WO2019079917A1 - Method for preparing precious metal isolated atoms in solution and application - Google Patents

Method for preparing precious metal isolated atoms in solution and application

Info

Publication number
WO2019079917A1
WO2019079917A1 PCT/CN2017/000677 CN2017000677W WO2019079917A1 WO 2019079917 A1 WO2019079917 A1 WO 2019079917A1 CN 2017000677 W CN2017000677 W CN 2017000677W WO 2019079917 A1 WO2019079917 A1 WO 2019079917A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
palladium
ruthenium
iii
platinum
Prior art date
Application number
PCT/CN2017/000677
Other languages
French (fr)
Chinese (zh)
Inventor
张宗超
刘凯瑞
申星
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2019079917A1 publication Critical patent/WO2019079917A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the invention belongs to the technical field of invention, and in particular relates to a method and an application for preparing a noble metal atom in a solution.
  • Precious metals are widely used materials in modern industry and scientific research. Precious metals and their alloys have excellent electrical and thermal conductivity, oxidation resistance, corrosion resistance and special magnetic and mechanical properties. They are widely used in aviation, marine, biomedical, iron and steel smelting, petrochemical and electronic equipment. For example, Pt-Ir and Pt-Ni alloys are commonly used spark plug materials; Pt-Pd-Rh three-way catalysts are the main materials for treating automobile exhaust.
  • Pt exists in the form of nanoparticles, and thus most of the Pt atoms are contained inside, and cannot be sufficiently contacted with the reaction raw material to catalyze the reaction, resulting in a huge Waste and substantial increase in production costs.
  • Precious metal orphan atoms and atomic-grade mixed precious metal alloy materials provide ample space for the full utilization of precious metals.
  • a method for preparing a noble metal atom in a solution a precursor of a noble metal compound containing a macrocyclic polyether, a high oxidation state, and a reducing agent and water are thoroughly mixed.
  • Reductant will be a noble metal compound in a high oxidation state
  • the precursor is reduced to a noble metal atom, thereby obtaining a noble metal atom capable of being stably present in the solution.
  • the noble metal atom in the method is one of platinum, palladium, rhodium, ruthenium, osmium, iridium, gold, and silver.
  • the noble metal orphan atoms are preferably platinum and gold.
  • the platinum orphan atom is mainly characterized by a 195 Pt nuclear magnetic resonance chemical shift between -2000 and 4000 ppm.
  • the noble metal compound precursor of the high oxidation state is a platinum compound precursor of a high oxidation state, a palladium compound precursor of a high oxidation state, a ruthenium compound precursor of a high oxidation state, a ruthenium compound precursor of a high oxidation state, a high oxidation state A ruthenium compound precursor, a high oxidation state ruthenium compound precursor, a high oxidation state silver compound precursor or a high oxidation state gold compound precursor.
  • the platinum compound precursor of the high oxidation state used in the method is: chloroplatinic acid, sodium chloroplatinate, potassium chloroplatinate, platinum chloride, platinum chloride, platinum chloride, platinum nitrate, 1 , 5-cyclooctadiene platinum dichloride, trichloro(ethylene)platinic acid, potassium tetraammine platinum, dinitrile phenyl dichloroplatinum, di(triphenyl phosphite) dichloride One of platinum or ammonium tetrachloroplatinate.
  • the high oxidation state palladium compound precursor used in the method includes: palladium chloride, palladium nitrate, chloropalladium acid, tetraammine palladium dichloride, diammine palladium dichloride, dinitrotetraammine Palladium, palladium acetate, palladium sulfate, palladium trifluoroacetate, palladium acetylacetonate, potassium hexachloropalladate, ammonium hexachloropalladate, tetraammine palladium (II) acetic acid, sodium tetrachloropalladium (II), tetrachloropalladium (II) potassium acid, ammonium tetrachloropalladate, potassium tetracyano palladium (II) acid, potassium tetrabromo palladium (II) acid, palladium pivalate, palladium (II) cyanide, palladium (II
  • the high oxidation state ruthenium compound precursor used in the method includes: cerium (III) nitrate, cerium (III) acetylacetonate, di(ethylene) chloranil dimer, sodium hexachloro ruthenium (III), and six Potassium chlorate (III) acid, ammonium hexachloroantimonate, Cerium (III) chloride, tris(triphenylphosphine)phosphonium chloride (I), tris(ethylenediamine) antimony trichloride, acetylacetonyl bis(ethylene)phosphonium (I), dicarbonylacetyl One of acetone oxime (I), dicarbonyl pentamethylcyclopentadienyl quinone or bis(1,5-cyclooctadiene) ruthenium tetrafluoroborate (I).
  • the high oxidation state ruthenium compound precursor used in the method includes: chlorodecanoic acid, ruthenium (III) acetylacetonate, sodium hexachlorostilbene (III), potassium hexachloroantimonate (III), hexachloroantimonic acid Ammonium, potassium hexanitroguanidate (III), barium (III) chloride, barium (III) bromide, 1,5-cyclooctadiene (acetylacetonate) ruthenium (I), 1,5-cyclooctane Ethene (hexafluoroacetylacetone) ruthenium (I), pentamine ruthenium chloride (III), dichlorotetrakis(2-(2-pyridyl)phenyl)diruthenium (III), dicarbonyl acetylacetone Bismuth (I), bis(1,5-cyclooctadiene) ruthenium (I) tetrafluorobo
  • the high oxidation state ruthenium compound precursor used in the method includes: antimony trichloride, ruthenium (III) acetylacetonate, bismuth nitrite (III) solution, hexaammine ruthenium chloride, ammonium hexachloroantimonate, Potassium hexacyanophthalate (II), ammonium tetrapropyl perrhenate, cerium (III) chloride, ruthenium pentoxide (III) hydrate, cerium (III) iodide hydrate, three ( Triphenylphosphine) ruthenium (II) dichloride, hexaammonium trichloride ruthenium, triphenylphosphine ruthenium chloride, dichloro (2,6,10-dodecatriene-1,12-diyl ) cerium (IV), dichlorotris(1,10-phenanthroline) ruthenium (II), dichloro
  • the high oxidation state ruthenium compound precursor used in the method includes potassium citrate dihydrate, potassium hexachloroantimonate (IV), ammonium hexachloroammonium, bis(pentamethylcyclopentadienyl) ruthenium (II). And one of cerium (III) chloride or pentaammine (trifluoromethanesulfonate) ruthenium (III) trifluoromethanesulfonic acid.
  • the high-oxidation gold compound precursor used in the method comprises: potassium chloroaurate, sodium cyanide (I), gold monochloride, gold trioxide, trichloro(pyridine) gold (III), three Gold chloride, sodium tetrachloroaurate (III), tetrachloroauric acid, ammonium tetrachloroaurate, chlorine (dimethyl sulfide) gold (I), chlorocarbonyl fund (I), gold cyanide, bromination Gold, iodized gold or one of triphenylphosphonium chloride (I).
  • the high oxidation state silver compound precursor used in the method includes: silver nitrate, silver lactate, and lemon Silver citrate, silver chlorate, silver cyanate, silver bromate, silver acetate, silver trifluoroacetate, silver acetylacetonate, potassium dicyanate, silver pentafluoropropionate, silver cyanide or silver benzoate One.
  • the alcohol reducing agent used in the method comprises: methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, ethylene glycol or glycerol.
  • the non-alcohol reducing agent used in the method comprises: glucose, formic acid, citric acid, tartaric acid, ascorbic acid, hydrazine hydrate, borohydride.
  • Macrocyclic polyether crown ether n 1-10000
  • the ratio of the amount of the reducing agent to the amount of the noble metal compound precursor in the high oxidation state is not lower than the stoichiometric ratio required to reduce the noble metal compound precursor of the high oxidation state.
  • the ratio of the amount of the reducing agent to the amount of water is not less than 10 -4 : 1.
  • the ratio of the amount of the substance between the macrocyclic polyether substance and the high oxidation state noble metal compound precursor is not less than 1:1.
  • the temperature range is from -50 ° C to 200 ° C, and the reaction time is from 0.5 to 168 h.
  • the application of a noble metal atom is carried out by depositing a noble metal atom in a solution on a solid medium to form a noble metal atom-solid medium new material, and the preparation process adopts a dipping method, including the following steps:
  • the loading amount of the noble metal orphan atom 0.01-20%.
  • the invention adopts the macrocyclic polyether as a protective agent, realizes the controllable synthesis of the noble metal atom in the solution, and carries the precious metal orphan atom in the solution on the surface of the solid medium to form a precious metal isolated atom-solid medium new material.
  • the invention realizes the preparation of the isolated noble metal atom in the solution phase. Compared with the synthesis of the metal material in the conventional solution phase, the formation of the metal nanoparticles is avoided, and the reduced atomic solution is obtained. Compared with solid surface supported monoatomic materials, it has high load capacity and good stability.
  • Figure 1 is an ultraviolet visible spectrum of Examples 1, 4, 5, 6, and 7.
  • Example 2 is an ultraviolet visible spectrum of Example 2.
  • Figure 3 is an ultraviolet visible spectrum of Example 3.
  • Example 4 is an ultraviolet visible spectrum of Example 8.
  • Figure 5 is an infrared spectrum of the adsorption of CO of Examples 9, 10, 11 on a 1 wt% platinum ion-alumina new material.
  • a platinum atom-alumina new material was prepared by impregnating platinum atoms in a solution by impregnation. 87 ml of a platinum atomic solution obtained in Example 1 was added, and 1 g of ⁇ -Al 2 O 3 was added and fully immersed for 1 hour. Ethanol and water were distilled off under reduced pressure at 40 ° C, and dried under vacuum at 40 ° C for 12 hours to obtain a platinum atom-aluminum oxide new material having a loading of 1%.
  • the infrared spectrum of CO adsorption on 1 wt% platinum ion-alumina (Fig. 5) shows that the platinum atom-alumina new material was successfully synthesized.
  • a platinum atom-alumina new material was prepared by impregnating platinum atoms in a solution by impregnation. 87 ml of a platinum atomic solution obtained in Example 1 was added, 100 g of ⁇ -Al 2 O 3 was added, and fully immersed for 1 hour. Ethanol and water were distilled off under reduced pressure at 40 ° C, and vacuum-dried at 150 ° C for 0.5 hour to obtain a platinum atom-alumina new material having a loading of 0.01%. The infrared spectrum of CO adsorption on 1 wt% platinum ion-alumina is shown in Fig. 5.
  • a platinum atom-alumina new material was prepared by impregnating platinum atoms in a solution by impregnation. 87 ml of a platinum atomic solution obtained in Example 1 was added, 0.1 g of ⁇ -Al 2 O 3 was added, and fully immersed for 1 hour. Ethanol and water were distilled off under reduced pressure at 40 ° C, and dried under vacuum at 20 ° C for 48 hours to obtain a platinum atom-aluminum oxide new material having a loading of 10%. The infrared spectrum of CO adsorption on 1 wt% platinum ion-alumina is shown in Fig. 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

A method for preparing precious metal isolated atoms in a solution, comprising mixing a macrocyclic polyether, a precious metal compound precursor in a high oxidation state, a reducing agent, and water; and reducing a precious metal compound in the high oxidation state to precious metal isolated atoms by means of the reducing agent in the solution, so as to obtain a precious metal isolated atom solution. An application in preparation of precious metal isolated atoms in a solution, wherein precious metal isolated atoms are loaded on a solid dielectric to form a precious metal isolated atom-solid dielectric material.

Description

一种溶液中制备贵金属孤原子的方法及应用Method and application for preparing noble metal atom in solution 技术领域Technical field
本发明属于技术发明领域,具体涉及一种溶液中制备贵金属孤原子的方法及应用。The invention belongs to the technical field of invention, and in particular relates to a method and an application for preparing a noble metal atom in a solution.
背景技术Background technique
贵金属是现代工业和科研中广泛应用的材料。贵金属及其合金具有优良的导电导热性、抗氧化性、耐蚀性以及特殊的磁学和力学性能,被广泛应用于航空、航海、生物医学、钢铁冶炼、石油化工以及电子器械等领域。如Pt-Ir、Pt-Ni合金为常用火花塞材料;Pt-Pd-Rh三元催化剂是处理汽车尾气的主要材料。Precious metals are widely used materials in modern industry and scientific research. Precious metals and their alloys have excellent electrical and thermal conductivity, oxidation resistance, corrosion resistance and special magnetic and mechanical properties. They are widely used in aviation, marine, biomedical, iron and steel smelting, petrochemical and electronic equipment. For example, Pt-Ir and Pt-Ni alloys are commonly used spark plug materials; Pt-Pd-Rh three-way catalysts are the main materials for treating automobile exhaust.
贵金属高昂的价格以及制造工艺技术的落后,严重制约了其在各个领域的充分利用。比如在石油催化重整单元的Pt/Al2O3催化剂中,Pt是以纳米粒子的形式存在,因而大部分的Pt原子被包藏于内部,无法与反应原料充分接触催化反应,造成了巨大的浪费以及生产成本的大幅度提升。The high price of precious metals and the backwardness of manufacturing technology have severely restricted their full use in various fields. For example, in the Pt/Al 2 O 3 catalyst of the petroleum catalytic reforming unit, Pt exists in the form of nanoparticles, and thus most of the Pt atoms are contained inside, and cannot be sufficiently contacted with the reaction raw material to catalyze the reaction, resulting in a huge Waste and substantial increase in production costs.
贵金属孤原子以及原子级别混合的贵金属合金材料为贵金属的充分利用提供了广阔的空间。然而,在溶液中合成贵金属孤原子是十分困难的。因为零价贵金属孤原子不带电荷,相互之间没有静电排斥,且在溶液中运动的自由度要远大于固体表面,所以溶液中零价贵金属孤原子会快速聚集形成团簇或纳米粒子。因此溶液中贵金属孤原子的可控合成一直是科学技术领域的巨大挑战。Precious metal orphan atoms and atomic-grade mixed precious metal alloy materials provide ample space for the full utilization of precious metals. However, it is very difficult to synthesize noble metal atoms in solution. Because zero-valent precious metal atoms are not charged, there is no electrostatic repulsion between them, and the degree of freedom of movement in solution is much larger than that of solid surface, so zero-valent noble metal orphan atoms in solution will rapidly aggregate to form clusters or nanoparticles. Therefore, the controlled synthesis of noble metal atoms in solution has always been a huge challenge in the field of science and technology.
发明内容Summary of the invention
本发明的目的在于提供一种溶液中制备贵金属孤原子的方法及应用。为实现上述目的,本发明采用的技术方案如下:It is an object of the present invention to provide a method and application for preparing noble metal atoms in a solution. In order to achieve the above object, the technical solution adopted by the present invention is as follows:
一种溶液中制备贵金属孤原子的方法:将含有大环聚醚,高氧化态的贵金属化合物前驱体,和还原剂、水充分混合。还原剂将高氧化态的贵金属化合物 前驱体还原为贵金属孤原子,从而得到能够在溶液中稳定存在的贵金属孤原子。A method for preparing a noble metal atom in a solution: a precursor of a noble metal compound containing a macrocyclic polyether, a high oxidation state, and a reducing agent and water are thoroughly mixed. Reductant will be a noble metal compound in a high oxidation state The precursor is reduced to a noble metal atom, thereby obtaining a noble metal atom capable of being stably present in the solution.
所述方法中的贵金属孤原子为铂、钯、铑、铱、钌、锇、金、银中的一种。The noble metal atom in the method is one of platinum, palladium, rhodium, ruthenium, osmium, iridium, gold, and silver.
所述的贵金属孤原子优选铂和金。The noble metal orphan atoms are preferably platinum and gold.
所述的铂孤原子以195Pt核磁共振化学位移在-2000--4000ppm之间为主要特征。The platinum orphan atom is mainly characterized by a 195 Pt nuclear magnetic resonance chemical shift between -2000 and 4000 ppm.
所述高氧化态的贵金属化合物前驱体为高氧化态的铂化合物前驱体、高氧化态的钯化合物前驱体、高氧化态的铑化合物前驱体、高氧化态的铱化合物前驱体、高氧化态的钌化合物前驱体、高氧化态的锇化合物前驱体、高氧化态的银化合物前驱体或高氧化态的金化合物前驱体。The noble metal compound precursor of the high oxidation state is a platinum compound precursor of a high oxidation state, a palladium compound precursor of a high oxidation state, a ruthenium compound precursor of a high oxidation state, a ruthenium compound precursor of a high oxidation state, a high oxidation state A ruthenium compound precursor, a high oxidation state ruthenium compound precursor, a high oxidation state silver compound precursor or a high oxidation state gold compound precursor.
所述方法中采用的高氧化态的铂化合物前驱体为:氯铂酸、氯铂酸钠、氯铂酸钾、氯化亚铂、氯化铂、二乙胺氯化铂、硝酸铂、1,5-环辛二烯二氯化铂、三氯·(乙烯)合铂酸钾、二氯四氨合铂、二腈苯基二氯合铂、二(亚磷酸三苯酯)二氯化铂或四氯铂酸铵中的一种。The platinum compound precursor of the high oxidation state used in the method is: chloroplatinic acid, sodium chloroplatinate, potassium chloroplatinate, platinum chloride, platinum chloride, platinum chloride, platinum nitrate, 1 , 5-cyclooctadiene platinum dichloride, trichloro(ethylene)platinic acid, potassium tetraammine platinum, dinitrile phenyl dichloroplatinum, di(triphenyl phosphite) dichloride One of platinum or ammonium tetrachloroplatinate.
所述方法中采用的高氧化态的钯化合物前驱体包括:氯化钯、硝酸钯、氯亚钯酸、二氯化四氨合钯、二氯化二氨合钯、二硝基四氨合钯、醋酸钯、硫酸钯、三氟乙酸钯、乙酰丙酮钯、六氯钯酸钾、六氯钯酸铵、四氨合钯(II)乙酸、四氯钯(II)酸钠、四氯钯(II)酸钾、四氯钯酸铵、四氰基钯(II)酸钾、四溴钯(II)酸钾、新戊酸钯、氰化钯(II)、溴化钯(II)、硫代硫酸钯(II)、碘化钯(II)、磺化钯(II)、1,3-双(二苯基膦)丙烷)氯化钯(II)、(1,5-环辛二烯)二氯化钯(II)、(2,2′-联吡啶)二氯化钯(II)、[1,2-双(二苯基膦)乙烷]二氯化钯(II)、1,4-双(二苯基膦)丁烷-氯化钯(II)或乙二胺氯化钯中的一种。The high oxidation state palladium compound precursor used in the method includes: palladium chloride, palladium nitrate, chloropalladium acid, tetraammine palladium dichloride, diammine palladium dichloride, dinitrotetraammine Palladium, palladium acetate, palladium sulfate, palladium trifluoroacetate, palladium acetylacetonate, potassium hexachloropalladate, ammonium hexachloropalladate, tetraammine palladium (II) acetic acid, sodium tetrachloropalladium (II), tetrachloropalladium (II) potassium acid, ammonium tetrachloropalladate, potassium tetracyano palladium (II) acid, potassium tetrabromo palladium (II) acid, palladium pivalate, palladium (II) cyanide, palladium (II) bromide, Palladium (II) thiosulfate, palladium (II) iodide, palladium (II) sulfonate, 1,3-bis(diphenylphosphino)propane) palladium(II) chloride, (1,5-cyclooctane Alkenyl palladium (II), (2,2'-bipyridyl) palladium (II) dichloride, [1,2-bis(diphenylphosphino)ethane]palladium (II) dichloride, One of 1,4-bis(diphenylphosphino)butane-palladium (II) chloride or palladium chloride.
所述方法中采用的高氧化态的铑化合物前驱体包括:硝酸铑(III)、乙酰丙酮铑(III)、二(乙烯)氯铑二聚体、六氯代铑(III)酸钠、六氯铑(III)酸钾、六氯铑酸铵、 氯化铑(III)、三(三苯基膦)氯化铑(I)、三(乙二胺)三氯化铑、乙酰丙酮酰双(亚乙基)化铑(I)、二羰基乙酰丙酮铑(I)、二羰基五甲基环戊二烯铑或双(1,5-环辛二烯)四氟硼酸铑(I)中的一种。The high oxidation state ruthenium compound precursor used in the method includes: cerium (III) nitrate, cerium (III) acetylacetonate, di(ethylene) chloranil dimer, sodium hexachloro ruthenium (III), and six Potassium chlorate (III) acid, ammonium hexachloroantimonate, Cerium (III) chloride, tris(triphenylphosphine)phosphonium chloride (I), tris(ethylenediamine) antimony trichloride, acetylacetonyl bis(ethylene)phosphonium (I), dicarbonylacetyl One of acetone oxime (I), dicarbonyl pentamethylcyclopentadienyl quinone or bis(1,5-cyclooctadiene) ruthenium tetrafluoroborate (I).
所述方法中采用的高氧化态的铱化合物前驱体包括:氯铱酸、乙酰丙酮铱(III)、六氯代铱(III)酸钠、六氯铱(III)酸钾、六氯铱酸铵、六硝基铱(III)酸钾、氯化铱(III)、溴化铱(III)、1,5-环辛二烯(乙酰丙酮)铱(I)、1,5-环辛二烯(六氟乙酰丙酮)铱(I)、二氯化戊氨络物氯铱(III)、二氯四(2-(2-吡啶基)苯基)二铱(III)、二羰基乙酰丙酮铱(I)、双(1,5-环辛二烯)四氟硼酸铱(I)、1,5-环辛二烯(吡啶)(三环己基磷化氢)铱六氟磷酸盐或双[1,2-双(二苯基膦基)乙烷]羰基氯铱(I)中的一种。The high oxidation state ruthenium compound precursor used in the method includes: chlorodecanoic acid, ruthenium (III) acetylacetonate, sodium hexachlorostilbene (III), potassium hexachloroantimonate (III), hexachloroantimonic acid Ammonium, potassium hexanitroguanidate (III), barium (III) chloride, barium (III) bromide, 1,5-cyclooctadiene (acetylacetonate) ruthenium (I), 1,5-cyclooctane Ethene (hexafluoroacetylacetone) ruthenium (I), pentamine ruthenium chloride (III), dichlorotetrakis(2-(2-pyridyl)phenyl)diruthenium (III), dicarbonyl acetylacetone Bismuth (I), bis(1,5-cyclooctadiene) ruthenium (I) tetrafluoroborate, 1,5-cyclooctadiene (pyridine) (tricyclohexylphosphine) ruthenium hexafluorophosphate or double One of [1,2-bis(diphenylphosphino)ethane]carbonylchloroindole (I).
所述方法中采用的高氧化态的钌化合物前驱体包括:三氯化钌、乙酰丙酮钌(III)、亚硝酰硝酸钌(III)溶液、六氨合钌氯、六氯钌酸铵、六氰基钌(II)酸钾、四丙基高钌酸铵、氯化乙二胺乙酸钌(III)、水合五氯钌(III)酸钾、碘化钌(III)水合物、三(三苯基膦)二氯化钌(II)、三氯化六铵合钌、三苯基膦氯化钌、二氯(2,6,10-十二碳三烯-1,12-二基)钌(IV)、二氯三(1,10-菲罗啉)钌(II)、二氯二羰基双(三苯基膦)钌(II)或二氯化戊氨络物氯钌(III)中的一种。The high oxidation state ruthenium compound precursor used in the method includes: antimony trichloride, ruthenium (III) acetylacetonate, bismuth nitrite (III) solution, hexaammine ruthenium chloride, ammonium hexachloroantimonate, Potassium hexacyanophthalate (II), ammonium tetrapropyl perrhenate, cerium (III) chloride, ruthenium pentoxide (III) hydrate, cerium (III) iodide hydrate, three ( Triphenylphosphine) ruthenium (II) dichloride, hexaammonium trichloride ruthenium, triphenylphosphine ruthenium chloride, dichloro (2,6,10-dodecatriene-1,12-diyl ) cerium (IV), dichlorotris(1,10-phenanthroline) ruthenium (II), dichlorodicarbonylbis(triphenylphosphine)ruthenium(II) or pentamine chloride ruthenium chloride (III) One of them.
所述方法中采用的高氧化态的锇化合物前驱体包括:锇酸钾二水合物、六氯锇(IV)酸钾、六氯锇铵、双(五甲基环戊二烯)锇(II)、氯化锇(III)或五氨合(三氟甲磺酸根)锇(III)三氟甲磺酸中的一种。The high oxidation state ruthenium compound precursor used in the method includes potassium citrate dihydrate, potassium hexachloroantimonate (IV), ammonium hexachloroammonium, bis(pentamethylcyclopentadienyl) ruthenium (II). And one of cerium (III) chloride or pentaammine (trifluoromethanesulfonate) ruthenium (III) trifluoromethanesulfonic acid.
所述方法中采用的高氧化态的金化合物前驱体包括:氯金酸钾、氰金(I)酸钠、一氯化金、三氧化二金、三氯(吡啶)金(III)、三氯化金、四氯金(III)酸钠、四氯金酸、四氯金酸铵、氯(二甲基硫化)金(I)、氯羰基金(I)、氰化亚金、溴化金、碘化亚金或氯化三苯基磷金(I)中的一种。The high-oxidation gold compound precursor used in the method comprises: potassium chloroaurate, sodium cyanide (I), gold monochloride, gold trioxide, trichloro(pyridine) gold (III), three Gold chloride, sodium tetrachloroaurate (III), tetrachloroauric acid, ammonium tetrachloroaurate, chlorine (dimethyl sulfide) gold (I), chlorocarbonyl fund (I), gold cyanide, bromination Gold, iodized gold or one of triphenylphosphonium chloride (I).
所述方法中采用的高氧化态的银化合物前驱体包括:硝酸银、乳酸银、柠 檬酸银、氯酸银、氰酸银、溴酸银、醋酸银、三氟乙酸银、乙酰丙酮银、二氰合银酸钾、五氟丙酸银、氰化银或苯甲酸银中的一种。The high oxidation state silver compound precursor used in the method includes: silver nitrate, silver lactate, and lemon Silver citrate, silver chlorate, silver cyanate, silver bromate, silver acetate, silver trifluoroacetate, silver acetylacetonate, potassium dicyanate, silver pentafluoropropionate, silver cyanide or silver benzoate One.
所述方法中采用的醇类还原剂包含:甲醇、乙醇、丙醇、异丙醇、正丁醇,异丁醇,仲丁醇,叔丁醇、乙二醇或丙三醇。The alcohol reducing agent used in the method comprises: methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, ethylene glycol or glycerol.
所述方法中采用的非醇类还原剂包含:葡萄糖,甲酸,柠檬酸,酒石酸,抗坏血酸,水合肼,硼氢化物。The non-alcohol reducing agent used in the method comprises: glucose, formic acid, citric acid, tartaric acid, ascorbic acid, hydrazine hydrate, borohydride.
所述的大环聚醚为:
Figure PCTCN2017000677-appb-000001
Figure PCTCN2017000677-appb-000002
其中:n=1-10000;m=1-10000;p=1-10000;q=1-10000;r=1-10000;R,R’=S,N,P,As;R”=
Figure PCTCN2017000677-appb-000003
Figure PCTCN2017000677-appb-000004
The macrocyclic polyether is:
Figure PCTCN2017000677-appb-000001
Figure PCTCN2017000677-appb-000002
Wherein: n=1-10000; m=1-10000; p=1-10000; q=1-10000; r=1-10000; R, R'=S, N, P, As; R”=
Figure PCTCN2017000677-appb-000003
Figure PCTCN2017000677-appb-000004
所述大环聚醚冠醚
Figure PCTCN2017000677-appb-000005
n=1-10000,
Macrocyclic polyether crown ether
Figure PCTCN2017000677-appb-000005
n=1-10000,
所述大环聚醚冠醚优选
Figure PCTCN2017000677-appb-000006
n=1-3。
The macrocyclic polyether crown ether is preferred
Figure PCTCN2017000677-appb-000006
n=1-3.
所述的还原剂和高氧化态的贵金属化合物前驱体的物质的量的比不低于还原高氧化态贵金属化合物前驱体所需化学计量比。The ratio of the amount of the reducing agent to the amount of the noble metal compound precursor in the high oxidation state is not lower than the stoichiometric ratio required to reduce the noble metal compound precursor of the high oxidation state.
所述的还原剂和水的物质的量的比不低于10-4∶1。The ratio of the amount of the reducing agent to the amount of water is not less than 10 -4 : 1.
所述的大环聚醚物质和高氧化态贵金属化合物前驱体之间物质的量比例不低于1∶1。The ratio of the amount of the substance between the macrocyclic polyether substance and the high oxidation state noble metal compound precursor is not less than 1:1.
所述的温度范围为:-50℃-200℃,反应时间为:0.5-168h。The temperature range is from -50 ° C to 200 ° C, and the reaction time is from 0.5 to 168 h.
一种贵金属孤原子的应用,将溶液中贵金属孤原子载在固体介质上形成贵金属孤原子-固体介质新材料,其制备过程采用浸渍法,包括以下步骤:The application of a noble metal atom is carried out by depositing a noble metal atom in a solution on a solid medium to form a noble metal atom-solid medium new material, and the preparation process adopts a dipping method, including the following steps:
1)浸渍:将载体与大环聚醚保护的贵金属孤原子溶液充分混合,室温浸渍0.5-24小时;1) impregnation: the carrier is thoroughly mixed with the noble metal atomic solution protected by the macrocyclic polyether, and immersed at room temperature for 0.5-24 hours;
2)除去还原剂和水:真空减压处理,除去还原剂和水。2) Removal of reducing agent and water: vacuum decompression treatment to remove reducing agent and water.
3)热处理:在20-200℃下,真空干燥0.5-48小时。3) Heat treatment: vacuum drying at 20-200 ° C for 0.5-48 hours.
所述贵金属孤原子的负载量:0.01-20%。The loading amount of the noble metal orphan atom: 0.01-20%.
本发明采用大环聚醚为保护剂,实现了溶液中贵金属孤原子的可控合成,并将溶液中贵金属孤原子载于固体介质表面形成贵金属孤原子-固体介质新材料。The invention adopts the macrocyclic polyether as a protective agent, realizes the controllable synthesis of the noble metal atom in the solution, and carries the precious metal orphan atom in the solution on the surface of the solid medium to form a precious metal isolated atom-solid medium new material.
本发明实现了溶液相中还原态贵金属孤原子的制备。相对于传统的溶液相中金属材料的合成而言,避免了金属纳米粒子的形成,得到还原态孤原子溶液。相对于固体表面负载的单原子材料而言,其具有载量高,稳定性好的特点。The invention realizes the preparation of the isolated noble metal atom in the solution phase. Compared with the synthesis of the metal material in the conventional solution phase, the formation of the metal nanoparticles is avoided, and the reduced atomic solution is obtained. Compared with solid surface supported monoatomic materials, it has high load capacity and good stability.
附图说明 DRAWINGS
图1为实施例1,4,5,6,7紫外可见图谱。Figure 1 is an ultraviolet visible spectrum of Examples 1, 4, 5, 6, and 7.
图2为实施例2紫外可见图谱。2 is an ultraviolet visible spectrum of Example 2.
图3为实施例3紫外可见图谱。Figure 3 is an ultraviolet visible spectrum of Example 3.
图4为实施例8紫外可见图谱。4 is an ultraviolet visible spectrum of Example 8.
图5为实施例9,10,11的CO在1wt%铂孤原子-氧化铝新材料上吸附的红外谱图。Figure 5 is an infrared spectrum of the adsorption of CO of Examples 9, 10, 11 on a 1 wt% platinum ion-alumina new material.
具体实施方式Detailed ways
下面以铂孤原子和金孤原子的合成为例对本发明做进一步的详细说明。本专利的保护内容并不以具体实施方式为限,而是由权利要求限制。The invention will be further described in detail below by taking the synthesis of platinum orphan atoms and gold orphan atoms as an example. The protection of the patent is not limited to the specific embodiments, but is limited by the claims.
实施例1Example 1
溶液中铂孤原子的制备:将0.1946g 15-冠醚-5,135ml乙醇,10.2ml水以及4.8ml浓度为0.018404mol/L氯铂酸溶液充分混合,然后升温,在80℃下冷凝回流6小时使氯铂酸完全还原。紫外可见吸收光谱图(图1)表明:氯铂酸被完全还原。(说明:在264.5nm处的紫外吸收峰代表PtCl6 2-离子的吸收峰,而该紫外吸收峰的消失说明氯铂酸被完全还原。)Preparation of platinum atom in solution: 0.1946g 15-crown ether-5,135ml ethanol, 10.2ml water and 4.8ml concentration of 0.018404mol/L chloroplatinic acid solution are mixed thoroughly, then warmed up, condensed and refluxed at 80 °C 6 The chloroplatinic acid is completely reduced in an hour. The UV-visible absorption spectrum (Fig. 1) shows that chloroplatinic acid is completely reduced. (Note: The UV absorption peak at 264.5 nm represents the absorption peak of PtCl 6 2- ion, and the disappearance of the UV absorption peak indicates that chloroplatinic acid is completely reduced.)
实施例2Example 2
溶液中铂孤原子的制备:将0.1946g 15-冠醚-5,135ml乙醇,10.2ml水以及4.8ml浓度为0.018404mol/L氯铂酸溶液充分混合,然后升温,在200℃下冷凝回流0.5小时使氯铂酸完全还原。紫外可见图谱如图2所示,表明:氯铂酸被完全还原。说明:在264.5nm处的紫外吸收峰代表PtCl6 2-离子的吸收峰,而该紫外吸收峰的消失说明氯铂酸被完全还原。。Preparation of platinum solitary atoms in solution: 0.1946 g of 15-crown ether-5,135 ml of ethanol, 10.2 ml of water and 4.8 ml of a concentration of 0.018404 mol/L chloroplatinic acid solution are thoroughly mixed, and then the temperature is raised, and the mixture is refluxed at 200 ° C for 0.5. The chloroplatinic acid is completely reduced in an hour. The UV-visible map is shown in Figure 2, indicating that chloroplatinic acid is completely reduced. Explanation: The ultraviolet absorption peak at 264.5 nm represents the absorption peak of PtCl 6 2- ion, and the disappearance of the ultraviolet absorption peak indicates that chloroplatinic acid is completely reduced. .
实施例3Example 3
溶液中铂孤原子的制备:将0.1946g 15-冠醚-5,135ml乙醇,10.2ml水以 及4.8ml浓度为0.018404mol/L氯铂酸溶液充分混合,然后升温,在25℃(室温)下还原168小时(一周)使氯铂酸完全还原。紫外可见图谱如图3所示,表明:氯铂酸被完全还原。说明:在264.5nm处的紫外吸收峰代表PtCl6 2-离子的吸收峰,而该紫外吸收峰的消失说明氯铂酸被完全还原。Preparation of platinum atom in solution: 0.1946g 15-crown ether-5,135ml ethanol, 10.2ml water and 4.8ml concentration of 0.018404mol/L chloroplatinic acid solution are mixed thoroughly, then warmed up at 25 ° C (room temperature) The chloroplatinic acid was completely reduced by reduction for 168 hours (one week). The UV-visible map is shown in Figure 3, indicating that chloroplatinic acid is completely reduced. Explanation: The ultraviolet absorption peak at 264.5 nm represents the absorption peak of PtCl 6 2- ion, and the disappearance of the ultraviolet absorption peak indicates that chloroplatinic acid is completely reduced.
实施例4Example 4
溶液中铂孤原子的制备:将0.0195g 15-冠醚-5(冠醚与铂的物质的量比为1∶1),135ml乙醇,10.2ml水以及4.8ml浓度为0.018404mol/L氯铂酸溶液充分混合,然后升温,在80℃下冷凝回流6小时使氯铂酸完全还原。紫外可见图谱如图1所示,表明:氯铂酸被完全还原。说明:在264.5nm处的紫外吸收峰代表PtCl6 2-离子的吸收峰,而该紫外吸收峰的消失说明氯铂酸被完全还原。Preparation of platinum solitary atoms in solution: 0.0195 g of 15-crown ether-5 (a ratio of crown ether to platinum is 1:1), 135 ml of ethanol, 10.2 ml of water and 4.8 ml of a concentration of 0.018404 mol/L chloroplatinum The acid solution was thoroughly mixed, then heated, and condensed and refluxed at 80 ° C for 6 hours to completely reduce chloroplatinic acid. The UV-visible spectrum is shown in Figure 1, indicating that chloroplatinic acid is completely reduced. Explanation: The ultraviolet absorption peak at 264.5 nm represents the absorption peak of PtCl 6 2- ion, and the disappearance of the ultraviolet absorption peak indicates that chloroplatinic acid is completely reduced.
实施例5Example 5
溶液中铂孤原子的制备:将0.1946g 15-冠醚-5,40.5mg乙醇(乙醇与氯铂酸物质的量之比为10∶1)乙醇,150ml水(乙醇与水的物质的量比例为1∶10000)以及4.8ml浓度为0.018404mol/L氯铂酸溶液充分混合,然后升温,在80℃下冷凝回流6小时使氯铂酸完全还原。紫外可见图谱如图1所示,表明:氯铂酸被完全还原。说明:在264.5nm处的紫外吸收峰代表PtCl6 2-离子的吸收峰,而该紫外吸收峰的消失说明氯铂酸被完全还原。Preparation of platinum solitary atoms in solution: 0.1946g of 15-crown ether-5, 40.5mg of ethanol (the ratio of the amount of ethanol to chloroplatinic acid is 10:1) ethanol, 150ml of water (the ratio of the amount of ethanol to water) 1 : 10000) and 4.8 ml of a concentration of 0.018404 mol / L chloroplatinic acid solution were thoroughly mixed, and then the temperature was raised, and condensed and refluxed at 80 ° C for 6 hours to completely reduce chloroplatinic acid. The UV-visible spectrum is shown in Figure 1, indicating that chloroplatinic acid is completely reduced. Explanation: The ultraviolet absorption peak at 264.5 nm represents the absorption peak of PtCl 6 2- ion, and the disappearance of the ultraviolet absorption peak indicates that chloroplatinic acid is completely reduced.
实施例6Example 6
溶液中铂孤原子的制备:将0.1946g 15-冠醚-5,882g乙醇(1.14L,乙醇加入量为氯铂酸物质的量的107倍),10.2ml水以及4.8ml浓度为0.018404mol/L氯铂酸溶液充分混合,然后升温,在80℃下冷凝回流6小时使氯铂酸完全还原。紫外可见图谱如图1所示,表明:氯铂酸被完全还原。说明:在264.5nm处的紫外吸收峰代表PtCl6 2-离子的吸收峰,而该紫外吸收峰的消失说明氯铂酸被完 全还原。Preparation of platinum atom in solution: 0.1946g 15-crown ether-5,882g ethanol (1.14L, ethanol is added in an amount of 10 7 times the amount of chloroplatinic acid), 10.2ml water and 4.8ml concentration is 0.018404mol The /L chloroplatinic acid solution was thoroughly mixed, then heated, and condensed and refluxed at 80 ° C for 6 hours to completely reduce chloroplatinic acid. The UV-visible spectrum is shown in Figure 1, indicating that chloroplatinic acid is completely reduced. Note: The ultraviolet absorption peak at 264.5 nm represents the absorption peak of PtCl 6 2- ion, and the disappearance of the ultraviolet absorption peak indicates that chloroplatinic acid is completely reduced.
实施例7Example 7
溶液中铂孤原子的制备:将0.1946g 15-冠醚-5,148.5ml乙醇,1.5ml水(乙醇与水的物质的量比例为30∶1)以及4.8ml浓度为0.018404mol/L氯铂酸溶液充分混合,然后升温,在80℃下冷凝回流6小时使氯铂酸完全还原。紫外可见图谱如图1所示,表明:氯铂酸被完全还原。说明:在264.5nm处的紫外吸收峰代表PtCl6 2-离子的吸收峰,而该紫外吸收峰的消失说明氯铂酸被完全还原。Preparation of platinum solitary atoms in solution: 0.1946 g of 15-crown ether-5, 148.5 ml of ethanol, 1.5 ml of water (the ratio of the amount of ethanol to water is 30:1) and 4.8 ml of the concentration of 0.018404 mol/L chloroplatinum The acid solution was thoroughly mixed, then heated, and condensed and refluxed at 80 ° C for 6 hours to completely reduce chloroplatinic acid. The UV-visible spectrum is shown in Figure 1, indicating that chloroplatinic acid is completely reduced. Explanation: The ultraviolet absorption peak at 264.5 nm represents the absorption peak of PtCl 6 2- ion, and the disappearance of the ultraviolet absorption peak indicates that chloroplatinic acid is completely reduced.
实施例8Example 8
溶液中金孤原子的制备:将0.2335g 18-冠-6,135ml乙醇,11.4ml水以及3.6ml浓度为0.02428mol/L氯金酸溶液充分混合,然后升温,在80℃下冷凝回流27小时使氯金酸完全还原。紫外可见吸收光谱图(图4)表明:氯金酸被完全还原。(说明:在320.6nm处的紫外吸收峰代表AuCl4-离子的吸收峰,而该紫外吸收峰的消失说明氯金酸被完全还原。)Preparation of gold solitary atoms in solution: 0.2335 g of 18-crown-6, 135 ml of ethanol, 11.4 ml of water and 3.6 ml of a solution of 0.02428 mol/L of chloroauric acid are thoroughly mixed, then heated, and condensed and refluxed at 80 ° C for 27 hours. The chloroauric acid is completely reduced. The UV-visible absorption spectrum (Fig. 4) shows that chloroauric acid is completely reduced. (Note: The ultraviolet absorption peak at 320.6 nm represents the absorption peak of AuCl4- ions, and the disappearance of the ultraviolet absorption peak indicates that chloroauric acid is completely reduced.)
实施例9Example 9
将溶液中铂孤原子通过浸渍法负载在氧化铝上制备铂孤原子-氧化铝新材料:取实施例1得到的铂孤原子溶液87ml,加入1gγ-Al2O3并充分浸渍1小时。在40℃下减压蒸馏除去乙醇和水,并在40℃下真空干燥12小时,得到负载量为1%的铂孤原子-氧化铝新材料。CO在1wt%铂孤原子-氧化铝上吸附的红外谱图(图5)表明:铂孤原子-氧化铝新材料合成成功。(说明:1800cm-1-1900cm-1之间的峰归属为CO在铂上的桥式吸附峰,而2080cm-1处的峰为CO在铂上的线式吸附峰。从图中可以看出没有桥式吸附峰,这说明没有两个或两个以上相连接的铂原子。随着CO压力的增大,2080cm-1处的出峰位置并没有发生蓝移,这说明了铂是以孤原子的形式存在的,进而证明了铂孤原子-氧化铝新材料合成 成功。A platinum atom-alumina new material was prepared by impregnating platinum atoms in a solution by impregnation. 87 ml of a platinum atomic solution obtained in Example 1 was added, and 1 g of γ-Al 2 O 3 was added and fully immersed for 1 hour. Ethanol and water were distilled off under reduced pressure at 40 ° C, and dried under vacuum at 40 ° C for 12 hours to obtain a platinum atom-aluminum oxide new material having a loading of 1%. The infrared spectrum of CO adsorption on 1 wt% platinum ion-alumina (Fig. 5) shows that the platinum atom-alumina new material was successfully synthesized. (Note: The peak between 1800 cm -1 and 1900 cm -1 is attributed to the bridge adsorption peak of CO on platinum, and the peak at 2080 cm -1 is the linear adsorption peak of CO on platinum. It can be seen from the figure There is no bridge adsorption peak, which means that there are no two or more platinum atoms connected. As the CO pressure increases, the peak position at 2080 cm -1 does not shift blue, which indicates that platinum is isolated. The existence of the atomic form proves the successful synthesis of the platinum atom-aluminum new material.
实施例10Example 10
将溶液中铂孤原子通过浸渍法负载在氧化铝上制备铂孤原子-氧化铝新材料:取实施例1得到的铂孤原子溶液87ml,加入100gγ-Al2O3并充分浸渍1小时。在40℃下减压蒸馏除去乙醇和水,并在150℃下真空干燥0.5小时,得到负载量为0.01%的铂孤原子-氧化铝新材料。CO在1wt%铂孤原子-氧化铝上吸附的红外谱图如图5所示。A platinum atom-alumina new material was prepared by impregnating platinum atoms in a solution by impregnation. 87 ml of a platinum atomic solution obtained in Example 1 was added, 100 g of γ-Al 2 O 3 was added, and fully immersed for 1 hour. Ethanol and water were distilled off under reduced pressure at 40 ° C, and vacuum-dried at 150 ° C for 0.5 hour to obtain a platinum atom-alumina new material having a loading of 0.01%. The infrared spectrum of CO adsorption on 1 wt% platinum ion-alumina is shown in Fig. 5.
实施例11Example 11
将溶液中铂孤原子通过浸渍法负载在氧化铝上制备铂孤原子-氧化铝新材料:取实施例1得到的铂孤原子溶液87ml,加入0.1gγ-Al2O3并充分浸渍1小时。在40℃下减压蒸馏除去乙醇和水,并在20℃下真空干燥48小时,得到负载量为10%的铂孤原子-氧化铝新材料。CO在1wt%铂孤原子-氧化铝上吸附的红外谱图如图5所示。 A platinum atom-alumina new material was prepared by impregnating platinum atoms in a solution by impregnation. 87 ml of a platinum atomic solution obtained in Example 1 was added, 0.1 g of γ-Al 2 O 3 was added, and fully immersed for 1 hour. Ethanol and water were distilled off under reduced pressure at 40 ° C, and dried under vacuum at 20 ° C for 48 hours to obtain a platinum atom-aluminum oxide new material having a loading of 10%. The infrared spectrum of CO adsorption on 1 wt% platinum ion-alumina is shown in Fig. 5.

Claims (21)

  1. 一种溶液中制备贵金属孤原子的方法,其特征在于将大环聚醚、高氧化态的贵金属化合物前驱体、还原剂和水按照一定比例充分混合,溶液中的还原剂将高氧化态的贵金属化合物前驱体还原为零价贵金属孤原子,从而得到能够稳定存在的贵金属孤原子溶液。A method for preparing a noble metal atom in a solution, characterized in that a macrocyclic polyether, a noble metal compound precursor of a high oxidation state, a reducing agent and water are thoroughly mixed according to a certain ratio, and a reducing agent in the solution is a noble metal in a high oxidation state. The compound precursor is reduced to a zero-valent noble metal orphan atom, thereby obtaining a noble metal orphan atom solution which can be stably present.
  2. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述的贵金属孤原子为铂系元素或后铂系元素;所述铂系元素为钯、铑、铱、钌、锇或铂;所述后铂系元素为银或金。The method for preparing a noble metal atom in a solution according to claim 1, wherein the noble metal atom is a platinum element or a post platinum element; and the platinum element is palladium, rhodium, ruthenium or iridium. , ruthenium or platinum; the post-platinum element is silver or gold.
  3. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述的贵金属孤原子优选铂和金。A method of preparing a noble metal atom in a solution according to claim 1, wherein said noble metal atom is preferably platinum and gold.
  4. 按照权利要求3所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述的铂孤原子以195Pt核磁共振化学位移在-2000- -4000ppm之间为主要特征。A method for preparing a noble metal atom in a solution according to claim 3, wherein said platinum atom is characterized by a 195 Pt nuclear magnetic resonance chemical shift between -2000 and -4000 ppm.
  5. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属化合物前驱体为高氧化态的铂化合物前驱体、高氧化态的钯化合物前驱体、高氧化态的铑化合物前驱体、高氧化态的铱化合物前驱体、高氧化态的钌化合物前驱体、高氧化态的锇化合物前驱体、高氧化态的银化合物前驱体或高氧化态的金化合物前驱体。The method for preparing a noble metal atom in a solution according to claim 1, wherein the precursor of the noble metal compound in the high oxidation state is a platinum compound precursor of a high oxidation state, a palladium compound precursor of a high oxidation state, High oxidation state ruthenium compound precursor, high oxidation ruthenium compound precursor, high oxidation ruthenium compound precursor, high oxidation ruthenium compound precursor, high oxidation state silver compound precursor or high oxidation state gold Compound precursor.
  6. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属铂化合物前驱体包括:氯铂酸、氯铂酸钠、氯铂酸钾、氯化亚铂、氯化铂、二乙胺氯化铂、硝酸铂、1,5-环辛二烯二氯化铂、三氯·(乙烯)合铂酸钾、二氯四氨合铂、二腈苯基二氯合铂、二(亚磷酸三苯酯)二氯化铂或四氯铂酸铵中的一种。The method for preparing a noble metal atom in a solution according to claim 1, wherein the noble metal platinum compound precursor of the high oxidation state comprises: chloroplatinic acid, sodium chloroplatinate, potassium chloroplatinate, chlorination Platinum, platinum chloride, platinum chloride, platinum nitrate, 1,5-cyclooctadiene platinum dichloride, trichloro-(ethylene) potassium platinum phosphate, platinum tetraammine platinum, dinitrile One of phenyl dichloroplatinum, bis(triphenyl phosphite) platinum dichloride or ammonium tetrachloroplatinate.
  7. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在 于所述高氧化态的贵金属钯化合物前驱体包括:氯化钯、硝酸钯、氯亚钯酸、二氯化四氨合钯、二氯化二氨合钯、二硝基四氨合钯、醋酸钯、硫酸钯、三氟乙酸钯、乙酰丙酮钯、六氯钯酸钾、六氯钯酸铵、四氨合钯(II)乙酸、四氯钯(II)酸钠、四氯钯(II)酸钾、四氯钯酸铵、四氰基钯(II)酸钾、四溴钯(II)酸钾、新戊酸钯、氰化钯(II)、溴化钯(II)、硫代硫酸钯(II)、碘化钯(II)、磺化钯(II)、1,3-双(二苯基膦)丙烷)氯化钯(II)、(1,5-环辛二烯)二氯化钯(II)、(2,2′-联吡啶)二氯化钯(II)、[1,2-双(二苯基膦)乙烷]二氯化钯(II)、1,4-双(二苯基膦)丁烷-氯化钯(II)或乙二胺氯化钯中的一种。A method for preparing a noble metal atom in a solution according to claim 1, characterized in that The noble metal palladium compound precursor in the high oxidation state includes: palladium chloride, palladium nitrate, chloropalladium acid, tetraammine palladium dichloride, diammine palladium dichloride, dinitrotetraammine palladium, Palladium acetate, palladium sulfate, palladium trifluoroacetate, palladium acetylacetonate, potassium hexachloropalladate, ammonium hexachloropalladate, tetraammine palladium (II) acetic acid, sodium tetrachloropalladium (II), tetrachloropalladium (II) Acid potassium, ammonium tetrachloropalladate, potassium tetracyano palladium (II) acid, potassium tetrabromo palladium (II) acid, palladium pivalate, palladium (II) cyanide, palladium (II) bromide, thio Palladium (II) sulfate, palladium (II) iodide, palladium (II) sulfonate, 1,3-bis(diphenylphosphino)propane) palladium (II) chloride, (1,5-cyclooctadiene) Palladium (II) dichloride, (2,2'-bipyridyl) palladium (II) dichloride, [1,2-bis(diphenylphosphino)ethane]palladium(II) dichloride, 1, One of 4-bis(diphenylphosphino)butane-palladium (II) chloride or palladium chloride.
  8. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属铑化合物前驱体包括:硝酸铑(III)、乙酰丙酮铑(III)、二(乙烯)氯铑二聚体、六氯代铑(III)酸钠、六氯铑(III)酸钾、六氯铑酸铵、氯化铑(III)、三(三苯基膦)氯化铑(I)、三(乙二胺)三氯化铑、乙酰丙酮酰双(亚乙基)化铑(I)、二羰基乙酰丙酮铑(I)、二羰基五甲基环戊二烯铑或双(1,5-环辛二烯)四氟硼酸铑(I)中的一种。The method for preparing a noble metal atom in a solution according to claim 1, wherein the noble metal ruthenium compound precursor in the high oxidation state comprises: cerium (III) nitrate, cerium (III) acetylacetonate, and bis(ethylene) Chloroquinone dimer, sodium hexachloroantimonate (III), potassium hexachloroantimonate (III), ammonium hexachloroantimonate, cerium (III) chloride, cerium tris(triphenylphosphine) I), tris(ethylenediamine) antimony trichloride, acetylacetonyl bis(ethylene) ruthenium (I), dicarbonyl acetylacetonate oxime (I), dicarbonyl pentamethylcyclopentadienyl or double (1,5-cyclooctadiene) one of cerium (I) tetrafluoroborate.
  9. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属铱化合物前驱体包括:氯铱酸、乙酰丙酮铱(III)、六氯代铱(III)酸钠、六氯铱(III)酸钾、六氯铱酸铵、六硝基铱(III)酸钾、氯化铱(III)、溴化铱(III)、1,5-环辛二烯(乙酰丙酮)铱(I)、1,5-环辛二烯(六氟乙酰丙酮)铱(I)、二氯化戊氨络物氯铱(III)、二氯四(2-(2-吡啶基)苯基)二铱(III)、二羰基乙酰丙酮铱(I)、双(1,5-环辛二烯)四氟硼酸铱(I)、1,5-环辛二烯(吡啶)(三环己基磷化氢)铱六氟磷酸盐或双[1,2-双(二苯基膦基)乙烷]羰基氯铱(I)中的一种。A method for preparing a noble metal atom in a solution according to claim 1, wherein the noble metal ruthenium compound precursor in the high oxidation state comprises: chloroantimonic acid, ruthenium (III) acetylacetonate, and hexachloropyrene ( III) sodium, potassium hexachloroantimonate (III), ammonium hexachloroantimonate, potassium hexanitroguanidate (III), cerium (III) chloride, cerium (III) bromide, 1,5-cyclooctane Diene (acetylacetone) ruthenium (I), 1,5-cyclooctadiene (hexafluoroacetylacetonate) ruthenium (I), pentamine ruthenium chloride (III), dichlorotetrakis (2-( 2-pyridyl)phenyl)diguanium(III), bis(1,5-cyclooctadiene) ruthenium (I) tetrafluoroborate, 1,5-cyclooctadiene (pyridine) (tricyclohexylphosphine) cesium hexafluorophosphate or one of bis[1,2-bis(diphenylphosphino)ethane]carbonyl chloroguanidine (I).
  10. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属钌化合物前驱体包括:三氯化钌、乙酰丙酮钌(III)、亚 硝酰硝酸钌(III)溶液、六氨合钌氯、六氯钌酸铵、六氰基钌(II)酸钾、四丙基高钌酸铵、氯化乙二胺乙酸钌(III)、水合五氯钌(III)酸钾、碘化钌(III)水合物、三(三苯基膦)二氯化钌(II)、三氯化六铵合钌、三苯基膦氯化钌、二氯(2,6,10-十二碳三烯-1,12-二基)钌(IV)、二氯三(1,10-菲罗啉)钌(II)、二氯二羰基双(三苯基膦)钌(II)或二氯化戊氨络物氯钌(III)中的一种。The method for preparing a noble metal atom in a solution according to claim 1, wherein the noble metal ruthenium compound precursor in the high oxidation state comprises: antimony trichloride, cerium (III) acetylacetonate, and sub Niobium (III) nitrate solution, hexaammine ruthenium chloride, ammonium hexachloroantimonate, potassium hexacyanophthalate (II), ammonium tetrapropyl perrhenate, ruthenium (III) chloride Hydrated pentachlorophosphonium (III) hydride, cerium (III) iodide hydrate, tris(triphenylphosphine) ruthenium dichloride (II), hexaammonium trichloride ruthenium, triphenylphosphine ruthenium chloride, Dichloro(2,6,10-dodecatriene-1,12-diyl)ruthenium (IV), dichlorotris(1,10-phenanthroline)ruthenium (II), dichlorodicarbonyl bis ( Triphenylphosphine) ruthenium (II) or pentylene chloride dichloropyridinium (III).
  11. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属锇化合物前驱体包括:锇酸钾二水合物、六氯锇(IV)酸钾、六氯锇铵、双(五甲基环戊二烯)锇(II)、氯化锇(III)或五氨合(三氟甲磺酸根)锇(III)三氟甲磺酸中的一种。The method for preparing a noble metal atom in a solution according to claim 1, wherein the noble metal ruthenium compound precursor in the high oxidation state comprises: potassium citrate dihydrate, potassium hexachloroantimonate (IV), One of hexachloroammonium, bis(pentamethylcyclopentadienyl)ruthenium (II), ruthenium (III) chloride or pentaamine (trifluoromethanesulfonate) ruthenium (III) trifluoromethanesulfonic acid .
  12. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属金化合物前驱体包括:氯金酸钾、氰金(I)酸钠、一氯化金、三氧化二金、三氯(吡啶)金(III)、三氯化金、四氯金(III)酸钠、四氯金酸、四氯金酸铵、氯(二甲基硫化)金(I)、氯羰基金(I)、氰化亚金、溴化金、碘化亚金或氯化三苯基磷金(I)中的一种。A method for preparing a noble metal atom in a solution according to claim 1, wherein said noble metal gold compound precursor in a high oxidation state comprises: potassium chloroaurate, sodium cyanide (I), monochlorination Gold, gold trioxide, trichloro(pyridine) gold (III), gold trichloride, sodium tetrachlorogold (III), tetrachloroauric acid, ammonium tetrachloroaurate, chlorine (dimethyl sulfide) gold (I), one of chlorocarbonyl fund (I), gold cyanide, gold bromide, gold iodide or triphenylphosphine chloride (I).
  13. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述高氧化态的贵金属银化合物前驱体包括:硝酸银、乳酸银、柠檬酸银、氯酸银、氰酸银、溴酸银、醋酸银、三氟乙酸银、乙酰丙酮银、二氰合银酸钾、五氟丙酸银、氰化银或苯甲酸银中的一种。The method for preparing a noble metal atom in a solution according to claim 1, wherein the noble metal silver compound precursor of the high oxidation state comprises: silver nitrate, silver lactate, silver citrate, silver chlorate, cyanic acid Silver, silver bromate, silver acetate, silver trifluoroacetate, silver acetylacetonate, potassium dicyanate, silver pentafluoropropionate, silver cyanide or silver benzoate.
  14. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述还原剂为醇类化合物、葡萄糖、甲酸、柠檬酸、酒石酸、抗坏血酸、水合肼、硼氢化物中的一种或几种。The method for preparing a noble metal atom in a solution according to claim 1, wherein the reducing agent is one of an alcohol compound, glucose, formic acid, citric acid, tartaric acid, ascorbic acid, hydrazine hydrate, and borohydride. Kind or several.
  15. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述还原剂为甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁 醇、乙二醇或丙三醇中的一种或几种混合物。A method for preparing a noble metal atom in a solution according to claim 1, wherein the reducing agent is methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, ortho Ding One or a mixture of alcohols, ethylene glycol or glycerol.
  16. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述的大环聚醚为:
    Figure PCTCN2017000677-appb-100001
    Figure PCTCN2017000677-appb-100002
    其中:n=1-10000;m=1-10000;p=1-10000;q=1-10000;r=1-10000;R,R’=S,N,P,As;
    Figure PCTCN2017000677-appb-100003
    Figure PCTCN2017000677-appb-100004
    A method of preparing a noble metal atom in a solution according to claim 1, wherein said macrocyclic polyether is:
    Figure PCTCN2017000677-appb-100001
    Figure PCTCN2017000677-appb-100002
    Wherein: n=1-10000; m=1-10000; p=1-10000; q=1-10000; r=1-10000; R, R'=S, N, P, As;
    Figure PCTCN2017000677-appb-100003
    Figure PCTCN2017000677-appb-100004
  17. 按照权利要求1所述一种溶液中制备贵金属孤原子的方法,其特征在于所述大环聚醚冠醚
    Figure PCTCN2017000677-appb-100005
    n=1-10000,优选
    Figure PCTCN2017000677-appb-100006
    n=1-3。
    A method for preparing a noble metal atom in a solution according to claim 1, characterized in that said macrocyclic polyether crown ether
    Figure PCTCN2017000677-appb-100005
    n=1-10000, preferred
    Figure PCTCN2017000677-appb-100006
    n=1-3.
  18. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述的还原剂和高氧化态的贵金属化合物前驱体的物质的量的比不低于还原高氧化态的贵金属化合物前驱体所需化学计量比。A method for preparing a noble metal atom in a solution according to claim 1, wherein the ratio of the amount of the reducing agent to the noble metal compound precursor in the high oxidation state is not lower than the noble metal in the reduced high oxidation state. The stoichiometric ratio required for the compound precursor.
  19. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述的还原剂和水的物质的量的比不低于10-4∶1。 A method of preparing a noble metal atom in a solution according to claim 1, wherein the ratio of the amount of the reducing agent to water is not less than 10 -4 : 1.
  20. 按照权利要求1所述的一种溶液中制备贵金属孤原子的方法,其特征在于所述的大环聚醚物质和高氧化态贵金属化合物前驱体之间物质的量比例不低于1∶1。A method of preparing a noble metal atom in a solution according to claim 1, wherein the ratio of the amount of the substance between the macrocyclic polyether substance and the high oxidation state noble metal compound precursor is not less than 1:1.
  21. 一种溶液中制备贵金属孤原子的应用,其特征在于将贵金属孤原子载在固体介质上形成贵金属孤原子-固体介质新材料。 The use of a noble metal atom in a solution is characterized in that a noble metal atom is carried on a solid medium to form a noble metal atom-solid medium new material.
PCT/CN2017/000677 2017-10-27 2017-11-13 Method for preparing precious metal isolated atoms in solution and application WO2019079917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711025262.3A CN109719304B (en) 2017-10-27 2017-10-27 Method for preparing noble metal lone atoms in solution and application
CN201711025262.3 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019079917A1 true WO2019079917A1 (en) 2019-05-02

Family

ID=66247085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000677 WO2019079917A1 (en) 2017-10-27 2017-11-13 Method for preparing precious metal isolated atoms in solution and application

Country Status (2)

Country Link
CN (1) CN109719304B (en)
WO (1) WO2019079917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828790A (en) * 2021-08-25 2021-12-24 海南大学 Preparation method of gold and core-shell nanocrystal thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465313A (en) * 2018-05-10 2019-11-19 中国科学院大连化学物理研究所 Platinum compounds of zeroth order containing chlorine and preparation method thereof and its application in Si―H addition reaction
CN111589444B (en) * 2020-04-30 2022-07-19 昆明理工大学 Noble metal quantum dot and preparation method and application thereof
CN114522681B (en) * 2020-11-23 2023-10-13 中国科学院大连化学物理研究所 Method for improving stability of noble metal solitary atoms in hydrogen atmosphere
CN114134336A (en) * 2021-12-03 2022-03-04 北京工业大学 Low-cost reducing agent for selective precipitation of noble metal ions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489717A (en) * 2011-12-22 2012-06-13 云南云天化股份有限公司 Preparation method of nanometer silver particles
CN105529475A (en) * 2015-12-30 2016-04-27 中国科学院长春应用化学研究所 Catalyst with dispersed single platinum atoms and preparation method of catalyst
CN106914237A (en) * 2017-02-28 2017-07-04 清华大学 A kind of monoatomic preparation method of metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201407755D0 (en) * 2014-05-02 2014-06-18 Univ Warwick Nanocrystals
CN108067632B (en) * 2016-11-11 2019-11-08 中国科学院大连化学物理研究所 A kind of method and application preparing noble metal orphan's atom in the solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489717A (en) * 2011-12-22 2012-06-13 云南云天化股份有限公司 Preparation method of nanometer silver particles
CN105529475A (en) * 2015-12-30 2016-04-27 中国科学院长春应用化学研究所 Catalyst with dispersed single platinum atoms and preparation method of catalyst
CN106914237A (en) * 2017-02-28 2017-07-04 清华大学 A kind of monoatomic preparation method of metal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BING HAN: "Highlights of the major progress in single-atom catalysis in 2015 and 2016", CHINESE JOURNAL OF CATALYSIS, vol. 9, no. 38, 5 September 2017 (2017-09-05), pages 1498 - 1507, XP055592202, ISSN: 0253-9837 *
LIQIONG WANG: "Preparation, characterization and catalytic performance of single - atom catalysts", CHINESE JOURNAL OF CATALYSIS, vol. 38, no. 9, 5 September 2017 (2017-09-05), pages 1528 - 1539, XP055593720, ISSN: 0253-9837 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828790A (en) * 2021-08-25 2021-12-24 海南大学 Preparation method of gold and core-shell nanocrystal thereof
CN113828790B (en) * 2021-08-25 2024-05-14 海南大学 Gold and preparation method of core-shell nanocrystalline thereof

Also Published As

Publication number Publication date
CN109719304B (en) 2022-08-09
CN109719304A (en) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2019079917A1 (en) Method for preparing precious metal isolated atoms in solution and application
WO2018085959A1 (en) Method for preparing precious metal isolated atoms in solution, and applications thereof
Wang et al. Pulsed electrodeposition of metastable Pd31Bi12 nanoparticles for oxygen reduction electrocatalysis
EP3092072B1 (en) A process for vapor-phase methanol carbonylation to methyl formate
JP6517316B2 (en) Method for producing a carbon supported catalyst
Qian et al. PtM/C catalyst prepared using reverse micelle method for oxygen reduction reaction in PEM fuel cells
Jeon et al. Effect of surface segregation on the methanol oxidation reaction in carbon-supported Pt− Ru alloy nanoparticles
Southward et al. Control of reflectivity and surface conductivity in metallized polyimide films prepared via in situ silver (I) reduction
US20190314805A1 (en) A process for producing a catalyst comprising an intermetallic compound and a catalyst produced by the process
WO2020042526A1 (en) Composite catalyst, preparation method therefor and use thereof
JP5955501B2 (en) Method for producing platinum / palladium core-shell catalyst
CA3045346A1 (en) A solution-stable isolated noble metal atoms material
Boennemann et al. Efficient fuel cell catalysts emerging from organometallic chemistry
Yang et al. Surface-limited synthesis of Pt nanocluster decorated Pd hierarchical structures with enhanced electrocatalytic activity toward oxygen reduction reaction
Liu et al. Pt3Sn nanoparticles with controlled size: high-temperature synthesis and room-temperature catalytic activation for electrochemical methanol oxidation
Seehra et al. Introductory chapter: Overview of the properties and applications of noble and precious metals
Bönnemann et al. Structure and chemical composition of a surfactant-stabilized Pt3Sn alloy colloid
US9147885B2 (en) Electrocatalytic composite(s), associated composition(s), and associated process(es)
Edelman et al. Conducting metallopolymers as precursors to fabricate palladium nanoparticle/polymer hybrids for oxygen reduction
Van den Oetelaar et al. A Surface Science Study of Model Catalysts. 2. Metal− Support Interactions in Cu/SiO2 Model Catalysts
JP4765092B2 (en) Colloidal solution and method for producing colloidal solution
JPH09225317A (en) Nickel/noble metal binary metal cluster and catalyst made from the cluster and its preparation
CN111250725B (en) Preparation method of heteronuclear bimetallic atom material stable in solution
Warshawsky et al. Zerovalent metal polymer composites. III. Metallization of metal oxide surfaces with the aid of metallized functional polymer microdispersions
JP2007324092A (en) Manufacturing method of platinum or platinum alloy supported catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929830

Country of ref document: EP

Kind code of ref document: A1