WO2019078620A1 - Novel compound and organic light-emitting device using same - Google Patents

Novel compound and organic light-emitting device using same Download PDF

Info

Publication number
WO2019078620A1
WO2019078620A1 PCT/KR2018/012273 KR2018012273W WO2019078620A1 WO 2019078620 A1 WO2019078620 A1 WO 2019078620A1 KR 2018012273 W KR2018012273 W KR 2018012273W WO 2019078620 A1 WO2019078620 A1 WO 2019078620A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substituted
compound
group
unsubstituted
Prior art date
Application number
PCT/KR2018/012273
Other languages
French (fr)
Korean (ko)
Inventor
윤준
윤주용
김연환
홍완표
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180123424A external-priority patent/KR102147484B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/650,156 priority Critical patent/US11495745B2/en
Priority to CN201880060245.XA priority patent/CN111094239B/en
Publication of WO2019078620A1 publication Critical patent/WO2019078620A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/35Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms, or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy.
  • the organic light emitting device using the organic light emitting phenomenon has been conducted a wide viewing angle, excellent contrast, it has a quick ungdap time, luminance, driving "voltage and ungdap rate characteristics are excellent by many studies.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode.
  • the organic material layer may have a multilayer structure composed of different materials in order to improve the efficiency and stability of the organic light emitting device.
  • the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • a voltage is applied between the two electrodes in the structure of the organic light emitting diode, holes are injected in the anode, electrons are injected into the organic layer in the cathode, and excitons are formed when injected holes and electrons meet. The light is emitted when the axon falls back to the floor.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • Ri and R 2 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted d-so alkyl, substituted or unsubstituted d-60 alkoxy, substituted or unsubstituted C halo haloalkyl, substituted or unsubstituted haloalkoxy, (C o alkyl) silyl, substituted or unsubstituted C 6 _ 60 aryl, or substituted or unsubstituted C 2 - 60 heteroaryl containing 0 or more of N, Si and S ,
  • R 3 and R 4 are each independently hydrogen, deuterium, substituted or unsubstituted d-60 alkyl, substituted or unsubstituted CMO alkoxy, substituted or unsubstituted ( 60 haloalkyl, substituted or unsubstituted haloalkoxy, (D-60 alkyl) silyl, or a substituted or unsubstituted C 2 -C 60 heteroaryl containing at least one of O, N, Si and S,
  • the present invention also relates to a plasma display panel comprising a first electrode; A second electrode facing the first electrode; And at least one organic layer disposed between the first electrode and the second electrode, wherein at least one of the organic layers includes a compound represented by Formula 1 do.
  • the compound represented by the general formula (1) can be used as a material of an organic material layer of an organic light emitting device and can improve the efficiency, the driving voltage and / or the lifetime of the organic light emitting device.
  • the compound represented by Formula 1 can be used as a hole injecting, hole transporting, hole injecting and transporting, light emitting, electron transporting, or electron injecting material.
  • Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
  • FIG. 3 is a cross-sectional view of a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, an electron blocking layer 9, a light emitting layer 7, an electron transporting layer 8, And a cathode (4).
  • FIG. 4 is a sectional view showing the structure of the substrate 1, the anode 2, the hole injecting layer 5, the first positive hole injecting layer 11, the electron blocking layer 9, the first light emitting layer 9, the first electron transporting layer 12, The electron transport layer 18, the electron injection layer 8, and the cathode (not shown) are formed on the surface of the first electrode layer 14, the P-type charge generation layer 15, the second hole transport layer 16, the second light emitting layer 17, 4).
  • the present invention provides a compound represented by the above formula (1). In the present specification, Or a linkage to another substituent. .
  • substituted or unsubstituted A halogen group; A nitrile group; A nitro group; A hydroxy group; A carbonyl group; An ester group; Imide; An amino group; Phosphine oxide groups; An alkoxy group; An aryloxy group; An alkyloxy group; Arylthioxy group; An alkylsulfoxy group; Arylsulfoxy group; Silyl group; Boron group; An alkyl group; Cycloalkyl groups; An alkenyl group; An aryl group; Aralkyl groups; An aralkenyl group; An alkylaryl group; An alkylamine group; An aralkylamine group; A heteroarylamine group; An arylamine group; Arylphosphin
  • the "substituent group to which two or more substituents are connected” may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the carbon number of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with a straight-chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms in the ester group.
  • it can be a compound of the following structural formula
  • the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, But are not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group.
  • examples of the halogen group include fluorine, chlorine, bromine and iodine.
  • the alkyl group may be linear or branched,
  • the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment of the present invention, the number of carbon atoms of the alkyl group is 1 to 10. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert- Pentyl, 3-dimethylbutyl, 2-ethylbutyl, heptyl, heptyl, heptyl, heptyl, heptyl, methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylnaphthyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, cyclohexylmethyl, But are not limited to, dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like.
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms.
  • the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3- Dimethylcyclopentyl, dimethylcyclopentyl, dimethylcyclohexyl, dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2-methylcyclohexyl, But are not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto.
  • polycyclic aryl group examples include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • fluorenyl group examples include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group examples include, but are not limited to
  • the heterocyclic group is a heterocyclic group containing at least one of 0, N, Si and S as a hetero atom, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furane group, a furyl group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole thiazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, A pyridazinyl group, an isoquinoline group, an indole group, a pyrazinyl group, a pyrazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, Carbazole group, benzoxazole group, Benzothiazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthrol,
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned aryl group.
  • the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above.
  • the heteroaryl among the heteroarylamines can be applied to the description of the above-mentioned heterocyclic groups.
  • the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group.
  • the description of the aryl group described above can be applied except that arylene is a divalent group.
  • the description of the above-mentioned Heteroglyphic group can be applied, except that the heteroarylene is divalent.
  • the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other.
  • the description of the above-mentioned heterocyclic group can be applied except that the heterocyclic ring is not a monovalent group and two substituents are bonded to each other.
  • each of R 3 and R 4 are each independently a cyano or a 2, 3, 5, 6-tetrafluoro-4-cyanophenyl.
  • each of 3 ⁇ 4 and R4 is independently hydrogen or deuterium.
  • the compound represented by the above formula (1) is represented by the following general formula 1-1, 1-2, 1-3, or 1-4 '
  • Ar is phenyl, wherein said phenyl is substituted or unsubstituted d-60 alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted each of which is substituted with one to five substituents each independently selected from the group consisting of halogen, d-60 haloalkyl, substituted or unsubstituted d- 60 haloalkoxy, halogen, cyano, and tri (d,
  • Ar is phenyl, wherein said phenyl is substituted with one to five substituents each selected from the group consisting of fluoro, trifluoromethyl, trifluoromethyl, and cyano.
  • Ar is any one selected from the group consisting of:
  • the present invention also provides a compound represented by Chemical Formula 1, for example, and a process for preparing the same.
  • the definitions other than X are as defined above, and X is halogen and preferably bromo or chloro.
  • the step 1 is preferably carried out in the presence of a palladium catalyst and a base as a Suzuki coupling reaction, and the reaction for the Suzuki coupling reaction can be changed as known in the art.
  • Step 2 is preferably carried out in the presence of a base as a quinone phenazine condensation reaction.
  • the step 3 is preferably carried out as a dehydrogenation reaction in the presence of N-bromosuccinimide.
  • the above production method can be more specific in the production example to be described later.
  • the present invention provides an organic light emitting device including the compound represented by Formula 1.
  • the present invention provides a method of manufacturing a semiconductor device, A second electrode provided opposite to the first electrode; And one or more organic layers disposed between the first electrode and the second electrode, wherein at least one of the organic layers includes a compound represented by Formula 1 do.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer as organic layers.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer may include a hole injecting layer, a hole transporting layer, or a layer simultaneously injecting and transporting holes, and the hole injecting layer, the hole transporting layer, And a compound to be displayed.
  • the organic material layer includes a hole injection layer, and the hole injection layer is made of the compound alone or doped with the compound.
  • the organic layer includes a doped hole transport layer, and the doped hole injection layer is formed by doping the hole transport material with the compound.
  • the organic layer may include a light emitting layer, and the light emitting layer includes a compound represented by the general formula (1).
  • the compound according to the present invention can be used as a diskette of a light emitting layer.
  • the organic material layer may include an electron transporting layer or an electron injecting layer, and the electron transporting layer or the electron injecting layer includes the compound represented by the above formula (1). Further, the electron transporting layer, the electron injecting layer, or the layer which simultaneously transports electrons and injects electrons includes the compound represented by the above formula (1).
  • the organic material layer may include a light emitting layer and an electron transporting layer, and the electron transporting layer may include a compound represented by the general formula (1).
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, at least one organic material layer, and an anode are sequentially stacked on a substrate.
  • FIGS. Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • the compound represented by Formula 1 may be included in the light emitting layer.
  • the compound represented by Formula 1 may be one of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer Or more.
  • 3 is a cross-sectional view of a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, an electron blocking layer 9, a light emitting layer 7, an electron transporting layer 8, And a cathode (4).
  • the compound represented by Formula 1 may be contained in at least one of the hole injecting layer, the hole transporting layer, the light emitting layer, the electron transporting layer, and the electron injecting layer.
  • a first stack for emitting light of a first color, a second stack for emitting light of a second color, and a second stack for emitting light of a second color are provided between the first electrode and the second electrode,
  • the charge generation layer comprises an N-type charge generation layer located adjacent to the first stack and a P-type charge generation layer adjacent to the system stack
  • the organic material layer constitutes the P-type charge generation layer, and the P-type charge generation layer may be composed of the compound alone or may be doped with the compound.
  • a first stack for emitting light of a first color and a second stack for emitting light of a second color are disposed between the first electrode and the second electrode,
  • the charge generation layer comprises an N-type charge generation layer located adjacent to the first stack and a P-type charge generation layer located adjacent to the second stack
  • the organic material layer may constitute the P-type charge generation layer
  • the P-type charge generation layer may be formed by doping the hole transporting material with the compound.
  • the organic light emitting device may further include one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, and a hole blocking layer.
  • the organic light emitting device may be manufactured in materials and methods known in the art, except that it comprises a compound represented by the general formula (1).
  • the organic light emitting diode includes a plurality of organic layers, the organic layers may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate.
  • a metal oxide or a metal oxide having conductivity, or a metal oxide having conductivity on the substrate may be formed on the substrate by using a PVD (physico-chemical vapor deposition) method such as sputtering or e-beam evaporation
  • a PVD chemical vapor deposition
  • an organic layer including a hole injecting layer, a hole transporting layer, a light emitting layer, and an electron transporting layer is formed on the anode, and then a substance usable as a cathode can be deposited thereon.
  • an organic light emitting device can be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the compound represented by Formula 1 may be formed into an organic layer by a solution coating method as well as a vacuum deposition method in the production of an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating and the like, but is not limited thereto.
  • an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is a cathode.
  • the anode material a material having a large work function is preferably used so that hole injection can be smoothly conducted to the organic material layer.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ⁇ : ⁇ 1 SN0 or 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene KPEDOT), polypyrrole and polyaniline.
  • the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lyrium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but the present invention is not limited thereto.
  • the hole injecting layer is a layer for injecting holes from an electrode.
  • the hole injecting material has a hole injecting effect, and has a hole injecting effect on the light emitting layer or a light emitting material.
  • a compound which prevents the migration of excitons to the electron injecting layer or the electron injecting material and is also excellent in the thin film forming ability is preferable.
  • the HOMO highest occupied mole ar orbital of the hole injecting material is determined by the work function of the anode material,
  • the hole injecting material include metal porphyrin, oligothiophene, arylamine-based organic materials, nuclear nitrile-tetracyclopentene-based organic materials, Quinacridone-based organic materials, perylene-based organic materials, anthraquinone, and polyaniline-based and polythiophene-based conductive polymers.
  • the hole transport layer is a layer that transports holes from the hole injection layer to the light emitting layer and transports holes from the anode or the hole injection layer to the light emitting layer by using a hole transport material. Is suitable.
  • arylamine-based organic materials examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material a material capable of emitting light in the visible light region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, and having good quantum efficiency and efficiency for fluorescence or phosphorescence is preferable.
  • the light emitting layer may comprise a host material and a scrim material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds.
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • splittable material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amines examples include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, and examples thereof include pyrene, anthracene, chrysene, and ferriflantene having an arylamino group.
  • the styrylamine compound include substituted or unsubstituted arylamine A substituted or unsubstituted compound in which at least one aryl vinyl group is substituted is substituted with at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group.
  • the electron transporting layer is a layer that receives electrons from the electron injecting layer and transports electrons to the light emitting layer.
  • the electron transporting material is a material capable of transferring electrons from the cathode well to the light emitting layer. Do. Specific examples include the A1 complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transporting layer can be used with any desired cathode material as used according to the prior art.
  • a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer for injecting electrons from the electrode.
  • the electron injection layer has an ability to transport electrons, has an electron injection effect from the cathode, and has an excellent electron injection effect with respect to the light emitting layer or the light emitting material. A compound which prevents migration to a layer and is excellent in a thin film forming ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, A nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8 -hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto.
  • the organic light emitting device may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to an organic light emitting device.
  • Ethyl 2- (4-bromophenyl) acetate (30.00 g, 12.34 ol ol) was completely dissolved in dichloromethane (40 mL), and the mixture was cooled to 0 ° C and stirred. After stirring for 10 minutes, titanium chloride (33.8 mL of IVK, 30.85 ⁇ ol) was slowly added dropwise. About 30 minutes The stirred solution of butyrylamine (43 mL, 30.85 mol) was slowly added dropwise. After the reaction was completed, ammonium chloride aqueous solution was added thereto and stirred for about 15 minutes.
  • ITOdndium Tin Oxide was put into distilled water dissolved in detergent and ultrasonically cleaned.
  • detergent Decon TM C0N705 product of Fischer Co. was used and distilled water which was secondly filtered with 0.22 ⁇ sterilizing filter of Millipore Co. was used as distilled water.
  • the ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone and methanol for 10 minutes, dried, and then transported to a plasma cleaner. Also, The substrate was cleaned using plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.
  • the following HT-A compound and the compound 1 prepared in the previous example were thermally vacuum deposited at a weight ratio of 95: 5 to a thickness of 100 A on the ITO transparent electrode prepared above to form a hole injection layer. Only the HT-A compound shown below was deposited on the hole injection layer to a thickness of 1100 A to form a purified water-feeding solution.
  • the following EB-A compound was thermally vacuum-deposited on the hole transport layer to a thickness of 50 A to form an electron blocking layer.
  • the following BH-A compound and the following BD-A compound were vacuum deposited on the electron blocking layer at a weight ratio of 96: 4 to a thickness of 200A to form a light emitting layer.
  • the following ET-A compound and the following Liq compound were thermally vacuum-deposited on the light emitting layer at a weight ratio of 1: 1 to a thickness of 360A to form an electron transport layer.
  • the following Liq compound was vacuum-deposited on the electron transport layer to a thickness of 5 A to form an electron injection layer.
  • Magnesium and silver were sequentially deposited on the electron injection layer at a weight ratio of 10: 1 to a thickness of 220 A and aluminum to a thickness of 1000 A
  • An organic light emitting device was prepared in the same manner as in Experimental Example 1-1, except that Compound B was used instead of Compound 1.
  • the glass substrate coated with ITO (indium tin oxide) thickness of ⁇ and ⁇ was put into distilled water containing detergent and washed with ultrasonic waves.
  • ITO indium tin oxide
  • Fischer Co. was used as a detergent
  • distilled water filtered by a filter of Millipore Co. was used as distilled water.
  • the ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes.
  • the following HAT-CN compound was thermally vacuum deposited on the prepared ITO transparent electrode to a thickness of 50 A to form a hole injection layer.
  • the following NPB compound was vacuum deposited on the hole injection layer to a thickness of 100 A to form a first hole transport layer.
  • the following EB-B compound was vacuum-deposited on the first hole transporting layer to a thickness of 100 A to form an electron blocking layer.
  • the following YGH-A compound, the following YGH-B compound, and the following YGD compound were vacuum deposited on the first electron blocking layer at a weight ratio of 2: 2: 1 to a thickness of 400A to form a first light emitting layer.
  • the following ET-B compound was vacuum-deposited on the emissive layer to a thickness of 250 A to form a first electron transporting layer.
  • An N-type charge generation layer was formed by vacuum depositing the following NCG compound and Li (Li thium) on the Ge electron transport layer at a weight ratio of 50: 1 to a thickness of 100A.
  • the following HT-A compound was formed to a thickness of 100A, and Compound 1 was doped with a doping concentration of 30% by weight to form a P-type charge generation layer. Only the following HT-A compound was vacuum-deposited on the P-type charge generation layer to a thickness of 800 A to form a second hole transporting layer. The following BH-B compound and the following BD-B compound were vacuum deposited on the second hole transporting layer at a weight ratio of 96: 4 to a thickness of 250 A to form a second light emitting layer.
  • the following ET-A compound and the following Li q compound were thermally vacuum deposited at a weight ratio of 1: 1 to a thickness of 300A to form a second electron transporting layer.
  • LiF Li.sub.3Si.sub.2Fluoride
  • an organic light emitting device was manufactured.
  • An organic light emitting device was prepared in the same manner as in Experimental Example 2-1 except that the compounds described in the following Table 2 were used instead of the compound 1 in Experimental Example 2-1 .
  • the HAT-CN compound, A compound and B compound, which are the compounds shown in Table 2 are the same as the compounds described in Table 1 above.
  • Table 2 shows the driving voltage and efficiency of the organic light emitting devices manufactured in Experimental Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-3. At this time, the driving voltage and the efficiency were measured by applying a current density of 10 mA / cm < 2 & gt ;.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are a novel compound and an organic light-emitting device using the same.

Description

【발명의 명칭】  Title of the Invention
신규한 화합물 및 이를 이용한 유기 발광 소자  Novel compounds and organic light emitting devices using the same
【기술분야】  TECHNICAL FIELD
관련 출원 (들)과의 상호 인용  Cross-reference with related application (s)
본 출원은 2017년 10월 20일자 한국 특허 출원 제 10-2017-0136519호 및 2018년 10월 16일자 한국 특허 출원 게 10-2018-0123424호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0136519, dated October 20, 2017, and Korean Patent Application No. 10-2018-0123424, dated October 16, 2018, The entire contents of which are incorporated herein by reference. The present invention relates to a novel compound and an organic light emitting device comprising the same.
【배경기술】  BACKGROUND ART [0002]
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동'전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤 (exc i ton)이 형성되며, 이 액시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다. In general, organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy. The organic light emitting device using the organic light emitting phenomenon has been conducted a wide viewing angle, excellent contrast, it has a quick ungdap time, luminance, driving "voltage and ungdap rate characteristics are excellent by many studies. The organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode. The organic material layer may have a multilayer structure composed of different materials in order to improve the efficiency and stability of the organic light emitting device. For example, the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. When a voltage is applied between the two electrodes in the structure of the organic light emitting diode, holes are injected in the anode, electrons are injected into the organic layer in the cathode, and excitons are formed when injected holes and electrons meet. The light is emitted when the axon falls back to the floor. There is a continuing need for the development of new materials for the organic materials used in such organic light emitting devices.
【선행기술문헌】 【특허문헌】 [Prior Art Document] [Patent Literature]
(특허문헌 0001) 한국특허 공개번호 제 10-2000-0051826호  (Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
【발명의 내용】  DISCLOSURE OF THE INVENTION
【해결하려는 과제】  [Problem to be solved]
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  The present invention relates to a novel compound and an organic light emitting device comprising the same.
【과제의 해결 수단】  MEANS FOR SOLVING THE PROBLEMS
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:  The present invention provides a compound represented by the following formula (1): < EMI ID =
Figure imgf000003_0001
Figure imgf000003_0001
상기 화학식 1에서,  In Formula 1,
Ri 및 R2는 각각 독립적으로, 수소, 치환 또는 비치환된 d-so 알킬, 치환 또는 비치환된 d-60 알콕시, 치환 또는 비치환된 Cwo 할로알킬, 치환 또는 비치환된 할로알콕시, 할로겐, 시아노, 트리 (C o 알킬)실릴, 치환 또는 비치환된 C6_60 아릴, 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 해테로아릴이고, Ri and R 2 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted d-so alkyl, substituted or unsubstituted d-60 alkoxy, substituted or unsubstituted C halo haloalkyl, substituted or unsubstituted haloalkoxy, (C o alkyl) silyl, substituted or unsubstituted C 6 _ 60 aryl, or substituted or unsubstituted C 2 - 60 heteroaryl containing 0 or more of N, Si and S ,
R3 및 는 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 d-60 알킬, 치환 또는 비치환된 CMO 알콕시, 치환 또는 비치환된 ( 60 할로알킬, 치환 또는 비치환된 할로알콕시, 할로겐, 시아노, 트리 (d-60 알킬)실릴, 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, R 3 and R 4 are each independently hydrogen, deuterium, substituted or unsubstituted d-60 alkyl, substituted or unsubstituted CMO alkoxy, substituted or unsubstituted ( 60 haloalkyl, substituted or unsubstituted haloalkoxy, (D-60 alkyl) silyl, or a substituted or unsubstituted C 2 -C 60 heteroaryl containing at least one of O, N, Si and S,
Ar은 C6-60 아릴, 또는 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 해테로아릴이고, 여기서 상기 C6-60 아릴, 또는 C2-60 헤테로아릴은, 치환 또는 비치환된 d-60 알킬, 치환 또는 비치환된 d-60 알콕시, 치환 또는 비치환된 d-so 할로알킬, 치환 또는 비치환된 d-60 할로알콕시 , 할로겐, 시아노, 및 트리 (d-60 알킬)실릴로 구성되는 군으로부터 각각 선택되는 1개 내지 5개의 치환기로 치환된다. 또한 본 발명은 제 1 전극; 상기 게 1 전극과 대향하여 구비된 제 2 전극; 및 상기 계 1 전극과 상기 게 2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. Ar is C 6 - and 60 by interrogating aryl, wherein said C 6 - - 60 aryl, or 0, N, C 2, including one or more of Si and S 60 aryl, or C 2 - 60 heteroaryl, substituted Unsubstituted d- 60 alkyl, substituted or unsubstituted d-60 alkoxy, substituted or unsubstituted d-so haloalkyl, substituted or unsubstituted d- 60 haloalkoxy, halogen, cyano, Lt; / RTI >< RTI ID = 0.0 > Lt; / RTI > to 5 substituents. The present invention also relates to a plasma display panel comprising a first electrode; A second electrode facing the first electrode; And at least one organic layer disposed between the first electrode and the second electrode, wherein at least one of the organic layers includes a compound represented by Formula 1 do.
【발명의 효과】  【Effects of the Invention】
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.  The compound represented by the general formula (1) can be used as a material of an organic material layer of an organic light emitting device and can improve the efficiency, the driving voltage and / or the lifetime of the organic light emitting device. In particular, the compound represented by Formula 1 can be used as a hole injecting, hole transporting, hole injecting and transporting, light emitting, electron transporting, or electron injecting material.
【도면의 간단한 설명】  BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 기판 (1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.  Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4. Fig.
도 2는 기판 (1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.  2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
도 3는 기판 (1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 전자저지층 (9), 발광층 (7), 전자수송층 (8), 전자주입층 (10) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.  3 is a cross-sectional view of a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, an electron blocking layer 9, a light emitting layer 7, an electron transporting layer 8, And a cathode (4).
도 4는 기판 (1), 양극 (2), 정공주입층 (5), 게 1 정공수송충 (11), 전자저지층 (9), 제 1 발광층 (9), 제 1 전자수송층 (12), N형 전하생성층 (14), P형 전하생성층 (15), 제 2 정공수송층 (16), 제 2 발광층 (17), 게 2 전자수송층 (18), 전자주입층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.  4 is a sectional view showing the structure of the substrate 1, the anode 2, the hole injecting layer 5, the first positive hole injecting layer 11, the electron blocking layer 9, the first light emitting layer 9, the first electron transporting layer 12, The electron transport layer 18, the electron injection layer 8, and the cathode (not shown) are formed on the surface of the first electrode layer 14, the P-type charge generation layer 15, the second hole transport layer 16, the second light emitting layer 17, 4). ≪ / RTI >
【발명을 실시하기 위한 구체적인 내용】  DETAILED DESCRIPTION OF THE INVENTION
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. 본 명세서에서,
Figure imgf000005_0001
또는 다른 치환기에 연결되는 결합을 의미한다 . . 본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 와미한다. 예컨대 , "2 이상의 치환기가 연결된 치환기 "는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention. The present invention provides a compound represented by the above formula (1). In the present specification,
Figure imgf000005_0001
Or a linkage to another substituent. . As used herein, the term " substituted or unsubstituted " A halogen group; A nitrile group; A nitro group; A hydroxy group; A carbonyl group; An ester group; Imide; An amino group; Phosphine oxide groups; An alkoxy group; An aryloxy group; An alkyloxy group; Arylthioxy group; An alkylsulfoxy group; Arylsulfoxy group; Silyl group; Boron group; An alkyl group; Cycloalkyl groups; An alkenyl group; An aryl group; Aralkyl groups; An aralkenyl group; An alkylaryl group; An alkylamine group; An aralkylamine group; A heteroarylamine group; An arylamine group; Arylphosphine groups; Or a heterocyclic group containing at least one of N, O and S atoms, or a substituted or unsubstituted one in which at least two of the above-exemplified substituents are linked to each other . For example, the "substituent group to which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected. In the present specification, the carbon number of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure imgf000005_0002
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수
Figure imgf000005_0002
In the present specification, the ester group may be substituted with a straight-chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms in the ester group. Specifically, it can be a compound of the following structural formula
Figure imgf000006_0001
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0001
In the present specification, the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure imgf000006_0002
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기 , 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예- 불소, 염소, 브롬 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면ᅳ 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸 1_메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸 -2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실ᅳ 사이클로펜틸메틸,사이클로핵틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸핵실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1 , 1- 디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸 -1-부테닐, 1, 3-부타디에닐, 알릴, 1-페닐비닐 -1-일, 2-페닐비닐 -1-일, 2, 2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸— 1-일)비닐 -1-일, 2,2-비스 (디페닐— 1—일)비닐 -1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하몌 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3—메틸사이클로펜틸, 2 , 3- 디메틸사이클로펜틸, 사이클로핵실, 3-메틸사이클로핵실, 4- 메틸사이클로핵실, 2ᅳ 3-디메틸사이클로핵실, 3,4,5-트리메틸사이클로핵실, 4-tert-부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 경우,
Figure imgf000006_0002
In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, But are not limited thereto. In the present specification, the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group. In the present specification, examples of the halogen group include fluorine, chlorine, bromine and iodine. In the present specification, the alkyl group may be linear or branched, The number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment of the present invention, the number of carbon atoms of the alkyl group is 1 to 10. According to another embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert- Pentyl, 3-dimethylbutyl, 2-ethylbutyl, heptyl, heptyl, heptyl, heptyl, heptyl, methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylnaphthyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, cyclohexylmethyl, But are not limited to, dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like. In the present specification, the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, 1, 3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl and styrenyl groups. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3- Dimethylcyclopentyl, dimethylcyclopentyl, dimethylcyclohexyl, dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2-methylcyclohexyl, But are not limited thereto. In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto. Examples of the polycyclic aryl group include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group. In the present specification, a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. In the case of the fluorenyl group,
Figure imgf000008_0001
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0, N , Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기 , 벤조퓨라닐기, 페난쓰를린기 (phenanthrol ine) , 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 해테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤쩨로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 상기 화학식 1에서, 바람직하게는 및 ¾는 각각 독립적으로 시아노, 또는 2ᅳ3, 5 , 6-테트라플루오로 -4-시아노페닐이다. 바람직하게는, ¾ 및 R4는 각각 독립적으로 수소, 또는 중수소이다. 바람직하게는, 상기 화학식 1로 표시되는 화합물은, 하기 화학식 1-1, 1-2, 1-3 또는 1-4로 표시된다: '
Figure imgf000008_0001
And the like. However, the present invention is not limited thereto. In the present specification, the heterocyclic group is a heterocyclic group containing at least one of 0, N, Si and S as a hetero atom, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms. Examples of the heterocyclic group include a thiophene group, a furane group, a furyl group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole thiazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, A pyridazinyl group, an isoquinoline group, an indole group, a pyrazinyl group, a pyrazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, Carbazole group, benzoxazole group, Benzothiazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthrol ine, isoxazolyl group, thiadiazolyl group, phenothiazyl group, phenothiazyl group, And dibenzofuranyl groups, but are not limited thereto. In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned aryl group. In the present specification, the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above. In the present specification, the heteroaryl among the heteroarylamines can be applied to the description of the above-mentioned heterocyclic groups. In the present specification, the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group. In the present specification, the description of the aryl group described above can be applied except that arylene is a divalent group. In the present specification, the description of the above-mentioned Heteroglyphic group can be applied, except that the heteroarylene is divalent. In the present specification, the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other. In the present specification, the description of the above-mentioned heterocyclic group can be applied except that the heterocyclic ring is not a monovalent group and two substituents are bonded to each other. In the above formula (1), preferably, and each of R 3 and R 4 are each independently a cyano or a 2, 3, 5, 6-tetrafluoro-4-cyanophenyl. Preferably, each of ¾ and R4 is independently hydrogen or deuterium. Preferably, the compound represented by the above formula (1) is represented by the following general formula 1-1, 1-2, 1-3, or 1-4 '
[화학식 1-1] [Formula 1-1]
Figure imgf000010_0001
Figure imgf000010_0001
상기 화학식 1-1, 1-2, 1-3 및 1-4에서 In Formulas 1-1, 1-2, 1-3 and 1-4,
i, R2 맞 Ar은 앞서 정의한 바와 같다. 바람직하게는, Ar은 페닐이고, 여기서 상기 페닐은 치환 또는 비치환된 d-60 알킬, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 d-60 할로알킬, 치환 또는 비치환된 d-60 할로알콕시 , 할로겐, 시아노, 및 트리 (d, 알킬)실릴로 구성되는 군으로부터 각각 선택되는 1개 내지 5개의 치환기로 치환된다. 바람직하게는, Ar은 페닐이고, 여기서 상기 페닐은 플루오로, 트리플루오로메틸, 트리플루오로메특시, 및 시아노로 구성되는 군으로부터 각각 선택되는 1개 내지 5개의 치환기로 치환된다. 바람직하게는, Ar은 하기로 구성되는 군으로부터 선택되는 어느 하나이다: i and R 2 are as defined above. Preferably, Ar is phenyl, wherein said phenyl is substituted or unsubstituted d-60 alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted each of which is substituted with one to five substituents each independently selected from the group consisting of halogen, d-60 haloalkyl, substituted or unsubstituted d- 60 haloalkoxy, halogen, cyano, and tri (d, Preferably, Ar is phenyl, wherein said phenyl is substituted with one to five substituents each selected from the group consisting of fluoro, trifluoromethyl, trifluoromethyl, and cyano. Preferably, Ar is any one selected from the group consisting of:
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000013_0001
 
Figure imgf000014_0001
Figure imgf000014_0001
 
Figure imgf000015_0001
Figure imgf000015_0001
 
Figure imgf000016_0001
Figure imgf000016_0001
 
Figure imgf000017_0001
Figure imgf000017_0001
 
Figure imgf000018_0001
Figure imgf000018_0001
 
Figure imgf000019_0001
Figure imgf000019_0001
 
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
Figure imgf000020_0003
또한, 본 발명은 일례로 하기 반웅식 1과 같은 화학식 1로 표시되 화합물와제조 방법을 제공한다.
Figure imgf000020_0003
The present invention also provides a compound represented by Chemical Formula 1, for example, and a process for preparing the same.
Figure imgf000020_0004
상기 반웅식 1에서, X를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X는 할로겐이고 바람직하게는 브로모, 또는 클로로이다. 상기 단계 1은 스즈키 커플링 반웅으로서, 팔라듭 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반웅기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 단계 2는 크뇌페나겔 축합 반웅으로서, 염기 존재 하에 수행하는 것이 바람직하다. 상기 단계 3은 탈수소 반응으로서, N-브로모석신이미드 존재 하에 수행하는 것이 바람직하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 계 1 전극; 상기 제 1 전극과 대향하여 구비된 계 2 전극; 및 상기 제 1 전극과 상기 게 2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다. 또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. 예를 들어, 상기 유기물층은 정공주입층을 포함하고, 상기 정공 주입층은 상기 화합물 단독으로 이루어지거나 또는 상기 화합물이 도핑되어 이루어진다. 또한, 상기 유기물층은 도핑된 정공수송층을 포함하고, 상기 도핑된 정공수송충은 정공 수송 물질에 상기 화합물이 도핑되어 이루어진다. 또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 도편트로 사용할 수 있다. 또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다. 도 1은 기판 ( 1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 도 2는 기판 ( 1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7) , 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. 도 3는 기판 ( 1) , 양극 (2), 정공주입층 (5), 정공수송층 (6), 전자저지층 (9) , 발광층 (7), 전자수송층 (8) , 전자주입층 ( 10) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 1층 이상에 포함될 수 있다. 또한, 상기 제 1 전극과 제 2 전극 사이에, 제 1 색상의 광을 발광하는 제 1 스택,게 2 색상의 광을 발광하는 제 2 스택 및 상기 게 1 스택과 제 2 스택 사이에서 전하를 균형되게 조절하는 전하 생성층이 형성되어 있고, 상기 전하 생성층은 상기 제 1 스택에 인접하게 위치하는 N형 전하 생성층 및 상기 계 2 스택에 인접하게 위치하는 P형 전하 생성층으로 이루어지고, 상기 유기물층은 상기 P형 전하 생성층을 구성하고, 상기 P형 전하 생성층은 상기 화합물 단독으로 이루어지거나 또는 상기 화합물이 도핑되어 이루어질 수 있다. 또한, 상기 게 1 전극과 제 2 전극 사이에, 계 1 색상의 광을 발광하는 게 1 스택, 제 2 색상의 광을 발광하는 제 2 스택 및 상기 제 1 스택과 제 2 스택 사이에서 전하를 균형되게 조절하는 전하 생성층이 형성되어 있고, 상기 전하 생성층은 상기 제 1 스택에 인접하게 위치하는 N형 전하 생성층 및 상기 제 2 스택에 인접하게 위치하는 P형 전하 생성층으로 이루어지고, 상기 유기물층은 상기 P형 전하 생성층을 구성하고, 상기 P형 전하 생성층은 정공 수송 물질에 상기 화합물이 도핑되어 이루어질 수 있다. 상기의 예를 도 4에 나타내었다. 도 4는 기판 ( 1), 양극 (2), 정공주입층 (5) , 게 1 정공수송층 ( 11), 전자저지층 (9) , 계 1 발광층 (9), 거 U 전자수송층 ( 12), N형 전하생성층 ( 14), P형 전하생성층 ( 15), 계 2 정공수송층 ( 16), 제 2 발광층 ( 17), 계 2 전자수송층 ( 18), 전자주입층 (8) 및 음극 (4)로 이루어잔유기 발광 소자의 예를 도시한 것이다. 또한, 상기 유기 발광 소자는 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 전자저지층 및 정공저지충으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 '화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제 1 전극, 유기물층 및 제 2 전극을 순차적으로 적충시켜 제조할 수 있다. 이때, 스퍼터링법 (sput ter ing)이나 전자빔 증발법 (e-beam evaporat i on)과 같은 PVD(phys i cal Vapor Depos i t i on)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 게 1 전극은 양극이고, 상기 제 2 전극은 음극이거나, 또는 상기 제 1 전극은 음극이고, 상기 게 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( IT0) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; ΖηΟ:Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3- 메틸티오펜), 폴리 [3 ,4- (에틸렌 -1,2-디옥시 )티오펜 KPED0T) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리륨, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO highest occupied molecul ar orbi tal )가 양극 물질의 일함수와 주변 유기물 충의
Figure imgf000020_0004
In the above reaction formula 1, the definitions other than X are as defined above, and X is halogen and preferably bromo or chloro. The step 1 is preferably carried out in the presence of a palladium catalyst and a base as a Suzuki coupling reaction, and the reaction for the Suzuki coupling reaction can be changed as known in the art. Step 2 is preferably carried out in the presence of a base as a quinone phenazine condensation reaction. The step 3 is preferably carried out as a dehydrogenation reaction in the presence of N-bromosuccinimide. The above production method can be more specific in the production example to be described later. Also, the present invention provides an organic light emitting device including the compound represented by Formula 1. For example, the present invention provides a method of manufacturing a semiconductor device, A second electrode provided opposite to the first electrode; And one or more organic layers disposed between the first electrode and the second electrode, wherein at least one of the organic layers includes a compound represented by Formula 1 do. The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer as organic layers. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers. The organic material layer may include a hole injecting layer, a hole transporting layer, or a layer simultaneously injecting and transporting holes, and the hole injecting layer, the hole transporting layer, And a compound to be displayed. For example, the organic material layer includes a hole injection layer, and the hole injection layer is made of the compound alone or doped with the compound. In addition, the organic layer includes a doped hole transport layer, and the doped hole injection layer is formed by doping the hole transport material with the compound. In addition, the organic layer may include a light emitting layer, and the light emitting layer includes a compound represented by the general formula (1). In particular, the compound according to the present invention can be used as a diskette of a light emitting layer. The organic material layer may include an electron transporting layer or an electron injecting layer, and the electron transporting layer or the electron injecting layer includes the compound represented by the above formula (1). Further, the electron transporting layer, the electron injecting layer, or the layer which simultaneously transports electrons and injects electrons includes the compound represented by the above formula (1). The organic material layer may include a light emitting layer and an electron transporting layer, and the electron transporting layer may include a compound represented by the general formula (1). In addition, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, at least one organic material layer, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4. Fig. In such a structure, the compound represented by Formula 1 may be included in the light emitting layer. 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is. In such a structure, the compound represented by Formula 1 may be one of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer Or more. 3 is a cross-sectional view of a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, an electron blocking layer 9, a light emitting layer 7, an electron transporting layer 8, And a cathode (4). In such a structure, the compound represented by Formula 1 may be contained in at least one of the hole injecting layer, the hole transporting layer, the light emitting layer, the electron transporting layer, and the electron injecting layer. A first stack for emitting light of a first color, a second stack for emitting light of a second color, and a second stack for emitting light of a second color are provided between the first electrode and the second electrode, Wherein the charge generation layer comprises an N-type charge generation layer located adjacent to the first stack and a P-type charge generation layer adjacent to the system stack, The organic material layer constitutes the P-type charge generation layer, and the P-type charge generation layer may be composed of the compound alone or may be doped with the compound. A first stack for emitting light of a first color and a second stack for emitting light of a second color are disposed between the first electrode and the second electrode, Wherein the charge generation layer comprises an N-type charge generation layer located adjacent to the first stack and a P-type charge generation layer located adjacent to the second stack, The organic material layer may constitute the P-type charge generation layer, and the P-type charge generation layer may be formed by doping the hole transporting material with the compound. The above example is shown in Fig. Fig. 4 is a schematic diagram showing the structure of the substrate 1, the anode 2, the hole injection layer 5, the gate 1 hole transport layer 11, the electron blocking layer 9, the system 1 light emitting layer 9, The N-type charge generation layer 14, the P-type charge generation layer 15, the second dual hole transport layer 16, the second light emitting layer 17, the second electron transport layer 18, the electron injection layer 8, 4) are shown. The organic light emitting device may further include one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, and a hole blocking layer. The organic light emitting device according to the present invention, at least one layer of said organic material layer above, may be manufactured in materials and methods known in the art, except that it comprises a compound represented by the general formula (1). In addition, when the organic light emitting diode includes a plurality of organic layers, the organic layers may be formed of the same material or different materials. For example, the organic light emitting device according to the present invention can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate. At this time, a metal oxide or a metal oxide having conductivity, or a metal oxide having conductivity on the substrate, may be formed on the substrate by using a PVD (physico-chemical vapor deposition) method such as sputtering or e-beam evaporation To form an anode, an organic layer including a hole injecting layer, a hole transporting layer, a light emitting layer, and an electron transporting layer is formed on the anode, and then a substance usable as a cathode can be deposited thereon. In addition to such a method, an organic light emitting device can be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate. In addition, the compound represented by Formula 1 may be formed into an organic layer by a solution coating method as well as a vacuum deposition method in the production of an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating and the like, but is not limited thereto. In addition to such a method, an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto. In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is a cathode. As the anode material, a material having a large work function is preferably used so that hole injection can be smoothly conducted to the organic material layer. Specific examples of the positive electrode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ΖηΟ: Α1 SN0 or 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene KPEDOT), polypyrrole and polyaniline. The negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lyrium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but the present invention is not limited thereto. The hole injecting layer is a layer for injecting holes from an electrode. The hole injecting material has a hole injecting effect, and has a hole injecting effect on the light emitting layer or a light emitting material. A compound which prevents the migration of excitons to the electron injecting layer or the electron injecting material and is also excellent in the thin film forming ability is preferable. The HOMO highest occupied mole ar orbital of the hole injecting material is determined by the work function of the anode material,
H0M0 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (peryl ene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 .효율이 좋은 물질이 바람직하다.. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; 이량체화 스티릴 (dimer i zed styryl ) 화합물; BAl q ; 10- 히드록시벤조 퀴놀린 -금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리 (P-페닐렌비닐렌) (PPV) 계열의 고분자; 스피로 (spi ro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 호스트 재료 및 도편트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도편트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8—하이드록시퀴놀리나토 리륨, 비스 (8- 하이드톡시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8-퀴놀리나토) ( 0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄, 비스 (2-메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다. H0M0. Specific examples of the hole injecting material include metal porphyrin, oligothiophene, arylamine-based organic materials, nuclear nitrile-tetracyclopentene-based organic materials, Quinacridone-based organic materials, perylene-based organic materials, anthraquinone, and polyaniline-based and polythiophene-based conductive polymers. However, the present invention is not limited thereto. The hole transport layer is a layer that transports holes from the hole injection layer to the light emitting layer and transports holes from the anode or the hole injection layer to the light emitting layer by using a hole transport material. Is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto. As the light emitting material, a material capable of emitting light in the visible light region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, and having good quantum efficiency and efficiency for fluorescence or phosphorescence is preferable. 8-hydroxyquinoline aluminum complex (Alq 3); Carbazole-based compounds; Dimerized styryl compounds; BAl q; 10-hydroxybenzoquinoline-metal compounds; Benzoxazole, benzthiazole and benzimidazole compounds; poly (P-phenylenevinylene) (PPV) polymers; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto. The light emitting layer may comprise a host material and a scrim material. The host material is a condensed aromatic ring derivative or a heterocyclic compound. Specific examples of the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds. Examples of the heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Examples of the splittable material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, aromatic amines Examples of the derivative include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, and examples thereof include pyrene, anthracene, chrysene, and ferriflantene having an arylamino group. Examples of the styrylamine compound include substituted or unsubstituted arylamine A substituted or unsubstituted compound in which at least one aryl vinyl group is substituted is substituted with at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group. Specific examples thereof include, but are not limited to, styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like. Examples of the metal complex include iridium complex, platinum complex, and the like, but are not limited thereto. The electron transporting layer is a layer that receives electrons from the electron injecting layer and transports electrons to the light emitting layer. The electron transporting material is a material capable of transferring electrons from the cathode well to the light emitting layer. Do. Specific examples include the A1 complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transporting layer can be used with any desired cathode material as used according to the prior art. In particular, an example of a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer. The electron injection layer is a layer for injecting electrons from the electrode. The electron injection layer has an ability to transport electrons, has an electron injection effect from the cathode, and has an excellent electron injection effect with respect to the light emitting layer or the light emitting material. A compound which prevents migration to a layer and is excellent in a thin film forming ability is preferable. Specific examples thereof include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, A nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto. Examples of the metal complex compound include 8 -hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto. The organic light emitting device according to the present invention may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used. In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to an organic light emitting device.
[실시예] [Example]
실시예 1: 화할물 1의 제조  Example 1: Preparation of water 1 to be converted
Figure imgf000028_0001
Figure imgf000028_0001
1 - One -
500 mL 등근 바닥 플라스크에 에틸 2-(4- 브로모페닐)아세테이트 (30.00 g , 12.34 隱 ol )를 디클로로메테인 (40 mL)에 완전히 녹인 후, 0°C로 냉각하고 교반하였다. 10분간 교반 후 티타늄 클로라이드 ( IVK33.8 mL , 30.85 睡 ol )를 천천히 적가하였다. 약 30분간 교반한 푸 트리에틸아민 (43 mL, 30.85 國 ol)을 천천히 적가하였다. 반웅 종료 후 암모늄 클로라이드 수용액을 투입하여 약 15분간 교반하였다. 상온으로 온도를 올리고 유기층을 추출하여 무수 황산마그네슘으로 수분을 제거하고 여과한 뒤, 감압 하에 농축하였다. 상기 농축액에 소량의 무수 에탄올을 넣고 10분간 교반한 후 여과하여, 화합물 1-1(29.00 g, 수율: 90.00%)을 제조하였다. Ethyl 2- (4-bromophenyl) acetate (30.00 g, 12.34 ol ol) was completely dissolved in dichloromethane (40 mL), and the mixture was cooled to 0 ° C and stirred. After stirring for 10 minutes, titanium chloride (33.8 mL of IVK, 30.85 睡 ol) was slowly added dropwise. About 30 minutes The stirred solution of butyrylamine (43 mL, 30.85 mol) was slowly added dropwise. After the reaction was completed, ammonium chloride aqueous solution was added thereto and stirred for about 15 minutes. The temperature was raised to room temperature, the organic layer was extracted, and water was removed with anhydrous magnesium sulfate, followed by filtration, followed by concentration under reduced pressure. A small amount of anhydrous ethanol was added to the concentrate, stirred for 10 minutes, and filtered to obtain Compound 1-1 (29.00 g, yield: 90.00%).
MS:[M+H]+= 484 MS: [M + H] < + > = 484
Figure imgf000029_0001
Figure imgf000029_0001
1000 mL 등근 바닥 플라스크에 상온에서 화합물 1-1(29 g, 5.989 睡 ol), 포타슴 하이드록사이드 (16.8 g, 29.94 國 ol), 및 무수 에탄올과 물 (1:1) 흔합 용액 (580 mL)과 함께 80°C에서 4시간 동안 교반하였다. 반응 종료 후 0°C로 냉각하였다. HC1로 중성화시키고 이를 여과하였다. 얻어진 고체를 과량을 물로 세정하여 화합물 1-2(24.4 g, 수율: 99%)를 제조하였다. (29 g, 5.989 ol ol), potato hydroxides (16.8 g, 29.94 ㎎ ol) and anhydrous ethanol and water (1: 1) conical solution (580 mL ) it was stirred at 80 ° C for 4 hours with. After completion of the reaction, the reaction mixture was cooled to 0 ° C. HCl and filtered. The obtained solid was washed with an excess amount of water to obtain Compound 1-2 (24.4 g, yield: 99%).
MS:[M+H]+= 428 단계 3) 화합물 1—3의 제조 MS: [M + H] < + > = 428 Step 3) Preparation of compound 1-3
Figure imgf000029_0002
1000 mL 둥근 바닥 플라스크에 화합물 1-2(24.00 g, 5.606 画 ol)을, Triflic acid(168 g, 112.12 隱 ol)과 함께 90°C로 14시간 동안 가열 및 교반하였다. 반웅 종료 후 0°C로 넁각하고, 물 (336 mL)을 천천히 적가하였다. 생성된 고체를 여과하고, 얻어진 고체를 클로로포름에 희석하고 무수 황산 마그네슘으로 수분을 제거하고 여과한 뒤, 감압 하에 농축하였다. 상기 농축액을 무수 에탄올로 고체를 침천시켜, 화합물 1- 3(13.2 g, 수율: 60.00%)을 제조하였다.
Figure imgf000029_0002
Compound 1-2 (24.00 g, 5.606 mol ol) was heated and stirred with triflic acid (168 g, 112.12  ol) at 90 ° C for 14 hours in a 1000 mL round bottom flask. After completion of the reaction, the mixture was stirred at 0 ° C and water (336 mL) was slowly added dropwise. The resulting solid was filtered, and the resulting solid was diluted with chloroform, and water was removed with anhydrous magnesium sulfate, followed by filtration, followed by concentration under reduced pressure. The concentrate was sedimented with anhydrous ethanol to obtain Compound 1- 3 (13.2 g, yield: 60.00%).
MS:[M+H]+= 392  MS: [M + H] < + > = 392
Figure imgf000030_0001
Figure imgf000030_0001
500 mL 등근 바닥 플라스크에 화합물 1-3(10 g, 2.55 誦 ol), (3,5- 비스 (트리플루오로메틸)페닐)보론산 (13.8 g, 5.356 隱 ol), 테트라키스 (트리페닐포스핀)팔라듐 (0K0.3 g, 0.0255 誦 ol), 포타슘 카보네이트 (1.05 g, 7.65 國 ol) 25% 수용액과 함께 테트라하이드로퓨란 (130 mL)에 완전히 녹인 후 가열 및 교반 하였다. 반응이 끝난 후, 상온으로 온도를 낮추고 여과하여 유기 용매 층을 모아 감압 하에 농축하였다. 상기 농축액을 무수 에탄올로 침전시켜, 화합물 1-4(10 g, 수율: 60.00%)를 제조하였다.  To a 500 mL round bottom flask was added compound 1-3 (10 g, 2.55 Â ol), (3,5-bis (trifluoromethyl) phenyl) boronic acid (13.8 g, 5.356  ol), tetrakis ) Was completely dissolved in tetrahydrofuran (130 mL) together with a 25% aqueous solution of palladium (0 K0.3 g, 0.0255 ㎐ ol), potassium carbonate (1.05 g, 7.65 k ol), and the mixture was heated and stirred. After the reaction was completed, the temperature was lowered to room temperature, and the organic solvent layer was collected by filtration and concentrated under reduced pressure. The concentrate was precipitated with absolute ethanol to obtain Compound 1-4 (10 g, yield: 60.00%).
MS:[M+H]+= 658 MS: [M + H] < + > = 658
Figure imgf000030_0002
Figure imgf000030_0002
250 mL 둥근 바닥 플라스크에 화합물 1-4(5.00 g, 0.759 隱 ol)을 디클로로메테인 (150 mL)에 완전히 녹인' 후 상온에서 교반하였다. 상기 반웅액에 말로노나이트릴 (3 g, 4.556 隱 ol)을 첨가한 후 0°C에서 10분간 교반하였다. 이후 Titanium chloride(IV)과 Pyridine을 투입하고 상온에서 1시간 교반하였다. 반웅이 끝난 후, 물을 첨가하고 10분 동안 교반한 뒤 유기층을 모아 무수 황산 마그네슘으로 수분을 제거하고 여과한 뒤, 감압 하에 농축하였다. 상기 농축액을 메틸 터트 -부틸 에스터로 침천시켜, 화합물 1-5(3 g, 수율: 52.00%)을 제조하였다. 250 mL of round bottom flask, compound 1-4 (5.00 g, 0.759隱ol ) was stirred in a completely dissolved and then, at room temperature in dichloro methane (150 mL). Malononitrile (3 g, 4.556 ol ol) was added to the reaction mixture and the mixture was stirred at 0 ° C for 10 minutes Lt; / RTI > Titanium chloride (IV) and pyridine were added and stirred at room temperature for 1 hour. After the addition of water, the mixture was stirred for 10 minutes. Then, the organic layer was collected, the water was removed with anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The concentrate was precipitated with methyltet-butyl ester to give Compound 1-5 (3 g, yield: 52.00%).
MS:[M+H]+= 754 MS: [M + H] < + > = 754
Figure imgf000031_0001
250 mL 등근 바닥 플라스크께 화합물 1-5(3.00 g, 0.397 國 ol)을 디클로로메테인 (90 mL)에 완전히 녹인 후 상은에서 교반하였다. 상기 반웅액에 1-브로모 -2,5-피를리딘디온 (1.77 g, 0.994 隱 ol)을 첨가한 후 1시간 동안 교반하였다. 반웅 종료 후 여과하여 물과 메틸 터트 -부틸 에스터로 세정하여, 화합물 1(2.8 g, 수율: 99%)을 제조하였다.
Figure imgf000031_0001
Compound 1-5 (3.00 g, 0.397 mol) was completely dissolved in dichloromethane (90 mL) into a 250 mL round bottom flask and stirred in the upper atmosphere. 1-Bromo-2,5-pyridinedione (1.77 g, 0.994 ol ol) was added to the reaction mixture, followed by stirring for 1 hour. After completion of the reaction, the reaction mixture was filtered and washed with water and methyltet-butyl ester to give Compound 1 (2.8 g, yield: 99%).
MS:[M+H]+= 752 실시예 2: 화합물 2의 제조  MS: [M + H] < + > = 752 Example 2: Preparation of compound 2
Figure imgf000031_0002
500 mL 등근 바닥 플라스크에 화합물 1-3(10 g, 2.55 隱 ol), (4- 시아노 -3- (트리플루오로메틸)페닐)보론산 (11.5 g, 5.355 國 ol), 테트라키스 (트리페닐포스핀)팔라듐 (0K0.3 g, 0.0255 隱 ol), 포타슘 카보네이트 (1.05 g, 7.65 隱 ol) 25% 수용액과 함께 테트라하이드로퓨란 (130 mL)에 완전히 녹인 후 가열 및 교반하였다. 반웅이 끝난 후, 상온으로 온도를 낮추고 여과하여 유기용매 층을 모아 감압 하에 농축하였다. 상기 농축액을 무수 에탄올로 침전시켜, 화합물 2-1(9 g, 수율: 61.60%)을 제조하였다.
Figure imgf000031_0002
To a 500 mL round bottom flask was added compound 1-3 (10 g, 2.55 ol ol), (4-cyano-3- (trifluoromethyl) phenyl) boronic acid (11.5 g, 5.355 關 ol), tetrakis Was completely dissolved in tetrahydrofuran (130 mL) together with a 25% aqueous solution of potassium carbonate (1.05 g, 7.65 ol ol) and then heated and stirred. After the reaction was completed, the temperature was lowered to room temperature, and the organic solvent layer was collected by filtration and concentrated under reduced pressure. The concentrate was precipitated with absolute ethanol to obtain Compound 2-1 (9 g, yield: 61.60%) .
MS:[M+H]+= 572  MS: [M + H] < + > = 572
Figure imgf000032_0001
Figure imgf000032_0001
화합물 1-4 대신 상기 제조한 화합물 2—1을 사용하는 것을 제외하고는, 실시예 1의 단계 5 및 6과 동일한 방법으로 화합물 2(2 g, 수율: 96%)를 제조하였다.  Compound 2 (2 g, yield: 96%) was prepared in the same manner as in Steps 5 and 6 of Example 1, except that Compound 2-1 thus prepared was used instead of Compound 1-4.
MS:[M+H]+= 666 실시예 3: 화합물 3의 제조  MS: [M + H] < + > = 666 Example 3: Preparation of compound 3
Figure imgf000032_0002
Figure imgf000032_0002
500 mL 등근 바닥 플라스크에 '에틸 2-(3- 브로모페닐)아세테이트 (30.00 g, 12.34 瞧 ol)를 디클로로메테인 (40 mL)에 완전히 녹인 후 0°C로 냉각하고 교반하였다. 10분간 교반한 후 티타늄 클로라이드 (IVK33.8 mL, 30.85 隱 ol)를 천천히 적가하였다. 약 30분간 교반한 후 트리에틸아민 (43 mL, 30.85 隱 ol)을 천천히 적가하였다. 반웅 종료 후 암모늄 클로라이드 수용액을 투입하여 약 15분간 교반하였다. 상온으로 온도를 올리고 유기층을 추출하여 무수의 황산 마그네슘으로 수분을 제거하고 여과한 뒤, 감압 하에 농축하였다. 상기 농축액에 소량의 무수 에탄올을 넣고 10분간 교반한 후 여과하여 , 화합물 3-1(29.00 g, 수율: 90.00%)을 제조하였다. 500 mL deunggeun the "Ethyl 2- (3-bromophenyl) acetate (30.00 g, 12.34瞧ol) bottom flask was cooled to 0 ° C and then completely dissolved in dichloro methane (40 mL) and stirred. After stirring for 10 minutes, titanium chloride (33.8 mL of IVK, 30.85 mMol) was slowly added dropwise. After stirring for about 30 minutes, triethylamine (43 mL, 30.85 mMol) was slowly added dropwise. After the reaction was completed, ammonium chloride aqueous solution was added thereto and stirred for about 15 minutes. The temperature was raised to room temperature, the organic layer was extracted, and the water was removed with anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. A small amount of anhydrous ethanol was added to the concentrate, stirred for 10 minutes, and then filtered to obtain Compound 3-1 (29.00 g, yield: 90.00%).
MS:[M+H]+= 484 MS: [M + H] < + > = 484
Figure imgf000033_0001
Figure imgf000033_0001
1000 mL 등근 바닥 플라스크에 상온에서 화합물 3-1(29 g, 5.989 隱 ol), 포타슘 하이드록사이드 (16.8 g, 29.94 國 ol), 및 무수 에탄을과 물 (1:1)의 혼합 용액 (580 mL)과 함께 80°C에서 4시간 동안 교반하였다. 반웅 종료 후 0°C로 냉각 하였다. HC1로 증성화 시킨 뒤 이를 여과하였다. 얻어진 고체를 과량을 물로 세정하여, 화합물 3-2(24.4 g, 수율: 99%)를 제조하였다. To a 1000 mL round bottom flask was added a mixed solution of compound 3-1 (29 g, 5.989  ol), potassium hydroxide (16.8 g, 29.94 mol), and anhydrous ethanol and water (1: mL) at 80 [ deg.] C for 4 hours. After the reaction was completed, the reaction mixture was cooled to 0 ° C. HCl and then filtered. The obtained solid was washed with an excess amount of water to obtain Compound 3-2 (24.4 g, yield: 99%).
MS:[M+H]+= 428  MS: [M + H] < + > = 428
Figure imgf000033_0002
Figure imgf000033_0002
3-2  3-2
1000 mL 등근 바닥 플라스크에 화합물 3-2(24.00 g, 5.606 隱 ol)을, Triflic acid(168 g, 112.12 隱 ol)과 함께 90°C로 14시간 동안 가열 및 교반하였다. 반웅 종료 후 0°C로 냉각하고, 물 (336 mL)을 천천히 적가하였다. 생성된 고체를 여과하고, 얻어진 고체를 클로로포름에 희석하고 무수 황산 마그네슘으로 수분을 제거하고 여과한 뒤 , 감압 하에 농축하였다. 상기 농축액을 무수 에탄올로 고체를 침천시켜ᅳ 화합물 3- 3(13.2 g, 수율: 60.00%)을 제조하였다. MS:[M+H]+= 392 Compound 3-2 (24.00 g, 5.606  ol) was heated and stirred with Triflic acid (168 g, 112.12  ol) at 90 ° C for 14 hours in a 1000 mL round bottom flask. After completion of the reaction, the mixture was cooled to 0 ° C and water (336 mL) was slowly added dropwise. The resulting solid was filtered, and the resulting solid was diluted with chloroform, and water was removed with anhydrous magnesium sulfate, followed by filtration, followed by concentration under reduced pressure. The concentrate was sedimented with anhydrous ethanol to obtain Compound 3- 3- (13.2 g, yield: 60.00%). MS: [M + H] < + > = 392
Figure imgf000034_0001
화합물 1-3 대신 상기 제조한 화합물 3-3을 사용하는 것을 제외하고는, 실시예 1의 단계 4 내지 6과 동일한 방법으로 화합물 3(2.5g, 수율: 99«을 제조하였다.
Figure imgf000034_0001
Compound 3 (2.5 g, yield: 9900) was prepared in the same manner as in steps 4 to 6 of Example 1, except that Compound 3-3 was used instead of Compound 1-3.
S:[M+H]+= 752 실시예 4: 화합물 4의 제조 S: [M + H] < + > = 752 Example 4: Preparation of compound 4
Figure imgf000034_0002
Figure imgf000034_0002
500 mL 등근 바닥 플라스크에 화합물 3-3(10 g, 2.55 隱 ol), (4- 시아노 -3- (트리플루오로메틸)페닐)보론산 (11.5 g, 5.355 隱 ol), 테트라키스 (트리페닐포스핀)팔라듐 (0K0.3 g, 0.0255 隱 ol), 포타슘 카보네이트 (1.05 g, 7.65 瞧 ol) 25% 수용액과 함께 테트라하이드로퓨란 (130 mL)에 완전히 녹인 후 가열 및 교반하였다. 반웅미 끝난 후, 상온으로 온도를 낮추고 여과하여 유기용매 층을 모아 감압 하에 농축하였다. 상기 농축액을 무수 에탄올로 침전시켜, 화합물 4-1(11 g, 수율: 75.3%)을 제조하였다. MS:[M+H]+= 572 To a 500 mL round bottom flask was added compound 3-3 (10 g, 2.55  ol), (4-cyano-3- (trifluoromethyl) phenyl) boronic acid (11.5 g, 5.355  ol), tetrakis Was completely dissolved in tetrahydrofuran (130 mL) together with a 25% aqueous solution of potassium carbonate (1.05 g, 7.65 mmol), potassium carbonate (0.35 g, 0.0255 ol ol) and the mixture was heated and stirred. After the completion of the reaction, the temperature was lowered to room temperature, and the organic solvent layer was collected by filtration and concentrated under reduced pressure. The concentrate was precipitated with absolute ethanol to obtain Compound 4-1 (11 g, yield: 75.3%). MS: [M + H] < + > = 572
Figure imgf000035_0001
Figure imgf000035_0001
화합물 1-4 대신 상기 제조한 화합물 4-1을 사용하는 것을 제외하고는, 실시예 1의 단계 5 및 6과 동일한 방법으로 화합물 4(3 g, 수율: 96%)를 제조하였다.  Compound 4 (3 g, yield: 96%) was prepared in the same manner as in Steps 5 and 6 of Example 1, except that Compound 4-1 prepared above was used instead of Compound 1-4.
MS:[M+H]+= 666 실시예 5: 화합물 5의 제조  MS: [M + H] < + > = 666 Example 5: Preparation of compound 5
Figure imgf000035_0002
Figure imgf000035_0002
5-1  5-1
500 mL 둥근 바닥 플라스크에 에틸 2-(2- 브로모페닐)아세테이트 (30.00 g, 12.34 醒 οθ를 디클로로메테인 (40 mL)에 완전히 녹인 후, 0°C로 냉각하고 교반하였다. 10분간 교반한 후 티타늄 클로라이드 (IV) (33.8 mL, 30.85 隱 ol)를 천천히 적가하였다. 약 30분간 교반한 후 트리에틸아민 (43 mL, 30.85 隱 ol)을 천천히 적가하였다. 반웅 종료 후 암모늄 클로라이드 수용액을 투입하여 약 15분간 교반하였다. 상온으로 온도를 올리고 유기층을 추출하여 무수 황산 마그네슘으로 수분을 제거하고 여과한 뒤, 감압 하에 농축하였다. 상기 농축액을 소량의 무수 에탄올을 넣고 10분간 교반한 후 여과하여, 화합물 5-1(20.00 g, 수율: 60.00%)을 제조하였다. To a 500 mL round-bottomed flask was dissolved completely ethyl 2- (2-bromophenyl) acetate (30.00 g, 12.34 mmol) in dichloromethane (40 mL), then cooled to 0 ° C and stirred. After 30 minutes of stirring, triethylamine (43 mL, 30.85 ol ol) was slowly added dropwise to the reaction mixture, followed by the addition of aqueous ammonium chloride solution The mixture was stirred for about 15 minutes, the temperature was raised to room temperature, and the organic layer was extracted with anhydrous magnesium sulfate, and the filtrate was concentrated under reduced pressure. A small amount of anhydrous ethanol was added to the concentrate, stirred for 10 minutes, 5-1 (20.00 g, yield: 60.00%).
MS:[M+H]+= 484 MS: [M + H] < + > = 484
Figure imgf000036_0001
Figure imgf000036_0001
1000 mL 등근 바닥 플라스크에 상온에서 화합물 5-1(20 g, 4.130 隱 ol), 포타슘 하이드록사이드 (11.59 g, 20.65 隱 ol), 및 무수 에탄을과 물 (1:1)의 흔합 용액 (580 mL)과 함께 80°C에서 4시간 동안 교반하였다. 반웅 종료 후 0°C로 넁각 하였다. HC1로 중성화 시킨 뒤 이를 여과하였다. 얻어진 고체를 과량을 물로 세정하여, 화합물 5-2(17.0 g, 수율: 91%)를 제조하였다. To a 1000 mL round bottom flask was added a solution of compound 5-1 (20 g, 4.130  ol), potassium hydroxide (11.59 g, 20.65  ol), and anhydrous ethane in water (1: mL) at 80 [ deg.] C for 4 hours. After the reaction was completed, the reaction was quenched at 0 ° C. HCl and then filtered. The resulting solid was washed with an excess amount of water to obtain Compound 5-2 (17.0 g, yield: 91%).
MS:[M+H]+= 428 MS: [M + H] < + > = 428
Figure imgf000036_0002
Figure imgf000036_0002
1000 mL 등근 바닥 플라스크에 화합물 5-2(17.00 g, 3.971 圍 ol)을, Triflic acid(119 g, 79.29 隱 ol)과 함께 90°C로 14시간 동안 가열 및 교반하였다. 반웅 종료 후 0°C로 넁각하고, 물 (336 mL)을 천천히 적가하였다. 생성된 고체를 여과하고ᅳ 얻어진 고체를 클로로포름에 희석하고 무수 황산 마그네슘으로 수분을 제거하고 여과한 뒤, 감압 하에 농축하였다. 상기 농축액을 무수 에탄올로 고체를 침천시켜, 화합물 5-3(10 g, 수율: 64.00%)을 제조하였다. MS:[M+H]+= 392 의 제조 Compound 5-2 (17.00 g, 3.971 ol) was heated and stirred with triflic acid (119 g, 79.29  ol) at 90 ° C for 14 hours. After completion of the reaction, the mixture was stirred at 0 ° C and water (336 mL) was slowly added dropwise. The resulting solid was filtered, and the obtained solid was diluted with chloroform, and water was removed with anhydrous magnesium sulfate, followed by filtration, followed by concentration under reduced pressure. The concentrate was sedimented with anhydrous ethanol to obtain Compound 5-3 (10 g, yield: 64.00%). MS: Preparation of [M + H] < + > = 392
Figure imgf000037_0001
화합물 1-3 대신 상기 제조한 화합물 5-3을 사용하는 것을 제외하고는, 실시예 1의 단계 4 내지 6과 동일한 방법으로 화합물 5(2.6 g, 수율: 99%)을 제조하였다.
Figure imgf000037_0001
Compound 5 (2.6 g, yield: 99%) was prepared in the same manner as in steps 4 to 6 of Example 1, except that Compound 5-3 was used instead of Compound 1-3.
MS:[M+H]+= 752 실시예 6: 화합물 6의 제조 MS: [M + H] < + > = 752 Example 6: Preparation of compound 6
Figure imgf000037_0002
Figure imgf000037_0002
500 mL 등근 바닥 플라스크에 화합물 5-3(10 g, 2.55 圍 ol), (4- 시아노 -3— (트리플루오로메록시)페닐)보론산 (12.37 g, 5.357 隱 ol), 테트라키스 (트리쩨닐포스핀)팔라듐 (0K0.3 g, 0.0255 隱 ol), 포타슘 카보네이트 (1.05 g, 7.65 瞧 ol) 25% 수용액과 함께 테트라하이드로퓨란 (130 mL)에 완전히 녹인 후 가열 및 교반하였다. 반웅이 끝난 후, 상온으로 온도를 낮추고 여과하여 유기용매 층을 모아 감압 하에 농축하였다. 상기 농축액을 무수 에탄올로 침전시켜, 화합물 6-1(7 g, 수율: 45.4%)을 제조하였다. To a 500 mL round bottom flask was charged 5-3 (10 g, 2.55 eq), (4-cyano-3- (trifluoromeloxy) phenyl) boronic acid (12.37 g, 5.357  ol), tetrakis Was completely dissolved in tetrahydrofuran (130 mL) together with a 25% aqueous solution of potassium carbonate (1.05 g, 7.65 mmol), followed by heating and stirring. After the reaction is finished, The temperature was lowered and the organic solvent layer was collected by filtration and concentrated under reduced pressure. The concentrate was precipitated with absolute ethanol to obtain Compound 6-1 (7 g, yield: 45.4%).
MS:[M+H]+= 604 제조  MS: [M + H] < + > = 604 Preparation
Figure imgf000038_0001
Figure imgf000038_0001
6  6
화합물 1-4 대신 상기 제조한 화합물 6-1을 사용하는 것을 제외하고는, 실시예 1의 단계 5 및 6과 동일한 방법으로 화합물 6(2.2g, 수율: 95%)를 제조하였다.  Compound 6 (2.2 g, yield: 95%) was prepared in the same manner as in steps 5 and 6 of Example 1, except that Compound 6-1 was used instead of Compound 1-4.
MS:[M+H]+= 698 MS: [M + H] < + > = 698
[실험예] [Experimental Example]
실험예 1-1  Experimental Example 1-1
ITOdndium Tin Oxide)가 1,400A의 두께로 박막 코팅된 유리기판을 세제에 녹인 증류수에 넣고 초음파로 세척하였다. 이때 세제로는 피셔사 (Fischer Co.)의 Decon™ C0N705 제품을 사용하였으며, 증류수로는 밀러포어사 (Millipore Co.) 제품의 0.22 μη sterilizing filter로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필 알코올, 아세톤 및 메탄올의 용제로 각각 10분간 초음파 세척하고, 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후, 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ITO 투명 전극 위에, 하기 HT-A 화합물과 앞서 실시예에서 제조한 화합물 1을 95 : 5의 중량비로 100A의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 상에 하기 HT-A 화합물만 1100A의 두께로 증착하여 정공수송충을 형성하였다. 상기 정공수송층 상에 하기 EB-A 화합물을 50A의 두께로 열 진공 증착하여 전자저지층을 형성하였다. 상기 전자저지층 상에 하기 BH-A 화합물과 하기 BD-A 화합물을 96 :4의 중량비로 200A의 두께로 진공 증착하여 발광층을 형성하였다. 상기 발광층 상에 하기 ET-A 화합물과 하기 Liq 화합물을 1 : 1의 중량비로 360A의 두께로 열 진공 증착하여 전자수송층을 형성하였다. 상기 전자수송층 상에 하기 Liq 화합물을 5A의 두께로 진공 증착하여 전자주입층을 형성하였다. 상기 전자주입층 상에 순차적으로 마그네슘과 은을 10 : 1의 중량비로 220 A의 두께로, 알루미늄을 1000 A 두께로 증착하여 ITOdndium Tin Oxide) was put into distilled water dissolved in detergent and ultrasonically cleaned. As the detergent, Decon ™ C0N705 product of Fischer Co. was used and distilled water which was secondly filtered with 0.22 μη sterilizing filter of Millipore Co. was used as distilled water. The ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone and methanol for 10 minutes, dried, and then transported to a plasma cleaner. Also, The substrate was cleaned using plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator. The following HT-A compound and the compound 1 prepared in the previous example were thermally vacuum deposited at a weight ratio of 95: 5 to a thickness of 100 A on the ITO transparent electrode prepared above to form a hole injection layer. Only the HT-A compound shown below was deposited on the hole injection layer to a thickness of 1100 A to form a purified water-feeding solution. The following EB-A compound was thermally vacuum-deposited on the hole transport layer to a thickness of 50 A to form an electron blocking layer. The following BH-A compound and the following BD-A compound were vacuum deposited on the electron blocking layer at a weight ratio of 96: 4 to a thickness of 200A to form a light emitting layer. The following ET-A compound and the following Liq compound were thermally vacuum-deposited on the light emitting layer at a weight ratio of 1: 1 to a thickness of 360A to form an electron transport layer. The following Liq compound was vacuum-deposited on the electron transport layer to a thickness of 5 A to form an electron injection layer. Magnesium and silver were sequentially deposited on the electron injection layer at a weight ratio of 10: 1 to a thickness of 220 A and aluminum to a thickness of 1000 A
Figure imgf000039_0001
Figure imgf000039_0001
HT-A EB-A BH-A
Figure imgf000039_0002
실험예 1-2 내지 1-6
HT-A EB-A BH-A
Figure imgf000039_0002
Experimental Examples 1-2 to 1-6
상기 실험예 1-1에서 화합물 1 대신 하기 표 1에 기재한 화합물들을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 비교실험예 1-1  An organic light emitting device was fabricated in the same manner as in Experimental Example 1-1, except that the compounds described in the following Table 1 were used instead of the Compound 1 in Experimental Example 1-1. Comparative Experimental Example 1-1
상기 실험예 1-1에서 정공주입층으로 하기 HAT-CN 화합물만 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.  An organic light emitting device was fabricated in the same manner as in Experimental Example 1-1, except that only HAT-CN compound shown below was used as the hole injection layer in Experimental Example 1-1.
Figure imgf000040_0001
Figure imgf000040_0001
HAT-CN 비교실험예 1-2  HAT-CN Comparative Experimental Example 1-2
상기 실험예 1-1에서 화합물 1 대신 어떠한 도핑없이 정공주입층을 형성한 것을 것을 제외하고는, 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 비교실험예 1-3  An organic light emitting device was fabricated in the same manner as in Experimental Example 1-1, except that the hole injection layer was formed without any doping instead of Compound 1 in Experimental Example 1-1. Comparative Experimental Example 1-3
상기 실험예 1-1에서 화합물 1 대신 하기 A 화합물을 사용한 것을 제외하 으로 유기 발광 소자를 제조하였다.  Except that Compound A was used instead of Compound 1 in Experimental Example 1-1.
Figure imgf000040_0002
Figure imgf000040_0002
A 비교실험예 1-4 A Comparative Experimental Examples 1-4
상기 실험예 1—1에서 화합물 1 대신 하기 화합물 B를 사용한 것을 제외하 과 동일한 방법으로 유기 발광 소자를 제조하였다.  An organic light emitting device was prepared in the same manner as in Experimental Example 1-1, except that Compound B was used instead of Compound 1.
Figure imgf000041_0001
Figure imgf000041_0001
B 상기 실험예 1-1 내지 1-6 및 비교실험예 1-1 내지 1-4에서 제조된 유기 발광 소자의 구동 전압 및 효율을 하기 표 1에 나타내었다. 이때, 구동 전압 및 효율은 10 mA/cm2의 전류 밀도를 인가하여 측정하였다. B The driving voltage and efficiency of the organic light emitting devices manufactured in Experimental Examples 1-1 to 1-6 and Comparative Experimental Examples 1-1 to 1-4 are shown in Table 1 below. At this time, the driving voltage and the efficiency were measured by applying a current density of 10 mA / cm < 2 & gt ;.
[표 1】  [Table 1]
Figure imgf000041_0002
실험예 2-1
Figure imgf000041_0002
Experimental Example 2-1
IT0( indium tin oxide)가 Ι,ΟΟΟΑ의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사 (Millipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 IT0 투명 전극 위에 하기 HAT-CN 화합물을 50A의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 상에 하기 NPB 화합물을 100 A의 두께로 진공 증착하여 제 1 정공수송층을 형성하였다. 상기 제 1 정공수송층 상에 하기 EB-B 화합물을 100A의 두께로 진공 증착하여 전자저지층을 형성하였다. 상기 제 1 전자저지층 상에 하기 YGH-A 화합물, 하기 YGH-B 화합물, 및 하기 YGD 화합물을 2 : 2 : 1의 중량비로 400A의 두께로 진공 증착하여 제 1 발광층을 형성하였다. 상기 게 1 발광층 상에 하기 ET-B 화합물을 250 A의 두께로 진공 증착하여 제 1 전자수송층을 형성하였다. 상기 게 1 전자수송층 위에 하기 NCG 화합물과 Li (Li thium)을 50 : 1의 중량비로 100A의 두께로 진공 증착하여 N형 전하생성층을 형성하였다. 상기 N형 전하생성층 상에 하기 HT-A 화합물을 100A의 두께로 형성하되 화합물 1을 30 증량 %의 도핑 농도로 도핑하여 P형 전하생성층을 형성하였다. 상기 P형 전하생성층 상에 하기 HT-A 화합물만 800A의 두께로 진공 증착하여 제 2 정공수송층을 형성하였다. 상기 제 2 정공수송층 상에 하기 BH-B 화합물과 하기 BD— B 화합물을 96 : 4의 중량비로 250 A의 두께로 진공 증착하여 제 2 발광층을 형성하였다. 상기 제 2 발광층 상에 하기 ET-A 화합물과 하기 Li q 화합물을 1 : 1의 중량비로 300A의 두께로 열 진공 증착하여 제 2 전자수송층을 형성하였다. 상기 전자수송층 상에 LiF(Li thi um Flor ide)를 10A의 두께로, 알루미늄을 800A 두께로 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다. The glass substrate coated with ITO (indium tin oxide) thickness of Ι and ΟΟΟΑ was put into distilled water containing detergent and washed with ultrasonic waves. In this case, Fischer Co. was used as a detergent, and distilled water filtered by a filter of Millipore Co. was used as distilled water. The ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then washed with a plasma cleaner Lt; / RTI > Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator. The following HAT-CN compound was thermally vacuum deposited on the prepared ITO transparent electrode to a thickness of 50 A to form a hole injection layer. The following NPB compound was vacuum deposited on the hole injection layer to a thickness of 100 A to form a first hole transport layer. The following EB-B compound was vacuum-deposited on the first hole transporting layer to a thickness of 100 A to form an electron blocking layer. The following YGH-A compound, the following YGH-B compound, and the following YGD compound were vacuum deposited on the first electron blocking layer at a weight ratio of 2: 2: 1 to a thickness of 400A to form a first light emitting layer. The following ET-B compound was vacuum-deposited on the emissive layer to a thickness of 250 A to form a first electron transporting layer. An N-type charge generation layer was formed by vacuum depositing the following NCG compound and Li (Li thium) on the Ge electron transport layer at a weight ratio of 50: 1 to a thickness of 100A. On the N-type charge generation layer, the following HT-A compound was formed to a thickness of 100A, and Compound 1 was doped with a doping concentration of 30% by weight to form a P-type charge generation layer. Only the following HT-A compound was vacuum-deposited on the P-type charge generation layer to a thickness of 800 A to form a second hole transporting layer. The following BH-B compound and the following BD-B compound were vacuum deposited on the second hole transporting layer at a weight ratio of 96: 4 to a thickness of 250 A to form a second light emitting layer. On the second light-emitting layer, the following ET-A compound and the following Li q compound were thermally vacuum deposited at a weight ratio of 1: 1 to a thickness of 300A to form a second electron transporting layer. LiF (Li.sub.3Si.sub.2Fluoride) was deposited on the electron transport layer to a thickness of 10A and aluminum to a thickness of 800A to form a cathode. Thus, an organic light emitting device was manufactured.
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0003
Figure imgf000043_0003
NCG BH-B BD-B 실험예 2-2 내지 2-6  NCG BH-B BD-B Experimental Examples 2-2 to 2-6
상기 실험예 2-1에서 화합물 1 대신 하기 표 2에 기재한 화합물을 사용한 것을 제외하고는 실험예 2-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 비교실험예 2-1 내지 2-3  An organic light emitting device was prepared in the same manner as in Experimental Example 2-1, except that the compound shown in the following Table 2 was used instead of the Compound 1 in Experimental Example 2-1. Comparative Experimental Examples 2-1 to 2-3
상기 실험예 2-1에서 화합물 1 대신 하기 표 2에 기재한 화합물들을 사용한 것을 제외하고는 실험예 2-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 2에 기재된 화합물인 HAT-CN 화합물, A 화합물 및 B 화합물은 상기 표 1에 기재된 화합물과 동일하다. 상기 실험예 2-1 내지 2-6 및 비교예 2-1 내지 2-3에서 제조된 유기 발광 소자의 구동 전압 및 효율을 하기 표 2에 나타내었다. 이때, 구동 전압 및 효율은 10 mA/cm2의 전류 밀도를 인가하여 측정하였다. An organic light emitting device was prepared in the same manner as in Experimental Example 2-1 except that the compounds described in the following Table 2 were used instead of the compound 1 in Experimental Example 2-1 . The HAT-CN compound, A compound and B compound, which are the compounds shown in Table 2, are the same as the compounds described in Table 1 above. Table 2 shows the driving voltage and efficiency of the organic light emitting devices manufactured in Experimental Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-3. At this time, the driving voltage and the efficiency were measured by applying a current density of 10 mA / cm < 2 & gt ;.
【표 2】 [Table 2]
Figure imgf000044_0001
Figure imgf000044_0001
【부호의 설명】 DESCRIPTION OF REFERENCE NUMERALS
1: 기판 2: 이:그  1: substrate 2:
ᅳ 1  ᅳ 1
3 : 발광층 4 : ᄋ 그  3: luminescent layer 4:
ᄆ ᄀ  ᄆ ᄀ
5 : 정공주입층 6 : 고 소 5: hole injection layer 6: high
3 ο丁 " Γ 3 ο 丁" Γ
7: 발광층 8: 전자수송층  7: light emitting layer 8: electron transporting layer
9 : 전자저지춤 10 전자주입층  9: electronic jersey dance 10 electron injection layer
11 제 1 정공수송층 12 거 U 발광층  11 First hole transport layer 12 U Light emitting layer
13 거 U 전자수송층 14 Ν형 전하생성층  13 < / RTI > U electron transport layer 14 < RTI ID =
15 P형 전하생성층 16 게 2 정공수송증 15 P-type charge generation layer 16 charge 2 hole transport
17 제 2 발광층 18 게 2 전자수송층  17 Second light emitting layer 18 Crab 2 Electron transport layer

Claims

【특허청구범위】  [Claims]
【청구항 1】  [Claim 1]
하기 화학식 1로 표시되는 화합물:  A compound represented by the following formula (1):
Figure imgf000045_0001
Figure imgf000045_0001
상기 화학식 1에서,  In Formula 1,
Ri 및 R2는 각각 독립적으로, 수소, 치환 또는 비치환된 d-60 알킬, 치환 또는 비치환된 d-60 알콕시 , 치환 또는 비치환된 d-60 할로알킬, 치환 또는 비치환된 C JO 할로알콕시, 할로겐, 시아노, 트리 (d-60 알킬)실릴, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 c260 해테로아릴이고, Ri and R 2 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted d-60 alkyl, substituted or unsubstituted d- 60 alkoxy, substituted or unsubstituted d- 60 haloalkyl, substituted or unsubstituted C JO halo c 2 containing 60 aryl, or a substituted or unsubstituted 0, N, Si and S 1 out of over-the-alkoxy, halogen, cyano, tri (d-60 alkyl) silyl, a substituted or unsubstituted C 6 60 Heteroaryl,
¾ 및 는 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 d-60 알킬, 치환 또는 비치환된 ( 60 알콕시 , 치환 또는 비치환된 할로알킬, 치환 또는 비치환된 d-60 할로알콕시, 할로겐, 시아노, 트리 (d-60 알킬 )실릴ᅳ 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, Each independently represent hydrogen, deuterium, substituted or unsubstituted d-60 alkyl, substituted or unsubstituted ( 60 alkoxy, substituted or unsubstituted haloalkyl, substituted or unsubstituted d-60 haloalkoxy, halogen (C-60 alkyl) silyl or a substituted or unsubstituted C 2 -C 60 heteroaryl containing at least one of O, N, Si and S,
Ar은 C6-60 아릴, 또는 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, 여기서 상기 C6-60 아릴, 또는 C2-60 헤테로아릴은, 치환 또는 비치환된 ( 60 알킬, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 ( 60 할로알킬, 치환 또는 비치환된 d-60 할로알콕시, 할로겐, 시아노, 및 트리 (d-60 알킬)실릴로 구성되는 군으로부터 각각 선택되는 1개 내지 5개의 치환기로 치환된다. Ar is a C 6 - 60, and heteroaryl, wherein the C 6 - - 60 aryl, or C 2 - 60 aryl, or 0, N, C 2, including one or more of Si and S 60 heteroaryl, substituted Or substituted or unsubstituted ( 60 alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted ( 60 haloalkyl, substituted or unsubstituted d-60 haloalkoxy, halogen, cyano, and tri Lt; RTI ID = 0.0 > 1 < / RTI > to 5 substituents each selected from the group consisting of
【청구항 2] [Claim 2]
제 1항에 있어서,  The method according to claim 1,
Ri 및 ¾는 각각 독립적으로 시아노, 또는 2,3,5,6-테트라플루오로- 4-시아노페닐인, Ri and < RTI ID = 0.0 > 3 < / RTI > are each independently cyano or 2,3,5,6-tetrafluoro- 4-cyanophenyl,
화합물.  compound.
【청구항 3】 [Claim 3]
저 U항에 있어서,  In that U section,
¾ 및 R4는 각각 독립적으로 수소, 또는 중수소, 화합물. And R < 4 > are each independently hydrogen or deuterium.
【청구항 4】 Claim 4
제 1항에 있어서,  The method according to claim 1,
상기 화학식 1로 표시되는 화합물은, 하기 화학식 또는 1-4로 표시되는,  The compound represented by the general formula (1)
화합물:  compound:
Figure imgf000046_0001
Figure imgf000046_0001
[화학식 1-3] [Formula 1-3]
Figure imgf000047_0001
Figure imgf000047_0001
상기 화학식 1-1 1-2 , 1-3 및 1-4에서,  In Formulas 1-1-2, 1-3 and 1-4,
및 Ar은 제 1항에서 정의한 바와 같다.  And Ar are as defined in claim 1.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method according to claim 1,
Ar은 페닐이고, 여기서 상기 페닐은 치환 또는 비치환된 d-so 알킬, 치환 또는 비치환된 d-60 알콕시, 치환 또는 비치환된 d-60 할로알킬, 치환 또는 비치환된 C O 할로알콕시 할로겐, 시아노, 및 트리 (d-60 알킬)실릴로 구성되는 군으로부터 각각 선택되는 1개 내지 5개의 치환기로 치환되는, 화합물. 【청구항 6】  Ar is phenyl, wherein said phenyl is substituted or unsubstituted d-so alkyl, substituted or unsubstituted d-60 alkoxy, substituted or unsubstituted d-60 haloalkyl, substituted or unsubstituted CO haloalkoxyhalogen, Each of which is optionally substituted with one to five substituents each independently selected from the group consisting of halogen, cyano, and tri (d-60 alkyl) silyl. [Claim 6]
게 1항에 있어서,  In Item 1,
Ar은 페닐이고, 여기서 상기 페닐은 플루오로, 트리플루오로메틸, 트리플루오로메특시, 및 시아노로 구성되는 군으로부터 각각 선택되는 1개 내지 5개의 치환기로 치환되는,  Ar is phenyl, wherein said phenyl is optionally substituted with one to five substituents each selected from the group consisting of fluoro, trifluoromethyl, trifluoromethyl, and cyano;
화합물. 【청구항 7】 compound. 7.
게 1항에 있어서,  In Item 1,
Ar은 하기로 구성되는 군으로부터 선택되는 어느 하나인, 화합물: Ar is any one selected from the group consisting of:
Figure imgf000049_0001
제 1항에 있어서,
Figure imgf000049_0001
The method according to claim 1,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인  The compound represented by Formula 1 is any one selected from the group consisting of
Figure imgf000050_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000051_0001
Figure imgf000051_0002
Figure imgf000051_0002
Figure imgf000051_0003
Figure imgf000051_0003
50 50
Figure imgf000052_0001
Figure imgf000052_0001
Figure imgf000052_0002
Figure imgf000052_0002
51 /:/ O120S8Z-06SZAV 51 /: / O12 0 S 8Z - 06 S Z AV
Figure imgf000053_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000054_0001
Figure imgf000054_0002
Figure imgf000054_0002
53 53
Figure imgf000055_0001
Figure imgf000055_0001
Figure imgf000055_0002
Figure imgf000055_0002
54 54
Figure imgf000056_0001
Figure imgf000056_0001
Figure imgf000056_0002
Figure imgf000056_0002
55 55
Figure imgf000057_0001
Figure imgf000057_0001
Figure imgf000057_0002
Figure imgf000057_0002
Figure imgf000057_0003
Figure imgf000057_0003
【청구항 9】 [Claim 9]
제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 게 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 8항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.  A first electrode; A second electrode facing the first electrode; And at least one organic layer provided between the first electrode and the second electrode, wherein at least one of the organic layers includes the compound according to any one of claims 1 to 8 The organic light-emitting device.
【청구항 10】 Claim 10
제 9항에 있어서,  10. The method of claim 9,
상기 유기물층은 정공주입층을 포함하고, 상기 정공 주입층은 상기 화합물 단독으로 이루어지거나 또는 상기 화합물이 도핑되어 이루어지는  The organic compound layer may include a hole injection layer, and the hole injection layer may be formed of the compound alone or may be doped with the compound
유기 발광 소자. 【청구항 11】  Organic light emitting device. Claim 11
제 9항에 있어서,  10. The method of claim 9,
상기 유기물층은 도핑된 정공수송층을 포함하고, 상기 도핑된 정공수송층은 정공 수송 물질에 상기 화합물이 도핑되어 이루어지는, 유기 발광 소자. Wherein the organic layer comprises a doped hole transport layer, the doped Wherein the hole transporting layer is formed by doping the hole transporting material with the compound.
【청구항 12] [12]
게 9항에 있어서,  In Item 9,
상기 제 1 전극과 게 2 전극 사이에, 제 1 색상의 광을 발광하는 제 1 스택, 제 2 색상의 광을 발광하는 제 2 스택 및 상기 제 1 스택과 제 2 스택 사이에서 전하를 균형되게 조절하는 전하 생성층이 형성되어 있고,  A first stack that emits light of a first color, a second stack that emits light of a second color, and a second stack that emits light of a first color and a second stack that emit light of a first color, A charge generation layer is formed,
상기 전하 생성층은 상기 제 1 스택에 인접하게 위치하는 N형 전하 생성층 및 상기 제 2 스택에 인접하게 위치하는 P형 전하 생성층으로 이루어지고,  Wherein the charge generating layer comprises an N-type charge generating layer adjacent to the first stack and a P-type charge generating layer adjacent to the second stack,
상기 유기물층은 상기 P형 전하 생성층을 구성하고 상기 P형 전하 생성층은 상기 화합물 단독으로 이루어지거나 또는 상기 화합물이 도핑되어 이루어지는,  Wherein the organic material layer constitutes the P-type charge generation layer and the P-type charge generation layer comprises the compound alone or is doped with the compound.
유기 발광 소자.  Organic light emitting device.
【청구항 13] [13]
제 9항에 있어서,  10. The method of claim 9,
상기 제 1 전극과 제 2 전극 사이에, 게 1 색상의 광을 발광하는 게 1 스택, 게 2 색상의 광을 발광하는 게 2 스택 및 상기 제 1 스택과 게 2 스택 사이에서 전하를 균형되게 조절하는 전하 생성층이 형성되어 있고,  A first stack for emitting light of a first color and a second stack for emitting light of a second color are provided between the first electrode and the second electrode, A charge generation layer is formed,
상기 전하 생성층은 상기 제 1 스택에 인접하게 위치하는 N형 전하 생성층 및 상기 제 2 스택에 인접하게 위치하는 P형 전하 생성층으로 이루어지고,  Wherein the charge generating layer comprises an N-type charge generating layer adjacent to the first stack and a P-type charge generating layer adjacent to the second stack,
상기 유기물층은 상기 P형 전하 생성층을 구성하고, 상기 P형 전하 생성층은 정공 수송 물질에 상기 화합물이 도핑되어 이루어지는,  Wherein the organic material layer constitutes the P-type charge generation layer, and the P-type charge generation layer comprises a hole transport material doped with the compound,
유기 발광 소자.  Organic light emitting device.
【청구항 14】 14.
게 9항에 있어서 상기 유기 발광 소자 정공주입층, 정공수송층, 발광층, 전자수송 전자주입층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1 또는 2층 이상을 더 포함하는, In paragraph 9, Wherein the organic light emitting device further comprises one or more layers selected from the group consisting of a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting electron injecting layer, an electron blocking layer and a hole blocking layer.
유기 발광 소자.  Organic light emitting device.
PCT/KR2018/012273 2017-10-20 2018-10-17 Novel compound and organic light-emitting device using same WO2019078620A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/650,156 US11495745B2 (en) 2017-10-20 2018-10-17 Compound and organic light emitting device comprising same
CN201880060245.XA CN111094239B (en) 2017-10-20 2018-10-17 Novel compound and organic light emitting device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0136519 2017-10-20
KR20170136519 2017-10-20
KR10-2018-0123424 2018-10-16
KR1020180123424A KR102147484B1 (en) 2017-10-20 2018-10-16 Novel compound and organic light emitting device comprising the same

Publications (1)

Publication Number Publication Date
WO2019078620A1 true WO2019078620A1 (en) 2019-04-25

Family

ID=66173398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012273 WO2019078620A1 (en) 2017-10-20 2018-10-17 Novel compound and organic light-emitting device using same

Country Status (1)

Country Link
WO (1) WO2019078620A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338761A (en) * 1991-05-15 1992-11-26 Konica Corp Electrophotographic sensitive body
JPH11251067A (en) * 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
KR20080069190A (en) * 2005-11-17 2008-07-25 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device
JP2010080343A (en) * 2008-09-26 2010-04-08 Osaka City Univ Electrode active material and secondary battery
US20120193619A1 (en) * 2009-10-14 2012-08-02 Konica Minolta Holdings, Inc. Organic electroluminescent element and lighting device using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338761A (en) * 1991-05-15 1992-11-26 Konica Corp Electrophotographic sensitive body
JPH11251067A (en) * 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
KR20080069190A (en) * 2005-11-17 2008-07-25 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device
JP2010080343A (en) * 2008-09-26 2010-04-08 Osaka City Univ Electrode active material and secondary battery
US20120193619A1 (en) * 2009-10-14 2012-08-02 Konica Minolta Holdings, Inc. Organic electroluminescent element and lighting device using same

Similar Documents

Publication Publication Date Title
KR101885900B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101978453B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102064992B1 (en) Novel hetero ring compound and organic light emitting device comprising the same
JP2020507575A (en) Novel heterocyclic compound and organic light emitting device containing the same
KR102052710B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20200026080A (en) Novel compound and organic light emitting device comprising the same
JP2020510652A (en) Novel compound and organic light emitting device using the same
KR101891263B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102016081B1 (en) Novel compound and organic light emitting device comprising the same
WO2019017702A1 (en) Novel heterocyclic compound and organic light-emitting diode using same
WO2018216887A1 (en) Novel compound and organic light-emitting device using same
KR20190007257A (en) Novel compound and organic light emitting device comprising the same
KR101959511B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101959513B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101937996B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2018190522A1 (en) Novel compound and organic light emitting device comprising same
KR102147484B1 (en) Novel compound and organic light emitting device comprising the same
KR101868516B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20190053809A (en) Organic light emitting device
WO2019004612A1 (en) Novel heterocyclic compound and organic light-emitting device using same
WO2019093623A1 (en) Novel heterocyclic compound and organic light-emitting diode using same
KR20190045812A (en) Novel compound and organic light emitting device comprising the same
WO2019078443A1 (en) Novel compound and organic light emitting device using same
KR20200105388A (en) Novel compound and organic light emitting device comprising the same
KR101979917B1 (en) Iridium complex and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868990

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18868990

Country of ref document: EP

Kind code of ref document: A1