WO2019078413A1 - Material composition for preparing oxygen transfer particles, oxygen transfer particles prepared using same, and method for preparing oxygen transfer particles - Google Patents

Material composition for preparing oxygen transfer particles, oxygen transfer particles prepared using same, and method for preparing oxygen transfer particles Download PDF

Info

Publication number
WO2019078413A1
WO2019078413A1 PCT/KR2017/015647 KR2017015647W WO2019078413A1 WO 2019078413 A1 WO2019078413 A1 WO 2019078413A1 KR 2017015647 W KR2017015647 W KR 2017015647W WO 2019078413 A1 WO2019078413 A1 WO 2019078413A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
particles
oxygen transfer
slurry
producing
Prior art date
Application number
PCT/KR2017/015647
Other languages
French (fr)
Korean (ko)
Inventor
김의식
백점인
엄태형
이중범
조현근
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2019078413A1 publication Critical patent/WO2019078413A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Definitions

  • the present invention relates to a raw material composition for producing oxygen-transferring particles, oxygen-transferring particles prepared using the same, and a process for producing oxygen-transferring particles.
  • Chemical Looping Combustion (CLC) technology is attracting attention as a technology capable of separating CO 2 from power generation while reducing power generation efficiency.
  • the CLC technology includes only water vapor and CO 2 because the fuel contained in the solid particles (oxygen transfer particles), which is the main component of the metal oxide instead of air, reacts with the fuel and burns. Therefore, CO 2 can be separated from CO 2 by condensing water vapor.
  • the oxygen contained in the oxygen transfer particles is transferred to the fuel, and the oxygen transfer particles are oxidized again due to the oxygen contained in the air and the fuel reactors in which the reduction reaction occurs.
  • the air reactors regenerated in an initial state are constituted by a combination of the two. Both reactors use a fluidized bed reactor and the whole process becomes a circulating fluidized-bed process.
  • Oxygen transferring particles used in this CLC process must satisfy various conditions suitable for fluidized bed process characteristics.
  • suitable properties for the fluidized bed process namely sufficient strength, suitable shape for flow and packing density or tapped density, average particle size and particle size distribution should be provided.
  • it has a high oxygen transfer capacity in terms of reactivity, so that it must be able to supply enough oxygen for the fuel to pass through the fuel reactor as it passes through the fuel reactor.
  • the conventional oxygen transfer particles are produced by a method unsuitable for mass production, or the physical properties such as shape, strength and density are not suitable for application to the fluidized bed process or need to be improved.
  • the use of a support having a stable crystal structure results in a decrease in the oxygen delivery performance due to a rise in firing temperature to obtain sufficient strength or a problem of fluidization due to the agglomeration phenomenon during the reaction or a problem that the content of oxygen is low due to the low content of metal oxides have.
  • One embodiment of the present invention is directed to a process for the preparation of a composition comprising: nickel hydroxide; And cerium oxide or cerium hydroxide; To a raw material composition for producing oxygen-transferring particles.
  • the raw material composition for producing an oxygen-transferring particle may further include titanium oxide.
  • the raw material composition for producing oxygen-transferring particles comprises about 55% to about 80% by weight of nickel hydroxide; From about 10% to about 45% by weight of cerium oxide or cerium hydroxide; And from about 0% to about 20% by weight of titanium oxide.
  • the nickel hydroxide may have an average particle size of greater than about 0 to about 5 microns and a purity of greater than about 98%.
  • the cerium oxide or cerium hydroxide may have an average particle size of greater than about 0 to about 5 microns and a purity of greater than about 98%.
  • the titanium oxide may have an average particle size of greater than about 0 to about 5 microns and a purity of greater than about 95%.
  • Another embodiment of the present invention relates to an oxygen-transferring particle formed from the above-described raw material composition for producing oxygen-transferring particles and comprising nickel oxide and cerium oxide.
  • the oxygen transfer particles were subjected to abrasion test for 5 hours at a flow rate of 10.00 l / min (273.15 K, 1 bar) according to ASTM D5757-95 using an abrasion tester, and the abrasion index represented by the following formula 1 was about 25% .
  • W1 is the unit weight in g before the abrasion test of the sample
  • W2 is the unit weight in g of the fine particles collected for 5 hours after the abrasion test of the sample.
  • oxygen-transferring particles are spherical in shape, non-blowhole, have an average particle size of from about 60 ⁇ ⁇ to about 150 ⁇ ⁇ , a particle size distribution of from about 30 ⁇ ⁇ to about 400 ⁇ ⁇ , a packing density of from about 1.5 g / mL to about 4.0 g / mL.
  • the oxygen transfer particles may have an oxygen transfer amount of about 10 wt% to about 25 wt% of the total weight of the oxygen transfer particles.
  • Another embodiment of the present invention is a process for producing an oxygen-transferring particle, comprising the steps of: (A) mixing a raw material composition for producing oxygen-transferring particles with a solvent to prepare a slurry for producing oxygen- (B) stirring the slurry to produce a homogenized slurry; (C) spray drying the slurry to form solid particles; And (D) drying and firing the molded solid particles to produce oxygen-transferring particles.
  • the raw material composition for producing oxygen-transferring particles and the solvent are mixed at a weight ratio of about 15 to 40: about 60 to 85, and the solvent may be water.
  • the slurry may further comprise at least one of a dispersant, a defoaming agent and an organic binder.
  • the dispersant may include at least one of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • the anionic surfactant may include at least one of a polycarboxylic acid salt and a polycarboxylic acid amine salt.
  • the antifoaming agent may include at least one of a silicone type antifoaming agent, a metal soap type antifoaming agent, an amide type antifoaming agent, a polyether type antifoaming agent, a polyester type antifoaming agent, a polyglycol type antifoaming agent and an alcohol type antifoaming agent.
  • the organic binder may include at least one of polyvinyl alcohol, polyethylene glycol, and methyl cellulose.
  • the additive comprises from about 0.01 to about 5.0 parts by weight of the dispersant, from about 0.01 to about 1.0 part by weight of the defoamer, and from about 0.01 to about 5.0 parts by weight of the defoamer, based on 100 parts by weight of the raw material composition for producing oxygen-
  • the organic binder may be added in an amount of about 1.0 part by weight to about 5.0 parts by weight.
  • the step (B) of agitating the slurry to produce a homogenized slurry may further comprise removing impurities in the agitated and pulverized slurry.
  • the step (D) of producing the oxygen-transferring particles by drying and firing the molded solid particles comprises drying the molded solid particles at about 110 ° C to about 150 ° C for about 2 hours to about 24 hours, Lt; 0 > C to about 1350 < 0 > C at a rate of about 1 [deg.] C / min to about 5 [deg.] C / min and firing for about 2 hours to about 10 hours.
  • Another embodiment of the present invention includes the steps of reacting the above-mentioned oxygen transfer particles with a fuel to reduce the oxygen transfer particles and burning the fuel, and reacting the reduced oxygen transfer particles with oxygen to regenerate the particles To a chemical roofing combustion method.
  • the present invention relates to a raw material composition for producing oxygen-transporting particles which is suitable for a fluidized bed process and which has physical properties including strength and which is improved in abrasion resistance, long-term durability and oxygen delivery performance while lowering a firing temperature as compared with conventional techniques, Oxygen transfer particles with excellent shape, particle size, size distribution, mechanical strength or attrition resistance and excellent wear resistance, long-term durability and oxygen delivery performance suitable for combustion circulating fluidized bed processes And by using such oxygen transfer particles, it is possible to reduce the replenishment amount of the particle filling amount in the chemical roofing combustion process and the abrasion loss occurring during the long-time operation, and to prevent deterioration of the system thermal efficiency due to carbon dioxide capture Which can provide a chemical roofing combustion method.
  • Fig. 1 is a photograph of the shapes of oxygen transfer particles of Examples 1 to 6 of the present invention using an industrial microscope.
  • Fig. 2 is a photograph of the shape of oxygen transfer particles of Comparative Examples 4 and 7 of the present invention, taken using an industrial microscope.
  • FIG. 3 is a flowchart illustrating a method of manufacturing an oxygen-transferring particle according to an embodiment of the present invention.
  • FIG. 4 is a flow chart showing steps (A) and (B) of the oxygen transfer particle production method according to an embodiment of the present invention.
  • FIG. 5 is a flow chart showing the step (C) of the oxygen transfer particle production method according to an embodiment of the present invention.
  • FIG. 6 is a flow chart showing step (D) of the oxygen transfer particle production method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a chemical loop combustion method according to an embodiment of the present invention.
  • One embodiment of the present invention is directed to a process for the preparation of a composition comprising: nickel hydroxide; And cerium oxide or cerium hydroxide.
  • the raw material composition for producing oxygen-transferring particles of the present invention may be prepared as oxygen-transferring particles according to the oxygen-transferring particle production method described below by controlling the composition, formulation and homogenizing degree of the raw materials, Or physical properties such as shape, particle size and particle size distribution suitable for high-speed fluidized bed processes, and which has improved wear resistance, long-term durability and oxygen delivery performance while lowering the firing temperature as compared with the prior art Transfer particles can be produced.
  • the oxygen transfer particles produced by the oxygen transfer particle-forming raw material composition transfer oxygen to a gaseous fuel such as a natural gas, a shale gas or a syngas as well as a solid fuel, Is excellent in fast-regenerating characteristics, and can be used repeatedly in succession. Accordingly, when the oxygen transfer particles are applied to the chemical roofing combustion process (CLC process) of the gaseous fuel and / or the solid fuel, the replenishment amount due to the particle filling amount and the wear loss occurring during the long- There is an effect that the process (CLC process) is simplified and the economical efficiency is improved.
  • CLC process chemical roofing combustion process
  • the raw material composition for producing an oxygen-transferring particle of the present invention contains nickel hydroxide (Ni (OH) 2 ) as an active material raw material.
  • Nickel hydroxide is nickel oxide (NiO) as the water exits during the firing process in the production of oxygen transfer particles.
  • CLC process chemical roofing combustion reaction
  • Ni nickel oxide
  • the raw material composition for producing oxygen-transferring particles of the present invention can be produced by using nickel hydroxide (Ni (OH) 2 ) instead of nickel oxide (NiO) (Mg) content can be increased while maintaining excellent oxygen delivery performance, thereby solving the problem of coagulation between particles which may appear during the oxidation and reduction cycle reaction of chemical roofing combustion.
  • nickel hydroxide (Ni (OH) 2 ) is advantageous for sphering the shape of the oxygen-transferring particles.
  • the nickel hydroxide may be a commercial nickel hydroxide having an average particle size of greater than about 0 to about 5 microns, specifically greater than about 0 and about 5 microns. Within this range, sufficient strength suitable for use in the fluidized bed process can be obtained even at lower firing temperatures, and the degree of dispersion between particles can be made more uniform.
  • the nickel hydroxide may have a purity of greater than about 98%, such as greater than about 99%. Within this range, the strength and the oxygen transmission amount of the oxygen transfer particles can be further improved.
  • the raw material composition for producing oxygen-transferring particles of the present invention may use only nickel hydroxide as a raw material for the active material, or a mixture of nickel hydroxide and another metal oxide may be used.
  • the kind of the metal oxide which can be mixed with the nickel hydroxide (Ni (OH) 2 ) is not particularly limited. Specifically, it includes a nickel-based oxide including nickel oxide (NiO) and the like, a copper-based oxide including copper oxide (CuO, Cu 2 O), iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 ) illustrates the cobalt-based oxides, including iron oxide, manganese oxide (MnO, MnO 2, Mn 2 O 3, Mn 3 O 4) manganese-based oxide and cobalt oxide (CaO, Co 3 O 4), or the like, such as can do.
  • NiO nickel oxide
  • CuO copper oxide
  • FeO, Fe 2 O 3 , Fe 3 O 4 illustrates the cobalt-based oxides, including iron oxide, manganese oxide (MnO, MnO 2, Mn 2 O 3, Mn 3 O 4) manganese-based oxide and cobalt oxide (CaO, Co 3 O 4), or the like, such as can do.
  • the content of nickel hydroxide may be about 55 wt% to about 80 wt%, specifically about 60 wt% to about 80 wt%, of the total raw material composition for producing oxygen-transporting particles.
  • the oxygen transferring particles have improved oxygen transfer capacity and are excellent in physical properties such as wear resistance of the oxygen transferring particles after firing, and are excellent in nickel oxide (NiO) grains in the oxygen transferring particles in the firing process. It is possible to suppress the sintering phenomenon.
  • the raw material composition for producing oxygen-transferring particles of the present invention contains cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) as a raw material of a support.
  • the cerium hydroxide is cerium oxide (CeO 2) as the water exits during firing during the production of the oxygen-transferring particles.
  • the nickel oxide particles as the active ingredient are supported so as to be uniformly distributed throughout the oxygen- It can improve the usability and promote the oxygen transfer.
  • cerium hydroxide is advantageous in sphericalizing the shape of the oxygen-transferring particles.
  • the cerium oxide itself has a function of exchanging oxygen, so that the oxygen transfer amount can be improved and the oxygen transfer particles can be realized in a spherical shape.
  • Cerium oxide (CeO 2) or cerium hydroxide (Ce (OH) 4) is able to provide a sufficient strength required by the fluidized bed process after the firing, by performing the role as the inorganic binder, at the same time the oxygen transfer particles.
  • cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) has a function of supporting a metal oxide, ie, nickel oxide (NiO) An inorganic binder, an oxygen transfer performance promoter, and the like.
  • cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) is a phenomenon in which oxygen transfer particles aggregate with each other during repetition of a redox cycle at high temperature and sintering of the active material (NiO) And the gas before and after the reaction can act as a pathway for facilitating the flow of gas between the outside of the oxygen transfer particle and the active material.
  • the cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) may have an average particle size of from about 0 to about 5 ⁇ m and a purity of about 98% or more when dispersed in a solvent. Within this range, a sufficient strength suitable for use in the fluidized bed process can be obtained, and the degree of dispersion of the active material in the oxygen delivery particles can be made more uniform.
  • the content of cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) may be from about 10 wt.% To about 45 wt.% Of the total oxygen transfer particle-forming raw material composition. Within this range, the effect of increasing the porosity, improving the physical properties, and preventing the sintering of the active material in the oxygen transfer particles can be more excellent. Further, the oxygen transfer amount can be further improved within the above range.
  • cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) is not limited in the form in which it is supplied, and may be, for example, supplied in a solid powder state.
  • the finally produced oxygen transfer particles have properties more suitable for the fluidized bed process and can realize a lower firing temperature and excellent strength.
  • the raw material composition for producing oxygen-transferring particles of the present invention may further comprise titanium oxide (TiO 2 ).
  • TiO 2 titanium oxide
  • the titanium oxide is supported in such a manner that nickel oxide or nickel oxide formed from nickel hydroxide in the firing process is uniformly distributed throughout the oxygen transferring particles together with cerium oxide or cerium hydroxide used as a support raw material used together in the firing process, The sintering phenomenon of the active material is suppressed, and the inorganic binder acts simultaneously.
  • titanium oxide can provide oxygen-transfer particles after firing with sufficient strength required in a fluidized bed process.
  • titanium oxide can lower the firing temperature of the oxygen-transferring particles necessary for realizing a sufficiently high-strength characteristic.
  • the titanium oxide (Ti0 2) has an average particle size of from about greater than 0 to about 5 ⁇ m a commercial nickel hydroxide. Within this range, sufficient strength suitable for use in the fluidized bed process can be obtained even at lower firing temperatures, and the degree of dispersion between particles can be made more uniform.
  • the titanium oxide (TiO 2 ) may have a purity of about 95% or more, for example, about 97% or more. Within this range, the strength and the oxygen transmission amount of the oxygen transfer particles can be further improved.
  • the content of the titanium oxide (TiO 2 ) may be from about 0 wt% to about 20 wt% or from about 0 wt% to about 20 wt% of the total oxygen transfer particle raw composition.
  • the titanium oxide (TiO 2 ) is not limited in the form in which it is supplied, and may be, for example, supplied in a solid powder state.
  • the finally produced oxygen transfer particles have properties more suitable for the fluidized bed process and can realize a lower firing temperature and excellent strength.
  • Another embodiment of the present invention relates to an oxygen-transferring particle formed from the above-described raw material composition for producing oxygen-transferring particles and comprising nickel oxide and cerium oxide.
  • the raw material composition for producing an oxygen-transferring particle may include nickel hydroxide; Cerium oxide or cerium hydroxide; And titanium oxide; specifically, from about 55% to about 80% by weight of nickel hydroxide; From about 10% to about 45% by weight of cerium oxide or cerium hydroxide; And from about 0% to about 20% by weight of titanium oxide.
  • the oxygen transfer particles of the present invention realize excellent oxygen transfer rate, oxygen transfer amount and durability by the composition and structural characteristics of the constituent metals.
  • the amount of charged particles and wear loss required for long-time operation can be reduced.
  • the gaseous fuel can be used not only for the gaseous fuel but also for the chemical roofing combustion of the solid fuel, and can be effectively used for partial oxidation of the fuel, reforming of the fuel, hydrogen production, and the like.
  • the oxygen transferring particles of the present invention are stable and uniformly dispersed in the oxygen transferring particles in an average particle size of 5 ⁇ m or less, for example, 1 ⁇ m or less in the slurry state, It has excellent long-term durability of particles and has spherical shape and particle size, particle size distribution, filling density, strength, low firing temperature and excellent oxygen transfer performance suitable for fluidized bed process.
  • the oxygen transfer particles were subjected to abrasion test for 5 hours at a flow rate of 10.00 l / min (273.15 K, 1 bar) according to ASTM D5757-95 using an abrasion tester, and the abrasion index expressed by the following formula 1 was about 20% .
  • W1 is the unit weight in g before the abrasion test of the sample
  • W2 is the unit weight in g of the fine particles collected for 5 hours after the abrasion test of the sample.
  • the lower limit of the abrasion index is not particularly limited, and the closer to 0% the better. Within this range, when the oxygen transfer particles are used for chemical roofing combustion, the loss of wear loss is further reduced, the amount of oxygen transfer particles to be supplemented during the process operation can be reduced, and the generation rate of fine powder, It is more advantageous to be applied to a circulating fluidized bed process or the like.
  • the oxygen-transferring particles are spherical in shape, non-blowhole, have an average particle size of from about 60 ⁇ ⁇ to about 150 ⁇ ⁇ , a particle size distribution of from about 30 ⁇ ⁇ to about 400 ⁇ ⁇ , From about 1.5 g / mL to about 4.0 g / mL.
  • the loss rate of abrasion is further reduced, the amount of oxygen transfer particles to be supplemented during the process operation can be reduced, and the generation rate of fine powder, Process and the like.
  • the non-blowhole refers to a sphere having a shape other than a shape including a blowhole such as dimple, hollow, and the like.
  • the average particle size and particle size distribution of the oxygen-transferring particles may be specifically from about 60 ⁇ to about 150 ⁇ , more specifically from about 70 ⁇ to about 130 ⁇ , and the particle size distribution is about 30 ⁇ To about 400 microns, and more specifically from about 38 microns to about 350 microns.
  • the oxygen transfer particles may have an oxygen transfer amount of from about 10 wt% to about 25 wt%, specifically from about 11 wt% to about 25 wt%, more specifically from about 12.5 wt% to about 20 wt% .
  • Another embodiment of the present invention relates to a method for producing an oxygen-transferring particle, comprising the steps of: (A) mixing a raw material composition for producing oxygen-transferring particles with a solvent to prepare a slurry for producing oxygen- (B) stirring the slurry to produce a homogenized slurry; (C) spray drying the slurry to form solid particles; And (D) drying and firing the molded solid particles to produce oxygen-transferring particles.
  • the slurry for preparing oxygen transfer particles may be prepared by mixing the above-mentioned raw material composition for producing oxygen transfer particles with a solvent.
  • the raw material composition for producing an oxygen-transferring particle may include nickel hydroxide; Cerium oxide or cerium hydroxide; And titanium oxide; specifically, from about 55% to about 80% by weight of nickel hydroxide; From about 10% to about 45% by weight of cerium oxide or cerium hydroxide; And from about 0% to about 20% by weight of titanium oxide.
  • the slurry for preparing the oxygen-transferring particles in the step (A) of preparing the slurry for producing the oxygen-transferring particles is prepared by mixing the above-mentioned raw material composition for producing oxygen-transferring particles of the present invention into a solvent.
  • the raw material composition for producing oxygen-transferring particles and the solvent may be mixed at a weight ratio of about 15 to 40: about 60 to 85.
  • the amount of the solvent to be evaporated during spray drying and the solid content of the raw material composition for producing oxygen-transferring particles are maintained within an appropriate range, the viscosity is kept within an appropriate range to improve the fluidity, Excellent manufacturing efficiency can be realized.
  • the type of the solvent is not particularly limited, and solvents generally used in this field can be used. Specifically, water can be used as the solvent. In this case, workability and manufacturing efficiency in the homogenization and firing process can be further improved.
  • the slurry may further comprise at least one additive selected from dispersing agents, antifoams and organic binders.
  • the additive may be mixed with the raw material composition for producing an oxygen-transferring particle in a state previously introduced into the above-mentioned solvent.
  • the dispersibility and the ability to mix with the solvent of the raw material composition for producing oxygen-transferring particles can be further improved.
  • the above dispersant can prevent the components contained in the raw material composition for producing oxygen-transferring particles from agglomerating with each other when the slurry is crushed as described below.
  • the efficiency of controlling the particle size of the raw material components constituting the oxygen transfer particles in the homogenization process can be further improved.
  • an anionic surfactant may be, for example, a poly carboxylate ammonium salt or a polycarboxylate amine salt.
  • the anionic surfactant may be, for example, a poly carboxylate ammonium salt or a polycarboxylate amine salt.
  • the function of controlling the charge control, dispersion and agglomeration of the particle surface by the dispersant can be further improved, and the slurry can be highly concentrated.
  • the dispersant can improve the efficiency of manufacturing the shaped body (oxygen transfer particle assembly) produced by spray drying the slurry, that is, the shape of the green body, not the donut shape, the dimple shape, or the blow shape.
  • the content of the dispersant may be about 0.01 parts by weight to about 5 parts by weight based on 100 parts by weight of the raw material composition for producing oxygen-transferring particles. Within this range, the dispersing effect of the oxygen-transferring particles can be more excellent.
  • the defoamer may be used to remove bubbles in the slurry to which the dispersant and organic binder are applied.
  • the antifoaming agent may include at least one of a silicone-based antifoaming agent, a metal soap-based antifoaming agent, an amide-based antifoaming agent, a polyether-based antifoaming agent, a polyester-based antifoaming agent, a polyglycol-based antifoaming agent and an alcohol- based antifoaming agent.
  • a silicone-based antifoaming agent e.g., a silicone-based antifoaming agent, a metal soap-based antifoaming agent, an amide-based antifoaming agent, a polyether-based antifoaming agent, a polyester-based antifoaming agent, a polyglycol-based antifoaming agent and an alcohol- based antifoaming agent.
  • a silicone-based antifoaming agent e.glycol-based antifoaming agent
  • amide-based antifoaming agent e.gly
  • the amount of the defoaming agent may be about 0.01 part by weight to about 1.0 part by weight based on 100 parts by weight of the raw material composition for producing oxygen-transferring particles. Within this range, it is possible to reduce the occurrence of bubbles during the slurry production process, to further improve the efficiency of producing spherical oxygen transfer particles during spray drying, to further reduce the content of residual ash after firing, have. The more specific content of the antifoaming agent can be adjusted depending on the bubble generation amount.
  • the organic binder may be added in the slurry preparation step to impart plasticity and fluidity to the slurry and ultimately provide strength to the oxygen delivery particles assembled by spray drying to form an assembly prior to preliminary drying and firing, The handling of the green body can be facilitated.
  • one kind or more of polyvinyl alcohol, polyethylene glycol, and methyl cellulose may be used as the organic binder.
  • the content of the organic binder may be about 1 part by weight to about 5 parts by weight based on 100 parts by weight of the raw material composition for producing oxygen-transferring particles.
  • the bonding force of the solid particles formed by the spray drying is improved, the characteristics of maintaining the shape of the spherical shape before drying and firing can be improved, and the content of residual ash after firing is reduced, .
  • the additive comprises both a dispersant, a defoamer, and an organic binder, wherein the additive comprises about 0.01 to about 5.0 parts by weight of the dispersant, about 1.0 part by weight of the organic binder, To about 5.0 parts by weight of the defoaming agent, and from about 0.01 to about 1.0 part by weight of the defoaming agent.
  • the additive comprises about 0.01 to about 5.0 parts by weight of the dispersant, about 1.0 part by weight of the organic binder, To about 5.0 parts by weight of the defoaming agent, and from about 0.01 to about 1.0 part by weight of the defoaming agent.
  • the slurry may be a flowable colloidal slurry. In this case, workability and manufacturing efficiency in the homogenization and firing process can be further improved.
  • Step (B) of preparing the homogenized slurry by stirring the slurry may include homogenizing the slurry prepared above by stirring and pulverizing the slurry using a stirrer.
  • the controllability such as the homogenization characteristics of the slurry, the concentration of the slurry, the viscosity, the stability, the fluidity and the strength and density of the particles after spray drying can be further improved.
  • the stirring may be carried out in the course of adding the components contained in the mixture or in the state in which all of the components contained therein are added. At this time, stirring may be performed using, for example, a stirrer.
  • the slurry prepared by mixing the solvent and / or additive with the composition for producing oxygen-transferring particles may be pulverized using a pulverizer after stirring to make the particle size in the slurry to be several microns ( ⁇ m) or less.
  • the pulverized particles are more uniformly dispersed in the slurry and the aggregation of the particles in the slurry is inhibited, so that a homogeneous and stable slurry can be produced.
  • the pulverization process can be repeated several times, and the fluidity of the slurry can be controlled by adding the dispersant and defoamer during each pulverization process.
  • a wet milling method may be used as a milling method.
  • the particle diameter of the raw material composition is several microns or less, a separate pulverization process may be omitted.
  • the slurry may be molded using a spray dryer. Specifically, the homogenized slurry may be transferred to a spray dryer through a pump, and then the transferred slurry composition may be sprayed into a spray dryer to form solid particles.
  • Formation of the slurry may be more advantageous in that when the organic binder is added, the particle shape is kept spherical during spray drying.
  • the type and operating conditions of the spray dryer for forming the oxygen transfer particles in the spray dryer may be those operating conditions commonly used in this field.
  • the oxygen delivery particles can be formed by spraying the fluidized homogeneous slurry in a countercurrent spraying method in which the pressurized nozzle is sprayed in a direction opposite to the flow of the drying air.
  • the inlet temperature of the spray dryer may be maintained at about 260 ° C to about 300 ° C, and the outlet temperature may be maintained at about 90 ° C to about 150 ° C.
  • the efficiency of producing spherical oxygen transfer particles within the above temperature range can be further improved.
  • the step (D) of producing the oxygen-transferring particles by drying and firing the molded solid particles is carried out by drying the molded solid particles at about 110 ° C to about 150 ° C for about 2 hours to about 24 hours, Lt; 0 > C to about 1350 < 0 > C at a rate of 1 [deg.] C / min to about 5 [deg.] C / min and calcining for about 2 hours to about 10 hours.
  • drying When the drying is performed under the above-mentioned temperature and time conditions, it is possible to prevent cracks from occurring in the particles due to expansion of moisture in the particles during firing. At this time, drying can be performed in an air atmosphere.
  • the dried particles are put into a high-temperature firing furnace and the final firing temperature is raised from about 1050 ° C to about 1350 ° C at a rate of about 1 ° C / min to about 5 ° C / min, Lt; / RTI > It is possible to prevent the strength of the particles from becoming weak or the firing cost from being excessively increased within the firing time range.
  • the organic additives disersant, antifoaming agent, and organic binder
  • the firing may be performed by a method of imparting stagnation zones of at least about 30 minutes each at a stagnation temperature of two or more stages until reaching a final firing temperature.
  • the firing can be performed by using a firing furnace such as a muffle furnace, a tubular furnace or a kiln.
  • a firing furnace such as a muffle furnace, a tubular furnace or a kiln.
  • FIG. 3 is a schematic view showing a process (S100) for producing oxygen transfer particles using the oxygen transfer particle raw material composition according to the present invention.
  • the oxygen-transferring particles are prepared by mixing (A) adding a raw material composition for producing oxygen-transferring particles to a solvent and mixing the mixture, (B) preparing a homogenized slurry by pulverizing and dispersing the mixed slurry, (D) a step (C) of spray-drying the homogenized slurry to form solid particles and a step (D) of drying and firing the molded solid particles (green body of oxygen transfer particles) .
  • the preparation of the slurry includes the steps of adding the additive to water (S11), mixing the solid raw material into water (S12), adding the organic additive to the mixture (S21) And a step (S22) of homogenizing and dispersing and pulverizing and dispersing the slurry and preparing a dispersed slurry, and removing the foreign substances contained in the slurry (S23).
  • the step (S30) of spray-drying the slurry to form the oxygen transfer particles (S30) includes transferring the slurry to the spray dryer (S31) and injecting the transferred slurry into the spray dryer Step S32.
  • FIG. 6 is a process drawing showing an exemplary process of drying and firing an oxygen transfer particle green body formed by a spray drying method to form final oxygen transfer particles.
  • the formed oxygen transfer particle green body can be manufactured as a final oxygen transfer particle through a preliminary drying step (S41) and a firing step (S42).
  • Another embodiment of the present invention is a process for the production of a chemical roofing combustion comprising reacting the oxygen transfer particles described above with a fuel to burn the fuel and reduce the oxygen transfer particles and to regenerate the reduced oxygen transfer particles by reacting with oxygen ≪ / RTI >
  • the fuel is not particularly limited and may be a solid phase, a liquid phase, a gas phase, and preferably a gaseous fuel.
  • the gaseous fuel used in the present invention is not particularly limited and includes, for example, one selected from the group consisting of hydrogen, carbon monoxide, alkane, C n H 2n + 2 , natural gas (LNG) and syngas Or more.
  • FIG. 1 A schematic view of the chemical roofing combustion method of the present invention is shown in Fig.
  • the oxygen transfer particles When the oxygen transfer particles are reacted with the fuel, the oxygen transfer particles are reduced while transferring oxygen to the fuel, generating carbon dioxide and water. When the reduced oxygen transfer particles are reacted with oxygen, they are oxidized and regenerated again. In the chemical roofing combustion method of the present invention, the above process is repeated. In addition, the provision of oxygen to the reduced oxygen transfer particles can be effected through contact of air and oxygen transfer particles.
  • the chemical roofing combustion method includes a fuel reactor for reacting oxygen transfer particles with fuel to reduce the oxygen transfer particles and burn the fuel; And an air reactor for oxidizing and reacting the reduced oxygen transfer particles with oxygen.
  • the metal oxide (M x O y ) in the oxygen transfer particles in the fuel reactor reacts with the fuel to become the metal oxide (M x O y-1 ) in a reduced state.
  • the fuel is burned and reduced.
  • the reduced oxygen transfer particle reacts with oxygen in the air by moving to the air reactor and is oxidized again.
  • the oxidized oxygen transfer particles are circulated to the fuel reactor and the above process is repeated.
  • the reactions in the fuel reactor and in the air reactor are shown in Schemes 1 and 2 below.
  • the following reaction scheme 1 is the reaction in the fuel reactor and the reaction scheme 2 is the reaction occurring in the air reactor.
  • M represents a metal
  • X and Y represent the ratio of each atom in the metal oxide molecule.
  • one oxygen atom (O) is transferred from one molecule of the metal oxide, but one or more oxygen atoms (O) may be delivered.
  • the equations 1 and 2 are changed according to the number of delivered oxygen .
  • Ni (OH) 2 nickel hydroxide
  • Ni (OH) 2 nickel hydroxide
  • Ce (OH) 4 cerium hydroxide
  • nickel oxide (NiO) is 70 parts by weight
  • cerium oxide (CeO 2 ) is 20 parts by weight to 30 parts by weight based on 100 parts by weight of a dry raw material sample in which H 2 O is discharged by high-
  • titanium oxide (TiO 2 ) in an amount of more than 0 parts by weight to 10 parts by weight.
  • the oxygen transfer particles of Examples 1 to 6 were produced by the following method.
  • NiO (OH) 2 and CeO 2 (6.95 kg, 2.4 kg) were weighed such that NiO was added in an amount of 70 parts by weight and CeO 2 was added in an amount of 30 parts by weight, and 18 liters of a dispersant Surfactant) and antifoaming agent (metal soap system) were added and the solid raw material composition was mixed with a stirrer.
  • the solid raw material composition was added to water mixed with an organic additive, and the mixture was stirred with a stirrer to prepare a mixed slurry.
  • the total amount of additive is as shown in Table 1.
  • the mixed slurry was first pulverized with a high energy ball mill. In order to proceed smoothly, water and a dispersant were further added after the first grinding. After the second milling, polyethylene glycol was added and the third milling proceeded to produce a stable and homogeneous flowable colloidal slurry. The pulverized slurry was sieved to remove foreign matter and the solid concentration in the final slurry was measured. The amount of total added additive and the solids concentration in the final slurry measured are as shown in Table 1.
  • the prepared colloidal slurry was transferred by a pump to a spray drier and spray dried to form oxygen transfer particles.
  • the thus formed oxygen transfer particle assembly that is, a green body was preliminarily dried in an air atmosphere reflux dryer at 120 ° C for 12 hours and fired at 1100 ° C to 1300 ° C for 5 hours in a firing furnace to prepare oxygen transfer particles .
  • Table 1 shows the contents of raw material materials for producing NiO-based oxygen-transferring particles according to Examples 1 and 2 and the characteristics of the fluid colloidal slurry.
  • Oxygen transferring particles were prepared in the same manner as in Example 1, except that the initial water input amounts in Examples 3 and 5 were 22 liters, and Examples 4 and 5 were 25 litters and the composition was changed as shown in Table 1 below.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Nickel hydroxide (Ni (OH) 2 ) 74.3 70.6 74.3 71.1 74.3 71.8 Cerium oxide (CeO 2) 25.7 - 21.4 - 17.1 - Cerium hydroxide (Ce (OH) 4 ) - 29.4 - 24.8 - 20.0 Titanium oxide (TiO 2) - - 4.3 4.1 8.6 8.2 Total solids content 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Dispers
  • Comparative Examples 1 to 8 were prepared in the same manner as in Example 1 except that the composition was changed as shown in Table 2 below.
  • the average particle size and particle size distribution of the oxygen transfer particles were determined using a MEINZER-II Sheaker and a standard, based on ASTM E-11 of the American Society for Testing Materials (ASTM) Respectively.
  • the packing density of oxygen transfer particles was measured using an AutoTap (Quantachrome) packing density meter according to ASTM D 4164-88.
  • the wear resistance of oxygen transfer particles was measured by an abrasion tester in accordance with ASTM D 5757-95.
  • the wear index (AI) was determined at 10 std L / min (standard volume per minute) over 5 hours as described in the ASTM method, and the wear index represents the ratio of fine powder generated over 5 hours. The lower the wear index (AI), the stronger the particle strength.
  • the wear index (AI) of the fluid catalytic cracking (AkzoFCC) catalyst used in the oil companies measured by the same method was 22.5%.
  • the oxygen delivery performance of the oxygen delivery particles prepared in the examples was evaluated using thermogravimetric analysis (TGA).
  • the reaction gas used in the reduction reaction of oxygen transfer particles in Examples and Comparative Examples was composed of 15 vol% CH 4 mixed with 85 vol% CO 2 and the reaction gas for oxidizing the reduced oxygen transfer particles was air Respectively. 100% nitrogen was supplied between the oxidation reaction and the reduction reaction so that the fuel and air were not in direct contact with each other in the reactor.
  • the amount of oxygen transfer particles used in the experiment was about 30 mg.
  • the flow rate of each reaction gas was 300 ml / min (273.5K, 1 bar), and the oxidation / reduction reaction of the oxygen transfer particles was repeated at least 10 times at 850 ° C.
  • the amount of oxygen transfer was calculated from the redox weight difference.
  • the oxygen transfer amount is an amount of oxygen delivered by the oxygen transfer particles to the fuel.
  • the weight change amount obtained by subtracting the weight of the oxygen transfer particles measured when the reduction reaction of the oxygen transfer particles is terminated based on the weight of the complete oxidation state of the oxygen transfer particles, Divided by the weight of the particle's complete oxidation state and expressed as a weight percentage.
  • Example 1 Oxygen transfer particle shape Average particle size ( ⁇ ⁇ ) Particle size distribution ( ⁇ ) Filling density (g / ml) Wear Index AI (%) Oxygen transfer amount (parts by weight)
  • Example 2 1100 rectangle 73 37 ⁇ 302.5 2.7 21.2 - 1200 67 37 ⁇ 302.5 3.3 16.4 15.9 1300 65 37 ⁇ 302.5 3.6 2.3 15.8
  • Example 3 1000 rectangle - - - 41.0 - 1100 71 37 to 231 3.56 2.1 15.6
  • Example 4 1000 rectangle 95 37 ⁇ 302.5 2.1 23.5 - 1100 84 37 ⁇ 302.5 3.6 1.3 16.3
  • Example 5 1000 rectangle - - - 30.1 - 1100 82 37 to 231 3.6 1.6 15.6
  • Example 6 1000 rectangle 84 37 ⁇ 302.5 2.1 21.5 - 1100 76 37 to
  • the oxygen transfer particles of Examples 1 to 6 were prepared using Ni (OH) 2 as the raw material of the active material, CeO 2 or Ce (OH) 4 as the support raw material, and TiO 2 as the additive raw material. As shown in Table 3, the oxygen-transferring particles prepared from the composition according to the present invention show high strength at a sintering temperature of 1100 to 1300 ° C and a wear index of 5% or less and have properties suitable for a commercial fluidized bed process have.
  • the shape of the oxygen transfer particles is spherical and has an average particle size of 65 to 85 ⁇ ⁇ , a particle size distribution of 37 to 302.5 ⁇ ⁇ , a filling density of about 3.6 g / ml, and a wear index of 5% .
  • FIG. 5 shows an industrial micrograph of oxygen transfer particles according to an embodiment of the present invention.
  • the oxygen-transferring particles produced by the examples have a spherical shape.
  • the oxygen delivery amount of the oxygen delivery particles was as high as 14.9 to 16.3 parts by weight.
  • Oxygen transfer particles of TiO embodiment 2 is added for example, 3 to 6 Examples 1 and compared to 2 exhibits a high strength characteristic of 5% or less abrasion index at 1100 °C temperature 200 °C low firing TiO 2 added to the sintering temperature drop In the case of the present invention.
  • the oxygen transfer particles of Comparative Examples 1 to 3 proposed in the prior art use NiO as the raw material of the active material.
  • the oxygen transfer particles of Comparative Example 1 and Comparative Example 2 prepared using ⁇ -alumina or ⁇ -alumina as a support material exhibited high strength characteristics with a wear index of less than 10% at a firing temperature of 1400 ° C. and had properties suitable for commercial fluidized bed processes .
  • the amount of oxygen delivered was 11.2 parts by weight or less, which is much lower than in the Examples.
  • the oxygen transfer particles of Examples 1 to 6 show an oxygen transmission amount of 30% or more higher than that of the oxygen transfer particles of Comparative Examples 1 to 2 of the prior art.
  • the oxygen delivery particles of Comparative Example 3 prepared using magnesium aluminate as a support material could not obtain high strength properties even at a sintering temperature of 1500 ° C.
  • Comparative Example 4 and Comparative Example 5 in which NiO was used as a raw material for the active material instead of Ni (OH) 2 as the raw material of the active materials of the Examples, the oxygen transfer amount and the wear index were equivalent to those of Example 1 and Example 2 It was found that a sintering temperature of 1400 ° C or more, which is 100 ° C higher than that of Example 1 and Example 2, was required in order to obtain a high strength property with a wear index of 5% or less.
  • Comparative Example 4 was formed in the form of a dimple or a donut having a hollow shape at the center, which was unsuitable for fluidized bed process applications.
  • the amount of particle loss replenishment may increase due to more particle wear loss than spherical shape.
  • the oxygen transfer particles of Comparative Examples 6 to 8 in which TiO 2 was added had the same values of oxygen transfer amount and wear index as those of Examples 3 to 6. However, in order to obtain a high strength characteristic of a wear index of 5% or less, A higher sintering temperature of 1300 DEG C or higher was required.
  • Ni-based oxygen transfer particles manufactured by using NiO and other support materials It is possible to obtain high strength characteristics even at lower firing temperature than Ni-based oxygen transfer particles manufactured by using NiO and other support materials, thereby lowering the manufacturing cost. Also, since the wear resistance is excellent, the wear due to the rapid solid circulation in the fluidized bed process The amount of particle replenishment can be reduced. In addition, since the oxygen transfer performance is excellent, the amount of particles used can be relatively reduced, and the process can be made compact, which is economical.
  • Oxygen transfer particles by the raw material composition and the production method can be a competitive technique because they are easy to mass-produce, reduce the amount of particles used due to particle performance improvement, and reduce the scale of the process, thereby improving the economical efficiency of the chemical roofing combustion process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

One embodiment of the present invention relates to a material composition for preparing oxygen transfer particles, comprising: nickel hydroxide; cerium oxide or cerium hydroxide; and titanium oxide. The material composition for preparing oxygen transfer particles, of the present invention, is prepared as oxygen transfer particles according to a method for preparing oxygen transfer particles, described below, by controlling the compositional state, the formulation of materials, and the degree of homogenization, so as to have physical properties, such as shape, particle size and size distribution, suitable for a fluidized-bed or high velocity fluidized-bed process, and oxygen transfer particles having improved abrasion resistance, long-term durability and oxygen transfer performance can be prepared even while firing temperature is lowered, in comparison with a conventional technique.

Description

산소전달입자 제조용 원료 조성물, 이를 이용하여 제조된 산소전달입자 및 산소전달입자 제조방법Raw material composition for producing oxygen-transferring particles, oxygen-transferring particles prepared by using the same and method for producing oxygen-transferring particles
본 발명은 산소전달입자 제조용 원료 조성물, 이를 이용하여 제조된 산소전달입자 및 산소전달입자 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material composition for producing oxygen-transferring particles, oxygen-transferring particles prepared using the same, and a process for producing oxygen-transferring particles.
대기 중의 이산화탄소(CO2) 농도 증가에 따른 온실효과로 인해 지구의 평균기온이 상승하면서 기후변화의 피해가 지속적으로 나타나고 있다. 화력발전소는 인위적 이산화탄소 배출이 가장 많은 고정배출원이다. 화력발전소에서의 이산화탄소 배출 저감은 이산화탄소 포집 및 저장(Carbon Capture and Storage: CCS)을 통해 달성할 수 있다. 하지만, 종래의 CCS 기술을 발전소에 적용할 경우 큰 폭의 발전효율 감소와 이에 따른 발전원가상승이 뒤따른다. 이에 따라 발전효율 감소를 최소화하고 CO2 포집 비용을 낮추기 위한 새로운 신기술이 요구되고 있다.Climate change is continuing to suffer as the average global temperature rises due to the greenhouse effect resulting from increased CO 2 concentrations in the atmosphere. The thermal power plant is the stationary source with the greatest anthropogenic carbon dioxide emissions. Reduction of carbon dioxide emissions from thermal power plants can be achieved through Carbon Capture and Storage (CCS). However, when the conventional CCS technology is applied to a power plant, the power generation efficiency is greatly reduced and the cost of power generation is increased accordingly. Therefore, new technologies are required to minimize power generation efficiency and reduce CO 2 capture cost.
케미컬루핑연소(Chemical Looping Combustion: CLC) 기술은 발전효율 저하를 줄이면서 CO2를 원천분리할 수 있는 기술로 주목받고 있다. CLC 기술은 공기 대신 금속산화물이 주성분인 고체 입자(산소전달입자)에 포함된 산소와 연료가 반응하여 연소가 일어나므로 배출되는 가스에는 수증기와 CO2만 포함되어 있다. 따라서 수증기를 응축 제거하면 CO2만 남게 되므로 CO2 원천분리가 가능하다. CLC 공정은 산소전달입자에 함유된 산소가 연료로 전달되면서 산소전달입자는 환원(reduction)이 되는 반응이 일어나는 연료반응기와 공기에 포함된 산소를 받아 환원된 산소전달입자가 다시 산화(oxidation)되면서 초기상태로 재생되는 공기반응기가 서로 연결된 조합으로 구성된다. 두 반응기는 유동층 반응기를 사용하며 전체 공정은 순환유동층공정(circulating fluidized-bed process)이 된다. Chemical Looping Combustion (CLC) technology is attracting attention as a technology capable of separating CO 2 from power generation while reducing power generation efficiency. The CLC technology includes only water vapor and CO 2 because the fuel contained in the solid particles (oxygen transfer particles), which is the main component of the metal oxide instead of air, reacts with the fuel and burns. Therefore, CO 2 can be separated from CO 2 by condensing water vapor. In the CLC process, the oxygen contained in the oxygen transfer particles is transferred to the fuel, and the oxygen transfer particles are oxidized again due to the oxygen contained in the air and the fuel reactors in which the reduction reaction occurs. The air reactors regenerated in an initial state are constituted by a combination of the two. Both reactors use a fluidized bed reactor and the whole process becomes a circulating fluidized-bed process.
이러한 CLC 공정에 적용되는 산소전달입자는 유동층 공정특성에 적합한 여러 가지 조건을 만족시켜야 한다. 우선 유동층 공정에 적합한 물성, 즉 충분한 강도, 유동에 적합한 형상과 충진밀도(packing density 또는 tapped density), 평균 입자크기 및 입자크기 분포를 지녀야 한다. 또한, 반응성 측면에서 높은 산소전달량(oxygen transfer capacity)을 지니고 있어 연료의 연소에 필요한 충분한 산소를 연료가 연료반응기를 통과하는 동안 공급할 수 있어야 한다.Oxygen transferring particles used in this CLC process must satisfy various conditions suitable for fluidized bed process characteristics. First of all, suitable properties for the fluidized bed process, namely sufficient strength, suitable shape for flow and packing density or tapped density, average particle size and particle size distribution should be provided. In addition, it has a high oxygen transfer capacity in terms of reactivity, so that it must be able to supply enough oxygen for the fuel to pass through the fuel reactor as it passes through the fuel reactor.
그러나, 종래의 산소전달입자는 대량생산에 부적합한 방법으로 제조되었거나, 형상, 강도, 밀도 등의 물성이 유동층 공정에 적용하기에 부적합하거나 개선이 필요하며, 금속산화물과 지지체 간의 상호작용 세기를 줄이기 위해 안정된 결정구조를 지닌 지지체를 사용함으로써 충분한 강도를 얻기 위한 소성온도 상승으로 산소전달성능이 감소하거나, 반응 중에 입자 간의 응집 현상으로 인해 유동화가 되지 않거나, 금속산화물의 함량이 낮아 산소전달량이 작은 문제점이 있다.However, the conventional oxygen transfer particles are produced by a method unsuitable for mass production, or the physical properties such as shape, strength and density are not suitable for application to the fluidized bed process or need to be improved. In order to reduce the strength of interaction between the metal oxide and the support The use of a support having a stable crystal structure results in a decrease in the oxygen delivery performance due to a rise in firing temperature to obtain sufficient strength or a problem of fluidization due to the agglomeration phenomenon during the reaction or a problem that the content of oxygen is low due to the low content of metal oxides have.
따라서, 유동층 공정에 적합한 물성과 충분한 강도를 지니면서, 산화-환원 싸이클 반응 동안 발생할 수 있는 입자 간의 응집현상을 억제하고, 고온 소성에서도 산소전달성능의 저하가 적으며, 소성온도를 낮출 수 있는 산소전달입자의 개발이 요구되고 있다.Therefore, it is possible to provide a method for producing a metal oxide which has suitable physical properties and sufficient strength for a fluidized bed process, inhibits coagulation between particles that may occur during an oxidation-reduction cycle reaction, reduces oxygen transfer performance even at high temperature firing, Development of transmission particles is required.
본 발명의 하나의 목적은 강도를 비롯한 물리적 특성이 유동층 공정에 적합하고, 종래의 기술에 비해 소성온도를 낮추면서도 내마모도, 장기 내구성 및 산소전달성능이 향상된 산소전달 입자 제조용 원료 조성물을 제공하는 것이다.It is an object of the present invention to provide a raw material composition for producing oxygen-transferring particles which is suitable for fluidized bed processes, including strength, and which has improved abrasion resistance, long-term durability and oxygen delivery performance while lowering the firing temperature as compared with conventional techniques.
본 발명의 다른 하나의 목적은 상기 원료 조성물을 사용하여 균질하게 분산된 안정한 유동성 콜로이드 슬러리 (colloidal slurry)를 제조하고 이를 이용하여 케미컬루핑연소 순환유동층 공정에 적합한 입자 형상(shape), 입자 크기(size), 입자 분포(size distribution), 강도(mechanical strength or attrition resistance)를 지니면서, 종래의 기술에 비해 낮은 소성온도에서도 내마모도와 산소전달성능이 우수한 산소전달입자 및 이의 제조 방법을 제공하는 것이다. It is another object of the present invention to provide a stable colloidal slurry which is homogeneously dispersed by using the above raw material composition and to make it suitable for a chemical roofing combustion circulating fluidized bed process, ), A particle size distribution, mechanical strength or attrition resistance, and is superior in wear resistance and oxygen transmission performance even at a low firing temperature compared with the prior art, and a method for producing the same.
본 발명의 또 다른 하나의 목적은 상기 산소전달입자를 사용하여 연료를 효과적으로 연소시키면서 연소에 의해 발생하는 이산화탄소를 원천적으로 분리하여 포집하고, 케미컬루핑연소 공정에서의 입자 충진량 및 장시간 운전 시 발생하는 마모손실에 따른 보충량을 감소시키면서 이산화탄소 포집에 따른 시스템 열효율 저하를 방지하는 케미컬루핑연소 방법을 제공하는 것이다.It is still another object of the present invention to provide a method and apparatus for efficiently collecting and collecting carbon dioxide generated by combustion while effectively combusting a fuel using the oxygen transfer particles and to reduce the amount of particles charged in a chemical roofing combustion process, And to provide a chemical roofing combustion method that prevents decrease in system thermal efficiency due to carbon dioxide capture while reducing a replenishment amount due to loss.
본 발명의 일 구현예는 니켈 하이드록사이드; 및 세륨 옥사이드 또는 세륨 하이드록사이드; 를 포함하는 산소전달입자 제조용 원료 조성물에 관한 것이다.One embodiment of the present invention is directed to a process for the preparation of a composition comprising: nickel hydroxide; And cerium oxide or cerium hydroxide; To a raw material composition for producing oxygen-transferring particles.
상기 산소전달입자 제조용 원료 조성물은 티타늄 옥사이드를 더 포함할 수 있다.The raw material composition for producing an oxygen-transferring particle may further include titanium oxide.
상기 산소전달입자 제조용 원료 조성물은 니켈 하이드록사이드 약 55 중량% 내지 약 80 중량%; 세륨 옥사이드 또는 세륨 하이드록사이드 약 10 중량% 내지 약 45 중량%; 및 티타늄 옥사이드 약 0 중량% 내지 약 20 중량%;를 포함할 수 있다.Wherein the raw material composition for producing oxygen-transferring particles comprises about 55% to about 80% by weight of nickel hydroxide; From about 10% to about 45% by weight of cerium oxide or cerium hydroxide; And from about 0% to about 20% by weight of titanium oxide.
상기 니켈 하이드록사이드는 평균입자 크기가 약 0 초과 내지 약 5 ㎛이고, 순도가 약 98% 이상일 수 있다.The nickel hydroxide may have an average particle size of greater than about 0 to about 5 microns and a purity of greater than about 98%.
상기 세륨 옥사이드 또는 세륨 하이드록사이드는 평균입자 크기가 약 0 초과 내지 약 5 ㎛이고, 순도가 약 98% 이상일 수 있다.The cerium oxide or cerium hydroxide may have an average particle size of greater than about 0 to about 5 microns and a purity of greater than about 98%.
상기 티타늄 옥사이드는 평균입자 크기가 약 0 초과 내지 약 5 ㎛이고, 순도가 약 95% 이상일 수 있다.The titanium oxide may have an average particle size of greater than about 0 to about 5 microns and a purity of greater than about 95%.
본 발명의 다른 구현예는 전술한 산소전달입자 제조용 원료 조성물로부터 형성되고, 니켈 옥사이드 및 세륨 옥사이드를 포함하는 산소전달입자에 관한 것이다.Another embodiment of the present invention relates to an oxygen-transferring particle formed from the above-described raw material composition for producing oxygen-transferring particles and comprising nickel oxide and cerium oxide.
상기 산소전달입자는 마모시험기를 이용하여 ASTM D5757-95에 따라 유량 10.00 l/min (273.15 K, 1 bar)에서 5 시간 동안 마모시험한 후, 하기 식 1로 표시되는 마모지수가 약 25% 이하일 수 있다.The oxygen transfer particles were subjected to abrasion test for 5 hours at a flow rate of 10.00 l / min (273.15 K, 1 bar) according to ASTM D5757-95 using an abrasion tester, and the abrasion index represented by the following formula 1 was about 25% .
[식 1] [Formula 1]
AI(%) = [(W2)/(W1)]AI (%) = [(W2) / (W1)]
상기 식 1에서, W1는 시료의 마모시험 전 g 단위 무게이고, W2는 시료의 마모시험이 실시된 5 시간 동안 포집된 미세입자의 g 단위 무게이다.In the above Equation 1, W1 is the unit weight in g before the abrasion test of the sample, and W2 is the unit weight in g of the fine particles collected for 5 hours after the abrasion test of the sample.
상기 산소전달입자는 형상이 비-블로홀(non-blowhole)인 구형이고, 평균 입자크기가 약 60 ㎛ 내지 약 150 ㎛이고, 입자크기분포는 약 30 ㎛ 내지 약 400 ㎛ 이며, 충진밀도가 약 1.5 g/mL 내지 약 4.0 g/mL일 수 있다. Wherein the oxygen-transferring particles are spherical in shape, non-blowhole, have an average particle size of from about 60 占 퐉 to about 150 占 퐉, a particle size distribution of from about 30 占 퐉 to about 400 占 퐉, a packing density of from about 1.5 g / mL to about 4.0 g / mL.
상기 산소전달입자는 산소전달량이 전체 산소전달입자의 무게 중 약 10 중량% 내지 약 25 중량%일 수 있다.The oxygen transfer particles may have an oxygen transfer amount of about 10 wt% to about 25 wt% of the total weight of the oxygen transfer particles.
본 발명의 또 다른 구현예는 (A) 전술한 산소전달입자 제조용 원료 조성물을 용매와 혼합하여 산소전달입자 제조용 슬러리를 제조하는 단계; (B) 상기 슬러리를 교반하여 균질화된 슬러리를 제조하는 단계; (C) 상기 슬러리를 분무 건조하여 고체 입자를 성형하는 단계; 및 (D) 상기 성형된 고체 입자를 건조 및 소성시켜 산소전달입자를 제조하는 단계;를 포함하는 산소전달입자의 제조 방법에 관한 것이다.Another embodiment of the present invention is a process for producing an oxygen-transferring particle, comprising the steps of: (A) mixing a raw material composition for producing oxygen-transferring particles with a solvent to prepare a slurry for producing oxygen- (B) stirring the slurry to produce a homogenized slurry; (C) spray drying the slurry to form solid particles; And (D) drying and firing the molded solid particles to produce oxygen-transferring particles.
상기 산소전달입자 제조용 슬러리를 제조하는 단계(A)에서 상기 산소전달입자 제조용 원료 조성물과 상기 용매는 약 15 내지 40 : 약 60 내지 85의 중량비로 혼합되고, 상기 용매는 물일 수 있다. In the step (A) of preparing the slurry for producing an oxygen-transferring particle, the raw material composition for producing oxygen-transferring particles and the solvent are mixed at a weight ratio of about 15 to 40: about 60 to 85, and the solvent may be water.
상기 산소전달입자 제조용 슬러리를 제조하는 단계(A)에서 슬러리는 분산제, 소포제 및 유기결합제 중 1종 이상의 첨가제를 추가로 포함하는 것일 수 있다.In the step (A) of preparing the slurry for producing an oxygen-transferring particle, the slurry may further comprise at least one of a dispersant, a defoaming agent and an organic binder.
상기 분산제는 음이온계 계면활성제, 양이온계 계면활성제, 양쪽성 계면활성제 및 비이온계 계면활성제 중 1종 이상을 포함할 수 있다.The dispersant may include at least one of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
상기 음이온계 계면활성제는 폴리카르복실산염 및 폴리카르복실산아민염 중 1종 이상을 포함할 수 있다.The anionic surfactant may include at least one of a polycarboxylic acid salt and a polycarboxylic acid amine salt.
상기 소포제는 실리콘계 소포제, 금속비누계 소포제, 아마이드계 소포제, 폴리에테르계 소포제, 폴리에스테르계 소포제, 폴리글라이콜계 소포제 및 알코올계 소포제 중 1종 이상을 포함할 수 있다.The antifoaming agent may include at least one of a silicone type antifoaming agent, a metal soap type antifoaming agent, an amide type antifoaming agent, a polyether type antifoaming agent, a polyester type antifoaming agent, a polyglycol type antifoaming agent and an alcohol type antifoaming agent.
상기 유기 결합제는 폴리비닐알코올, 폴리에틸렌글라이콜 및 메틸셀룰로즈 중 1종 이상을 포함할 수 있다.The organic binder may include at least one of polyvinyl alcohol, polyethylene glycol, and methyl cellulose.
상기 첨가제는 분산제, 소포제 및 유기결합제를 모두 포함하고, 상기 첨가제는 산소전달입자 제조용 원료조성물 100 중량부에 대하여 분산제 약 0.01 중량부 내지 약 5.0 중량부, 소포제 약 0.01 중량부 내지 약 1.0 중량부 및 유기결합제 약 1.0 중량부 내지 약 5.0 중량부의 함량으로 첨가될 수 있다.Wherein the additive comprises from about 0.01 to about 5.0 parts by weight of the dispersant, from about 0.01 to about 1.0 part by weight of the defoamer, and from about 0.01 to about 5.0 parts by weight of the defoamer, based on 100 parts by weight of the raw material composition for producing oxygen- The organic binder may be added in an amount of about 1.0 part by weight to about 5.0 parts by weight.
상기 슬러리를 교반하여 균질화된 슬러리를 제조하는 단계(B)는 교반 및 분쇄된 슬러리 중의 이물질을 제거하는 것을 더 포함할 수 있다. The step (B) of agitating the slurry to produce a homogenized slurry may further comprise removing impurities in the agitated and pulverized slurry.
상기 슬러리를 분무 건조하여 고체 입자를 성형하는 단계(C)는 상기 균질화된 슬러리를 분무 건조기에 투입한 후, 입구온도는 약 260℃ 내지 약 300℃, 출구온도는 약 90℃ 내지 약 150℃를 유지하면서 분무하여 고체 입자로 성형하는 것을 포함할 수 있다. (C) spraying and drying the slurry to form solid particles, the homogenized slurry is introduced into a spray drier, the inlet temperature is about 260 ° C to about 300 ° C, and the outlet temperature is about 90 ° C to about 150 ° C And spraying to form solid particles.
상기 성형된 고체 입자를 건조 및 소성시켜 산소전달입자를 제조하는 단계(D)는 성형된 고체 입자를 약 110℃ 내지 약 150℃로 약 2 시간 내지 약 24 시간 동안 건조하고, 고온 소성로에 투입하여 약 1℃/min 내지 약 5℃/min 의 속도로 약 1050℃ 내지 약 1350℃으로 승온하여 약 2 시간 내지 약 10 시간 동안 소성하는 것을 포함할 수 있다.The step (D) of producing the oxygen-transferring particles by drying and firing the molded solid particles comprises drying the molded solid particles at about 110 ° C to about 150 ° C for about 2 hours to about 24 hours, Lt; 0 > C to about 1350 < 0 > C at a rate of about 1 [deg.] C / min to about 5 [deg.] C / min and firing for about 2 hours to about 10 hours.
본 발명의 또 다른 구현예는 전술한 산소전달입자를 연료와 반응시켜 상기 산소전달입자를 환원시키고 연료를 연소시키는 단계, 및 상기 환원된 산소전달입자를 산소와 반응시켜 입자를 재생하는 단계를 포함하는 케미컬루핑연소 방법에 관한 것이다.Another embodiment of the present invention includes the steps of reacting the above-mentioned oxygen transfer particles with a fuel to reduce the oxygen transfer particles and burning the fuel, and reacting the reduced oxygen transfer particles with oxygen to regenerate the particles To a chemical roofing combustion method.
본 발명은 강도를 비롯한 물리적 특성이 유동층 공정에 적합하고, 종래의 기술에 비해 소성온도를 낮추면서도 내마모도, 장기 내구성 및 산소전달성능이 향상된 산소전달 입자 제조용 원료 조성물 및 상기 원료 조성물을 사용하여 케미컬루핑연소 순환유동층 공정에 적합한 입자 형상(shape), 입자 크기(size), 입자 분포(size distribution), 강도(mechanical strength or attrition resistance) 지니면서, 우수한 내마모도, 장기 내구성 및 산소전달성능이 우수한 산소전달입자 및 이의 제조 방법을 제공할 수 있으며, 이러한 산소전달입자를 사용하여 케미컬루핑연소 공정에서의 입자 충진량 및 장시간 운전 시 발생하는 마모손실에 따른 보충량을 감소시키면서 이산화탄소 포집에 따른 시스템 열효율 저하를 방지할 수 있는 케미컬루핑 연소 방법을 제공할 수 있다.The present invention relates to a raw material composition for producing oxygen-transporting particles which is suitable for a fluidized bed process and which has physical properties including strength and which is improved in abrasion resistance, long-term durability and oxygen delivery performance while lowering a firing temperature as compared with conventional techniques, Oxygen transfer particles with excellent shape, particle size, size distribution, mechanical strength or attrition resistance and excellent wear resistance, long-term durability and oxygen delivery performance suitable for combustion circulating fluidized bed processes And by using such oxygen transfer particles, it is possible to reduce the replenishment amount of the particle filling amount in the chemical roofing combustion process and the abrasion loss occurring during the long-time operation, and to prevent deterioration of the system thermal efficiency due to carbon dioxide capture Which can provide a chemical roofing combustion method.
도 1은 본 발명 실시예 1 내지 6의 산소전달입자의 형상을 산업용 현미경을 이용하여 촬영한 사진이다.Fig. 1 is a photograph of the shapes of oxygen transfer particles of Examples 1 to 6 of the present invention using an industrial microscope. Fig.
도 2는 본 발명 비교예 4 및 7의 산소전달입자의 형상을 산업용 현미경을 이용하여 촬영한 사진이다.Fig. 2 is a photograph of the shape of oxygen transfer particles of Comparative Examples 4 and 7 of the present invention, taken using an industrial microscope.
도 3은 본 발명의 일 실시예에 따른 산소전달입자 제조방법을 나타낸 순서도이다.FIG. 3 is a flowchart illustrating a method of manufacturing an oxygen-transferring particle according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 산소전달입자 제조방법 중 (A) 및 (B) 단계를 나타낸 순서도이다.4 is a flow chart showing steps (A) and (B) of the oxygen transfer particle production method according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 산소전달입자 제조방법 중 (C) 단계를 나타낸 순서도이다.FIG. 5 is a flow chart showing the step (C) of the oxygen transfer particle production method according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 산소전달입자 제조방법 중 (D) 단계를 나타낸 순서도이다.FIG. 6 is a flow chart showing step (D) of the oxygen transfer particle production method according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 케미컬루프 연소 방법의 모식도이다.7 is a schematic diagram of a chemical loop combustion method according to an embodiment of the present invention.
<산소전달입자 제조용 원료 조성물>&Lt; Raw material composition for producing oxygen-transferring particles >
본 발명의 일 구현예는 니켈 하이드록사이드; 및 세륨 옥사이드 또는 세륨 하이드록사이드;를 포함하는 산소전달입자 제조용 원료 조성물에 관한 것이다.One embodiment of the present invention is directed to a process for the preparation of a composition comprising: nickel hydroxide; And cerium oxide or cerium hydroxide.
이러한 본 발명의 산소전달입자 제조용 원료 조성물은 상기 조성(composition), 원료의 배합비(formulation) 및 균질화(homogenizing) 정도를 조절하여 후술하는 산소전달입자 제조 방법에 따라 산소전달입자로 제조된 후, 유동층 또는 고속 유동층 공정에 적합한 형상(shape), 입자 크기(size) 및 입자 분포(sizedistribution) 등의 물리적 특성을 지니고, 종래의 기술에 비해 소성온도를 낮추면서도 내마모도, 장기 내구성 및 산소전달성능이 향상된 산소전달입자를 제조할 수 있다.The raw material composition for producing oxygen-transferring particles of the present invention may be prepared as oxygen-transferring particles according to the oxygen-transferring particle production method described below by controlling the composition, formulation and homogenizing degree of the raw materials, Or physical properties such as shape, particle size and particle size distribution suitable for high-speed fluidized bed processes, and which has improved wear resistance, long-term durability and oxygen delivery performance while lowering the firing temperature as compared with the prior art Transfer particles can be produced.
또한, 상기 산소전달입자 제조용 원료 조성물에 의해 제조된 산소전달입자는 고체 연료뿐만 아니라 천연가스, shale 가스, 합성가스와 같은 가스 연료에 산소를 전달하고, 다시 공기와 같은 산소를 함유한 가스로부터 산소를 얻어 빠르게 재생되는 특성이 우수하며, 연속적으로 반복하여 사용할 수 있다. 이에 따라, 상기 산소전달입자는 가스 연료 및/또는 고체 연료의 케미컬루핑연소 공정(CLC 공정)에 적용될 경우, 입자 충진량 및 장시간 운전 시 발생하는 마모손실에 따른 보충량을 감소시킬 수 있어 케미컬루핑연소 공정(CLC 공정)을 단순화(compact)하면서도 경제성을 향상시키는 효과가 있다.In addition, the oxygen transfer particles produced by the oxygen transfer particle-forming raw material composition transfer oxygen to a gaseous fuel such as a natural gas, a shale gas or a syngas as well as a solid fuel, Is excellent in fast-regenerating characteristics, and can be used repeatedly in succession. Accordingly, when the oxygen transfer particles are applied to the chemical roofing combustion process (CLC process) of the gaseous fuel and / or the solid fuel, the replenishment amount due to the particle filling amount and the wear loss occurring during the long- There is an effect that the process (CLC process) is simplified and the economical efficiency is improved.
본 발명의 산소전달입자 제조용 원료 조성물은 활성물질 원료로 니켈 하이드록사이드(Ni(OH)2)를 포함한다. 니켈 하이드록사이드는 산소전달입자의 제조 시 소성과정에서 물이 빠져나오면서 니켈 옥사이드(NiO)가 된다. 이와 같이 니켈 하이드록사이드로부터 형성된 니켈 옥사이드는 케미컬루핑연소반응(CLC 공정) 등에 적용될 경우, 연료에 산소를 전달하여 연료를 효율적으로 연소시키면서 자신은 니켈(Ni)로 환원되고, 공기로부터 산소를 다시 받아 재생되는 역할을 한다.The raw material composition for producing an oxygen-transferring particle of the present invention contains nickel hydroxide (Ni (OH) 2 ) as an active material raw material. Nickel hydroxide is nickel oxide (NiO) as the water exits during the firing process in the production of oxygen transfer particles. When nickel oxide formed from nickel hydroxide is applied to a chemical roofing combustion reaction (CLC process) or the like, it is reduced to nickel (Ni) while efficiently burning the fuel by transferring oxygen to the fuel, It plays the role of receiving and playing.
또한, 본 발명의 산소전달입자 제조용 원료 조성물은 니켈 옥사이드(NiO) 대신 니켈 하이드록사이드(Ni(OH)2)를 활성물질 원료로 사용함으로써, 니켈 옥사이드(NiO)를 사용할 때보다 더 낮은 소성 온도에서도 유동층 공정에 사용하기 적합한 충분한 강도를 얻을 수 있고, 우수한 산소전달성능을 유지하면서도 마그네슘(Mg) 함량을 높일 수 있어 케미컬루핑연소의 산화 및 환원 싸이클 반응 중에 나타날 수 있는 입자 간의 응집 현상 문제를 해결하는 효과가 있다. 또한, 니켈 하이드록사이드(Ni(OH)2)는 산소전달입자의 형상을 구형화하기에 유리하다.Further, the raw material composition for producing oxygen-transferring particles of the present invention can be produced by using nickel hydroxide (Ni (OH) 2 ) instead of nickel oxide (NiO) (Mg) content can be increased while maintaining excellent oxygen delivery performance, thereby solving the problem of coagulation between particles which may appear during the oxidation and reduction cycle reaction of chemical roofing combustion. . In addition, nickel hydroxide (Ni (OH) 2 ) is advantageous for sphering the shape of the oxygen-transferring particles.
상기 니켈 하이드록사이드는 평균입자크기가 약 0 초과 내지 약 5 ㎛, 구체적으로 약 0 초과 내지 약 5 ㎛인 상업용 수산화니켈일 수 있다. 상기 범위 내에서, 더 낮은 소성온도에서도 유동층 공정에 사용하기 적합한 충분한 강도를 얻을 수 있고, 입자 간의 분산 정도를 더욱 균일하게 할 수 있다. The nickel hydroxide may be a commercial nickel hydroxide having an average particle size of greater than about 0 to about 5 microns, specifically greater than about 0 and about 5 microns. Within this range, sufficient strength suitable for use in the fluidized bed process can be obtained even at lower firing temperatures, and the degree of dispersion between particles can be made more uniform.
상기 니켈 하이드록사이드는 약 98% 이상의 순도, 예를 들면, 약 99% 이상의 순도를 가질 수 있다. 상기 범위 내에서, 산소전달입자의 강도 및 산소전달량이 더욱 향상될 수 있다.The nickel hydroxide may have a purity of greater than about 98%, such as greater than about 99%. Within this range, the strength and the oxygen transmission amount of the oxygen transfer particles can be further improved.
본 발명의 산소전달입자 제조용 원료 조성물은 활성물질 원료로 니켈 하이드록사이드만을 단독으로 사용할 수도 있고, 이외에 니켈 하이드록사이드와 다른 금속 산화물을 일부 혼합하여 사용할 수도 있다. The raw material composition for producing oxygen-transferring particles of the present invention may use only nickel hydroxide as a raw material for the active material, or a mixture of nickel hydroxide and another metal oxide may be used.
상기 니켈 하이드록사이드(Ni(OH)2)와 혼합하여 사용가능한 금속산화물의 종류는 특별히 제한되지 않는다. 구체적으로는 니켈 옥사이드(NiO) 등을 포함하는 니켈계 산화물, 산화구리(CuO, Cu2O) 등을 포함하는 구리계 산화물, 산화철(FeO, Fe2O3, Fe3O4)등을 포함하는 철계 산화물, 산화망간(MnO, MnO2, Mn2O3, Mn3O4)등을 포함하는 망간계 산화물 및 산화코발트(CaO, Co3O4)등을 포함하는 코발트계 산화물 등을 예시할 수 있다.The kind of the metal oxide which can be mixed with the nickel hydroxide (Ni (OH) 2 ) is not particularly limited. Specifically, it includes a nickel-based oxide including nickel oxide (NiO) and the like, a copper-based oxide including copper oxide (CuO, Cu 2 O), iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 ) illustrates the cobalt-based oxides, including iron oxide, manganese oxide (MnO, MnO 2, Mn 2 O 3, Mn 3 O 4) manganese-based oxide and cobalt oxide (CaO, Co 3 O 4), or the like, such as can do.
상기 니켈 하이드록사이드의 함량은 전체 산소전달입자 제조용 원료 조성물 중 약 55 중량% 내지 약 80 중량%, 구체적으로 약 60 중량% 내지 약 80 중량%일 수 있다. 상기 범위 내에서, 산소전달입자는 산소전달량(oxygen transfer capacity)이 향상되고, 소성 후 산소전달입자의 내마모도 등의 물성이 우수하고, 소성 과정에서 산소전달입자 내 니켈 옥사이드(NiO) 알갱이(grain) 간의 소결현상을 억제할 수 있다.The content of nickel hydroxide may be about 55 wt% to about 80 wt%, specifically about 60 wt% to about 80 wt%, of the total raw material composition for producing oxygen-transporting particles. Within the above range, the oxygen transferring particles have improved oxygen transfer capacity and are excellent in physical properties such as wear resistance of the oxygen transferring particles after firing, and are excellent in nickel oxide (NiO) grains in the oxygen transferring particles in the firing process. It is possible to suppress the sintering phenomenon.
본 발명의 산소전달입자 제조용 원료 조성물은 지지체 원료로 세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4)를 포함한다. 세륨 하이드록사이드는 산소전달입자의 제조 시 소성과정에서 물이 빠져나오면서 세륨 옥사이드(CeO)가 되고, 이 과정에서 활성성분인 니켈 옥사이드 입자를 산소전달입자 전체에 균일하게 분포되도록 지지하여 활성성분의 활용성을 높이고, 산소전달을 촉진시킬 수 있다. 또한, 세륨 하이드록사이드는 산소전달입자의 형상을 구형화하기에 유리하다. 뿐만아니라, 세륨 옥사이드 스스로도 산소를 주고받는 기능을 가지고 있어 산소전달량을 향상시키고, 산소전달입자가 구형의 형상으로 구현되도록 할 수 있다. The raw material composition for producing oxygen-transferring particles of the present invention contains cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) as a raw material of a support. The cerium hydroxide is cerium oxide (CeO 2) as the water exits during firing during the production of the oxygen-transferring particles. In this process, the nickel oxide particles as the active ingredient are supported so as to be uniformly distributed throughout the oxygen- It can improve the usability and promote the oxygen transfer. In addition, cerium hydroxide is advantageous in sphericalizing the shape of the oxygen-transferring particles. In addition, the cerium oxide itself has a function of exchanging oxygen, so that the oxygen transfer amount can be improved and the oxygen transfer particles can be realized in a spherical shape.
세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4)는 무기결합제로서의 역할도 동시에 수행함으로써 소성 후 산소전달입자에 유동층 공정에서 요구하는 충분한 강도를 제공해 줄 수 있다.Cerium oxide (CeO 2) or cerium hydroxide (Ce (OH) 4) is able to provide a sufficient strength required by the fluidized bed process after the firing, by performing the role as the inorganic binder, at the same time the oxygen transfer particles.
즉, 세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4)는 활성물질인 금속산화물, 즉 니켈 옥사이드(NiO)를 지지하는 기능과 소성시 서로 결합하면서 산소전달입자에 강도를 주는 무기결합제, 산소전달성능촉진제 등의 역할을 동시에 할 수 있다.That is, cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) has a function of supporting a metal oxide, ie, nickel oxide (NiO) An inorganic binder, an oxygen transfer performance promoter, and the like.
또한, 세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4)는 고온에서 산소전달입자가 산화 환원 사이클을 반복하는 동안 서로 응집하는 현상과 활성물질(NiO) 알갱이(grain)의 소결현상을 억제하며, 반응 전후의 가스가 산소전달입자 외부와 활성물질 사이에서 입출입(확산)이 원활하도록 통로를 만들어주는 역할을 할 수 있다. In addition, cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) is a phenomenon in which oxygen transfer particles aggregate with each other during repetition of a redox cycle at high temperature and sintering of the active material (NiO) And the gas before and after the reaction can act as a pathway for facilitating the flow of gas between the outside of the oxygen transfer particle and the active material.
상기 세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4)는 용매에 분산된 상태에서의 평균입자 크기가 약 0 초과 내지 약 5 ㎛이고, 순도가 약 98% 이상일 수 있다. 상기 범위 내에서, 유동층 공정에 사용하기 적합한 충분한 강도를 얻을 수 있고, 산소전달입자 내 활성물질의 분산 정도를 더욱 균일하게 할 수 있다.The cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) may have an average particle size of from about 0 to about 5 μm and a purity of about 98% or more when dispersed in a solvent. Within this range, a sufficient strength suitable for use in the fluidized bed process can be obtained, and the degree of dispersion of the active material in the oxygen delivery particles can be made more uniform.
상기 세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4)의 함량은 전체 산소전달입자 제조용 원료 조성물 중 약 10 중량% 내지 약 45 중량%일 수 있다. 상기 범위 내에서, 기공도를 증가시키고, 물성을 향상시키며, 산소전달입자 내 활성물질의 소결현상을 방지하는 효과가 더욱 우수할 수 있다. 또한, 상기 범위 내에서 산소전달량을 더욱 향상시킬 수 있다.The content of cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) may be from about 10 wt.% To about 45 wt.% Of the total oxygen transfer particle-forming raw material composition. Within this range, the effect of increasing the porosity, improving the physical properties, and preventing the sintering of the active material in the oxygen transfer particles can be more excellent. Further, the oxygen transfer amount can be further improved within the above range.
상기 세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4)는 공급되는 형태에 제한을 받지 않으며, 예를 들면, 고체 분말상태로 공급되는 것일 수 있다. 이러한 경우, 최종적으로 제조되는 산소전달입자가 유동층 공정에 더욱 적합한 특성을 가지면서, 더욱 낮은 소성온도와 우수한 강도를 구현할 수 있다.The cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) is not limited in the form in which it is supplied, and may be, for example, supplied in a solid powder state. In this case, the finally produced oxygen transfer particles have properties more suitable for the fluidized bed process and can realize a lower firing temperature and excellent strength.
본 발명의 산소전달입자 제조용 원료 조성물은 티타늄 옥사이드(Ti02)를 더 포함할 수 있다. 상기 티타늄 옥사이드는 소성 과정에서 함께 사용된 지지체 원료인 세륨 옥사이드 또는 세륨 하이드록사이드와 함께, 니켈 옥사이드 또는 소성 과정에서 니켈 하이드록사이드로부터 형성된 니켈 옥사이드가 산소전달입자 전체에 고루 분포되도록 지지하여 활성성분의 활용성을 높이고, 활성물질의 소결현상 발생을 억제하며, 무기결합제로서의 역할도 동시에 수행한다. 이를 통해, 티타늄 옥사이드는 소성 후 산소전달입자에 유동층 공정에서 요구하는 충분한 강도를 제공해 줄 수 있다. 특히, 티타늄 옥사이드는 충분한 정도의 고강도 특성을 구현하기 위해 필요한 산소전달입자의 소성 온도를 낮출 수 있다.The raw material composition for producing oxygen-transferring particles of the present invention may further comprise titanium oxide (TiO 2 ). The titanium oxide is supported in such a manner that nickel oxide or nickel oxide formed from nickel hydroxide in the firing process is uniformly distributed throughout the oxygen transferring particles together with cerium oxide or cerium hydroxide used as a support raw material used together in the firing process, The sintering phenomenon of the active material is suppressed, and the inorganic binder acts simultaneously. Through this, titanium oxide can provide oxygen-transfer particles after firing with sufficient strength required in a fluidized bed process. In particular, titanium oxide can lower the firing temperature of the oxygen-transferring particles necessary for realizing a sufficiently high-strength characteristic.
상기 티타늄 옥사이드(Ti02)는 평균입자크기가 약 0 초과 내지 약 5 ㎛인 상업용 수산화니켈일 수 있다. 상기 범위 내에서, 더 낮은 소성온도에서도 유동층 공정에 사용하기 적합한 충분한 강도를 얻을 수 있고, 입자 간의 분산 정도를 더욱 균일하게 할 수 있다. The titanium oxide (Ti0 2) has an average particle size of from about greater than 0 to about 5 ㎛ a commercial nickel hydroxide. Within this range, sufficient strength suitable for use in the fluidized bed process can be obtained even at lower firing temperatures, and the degree of dispersion between particles can be made more uniform.
상기 티타늄 옥사이드(Ti02)는 약 95% 이상의 순도, 예를 들면, 약 97% 이상의 순도를 가질 수 있다. 상기 범위 내에서, 산소전달입자의 강도 및 산소전달량이 더욱 향상될 수 있다.The titanium oxide (TiO 2 ) may have a purity of about 95% or more, for example, about 97% or more. Within this range, the strength and the oxygen transmission amount of the oxygen transfer particles can be further improved.
상기 티타늄 옥사이드(Ti02)의 함량은 전체 산소전달입자 원료 조성물 중 약 0 중량% 내지 약 20 중량% 또는 약 0 중량% 초과 내지 약 20 중량% 이하일 수 있다. 상기 범위 내에서, 산소전달입는 충분한 강도를 구현하면서도, 소성온도를 낮출 수 있고, 활성물질 간의 소결현상 발생을 억제하여, 산소전달양, 산소전달속도 및 공기로부터 산소를 얻어 입자가 재생되는 산화반응에서 초기상태로 재생되는 것과 같은 산소전달성능이 더욱 향상될 수 있다.The content of the titanium oxide (TiO 2 ) may be from about 0 wt% to about 20 wt% or from about 0 wt% to about 20 wt% of the total oxygen transfer particle raw composition. Within the above range, it is possible to lower the sintering temperature while suppressing the sintering phenomenon between the active materials, thereby improving the oxygen transfer rate, the oxygen transfer rate, and the oxidation reaction It is possible to further improve the oxygen delivery performance as it is regenerated in the initial state.
상기 티타늄 옥사이드(Ti02)는 공급되는 형태에 제한을 받지 않으며, 예를 들면, 고체 분말상태로 공급되는 것일 수 있다. 이러한 경우, 최종적으로 제조되는 산소전달입자가 유동층 공정에 더욱 적합한 특성을 가지면서, 더욱 낮은 소성온도와 우수한 강도를 구현할 수 있다.The titanium oxide (TiO 2 ) is not limited in the form in which it is supplied, and may be, for example, supplied in a solid powder state. In this case, the finally produced oxygen transfer particles have properties more suitable for the fluidized bed process and can realize a lower firing temperature and excellent strength.
<산소전달입자><Oxygen Transmission Particle>
본 발명의 다른 구현예는 전술한 산소전달입자 제조용 원료 조성물로부터 형성되고, 니켈 옥사이드 및 세륨 옥사이드를 포함하는 산소전달입자에 관한 것이다.Another embodiment of the present invention relates to an oxygen-transferring particle formed from the above-described raw material composition for producing oxygen-transferring particles and comprising nickel oxide and cerium oxide.
상기 산소전달입자 제조용 원료 조성물은 니켈 하이드록사이드; 세륨 옥사이드 또는 세륨 하이드록사이드; 및 티타늄 옥사이드;를 포함하며, 구체적으로 니켈 하이드록사이드 약 55 중량% 내지 약 80 중량%; 세륨 옥사이드 또는 세륨 하이드록사이드 약 10 중량% 내지 약 45 중량%; 및 티타늄 옥사이드 약 0 중량% 초과 내지 약 20 중량% 이하;를 포함할 수 있다.The raw material composition for producing an oxygen-transferring particle may include nickel hydroxide; Cerium oxide or cerium hydroxide; And titanium oxide; specifically, from about 55% to about 80% by weight of nickel hydroxide; From about 10% to about 45% by weight of cerium oxide or cerium hydroxide; And from about 0% to about 20% by weight of titanium oxide.
이를 통해, 본 발명의 산소전달입자는 성분 금속의 조성 및 구조적 특성에 의해 우수한 산소전달속도, 산소전달량 및 내구성을 구현한다. 또한, 이러한 산소전달입자를 케미컬루핑연소 공정 및 장치에 적용하는 경우, 장시간 운전 시에 요구되는 입자충진량 및 마모손실을 저감할 수 있다. Accordingly, the oxygen transfer particles of the present invention realize excellent oxygen transfer rate, oxygen transfer amount and durability by the composition and structural characteristics of the constituent metals. In addition, when such oxygen transfer particles are applied to the chemical roofing combustion process and apparatus, the amount of charged particles and wear loss required for long-time operation can be reduced.
또한, 가스연료뿐만 아니라 고체 연료의 케미컬루핑연소에 사용하는 것이 가능하며, 연료의 부분 산화 (partially oxidation), 연료의 개질(reforming), 수소생산 등에서도 유효하게 사용될 수 있다.In addition, it can be used not only for the gaseous fuel but also for the chemical roofing combustion of the solid fuel, and can be effectively used for partial oxidation of the fuel, reforming of the fuel, hydrogen production, and the like.
또한, 본 발명의 산소전달입자는 슬러리 상태에서 평균 5㎛ 이하, 예를 들면 평균 1㎛ 이하의 크기로 분쇄된 산소전달입자 고체 원료들이 안정하고 고르게 분산되어 있어, 분무 건조 후 소성된 최종 산소전달입자의 장기적인 내구성이 우수하며, 유동층 공정에 적합한 구형의 형상과 입자크기, 입자크기분포, 충진 밀도, 강도, 낮은 소성온도 및 우수한 산소전달성능을 갖는다.In addition, the oxygen transferring particles of the present invention are stable and uniformly dispersed in the oxygen transferring particles in an average particle size of 5 μm or less, for example, 1 μm or less in the slurry state, It has excellent long-term durability of particles and has spherical shape and particle size, particle size distribution, filling density, strength, low firing temperature and excellent oxygen transfer performance suitable for fluidized bed process.
이러한, 고성능의 산소전달입자를 케미컬루핑연소 공정(CLC 공정)에 적용할 경우, 종래의 연소방식에 비해 이산화탄소 포집에 따른 시스템 열효율 저하를 줄이면서 이산화탄소를 원천적으로 분리하여 포집할 수 있다.When such high-performance oxygen transfer particles are applied to a chemical roofing combustion process (CLC process), carbon dioxide can be originally separated and collected while reducing system thermal efficiency deterioration due to carbon dioxide capture compared to the conventional combustion system.
상기 산소전달입자는 마모시험기를 이용하여 ASTM D5757-95에 따라 유량 10.00 l/min (273.15 K, 1 bar)에서 5 시간 동안 마모시험한 후, 하기 식 1로 표시되는 마모지수가 약 20% 이하일 수 있다.The oxygen transfer particles were subjected to abrasion test for 5 hours at a flow rate of 10.00 l / min (273.15 K, 1 bar) according to ASTM D5757-95 using an abrasion tester, and the abrasion index expressed by the following formula 1 was about 20% .
[식 1] [Formula 1]
AI(%) = [(W2)/(W1)]AI (%) = [(W2) / (W1)]
상기 식 1에서, W1는 시료의 마모시험 전 g 단위 무게이고, W2는 시료의 마모시험이 실시된 5 시간 동안 포집된 미세입자의 g 단위 무게이다.In the above Equation 1, W1 is the unit weight in g before the abrasion test of the sample, and W2 is the unit weight in g of the fine particles collected for 5 hours after the abrasion test of the sample.
상기 마모지수의 하한은 특별히 제한되지 않으며, 약 0%에 근접할수록 좋다. 상기 범위 내에서, 산소전달입자를 케미컬루핑연소에 이용하는 경우 마모손실율이 더욱 저감되어, 공정 운전 중 보충해주어야 하는 산소전달입자의 양을 절감할 수 있으며, 공정 중 발생하는 미세분말 등의 생성률을 낮추어 순환유동층 공정 등에 적용하기에 더욱 유리한 특성을 갖는다.The lower limit of the abrasion index is not particularly limited, and the closer to 0% the better. Within this range, when the oxygen transfer particles are used for chemical roofing combustion, the loss of wear loss is further reduced, the amount of oxygen transfer particles to be supplemented during the process operation can be reduced, and the generation rate of fine powder, It is more advantageous to be applied to a circulating fluidized bed process or the like.
상기 산소전달입자는 형상이 비-블로홀(non-blowhole)인 구형이고, 평균입자크기가 약 60 ㎛ 내지 약 150 ㎛이고, 입자크기분포는 약 30 ㎛ 내지 약 약 400 ㎛ 이며, 충진밀도가 약 1.5 g/mL 내지 약 4.0 g/mL일 수 있다. 이러한 경우, 산소전달입자를 케미컬루핑연소에 이용하는 경우 마모손실율이 더욱 저감되어, 공정 운전 중 보충해주어야 하는 산소전달입자의 양을 절감할 수 있으며, 공정 중 발생하는 미세분말 등의 생성률을 낮추어 순환유동층 공정 등에 적용하기에 더욱 유리한 특성을 갖는다.Wherein the oxygen-transferring particles are spherical in shape, non-blowhole, have an average particle size of from about 60 占 퐉 to about 150 占 퐉, a particle size distribution of from about 30 占 퐉 to about 400 占 퐉, From about 1.5 g / mL to about 4.0 g / mL. In this case, when the oxygen transfer particles are used for chemical roofing combustion, the loss rate of abrasion is further reduced, the amount of oxygen transfer particles to be supplemented during the process operation can be reduced, and the generation rate of fine powder, Process and the like.
상기 비-블로홀(non-blowhole)은 딤플형, 중공형 등 블로홀을 포함하는 형상을 제외한 형태의 구형을 의미한다.The non-blowhole refers to a sphere having a shape other than a shape including a blowhole such as dimple, hollow, and the like.
상기 산소전달입자의 평균입자크기 및 입자크기분포는, 구체적으로 입자의 평균 크기는 약 60㎛ 내지 약 150㎛, 보다 구체적으로 약 70㎛ 내지 약 130㎛일 수 있으며, 입자 크기 분포는 약 30㎛ 내지 약 400㎛, 보다 구체적으로 약 38㎛ 내지 약 350㎛ 일 수 있다.The average particle size and particle size distribution of the oxygen-transferring particles may be specifically from about 60 탆 to about 150 탆, more specifically from about 70 탆 to about 130 탆, and the particle size distribution is about 30 탆 To about 400 microns, and more specifically from about 38 microns to about 350 microns.
상기 산소전달입자는 산소전달량이 전체 산소전달입자의 무게 중 약 10 중량% 내지 약 25 중량%, 구체적으로 약 11 중량% 내지 약 25 중량%, 더욱 구체적으로 약 12.5 중량% 내지 약 20 중량%일 수 있다.The oxygen transfer particles may have an oxygen transfer amount of from about 10 wt% to about 25 wt%, specifically from about 11 wt% to about 25 wt%, more specifically from about 12.5 wt% to about 20 wt% .
<산소전달입자의 제조 방법>&Lt; Production method of oxygen transfer particles >
본 발명의 다른 구현예는 (A) 전술한 산소전달입자 제조용 원료 조성물을 용매와 혼합하여 산소전달입자 제조용 슬러리를 제조하는 단계; (B) 상기 슬러리를 교반하여 균질화된 슬러리를 제조하는 단계; (C) 상기 슬러리를 분무 건조하여 고체 입자를 성형하는 단계; 및 (D) 상기 성형된 고체 입자를 건조 및 소성시켜 산소전달입자를 제조하는 단계;를 포함하는 산소전달입자의 제조 방법에 관한 것이다. Another embodiment of the present invention relates to a method for producing an oxygen-transferring particle, comprising the steps of: (A) mixing a raw material composition for producing oxygen-transferring particles with a solvent to prepare a slurry for producing oxygen- (B) stirring the slurry to produce a homogenized slurry; (C) spray drying the slurry to form solid particles; And (D) drying and firing the molded solid particles to produce oxygen-transferring particles.
상기 산소전달입자 제조용 슬러리는 전술한 산소전달입자 제조용 원료 조성물을 용매에 혼합하여 제조되는 것일 수 있다.The slurry for preparing oxygen transfer particles may be prepared by mixing the above-mentioned raw material composition for producing oxygen transfer particles with a solvent.
상기 산소전달입자 제조용 원료 조성물은 니켈 하이드록사이드; 세륨 옥사이드 또는 세륨 하이드록사이드; 및 티타늄 옥사이드;를 포함하며, 구체적으로 니켈 하이드록사이드 약 55 중량% 내지 약 80 중량%; 세륨 옥사이드 또는 세륨 하이드록사이드 약 10 중량% 내지 약 45 중량%; 및 티타늄 옥사이드 약 0 중량% 초과 내지 약 20 중량% 이하;를 포함할 수 있다.The raw material composition for producing an oxygen-transferring particle may include nickel hydroxide; Cerium oxide or cerium hydroxide; And titanium oxide; specifically, from about 55% to about 80% by weight of nickel hydroxide; From about 10% to about 45% by weight of cerium oxide or cerium hydroxide; And from about 0% to about 20% by weight of titanium oxide.
산소전달입자 제조용 슬러리를 제조하는 단계 (A)에서 산소전달입자 제조용 슬러리는 전술한 본 발명의 산소전달입자 제조용 원료 조성물을 용매에 혼합하여 제조한다.The slurry for preparing the oxygen-transferring particles in the step (A) of preparing the slurry for producing the oxygen-transferring particles is prepared by mixing the above-mentioned raw material composition for producing oxygen-transferring particles of the present invention into a solvent.
상기 산소전달입자 제조용 원료 조성물과 상기 용매는 약 15 내지 40 : 약 60 내지 85의 중량비로 혼합될 수 있다. 상기 범위 내에서, 분무건조 시 증발되어야 할 용매의 양과 산소전달입자 제조용 원료 조성물의 고체 함량이 적절한 범위로 유지되어, 점도가 적정범위 내로 유지되어 유동성이 향상되고, 균질화 시 분쇄가 더욱 용이하며, 우수한 제조 효율을 구현할 수 있다. The raw material composition for producing oxygen-transferring particles and the solvent may be mixed at a weight ratio of about 15 to 40: about 60 to 85. Within the above range, the amount of the solvent to be evaporated during spray drying and the solid content of the raw material composition for producing oxygen-transferring particles are maintained within an appropriate range, the viscosity is kept within an appropriate range to improve the fluidity, Excellent manufacturing efficiency can be realized.
상기 용매의 종류는 특별히 제한되지 않으며, 이 분야에서 일반적으로 사용되는 용매를 사용할 수 있다. 구체적으로는 상기 용매로 물을 사용할 수 있다. 이러한 경우, 균질화 및 소성 공정에서의 작업성 및 제조 효율이 더욱 향상될 수 있다.The type of the solvent is not particularly limited, and solvents generally used in this field can be used. Specifically, water can be used as the solvent. In this case, workability and manufacturing efficiency in the homogenization and firing process can be further improved.
산소전달입자 제조용 슬러리를 제조하는 단계(A)에서 슬러리는 분산제, 소포제 및 유기결합제 중 1종 이상의 첨가제를 추가로 포함할 수 있다.In step (A) of preparing the slurry for producing oxygen-transferring particles, the slurry may further comprise at least one additive selected from dispersing agents, antifoams and organic binders.
구체적으로, 상기 첨가제는 전술한 용매에 미리 투입된 상태로 산소전달입자 제조용 원료 조성물과 혼합될 수도 있다. 이러한 경우, 산소전달입자 제조용 원료 조성물의 분산성 및 용매와의 혼합성을 더욱 향상시킬 수 있다.Specifically, the additive may be mixed with the raw material composition for producing an oxygen-transferring particle in a state previously introduced into the above-mentioned solvent. In this case, the dispersibility and the ability to mix with the solvent of the raw material composition for producing oxygen-transferring particles can be further improved.
상기 분산제(dispersant)는 하기에 설명할 슬러리의 분쇄 시 산소전달입자 제조용 원료 조성물에 포함된 성분들이 서로 응집되는 현상을 방지할 수 있다. 또한, 균질화 과정에서 산소전달입자를 구성하는 원료 성분들의 입자 크기를 제어하는 효율이 더욱 향상될 수 있다.The above dispersant can prevent the components contained in the raw material composition for producing oxygen-transferring particles from agglomerating with each other when the slurry is crushed as described below. In addition, the efficiency of controlling the particle size of the raw material components constituting the oxygen transfer particles in the homogenization process can be further improved.
구체적으로, 분산제는 음이온계 계면활성제, 양이온계 계면활성제 및 비이온계 계면활성제 중 1종 이상을 사용할 수 있다. 상기 음이온계 계면활성제는 예를 들면, 폴리카르복실산암모늄염(Poly carboxylate ammonium salts) 또는 폴리카르복실산아민염(Poly carboxylate amine salts) 등을 일 수 있다. 이러한 경우, 분산제에 의한 입자 표면의 전하 조절, 분산 및 응집을 조절하는 기능을 더욱 향상시키고, 슬러리를 고농도화할 수 있다.Specifically, at least one of an anionic surfactant, a cationic surfactant, and a nonionic surfactant may be used as the dispersing agent. The anionic surfactant may be, for example, a poly carboxylate ammonium salt or a polycarboxylate amine salt. In this case, the function of controlling the charge control, dispersion and agglomeration of the particle surface by the dispersant can be further improved, and the slurry can be highly concentrated.
또한, 분산제는 슬러리를 분무건조 시 생성되는 성형체(산소전달입자 조립체), 즉 생소지제(green body)의 형상이 도우넛형, 딤플형, 블로우형이 아닌 구형으로 제조되는 효율을 향상시킬 수 있다.In addition, the dispersant can improve the efficiency of manufacturing the shaped body (oxygen transfer particle assembly) produced by spray drying the slurry, that is, the shape of the green body, not the donut shape, the dimple shape, or the blow shape.
상기 분산제의 함량은 산소전달입자 제조용 원료 조성물 100 중량부를 기준으로, 약 0.01 중량부 내지 약 5 중량부일 수 있다. 상기 범위 내에서, 산소전달입자들의 분산 효과가 더욱 우수할 수 있다.The content of the dispersant may be about 0.01 parts by weight to about 5 parts by weight based on 100 parts by weight of the raw material composition for producing oxygen-transferring particles. Within this range, the dispersing effect of the oxygen-transferring particles can be more excellent.
상기 소포제(defoamer)는 분산제 및 유기결합제가 적용된 슬러리의 기포를 제거하기 위해 사용될 수 있다. The defoamer may be used to remove bubbles in the slurry to which the dispersant and organic binder are applied.
구체적으로, 상기 소포제는 실리콘계 소포제, 금속비누계 소포제, 아마이드계 소포제, 폴리에테르계 소포제, 폴리에스테르계 소포제, 폴리글라이콜계 소포제 및 알코올계 소포제 중 1종 이상을 포함할 수 있다. 이러한 경우, 소포제의 상용성이 더욱 우수하다.Specifically, the antifoaming agent may include at least one of a silicone-based antifoaming agent, a metal soap-based antifoaming agent, an amide-based antifoaming agent, a polyether-based antifoaming agent, a polyester-based antifoaming agent, a polyglycol-based antifoaming agent and an alcohol- based antifoaming agent. In this case, the compatibility of the defoamer is more excellent.
상기 소포제의 함량은 산소전달입자 제조용 원료 조성물 100 중량부를 기준으로, 약 0.01 중량부 내지 약 1.0 중량부일 수 있다. 상기 범위 내에서, 슬러리 제조 과정 중에 기포가 발생하는 것을 저감하고, 분무 건조 시 구형의 산소전달입자를 제조하는 효율이 더욱 향상되며, 소성 후 잔여 회분의 함량을 저감하여 산소전달량을 더욱 향상시킬 수 있다. 소포제의 더욱 구체적인 함량은 기포 발생량에 따라 가감할 수 있다. The amount of the defoaming agent may be about 0.01 part by weight to about 1.0 part by weight based on 100 parts by weight of the raw material composition for producing oxygen-transferring particles. Within this range, it is possible to reduce the occurrence of bubbles during the slurry production process, to further improve the efficiency of producing spherical oxygen transfer particles during spray drying, to further reduce the content of residual ash after firing, have. The more specific content of the antifoaming agent can be adjusted depending on the bubble generation amount.
상기 유기결합제(organic binder)는 슬러리 제조 단계에서 첨가되어 슬러리에 가소성(plasticity)과 유동성을 부여하고 궁극적으로는 분무건조 성형으로 조립된 산소전달입자에 강도를 부여함으로써 예비건조 및 소성 전에 조립체, 즉 생소지체(green body)의 취급을 용이하게 할 수 있다. The organic binder may be added in the slurry preparation step to impart plasticity and fluidity to the slurry and ultimately provide strength to the oxygen delivery particles assembled by spray drying to form an assembly prior to preliminary drying and firing, The handling of the green body can be facilitated.
구체적으로, 유기결합제의 종류는 폴리비닐알코올, 폴리에틸렌글라이콜 및 메틸셀룰로즈 중 1종 이상을 사용할 수 있다. Specifically, one kind or more of polyvinyl alcohol, polyethylene glycol, and methyl cellulose may be used as the organic binder.
상기 유기결합제의 함량은 산소전달입자 제조용 원료 조성물 100 중량부를 기준으로, 약 1 중량부 내지 약 5 중량부일 수 있다. 상기 범위 내에서, 분무건조에 의해 성형된 고체 입자의 결합력이 향상되어, 건조 및 소성 전까지 구형의 형상을 유지하는 특성이 향상될 수 있으며, 소성 후 잔여 회분의 함량을 저감하여 산소전달량을 더욱 향상시킬 수 있다.The content of the organic binder may be about 1 part by weight to about 5 parts by weight based on 100 parts by weight of the raw material composition for producing oxygen-transferring particles. Within the above range, the bonding force of the solid particles formed by the spray drying is improved, the characteristics of maintaining the shape of the spherical shape before drying and firing can be improved, and the content of residual ash after firing is reduced, .
일 구체예에서, 상기 첨가제는 분산제, 소포제 및 유기결합제를 모두 포함하고, 상기 첨가제는 산소전달입자 제조용 원료조성물 100 중량부에 대하여 분산제 약 0.01 중량부 내지 약 5.0 중량부, 유기결합제 약 1.0 중량부 내지 약 5.0 중량부, 소포제 약 0.01 중량부 내지 약 1.0 중량부로 슬러리 내에 첨가될 수 있다. 이러한 경우, 산소전달입자의 산소전달량을 더욱 향상시키면서도, 산소전달입자의 평균입자크기, 입자크기분포 및 형상을 제어하기에 유리하다.In one embodiment, the additive comprises both a dispersant, a defoamer, and an organic binder, wherein the additive comprises about 0.01 to about 5.0 parts by weight of the dispersant, about 1.0 part by weight of the organic binder, To about 5.0 parts by weight of the defoaming agent, and from about 0.01 to about 1.0 part by weight of the defoaming agent. In this case, it is advantageous to control the average particle size, particle size distribution and shape of the oxygen delivery particles while further improving the oxygen delivery amount of the oxygen delivery particles.
상기 슬러리는 유동성 콜로이드 슬러리일 수 있다. 이러한 경우, 균질화 및 소성 공정에서의 작업성 및 제조 효율이 더욱 향상될 수 있다.The slurry may be a flowable colloidal slurry. In this case, workability and manufacturing efficiency in the homogenization and firing process can be further improved.
슬러리를 교반하여 균질화된 슬러리를 제조하는 단계(B)는 앞서 제조된 슬러리를 교반기를 사용하여 교반 및 분쇄한 후 균질화하는 것을 포함할 수 있다. 이러한 경우, 슬러리의 균질화 특성, 슬러리의 농도, 점도, 안정성, 유동성과 분무건조 후 입자의 강도 및 밀도 등의 제어력이 더욱 향상될 수 있다.Step (B) of preparing the homogenized slurry by stirring the slurry may include homogenizing the slurry prepared above by stirring and pulverizing the slurry using a stirrer. In this case, the controllability such as the homogenization characteristics of the slurry, the concentration of the slurry, the viscosity, the stability, the fluidity and the strength and density of the particles after spray drying can be further improved.
상기 교반은 혼합물에 포함되는 성분들을 첨가하는 과정 또는 포함되는 성분 모두가 첨가된 상태에서 이루어질 수 있다. 이 때, 교반은 예를 들면, 교반기를 사용하여 수행될 수 있다.The stirring may be carried out in the course of adding the components contained in the mixture or in the state in which all of the components contained therein are added. At this time, stirring may be performed using, for example, a stirrer.
구체적으로, 상기 용매 및/또는 첨가제와 산소전달입자 제조용 조성물의 혼합이 완료되어 제조된 슬러리는 교반 후 분쇄기를 사용하여 분쇄함으로써 슬러리 중의 입자크기를 수 마이크론(㎛) 이하로 만들수 있다. 이 과정에서 분쇄된 입자는 슬러리 내에 더욱 균질하게 분산되고, 슬러리 내 입자의 응집이 억제되므로 균질하고 안정한 슬러리가 제조될 수 있다. Specifically, the slurry prepared by mixing the solvent and / or additive with the composition for producing oxygen-transferring particles may be pulverized using a pulverizer after stirring to make the particle size in the slurry to be several microns (쨉 m) or less. In this process, the pulverized particles are more uniformly dispersed in the slurry and the aggregation of the particles in the slurry is inhibited, so that a homogeneous and stable slurry can be produced.
필요에 따라 분쇄 과정은 수회 반복할 수 있으며 각 분쇄 과정 사이에 분산제와 소포제가 첨가되면서 슬러리의 유동성을 조절할 수도 있다.If necessary, the pulverization process can be repeated several times, and the fluidity of the slurry can be controlled by adding the dispersant and defoamer during each pulverization process.
예를 들면, 분쇄 방법으로 습식 분쇄(Wet milling) 방법을 사용할 수 있다. 이러한 경우, 분쇄효과를 향상시키고, 건식 분쇄 시 발생하는 입자의 날림 등의 문제를 해소할 수 있다. 한편, 원료 조성물 입자의 입경이 수 마이크론 이하인 경우에는 별도의 분쇄과정을 생략할 수도 있다.For example, a wet milling method may be used as a milling method. In this case, it is possible to improve the pulverizing effect and to solve the problems such as fly-off of particles generated during dry pulverization. On the other hand, when the particle diameter of the raw material composition is several microns or less, a separate pulverization process may be omitted.
본 발명에서는 교반 및 분쇄된 슬러리 중의 이물질을 제거하는 것을 추가로 수행할 수 있다. 상기 단계를 통하여, 분무 성형 시 노즐 막힘등의 원인이 될 수 있는 이물질 또는 덩어리진 원료를 제거할 수 있다. 상기 이물질의 제거는 예를 들면, 체거름을 통해 수행될 수 있다.In the present invention, it is further possible to remove foreign matter in the slurry which has been stirred and pulverized. Through the above steps, it is possible to remove foreign matter or agglomerated raw materials that may cause nozzle clogging or the like during spray molding. The removal of the foreign matter can be performed, for example, by sieving.
상기 균질화된 슬러리의 유동성에 대한 특별한 제한은 없으며, 펌프로 이송이 가능하다면 어떤 점도도 가능하다.There is no particular limitation on the fluidity of the homogenized slurry, and any viscosity is possible if it can be transported by a pump.
슬러리를 분무 건조하여 고체 입자를 성형하는 단계(C)는 상기 균질화된 슬러리를 분무 건조기에 투입한 후, 입구온도는 약 260℃ 내지 약 300℃, 출구온도는 약 90℃ 내지 약 150℃를 유지하면서 분무하여 고체 입자로 성형하는 것을 포함할 수 있다.(C) spraying and drying the slurry to form solid particles, the homogenized slurry is introduced into a spray drier, the inlet temperature is maintained at about 260 ° C. to about 300 ° C., and the outlet temperature is maintained at about 90 ° C. to about 150 ° C. And then shaping into solid particles by spraying.
상기 슬러리의 성형은 분무건조기를 사용하여 수행할 수 있으며, 구체적으로 균질화된 슬러리를 펌프를 통해 분무건조기로 이송시킨 뒤, 상기 이송된 슬러리 조성물을 분무건조기 내로 분사함으로써 고체 입자를 성형할 수 있다.The slurry may be molded using a spray dryer. Specifically, the homogenized slurry may be transferred to a spray dryer through a pump, and then the transferred slurry composition may be sprayed into a spray dryer to form solid particles.
상기 슬러리의 성형은 유기결합제를 첨가하는 경우 분무 건조 시 입자 형상이 구형으로 유지되기에 더욱 유리할 수 있다.Formation of the slurry may be more advantageous in that when the organic binder is added, the particle shape is kept spherical during spray drying.
상기 분무건조기에서 산소전달입자를 성형하기 위한 상기 분무건조기의 형태 및 운전조건은 이 분야에서 일반적으로 사용되는 운전조건을 적용할 수 있다. The type and operating conditions of the spray dryer for forming the oxygen transfer particles in the spray dryer may be those operating conditions commonly used in this field.
더욱 구체적으로는 유동성의 균질화된 슬러리를 가압노즐을 사용하여 건조용 공기의 흐름과 반대 방향으로 분사하는 향류식 분무방식으로 분사하여 산소전달입자를 성형할 수 있다. More specifically, the oxygen delivery particles can be formed by spraying the fluidized homogeneous slurry in a countercurrent spraying method in which the pressurized nozzle is sprayed in a direction opposite to the flow of the drying air.
이때, 분무 건조기의 입구온도는 약 260℃ 내지 약 300℃, 출구온도는 약 90℃ 내지 약 150℃로 유지될 수 있다. 상기 온도 범위 내에서 구형의 산소전달입자를 제조하는 효율이 더욱 향상될 수 있다.At this time, the inlet temperature of the spray dryer may be maintained at about 260 ° C to about 300 ° C, and the outlet temperature may be maintained at about 90 ° C to about 150 ° C. The efficiency of producing spherical oxygen transfer particles within the above temperature range can be further improved.
성형된 고체 입자를 건조 및 소성시켜 산소전달입자를 제조하는 단계(D)는 성형된 고체 입자를 약 110℃ 내지 약 150℃로 약 2 시간 내지 약 24 시간 동안 건조하고, 고온 소성로에 투입하여 약 1℃/min 내지 약 5℃/min 의 속도로 약 1050℃ 내지 약 1350℃으로 승온하여 약 2 시간 내지 약 10 시간 동안 소성하는 것을 포함할 수 있다.The step (D) of producing the oxygen-transferring particles by drying and firing the molded solid particles is carried out by drying the molded solid particles at about 110 ° C to about 150 ° C for about 2 hours to about 24 hours, Lt; 0 &gt; C to about 1350 &lt; 0 &gt; C at a rate of 1 [deg.] C / min to about 5 [deg.] C / min and calcining for about 2 hours to about 10 hours.
상기 온도 및 시간 조건에서 건조를 수행하는 경우, 소성 시 입자 내 수분이 팽창하여 입자에 균열이 발생하는 현상을 방지할 수 있다. 이때, 건조는 공기 분위기에서 이루어질 수 있다.When the drying is performed under the above-mentioned temperature and time conditions, it is possible to prevent cracks from occurring in the particles due to expansion of moisture in the particles during firing. At this time, drying can be performed in an air atmosphere.
상기 건조가 완료되면, 건조된 입자를 고온 소성로에 넣고 약 1℃/min 내지 약 5℃/min의 속도로 최종 소성 온도를 약 1050℃ 내지 약 1350℃까지 올린 뒤, 약 2 시간 내지 약 10 시간 동안 소성시킬 수 있다. 상기 소성 시간 범위 내에서, 입자의 강도가 약해지거나, 소성비용이 과도하게 증가하는 것을 방지할 수 있다. 이러한 경우, 소성에 의해 슬러리의 제조 시 투입된 유기첨가제(분산제, 소포제 및 유기결합제)는 연소되고, 원료물질들 간의 결합이 이루어져 입자의 강도가 향상한다. 또한, 상기 소성 온도 범위 내에서, 소성 온도가 불충분하여 산소전달입자의 강도가 낮아지는 것을 방지하면서도 산소전달량을 충분히 향상시킬 수 있다. When the drying is completed, the dried particles are put into a high-temperature firing furnace and the final firing temperature is raised from about 1050 ° C to about 1350 ° C at a rate of about 1 ° C / min to about 5 ° C / min, Lt; / RTI &gt; It is possible to prevent the strength of the particles from becoming weak or the firing cost from being excessively increased within the firing time range. In this case, the organic additives (dispersant, antifoaming agent, and organic binder) introduced during the production of the slurry by firing are burned and bonding between the raw materials is performed to improve the strength of the particles. Further, within the above-mentioned firing temperature range, it is possible to sufficiently improve the oxygen transmission amount while preventing the firing temperature from being insufficient and preventing the strength of the oxygen transfer particles from being lowered.
보다 구체적으로, 상기 소성은 최종 소성 온도에 이르기까지 2 단계 이상의 정체 온도에서 각 약 30 분 이상의 정체 구간을 부여하는 방법으로 수행될 수 있다. 이러한 경우, 제조되는 산소전달입자 내부의 수분 증발 및 유기첨가제 연소에 따라 발생되는 기체에 의한 입자 형상 파괴를 예방할 수 있다.More specifically, the firing may be performed by a method of imparting stagnation zones of at least about 30 minutes each at a stagnation temperature of two or more stages until reaching a final firing temperature. In this case, it is possible to prevent the particle shape destruction due to the gas generated by the evaporation of water and the combustion of the organic additive inside the produced oxygen transfer particles.
상기 소성은 박스형로(muffle furnace), 튜브형로(tubularfurnace) 또는 킬른(kiln) 등의 소성로를 사용함으로써 수행될 수 있다. The firing can be performed by using a firing furnace such as a muffle furnace, a tubular furnace or a kiln.
이하 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 따라 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings in order to facilitate a person skilled in the art to which the present invention belongs. The scope of the invention is not limited by the examples given below.
도 3은 본 발명에 따른 산소전달입자 원료 조성물을 이용한 산소전달입자의 제조 방법(S100)을 개략적으로 나타낸 공정도이다. 도 3에 나타낸 바와 같이, 상기 산소전달입자는 산소전달입자 제조용 원료 조성물을 용매에 첨가하여 혼합하는 단계(A), 혼합된 슬러리를 분쇄와 분산을 통해 균질화된 슬러리로 제조하는 단계(B), 균질화된 슬러리를 분무 건조시켜 고체 입자로 성형하는 단계(C) 및 성형 제조된 고체 입자(산소전달입자의 생소지체(green body))를 건조 및 소성시켜 최종 산소전달입자를 제조하는 단계(D)를 포함한다.3 is a schematic view showing a process (S100) for producing oxygen transfer particles using the oxygen transfer particle raw material composition according to the present invention. As shown in FIG. 3, the oxygen-transferring particles are prepared by mixing (A) adding a raw material composition for producing oxygen-transferring particles to a solvent and mixing the mixture, (B) preparing a homogenized slurry by pulverizing and dispersing the mixed slurry, (D) a step (C) of spray-drying the homogenized slurry to form solid particles and a step (D) of drying and firing the molded solid particles (green body of oxygen transfer particles) .
도 4는 원료 조성물 및 물의 혼합물을 슬러리로 제조하는 예시적인 과정을 나타낸 공정도이다. 도 4에 표시된 바와 같이, 슬러리의 제조는 첨가제를 물에 첨가하는 단계(S11), 고체원료를 물에 혼합하는 단계(S12), 유기첨가제를 혼합물에 첨가하는 단계(S21) 및 혼합된 슬러리를 분쇄 및 분산시켜 균질화하고 분산된 슬러리를 제조하는 단계(S22)를 포함하고, 슬러리에 포함된 이물질을 제거하는 단계(S23)를 더 포함할 수 있다.4 is a process drawing showing an exemplary process for preparing a mixture of a raw material composition and water as a slurry. As shown in FIG. 4, the preparation of the slurry includes the steps of adding the additive to water (S11), mixing the solid raw material into water (S12), adding the organic additive to the mixture (S21) And a step (S22) of homogenizing and dispersing and pulverizing and dispersing the slurry and preparing a dispersed slurry, and removing the foreign substances contained in the slurry (S23).
도 5는 슬러리를 분무건조하여 산소전달입자를 성형하는 예시적인 과정을 나타낸 공정도이다. 도 5에 표시된 바와 같이, 슬러리를 분무건조하여 산소전달입자를 성형하는 단계(S30)는 슬러리를 분무 건조기로 이송하는 단계(S31) 및 이송된슬러리를 분무 건조기 내로 분사하여 산소전달입자를 성형하는 단계(S32)를 포함할 수 있다.5 is a process drawing showing an exemplary process of spray-drying slurry to form oxygen-transfer particles. As shown in FIG. 5, the step (S30) of spray-drying the slurry to form the oxygen transfer particles (S30) includes transferring the slurry to the spray dryer (S31) and injecting the transferred slurry into the spray dryer Step S32.
도 6은 분무건조법으로 성형된 산소전달입자 생소지체를 건조 소성시켜 최종 산소전달입자로 제조하는 예시적인 과정을 나타낸 공정도이다. 도 6에 표시된 바와 같이, 성형된 산소전달입자 생소지체는 예비 건조과정(S41)을 거친 후, 소성과정(S42)을 통해 최종 산소전달입자로 제조될 수 있다.6 is a process drawing showing an exemplary process of drying and firing an oxygen transfer particle green body formed by a spray drying method to form final oxygen transfer particles. As shown in FIG. 6, the formed oxygen transfer particle green body can be manufactured as a final oxygen transfer particle through a preliminary drying step (S41) and a firing step (S42).
<케미컬루핑연소 방법><Chemical roofing combustion method>
본 발명의 또 다른 구현예는 전술한 산소전달입자를 연료와 반응시켜, 연료를 연소시키고 상기 산소전달입자를 환원하는 것 및 환원된 산소전달입자를 산소와 반응시켜 재생하는 것을 포함하는 케미컬루핑연소 방법에 관한 것이다.Another embodiment of the present invention is a process for the production of a chemical roofing combustion comprising reacting the oxygen transfer particles described above with a fuel to burn the fuel and reduce the oxygen transfer particles and to regenerate the reduced oxygen transfer particles by reacting with oxygen &Lt; / RTI &gt;
여기서 연료는 특별히 제한되지 않으며 고체상, 액체상, 기체상 모두 사용 가능하며 바람직하게는 기체연료일 수 있다. 본 발명에서 사용되는 기체연료는 특별히 제한되지 않으며, 예를 들면, 수소, 일산화탄소, 알칸(alkane, CnH2n+2), 천연가스(LNG) 및 합성가스(syngas)로 이루어진 그룹으로부터 선택된 하나 이상일 수 있다.Here, the fuel is not particularly limited and may be a solid phase, a liquid phase, a gas phase, and preferably a gaseous fuel. The gaseous fuel used in the present invention is not particularly limited and includes, for example, one selected from the group consisting of hydrogen, carbon monoxide, alkane, C n H 2n + 2 , natural gas (LNG) and syngas Or more.
이러한 본 발명의 케미컬루핑연소 방법에 대한 모식도를 첨부된 도 7에 나타내었다.A schematic view of the chemical roofing combustion method of the present invention is shown in Fig.
산소전달입자를 연료와 반응시키면, 산소전달입자는 산소를 연료로 전달하면서 환원이 되고, 이산화탄소와 물을 발생시킨다. 상기 환원된 산소전달입자를 산소와 반응시키면 산화되어 다시 재생된다. 본 발명의 케미컬루핑연소 방법에서는 상기와 같은 과정을 반복하게 된다. 또한, 환원된 산소전달입자로의 산소의 제공은 공기와 산소전달입자의 접촉을 통해 이루어질 수 있다.When the oxygen transfer particles are reacted with the fuel, the oxygen transfer particles are reduced while transferring oxygen to the fuel, generating carbon dioxide and water. When the reduced oxygen transfer particles are reacted with oxygen, they are oxidized and regenerated again. In the chemical roofing combustion method of the present invention, the above process is repeated. In addition, the provision of oxygen to the reduced oxygen transfer particles can be effected through contact of air and oxygen transfer particles.
본 발명의 산소전달입자를 케미컬루핑연소 공정(CLC 공정)에 적용할 경우, 종래의 연소방식에 비해 이산화탄소 포집에 따른 시스템 열효율 저하를 줄이면서 이산화탄소를 원천적으로 분리하여 포집할 수 있다. 이와 더불어 케미컬루핑연소공정의 특성상 용액을 사용하여 이산화탄소를 포집하지 않기 때문에 물 사용량이 적고 폐수 발생이 거의 없다는 장점이 있다.When the oxygen transfer particles of the present invention are applied to the chemical roofing combustion process (CLC process), carbon dioxide can be originally separated and collected while reducing the system thermal efficiency deterioration due to carbon dioxide capture compared to the conventional combustion system. In addition, due to the nature of the chemical roofing combustion process, carbon dioxide is not captured by using the solution, so there is an advantage that the amount of water used is small and no waste water is generated.
또한, 이러한 케미컬루핑연소 방법(CLC 공정)은 산소전달입자를 연료와 반응시켜 상기 산소전달입자를 환원시키고 연료를 연소시키는 연료반응기; 및 상기 환원된 산소전달입자를 산소와 반응시켜 산화시키는 공기반응기;를 포함하는 케미컬루핑연소장치를 통해 수행될 수 있다.In addition, the chemical roofing combustion method (CLC process) includes a fuel reactor for reacting oxygen transfer particles with fuel to reduce the oxygen transfer particles and burn the fuel; And an air reactor for oxidizing and reacting the reduced oxygen transfer particles with oxygen.
구체적으로, 연료반응기에서 산소전달입자 내의 금속 산화물(MxOy)은 연료와 반응하여 환원상태의 금속 산화물(MxOy-1)이 된다. 이때, 연료는 연소되어 환원된다. 환원된 산소전달입자는 공기반응기로 이동함으로써 공기 중의 산소와 반응하여 다시 산화된다. 상기 산화된 산소전달입자는 연료반응기로 순환되어 위의 과정을 반복하게 된다.Specifically, the metal oxide (M x O y ) in the oxygen transfer particles in the fuel reactor reacts with the fuel to become the metal oxide (M x O y-1 ) in a reduced state. At this time, the fuel is burned and reduced. The reduced oxygen transfer particle reacts with oxygen in the air by moving to the air reactor and is oxidized again. The oxidized oxygen transfer particles are circulated to the fuel reactor and the above process is repeated.
상기 연료반응기 및 공기반응기 내에서의 반응을 하기 반응식 1 및 2 로나타내었다. 하기 반응식 1은 연료반응기 내에서의 반응이며, 반응식 2는 공기반응기 내에서 일어나는 반응을 나타낸 것이다.The reactions in the fuel reactor and in the air reactor are shown in Schemes 1 and 2 below. The following reaction scheme 1 is the reaction in the fuel reactor and the reaction scheme 2 is the reaction occurring in the air reactor.
<반응식 1><Reaction Scheme 1>
4MxOy + CH4 → 4MxOy-1 + 2H2O + CO2 4M x O y + CH 4 ? 4M x O y -1 + 2H 2 O + CO 2
<반응식 2><Reaction Scheme 2>
MxOy-1 + 0.5O2 → MxOy M x O y-1 + 0.5O 2 → M x O y
상기, 반응식 1 및 2에서, M은 금속을 나타내며, X 및 Y는 금속 산화물 분자 내의 각 원자가 차지하는 비율을 의미한다.In the above Schemes 1 and 2, M represents a metal, and X and Y represent the ratio of each atom in the metal oxide molecule.
반응식 1 및 2에서는 금속산화물 한 분자에서 산소원자(O) 한 개가 전달되는 예를 나타내었으나 한 개 이하 또는 한 개 이상 전달될 수도 있으며 이 경우 반응식 1 및 2는 전달되는 산소의 개수에 맞추어 변경될 수 있다.In the schemes 1 and 2, one oxygen atom (O) is transferred from one molecule of the metal oxide, but one or more oxygen atoms (O) may be delivered. In this case, the equations 1 and 2 are changed according to the number of delivered oxygen .
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 예시 중 일부로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It should be understood, however, that this is provided as illustrative of the present invention and is not to be construed as limiting the invention in any way.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.
하기 실시예는 활성성분인 니켈 옥사이드(NiO)를 제공하기 위한 니켈 하이드록사이드(Ni(OH)2); 니켈 옥사이드(NiO)의 분산(dispersion) 및 강도를 부여와 산소전달반응 증진을 위한 지지체 원료로 분말 형태의 세륨 옥사이드(CeO2) 또는 세륨 하이드록사이드(Ce(OH)4); 및 산소전달입자 소성온도 강하를 통한 물성증진을 위한 원료로 티타늄 옥사이드(TiO2);를 원료 조성물로 사용하는 니켈 옥사이드(NiO)계 산소전달입자 제조에 관한 예이다.The following examples illustrate the use of nickel hydroxide (Ni (OH) 2 ) to provide the active ingredient nickel oxide (NiO); Cerium oxide (CeO 2 ) or cerium hydroxide (Ce (OH) 4 ) in powder form as a support material for imparting dispersion and strength of nickel oxide (NiO) and promoting oxygen transfer reaction; (NiO) -based oxygen transfer particles using titanium oxide (TiO 2 ) as a raw material for enhancing physical properties through reduction of sintering temperature of oxygen transfer particles.
상기 원료 조성물 중 니켈 하이드록사이드(Ni(OH)2)와 세륨 하이드록사이드(Ce(OH)4)는 고온에서 소성하면 물(H2O)이 배출되면서 각각 니켈 옥사이드와 세륨 옥사이드가 된다. When nickel hydroxide (Ni (OH) 2 ) and cerium hydroxide (Ce (OH) 4 ) are calcined at a high temperature, water (H 2 O) is released and becomes nickel oxide and cerium oxide, respectively.
하기 실시예에서는 고온 소성하여 H2O가 배출된 형태의 건조원료시료 100 중량부 기준으로 볼 때, 니켈 옥사이드(NiO)는 70 중량부, 세륨 옥사이드(CeO2)는 20 중량부 내지 30 중량부, 티타늄 옥사이드(TiO2)는 0 중량부 초과 내지 10 중량부 이하가 되도록 설계하였다. In the following examples, nickel oxide (NiO) is 70 parts by weight, cerium oxide (CeO 2 ) is 20 parts by weight to 30 parts by weight based on 100 parts by weight of a dry raw material sample in which H 2 O is discharged by high- , And titanium oxide (TiO 2 ) in an amount of more than 0 parts by weight to 10 parts by weight.
보다 구체적으로, 실시예 1 내지 6의 산소전달입자는 하기와 같은 방법으로 제조되었다. More specifically, the oxygen transfer particles of Examples 1 to 6 were produced by the following method.
실시예 1Example 1
산소전달입자를 제조하기 위해 공업용 Ni(OH)2(순도 98% 이상, 분말형태), CeO2(분말형태, 평균입경 1 ㎛ 이하, 순도 99% 이상), TiO2(분말형태, 평균입경 1 ㎛ 이하, 순도 95% 이상)를 준비하였다. Industrial Ni (OH) to produce the oxygen transfer particles 2 (purity 98% or higher, powder form), CeO 2 (powder, average particle size of 1 ㎛ or less, purity more than 99%), TiO 2 (powder, average particle size of 1 탆 or less, purity of 95% or more).
상기 각 물질을 고온 소성 후 고온 소성 후 NiO가 70 중량부, CeO2가 30 중량부가 되도록 Ni(OH)2, CeO2 를 6.95 kg, 2.4 kg을 계량하하고, 물 18리터에 분산제(음이온계 계면활성제) 및 소포제(금속비누계)를 첨가하여 고체 원료 조성물을 교반기로 혼합하였다. 유기첨가제가 혼합된 물에 상기 고체 원료 조성물을 투입 후 교반기로 교반하면서 첨가하여 혼합 슬러리를 제조하였다. 총 투입된 첨가제의 양은 표 1에 나타난 바와 같다.NiO (OH) 2 and CeO 2 (6.95 kg, 2.4 kg) were weighed such that NiO was added in an amount of 70 parts by weight and CeO 2 was added in an amount of 30 parts by weight, and 18 liters of a dispersant Surfactant) and antifoaming agent (metal soap system) were added and the solid raw material composition was mixed with a stirrer. The solid raw material composition was added to water mixed with an organic additive, and the mixture was stirred with a stirrer to prepare a mixed slurry. The total amount of additive is as shown in Table 1.
상기 혼합 슬러리를 고에너지볼밀(High Energy Ball Mill)로 1차 분쇄하였다. 분쇄를 원활히 진행하기 위하여 1차 분쇄 후 물과 분산제를 추가로 투입하였다. 2차 분쇄 후 폴리에틸렌글라이콜을 첨가하고 3차 분쇄를 진행하여 안정되고 균질한 유동성 콜로이드 슬러리(colloidal slurry)를 제조하였다. 분쇄를 마친 슬러리를 체거름을 통해 이물질을 제거하고 최종 슬러리 내 고체농도를 측정하였다. 총 투입된 첨가제의 양과 측정된 최종 슬러리 내 고체농도는 표 1에 나타낸 바와 같다.The mixed slurry was first pulverized with a high energy ball mill. In order to proceed smoothly, water and a dispersant were further added after the first grinding. After the second milling, polyethylene glycol was added and the third milling proceeded to produce a stable and homogeneous flowable colloidal slurry. The pulverized slurry was sieved to remove foreign matter and the solid concentration in the final slurry was measured. The amount of total added additive and the solids concentration in the final slurry measured are as shown in Table 1.
상기 제조된 콜로이드 슬러리를 펌프로 분무건조기로 이송하고 분무건조하여 산소전달입자를 성형하였다. 이렇게 성형 제조된 산소전달입자 조립체, 즉 생소지체(green body)를 120℃의 공기분위기 환류 건조기에서 12시간 동안 예비 건조하고, 소성로에서 1100℃ 내지 1300℃로 5시간 소성시켜 산소전달입자를 제조하였다. 소성 온도에 도달하기 전 200℃, 300℃, 400℃, 500℃, 650℃, 800℃, 950℃에서 1시간 정도 체류하였고, 승온 속도는 약 5 ℃/min이었다.The prepared colloidal slurry was transferred by a pump to a spray drier and spray dried to form oxygen transfer particles. The thus formed oxygen transfer particle assembly, that is, a green body was preliminarily dried in an air atmosphere reflux dryer at 120 ° C for 12 hours and fired at 1100 ° C to 1300 ° C for 5 hours in a firing furnace to prepare oxygen transfer particles . 300 ° C, 400 ° C, 500 ° C, 650 ° C, 800 ° C and 950 ° C for 1 hour before reaching the firing temperature, and the rate of temperature rise was about 5 ° C / min.
실시예 2Example 2
초기 물 투입량은 32리터로 변경하고, 세륨 옥사이드 대신 세륨 하이드록 사이드(Ce(OH)4, 분말형태, 평균입경 1 ㎛ 이하, 순도 99% 이상)를 사용하고, 고온 소성하여 H2O가 배출된 형태의 건조원료시료 100 중량부 기준으로 볼 때 NiO가 70중량부, CeO2가 30중량부가 되도록 계량하여 사용한 것을 제외하고 실시예 1과 동일한 방법으로 수행하였다.Initial water dose is changed to 32 liters, and cerium oxide instead of cerium hydroxide (Ce (OH) 4, in powder form, the average particle size of 1 ㎛ or less, and the purity 99% or more), using, and high-temperature firing, H 2 O is discharged Dried raw material sample was measured in the same manner as in Example 1, except that the amount of NiO was 70 parts by weight and CeO 2 was 30 parts by weight based on 100 parts by weight of the dried raw material sample.
실시예 1과 실시예 2에 따른 NiO계 산소전달입자 제조용 원료 물질의함량과 유동성 콜로이드 슬러리의 특성을 표 1에 나타내었다.Table 1 shows the contents of raw material materials for producing NiO-based oxygen-transferring particles according to Examples 1 and 2 and the characteristics of the fluid colloidal slurry.
실시예 3 내지 6Examples 3 to 6
실시예 3 및 5에서의 초기 물 투입량은 22리터, 실시예 4 및 5은 25리터이고, 조성을 하기 표 1과 같이 변경한 것을 제외하고 실시예 1과 동일한 방법으로 산소전달입자를 제조하였다.Oxygen transferring particles were prepared in the same manner as in Example 1, except that the initial water input amounts in Examples 3 and 5 were 22 liters, and Examples 4 and 5 were 25 litters and the composition was changed as shown in Table 1 below.
성분ingredient 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6
니켈 하이드록사이드 (Ni(OH)2)Nickel hydroxide (Ni (OH) 2 ) 74.374.3 70.670.6 74.374.3 71.171.1 74.374.3 71.871.8
세륨 옥사이드 (CeO2)Cerium oxide (CeO 2) 25.725.7 -- 21.421.4 -- 17.117.1 --
세륨 하이드록사이드 (Ce(OH)4) Cerium hydroxide (Ce (OH) 4 ) -- 29.429.4 -- 24.824.8 -- 20.020.0
티타늄 옥사이드 (TiO2)Titanium oxide (TiO 2) -- -- 4.34.3 4.14.1 8.68.6 8.28.2
총 고체 함량Total solids content 100100 100100 100100 100100 100100 100100
분산제Dispersant 2.42.4 2.92.9 1.01.0 1.21.2 1.01.0 1.01.0
소포제Defoamer 0.40.4 0.40.4 0.30.3 0.30.3 0.30.3 0.50.5
유기결합제Organic binder 3.03.0 3.83.8 3.63.6 3.03.0 2.52.5 3.03.0
슬러리 고체농도Slurry solid concentration 31.031.0 20.020.0 23.123.1 20.120.1 24.524.5 22.022.0
비교예 1 내지 8Comparative Examples 1 to 8
비교예 1 내지 8은 조성을 하기 표 2와 같이 변경한 것을 제외하고 실시예 1과 동일한 방법으로 산소전달입자를 제조하였다.Comparative Examples 1 to 8 were prepared in the same manner as in Example 1 except that the composition was changed as shown in Table 2 below.
성분ingredient 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6 비교예 7Comparative Example 7 비교예 8Comparative Example 8
니켈 옥사이드 (NiO)Nickel oxide (NiO) 7070 7070 7070 7070 65.865.8 66.566.5 7070 67.267.2
감마알루미나 (γ-Al2O3)Gamma alumina (γ-Al 2 O 3) 3030 -- -- -- -- -- -- --
알파알루미나 (α-Al2O3)Alpha-alumina (α-Al 2 O 3) -- 3030 -- -- -- -- -- --
마그네슘알루미네이트 (MgAl2O4)Magnesium aluminate (MgAl 2 O 4 ) -- -- 3030 -- -- -- -- --
세륨 옥사이드 (CeO2) Cerium oxide (CeO 2) -- -- -- 3030 -- -- 2020 --
세륨 하이드록사이드 (Ce(OH)4)Cerium hydroxide (Ce (OH) 4 ) -- -- -- -- 34.234.2 28.728.7 -- 23.223.2
티타늄 옥사이드 (TiO2)Titanium oxide (TiO 2) -- -- -- -- -- 4.84.8 1010 9.69.6
총 고체 함량Total solids content 100100 100100 100100 100100 100100 100100 100100 100100
분산제Dispersant 0.20.2 0.20.2 0.20.2 1.01.0 1.51.5 1.01.0 0.80.8 1.31.3
소포제Defoamer 0.10.1 0.10.1 0.10.1 0.40.4 0.30.3 0.40.4 0.40.4 0.40.4
유기결합제Organic binder 1.31.3 2.42.4 3.83.8 3.03.0 2.42.4 2.42.4 2.52.5 2.42.4
슬러리 고체농도Slurry solid concentration 34.034.0 75.575.5 60.460.4 58.958.9 40.240.2 43.943.9 61.161.1 42.642.6
<물성평가>&Lt; Evaluation of physical properties &
(1) 산소전달입자의 형상 측정(1) Measurement of shape of oxygen transfer particles
실시예 및 비교예에서 제조된 산소전달입자의 형상은 산업용 현미경을 이용하여 측정하고, 결과를 도 1(실시예 1 내지 6) 및 도 2(비교예 4, 7)에 나타내었다.The shapes of the oxygen transfer particles prepared in Examples and Comparative Examples were measured using an industrial microscope and the results are shown in Fig. 1 (Examples 1 to 6) and Fig. 2 (Comparative Examples 4 and 7).
(2) 평균 입자 크기 및 입자 크기 분포의 측정(2) Measurement of average particle size and particle size distribution
산소전달입자의 평균 입자 크기 및 입자 크기 분포는 미국재료시험협회(ASTM; American Society for Testing Materials)의 ASTM E-11에 기초하여 MEINZER-ⅡShaker와 표준체를 사용하여 10 g의 시료를 30분 동안 분류하여 계산하였다.The average particle size and particle size distribution of the oxygen transfer particles were determined using a MEINZER-II Sheaker and a standard, based on ASTM E-11 of the American Society for Testing Materials (ASTM) Respectively.
(3) 충진 밀도 측정(3) Filling density measurement
산소전달입자의 충진 밀도는 ASTM D 4164-88에 준한 AutoTap(Quantachrome) 충진밀도측정기를 사용하여 측정하였다.The packing density of oxygen transfer particles was measured using an AutoTap (Quantachrome) packing density meter according to ASTM D 4164-88.
(4) 내마모도 측정(4) Wear resistance measurement
산소전달입자의 내마모도는 ASTM D 5757-95에 따라 마모 시험기로 측정하였다. 마모지수(AI)는 상기 ASTM 방법에 기재된 대로 5시간에 걸쳐 10std L/분 (분당 표준부피)에서 결정하였으며, 상기 마모지수는 5시간에 걸쳐발생된 미세분말(fine)의 비율을 나타낸다. 마모지수(AI)가 낮을수록 입자의 강도는 강하다는 것을 의미한다. 비교를 위해 동일 방법으로 측정한 정유회사에서 사용되고 있는 AkzoFCC (Fluid Catalytic Cracking) 촉매의 마모지수(AI)는 각각 22.5%였다.The wear resistance of oxygen transfer particles was measured by an abrasion tester in accordance with ASTM D 5757-95. The wear index (AI) was determined at 10 std L / min (standard volume per minute) over 5 hours as described in the ASTM method, and the wear index represents the ratio of fine powder generated over 5 hours. The lower the wear index (AI), the stronger the particle strength. For comparison, the wear index (AI) of the fluid catalytic cracking (AkzoFCC) catalyst used in the oil companies measured by the same method was 22.5%.
(5) 산소전달성능 측정(5) Measurement of oxygen transfer performance
실시예에서 제조된 산소전달입자의 산소전달성능은 열중량 분석법(thermogravimetric analysis, TGA)를 이용하여 평가하였다. 실시예 및 비교예에서 산소전달입자의 환원반응에 사용한 반응가스의 조성은 15 vol% CH4를 85 vol% CO2와 혼합하여 사용하였고 환원된 산소전달입자를 산화시키기 위한 반응가스는 공기를 사용하였다. 산화반응과 환원반응 사이에는 100% 질소를 공급하여 연료와 공기가 반응기 내에서 직접 접촉하지 않도록 하였다. 실험에 사용한 산소전달입자 샘플량은 약 30 mg이었다. 각 반응 가스의 유량은 300 ml/분(273.5K, 1bar 기준)이었고, 산소전달입자의 산화/환원 반응을 850 ℃에서 최소 10회 이상 반복 실시하였다. 산화 환원 무게 차이로부터 산소전달량을 계산하였다. 산소전달량은 산소전달입자가 연료로 전달한 산소의 양으로, 산소전달입자의 완전산화상태 무게를 기준으로 산소전달입자의 환원반응이 종료되었을 때 측정된 산소전달입자 무게를 감하여 얻은 무게변화량을 산소전달입자의 완전산화상태 무게로 나누어 무게 백분율로 표시한 값이다.The oxygen delivery performance of the oxygen delivery particles prepared in the examples was evaluated using thermogravimetric analysis (TGA). The reaction gas used in the reduction reaction of oxygen transfer particles in Examples and Comparative Examples was composed of 15 vol% CH 4 mixed with 85 vol% CO 2 and the reaction gas for oxidizing the reduced oxygen transfer particles was air Respectively. 100% nitrogen was supplied between the oxidation reaction and the reduction reaction so that the fuel and air were not in direct contact with each other in the reactor. The amount of oxygen transfer particles used in the experiment was about 30 mg. The flow rate of each reaction gas was 300 ml / min (273.5K, 1 bar), and the oxidation / reduction reaction of the oxygen transfer particles was repeated at least 10 times at 850 ° C. The amount of oxygen transfer was calculated from the redox weight difference. The oxygen transfer amount is an amount of oxygen delivered by the oxygen transfer particles to the fuel. The weight change amount obtained by subtracting the weight of the oxygen transfer particles measured when the reduction reaction of the oxygen transfer particles is terminated based on the weight of the complete oxidation state of the oxygen transfer particles, Divided by the weight of the particle's complete oxidation state and expressed as a weight percentage.
소성온도 (℃)Firing temperature (캜) 산소전달입자형상Oxygen transfer particle shape 평균입자크기 (㎛)Average particle size (占 퐉) 입자크기분포(㎛)Particle size distribution (탆) 충진밀도(g/ml)Filling density (g / ml) 마모지수AI (%)Wear Index AI (%) 산소전달량 (중량부)Oxygen transfer amount (parts by weight)
실시예1Example 1 11001100 구형rectangle -- -- -- 6464 --
12001200 8383 37~302.537 ~ 302.5 2.92.9 19.719.7 15.015.0
13001300 7676 37~302.537 ~ 302.5 3.53.5 3.33.3 14.914.9
실시예2Example 2 11001100 구형rectangle 7373 37~302.537 ~ 302.5 2.72.7 21.221.2 --
12001200 6767 37~302.537 ~ 302.5 3.33.3 16.416.4 15.915.9
13001300 6565 37~302.537 ~ 302.5 3.63.6 2.32.3 15.815.8
실시예3Example 3 10001000 구형rectangle -- -- -- 41.041.0 --
11001100 7171 37~23137 to 231 3.563.56 2.12.1 15.615.6
실시예4Example 4 10001000 구형rectangle 9595 37~302.537 ~ 302.5 2.12.1 23.523.5 --
11001100 8484 37~302.537 ~ 302.5 3.63.6 1.31.3 16.316.3
실시예5Example 5 10001000 구형rectangle -- -- -- 30.130.1 --
11001100 8282 37~23137 to 231 3.63.6 1.61.6 15.615.6
실시예6Example 6 10001000 구형rectangle 8484 37~302.537 ~ 302.5 2.12.1 21.521.5 --
11001100 7676 37~23137 to 231 3.73.7 0.90.9 16.316.3
소성온도 (℃)Firing temperature (캜) 산소전달 입자 형상Oxygen transfer particle shape 평균입자크기 (㎛)Average particle size (占 퐉) 입자크기분포(㎛)Particle size distribution (탆) 충진밀도(g/ml)Filling density (g / ml) 마모지수AI(%)Wear Index AI (%) 산소전달량(중량부)Oxygen transfer amount (parts by weight)
비교예1Comparative Example 1 13001300 구형rectangle 7575 37~302.537 ~ 302.5 2.42.4 18.218.2 11.911.9
14001400 7474 37~302.537 ~ 302.5 2.52.5 1.11.1 11.211.2
비교예2Comparative Example 2 13001300 구형rectangle -- -- -- 61.761.7 --
14001400 114114 37~302.537 ~ 302.5 2.62.6 9.09.0 10.810.8
비교예3Comparative Example 3 13001300 구형rectangle -- -- -- 50.750.7 --
14001400 9999 41.5~23141.5 to 231 2.62.6 22.122.1 --
15001500 9898 41.5~23141.5 to 231 2.62.6 22.022.0 --
비교예4Comparative Example 4 12001200 딤플Dimple -- -- -- 66.366.3 --
13001300 8787 49~302.549 ~ 302.5 3.13.1 17.917.9 14.714.7
14001400 7878 41.5~302.541.5 to 302.5 3.43.4 5.65.6 14.514.5
비교예5Comparative Example 5 13001300 구형rectangle 9090 41.5~23141.5 to 231 3.43.4 26.826.8 --
14001400 8383 37~23137 to 231 3.73.7 3.83.8 15.915.9
비교예6Comparative Example 6 12001200 구형rectangle -- -- -- 24.924.9 --
13001300 9191 41.5~23141.5 to 231 3.663.66 2.62.6 16.316.3
비교예7Comparative Example 7 12001200 딤플Dimple -- -- -- 32.932.9 --
13001300 7171 37~23137 to 231 2.62.6 6.16.1 15.615.6
비교예8Comparative Example 8 12001200 구형rectangle -- -- -- 84.584.5 --
13001300 8484 37~23137 to 231 3.423.42 1.81.8 16.216.2
실시예 1 내지 6의 산소전달입자는 활성물질 원료로 Ni(OH)2, 지지체 원료로 CeO2 또는 Ce(OH)4, 첨가제 원료로 TiO2를 사용하여 제조되었다. 상기 표 3에서 보는 바와 같이, 본 실시예에 의한 조성물로 제조된 산소전달입자는 소성온도 1100 내지 1300℃에서 마모지수 5% 이하의 고강도 특성을 나타내며 상업용 유동층 공정에 적합한 물성을 갖추고 있음을 알 수 있다.The oxygen transfer particles of Examples 1 to 6 were prepared using Ni (OH) 2 as the raw material of the active material, CeO 2 or Ce (OH) 4 as the support raw material, and TiO 2 as the additive raw material. As shown in Table 3, the oxygen-transferring particles prepared from the composition according to the present invention show high strength at a sintering temperature of 1100 to 1300 ° C and a wear index of 5% or less and have properties suitable for a commercial fluidized bed process have.
즉, 산소전달입자의 형상은 구형이며, 평균 입자크기가 65 내지 85 ㎛이고, 입자크기 분포는 37~302.5 ㎛ 범위 이내이며, 충진밀도는 약 3.6 g/ml이고, 마모지수는 5% 이하이다. 도 5에 본 발명의 실시예에 따른 산소전달입자의 산업용 현미경 사진을 제시하였다. That is, the shape of the oxygen transfer particles is spherical and has an average particle size of 65 to 85 占 퐉, a particle size distribution of 37 to 302.5 占 퐉, a filling density of about 3.6 g / ml, and a wear index of 5% . FIG. 5 shows an industrial micrograph of oxygen transfer particles according to an embodiment of the present invention.
또한, 첨부된 도 1에서 알 수 있는 바와 같이, 실시예에 의해 제조된 산소전달입자는 구형의 형상을 지닌다. 실시예 산소전달입자의 산소전달량은 14.9 내지 16.3 중량부로 높게 나타났다. TiO2가 첨가된 실시예 3 내지 6의 산소전달입자는 실시예 1과 실시예 2에 비해 200℃낮은 소성온도인 1100 ℃에서도 마모지수 5% 이하의 고강도 특성을 나타내어 TiO2 첨가가 소성온도 강하에 효과가 있음을 보여주고 있다.Further, as can be seen from the attached FIG. 1, the oxygen-transferring particles produced by the examples have a spherical shape. The oxygen delivery amount of the oxygen delivery particles was as high as 14.9 to 16.3 parts by weight. Oxygen transfer particles of TiO embodiment 2 is added for example, 3 to 6 Examples 1 and compared to 2 exhibits a high strength characteristic of 5% or less abrasion index at 1100 ℃ temperature 200 ℃ low firing TiO 2 added to the sintering temperature drop In the case of the present invention.
종래의 기술에서 제시된 비교예 1 내지 3의 산소전달입자는 활성물질원료로 NiO를 사용한다. 감마알루미나 또는 알파알루미나를 지지체 원료로 사용하여 제조한 비교예 1 및 비교예 2의 산소전달입자도 소성온도 1400℃에서 마모지수 10% 이하의 고강도 특성을 나타내었으며 상업용 유동층 공정에 적합한 물성을 갖추고 있었다. 하지만 산소전달량은 실시예보다 훨씬 낮은 11.2 중량부 이하로 나타났다. The oxygen transfer particles of Comparative Examples 1 to 3 proposed in the prior art use NiO as the raw material of the active material. The oxygen transfer particles of Comparative Example 1 and Comparative Example 2 prepared using γ-alumina or α-alumina as a support material exhibited high strength characteristics with a wear index of less than 10% at a firing temperature of 1400 ° C. and had properties suitable for commercial fluidized bed processes . However, the amount of oxygen delivered was 11.2 parts by weight or less, which is much lower than in the Examples.
실시예 1 내지 6의 산소전달입자는 종래기술의 비교예 1 내지 2의 산소전달입자에 비해 30% 이상 높은 산소전달량을 보여주고 있다. 마그네슘알루미네이트를 지지체 원료로 사용하여 제조한 비교예 3의 산소전달입자는 소성온도 1500℃에서도 고강도 특성을 얻을 수 없었다.The oxygen transfer particles of Examples 1 to 6 show an oxygen transmission amount of 30% or more higher than that of the oxygen transfer particles of Comparative Examples 1 to 2 of the prior art. The oxygen delivery particles of Comparative Example 3 prepared using magnesium aluminate as a support material could not obtain high strength properties even at a sintering temperature of 1500 ° C.
한편 실시예의 활성물질 원료인 Ni(OH)2 대신 NiO를 활성물질 원료로 사용한 비교예 4와 비교예 5의 산소전달입자는 산소전달량이나 마모지수 등은 실시예 1과 실시예 2와 동등한 값을 나타내었으나 마모지수 5% 이하의 고강도 특성을 얻기 위해서는 실시예 1과 실시예 2에서보다 100℃ 더 높은 1400℃ 이상의 소성온도를 필요로 하였다. 특히 비교예 4는 모양이 중앙이 비어 있는 딤플 또는 도넛 형태로 성형되어 유동층 공정 적용에 부적합하였다. 딤플 또는 도넛 형태의 입자를 유동층 공정에 장기간 사용하면 구형에 비해 더 많은 입자 마모손실로 인해 입자 손실 보충량이 증가할 우려가 있다. TiO2를 첨가한 비교예 6 내지 8의 산소전달입자도 산소전달량이나 마모지수 등은 실시예 3 내지 6과 동등한 값을 나타내었으나 마모지수 5% 이하의 고강도 특성을 얻기 위해서는 실시예에서보다 200℃ 더 높은 1300℃이상의 소성온도가 필요하였다. On the other hand, in the oxygen transfer particles of Comparative Example 4 and Comparative Example 5 in which NiO was used as a raw material for the active material instead of Ni (OH) 2 as the raw material of the active materials of the Examples, the oxygen transfer amount and the wear index were equivalent to those of Example 1 and Example 2 It was found that a sintering temperature of 1400 ° C or more, which is 100 ° C higher than that of Example 1 and Example 2, was required in order to obtain a high strength property with a wear index of 5% or less. In particular, Comparative Example 4 was formed in the form of a dimple or a donut having a hollow shape at the center, which was unsuitable for fluidized bed process applications. When dimples or donut-shaped particles are used for a long time in a fluidized bed process, the amount of particle loss replenishment may increase due to more particle wear loss than spherical shape. The oxygen transfer particles of Comparative Examples 6 to 8 in which TiO 2 was added had the same values of oxygen transfer amount and wear index as those of Examples 3 to 6. However, in order to obtain a high strength characteristic of a wear index of 5% or less, A higher sintering temperature of 1300 DEG C or higher was required.
비교예 4와 비교예 7의 산소전달입자 산업용 현미경 사진을 도 2에 나타내었다. 이를 통해, 비교예 4 및 비교예 7의 산소전달입자는 모양이 딤플형태로 성형되어 유동층 공정에 적용하기에 부적합함을 알 수 있다. Industrial photomicrographs of oxygen transfer particles of Comparative Example 4 and Comparative Example 7 are shown in Fig. As a result, the oxygen transfer particles of Comparative Example 4 and Comparative Example 7 were formed into a dimpled shape and thus were not suitable for application to a fluidized bed process.
이상의 결과로부터 본 발명에서 제시하는 산소전달입자 원료조성물 및이를 사용한 산소전달입자 제조방법을 이용하여 케미컬루핑연소기술에서 연료를 효과적으로 연소시킬 수 있는 유동층 공정에 적합한 형태의 고강도 Ni계 산소전달입자를 1000℃ 내지 1250℃ 소성 온도에서도 제조할 수 있음을 보여주었다. 이러한 원료 조성물 및 제조 방법에 의한 산소전달입자는 대량제조가 용이하고 입자 성능향상에 따른 케미컬루핑연소 공정의 경제성 향상을 가져오므로 경쟁력 있는 기술이 될 수 있다. 표 3과 도 7에서 보는 바와 같이 본 발명에 따른 실시예 1 내지 6의 산소전달입자는 케미컬루핑연소기술의 유동층 공정에 적합한 물성 및 반응성을 지니고 있다. NiO와 다른지지체 원료를 사용하여 제조한 Ni계 산소전달입자에 비해 더 낮은 소성온도에서도 고강도 특성을 얻을 수 있어 제조비용을 낮출 수 있으며, 내마모도가 우수하여 유동층 공정 내에서 빠른 고체순환에 따른 마모에 의한 입자의 손실이 적게 발생하여 입자 보충량을 줄일 수 있다. 또한, 산소전달성능이 우수하여 입자 사용량을 상대적으로 적게 할 수 있어 공정을 단순화(compact)할 수 있으므로 경제적이다.From the above results, it can be seen that by using the oxygen transfer particle raw material composition of the present invention and the oxygen transfer particle production method using the same, high-strength Ni-based oxygen transfer particles suitable for a fluidized bed process capable of effectively burning fuel in chemical roofing combustion technology And can be produced even at a firing temperature of 1000 ° C to 1250 ° C. Oxygen transfer particles by the raw material composition and the production method can be a competitive technique because mass production is easy and economical efficiency of the chemical roofing combustion process is improved due to improvement of particle performance. As shown in Table 3 and FIG. 7, the oxygen transfer particles of Examples 1 to 6 according to the present invention have physical properties and reactivity suitable for the fluidized bed process of the chemical roofing combustion technique. It is possible to obtain high strength characteristics even at lower firing temperature than Ni-based oxygen transfer particles manufactured by using NiO and other support materials, thereby lowering the manufacturing cost. Also, since the wear resistance is excellent, the wear due to the rapid solid circulation in the fluidized bed process The amount of particle replenishment can be reduced. In addition, since the oxygen transfer performance is excellent, the amount of particles used can be relatively reduced, and the process can be made compact, which is economical.
이상의 결과로부터 본 발명에서 제시하는 산소전달입자 원료조성물 및 이를 사용한 산소전달입자 제조방법을 이용하여 케미컬루핑연소기술에서 연료를 효과적으로 연소시킬 수 있는 유동층 공정에 적합한 형태의 고성능 NiO계 산소전달입자를 제조할 수 있음을 보여주었다. 이러한 원료 조성물및 제조 방법에 의한 산소전달입자는 대량제조가 용이하고 입자 성능향상에 따른 입자 사용량 감소와 공정규모 축소로 케미컬루핑연소 공정의 경제성 향상을 가져오므로 경쟁력 있는 기술이 될 수 있다.From the above results, it can be seen that by using the oxygen transfer particle raw material composition of the present invention and the oxygen transfer particle production method using the same, high-performance NiO-based oxygen transfer particles suitable for a fluidized bed process capable of effectively burning fuel in chemical roofing combustion technology I can do it. Oxygen transfer particles by the raw material composition and the production method can be a competitive technique because they are easy to mass-produce, reduce the amount of particles used due to particle performance improvement, and reduce the scale of the process, thereby improving the economical efficiency of the chemical roofing combustion process.
이상에서 설명한 바와 같이, 본 발명의 구성 및 작용을 본 발명에 따른 바람직한 실시예를 기초로 설명하였으나, 본 발명은 특정 실시예에 한정되는 것은 아니며, 해당분야 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, The present invention can be variously modified and changed without departing from the spirit and scope of the present invention described in the claims.

Claims (22)

  1. 니켈 하이드록사이드; 및Nickel hydroxide; And
    세륨 옥사이드 또는 세륨 하이드록사이드; 를 포함하는 산소전달입자 제조용 원료 조성물.Cerium oxide or cerium hydroxide; Wherein the raw material composition for producing an oxygen-transferring particle comprises:
  2. 제1항에 있어서, The method according to claim 1,
    상기 산소전달입자 제조용 원료 조성물은 티타늄 옥사이드를 더 포함하는 산소전달입자 제조용 원료 조성물.The raw material composition for producing an oxygen-transferring particle further comprises titanium oxide.
  3. 제1항에 있어서, The method according to claim 1,
    상기 산소전달입자 제조용 원료 조성물은 The raw material composition for producing oxygen-
    니켈 하이드록사이드 약 55 중량% 내지 약 80 중량%; From about 55% to about 80% by weight of nickel hydroxide;
    세륨 옥사이드 또는 세륨 하이드록사이드 약 10 중량% 내지 약 45 중량%; 및From about 10% to about 45% by weight of cerium oxide or cerium hydroxide; And
    티타늄 옥사이드 약 0 중량% 내지 약 20 중량%; About 0 wt% to about 20 wt% of titanium oxide;
    를 포함하는 산소전달입자 제조용 원료 조성물.Wherein the raw material composition for producing an oxygen-transferring particle comprises:
  4. 제1항에 있어서,The method according to claim 1,
    상기 니켈 하이드록사이드는 평균입자 크기가 약 0 초과 내지 약 5 ㎛이고, 순도가 약 98% 이상인 산소전달입자 제조용 원료 조성물.Wherein the nickel hydroxide has an average particle size of greater than about 0 microns to about 5 microns and a purity of greater than about 98 percent.
  5. 제1항에 있어서, The method according to claim 1,
    상기 세륨 옥사이드 또는 세륨 하이드록사이드는 평균입자 크기가 약 0 초과 내지 약 5 ㎛이고, 순도가 약 98% 이상인 산소전달입자 제조용 원료 조성물.Wherein the cerium oxide or cerium hydroxide has an average particle size of greater than about 0 microns to about 5 microns and a purity of at least about 98 percent.
  6. 제1항에 있어서,The method according to claim 1,
    상기 티타늄 옥사이드는 평균입자 크기가 약 0 초과 내지 약 5 ㎛이고, 순도가 약 95% 이상인 산소전달입자 제조용 원료 조성물.Wherein the titanium oxide has an average particle size of greater than about 0 microns to about 5 microns and a purity of greater than or equal to about 95 percent.
  7. 제1항 내지 제6항 중 어느 한항에 따른 산소전달입자 제조용 원료 조성물로부터 형성되고, 니켈 옥사이드 및 세륨 옥사이드를 포함하는 산소전달입자.An oxygen-transferring particle formed from a raw material composition for producing oxygen-transferring particles according to any one of claims 1 to 6 and comprising nickel oxide and cerium oxide.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 산소전달입자는 마모시험기를 이용하여 ASTM D5757-95에 따라 유량 10.00 l/min (273.15 K, 1 bar)에서 5 시간 동안 마모시험한 후, 하기 식 1로 표시되는 마모지수가 20% 이하인 산소전달입자:The oxygen transfer particles were subjected to abrasion test for 5 hours at a flow rate of 10.00 l / min (273.15 K, 1 bar) according to ASTM D5757-95 using an abrasion tester, and then oxygen Transfer particles:
    [식 1] [Formula 1]
    AI(%) = [(W2)/(W1)]AI (%) = [(W2) / (W1)]
    상기 식 1에서, W1는 시료의 마모시험 전 g 단위 무게이고, W2는 시료의 마모시험이 실시된 5 시간 동안 포집된 미세입자의 g 단위 무게이다.In the above Equation 1, W1 is the unit weight in g before the abrasion test of the sample, and W2 is the unit weight in g of the fine particles collected for 5 hours after the abrasion test of the sample.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 산소전달입자는 형상이 비-블로홀(non-blowhole)인 구형이고, 평균 입자크기가 약 60 ㎛ 내지 약 150 ㎛이고, 입자크기분포는 약 30 ㎛ 내지 약 400 ㎛ 이며, 충진밀도가 약 1.5 g/mL 내지 약 4.0 g/mL 인 산소전달입자.Wherein the oxygen-transferring particles are spherical in shape, non-blowhole, have an average particle size of from about 60 占 퐉 to about 150 占 퐉, a particle size distribution of from about 30 占 퐉 to about 400 占 퐉, a packing density of from about 1.5 g / mL to about 4.0 g / mL.
  10. 제7항에 있어서, 8. The method of claim 7,
    상기 산소전달입자는 산소전달량이 전체 산소전달입자의 무게 중 약 10 중량% 내지 약 25 중량%인 산소전달입자. Wherein the oxygen transfer particles have an oxygen transfer amount of from about 10% to about 25% by weight of the total oxygen transfer particles.
  11. (A) 제1항 내지 제6항 중 어느 한 항의 산소전달입자 제조용 원료 조성물을 용매와 혼합하여 산소전달입자 제조용 슬러리를 제조하는 단계;(A) mixing the raw material composition for producing oxygen-transferring particles according to any one of claims 1 to 6 with a solvent to prepare a slurry for producing oxygen-transferring particles;
    (B) 상기 슬러리를 교반하여 균질화된 슬러리를 제조하는 단계;(B) stirring the slurry to produce a homogenized slurry;
    (C) 상기 슬러리를 분무 건조하여 고체 입자를 성형하는 단계; 및(C) spray drying the slurry to form solid particles; And
    (D) 상기 성형된 고체 입자를 건조 및 소성시켜 산소전달입자를 제조하는 단계;를 포함하는 산소전달입자의 제조 방법.(D) drying and firing the molded solid particles to produce oxygen-transferring particles.
  12. 제11항에 있어서, 12. The method of claim 11,
    상기 산소전달입자 제조용 슬러리를 제조하는 단계(A)에서 상기 산소전달입자 제조용 원료 조성물과 상기 용매는 약 15 내지 40 : 약 60 내지 85의 중량비로 혼합되고, 상기 용매는 물인 산소전달입자의 제조 방법. In the step (A) of producing the slurry for producing oxygen transfer particles, the raw material composition for producing oxygen transfer particles and the solvent are mixed at a weight ratio of about 15 to 40: about 60 to 85, and the solvent is water .
  13. 제11항에 있어서, 12. The method of claim 11,
    상기 산소전달입자 제조용 슬러리를 제조하는 단계(A)에서 슬러리는 분산제, 소포제 및 유기결합제 중 1종 이상의 첨가제를 추가로 포함하는 산소전달입자의 제조 방법.Wherein the slurry further comprises at least one additive selected from the group consisting of a dispersant, an antifoaming agent and an organic binder in the step (A) of producing the slurry for producing an oxygen-transferring particle.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 분산제는 음이온계 계면활성제, 양이온계 계면활성제, 양쪽성 계면활성제 및 비이온계 계면활성제 중 1종 이상을 포함하는 산소전달입자의 제조 방법.Wherein the dispersant comprises at least one of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  15. 제14항에 있어서,15. The method of claim 14,
    상기 음이온계 계면활성제는 폴리카르복실산염 및 폴리카르복실산아민염 중 1종 이상을 포함하는 산소전달입자의 제조 방법.Wherein the anionic surfactant comprises at least one of a polycarboxylic acid salt and a polycarboxylic acid amine salt.
  16. 제13항에 있어서,14. The method of claim 13,
    상기 소포제는 실리콘계 소포제, 금속비누계 소포제, 아마이드계 소포제, 폴리에테르계 소포제, 폴리에스테르계 소포제, 폴리글라이콜계 소포제 및 알코올계 소포제 중 1종 이상을 포함하는 산소전달입자의 제조 방법.Wherein the defoaming agent comprises at least one of a silicone-based defoaming agent, a metal soap-based defoaming agent, an amide-based defoaming agent, a polyether-based defoaming agent, a polyester-based defoaming agent, a polyglycol-based defoaming agent, and an alcohol-based defoaming agent.
  17. 제13항에 있어서,14. The method of claim 13,
    상기 유기 결합제는 폴리비닐알코올, 폴리에틸렌글라이콜 및 메틸셀룰로즈 중 1종 이상을 포함하는 산소전달입자의 제조 방법.Wherein the organic binder comprises at least one of polyvinyl alcohol, polyethylene glycol, and methyl cellulose.
  18. 제13항에 있어서, 14. The method of claim 13,
    상기 첨가제는 분산제, 소포제 및 유기결합제를 모두 포함하고, Wherein the additive comprises both a dispersant, a defoamer, and an organic binder,
    상기 첨가제는 산소전달입자 제조용 원료조성물 100 중량부에 대하여 분산제 약 0.01 중량부 내지 약 5.0 중량부, 소포제 약 0.01 중량부 내지 약 1.0 중량부 및 유기결합제 약 1.0 중량부 내지 약 5.0 중량부의 함량으로 첨가되는 산소전달입자의 제조 방법.The additive is added in an amount of about 0.01 to about 5.0 parts by weight of the dispersant, about 0.01 to about 1.0 part by weight of the defoaming agent, and about 1.0 to about 5.0 parts by weight of the organic binder, based on 100 parts by weight of the raw material composition for producing oxygen- By weight based on the total weight of the particles.
  19. 제11항에 있어서, 12. The method of claim 11,
    상기 슬러리를 교반하여 균질화된 슬러리를 제조하는 단계(B)는 교반 및 분쇄된 슬러리 중의 이물질을 제거하는 것을 더 포함하는 산소전달입자의 제조 방법. The step (B) of agitating the slurry to prepare a homogenized slurry further comprises removing impurities in the agitated and pulverized slurry.
  20. 제11항에 있어서, 12. The method of claim 11,
    상기 슬러리를 분무 건조하여 고체 입자를 성형하는 단계(C)는 상기 균질화된 슬러리를 분무 건조기에 투입한 후, 입구온도는 약 260℃ 내지 약 300℃, 출구온도는 약 90℃ 내지 약 150℃를 유지하면서 분무하여 고체 입자로 성형하는 것을 포함하는 산소전달입자의 제조 방법.(C) spraying and drying the slurry to form solid particles, the homogenized slurry is introduced into a spray drier, the inlet temperature is about 260 ° C to about 300 ° C, and the outlet temperature is about 90 ° C to about 150 ° C And forming the solid particles by spraying.
  21. 제11항에 있어서, 12. The method of claim 11,
    상기 성형된 고체 입자를 건조 및 소성시켜 산소전달입자를 제조하는 단계(D)는 성형된 고체 입자를 약 110℃ 내지 약 150℃로 약 2 시간 내지 약 24 시간 동안 건조하고, 고온 소성로에 투입하여 약 1℃/min 내지 약 5℃/min 의 속도로 약 1000℃ 내지 약 1350℃으로 승온하여 약 2 시간 내지 약 10 시간 동안 소성하는 것을 포함하는 산소전달입자의 제조 방법.The step (D) of producing the oxygen-transferring particles by drying and firing the molded solid particles comprises drying the molded solid particles at about 110 ° C to about 150 ° C for about 2 hours to about 24 hours, Lt; 0 &gt; C to about 1350 DEG C at a rate of about 1 DEG C / min to about 5 DEG C / min and calcining for about 2 hours to about 10 hours.
  22. 제7항에 따른 산소전달입자를 연료와 반응시켜 상기 산소전달입자를 환원시키고 연료를 연소시키는 단계, 및 상기 환원된 산소전달입자를 산소와 반응시켜 입자를 재생하는 단계를 포함하는 케미컬루핑연소 방법.Reacting the oxygen transfer particles according to claim 7 with a fuel to reduce the oxygen transfer particles and burning the fuel; and reacting the reduced oxygen transfer particles with oxygen to regenerate the particles. .
PCT/KR2017/015647 2017-10-17 2017-12-28 Material composition for preparing oxygen transfer particles, oxygen transfer particles prepared using same, and method for preparing oxygen transfer particles WO2019078413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0134906 2017-10-17
KR1020170134906A KR102000912B1 (en) 2017-10-17 2017-10-17 Raw material composition for oxygen carrier, oxygen carrier using the same and method of manufacturing the oxygen carrier

Publications (1)

Publication Number Publication Date
WO2019078413A1 true WO2019078413A1 (en) 2019-04-25

Family

ID=66173726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015647 WO2019078413A1 (en) 2017-10-17 2017-12-28 Material composition for preparing oxygen transfer particles, oxygen transfer particles prepared using same, and method for preparing oxygen transfer particles

Country Status (2)

Country Link
KR (1) KR102000912B1 (en)
WO (1) WO2019078413A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049489A1 (en) * 2005-07-29 2007-03-01 Thierry Becue Redox active mass for a chemical looping combustion process
KR20120013151A (en) * 2010-08-04 2012-02-14 한국전력공사 Oxygen carriers and manufacturing method thereof
JP2015025651A (en) * 2013-06-21 2015-02-05 東京瓦斯株式会社 Chemical loop combustion method, oxygen carrier and support thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359499B2 (en) * 2009-04-16 2013-12-04 住友金属鉱山株式会社 Composite nickel oxide powder material for solid oxide fuel cell, method for producing the same, and fuel electrode material using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049489A1 (en) * 2005-07-29 2007-03-01 Thierry Becue Redox active mass for a chemical looping combustion process
KR20120013151A (en) * 2010-08-04 2012-02-14 한국전력공사 Oxygen carriers and manufacturing method thereof
JP2015025651A (en) * 2013-06-21 2015-02-05 東京瓦斯株式会社 Chemical loop combustion method, oxygen carrier and support thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEDAYATI, ALI ET AL.: "Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 51, no. 39, 24 August 2012 (2012-08-24), pages 12796 - 12806, XP055597865, ISSN: 0888-5885, DOI: 10.1021/ie300168j *
ZHAO, HAIBO ET AL.: "Sol-Gel-Derived NiO/NiAl2O4 Oxygen Carriers for Chemical-Looping Combustion by Coal Char", ENERGY & FUELS, vol. 22, 2008, pages 898 - 905, XP055499044, DOI: doi:10.1021/ef7003859 *

Also Published As

Publication number Publication date
KR102000912B1 (en) 2019-07-17
KR20190043056A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2012043960A1 (en) Oxygen carrier particles and method for manufacturing same
WO2013048191A2 (en) Carbon dioxide absorbent, and preparation method thereof
WO2015046715A1 (en) Solid carbon dioxide absorbent composition and solid carbon dioxide absorbent containing same
WO2012033250A1 (en) Carbon dioxide absorbent and preparation method thereof
WO2013176358A1 (en) Method for manufacturing alumina-based abrasive grains for abrasive material, and alumina-based abrasive grains for abrasive material manufactured thereby
WO2012043904A1 (en) Hybrid particle for fluidized bed sorption-enhanced water gas shift reaction process and method for preparing same
JP2002145659A (en) Method for producing aluminum titanate based sintered compact
WO2012043905A1 (en) Catalyst for sorption enhanced water gas shift and preparation method thereof
WO2012018156A1 (en) Oxygen carrier and method for manufacturing same
WO2012036336A1 (en) Desulfurizing agent and preparation method thereof
WO2020004751A1 (en) Raw material composition for manufacturing oxygen transfer particles, oxygen transfer particles manufactured using same, and manufacturing method for oxygen transfer particles
WO2018056766A1 (en) Raw material composition for preparing oxygen carrier particles, oxygen carrier particles prepared by using same, and method for preparing oxygen carrier particles
WO2019078413A1 (en) Material composition for preparing oxygen transfer particles, oxygen transfer particles prepared using same, and method for preparing oxygen transfer particles
KR20180033015A (en) Raw material composition for oxygen carrier, oxygen carrier using the same and method of manufacturing the oxygen carrier
CN109020504A (en) A kind of magnesium silicon carbide brick and its production method
WO2011052828A1 (en) Zinc-based desulfurizing agent formed by spray drying method, and preparation method thereof
KR20130035642A (en) Oxygen carriers and manufacturing method thereof
KR101919300B1 (en) Raw material composition for oxygen carrier, oxygen carrier using the same and method of manufacturing the oxygen carrier
WO2014175519A1 (en) Ceramic ink composition for inkjet printing and preparation method therefor
CN109020570B (en) Chromium oxide refractory material and preparation method thereof
KR101191086B1 (en) Zinc oxide-based desulfurization sorbent prepared by spay-drying method and method for producting thereof
JP2000302536A (en) Production of sintered lime having high density and hydrating resistance
KR20240030641A (en) A composition for oxygen carrier material, oxygen carrier using the same and manufacturing method thereof
WO2023095954A1 (en) Black alumina sintered body and method for manufacturing same
WO2022075588A1 (en) Oxygen carrier particles having metal oxide-perovskite core-shell structure and chemical-looping water/carbon dioxide thermochemical decomposition process using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929049

Country of ref document: EP

Kind code of ref document: A1