑控制模块1304同时接收到来自被动红外移动检测装置110的红外移动检测信号13041和来自射频多普勒移动检测装置120的多普勒移动检测信号13042时,所述移动检测输出模块1306输出复合移动检测系统100实际检测到物体移动的信号13061.
在某些实施例中,所述电源模块1302向被动红外移动检测装置110提供被动红外移动检测装置电源13021使得被动红外移动检测装置110能够检测物体移动。当被动红外移动检测装置110检测到物体移动时,被动红外移动检测装置110将红外移动检测信号13041传送给逻辑控制模块1304。逻辑控制模块1304传送一个接通电源信号13023给电源模块1302将射频多普勒移动检测装置电源13022仅在一个时间段TW内接到射频多普勒移动检测装置120使得射频多普勒移动检测装置120能够进行物体移动检测。接到射频多普勒移动检测装置120的射频多普勒移动检测装置电源13022维持一个TW时间段,然后将会自动关闭。当射频多普勒移动检测装置120检测到物体移动时,射频多普勒移动检测装置120产生一个多普勒移动检测信号13042并将该多普勒移动检测信号13042传送给逻辑控制模块1304。当逻辑控制模块1304在TW时间段中同时收到来自被动红外移动检测装置110的红外移动检测信号13041和来自射频多普勒移动检测装置120的多普勒移动检测信号13042时,移动检测输出模块1306输出复合移动检测系统100实际检测到物体移动的信号13061。
在某些实施例中,所述电源模块1302不间断地向被动红外移动检测装置110提供被动红外移动检测装置电源13021,如图4中波形(A)所示。所述电源模块1302仅在被动红外移动检测装置110检测到物体移动并生成了红外移动检测信号13041(如图4中波形(B)所示)以后在所述的时间段TW内向射频多普勒移动检测装置120提供射频多普勒移动检测装置电源13022,如图4中波形(C)所示。射频多普勒移动检测装置120以这样方式通电,射频多普勒移动检测装置120在大部分时间处于关闭状态,这样复合移动检测系统100耗电量大大降低,使复合移动检测系统100可以适合于在电池供电的安全监测系统中长期连续运行。
在某些实施例中,如图2所示,所述逻辑控制模块1304包括:一个移动检测输入模块13043,一个处理器13044和一个存储器13045。所述移动检测输入模块13043包含一个用于接收来自被动红外移动检测装置110的红外移动检测信号13041的第一输入端,和一个接收
来自射频多普勒移动检测装置120的射频多普勒移动检测信号13042的第二输入端。所述移动检测输入模块13043还包含一个向电源模块1302发送接通电源信号13023的第一输出端,和一个向处理器13044发送实际检测到物体移动的信号130431的第二输出端。
在某个实施例中,所述的存储器13045包含一个带有计算机可执行的指令的固件130451。当计算机可执行的指令在处理器13044上执行时,计算机可执行的指令导致处理器13044完成以下的功能:指示电源模块1302向被动红外移动检测装置110提供被动红外移动检测装置电源13021使被动红外移动检测装置110能够检测物体的移动,当被动红外移动检测装置110检测到物体移动时,被动红外移动检测装置110产生一个红外移动检测信号13041,并传送给移动检测输入模块13043。当移动检测输入模块13043接收到红外移动检测信号13041时,移动检测输入模块13043向电源模块1302发送一个接通电源的信号13023指示电源模块1302向射频多普勒移动检测装置120提供射频多普勒移动检测装置电源13022,如图4中波形(C)所示,使得射频多普勒移动检测装置120在TW时间段中检测物体移动。当射频多普勒移动检测装置120检测到物体移动,射频多普勒移动检测装置120产生一个多普勒移动检测信号13042,如图4中波形(D)前半部所示,并将多普勒移动检测信号13042传送至移动检测输入模块10343。移动检测输入模块10343向处理器13044发出一个检测到物体移动的信号130431,如图4中波形(E)所示。当移动检测输入模块13043在TW时间段内同时接收到来自被动红外移动检测装置110的红外移动检测信号13041和来自射频多普勒移动检测装置120的射频多普勒移动检测信号13042,处理器13044指示移动检测输出模块1306输出复合移动检测系统100实际检测到物体移动的信号13061,如图4中波形(F)所示。
当被动红外移动检测装置110检测到另一个物体移动时,如图4中波形(B)后半部所示,被动红外移动检测装置110产生一个红外移动检测信号13041,并传送给移动检测输入模块13043。当移动检测输入模块13043接收到第二个红外移动检测信号13041时,移动检测输入模块13043向电源模块1302发送另一个接通电源的信号13023指示电源模块1302向射频多普勒移动检测装置120提供射频多普勒移动检测装置电源13022,如图4中波形(C)后半部所示,使得射频多普勒移动检测装置120在TW时间段中检测物体移动。在此,射频多普勒移动检测装置120没有检测到物体移动,射频多普勒移动检测装置120就没有产生多普勒移动检测信号13042,如图4中波形(D)后半部所示。移动检测输入模块10343没有收到多普勒移动检测信号13042,因而移动检测输入模块10343没有向处理器13044发出一个检测到物体移动的信号130431,如图4中波形(E)后半部所示。因此,如图4中波形(F)后半部所示,移动检测输出模块1306也没有输出复合移动检测系统100实际检测到物体移动的信号13061。
在另一个实施例中,如图3所示,所述逻辑控制模块1304包括:一个开关电路13046和一个信号组合器13047。开关电路13046有一个接收来自被动红外移动检测装置110的红外移动检测信号13041的输入端,和一个向电源模块1032发送接通电源信号13023的输出端。当被动红外移动检测装置110检测到物体移动时,被动红外移动检测装置110产生并传送红外移动检测信号13041到移动检测输入模块13043。当移动检测输入模块13043接收到红外移动检测信号13041时,所述开关电路13046向电源模块1302发出接通电源信号13023,指示电源模块1302向射频多普勒移动检测装置120提供射频多普勒移动检测装置电源13022,如图4中波形(C)的前半部所示,使射频多普勒移动检测装置120能够在TW时间段内检测物体的移动。信号组合器13047包含一个接收器来自被动红外移动检测装置110的红外移动检测信号13041的第一输入端,一个接收器来自射频多普勒移动检测装置120的多普勒移动检测信号13042的第二输入端,和一个向移动检测输出模块1306发送检测到物体移动的信号130471的输出端。当所述信号组合器13047在TW时间段内同时在第一输入端接收到来自被动红外移动检测装置110的红外移动检测信号13041和在第二输入端接收到来自射频多普勒移动检测装置120的射频多普勒移动检测信号13042时,信号组合器13047产生并从输出端输出检测到物体移动的信号130471,将这个检测到物体移动的信号130471传送给移动检测输出模块1306,并指示移动检测输出模块1306输出复合移动检测系统100实际检测到物体移动的信号13061。
当被动红外移动检测装置110检测到另一个物体移动时,被动红外移动检测装置110产生并传送另一个红外移动检测信号13041到移动检测输入模块13043。当移动检测输入模块13043接收到红外移动检测信号13041时,所述开关电路13046向电源模块1302发出接通电源信号13023,指示电源模块1302向射频多普勒移动检测装置120提供射频多普勒移动检测装置电源13022,如图4中波形(C)的后半部所示,使射频多普勒移动检测装置120能够在TW时间段内检测物体的移动。在此后半部,射频多普勒移动检测装置120没有检测到任何物体移动,射频多普勒移动检测装置120就没有产生多普勒移动检测信号13042,如图4中波形(D)后半部所示。移动检测输入模块10343没有收到多普勒移动检测信号13042,因而移动检测输入模块10343没有向信号组合器13047发出一个检测到物体移动的信号130471,如图4中波形(E)后半部所示。因此,如图4中波形(F)后半部所示,移动检测输出模块1306也没有输出复合移动检测系统100实际检测到物体移动的信号13061。
在某些实施例中,所述开关电路13046包含一个延时开关电路,当所述延时开关电路接收到红外移动检测信号13041时接通射频多普勒移动检测装置电源13022,并在TW时间段结束时关闭射频多普勒移动检测装置电源13022。所述信号组合器13047包含一个与门电路,当
所述与门电路在TW时间段内同时在第一输入端接收到来自被动红外移动检测装置110的红外移动检测信号13041和在第二输入端接收到来自射频多普勒移动检测装置120的射频多普勒移动检测信号13042时,所述与门电路输出所述的检测到物体移动的信号130471。
在另一方面,如图5所示,本发明涉及一种移动检测系统200。在某些实施例中,所述移动检测系统200包括:一个复合移动检测系统控制器230,和N个复合移动检测装置,其中N是一个正整数。如图5所示,移动检测系统200包含:第一复合移动检测装置241,第二复合移动检测装置242,…,和第N个复合移动检测装置24N。其中每个复合移动检测装置均包含一个利用红外线检测物体移动的被动红外移动检测器,和一个利用多普勒效应检测物体移动的射频多普勒移动检测器。
在图5所示的实施例中,第一复合移动检测装置241包含第一被动红外移动检测器2101和第一射频多普勒移动检测器2201,第二复合移动检测装置242包含第二被动红外移动检测器2102和第二射频多普勒移动检测器2202,…,第N复合移动检测装置24N包含第N被动红外移动检测器210N和第N射频多普勒移动检测器220N。第一被动红外移动检测器2101包含一个被动红外移动检测器电源230111的输入端和第一红外移动检测信号230311的输出端。第一射频多普勒移动检测器2201包含第一射频多普勒移动检测器电源230121的输入端和第一射频多普勒移动检测信号230321的输出端。第二被动红外移动检测器2102包含被动红外移动检测器电源230111的输入端和第二红外移动检测信号230312的输出端。第二射频多普勒移动检测器2202包含第二射频多普勒移动检测器电源230122的输入端和第二射频多普勒移动检测信号230322的输出端。以此类推,第N被动红外移动检测器210N包含被动红外移动检测器电源230111的输入端和第N红外移动检测信号23031N的输出端。第N射频多普勒移动检测器220N包含第N射频多普勒移动检测器电源23012N的输入端和第N射频多普勒移动检测信号23032N的输出端。
在某些实施例中,所述复合移动检测系统控制器230包含一个电源模块2301,一个移动检测输入模块2303,和一个移动检测输出模块2309。电源模块2301向所有的复合移动检测装置提供电源。电源模块2301不间断地向所有复合移动检测装置中的被动红外移动检测器提供被动红外移动检测器电源230111。当一个复合移动检测装置中的被动红外移动检测器检测到物体移动时,该被动红外移动检测器向移动检测输入模块2303发送一个红外移动检测信号23031,移动检测输入模块2303向电源模块2301发送一个接通电源信号23011,并指示电源模块2301在TW时间段中接通该复合移动检测装置中的射频多普勒移动检测器电源。电源模块2301以一种时分方式在一个TW时间段中接通射频多普勒移动检测器电源。每次只会在一个TW时间段中接通一个射频多普勒移动检测器电源。在连续的两个TW时间端之间,还加上
了一段延迟时间TD以确保各射频多普勒移动检测器之间不存在同频干扰,降低虚警率。所有复合移动检测装置中的射频多普勒移动检测器都是用于对该复合移动检测装置中的被动红外移动检测器检测到的物体移动进行确认以降低由于使用单一移动检测器而产生的误报率。
在某些实施例中,移动检测输入模块2303包含一个接收来自各被动红外移动检测器的红外移动检测信号23031的第一输入端,一个接收来自个射频多普勒移动检测器的射频多普勒移动检测信号23032的第二输入端。移动检测输入模块2303还包含一个向电源模块2301发送接通电源信号23011的第一输出端,和一个向处理器2305发送物体移动检测信号23033的第二输出端。当第I个复合移动检测装置24I检测到物体移动时,移动检测输入模块2303的第一输出端向电源模块2301发送接通电源信号23011,指示电源模块2301在TW时间段中接通第I射频多普勒移动检测器电源23012I,使得第I个射频多普勒移动检测器220I在TW时间段中检测物体移动。当第I个射频多普勒移动检测器220I在TW时间段中检测到物体移动时,移动检测输入模块2303的第二输出端向处理器2305发出物体移动检测信号23033,其中I=1,2,…,N。
在如图5中部分显示的一个实施例中,一个移动检测系统200包含第一复合移动检测装置241,和第二复合移动检测装置242。相应的电源波形和移动检测信号波形如图6中的波形图(A)至(I)所示。第一复合移动检测装置241的第一被动红外移动检测器2101和第二复合移动检测装置242的第二被动红外移动检测器2102接收被动红外移动检测器电源230111,如图6中波形(A)所示。如图6中波形(B)所示,第一被动红外移动检测器2101在第一时间段T1和第三时间段T3内检测到物体移动,移动检测输入模块2303在第一时间段T1和第三时间段T3内接收到第一红外移动检测信号230311。移动检测输入模块2303产生并发送接通电源信号23011至电源模块2301,电源模块2301在一个TW时间段中接通第一射频多普勒移动检测器2201的第一射频多普勒移动检测器电源230121使得第一射频多普勒移动检测器2201能够在与第一时间段T1和第三时间段T3相应的两个TW时间段内检测物体移动。第一射频多普勒移动检测器电源230121在第一时间段T1和第三时间段T3内每次维持TW时间长短,如图6中波形(C)所示。第一射频多普勒移动检测器2201在第一时间段T1中没有检测到物体移动,但在第三时间段T3中检测到物体移动,因而产生了第一多普勒移动检测信号230321,如图6中波形(D)所示。
第二被动红外移动检测器2102在第二时间段T2和第四时间段T4内检测到物体移动,移动检测输入模块2303在第二时间段T2和第四时间段T4内接收到第二红外移动检测信号230312,如图6中波形(E)所示。移动检测输入模块2303产生并发送接通电源信号23011至电源模块2301,电源模块2301在一个TW时间段中接通第二射频多普勒移动检测器2202的
第二射频多普勒移动检测器电源230122使得第二射频多普勒移动检测器2202能够在与第二时间段T2和第四时间段T4相应的两个TW时间段内检测物体移动。第二射频多普勒移动检测器电源230122在第二时间段T2和第四时间段T4内每次维持TW时间长短,如图6中波形(F)所示。第二射频多普勒移动检测器2202在第二时间段T2中检测到物体移动,但在第四时间段T4中没有检测到物体移动,因而产生了第二多普勒移动检测信号230322,如图6中波形(G)所示。
图6中波形(A)至(F)所示,所有的相邻的两个TW时间段之间,均加有一个时间延迟TD,以避免相邻两个射频多普勒移动检测器产生同频干扰。
在第一时间段T1内,第一红外移动检测信号230311和第一多普勒移动检测信号230312没有同时出现正值,因此,移动检测系统200在第一时间段T1内没有检测到物体移动。在第二时间段T2内,第二红外移动检测信号230312和第二多普勒移动检测信号230322同时出现正值,因此,移动检测系统200在第二时间段T2内检测到物体移动。这时,移动检测输入模块2303产生一个物体移动检测信号23033,如图6中波形(H)所示。移动检测输入模块2303将这个物体移动检测信号23033传送给处理器2305,然后处理器2305指示移动检测输出模块2309输出移动检测系统200实际检测到物体移动的信号23091,如图6中波形(I)所示。
在第三时间段T3内,第一红外移动检测信号230311和第一多普勒移动检测信号230321同时出现正值,因此,移动检测系统200在第三时间段T3内检测到物体移动。这时,移动检测输入模块2303又产生一个物体移动检测信号23033,如图6中波形(H)所示。这时,移动检测输入模块2303将这个物体移动检测信号23033传送给处理器2305,然后处理器2305指示移动检测输出模块2309输出移动检测系统200实际检测到物体移动的信号23091,如图6中波形(I)所示。在第四时间段T4内,第二红外移动检测信号230312和第二多普勒移动检测信号230322没有同时出现正值,因此,移动检测系统200在第四时间段T4内没有检测到物体移动。
在又一方面,如图7所示,本发明涉及一种使用复合移动检测系统100检测物体移动的方法700。
在方框702,在某些实施例中,所述的方法包括:由使用者安装一套移动检测系统100,如图2和图3所示。所述复合移动检测系统100包括:至少一个被动红外移动检测装置110,至少一个射频多普勒移动检测装置120,和一个复合移动检测系统控制器130。被动红外移动检测装置110包括一个被动红外移动检测装置电源13021输入端和一个红外移动检测信号13041的输出端。所述的被动红外移动检测装置110通过检测一个移动物体辐射的红外线来检测物体的移动,并在检测到物体移动时产生一个红外移动检测信号13041。射频多普勒移动检
测装置120包括一个射频多普勒移动检测装置电源13022输入端和一个多普勒移动检测信号13042的输出端。所述的射频多普勒移动检测装置120通过检测一个移动物体反射的射频波的多普勒效应来检测物体的移动,并在检测到物体移动时产生一个多普勒移动检测信号13042。所述射频多普勒移动检测装置120是用于对被动红外移动检测装置110检测到的物体移动进行确认以降低由于使用单一移动检测装置而产生的误报率。
在某些实施例中,所述的复合移动检测系统控制器130包含一个向被动红外移动检测装置110和射频多普勒移动检测装置120提供电源的电源模块1302,一个用于接收来自被动红外移动检测装置110的红外移动检测信号13041和来自射频多普勒移动检测装置120的多普勒移动检测信号13042的逻辑控制模块1304,以及一个用于输出实际检测到物体移动的信号13061的移动检测输出模块1306。当逻辑控制模块1304同时接收到来自被动红外移动检测装置110的红外移动检测信号13041和来自射频多普勒移动检测装置120的多普勒移动检测信号13042时,所述移动检测输出模块1306输出复合移动检测系统100实际检测到物体移动的信号13061。电源模块1302包含向被动红外移动检测装置110提供被动红外移动检测装置电源13021的第一输出端,向射频多普勒移动检测装置120提供射频多普勒移动检测装置电源13022的第二输出端,以及接收来自逻辑控制模块1304的接通电源信号13023的一个输入端。
在方框704,复合移动检测系统控制器130的电源模块1302向被动红外移动检测装置110提供被动红外移动检测装置电源13021,使得被动红外移动检测装置110能够检测对周围物体的移动。
在方框706,当被动红外移动检测装置110检测到物体移动,被动红外移动检测装置110通过其输出端产生一个红外移动检测信号13041。被动红外移动检测装置110将这个红外移动检测信号13041发送到逻辑控制模块1304去产生一个接通电源信号13023。逻辑控制模块1304将接通电源信号13023发送给电源模块1302指示电源模块1302将射频多普勒移动检测装置电源13022接到射频多普勒移动检测装置120以使射频多普勒移动检测装置120能够检测物体移动。射频多普勒移动检测装置电源13022维持一个TW时间段以后关闭。复合移动检测系统100中的射频多普勒移动检测装置120是用于对相应的被动红外移动检测装置110检测到的物体移动进行确认以降低由于使用单一移动检测装置而产生的误报率。
在决策方框708,复合移动检测系统控制器130的逻辑控制模块1304通过检测是否接收到来自射频多普勒移动检测装置120的多普勒移动检测信号13042来决定射频多普勒移动检测装置120是否也同时在TW时间段内检测到物体移动。当逻辑控制模块1304接收到来自射频多普勒移动检测装置120的多普勒移动检测信号13042时,该方法继续运行到方框710。否则当逻辑控制模块1304没有接收到来自射频多普勒移动检测装置120的多普勒移动检测信号
13042时,该方法运行到方框704,并继续检测物体移动。
在方框710,当逻辑控制模块1304接收到来自射频多普勒移动检测装置120的多普勒移动检测信号13042时,射频多普勒移动检测装置120确认了被动红外移动检测装置110检测到的物体移动,因此复合移动检测系统100确实检测到物体移动。这时,复合移动检测系统控制器130指示复合移动检测系统100的一个移动检测输出模块1306输出复合移动检测系统100实际检测到物体移动的信号13061。
在某些实施例中,使用者还可以安装一套移动检测系统200,其中所述移动检测系统200包含一个复合移动检测系统控制器230,一个或多个复合移动检测装置,其中每个复合移动检测装置均包含一个利用红外线检测物体移动的被动红外移动检测器,和一个利用多普勒效应检测物体移动的射频多普勒移动检测器,并由复合移动检测系统控制器230的一个电源模块2301向所有的被动红外移动检测器提供被动红外移动检测器电源230111。
在某些实施例中,所述的方法包括:当第一个复合移动检测装置241的被动红外移动检测器2101检测到物体移动,并将第一个红外移动检测信号230311传送到移动检测输入模块2303时,移动检测输入模块2303向电源模块2301发出一个通电信号23011指示电源模块2301向第一个射频多普勒移动检测器2201在一个TW时间段内提供射频多普勒移动检测器电源230121使第一个射频多普勒移动检测器2201能够在TW时间段内检测物体的移动,当相应的第一射频多普勒移动检测器2201检测到物体移动,移动检测输入模块2303接收来自第一射频多普勒移动检测器2201的第一多普勒移动检测信号230321,当移动检测输入模块2303在TW时间段内同时接收到来自第一被动红外移动检测器2101的第一红外移动检测信号230311和来自第一射频多普勒移动检测器2201的第一多普勒移动检测信号230321时,移动检测输出模块2309输出移动检测系统200实际检测到物体移动的信号23091。
在某些实施例中,当第二个复合移动检测装置242的第二被动红外移动检测器2102检测到物体移动并将第二红外移动检测信号230312传送到移动检测输入模块2303时,所述的方法进一步包括:电源模块2301在TW时间段内向第二复合移动检测装置242的第二射频多普勒移动检测器2202提供第二射频多普勒移动检测器电源230122,第二射频多普勒移动检测器电源230122在前一个TW时间段结束之后再加上一个时间延迟TD以后接通,当相应的第二射频多普勒移动检测器2202检测到物体移动,移动检测输入模块2303接收来自第二射频多普勒移动检测器2202的第二多普勒移动检测信号230322,当移动检测输入模块2303在TW时间段内同时接收到来自第二被动红外移动检测器2102的第二红外移动检测信号230312和来自第二射频多普勒移动检测器2202的第二多普勒移动检测信号230322时,移动检测输出模块2309输出移动检测系统200实际检测到物体移动的信号23091。
在某些实施例中,所述复合移动检测系统控制器230包括向所有复合移动检测装置提供电源的所述的电源模块2301。所述电源模块2301不间断地向所有复合移动检测装置中的被动红外移动检测器提供被动红外移动检测器电源230111。当某个复合移动检测装置中的被动红外移动检测器检测到物体移动时,所述电源模块2301以时分的方式在TW时间段向该复合移动检测装置中相应的射频多普勒移动检测器提供射频多普勒移动检测器电源,每次只会在一个TW时间段中接通一个射频多普勒移动检测器电源,并在相继两个被动红外移动检测器检测到物体移动的TW时间段之间加入一个时间延迟TD,以避免这两个射频多普勒移动检测器之间的射频干扰。所有复合移动检测装置中的射频多普勒移动检测器都是用于对该复合移动检测装置中相应的被动红外移动检测器检测到的物体移动进行确认以降低由于使用单一移动检测器而产生的误报率。
上述对本发明的各种示例性实施例的描述仅仅用来演示和陈述本发明的部分内容,上述描述并不代表穷尽性,也不能将本发明局限于所揭示的具体或精确形式。根据上述的描述和演示,许多修改和变化是完全可能的。
选择和描述实施例以便解释本发明的原理和其实际应用,以便使得所属领域的技术人员能够利用本发明和各种实施例并且伴以适合于所预期的特定用途的各种修改。在不脱离本发明的精神和范围的情况下,本发明所涉及的领域的技术人员将清楚替代实施例。因此,本发明的范围由所附权利要求书、前述描述和其中所描述的示例性实施例以及附图界定。
Claims (20)
- 一个复合移动检测系统,包括:至少一个被动红外移动检测装置,所述的被动红外移动检测装置通过检测一个移动物体辐射的红外线来检测物体的移动,并在检测到物体移动时产生一个红外移动检测信号;至少一个射频多普勒移动检测装置,所述的射频多普勒移动检测装置通过检测一个移动物体反射的射频波的多普勒效应来检测物体的移动,并在检测到物体移动时产生一个多普勒移动检测信号;以及一个复合移动检测系统控制器,所述的复合移动检测系统控制器包含一个向被动红外移动检测装置和射频多普勒移动检测装置提供电源的电源模块,一个用于输出实际检测到物体移动的信号的移动检测输出模块,和一个逻辑控制模块,其中,所述电源模块接通被动红外移动检测装置电源,向被动红外移动检测装置供电,当被动红外移动检测装置检测到物体移动时,被动红外移动检测装置将红外移动检测信号传送给逻辑控制模块,逻辑控制模块传送一个接通电源信号给电源模块,仅在一个时间段内TW将射频多普勒移动检测装置电源接到射频多普勒移动检测装置,使得射频多普勒移动检测装置进行物体移动检测,当射频多普勒移动检测装置检测到物体移动时,射频多普勒移动检测装置将多普勒移动检测信号传送给逻辑控制模块,当逻辑控制模块在TW时间段中同时收到来自被动红外移动检测装置的红外移动检测信号和来自射频多普勒移动检测装置的多普勒移动检测信号,移动检测输出模块输出复合移动检测系统实际检测到物体移动的信号。
- 根据权利要求1所述的复合移动检测系统,所述电源模块不间断地向被动红外移动检测装置供电。
- 根据权利要求1所述的复合移动检测系统,所述电源模块仅在被动红外移动检测装置检测到物体移动以后,在所述的时间段TW内向射频多普勒移动检测装置供电。
- 根据权利要求1所述的复合移动检测系统,所述射频多普勒移动检测装置用于对被动红外移动检测装置检测到的物体移动进行确认,以降低由于使用单一移动检测装置而产生的误报率。
- 根据权利要求1所述的复合移动检测系统,所述逻辑控制模块包括:一个用于接收红外移动检测信号和多普勒移动检测信号的移动检测输入模块;一个处理器和一个存储器,所述的存储器包含带有计算机可执行的指令的固件,所述处理器执行计算机可执行的指令,以完成以下的功能:指示电源模块向被动红外移动检测装置供电,使被动红外移动检测装置能够检测物体的移动;当移动检测输入模块接收到红外移动检测信号时,向电源模块发送一个接通电源信号指示电源模块向射频多普勒移动检测装置供电;当移动检测输入模块在TW时间段内同时接收到来自被动红外移动检测装置的红外移动检测信号和来自射频多普勒移动检测装置的射频多普勒移动检测信号,指示移动检测输出模块输出复合移动检测系统实际检测到物体移动的信号。
- 根据权利要求1所述的复合移动检测系统,所述逻辑控制模块包括:一个开关电路,所述延时开关电路向电源模块发出一个接通电源信号,指示电源模块向射频多普勒移动检测装置供电,使射频多普勒移动检测装置能够在TW时间段内检测物体的移动;以及一个信号组合器,当所述信号组合器在TW时间段内同时接收到来自被动红外移动检测装置的红外移动检测信号和来自射频多普勒移动检测装置的射频多普勒移动检测信号,信号组合器输出一个物体移动检测信号,并将这个物体移动检测信号传送给移动检测输出模块,并指示移动检测输出模块输出复合移动检测系统实际检测到物体移动的信号。
- 根据权利要求6所述的复合移动检测系统,所述开关电路包含一个延时开关电路,当所述延时开关电路接收到红外移动检测信号时接通射频多普勒移动检测装置电源,并在TW时间段结束时关闭射频多普勒移动检测装置电源。
- 根据权利要求6所述的复合移动检测系统,所述信号组合器包含一个与门电路,当所述与门电路在TW时间段内同时接收到红外移动检测信号和射频多普勒移动检测信号时,所述与门电路输出所述的物体移动检测信号。
- 一个移动检测系统,包括:一个或多个复合移动检测装置,其中每个复合移动检测装置均包含一个利用红外线检测物体移动的被动红外移动检测器,和一个利用多普勒效应检测物体移动的射频多普勒移 动检测器;和一个复合移动检测系统控制器,所述的复合移动检测系统控制器包含一个向所有复合移动检测装置提供电源的电源模块;一个用于接收红外移动检测信号和多普勒移动检测信号的移动检测输入模块;一个用于输出实际检测到物体移动信号的移动检测输出模块;一个处理器和一个存储器,所述的存储器包含带有计算机可执行的指令的固件,所述处理器执行计算机可执行的指令,以完成以下的功能:指示电源模块向所有的被动红外移动检测器供电,使所有的被动红外移动检测器能够检测物体的移动;当第一个复合移动检测装置的被动红外移动检测器检测到物体移动,并将第一个红外移动检测信号传送到移动检测输入模块时,指示电源模块向第一个射频多普勒移动检测器在一个TW时间段内供电,使第一个射频多普勒移动检测器能够在TW时间段内检测物体的移动;以及当移动检测输入模块在TW时间段内同时接收到来自第一被动红外移动检测器的第一红外移动检测信号和来自第一射频多普勒移动检测器的第一多普勒移动检测信号时,指示移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
- 根据权利要求9所述的移动检测系统,当第二个复合移动检测装置的第二被动红外移动检测器检测到物体移动并将第二红外移动检测信号传送到移动检测输入模块时,计算机可执行的指令使得处理器完成以下的功能:指示电源模块在TW时间段内向第二复合移动检测装置的第二射频多普勒移动检测器提供第二射频多普勒移动检测器电源,第二射频多普勒移动检测器电源在前一个TW时间段结束之后再加上一个时间延迟TD以后接通;和当移动检测输入模块在TW时间段内同时接收到来自第二被动红外移动检测器的第二红外移动检测信号和来自第二射频多普勒移动检测器的第二多普勒移动检测信号时,指示移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
- 根据权利要求9所述的移动检测系统,所述电源模块不间断地向所有复合移动检测装置中的被动红外移动检测器供电。
- 根据权利要求9所述的移动检测系统,当某个复合移动检测装置中的被动红外移动检 测器检测到物体移动时,所述电源模块以时分的方式向该复合移动检测装置中的射频多普勒移动检测器提供射频多普勒移动检测器电源,每次只会在一个TW时间段中接通一个射频多普勒移动检测器电源,并在相继两个被动红外移动检测器检测到物体移动的TW时间段之间加入一个时间延迟TD,以避免这两个射频多普勒移动检测器之间的射频干扰。
- 根据权利要求9所述的移动检测系统,所有复合移动检测装置中的射频多普勒移动检测器都是用于对该复合移动检测装置中的被动红外移动检测器检测到的物体移动进行确认以降低由于使用单一移动检测器而产生的误报率。
- 一种使用移动检测系统检测物体移动的方法,包括:由使用者安装一套移动检测系统,其中所述移动检测系统包含一个复合移动检测系统控制器,一个或多个复合移动检测装置,其中每个复合移动检测装置均包含一个利用红外线检测物体移动的被动红外移动检测器,和一个利用多普勒效应检测物体移动的射频多普勒移动检测器;由复合移动检测系统控制器的一个电源模块向所有的被动红外移动检测器供电;当第一个复合移动检测装置的被动红外移动检测器检测到物体移动,并将第一个红外移动检测信号传送到移动检测输入模块时,移动检测输入模块向电源模块发出一个通电信号,指示电源模块向第一个射频多普勒移动检测器在一个TW时间段内提供射频多普勒移动检测器电源,使第一个射频多普勒移动检测器能够在TW时间段内检测物体的移动;当相应的第一射频多普勒移动检测器检测到物体移动,移动检测输入模块接收来自第一射频多普勒移动检测器的第一多普勒移动检测信号;和当移动检测输入模块在TW时间段内同时接收到来自第一被动红外移动检测器的第一红外移动检测信号和来自第一射频多普勒移动检测器的第一多普勒移动检测信号时,移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
- 根据权利要求14所述的方法,当第二个复合移动检测装置的第二被动红外移动检测器检测到物体移动并将第二红外移动检测信号传送到移动检测输入模块时,所述的方法进一步包括:电源模块在TW时间段内向第二复合移动检测装置的第二射频多普勒移动检测器供电,第二射频多普勒移动检测器电源在前一个TW时间段结束之后再加上一个时间延迟TD以后 接通;当相应的第二射频多普勒移动检测器检测到物体移动,移动检测输入模块接收来自第二射频多普勒移动检测器的第二多普勒移动检测信号;和当移动检测输入模块在TW时间段内同时接收到来自第二被动红外移动检测器的第二红外移动检测信号和来自第二射频多普勒移动检测器的第二多普勒移动检测信号时,移动检测输出模块输出移动检测系统实际检测到物体移动的信号。
- 根据权利要求14所述的方法,所述复合移动检测系统控制器包括向所有复合移动检测装置提供电源的所述的电源模块。
- 根据权利要求16所述的方法,所述电源模块不间断地向所有复合移动检测装置中的被动红外移动检测器提供被动红外移动检测器电源。
- 根据权利要求16所述的方法,当某个复合移动检测装置中的被动红外移动检测器检测到物体移动时,所述电源模块以时分的方式在TW时间段内向该复合移动检测装置中相应的射频多普勒移动检测器供电,每次只会在一个TW时间段中接通一个射频多普勒移动检测器电源,并在相继两个被动红外移动检测器检测到物体移动的TW时间段之间加入一个时间延迟TD,以避免这两个射频多普勒移动检测器之间的射频干扰。
- 根据权利要求14所述的方法,所有复合移动检测装置中的射频多普勒移动检测器都是用于对该复合移动检测装置中相应的被动红外移动检测器检测到的物体移动进行确认,以降低由于使用单一移动检测器而产生的误报率。
- 根据权利要求14所述的方法,所述的复合移动检测系统控制器包括:所述的移动检测输入模块,接收来自所有的复合移动检测装置中被动红外移动检测器发来的红外移动检测信号和来自所有的复合移动检测装置中射频多普勒移动检测器发来的多普勒移动检测信号;和所述的移动检测输出模块,当移动检测输入模块在TW时间段内同时接收到来自至少一个复合移动检测装置中被动红外移动检测器发来的红外移动检测信号和来自相应复合移动检测装置中的射频多普勒移动检测器发来的多普勒移动检测信号时,所述的移动检测输出模块输 出移动检测系统实际检测到物体移动的信号。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/572,546 US10713911B1 (en) | 2017-10-25 | 2017-10-25 | Motion detection system having dual motion sensors and methods of using the same |
CN201780029349.XA CN109313265B (zh) | 2017-10-25 | 2017-10-25 | 复合移动检测系统及其使用方法 |
PCT/CN2017/107657 WO2019080004A1 (zh) | 2017-10-25 | 2017-10-25 | 复合移动检测系统及其使用方法 |
EP17929902.9A EP3702807A4 (en) | 2017-10-25 | 2017-10-25 | COMPOSITE MOTION DETECTION SYSTEM AND METHOD OF USE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/107657 WO2019080004A1 (zh) | 2017-10-25 | 2017-10-25 | 复合移动检测系统及其使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019080004A1 true WO2019080004A1 (zh) | 2019-05-02 |
Family
ID=65207601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/107657 WO2019080004A1 (zh) | 2017-10-25 | 2017-10-25 | 复合移动检测系统及其使用方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10713911B1 (zh) |
EP (1) | EP3702807A4 (zh) |
CN (1) | CN109313265B (zh) |
WO (1) | WO2019080004A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10948965B2 (en) | 2018-12-31 | 2021-03-16 | Ecolink Intelligent Technology, Inc. | User-configurable person detection system, method and apparatus |
US11227476B2 (en) * | 2019-03-13 | 2022-01-18 | Ecolink Intelligent Technology, Inc. | Auto-configurable motion/occupancy sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6380882B1 (en) * | 1999-07-03 | 2002-04-30 | Siemens Building Technologies Ag | Motion detector based on the doppler principle |
CN101534470A (zh) * | 2009-04-10 | 2009-09-16 | 华南理工大学 | 基于无线传感器网络的移动目标跟踪系统及其跟踪方法 |
EP2146222A2 (en) * | 2008-07-17 | 2010-01-20 | Honeywell International Inc. | Microwave ranging sensor |
CN105738874A (zh) * | 2006-09-01 | 2016-07-06 | 泰科消防及安全有限公司 | 射频识别多普勒运动检测器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5189393A (en) * | 1991-06-07 | 1993-02-23 | The Watt Stopper Inc. | Dual technology motion sensor |
CN2179611Y (zh) * | 1993-12-30 | 1994-10-12 | 陈建文 | 微波红外线双信号检测报警装置 |
US6791458B2 (en) * | 2001-05-22 | 2004-09-14 | Hubbell Incorporated | Dual technology occupancy sensor and method for using the same |
EP1946146A2 (en) * | 2005-10-14 | 2008-07-23 | BAE SYSTEMS Information and Electronic Systems Integration Inc. | Motion detection system using cw radar in combination with additional sensors |
US7679509B2 (en) * | 2007-03-07 | 2010-03-16 | Robert Bosch Gmbh | System and method for improving infrared detector performance in dual detector system |
US7796033B2 (en) * | 2007-11-14 | 2010-09-14 | Honeywell International Inc. | System and method for calibrating a microwave motion detector |
US8004451B2 (en) * | 2009-05-27 | 2011-08-23 | Honeywell International Inc. | Adaptive microwave security sensor |
CN101639961B (zh) * | 2009-09-14 | 2012-06-13 | 北京航星网讯技术股份有限公司 | 探测报警方法及系统 |
US8742935B2 (en) * | 2011-06-30 | 2014-06-03 | General Electric Company | Radar based systems and methods for detecting a fallen person |
US20140292507A1 (en) * | 2013-03-28 | 2014-10-02 | Jon Null | Motion sensor with ultrasonic modulation |
CA2820568A1 (en) * | 2013-06-21 | 2014-12-21 | Ninve Jr. Inc. | Dual differential doppler motion detection |
EP3414595A1 (en) * | 2016-02-10 | 2018-12-19 | Carrier Corporation | Presence detection system |
CN206574235U (zh) * | 2016-12-02 | 2017-10-20 | 北京三快在线科技有限公司 | 一种启动电路及人体状态检测装置 |
-
2017
- 2017-10-25 EP EP17929902.9A patent/EP3702807A4/en active Pending
- 2017-10-25 CN CN201780029349.XA patent/CN109313265B/zh active Active
- 2017-10-25 WO PCT/CN2017/107657 patent/WO2019080004A1/zh unknown
- 2017-10-25 US US15/572,546 patent/US10713911B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6380882B1 (en) * | 1999-07-03 | 2002-04-30 | Siemens Building Technologies Ag | Motion detector based on the doppler principle |
CN105738874A (zh) * | 2006-09-01 | 2016-07-06 | 泰科消防及安全有限公司 | 射频识别多普勒运动检测器 |
EP2146222A2 (en) * | 2008-07-17 | 2010-01-20 | Honeywell International Inc. | Microwave ranging sensor |
CN101534470A (zh) * | 2009-04-10 | 2009-09-16 | 华南理工大学 | 基于无线传感器网络的移动目标跟踪系统及其跟踪方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3702807A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20200211340A1 (en) | 2020-07-02 |
US10713911B1 (en) | 2020-07-14 |
CN109313265A (zh) | 2019-02-05 |
CN109313265B (zh) | 2023-05-23 |
EP3702807A4 (en) | 2021-07-07 |
EP3702807A1 (en) | 2020-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3878604B2 (ja) | 検知システム及び防犯システム | |
EP3033923B1 (en) | Sensing within a region. | |
EP1793356B1 (en) | Microwave smart motion sensor for security applications | |
US8410922B2 (en) | Motion sensor with ultrasonic modulation | |
RU2007145206A (ru) | Радиочастотная система для слежения за объектами | |
EP3839560B1 (en) | Radar presence sensor device | |
US20140292507A1 (en) | Motion sensor with ultrasonic modulation | |
WO2019080004A1 (zh) | 复合移动检测系统及其使用方法 | |
JP2008140223A (ja) | 侵入者検知システム | |
JP3845749B2 (ja) | マイクロウエーブセンサ | |
JP4096861B2 (ja) | 検出装置 | |
JP5154308B2 (ja) | 照明器具 | |
CN105191507A (zh) | 缓解感测中的扰动 | |
JP2020005469A5 (zh) | ||
US20160356883A1 (en) | Object detection apparatus | |
US20090160698A1 (en) | Anti-interference microwave motion sensor | |
US6958695B1 (en) | Article monitoring apparatus and system | |
JP2011252901A (ja) | モーションディテクターの起動 | |
KR101114820B1 (ko) | 마이크로웨이브를 이용한 움직임 검출 센서 | |
KR101348928B1 (ko) | 주파수 의존형 경계막 가변 동작감지기 및 그 제어방법 | |
KR101293241B1 (ko) | 버블형 동작감지기 | |
KR102126580B1 (ko) | 자동차 승객 감지용 마이크로웨이브 센서 모듈 | |
KR101881230B1 (ko) | 움직임 감지장치 | |
CN202533590U (zh) | 基于PICl6F628A的入侵探测装置 | |
JP2000098053A (ja) | 検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17929902 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017929902 Country of ref document: EP Effective date: 20200525 |