WO2019078700A1 - Compound and organic light emitting device comprising same - Google Patents

Compound and organic light emitting device comprising same Download PDF

Info

Publication number
WO2019078700A1
WO2019078700A1 PCT/KR2018/012503 KR2018012503W WO2019078700A1 WO 2019078700 A1 WO2019078700 A1 WO 2019078700A1 KR 2018012503 W KR2018012503 W KR 2018012503W WO 2019078700 A1 WO2019078700 A1 WO 2019078700A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
light emitting
layer
formula
Prior art date
Application number
PCT/KR2018/012503
Other languages
French (fr)
Korean (ko)
Inventor
윤홍식
이준엽
이호중
홍완표
김진주
Original Assignee
주식회사 엘지화학
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 성균관대학교산학협력단 filed Critical 주식회사 엘지화학
Priority to CN201880042703.7A priority Critical patent/CN110799507B/en
Publication of WO2019078700A1 publication Critical patent/WO2019078700A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms

Definitions

  • the present invention relates to a compound and an organic light emitting device including the same.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes couple to each other in the organic thin film and form a pair, which then extinguishes and emits light.
  • the organic thin film may be composed of a single layer or a multilayer, if necessary.
  • organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy.
  • An organic light emitting device using an organic light emitting phenomenon generally has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer may have a multi-layer structure composed of different materials and may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Nitrogen ring compounds and organic light emitting devices containing them are described in this specification.
  • An embodiment of the present invention provides a compound represented by the following formula (1).
  • R1 and R2 are each independently selected from the group consisting of hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,
  • a and b are each independently an integer of 0 to 4,
  • c is an integer of 1 to 4,
  • a + b is 1 or more
  • a plasma display panel comprising: a first electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound represented by Formula 1 do.
  • the compound described in this specification can be used as a material of an organic layer of an organic light emitting device.
  • the compound according to at least one embodiment can improve the efficiency, lower driving voltage and / or lifetime characteristics in the organic light emitting device.
  • the compounds described herein can be used as hole injecting, hole transporting, hole injecting and hole transporting, electron suppressing, luminescence, hole blocking, electron transporting, or electron injecting materials.
  • the compound according to one embodiment of the present invention has a structure having a high electron accepting ability and is excellent in heat resistance, so that an appropriate deposition temperature can be maintained in the production of an organic light emitting device.
  • the sublimation temperature is high, it is possible to achieve high purity by the sublimation purification method, and does not cause contamination of the vapor deposition film forming apparatus or the organic light emitting device in manufacturing the organic light emitting device.
  • Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
  • FIG. 3 is a graph for confirming the synthesis of a compound according to one embodiment of the present invention.
  • the present invention provides a compound represented by the above formula (1).
  • the compound represented by the following formula (1) has a small energy difference between the triplet and the singlet, so that the exciton migration (RISC) from the triplet to the singlet occurs efficiently. Therefore, When used for an organic material layer, not only the efficiency of the organic light emitting device is improved, but also a low driving voltage and an excellent lifetime characteristic.
  • a member when a member is located on another member, it includes not only the case where the member is in contact with the other member but also the case where another member exists between the two members.
  • Quot means a moiety bonded to another substituent or compound.
  • substituted means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the substituted position is not limited as long as the substituent is a substitutable position, , Two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted A halogen group; Cyano; Silyl group; Boron group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted alkenyl group; A substituted or unsubstituted aryl group; And a substituted or unsubstituted heterocyclic group, or that at least two of the substituents exemplified above are substituted with a substituent to which they are linked, or have no substituent.
  • a substituent to which at least two substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • examples of the halogen group include fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the silyl group may be represented by the formula of -SiR a R b R c , wherein R a , R b and R c are each hydrogen; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • the silyl group specifically includes a trimethylsilyl group (TMS), a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, But is not limited thereto.
  • the boron group may be represented by the formula of -BR d R e , wherein R d and R e are each hydrogen; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an n-propyl group, an isopropyl group, a butyl group, a n-butyl group, an isobutyl group, Hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-tert-butylpentyl group, 1-methylbutyl group, Methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, ethylhexyl group, 1-ethylhexyl group, 2-propylpentyl group, n-nonyl group, 2,2-dimethylheptyl group, Propyl group,
  • the alkoxy group may be linear, branched or cyclic.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but it is 1 to 40 carbon atoms and, according to one embodiment, has 1 to 20 carbon atoms.
  • Specific examples include methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, N-hexyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, But is not limited thereto.
  • Substituents comprising the alkyl groups, alkoxy groups and other alkyl moieties described herein include both straight chain and branched forms.
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, (Diphenyl-1-yl) vinyl-1-yl, stilbenyl, stilenyl, and the like.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 40 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • cyclopropyl cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto.
  • polycyclic aryl group examples include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a triphenyl group, a klycenyl group and a fluorenyl group.
  • a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the heterocyclic group is a heterocyclic group and is a heterocyclic group containing at least one of N, O, P, S, Si and Se.
  • the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms. According to one embodiment, the number of carbon atoms of the heterocyclic group is 2 to 30.
  • heterocyclic group examples include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophenyl group, an imidazole group, a pyrazole group, an oxazole group, an isoxazole group, a thiazole group, A thiadiazole group, a thiadiazole group, a tetrazolyl group, a pyranyl group, a thiopyranyl group, a pyrazinyl group, an oxazinyl group, a thiazinyl group, a dioxinyl group, a triazinyl group, a tetrazinyl group, A phenanthridinyl group, a diazanaphthalenyl group, a triazinylidene group, an indole group, a thioph
  • the hydrocarbon ring may be an aromatic, aliphatic or aromatic and aliphatic condensed ring, and may be selected from the examples of the cycloalkyl group or the aryl group except the univalent hydrocarbon ring.
  • formula (1) may be represented by the following formula (2).
  • R1, R2, Ar1, Ar2 and c are as defined in the formula (1).
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group.
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms.
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • R 1 and R 2 are each independently a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • R 1 and R 2 are each independently a substituted or unsubstituted phenyl group; Or a substituted or unsubstituted biphenyl group.
  • Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group.
  • Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.
  • Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms.
  • Ar1 and Ar2 each independently represent a substituted or unsubstituted carbazole group.
  • c in Formula 1 is an integer of 1 to 4, meaning that at least one cyano group is substituted.
  • each of a and b is independently an integer of 1 to 4.
  • a and b are 1.
  • c is 1 or 2.
  • the formula (1) may be represented by any one of the following structures.
  • the conjugation length of the compound and the energy band gap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap.
  • the HOMO and LUMO energy levels of the compound can be controlled by introducing the core structure having the above structure.
  • the organic light emitting device includes a first electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes the compound of Formula 1.
  • the organic light emitting device of the present invention can be manufactured by a conventional method and material for manufacturing an organic light emitting device, except that one or more organic compound layers are formed using the above-described compounds.
  • the compound may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method in the production of an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto, and may include a smaller number of organic layers.
  • the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer may include a compound represented by the above formula (1).
  • the organic material layer may include a hole injecting layer or a hole transporting layer, and the hole injecting layer or the hole transporting layer may include the compound represented by the above formula (1).
  • the organic layer includes a light-emitting layer, and the light-emitting layer includes a compound represented by the general formula (1).
  • the organic layer includes a light emitting layer
  • the light emitting layer may include the compound represented by Formula 1 as a dopant in the light emitting layer.
  • the organic material layer may include a light emitting layer
  • the light emitting layer may include a compound represented by Formula 1 as a dopant
  • the dopant may be 100 parts by weight May be 1 to 50 parts by weight.
  • the compound of Formula 1 may be used as a thermally activated delayed fluorescence (TADF), and the compound of Formula 1 may have a DELTA E st value of retarded fluorescence of less than 0.2 eV and an orientation factor characteristic of more than 0.7 It is possible to realize an organic light emitting device capable of emitting light of a high luminance, having a low driving voltage, and having a long life span.
  • TADF thermally activated delayed fluorescence
  • the thermally activated delayed fluorescence means a phenomenon in which transit transition is induced from triplet excited state to singlet excited state due to heat energy and exciton of singlet excited state moves to the ground state to cause fluorescence emission .
  • E st means the absolute value of singlet energy - triplet energy.
  • the organic layer includes a light-emitting layer
  • the light-emitting layer includes a compound represented by Formula 1 as a dopant, a fluorescent host or a phosphorescent host, have.
  • the dopant content may be 1 to 50 parts by weight based on 100 parts by weight of the host, and the fluorescent emitter may be 0 to 10 parts by weight based on 100 parts by weight of the host.
  • the compound represented by Formula 1 transmits an exciton energy to the fluorescent emitter and causes a luminescence phenomenon in the fluorescent emitter, so that it is possible to emit a high luminance, It is possible to manufacture an organic light emitting device having low and long lifetime characteristics.
  • fluorescent materials such as an anthracene-based compound, a pyrene-based compound, and a boron-based compound may be used, but the present invention is not limited thereto.
  • the first electrode is an anode and the second electrode is a cathode.
  • the first electrode is a cathode and the second electrode is a cathode.
  • the structure of the organic light emitting device of the present invention may have a structure as shown in FIGS. 1 and 2, but the present invention is not limited thereto.
  • FIG. 1 illustrates the structure of an organic light emitting device in which an anode 2, a light emitting layer 3, and a cathode 4 are sequentially laminated on a substrate 1.
  • the compound may be included in the light emitting layer (3).
  • FIG. 2 shows an organic light emitting device in which an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 are sequentially laminated on a substrate 1 Structure is illustrated.
  • the compound may be included in the hole injecting layer 5, the hole transporting layer 6, the light emitting layer 7, or the electron transporting layer 8.
  • the organic light emitting device may be formed by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation to form a metal oxide or a metal oxide having conductivity on the substrate,
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation to form a metal oxide or a metal oxide having conductivity on the substrate
  • an organic material layer including a hole injection layer, a hole transporting layer, a light emitting layer, and an electron transporting layer is formed on the anode, and a material which can be used as a cathode is deposited thereon.
  • an organic light emitting device may be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the organic material layer may have a multi-layer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure.
  • the organic material layer may be formed using a variety of polymeric materials by a method such as a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, Layer.
  • the anode material a material having a large work function is preferably used so that hole injection can be smoothly conducted into the organic material layer.
  • the cathode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2: a combination of a metal and an oxide such as Sb; A conductive polymer such as poly (3-methyl) compound, poly [3,4- (ethylene-1,2-dioxy)] (PEDT) compound and polypyrrole and polyaniline.
  • PEDT poly[3,4- (ethylene-1,2-dioxy)]
  • the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but are not limited thereto.
  • the hole injecting material it is preferable that the highest occupied molecular orbital (HOMO) of the hole injecting material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injecting material include metal porphyrine, oligothiophene, arylamine-based organic materials, hexanitrile hexaazatriphenylene-based organic materials, quinacridone-based organic materials, perylene , An anthraquinone, and a conductive polymer of polyaniline and a poly-compound, but the present invention is not limited thereto.
  • the hole transporting material a material capable of transporting holes from the anode or the hole injecting layer to the light emitting layer and having high mobility to holes is suitable.
  • Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting layer may emit red, green or blue light, and may be formed of a phosphor or a fluorescent material.
  • the light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; Compounds of the benzoxazole, benzothiazole and benzimidazole series; Polymers of poly (p-phenylenevinylene) (PPV) series; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • Carbazole-based compounds Dimerized styryl compounds
  • BAlq 10-hydroxybenzoquinoline-metal compounds
  • Compounds of the benzoxazole, benzothiazole and benzimidazole series Polymers of poly (p-phenylenevinylene) (PPV) series
  • Spiro compounds Polyfluorene, rubrene, and the like, but are not limited thereto.
  • Examples of the host material of the light emitting layer include a condensed aromatic ring derivative or a heterocyclic compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds.
  • Examples of the heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the above-mentioned formula (1) can be used together with the following compounds as a host material of the light emitting layer.
  • Examples of the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • Specific examples of the aromatic amine derivatives include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, and examples thereof include pyrene, anthracene, chrysene, and peripherrhene having an arylamino group.
  • styrylamine compound examples include substituted or unsubstituted Wherein at least one aryl vinyl group is substituted with at least one aryl vinyl group, and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted. Specific examples thereof include, but are not limited to, styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like.
  • the metal complex examples include iridium complex, platinum complex, and the like, but are not limited thereto.
  • the electron transporting material a material capable of transferring electrons from the cathode well into the light emitting layer, which is suitable for electrons, is suitable.
  • Specific examples include an Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the organic light emitting device may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used.
  • the process for preparing the material of the present invention starts from the reaction of introducing various kinds of triazine groups from a fluorophenylboronic liquid seed in which a cyano group is substituted as described below. After introducing the triazine group, biscarbazole or triscarbazole was finally introduced to synthesize the compounds of the specific examples.
  • the triazine group and the carbazoles were variously introduced through the same synthesis procedure as the above reaction formula to synthesize the substances in the specific examples.
  • the orientation of the transient dipole moments has received much attention as one of the important factors limiting external quantum efficiency.
  • a number of different orientation measurement methods have been used and reported in recent literature. The reported method is an angular optical luminescence profile measurement followed by an optical simulation; EEG measurement of an integral element of an EL element with / without an outcoupling lens using a device having a series of ETL thickness; And monochromatic electroluminescent far-field angle pattern measurements. All of these methods use commercial optical simulation software for data calculation and interpretation.
  • the methods described below are designed to evaluate the horizontal alignment factor of a number of materials used in devices having a standard set of materials.
  • CzTrz doped with m-CBP is deposited on a silica fused substrate made of hemispheres.
  • a 300 nm light which can be excited on the deposited substrate is irradiated to set a range in which the detector is positioned in a direction in which light is emitted.
  • the horizontal alignment factor was measured in the same manner as in Experimental Example 1, except that Compound 8 was used instead of Compound CzTrz in Experimental Example 1.
  • the horizontal alignment factor was measured in the same manner as in Experimental Example 1, except that BCzTrz was used in place of the compound CzTrz in Experimental Example 1.
  • an organic light emitting device was fabricated by including the host material (m-CBP) having a triplet value of 2.5 eV or more in Formula 1 according to one embodiment of the present invention to evaluate its characteristics.
  • m-CBP host material having a triplet value of 2.5 eV or more in Formula 1 according to one embodiment of the present invention to evaluate its characteristics.
  • the glass substrate coated with ITO (indium tin oxide) thin film with a thickness of 1,000 ⁇ was immersed in distilled water containing detergent and washed with ultrasonic waves.
  • Fischer Co. was used as a detergent
  • distilled water filtered by a filter of Millipore Co. was used as distilled water.
  • the ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.
  • Each thin film was laminated on the prepared ITO transparent electrode by a vacuum deposition method with a degree of vacuum of 5.0 X 10 < -4 > Pa.
  • hexanitrile hexaazatriphenylene (HAT) was thermally vacuum deposited on ITO to a thickness of 500 ⁇ to form a hole injection layer.
  • N-phenylamino] biphenyl 300 ⁇ was vacuum-deposited on the hole injection layer to form a hole transport layer, which is a material for transporting holes, and the following compound 4-4'-bis [N- (1-naphthyl) Respectively.
  • m-CBP and 4CzIPN were vacuum deposited on the electron blocking layer to a thickness of 300 ANGSTROM at a weight ratio of 70:30 to form a light emitting layer.
  • Compound HB1 was vacuum deposited on the light emitting layer to a thickness of 100 ⁇ to form a hole blocking layer.
  • Compound ET1 and compound LiQ were vacuum deposited on the hole blocking layer at a weight ratio of 1: 1 to form an electron injection and transport layer having a thickness of 300 ⁇ .
  • Lithium fluoride (LiF) and aluminum were deposited to a thickness of 2000 ⁇ on the electron injecting and transporting layer sequentially to form a cathode.
  • the compound of the present invention is applicable to a delayed fluorescent organic light emitting device because of its excellent light emitting ability and high color purity.

Abstract

The present specification provides a compound of formula 1 and an organic light emitting device comprising the same.

Description

화합물 및 이를 포함하는 유기 발광 소자Compounds and organic light emitting devices containing them
본 출원은 2017년 10월 20일에 한국 특허청에 제출된 한국 특허 출원 제10-2017-0136499호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.The present application claims the benefit of priority based on Korean Patent Application No. 10-2017-0136499 filed with the Korean Intellectual Property Office on October 20, 2017, and all contents disclosed in the Korean patent application are incorporated herein by reference .
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound and an organic light emitting device including the same.
유기 발광 소자는 2개의 전극 사이에 유기박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.The organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes couple to each other in the organic thin film and form a pair, which then extinguishes and emits light. The organic thin film may be composed of a single layer or a multilayer, if necessary.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. In general, organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy. An organic light emitting device using an organic light emitting phenomenon generally has a structure including an anode, a cathode, and an organic material layer therebetween. Here, in order to increase the efficiency and stability of the organic light emitting device, the organic material layer may have a multi-layer structure composed of different materials and may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. When a voltage is applied between the two electrodes in the structure of such an organic light emitting device, holes are injected in the anode, electrons are injected into the organic layer in the cathode, excitons are formed when injected holes and electrons meet, When it falls back to the ground state, the light comes out.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.Development of new materials for such organic light emitting devices has been continuously required.
본 명세서에는 함질소 고리 화합물 및 이를 포함하는 유기 발광 소자가 기재된다.Nitrogen ring compounds and organic light emitting devices containing them are described in this specification.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다.An embodiment of the present invention provides a compound represented by the following formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018012503-appb-I000001
Figure PCTKR2018012503-appb-I000001
상기 화학식 1에 있어서,In Formula 1,
R1 및 R2는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기 또는 치환 또는 비치환된 헤테로고리기이며,R1 and R2 are each independently selected from the group consisting of hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 아릴기 또는 치환 또는 비치환된 헤테로고리기이며,Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,
a 및 b는 각각 독립적으로 0 내지 4의 정수이며,a and b are each independently an integer of 0 to 4,
c는 1 내지 4의 정수이며,c is an integer of 1 to 4,
a+b는 1 이상이고,a + b is 1 or more,
a 또는 b가 2 이상인 경우, 괄호 안의 치환기는 서로 같거나 상이하다.When a or b is 2 or more, the substituents in parentheses are the same or different from each other.
또한, 본 명세서의 일 실시상태에 따르면, 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 발광 소자를 제공한다.According to an embodiment of the present invention, there is also provided a plasma display panel comprising: a first electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound represented by Formula 1 do.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다. 적어도 하나의 실시상태에 따른 화합물은 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 본 명세서에 기재된 화합물은 정공주입, 정공수송, 정공주입과 정공수송, 전자억제, 발광, 정공억제, 전자수송, 또는 전자주입 재료로 사용될 수 있다. The compound described in this specification can be used as a material of an organic layer of an organic light emitting device. The compound according to at least one embodiment can improve the efficiency, lower driving voltage and / or lifetime characteristics in the organic light emitting device. In particular, the compounds described herein can be used as hole injecting, hole transporting, hole injecting and hole transporting, electron suppressing, luminescence, hole blocking, electron transporting, or electron injecting materials.
보다 구체적으로, 본 발명의 일 실시상태에 따른 화합물은 전자 수용 능력이 높은 구조를 가지고 있으며, 내열성이 우수하여 유기 발광 소자 제작시 적절한 증착 온도를 유지할 수 있다. 또한, 승화 온도가 높아 승화 정제 방법으로 고순도화가 가능하며, 유기 발광 소자 제조시 증착용 성막 장치 또는 유기 발광 소자에 오염을 일으키지 않는다.More specifically, the compound according to one embodiment of the present invention has a structure having a high electron accepting ability and is excellent in heat resistance, so that an appropriate deposition temperature can be maintained in the production of an organic light emitting device. In addition, since the sublimation temperature is high, it is possible to achieve high purity by the sublimation purification method, and does not cause contamination of the vapor deposition film forming apparatus or the organic light emitting device in manufacturing the organic light emitting device.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4. Fig.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
도 3은 본 명세서의 일 실시상태에 따른 화합물의 합성을 확인하기 위한 그래프이다.3 is a graph for confirming the synthesis of a compound according to one embodiment of the present invention.
이하 본 명세서에 대하여 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서는 상기 화학식 1로 표시되는 화합물을 제공한다. 하기 화학식 1로 표시되는 화합물은 삼중항과 일중항 사이의 에너지 차이가 작아, 삼중항에서 일중항으로의 엑시톤 이동(RISC)을 효율적으로 일어나게 하므로, 하기 화학식 1로 표시되는 화합물이 유기 발광 소자의 유기물층에 사용하는 경우, 유기 발광 소자의 효율이 향상될 뿐만 아니라, 낮은 구동전압을 가지고, 우수한 수명특성을 갖는다.The present invention provides a compound represented by the above formula (1). The compound represented by the following formula (1) has a small energy difference between the triplet and the singlet, so that the exciton migration (RISC) from the triplet to the singlet occurs efficiently. Therefore, When used for an organic material layer, not only the efficiency of the organic light emitting device is improved, but also a low driving voltage and an excellent lifetime characteristic.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In this specification, when a part is referred to as " including " an element, it is to be understood that it may include other elements as well, without departing from the other elements unless specifically stated otherwise.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In this specification, when a member is located on another member, it includes not only the case where the member is in contact with the other member but also the case where another member exists between the two members.
본 명세서에 있어서,
Figure PCTKR2018012503-appb-I000002
는 다른 치환기 또는 화합물에 결합되는 부위를 의미한다.
In the present specification,
Figure PCTKR2018012503-appb-I000002
Quot; means a moiety bonded to another substituent or compound.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.Examples of substituents herein are described below, but are not limited thereto.
상기 "치환" 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.The term " substituted " means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the substituted position is not limited as long as the substituent is a substitutable position, , Two or more substituents may be the same as or different from each other.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 실릴기; 붕소기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 도 있다.As used herein, the term " substituted or unsubstituted " A halogen group; Cyano; Silyl group; Boron group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted alkenyl group; A substituted or unsubstituted aryl group; And a substituted or unsubstituted heterocyclic group, or that at least two of the substituents exemplified above are substituted with a substituent to which they are linked, or have no substituent. For example, " a substituent to which at least two substituents are connected " may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다. Illustrative examples of such substituents are set forth below, but are not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)가 있다.In this specification, examples of the halogen group include fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
본 명세서에 있어서, 실릴기는 -SiRaRbRc의 화학식으로 표시될 수 있고, 상기 Ra, Rb 및 Rc는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기(TMS), 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group may be represented by the formula of -SiR a R b R c , wherein R a , R b and R c are each hydrogen; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group. The silyl group specifically includes a trimethylsilyl group (TMS), a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, But is not limited thereto.
본 명세서에 있어서, 붕소기는 -BRdRe의 화학식으로 표시될 수 있고, 상기 Rd 및 Re는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group may be represented by the formula of -BR d R e , wherein R d and R e are each hydrogen; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group. The boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an n-propyl group, an isopropyl group, a butyl group, a n-butyl group, an isobutyl group, Hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-tert-butylpentyl group, 1-methylbutyl group, Methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, ethylhexyl group, 1-ethylhexyl group, 2-propylpentyl group, n-nonyl group, 2,2-dimethylheptyl group, Propyl group, isohexyl group, 4-methylhexyl group, 5-methylhexyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40이고, 일 실시예에 따르면 탄소수 1 내지 20이다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the alkoxy group may be linear, branched or cyclic. The number of carbon atoms of the alkoxy group is not particularly limited, but it is 1 to 40 carbon atoms and, according to one embodiment, has 1 to 20 carbon atoms. Specific examples include methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, N-hexyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, But is not limited thereto.
본 명세서에 기재된 알킬기, 알콕시기 및 그 외 알킬기 부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다.Substituents comprising the alkyl groups, alkoxy groups and other alkyl moieties described herein include both straight chain and branched forms.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, (Diphenyl-1-yl) vinyl-1-yl, stilbenyl, stilenyl, and the like.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 40이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 40 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 트리페닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto. Examples of the polycyclic aryl group include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a triphenyl group, a klycenyl group and a fluorenyl group.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.In the present specification, a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2018012503-appb-I000003
,
Figure PCTKR2018012503-appb-I000004
등의 스피로플루오레닐기,
Figure PCTKR2018012503-appb-I000005
(9,9-디메틸플루오레닐기), 및
Figure PCTKR2018012503-appb-I000006
(9,9-디페닐플루오레닐기) 등의 치환된 플루오레닐기가 될 수 있다. 다만, 이에 한정되는 것은 아니다.
When the fluorenyl group is substituted,
Figure PCTKR2018012503-appb-I000003
,
Figure PCTKR2018012503-appb-I000004
, A spirofluorenyl group
Figure PCTKR2018012503-appb-I000005
(9,9-dimethylfluorenyl group), and
Figure PCTKR2018012503-appb-I000006
(9,9-diphenylfluorenyl group), and the like. However, the present invention is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 30이다. 헤테로 고리기의 예로는 예로는 피리딜기, 피롤기, 피리미딜기, 피리다지닐기, 퓨라닐기, 티오페닐기, 이미다졸기, 피라졸기, 옥사졸기, 이소옥사졸기, 티아졸기, 이소티아졸기, 트리아졸기, 옥사디아졸기, 티아디아졸기, 디티아졸기, 테트라졸기, 피라닐기, 티오피라닐기, 피라지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀리닐기, 이소퀴놀리닐기, 퀴놀릴기, 퀴나졸리닐기, 퀴녹살리닐기, 나프티리디닐기, 아크리딜기, 크산테닐기, 페난트리디닐기, 디아자나프탈레닐기, 트리아자인데닐기, 인돌기, 인돌리닐기, 인돌리지닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 벤조티아졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티오펜기, 벤조퓨라닐기, 디벤조티오페닐기, 디벤조퓨라닐기, 카바졸기, 벤조카바졸기, 디벤조카바졸기, 인돌로카바졸기, 인데노카바졸기, 페나지닐기, 이미다조피리딘기, 페녹사지닐기, 페난트리딘기, 페난트롤린(phenanthroline)기, 페노티아진(phenothiazine)기, 이미다조피리딘기, 이미다조페난트리딘기. 벤조이미다조퀴나졸린기, 나프토벤조퓨라닐기(naphthobenzofuran) 또는 벤조이미다조페난트리딘기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group and is a heterocyclic group containing at least one of N, O, P, S, Si and Se. The number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms. According to one embodiment, the number of carbon atoms of the heterocyclic group is 2 to 30. Examples of the heterocyclic group include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophenyl group, an imidazole group, a pyrazole group, an oxazole group, an isoxazole group, a thiazole group, A thiadiazole group, a thiadiazole group, a tetrazolyl group, a pyranyl group, a thiopyranyl group, a pyrazinyl group, an oxazinyl group, a thiazinyl group, a dioxinyl group, a triazinyl group, a tetrazinyl group, A phenanthridinyl group, a diazanaphthalenyl group, a triazinylidene group, an indole group, a thiazolidinyl group, a thiomorpholinyl group, a thiomorpholinyl group, a thiomorpholinyl group, an isothiazolyl group, , Indolinyl group, indolizinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group, benzothiazole group, benzoxazole group, benzimidazole group, benzothiophene group , Benzofuranyl group, dibenzothiophenyl group, dibenzofuranyl , A carbazole group, a benzocarbazole group, a dibenzocarbazole group, an indolocarbazole group, an indenocarbazole group, a phenazinyl group, an imidazopyridine group, a phenoxazinyl group, a phenanthroline group, a phenanthroline group, Phenothiazine group, imidazopyridine group, imidazophenanthridine group. A benzoimidazoquinazoline group, a naphthobenzofuran group, or a benzoimidazophenanthridine group, but the present invention is not limited thereto.
본 명세서에 있어서, 탄화수소고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 1가가 아닌 것을 제외하고 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.In the present specification, the hydrocarbon ring may be an aromatic, aliphatic or aromatic and aliphatic condensed ring, and may be selected from the examples of the cycloalkyl group or the aryl group except the univalent hydrocarbon ring.
본 명세서에 있어서, 방향족 탄화수소고리는 1가인 것을 제외하고는 아릴기에 관한 설명이 적용될 수 있다.In the present specification, the explanation about the aryl group except for the monovalent aromatic hydrocarbon ring can be applied.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2로 표시될 수 있다.In the present specification, the formula (1) may be represented by the following formula (2).
[화학식 2](2)
Figure PCTKR2018012503-appb-I000007
Figure PCTKR2018012503-appb-I000007
상기 화학식 2에 있어서,In Formula 2,
R1, R2, Ar1, Ar2 및 c는 화학식 1에서의 정의와 같다.R1, R2, Ar1, Ar2 and c are as defined in the formula (1).
또한, 본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 독립적으로, 치환 또는 비치환된 아릴기이다.Further, in one embodiment of the present specification, R 1 and R 2 are each independently a substituted or unsubstituted aryl group.
또한, 본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.In one embodiment of the present invention, R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 60 carbon atoms.
또한, 본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.In one embodiment of the present invention, R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
또한, 본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 12의 아릴기이다.In one embodiment of the present invention, R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
또한, 본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기 또는 치환 또는 비치환된 나프틸기이다.In one embodiment of the present invention, R 1 and R 2 are each independently a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
또한, 본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 페닐기; 또는 치환 또는 비치환된 바이페닐기이다.In one embodiment of the present invention, R 1 and R 2 are each independently a substituted or unsubstituted phenyl group; Or a substituted or unsubstituted biphenyl group.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 헤테로고리기이다.In one embodiment of the present specification, Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.In one embodiment of the present specification, Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.
또한, 본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.Further, in one embodiment of the present specification, Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
또한, 본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.Further, in one embodiment of the present specification, Ar1 and Ar2 each independently represent a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms.
또한, 본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 카바졸기이다.Further, in one embodiment of the present specification, Ar1 and Ar2 each independently represent a substituted or unsubstituted carbazole group.
또한, 본 명세서의 일 실시상태에 있어서, 상기 화학식 1의 c는 1 내지 4의 정수이며, 이는 곧 시아노기가 적어도 하나 이상 치환된다는 것을 의미한다.In one embodiment of the present invention, c in Formula 1 is an integer of 1 to 4, meaning that at least one cyano group is substituted.
또한, 본 명세서의 일 실시상태에 있어서, 상기 a 및 b는 각각 독립적으로 1 내지 4의 정수이다.In an embodiment of the present invention, each of a and b is independently an integer of 1 to 4.
또한, 본 명세서의 일 실시상태에 있어서, 상기 a 및 b는 1이다.Also, in one embodiment of the present specification, a and b are 1.
또한, 본 명세서의 일 실시상태에 있어서, 상기 c는 1 또는 2이다.Also, in one embodiment of the present specification, c is 1 or 2.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 구조들 중 어느 하나로 표시될 수 있다.In one embodiment of the present invention, the formula (1) may be represented by any one of the following structures.
Figure PCTKR2018012503-appb-I000008
Figure PCTKR2018012503-appb-I000008
Figure PCTKR2018012503-appb-I000009
Figure PCTKR2018012503-appb-I000009
Figure PCTKR2018012503-appb-I000010
Figure PCTKR2018012503-appb-I000010
Figure PCTKR2018012503-appb-I000011
Figure PCTKR2018012503-appb-I000011
Figure PCTKR2018012503-appb-I000012
Figure PCTKR2018012503-appb-I000012
Figure PCTKR2018012503-appb-I000013
Figure PCTKR2018012503-appb-I000013
화합물의 컨쥬게이션 길이와 에너지 밴드갭은 밀접한 관계가 있다. 구체적으로, 화합물의 컨쥬게이션 길이가 길수록 에너지 밴드갭이 작아진다. The conjugation length of the compound and the energy band gap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap.
본 발명에서는 상기와 같은 구조의 코어 구조를 도입함으로써, 화합물의 HOMO 및 LUMO 에너지 준위도 조절할 수 있다.In the present invention, the HOMO and LUMO energy levels of the compound can be controlled by introducing the core structure having the above structure.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송용 물질, 발광층 물질 및 전자 수송층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.Further, by introducing various substituents into the core structure having the above structure, it is possible to synthesize a compound having the intrinsic characteristics of the substituent introduced. For example, by introducing a substituent mainly used in a hole injecting layer material, a hole transporting material, a light emitting layer material, and an electron transporting layer material used in manufacturing an organic light emitting device into the core structure, a material meeting the requirements of each organic layer is synthesized .
또한, 본 발명에 따른 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1의 화합물을 포함하는 것을 특징으로 한다.Further, the organic light emitting device according to the present invention includes a first electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes the compound of Formula 1.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.The organic light emitting device of the present invention can be manufactured by a conventional method and material for manufacturing an organic light emitting device, except that one or more organic compound layers are formed using the above-described compounds.
상기 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.The compound may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method in the production of an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer as an organic material layer. However, the structure of the organic light emitting device is not limited thereto, and may include a smaller number of organic layers.
본 발명의 유기 발광 소자에서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함할 수 있고, 상기 전자수송층 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.In the organic light emitting device of the present invention, the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer may include a compound represented by the above formula (1).
본 발명의 유기 발광 소자에서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함할 수 있고, 상기 정공주입층 또는 정공수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.In the organic light emitting device of the present invention, the organic material layer may include a hole injecting layer or a hole transporting layer, and the hole injecting layer or the hole transporting layer may include the compound represented by the above formula (1).
또 하나의 실시 상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층이 상기 화학식 1로 표시되는 화합물을 포함한다. In another embodiment, the organic layer includes a light-emitting layer, and the light-emitting layer includes a compound represented by the general formula (1).
또 하나의 실시 상태에 따르면, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 발광층의 도펀트로서 포함할 수 있다. According to another embodiment of the present invention, the organic layer includes a light emitting layer, and the light emitting layer may include the compound represented by Formula 1 as a dopant in the light emitting layer.
또 하나의 예로서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 도펀트로서 포함하고, 형광 호스트 또는 인광 호스트를 포함할 수 있으며, 상기 도펀트의 함량은 호스트 100 중량부 대비 1 내지 50 중량부일 수 있다. 도펀트의 함량이 상기 범위를 만족하는 경우 삼중항 에너지를 일중항 에너지로 역계간전이시켜 고효율, 장수명 특성을 갖는 유기 발광 소자의 제조가 가능하다. As another example, the organic material layer may include a light emitting layer, the light emitting layer may include a compound represented by Formula 1 as a dopant, and may include a fluorescent host or a phosphorescent host. The dopant may be 100 parts by weight May be 1 to 50 parts by weight. When the content of the dopant satisfies the above range, it is possible to manufacture an organic light emitting device having high efficiency and long life characteristics by transferring triplet energy to a singlet energy.
또한, 상기 화학식 1의 화합물은 열활성화 지연 형광 도펀트(TADF: Thermally Activated Delayed Fluorescence)로 사용될 수 있으며, 상기 화학식 1의 화합물은 △Est 값이 0.2eV 미만의 지연형광 및 0.7 초과의 배향인자 특성을 갖는 그린(green) 계열 열활성화 지연 형광 도펀트로 사용되는 경우, 고휘도 발광이 가능하고, 구동 전압이 낮으며, 장수명 특성을 갖는 유기 발광 소자의 구현이 가능하다.Also, the compound of Formula 1 may be used as a thermally activated delayed fluorescence (TADF), and the compound of Formula 1 may have a DELTA E st value of retarded fluorescence of less than 0.2 eV and an orientation factor characteristic of more than 0.7 It is possible to realize an organic light emitting device capable of emitting light of a high luminance, having a low driving voltage, and having a long life span.
상기 열활성화 지연 형광이란 열에너지에 의하여 삼중항 여기 상태로부터 일중항 여기상태로 역계간전이가 유도되고, 일중항 여기상태의 엑시톤이 바닥상태(Ground State)로 이동하여 형광발광을 일으키는 현상을 의미한다. 또한, 상기 △Est는 일중항에너지(Singlet energy) - 삼중항에너지(Triplet energy)의 절대값을 의미한다.The thermally activated delayed fluorescence means a phenomenon in which transit transition is induced from triplet excited state to singlet excited state due to heat energy and exciton of singlet excited state moves to the ground state to cause fluorescence emission . In addition,? E st means the absolute value of singlet energy - triplet energy.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 도펀트로서 포함하고, 형광 호스트 또는 인광 호스트를 포함하며, 형광 이미터를 더 포함할 수 있다. 상기 도펀트 함량은 호스트 100 중량부 대비 1 내지 50 중량부, 형광 이미터의 함량은 호스트 100 중량부 대비 0 내지 10 중량부일 수 있다.In one embodiment of the present invention, the organic layer includes a light-emitting layer, the light-emitting layer includes a compound represented by Formula 1 as a dopant, a fluorescent host or a phosphorescent host, have. The dopant content may be 1 to 50 parts by weight based on 100 parts by weight of the host, and the fluorescent emitter may be 0 to 10 parts by weight based on 100 parts by weight of the host.
또한, 상기 발광층에 형광 이미터를 더 포함하는 경우, 상기 화학식 1로 표시되는 화합물이 엑시톤 에너지를 형광 이미터로 전달하여 형광 이미터에서 발광 현상이 일어나게 되므로, 고휘도 발광이 가능하고, 구동 전압이 낮으며, 장수명 특성을 갖는 유기 발광 소자를 제조할 수 있다.In addition, when the light emitting layer further includes a fluorescent emitter, the compound represented by Formula 1 transmits an exciton energy to the fluorescent emitter and causes a luminescence phenomenon in the fluorescent emitter, so that it is possible to emit a high luminance, It is possible to manufacture an organic light emitting device having low and long lifetime characteristics.
상기 형광 이미터로는 안트라센계 화합물, 파이렌계 화합물, 보론계 화합물과 같은 형광 물질이 사용될 수 있으나, 이에 한정되는 것은 아니다.As the fluorescent emitter, fluorescent materials such as an anthracene-based compound, a pyrene-based compound, and a boron-based compound may be used, but the present invention is not limited thereto.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.In one embodiment of the present invention, the first electrode is an anode and the second electrode is a cathode.
또 하나의 일 실시상태에 따르면, 상기 제1 전극은 음극이고, 제2 전극은 양극이다.According to another embodiment, the first electrode is a cathode and the second electrode is a cathode.
본 발명의 유기 발광 소자의 구조는 도 1 및 도 2에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.The structure of the organic light emitting device of the present invention may have a structure as shown in FIGS. 1 and 2, but the present invention is not limited thereto.
도 1에는 기판(1) 위에 양극(2), 발광층(3) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.1 illustrates the structure of an organic light emitting device in which an anode 2, a light emitting layer 3, and a cathode 4 are sequentially laminated on a substrate 1. In FIG. In such a structure, the compound may be included in the light emitting layer (3).
도 2에는 기판(1) 위에 양극(2), 정공 주입층(5), 정공 수송층(6), 발광층(7), 전자 수송층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 정공 주입층(5), 정공 수송층(6), 발광층(7) 또는 전자 수송층(8)에 포함될 수 있다.2 shows an organic light emitting device in which an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 are sequentially laminated on a substrate 1 Structure is illustrated. In such a structure, the compound may be included in the hole injecting layer 5, the hole transporting layer 6, the light emitting layer 7, or the electron transporting layer 8.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.For example, the organic light emitting device according to the present invention may be formed by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation to form a metal oxide or a metal oxide having conductivity on the substrate, To form an anode, an organic material layer including a hole injection layer, a hole transporting layer, a light emitting layer, and an electron transporting layer is formed on the anode, and a material which can be used as a cathode is deposited thereon. In addition to such a method, an organic light emitting device may be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
상기 유기물층은 정공 주입층, 정공 수송층, 발광층 및 전자 수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.The organic material layer may have a multi-layer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure. The organic material layer may be formed using a variety of polymeric materials by a method such as a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, Layer.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸)화합물, 폴리[3,4-(에틸렌-1,2-디옥시)](PEDT) 화합물, 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the anode material, a material having a large work function is preferably used so that hole injection can be smoothly conducted into the organic material layer. Specific examples of the cathode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2: a combination of a metal and an oxide such as Sb; A conductive polymer such as poly (3-methyl) compound, poly [3,4- (ethylene-1,2-dioxy)] (PEDT) compound and polypyrrole and polyaniline.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.The negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but are not limited thereto.
상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리화합물의 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the hole injecting material, it is preferable that the highest occupied molecular orbital (HOMO) of the hole injecting material is between the work function of the anode material and the HOMO of the surrounding organic layer. Specific examples of the hole injecting material include metal porphyrine, oligothiophene, arylamine-based organic materials, hexanitrile hexaazatriphenylene-based organic materials, quinacridone-based organic materials, perylene , An anthraquinone, and a conductive polymer of polyaniline and a poly-compound, but the present invention is not limited thereto.
상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.As the hole transporting material, a material capable of transporting holes from the anode or the hole injecting layer to the light emitting layer and having high mobility to holes is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
상기 발광층은 적색, 녹색 또는 청색을 발광할 수 있으며, 인광 물질 또는 형광 물질로 이루어질 수 있다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.The light emitting layer may emit red, green or blue light, and may be formed of a phosphor or a fluorescent material. The light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; Compounds of the benzoxazole, benzothiazole and benzimidazole series; Polymers of poly (p-phenylenevinylene) (PPV) series; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto.
발광층의 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등일 수 있으나, 이에 한정되지 않는다.Examples of the host material of the light emitting layer include a condensed aromatic ring derivative or a heterocyclic compound. Specific examples of the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds. Examples of the heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
또한, 본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 발광층의 호스트 재료로 하기 화합물과 함께 사용될 수 있다.Further, in one embodiment of the present specification, the above-mentioned formula (1) can be used together with the following compounds as a host material of the light emitting layer.
Figure PCTKR2018012503-appb-I000014
Figure PCTKR2018012503-appb-I000014
Figure PCTKR2018012503-appb-I000015
Figure PCTKR2018012503-appb-I000015
Figure PCTKR2018012503-appb-I000016
Figure PCTKR2018012503-appb-I000016
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Examples of the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specific examples of the aromatic amine derivatives include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, and examples thereof include pyrene, anthracene, chrysene, and peripherrhene having an arylamino group. Examples of the styrylamine compound include substituted or unsubstituted Wherein at least one aryl vinyl group is substituted with at least one aryl vinyl group, and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted. Specific examples thereof include, but are not limited to, styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like. Examples of the metal complex include iridium complex, platinum complex, and the like, but are not limited thereto.
상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.As the electron transporting material, a material capable of transferring electrons from the cathode well into the light emitting layer, which is suitable for electrons, is suitable. Specific examples include an Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used.
<제조예><Production Example>
본 발명의 물질을 제조하는 방법은 하기와 같이 시아노기가 치환된 플루오로페닐보로닉액시드부터 다양한 종류의 트리아진기를 도입하는 반응으로부터 시작된다. 트리아진기를 도입한 후 최종적으로 비스카바졸 또는 트리스카바졸을 도입하여 구체예의 화합물들을 합성하였다.The process for preparing the material of the present invention starts from the reaction of introducing various kinds of triazine groups from a fluorophenylboronic liquid seed in which a cyano group is substituted as described below. After introducing the triazine group, biscarbazole or triscarbazole was finally introduced to synthesize the compounds of the specific examples.
제조예 1-1: 화합물 1-A의 합성Production Example 1-1: Synthesis of Compound 1-A
[반응식 1-1][Reaction Scheme 1-1]
Figure PCTKR2018012503-appb-I000017
Figure PCTKR2018012503-appb-I000017
(3-시아노-4-플루오로페닐)보로닉액시드 30 g (181.9 mmol), 2-클로로-4,6-다이페닐-1,3,5-트리아진을 181.9 mmol, 테트라하이드로퓨란 200 mL, 물 100 mL 혼합하고 60 ℃로 가열한다. 포타슘카보네이트 545.6 mmol, 테트라키스트라이페닐포스핀팔라듐 1 mmol 첨가하여 리플럭스 상태로 3시간 교반하였다. 반응 후 실온으로 되돌린 반응용액을 필터하여 고체를 얻은 후, 이 고체를 티에치에프/에탄올으로 2회 재결정을 실시하여, 화합물 1-A를 57.6 g 얻었다(수율 90%).181.9 mmol of 2-chloro-4,6-diphenyl-1,3,5-triazine and 200 mL of tetrahydrofuran were added to a solution of 30 g (181.9 mmol) of 4- (3- cyano- , 100 mL of water and heat to 60 ° C. 545.6 mmol of potassium carbonate and 1 mmol of tetrakis (triphenylphosphine) palladium were added and stirred for 3 hours under reflux. After the reaction, the reaction solution returned to room temperature was filtered to obtain a solid, and the solid was recrystallized twice with Tiechef / ethanol to obtain 57.6 g (yield: 90%) of the compound 1-A.
MS[M+H]+ = 353MS [M + H] &lt; + &gt; = 353
제조예 1-2: 화합물 1-B의 합성Production Example 1-2: Synthesis of Compound 1-B
[반응식 1-2][Reaction Scheme 1-2]
Figure PCTKR2018012503-appb-I000018
Figure PCTKR2018012503-appb-I000018
(2-시아노-4-플루오로페닐)보로닉액시드 30 g (181.9 mmol), 2-클로로-4,6-다이페닐-1,3,5-트리아진을 181.9 mmol, 테트라하이드로퓨란 200 mL, 물 100 mL 혼합하고 60 ℃로 가열한다. 포타슘카보네이트 545.6 mmol, 테트라키스트라이페닐포스핀팔라듐 1 mmol 첨가하여 리플럭스 상태로 3시간 교반하였다. 반응 후 실온으로 되돌린 반응용액을 필터하여 고체를 얻은 후, 이 고체를 티에치에프/에탄올으로 2회 재결정을 실시하여, 화합물 1-B를 55.7 g 얻었다(수율 87%). 181.9 mmol of 2-chloro-4,6-diphenyl-1,3,5-triazine and 200 mL of tetrahydrofuran were added to a solution of 30 g (181.9 mmol) of 4- (2-cyano- , 100 mL of water and heat to 60 ° C. 545.6 mmol of potassium carbonate and 1 mmol of tetrakis (triphenylphosphine) palladium were added and stirred for 3 hours under reflux. After the reaction, the reaction solution returned to room temperature was filtered to obtain a solid, and the solid was recrystallized twice with Tiechef / ethanol to obtain 55.7 g (yield: 87%) of Compound 1-B.
MS[M+H]+ = 353MS [M + H] &lt; + &gt; = 353
제조예 1-3: 화합물 1-C의 합성Production Example 1-3: Synthesis of Compound 1-C
[반응식 1-3][Reaction 1 - 3]
Figure PCTKR2018012503-appb-I000019
Figure PCTKR2018012503-appb-I000019
(3-시아노-4-플루오로페닐)보로닉액시드 30 g (181.9 mmol), 2-([1,1'-바이페닐]-3-일)-4-클로로-6-페닐-1,3,5-트리아진을 181.9 mmol, 테트라하이드로퓨란 200 mL, 물 100 mL 혼합하고 60 ℃로 가열한다. 포타슘카보네이트 545.6 mmol, 테트라키스트라이페닐포스핀팔라듐 1 mmol 첨가하여 리플럭스 상태로 3시간 교반하였다. 반응 후 실온으로 되돌린 반응용액을 필터하여 고체를 얻은 후, 이 고체를 티에치에프/에탄올으로 2회 재결정을 실시하여, 화합물 1-C를 71.7 g 얻었다(수율 92%). (181.9 mmol), 2 - ([1,1'-biphenyl] -3-yl) -4-chloro-6-phenyl- 181.9 mmol of 3,5-triazine, 200 mL of tetrahydrofuran and 100 mL of water are mixed and heated to 60 ° C. 545.6 mmol of potassium carbonate and 1 mmol of tetrakis (triphenylphosphine) palladium were added and stirred for 3 hours under reflux. After the reaction, the reaction solution returned to room temperature was filtered to obtain a solid, and the solid was recrystallized twice with Tiechef / ethanol to obtain 71.7 g (yield: 92%) of the compound 1-C.
MS[M+H]+ = 429MS [M + H] &lt; + &gt; = 429
제조예 1-4: 화합물 1-D의 합성Production Example 1-4: Synthesis of Compound 1-D
[반응식 1-4][Reaction Scheme 1-4]
Figure PCTKR2018012503-appb-I000020
Figure PCTKR2018012503-appb-I000020
(2-시아노-4-플루오로페닐)보로닉액시드 30 g (181.9 mmol), 2-([1,1'-바이페닐]-3-일)-4-클로로-6-페닐-1,3,5-트리아진을 181.9 mmol, 테트라하이드로퓨란 200 mL, 물 100 mL 혼합하고 60 ℃로 가열한다. 포타슘카보네이트 545.6 mmol, 테트라키스트라이페닐포스핀팔라듐 1 mmol 첨가하여 리플럭스 상태로 3시간 교반하였다. 반응 후 실온으로 되돌린 반응용액을 필터하여 고체를 얻은 후, 이 고체를 티에치에프/에탄올으로 2회 재결정을 실시하여, 화합물 1-D를 66.2 g 얻었다(수율 85%). (181.9 mmol), 2 - ([1,1'-biphenyl] -3-yl) -4-chloro-6-phenyl- 181.9 mmol of 3,5-triazine, 200 mL of tetrahydrofuran and 100 mL of water are mixed and heated to 60 ° C. 545.6 mmol of potassium carbonate and 1 mmol of tetrakis (triphenylphosphine) palladium were added and stirred for 3 hours under reflux. After the reaction, the reaction solution returned to room temperature was filtered to obtain a solid, and the solid was recrystallized twice with Tiechef / ethanol to obtain 66.2 g (yield: 85%) of compound 1-D.
MS[M+H]+ = 429MS [M + H] &lt; + &gt; = 429
제조예 2-1: 화합물 1의 합성Production Example 2-1: Synthesis of Compound 1
[반응식 2-1][Reaction Scheme 2-1]
Figure PCTKR2018012503-appb-I000021
Figure PCTKR2018012503-appb-I000021
1-A 15 g (42.6 mmol), 9-페닐-9H,9'H-3,3'-바이카바졸 42.6 mmol 을 톨루엔 100 mL에 완전히 녹인 후 소듐-tert-부톡사이드 63.8 mmol 를 첨가하고, 테트라키스트라이페닐포스핀팔라듐 0.42 mmol 을 넣은 후 6시간 동안 80℃로 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 감압 농축시키고 테트라하이드로퓨란:헥산 = 1:5로 컬럼하여 톨루엔/에탄올(1:1)로 재결정을 실시함으로써 정제하여, 1를 28.7 g 얻었다(수율 91%). 모든 비율은 중량비이다.1-A 15 g (42.6 mmol) of 9-phenyl-9H, 9'H-3,3'-bicarbazole (42.6 mmol) was completely dissolved in 100 mL of toluene, 63.8 mmol of sodium tert- 0.42 mmol of tetrakis triphenylphosphine palladium was added and the mixture was stirred at 80 ° C for 6 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography with tetrahydrofuran: hexane = 1: 5 and recrystallization from toluene / ethanol (1: 1) to obtain 28.7 g of 1 %). All ratios are by weight.
MS[M+H]+ = 741MS [M + H] &lt; + &gt; = 741
제조예 2-2: 화합물 2의 합성Production Example 2-2: Synthesis of Compound 2
[반응식 2-2][Reaction Scheme 2-2]
Figure PCTKR2018012503-appb-I000022
Figure PCTKR2018012503-appb-I000022
1-B 15 g (42.6 mmol), 9-페닐-9H,9'H-3,3'-바이카바졸 42.6 mmol 을 톨루엔 100 mL에 완전히 녹인 후 소듐-tert-부톡사이드 63.8 mmol 를 첨가하고, 테트라키스트라이페닐포스핀팔라듐 0.42 mmol 을 넣은 후 6시간 동안 80℃로 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 감압 농축 시키고 테트라하이드로퓨란:헥산 = 1:5로 컬럼하여 톨루엔/에탄올(1:1)로 재결정을 실시함으로써 정제하여, 2를 28.0 g 얻었다(수율 89%).1-B 15 g (42.6 mmol) of 9-phenyl-9H, 9'H-3,3'-bicarbazole (42.6 mmol) was completely dissolved in 100 mL of toluene, 63.8 mmol of sodium tert- 0.42 mmol of tetrakis triphenylphosphine palladium was added and the mixture was stirred at 80 ° C for 6 hours. After the temperature was lowered to room temperature, the salt was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography with tetrahydrofuran: hexane = 1: 5 and recrystallization from toluene / ethanol (1: 1) to obtain 28.0 g of 2 %).
MS[M+H]+ = 741MS [M + H] &lt; + &gt; = 741
제조예 2-3: 화합물 3의 합성Production Example 2-3: Synthesis of Compound 3
[반응식 2-3][Reaction Scheme 2-3]
Figure PCTKR2018012503-appb-I000023
Figure PCTKR2018012503-appb-I000023
1-C 18.2 g (42.6 mmol), 9-페닐-9H,9'H-3,3'-바이카바졸 42.6 mmol 을 톨루엔 100 mL에 완전히 녹인 후 소듐-tert-부톡사이드 63.8 mmol 를 첨가하고, 테트라키스트라이페닐포스핀팔라듐 0.42 mmol 을 넣은 후 6시간 동안 80℃로 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 감압 농축 시키고 테트라하이드로퓨란:헥산 = 1:5로 컬럼하여 톨루엔/에탄올(1:1)로 재결정을 실시함으로써 정제하여, 3를 30.2 g 얻었다(수율 87%).1-C 18.2 g (42.6 mmol) of 9-phenyl-9H, 42.6 mmol of 9'H-3,3'-bicarbazole was completely dissolved in 100 mL of toluene, 63.8 mmol of sodium tert-butoxide was added, 0.42 mmol of tetrakis triphenylphosphine palladium was added and the mixture was stirred at 80 ° C for 6 hours. After the temperature was lowered to room temperature, the salt was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by recrystallization from toluene / ethanol (1: 1) by column with tetrahydrofuran: hexane = 1: 5 to obtain 30.2 g %).
MS[M+H]+ = 817MS [M + H] &lt; + &gt; = 817
제조예 2-4: 화합물 4의 합성Production example 2-4: Synthesis of compound 4
[반응식 2-4][Reaction Scheme 2-4]
Figure PCTKR2018012503-appb-I000024
Figure PCTKR2018012503-appb-I000024
1-D 18.2 g (42.6 mmol), 9-페닐-9H,9'H-3,3'-바이카바졸 42.6 mmol 을 톨루엔 100 mL에 완전히 녹인 후 소듐-tert-부톡사이드 63.8 mmol 를 첨가하고, 테트라키스트라이페닐포스핀팔라듐 0.42 mmol 을 넣은 후 6시간 동안 80℃로 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 감압 농축 시키고 테트라하이드로퓨란:헥산 = 1:5로 컬럼하여 톨루엔/에탄올(1:1)로 재결정을 실시함으로써 정제하여, 4를 29.9 g 얻었다(수율 86%).18.2 g (42.6 mmol) of 1-D and 9-phenyl-9H, 42.6 mmol of 9'H-3,3'-bicarbazole were completely dissolved in 100 mL of toluene, 63.8 mmol of sodium tert- 0.42 mmol of tetrakis triphenylphosphine palladium was added and the mixture was stirred at 80 ° C for 6 hours. After the temperature was lowered to room temperature, the salt was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by recrystallization from toluene / ethanol (1: 1) and column chromatography with tetrahydrofuran: hexane = 1: 5 to obtain 29.9 g %).
MS[M+H]+ = 817MS [M + H] &lt; + &gt; = 817
제조예 2-5: 화합물 5의 합성Production example 2-5: Synthesis of compound 5
[반응식 2-5][Reaction Scheme 2-5]
Figure PCTKR2018012503-appb-I000025
Figure PCTKR2018012503-appb-I000025
1-A 15 g (42.6 mmol), 9H-3,9'-바이카바졸 42.6 mmol 을 톨루엔 100 mL에 완전히 녹인 후 소듐-tert-부톡사이드 63.8 mmol 를 첨가하고, 테트라키스트라이페닐포스핀팔라듐 0.42 mmol 을 넣은 후 6시간 동안 80℃로 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 감압 농축 시키고 테트라하이드로퓨란:헥산 = 1:5로 컬럼하여 톨루엔/에탄올(1:1)로 재결정을 실시함으로써 정제하여, 5를 26.0 g 얻었다(수율 92%).After 15 g (42.6 mmol) of 1-A and 42.6 mmol of 9H-3,9'-bicabazole were completely dissolved in 100 mL of toluene, sodium tert-butoxide (63.8 mmol) was added thereto and tetrakis triphenylphosphine palladium mmol, and the mixture was heated and stirred at 80 ° C for 6 hours. After the temperature was lowered to room temperature, the salt was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by recrystallization from toluene / ethanol (1: 1) by column with tetrahydrofuran: hexane = 1: 5 to obtain 26.0 g %).
MS[M+H]+ = 665MS [M + H] &lt; + &gt; = 665
제조예 2-6: 화합물 7의 합성Production Example 2-6: Synthesis of Compound 7
[반응식 2-6][Reaction Scheme 2-6]
Figure PCTKR2018012503-appb-I000026
Figure PCTKR2018012503-appb-I000026
1-A 15 g (42.6 mmol), 9,9''-다이페닐-9H,9'H,9''H-3,3':6',3''-터카바졸 42.6 mmol 을 톨루엔 100 mL에 완전히 녹인 후 소듐-tert-부톡사이드 63.8 mmol 를 첨가하고, 테트라키스트라이페닐포스핀팔라듐 0.42 mmol 을 넣은 후 6시간 동안 80℃로 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 감압 농축 시키고 테트라하이드로퓨란:헥산 = 1:5로 컬럼하여 톨루엔/에탄올(1:1)로 재결정을 실시함으로써 정제하여, 7를 35.5 g 얻었다(수율 85%).1-A 15 g (42.6 mmol), 9,9 "-diphenyl-9H, 9'H, 9''H-3,3'6'3'-teracavazole 42.6 mmol were dissolved in toluene 100 , 63.8 mmol of sodium tert-butoxide was added, and 0.42 mmol of tetrakis triphenylphosphine palladium was added thereto, followed by stirring at 80 ° C for 6 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography with tetrahydrofuran: hexane = 1: 5 and recrystallization from toluene / ethanol (1: 1) to obtain 35.5 g (yield: 85% %).
MS[M+H]+ = 982MS [M + H] &lt; + &gt; = 982
제조예 2-7: 화합물 8의 합성Production example 2-7: Synthesis of compound 8
[반응식 2-7][Reaction Scheme 2-7]
Figure PCTKR2018012503-appb-I000027
Figure PCTKR2018012503-appb-I000027
1-A 15 g (42.6 mmol), 9'H-9,3':6',9''-터카바졸 42.6 mmol 을 톨루엔 100 mL에 완전히 녹인 후 소듐-tert-부톡사이드 63.8 mmol 를 첨가하고, 테트라키스트라이페닐포스핀팔라듐 0.42 mmol 을 넣은 후 6시간 동안 80℃로 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 감압 농축 시키고 테트라하이드로퓨란:헥산 = 1:5로 컬럼하여 톨루엔/에탄올(1:1)로 재결정을 실시함으로써 정제하여, 8를 29.3 g 얻었다(수율 83%).1-A 15 g (42.6 mmol) of 9'H-9,3 ': 6', 9 "-tercavazole 42.6 mmol was completely dissolved in 100 mL of toluene, 63.8 mmol of sodium tert-butoxide was added , 0.42 mmol of tetrakis triphenylphosphine palladium, and the mixture was stirred at 80 ° C for 6 hours. The mixture was cooled to room temperature, filtered to remove salts, and then concentrated under reduced pressure. The residue was purified by recrystallization from toluene / ethanol (1: 1) by column chromatography with tetrahydrofuran: hexane = 1: 5 to obtain 29.3 g of 8 %).
MS[M+H]+ = 830MS [M + H] &lt; + &gt; = 830
상기 반응식과 동일한 합성 과정을 통해 트리아진기와 카바졸류를 다양하게 도입하여을 구체예 상의 물질들을 합성하였다.The triazine group and the carbazoles were variously introduced through the same synthesis procedure as the above reaction formula to synthesize the substances in the specific examples.
<실험예 1><Experimental Example 1>
전이 쌍극자 모멘트의 배향은 외부 양자 효율을 제한하는 중요한 인자들 중 하나로서 많은 주목을 받아왔다. 최근의 문헌에서 다수의 상이한 배향 측정 방법이 이용되고 보고되어 왔다. 보고된 방법은 광학 시뮬레이션이 후속되는 각도 광루미네센스 프로파일 측정; 일련의 ETL 두께를 갖는 소자를 이용하는 아웃커필링 렌즈를 구비/비구비한 EL 소자의 적분구 EGE 측정; 및 단색 일렉 트로루미네센스 원거리장 각도 패턴 측정을 포함한다. 이들 방법 모두는 데이터 계산 및 해석을 위해 시판 광학 시뮬레이션 소프트웨어를 사용한다.The orientation of the transient dipole moments has received much attention as one of the important factors limiting external quantum efficiency. A number of different orientation measurement methods have been used and reported in recent literature. The reported method is an angular optical luminescence profile measurement followed by an optical simulation; EEG measurement of an integral element of an EL element with / without an outcoupling lens using a device having a series of ETL thickness; And monochromatic electroluminescent far-field angle pattern measurements. All of these methods use commercial optical simulation software for data calculation and interpretation.
이하 개시되는 방법은 표준 재료 세트를 갖는 소자에서 사용되는 다수의 물질의 수평 배향 인자를 평가하기 위해 고안되었다.The methods described below are designed to evaluate the horizontal alignment factor of a number of materials used in devices having a standard set of materials.
반구로 이루어진 실리카 퓨즈드 기판에 m-CBP와 함께 CzTrz을 도핑하여 증착한다.CzTrz doped with m-CBP is deposited on a silica fused substrate made of hemispheres.
상기 증착된 기판에 여기 시킬 수 있는 300 nm의 빛을 조사하여 빛이 나오는 방향으로 detector를 위치하여 찍는 범위를 설정한다. A 300 nm light which can be excited on the deposited substrate is irradiated to set a range in which the detector is positioned in a direction in which light is emitted.
상기 반구의 절반 범위만 측정을 하여, 빛에 세기를 측정한다.Only half of the hemisphere is measured and the intensity is measured in the light.
상기 측정한 데이터의 수평 비율이 몇 프로 일 때 유사한지 시뮬레이션으로 비교하여 확인한 후, 값을 확인한다.When the horizontal ratio of the measured data is several pros, a comparison is made by simulating similarity, and then the value is confirmed.
Figure PCTKR2018012503-appb-I000028
Figure PCTKR2018012503-appb-I000028
실험예Experimental Example 1-1 1-1
상기 실험예 1에서 화합물 CzTrz 대신 화합물 8을 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 수평 배향 인자를 측정하였다.The horizontal alignment factor was measured in the same manner as in Experimental Example 1, except that Compound 8 was used instead of Compound CzTrz in Experimental Example 1.
비교 실험예 1-1 Comparative Experimental Example 1-1
상기 실험예 1에서 화합물 CzTrz 대신 하기 BCzTrz을 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 수평 배향 인자를 측정하였다.The horizontal alignment factor was measured in the same manner as in Experimental Example 1, except that BCzTrz was used in place of the compound CzTrz in Experimental Example 1.
Figure PCTKR2018012503-appb-I000029
Figure PCTKR2018012503-appb-I000029
실험예 1-1 및 비교예 1-1 에 의해 측정한 수평 배향 인자는 하기 [표 1]의 결과와 같다.The horizontal alignment factors measured by Experimental Example 1-1 and Comparative Example 1-1 are as shown in Table 1 below.
구분division 화합물compound 수평배향인자Horizontal alignment factor
실험예 1Experimental Example 1 CzTrzCzTrz 0.660.66
실험예 1-1Experimental Example 1-1 88 0.890.89
비교예 1-1Comparative Example 1-1 BCzTrzBCzTrz 0.650.65
상기 표 1에서 보는 바와 같이, 시아노기가 포함된 화합물 8을 사용한 실험예 1-1의 결과가 실험예 1 및 비교예 1-1과 비교하여 큰 수치의 수평 배향 인자를 갖는 것을 확인하였다. 상기 표 1의 결과와 같이, 본 발명에 따른 화합물은 수평 배향 인자가 크기 때문에 유기 발광 소자에 적용 시, 고효율의 유기발광소자 구현에 도움이 될 수 있음을 확인할 수 있었다.As shown in Table 1, it was confirmed that the results of Experimental Example 1-1 using Compound 8 containing cyano group had horizontal alignment factors as large as those of Experimental Example 1 and Comparative Example 1-1. As shown in Table 1 above, it was confirmed that the compound according to the present invention has a large horizontal alignment factor and thus can be applied to the organic luminescent device to realize a highly efficient organic luminescent device.
<실험예 2><Experimental Example 2>
본 실험예에 있어서, 본 명세서의 일 실시상태에 따른 화학식 1을 삼중항 값이 2.5eV 이상인 호스트 재료(m-CBP)와 함께 발광층에 포함하여 유기 발광 소자를 제조하고, 특성을 평가하였다. In this Experimental Example, an organic light emitting device was fabricated by including the host material (m-CBP) having a triplet value of 2.5 eV or more in Formula 1 according to one embodiment of the present invention to evaluate its characteristics.
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ITO 투명 전극 위에 각 박막을 진공 증착법 으로 진공도 5.0 Х 10-4㎩ 로 적층하였다. 먼저, ITO 상에 헥사니트릴 헥사아자트리페닐렌 (hexaazatriphenylene; HAT)를 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.The glass substrate coated with ITO (indium tin oxide) thin film with a thickness of 1,000 Å was immersed in distilled water containing detergent and washed with ultrasonic waves. In this case, Fischer Co. was used as a detergent, and distilled water filtered by a filter of Millipore Co. was used as distilled water. The ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator. Each thin film was laminated on the prepared ITO transparent electrode by a vacuum deposition method with a degree of vacuum of 5.0 X 10 &lt; -4 &gt; Pa. First, hexanitrile hexaazatriphenylene (HAT) was thermally vacuum deposited on ITO to a thickness of 500 Å to form a hole injection layer.
상기 정공 주입층 위에 정공을 수송하는 물질인 하기 화합물 4-4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(NPB)(300Å)를 진공 증착하여 정공 수송층을 형성하였다.N-phenylamino] biphenyl (NPB) (300 Å) was vacuum-deposited on the hole injection layer to form a hole transport layer, which is a material for transporting holes, and the following compound 4-4'-bis [N- (1-naphthyl) Respectively.
상기 정공 수송층 위에 막 두께 100Å으로 하기 화합물 N-([1,1'-비스페닐]-4-yl)-N-(4-(11-([1,1'-비페닐]-4-yl)-11H-벤조[a]카바졸-5-yl)페닐)-[1,1'-비페닐]-4-아민(EB1)(100Å)를 진공 증착하여 전자 저지층을 형성하였다.([1,1'-biphenyl] -4-yl) -N- (4- (11 - ([1,1'-biphenyl] -4-yl ) -11H-benzo [a] carbazole-5-yl) phenyl) - [1,1'-biphenyl] -4-amine (EB1) (100 Å) was vacuum deposited thereon to form an electron blocking layer.
이어서, 상기 전자 저지층 위에 막 두께 300Å으로 아래와 같은 m-CBP와 4CzIPN을 70:30의 중량비로 진공증착하여 발광층을 형성하였다.Subsequently, the following m-CBP and 4CzIPN were vacuum deposited on the electron blocking layer to a thickness of 300 ANGSTROM at a weight ratio of 70:30 to form a light emitting layer.
상기 발광층 위에 막 두께 100Å으로 화합물 HB1을 진공 증착하여 정공 저지층을 형성하였다.Compound HB1 was vacuum deposited on the light emitting layer to a thickness of 100 Å to form a hole blocking layer.
상기 정공 저지층 위에 화합물 ET1과 화합물 LiQ(Lithium Quinolate)를 1:1의 중량비로 진공증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 2,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.Compound ET1 and compound LiQ (Lithium Quinolate) were vacuum deposited on the hole blocking layer at a weight ratio of 1: 1 to form an electron injection and transport layer having a thickness of 300 Å. Lithium fluoride (LiF) and aluminum were deposited to a thickness of 2000 Å on the electron injecting and transporting layer sequentially to form a cathode.
상기의 과정에서 유기물의 증착속도는 0.4~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 X 10-7 ~ 5 X 10-6 torr를 유지하여, 유기 발광소자를 제작하였다.Was maintained at the deposition rate was 0.4 ~ 0.7Å / sec for organic material in the above process, the lithium fluoride of the cathode was 0.3Å / sec, aluminum is deposited at a rate of 2Å / sec, During the deposition, a vacuum 10 2 X - 7 to 5 X 10 &lt; -6 &gt; torr to obtain an organic light emitting device.
Figure PCTKR2018012503-appb-I000030
Figure PCTKR2018012503-appb-I000030
Figure PCTKR2018012503-appb-I000031
Figure PCTKR2018012503-appb-I000031
실험예Experimental Example 2-1 내지 2-9 2-1 to 2-9
상기 실험예 2에서 화합물 4CzIPN 대신 하기 표 1의 화합물을 사용한 것을 제외하고는 실험예 2와 동일한 방법으로 유기 발광 소자를 제작하였다.An organic light emitting device was fabricated in the same manner as in Experimental Example 2, except that the compound of Table 1 was used instead of the compound 4CzIPN in Experimental Example 2.
비교 compare 실험예Experimental Example 2-1 내지 2-2 2-1 to 2-2
상기 실험예 2에서 화합물 4CzIPN 대신 하기 BCzTrz 내지 TCzTrz의 화합물을 사용한 것을 제외하고는 실험예 2와 동일한 방법으로 유기 발광 소자를 제작하였다.An organic light emitting device was fabricated in the same manner as in Experimental Example 2 except that the compound of BCzTrz to TCzTrz was used in place of the compound 4CzIPN in Experimental Example 2. [
Figure PCTKR2018012503-appb-I000032
Figure PCTKR2018012503-appb-I000032
실험예 2-1 내지 2-9 및 비교예 2-1 내지 2-2에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 하기 [표 2]의 결과를 얻었다.When current was applied to the organic light-emitting devices manufactured in Experimental Examples 2-1 to 2-9 and Comparative Examples 2-1 to 2-2, the results shown in the following Table 2 were obtained.
구분division 화합물(발광층)Compound (light emitting layer) 전압(V@10mA/cm2)Voltage (V @ 10 mA / cm 2 ) 효율(cd/A@10mA/cm2)Efficiency (cd / A @ 10 mA / cm 2 ) 색좌표(x,y)The color coordinates (x, y)
실험예 2Experimental Example 2 4CzIPN4CzIPN 4.74.7 1717 (0.34, 0.62)(0.34, 0.62)
실험예 2-1Experimental Example 2-1 화합물 1 Compound 1 4.14.1 2222 (0.33, 0.62)(0.33, 0.62)
실험예 2-2EXPERIMENTAL EXAMPLE 2-2 화합물 2 Compound 2 4.04.0 2121 (0.34, 0.62)(0.34, 0.62)
실험예 2-3Experimental Example 2-3 화합물 3 Compound 3 4.14.1 2323 (0.33, 0.61)(0.33, 0.61)
실험예 2-4Experimental Example 2-4 화합물 4 Compound 4 4.14.1 2323 (0.33, 0.62)(0.33, 0.62)
실험예 2-5Experimental Example 2-5 화합물 5 Compound 5 4.14.1 2222 (0.34, 0.61)(0.34, 0.61)
실험예 2-6Experimental Examples 2-6 화합물 6 Compound 6 4.04.0 2424 (0.33, 0.61)(0.33, 0.61)
실험예 2-7Experimental Example 2-7 화합물 7 Compound 7 4.24.2 2323 (0.33, 0.62)(0.33, 0.62)
실험예 2-8Experimental Examples 2-8 화합물 8 Compound 8 3.93.9 2525 (0.31, 0.63)(0.31, 0.63)
실험예 2-9Experimental Examples 2-9 화합물 9Compound 9 3.93.9 2424 (0.32, 0.62)(0.32, 0.62)
비교예 2-1Comparative Example 2-1 BCzTrzBCzTrz 4.84.8 1616 (0.35, 0.53)(0.35, 0.53)
비교예 2-2Comparative Example 2-2 TCzTrzTCzTrz 4.74.7 1717 (0.37, 0.61)(0.37, 0.61)
상기 표 2에서 보는 바와 같이, 화학식 1의 구조를 코어로 하는 화합물을 사용한 실험예 2-1 내지 2-9 의 소자 모두 실험예 1에서 화합물 4CzIPN의 물질을 사용한 소자보다 전압이 낮고, 효율이 올라가는 결과를 얻었다.또한, 비교예 2-1 내지 2-2 소자와 비교를 해보면 코어에 시아노기가 치환되지 않은 경우보다 본 화학식 1의 시아노기가 치환된 구조가 전압, 효율, 색순도 면에서 특성이 모두 향상됨을 알 수 있었다.As shown in Table 2, in the devices of Experimental Examples 2-1 to 2-9 using the compound having the structure of Formula 1 as the core, the voltage was lower than that of the device using the compound 4CzIPN in Experimental Example 1, Comparing with the comparative examples 2-1 to 2-2, the structure in which the cyano group is substituted with the cyano group of the formula (1) is more preferable in terms of voltage, efficiency and color purity than when the cyano group is not substituted in the core All of them were improved.
상기 표 1의 결과와 같이, 본 발명에 따른 화합물은 발광 능력이 우수하고 색순도가 높아 지연형광 유기 발광 소자에 적용 가능함을 확인할 수 있었다. As shown in Table 1, it was confirmed that the compound of the present invention is applicable to a delayed fluorescent organic light emitting device because of its excellent light emitting ability and high color purity.
이상을 통해 본 발명의 바람직한 실험예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. .

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:A compound represented by the following formula (1):
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018012503-appb-I000033
    Figure PCTKR2018012503-appb-I000033
    상기 화학식 1에 있어서,In Formula 1,
    R1 및 R2는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기 또는 치환 또는 비치환된 헤테로고리기이며,R1 and R2 are each independently selected from the group consisting of hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 아릴기 또는 치환 또는 비치환된 헤테로고리기이며,Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,
    a 및 b는 각각 독립적으로 0 내지 4의 정수이며,a and b are each independently an integer of 0 to 4,
    c는 1 내지 4의 정수이며,c is an integer of 1 to 4,
    a+b는 1 이상이고,a + b is 1 or more,
    a 또는 b가 2 이상인 경우, 괄호 안의 치환기는 서로 같거나 상이하다.When a or b is 2 or more, the substituents in parentheses are the same or different from each other.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 화학식 1은 하기 화학식 2로 표시되는 것인 화합물:Wherein the compound represented by Formula 1 is represented by Formula 2:
    [화학식 2](2)
    Figure PCTKR2018012503-appb-I000034
    Figure PCTKR2018012503-appb-I000034
    상기 화학식 2에 있어서,In Formula 2,
    R1, R2, Ar1, Ar2 및 c는 화학식 1에서의 정의와 같다.R1, R2, Ar1, Ar2 and c are as defined in the formula (1).
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 R1 및 R2는 각각 독립적으로, 치환 또는 비치환된 아릴기인 것인 화합물.Lt; 1 &gt; and R &lt; 2 &gt; are each independently a substituted or unsubstituted aryl group.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 카바졸기인 것인 화합물.Wherein Ar1 and Ar2 each independently represent a substituted or unsubstituted carbazole group.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 c는 1 또는 2인 것인 화합물.Wherein c is 1 or 2.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 1은 하기 구조들 중 어느 하나로 표시되는 것인 화합물:(1) is represented by any one of the following structures:
    Figure PCTKR2018012503-appb-I000035
    Figure PCTKR2018012503-appb-I000035
    Figure PCTKR2018012503-appb-I000036
    Figure PCTKR2018012503-appb-I000036
    Figure PCTKR2018012503-appb-I000037
    Figure PCTKR2018012503-appb-I000037
    Figure PCTKR2018012503-appb-I000038
    Figure PCTKR2018012503-appb-I000038
    Figure PCTKR2018012503-appb-I000039
    Figure PCTKR2018012503-appb-I000039
    Figure PCTKR2018012503-appb-I000040
    .
    Figure PCTKR2018012503-appb-I000040
    .
  7. 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 청구항 1 내지 6 중 어느 한 항에 따른 화합물을 포함하는 것인 유기 발광 소자.A first electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound according to any one of claims 1 to 6. The organic light- Light emitting element.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 유기물층은 정공주입층 또는 정공수송층을 포함하고, 상기 정공주입층 또는 정공수송층은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자.Wherein the organic material layer comprises a hole injection layer or a hole transport layer, and the hole injection layer or the hole transport layer comprises the compound of the formula (1).
  9. 청구항 7에 있어서,The method of claim 7,
    상기 유기물층은 전자수송층 또는 전자주입층을 포함하고, 상기 전자수송층 또는 전자주입층은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자.Wherein the organic material layer comprises an electron transporting layer or an electron injecting layer, and the electron transporting layer or the electron injecting layer comprises the compound of the formula (1).
  10. 청구항 7에 있어서,The method of claim 7,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자.Wherein the organic layer includes a light emitting layer, and the light emitting layer comprises the compound of Formula 1.
  11. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물을 도펀트로 포함하는 것인 유기 발광 소자.[Claim 7] The organic light emitting device of claim 7, wherein the organic layer includes a light emitting layer, and the light emitting layer comprises the compound of Formula 1 as a dopant.
PCT/KR2018/012503 2017-10-20 2018-10-22 Compound and organic light emitting device comprising same WO2019078700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880042703.7A CN110799507B (en) 2017-10-20 2018-10-22 Compound and organic light emitting device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170136499 2017-10-20
KR10-2017-0136499 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019078700A1 true WO2019078700A1 (en) 2019-04-25

Family

ID=66173823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012503 WO2019078700A1 (en) 2017-10-20 2018-10-22 Compound and organic light emitting device comprising same

Country Status (3)

Country Link
KR (1) KR102120560B1 (en)
CN (1) CN110799507B (en)
WO (1) WO2019078700A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102534666B1 (en) * 2017-11-30 2023-05-18 엘지디스플레이 주식회사 Organic compounds, organic light emitting diode and orgnic light emitting display device including the compounds
CN111825660A (en) * 2019-04-19 2020-10-27 北京鼎材科技有限公司 Compound, thermal activation delayed fluorescence material, organic electroluminescent device and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130264548A1 (en) * 2012-02-29 2013-10-10 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
KR20140106631A (en) * 2011-12-02 2014-09-03 고쿠리쓰다이가쿠호진 규슈다이가쿠 Organic light emitting device and delayed fluorescent material and compound used therein
KR20160028979A (en) * 2014-09-04 2016-03-14 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescence devices comprising the same
KR20170053590A (en) * 2015-11-06 2017-05-16 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170113808A (en) * 2016-03-25 2017-10-13 단국대학교 산학협력단 TADF Material and OLED Having the Same
KR20180048412A (en) * 2016-11-01 2018-05-10 시노라 게엠베하 Organic molecules, especially for use in organic optoelectronic devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
JP6838268B2 (en) * 2015-10-21 2021-03-03 コニカミノルタ株式会社 Light conversion material, light conversion film, and light emitting element
WO2019022546A1 (en) * 2017-07-27 2019-01-31 주식회사 엘지화학 Delayed fluorescence material and organic light emitting device comprising same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106631A (en) * 2011-12-02 2014-09-03 고쿠리쓰다이가쿠호진 규슈다이가쿠 Organic light emitting device and delayed fluorescent material and compound used therein
US20130264548A1 (en) * 2012-02-29 2013-10-10 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
KR20160028979A (en) * 2014-09-04 2016-03-14 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescence devices comprising the same
KR20170053590A (en) * 2015-11-06 2017-05-16 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170113808A (en) * 2016-03-25 2017-10-13 단국대학교 산학협력단 TADF Material and OLED Having the Same
KR20180048412A (en) * 2016-11-01 2018-05-10 시노라 게엠베하 Organic molecules, especially for use in organic optoelectronic devices

Also Published As

Publication number Publication date
KR20190044576A (en) 2019-04-30
KR102120560B1 (en) 2020-06-09
CN110799507A (en) 2020-02-14
CN110799507B (en) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2019164331A1 (en) Heterocyclic compound and organic light-emitting device comprising same
WO2019190235A1 (en) Compound and organic light-emitting device comprising same
WO2017142310A1 (en) Heterocyclic compound and organic electroluminescent device comprising same
WO2017061832A1 (en) Novel compound and organic light emitting diode comprising same 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2019172649A1 (en) Polycyclic compound and organic light emitting element comprising same
WO2014175627A1 (en) Nitrogen-containing heterocyclic compound and organic electronic device comprising same
WO2017138755A1 (en) Heterocyclic compound and organic electroluminescent device containing same
WO2017142304A1 (en) Heterocyclic compound and organic electroluminescent device comprising same
WO2020130511A1 (en) Compound and organic light-emitting device including same
WO2020040514A1 (en) Organic light emitting diode
WO2020060283A1 (en) Organic light emitting diode
WO2019088751A1 (en) Compound and organic light emitting device comprising same
WO2019177393A1 (en) Compound and organic light emitting device comprising same
WO2017142308A1 (en) Heterocyclic compound and organic electroluminescent device comprising same
WO2020153792A1 (en) Compound and organic light-emitting diode comprising same
WO2019078700A1 (en) Compound and organic light emitting device comprising same
WO2020111586A1 (en) Novel compound and organic light-emitting device using same
WO2020130529A1 (en) Compound and organic light emitting diode comprising same
WO2020013572A1 (en) Compound and organic light emitting diode comprising same
WO2023200196A1 (en) Organic compound and organic light-emitting device comprising same
WO2020013657A1 (en) Heterocyclic compound and organic light emitting diode comprising same
WO2019168378A1 (en) Heterocyclic compound and organic light emitting device comprising same
WO2019194616A1 (en) Amine compound and organic light emitting diode comprising same
WO2021162227A1 (en) Novel compound and organic light-emitting device using same
WO2020013574A1 (en) Compound and organic light emitting diode comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868026

Country of ref document: EP

Kind code of ref document: A1