WO2012018156A1 - Oxygen carrier and method for manufacturing same - Google Patents

Oxygen carrier and method for manufacturing same Download PDF

Info

Publication number
WO2012018156A1
WO2012018156A1 PCT/KR2010/006673 KR2010006673W WO2012018156A1 WO 2012018156 A1 WO2012018156 A1 WO 2012018156A1 KR 2010006673 W KR2010006673 W KR 2010006673W WO 2012018156 A1 WO2012018156 A1 WO 2012018156A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen donor
donor particles
particles
weight
oxygen
Prior art date
Application number
PCT/KR2010/006673
Other languages
French (fr)
Korean (ko)
Inventor
류청걸
백점인
류정호
이중범
엄태형
김경숙
양석란
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2012018156A1 publication Critical patent/WO2012018156A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/10001Use of special materials for the fluidized bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an oxygen donor particle and a method for producing the same.
  • Thermal power plants are the largest source of anthropogenic carbon dioxide emissions.
  • CCS carbon dioxide capture and storage
  • Chemical looping combustion (CLC) technology is attracting attention as a technology that can separate CO 2 source without degrading power generation efficiency. Since the medium-circulating gas combustion technology burns fuel with oxygen contained in metal oxides instead of air, the gas discharged after combustion of the fuel includes only water vapor and CO 2 . Therefore, when only the removal of condensed water vapor exhaust gas is possible because the CO 2 source separated, leaving the CO 2.
  • Media circulating gas combustion technology uses oxygen donor particles as the oxygen delivery medium. In the medium-circulating gas combustion process, a fluidized bed reactor (reduction reactor) and a reduced oxygen donor particle receive oxygen from the air in which oxygen contained in the oxygen donor particle is delivered to the fuel while the oxygen donor particle is reduced.
  • a circulating fluidized-bed process is used in which a fluidized bed reactor (oxidation reactor) in which an oxidizing reaction takes place is composed of a combination connected to each other.
  • the oxygen donor particles must satisfy various conditions suitable for the fluidized bed process characteristics.
  • it should have a pore structure that is advantageous for the fluidized bed process, that is, sufficient strength, shape suitable for flow, packing density or packing density, average particle size, particle size distribution and diffusion of the reaction gas.
  • it has a high oxygen transfer capacity in terms of reactivity so that it can supply enough oxygen for combustion of fuel while it passes through the fuel reactor.
  • Oxygen donor particles can also be used for media circulation reforming.
  • the medium circulation reforming is a technique for producing hydrogen from a fuel by using oxygen exchange characteristics of oxygen donor particles, and may use a circulating fluidized bed process.
  • Oxygen donor particles that use nickel oxide (NiO) as a metal oxide that exchanges oxygen are formed by impregnation, coprecipitation, and raw materials mixed with water, kneaded, dried, calcined and ground. Physical mixing methods and freeze granulation methods for forming particles are mainly used.
  • the oxygen donor particles prepared by these methods are not suitable for the fluidized bed process, such as the shape after filling, the filling density, particle size and strength, or the NiO content is low, or is not suitable for mass production.
  • Spray-drying method has been used as a method for producing large quantities of oxygen donor particles having suitable physical properties for fluidized bed process.
  • a manufacturing process for making the slurry to have homogeneous and stable fluidity characteristics is very important.
  • Incorrect control of the slurry properties creates particles of elliptical, donut, and grooved shapes rather than spherical shape, which causes large particle wear loss in the fluidized bed process.
  • Oxygen donor particles produced by the spray drying method shown in the literature is a significant portion of the prepared particles are shown in the form of doughnut or grooved, there is a need for improvement.
  • Ni-based oxygen donor particles are composed of an active material NiO and a support.
  • the support serves to increase the dispersion of NiO, to impart strength to the particles, and to suppress sintering of NiO, which may occur during the calcination process and the circulating combustion process operated at high temperature.
  • the reactivity and physical properties of the final oxygen donor particles are different.
  • alumina Al 2 O 3
  • oxygen donor particles of high strength can be obtained.
  • alumina is mainly used as the support.
  • NiO nickel aluminate
  • Conventional techniques for NiO oxygen donor particles include structurally stable forms of alpha alumina ( ⁇ -Al 2 O 3 ), nickel aluminate (NiAl 2 O 4 ), magnesium aluminate ( MgAl 2 O 4 ) is mainly used as a support material.
  • alpha alumina ( ⁇ -Al 2 O 3 ) and magnesium aluminate (MgAl 2 O 3 ) were used as a support.
  • the support was structurally stable, so that the spray-molded particles were fired at a high temperature of 1400 ° C. or more to obtain the strength required for the fluidized bed process application.
  • the firing cost also increases due to high temperature firing. Since high temperature firing increases the production cost of the particles when producing a large amount of oxygen donor particles, it is necessary to lower the firing temperature necessary to obtain the strength required in the fluidized bed process.
  • magnesia and alumina as a support for oxygen donor particles, it is possible to provide oxygen donor particles having excellent reactivity with physical properties such as strength even at low firing temperatures, and excellent reactivity.
  • the present invention is an active material including a metal oxide
  • It relates to an oxygen donor particle having a support comprising gamma alumina and magnesia.
  • the present invention also relates to a slurry composition in which a solid raw material comprising a metal oxide, gamma alumina and magnesia is mixed in a solvent.
  • the present invention comprises the steps of (A) mixing a solid material comprising a metal oxide, gamma alumina and magnesia with a solvent; (B) preparing a homogenized slurry; (C) spray drying the slurry to form oxygen donor particles; And
  • (D) a method of producing oxygen donor particles comprising the step of dry firing the molded oxygen donor particles to produce the final oxygen donor particles.
  • the present invention comprises the steps of reacting the oxygen donor particles including a metal oxide supported on a support including gamma alumina and magnesia with gaseous fuel to reduce the oxygen donor particles and to burn fuel gas;
  • It relates to a medium-circulating gas combustion method comprising the step of reacting the reduced oxygen donor particles with oxygen to oxidize.
  • the present invention comprises a reduction reactor for reacting oxygen donor particles with gaseous fuel to reduce the oxygen donor particles and burn fuel gas; And a oxidation reactor for reacting the reduced oxygen donor particles with oxygen to oxidize them.
  • the oxygen donor particle relates to a medium-circulating gas combustion device including a metal oxide supported on a support including gamma alumina and magnesia.
  • magnesia and alumina as a support for oxygen donor particles, even at low firing temperatures, physical properties such as strength can be provided for fluidized bed processes, and oxygen donor particles having excellent reactivity can be provided.
  • FIG. 1 is a process chart showing a process for preparing oxygen donor particles using a mixture of gamma alumina ( ⁇ -Al 2 O 3 ) and magnesia (MgO) according to the present invention as a support material.
  • FIG. 2 is a process chart showing a process of preparing a homogenized slurry after mixing a solid raw material in water.
  • FIG. 3 is a process chart showing a process of forming oxygen donor particles by spray drying the slurry.
  • Figure 4 is a process diagram showing a process for producing the final oxygen donor particles by dry firing the oxygen donor particles formed by the spray drying method.
  • FIG. 6 is a basic conceptual view of a medium purifying gas combustion apparatus.
  • the present invention is an active material including a metal oxide
  • It relates to an oxygen donor particle having a support comprising gamma alumina and magnesia.
  • Oxygen donor particles comprising gamma alumina and magnesia according to the present invention may have a shape suitable for a circulating fluidized-bed process, particle size, particle size distribution, packing density, and oxygen transfer ability. It can be produced at a lower firing temperature than the conventional firing temperature.
  • the shape of the oxygen donor particles of the present invention may be spherical. If the shape is not spherical but elliptical, donut-shaped or grooved, the wear loss of the particles increases.
  • the average particle size of the oxygen donor particles of the present invention is not particularly limited, and may be, for example, 50 ⁇ m to 150 ⁇ m.
  • the particle size distribution of the oxygen donor particles is not particularly limited, and may be, for example, 30 ⁇ m to 400 ⁇ m.
  • the packing density of the oxygen donor particles is not particularly limited, and may be, for example, 1.0 g / mL to 3.0 g / mL.
  • the specific surface area (BET) of the oxygen donor particles is not particularly limited, and may be, for example, 0.1 m 2 / g to 100 m 2 / g.
  • the wear resistance is represented by the wear index (AI), which means that the lower the wear index is the better the wear resistance.
  • AI wear index
  • the wear resistance of the oxygen donor particles is not particularly limited, and may be, for example, 40% or less. When the wear resistance exceeds 40%, a lot of fine powder is generated, which makes it difficult to use the circulating fluidized bed process.
  • the lower limit of the wear resistance is not particularly limited and is preferably 1% or more.
  • the oxygen transfer capacity of the oxygen donor particles is not particularly limited, for example, may be 5 wt% to 17 wt%.
  • Oxygen donor particles according to the present invention may include an active material and a support.
  • the active material means a material capable of delivering oxygen to fuel and receiving oxygen from air or water vapor again.
  • the type of the active material is not particularly limited and may be, for example, a metal oxide.
  • the metal oxides include nickel oxides such as nickel oxide (NiO) and manganese oxides such as manganese oxide (MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 ).
  • NiO nickel oxide
  • MnO 2 , Mn 2 O 3 , Mn 3 O 4 manganese oxide
  • the content of the active substance is not particularly limited.
  • the active substance may be included in an amount of 50 parts by weight to 80 parts by weight with respect to the oxygen donor particles, and preferably may be included in an amount of 60 parts by weight to 70 parts by weight. .
  • the support included in the oxygen donor particles of the present invention supports the active material to be dispersed evenly throughout the particles, provides a pore structure necessary for diffusion of the reaction gas, and provides the oxygen donor particles with sufficient strength required in the fluidized bed process after firing.
  • the support may simultaneously serve as a binder that gives strength to the oxygen donor particles while binding to each other during the function of supporting the active material and firing.
  • metals may be prevented from agglomerating with each other while repeating a redox cycle, and the gas before and after the reaction may serve to make a passage to facilitate the ingress and diffusion (diffusion) from the outside of the particles to the active material.
  • the type of the support is not particularly limited.
  • ceramics may be used, and gamma alumina ( ⁇ -Al 2 O 3 ) and magnesia (MgO) may be preferably used.
  • the gamma alumina ( ⁇ -Al 2 O 3 ) makes it possible to obtain oxygen donor particles of high strength.
  • the content of gamma alumina ( ⁇ -Al 2 O 3 ) is not particularly limited, and may be included, for example, in an amount of 10 parts by weight to 49 parts by weight with respect to the oxygen donor particles, preferably 20 parts by weight to It may be included in an amount of 40 parts by weight.
  • magnesia is used to increase the fuel conversion rate of the oxygen donor particles and to suppress the aggregation phenomenon between the particles.
  • the content of magnesia (MgO) is not particularly limited, and may be included, for example, in an amount of 1 to 20 parts by weight based on the oxygen donor particles.
  • the support that is gamma alumina and magnesia, is preferably used in an amount of 20 parts by weight to 50 parts by weight based on the oxygen donor particles.
  • the present invention also relates to a slurry composition in which a solid raw material comprising a metal oxide, gamma alumina and magnesia is mixed in a solvent.
  • the metal oxide, gamma alumina, and magnesia may use the aforementioned materials.
  • the content of each of the metal oxide, gamma alumina, and magnesia included in the solid raw material may use the aforementioned range.
  • the solvent in the present invention is not particularly limited, and water may be used, for example.
  • the content of the solid raw material in the present invention is not particularly limited, for example, 15 parts by weight to 50 parts by weight based on 100 parts by weight of the slurry composition may be used.
  • the slurry composition according to the present invention may further comprise at least one organic additive selected from the group consisting of a dispersant, an antifoaming agent and an organic binder.
  • a dispersant selected from the group consisting of a dispersant, an antifoaming agent and an organic binder.
  • an organic additive selected from the group consisting of a dispersant, an antifoaming agent and an organic binder.
  • the dispersant is used to suppress the phenomenon that the solid raw material is well mixed with water and aggregates with each other.
  • the type of dispersant is not particularly limited, and for example, anionic surfactant or nonionic surfactant can be used.
  • Specific examples of the anionic surfactant include poly carboxylate ammonium salts or poly carboxylate amine salts.
  • the content of the dispersant is not particularly limited, and for example, 0.01 part by weight to 10 parts by weight may be used based on 100 parts by weight of the solid raw material.
  • Antifoaming agent in the present invention can be used to suppress or remove the foam that may be generated during the production of the slurry.
  • the kind of the antifoaming agent is not particularly limited, and for example, silicone, metal soap, amide, polyether or alcohol may be used.
  • the content of the antifoaming agent is not particularly limited.
  • 0.001 part by weight to 1 part by weight based on 100 parts by weight of the solid raw material may be used.
  • the organic binder is used to impart plasticity and fluidity to the slurry and to maintain the shape of the particles during spray drying.
  • the organic binder may facilitate handling of the oxygen donor particles before drying and firing by imparting strength to the oxygen donor particles after molding.
  • the type of the organic binder is not particularly limited, and for example, polyvinylalcohols, polyethyleneglycols or methylcelluloses may be used.
  • the content of the organic binder is not particularly limited.
  • 0.5 parts by weight to 5 parts by weight may be used based on 100 parts by weight of the solid raw material.
  • the method for producing the oxygen donor particles according to the present invention is not particularly limited.
  • the oxygen donor particles may be prepared using a spray drying method.
  • Oxygen donor particles of the present invention comprises the steps of (A) mixing a solid material comprising a metal oxide, gamma alumina and magnesia with a solvent; (B) preparing a homogenized slurry; (C) spray drying the slurry to form oxygen donor particles; And
  • (D) may be prepared by a method comprising the step of dry firing the molded oxygen donor particles to produce the final oxygen donor particles.
  • Step (A) is a step of mixing a solid raw material with a solvent, the solid raw material including a metal oxide, gamma alumina and magnesia.
  • the metal oxide, gamma alumina, and magnesia may use the aforementioned materials.
  • the content of each of the metal oxide, gamma alumina, and magnesia included in the solid raw material may use the aforementioned range.
  • the kind of solvent used in the present invention is not particularly limited, and water may be preferably used.
  • the content of the solid raw material is not particularly limited, and may be, for example, 15 parts by weight to 50 parts by weight based on 100 parts by weight of the mixture (or the following slurry).
  • step (B) is a step of preparing a homogenized slurry of the mixture prepared by step (A), the step of adding a dispersant; Adding an antifoam; And
  • steps selected from adding an organic binder it is preferable to include all three steps.
  • the dispersant, the antifoaming agent, and the organic binder may be used in the above-mentioned kinds and contents.
  • the method may further include grinding the particles in the slurry.
  • the milling may be performed using a wet mill, and it is preferable to mill the particles in the slurry to several microns or less.
  • the particles pulverized by the above step are more homogeneously dispersed in the slurry, and the added dispersant suppresses the aggregation of the particles in the slurry, so that a homogeneous and stable slurry can be produced.
  • the grinding step may be repeated several times, and the flowability of the slurry may be adjusted by further adding a dispersant and an antifoaming agent between each grinding step.
  • an organic binder may be added to maintain the particle shape during spray drying.
  • the wet grinding process may be omitted.
  • Oxygen donor particle production method may further comprise the step of removing foreign matter in the prepared slurry.
  • the step of removing foreign matter in the prepared slurry Through the above step, it is possible to remove the foreign matter or agglomerated raw materials that may cause the nozzle clogging during spray molding. Removal of the foreign matter may be carried out through sieving.
  • Step (C) of the present invention is a step of molding the oxygen donor particles using a spray dryer of the slurry prepared by step (B).
  • the step may transfer the slurry prepared in step (B) to the spray dryer using a pump, and then spray the transferred slurry into the spray dryer to form oxygen donor particles.
  • the operating conditions of the spray dryer for molding the oxygen donor particles in the spray dryer may be applied to the operating conditions generally used in this field.
  • the spraying method of the slurry is not particularly limited, and for example, a countercurrent spraying method may be used in which the spray nozzle is sprayed in a direction opposite to the flow of drying air.
  • Inlet temperature of the spray dryer in the present invention is 260 °C to 300 °C, the outlet temperature may be 90 °C to 150 °C.
  • the particle size distribution of the oxygen donor particles prepared in the step is 30 ⁇ m to 303 ⁇ m.
  • Step (D) of the present invention is a step of producing a final oxygen donor particles by dry firing the molded oxygen donor particles.
  • step (D) the oxygen donor particles formed by step (C) are preliminarily dried and then calcined to produce final oxygen donor particles.
  • the preliminary drying may be performed by drying the molded oxygen donor particles in a reflux dryer at 110 ° C to 130 ° C for at least 2 hours.
  • the predrying is done in an air atmosphere.
  • the dried oxygen donor particles are placed in a high temperature kiln and the firing temperature is raised to 1100 ° C to 1300 ° C at a rate of 1 ° C / min to 5 ° C / min, and calcined for 2 to 10 hours.
  • the organic additives (dispersant, antifoaming agent and organic binder) introduced during the preparation of the slurry by the firing are burned, and the strength of the particles is improved by bonding between the raw materials.
  • the final formed oxygen donor particles through this step may deliver oxygen at 600 °C to 1400 °C, may have conditions suitable for fluidized bed reaction.
  • the present invention comprises the steps of reacting the oxygen donor particles including a metal oxide supported on a support including gamma alumina and magnesia with gaseous fuel to reduce the oxygen donor particles and to burn fuel gas;
  • It relates to a medium-circulating gas combustion method comprising the step of reacting the reduced oxygen donor particles with oxygen to oxidize.
  • the oxygen donor particles may use the oxygen donor particles described above.
  • the metal oxides of the oxygen donor particles are reduced to form metal particles and generate carbon dioxide and water.
  • the metal particles in the reduced oxygen donor particles react with oxygen, the metal particles are oxidized to form a metal oxide again.
  • the gaseous fuel used in the present invention is not particularly limited and may be, for example, one or more selected from the group consisting of methane, hydrogen, carbon monoxide, alkanes (C n H 2n + 2 ), LNG, and syngas.
  • the provision of oxygen to the reduced oxygen donor particles may be made through air.
  • the present invention also comprises a reduction reactor for reacting oxygen donor particles with gaseous fuel to reduce the oxygen donor particles and burn fuel gas; And a oxidation reactor for reacting the reduced oxygen donor particles with oxygen to oxidize them.
  • the oxygen donor particle relates to a medium-circulating gas combustion apparatus including a metal oxide supported on a support including gamma alumina and magnesia.
  • the oxygen donor particles of the present invention may use the oxygen donor particles described above.
  • the oxidation reactor and the reduction reactor may be composed of a combination connected to each other.
  • NiO nickel oxide
  • MgO magnesia
  • the preparation of the oxygen donor particles by adding a solid material to the water mixing step (S10), preparing a mixture of water and a solid material into a homogenized slurry through grinding and dispersion (S20) , Spray drying the prepared slurry to form oxygen donor particles (S30) and drying firing the molded oxygen donor particles to prepare final oxygen donor particles (S40).
  • Figure 2 of the present invention is a process chart showing a process for producing a mixture of a solid raw material and water into a slurry.
  • the preparation of the slurry is a step of mixing the solid material in water (S11), the step of mixing the water and the solid material by adding an organic additive (S21), by grinding and dispersing the mixed slurry It comprises a step of preparing a homogeneous and dispersed slurry (S22) and removing the foreign matter contained in the slurry (S23).
  • organic additive one or more selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be used, and preferably all may be used.
  • FIG. 3 is a process chart showing a process of forming oxygen donor particles by spray drying the slurry.
  • the step of spray drying the slurry to form oxygen donor particles includes transferring the slurry to the spray dryer (S31) and spraying the transferred slurry into the spray dryer to form the oxygen donor particles. Step S32 is made.
  • Figure 4 is a process diagram showing a process for producing the final oxygen donor particles by dry firing the oxygen donor particles formed by the spray drying method.
  • the molded oxygen donor particles are prepared as final oxygen donor particles through a preliminary drying process (S41), and then calcined (S42).
  • FIG. 6 is a basic conceptual view of a medium-circulating gas fuel device.
  • the metal oxide (MO) in the oxygen donor particles reacts with the gaseous fuel and is reduced to become metal particles (M). At this time, the gaseous fuel is burned.
  • the metal particles (M) in the reduced oxygen donor particles move to an oxidation reactor, and react with oxygen in the air in the oxidation reactor to be oxidized back to the metal oxide.
  • the oxidized metal oxide is circulated to a reduction reactor to repeat the above process.
  • Schemes 1 and 2 The reactions in the reduction reactor and the metal reactor are shown in Schemes 1 and 2 below.
  • Scheme 1 below is a reaction in a reduction reactor
  • Scheme 2 shows a reaction occurring in an oxidation reactor.
  • nickel oxide at least 98% pure, in powder form
  • gamma alumina at least 95% pure, specific surface area 150 m 2 / g
  • magnesia at least 98.2% pure, specific surface area 45 m 2 / g
  • a solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry.
  • the content of the solid raw material was about 40 parts by weight based on 100 parts by weight of the mixed slurry.
  • a dispersant anionic surfactant
  • an antifoaming agent metal soap system
  • the mixed slurry was ground three times in a high energy ball mill.
  • a polyethylene glycol-based organic binder was added and the third grinding was performed to prepare a stable and homogeneous colloidal slurry.
  • the viscosity of the slurry was 2800 cP, and the final slurry solid concentration was 35.8 parts by weight after removing the foreign matter by sieving the finished slurry.
  • Oxygen donor particles prepared by transferring the prepared colloid slurry to a spray dryer with a pump and spray drying are dried in an air atmosphere reflux dryer at 120 ° C. for 2 hours or more, and at a heating temperature of 5 ° C./min in an air atmosphere in a firing furnace at 1100. After raising the temperature to °C to 1,300 °C, firing for at least 4 hours to prepare oxygen donor particles. Before reaching the firing temperature, the mixture was maintained at isothermal temperature for about 1 hour at 200 ° C, 400 ° C, 500 ° C and 650 ° C.
  • Oxygen donor particles were prepared in the same manner as in Example 1, but the content and slurry properties of the components used in the preparation are shown in Table 1 below.
  • the shape of the oxygen donor particles was measured by SEM (JOEL JSM 6400) photograph.
  • Average particle size and particle size distribution of the oxygen donor particles were measured using a standard sieve according to ASTM E-11.
  • the packing density of the oxygen donor particles was measured using a tap density meter (Quantachrome Autotap) according to ASTM D 4164-88.
  • the specific surface area of the oxygen donor particles was measured using a specific surface area analyzer (Micromeritics, ASAP 2420).
  • the wear resistance of the oxygen donor particles was measured by a wear tester in accordance with ASTM D 5757-95.
  • the wear index (AI) was determined at 10 slpm (standard volume per minute) over 5 hours as described in the ASTM method above, and the wear index was expressed as the percentage of fines generated over 5 hours.
  • Oxygen transfer capacity of oxygen donor particles was evaluated using thermogravimetric analysis (TGA).
  • TGA thermogravimetric analysis
  • the composition of the reaction gas used for the reduction of the oxygen donor particles was 10 vol% CH 4 , 90 vol% CO 2 , and air was used as the reaction gas for oxidizing the reduced oxygen donor particles. 100% nitrogen was supplied between the oxidation and reduction reactions to prevent direct fuel and air contact in the reactor.
  • the sample amount of oxygen donor particles used in the experiment was about 30 mg.
  • the flow rate of each reaction gas was 150 std ml / min, and the oxygen transfer capacity was measured by repeating the oxidation / reduction reaction of the oxygen donor particles at least five times, where the oxygen transfer capacity was based on the NiO weight contained in the raw material.
  • the weight change obtained by subtracting the oxygen donor particle weight measured at the end of the reduction reaction of the oxygen donor particle at the given experimental conditions at the theoretical maximum oxygen donor particle weight may be completely oxidized.
  • Example 1 1200 rectangle 96 41.5-302.5 2.06 - 27.5 10.1 1300 88 41.5-302.5 2.49 0.85 5.2 8.7
  • Example 2 1100 rectangle 97 41.5-302.5 1.25 - 38.3 - 1200 94 41.5-302.5 2.02 - 28.3 10.4 1300 87 41.5-302.5 2.64 0.50 2.8 6.3
  • Example 3 1300 rectangle 91 41.5-302.5 2.60 0.16 4.1 12.7
  • Example 5 1100 rectangle 96 41.5-302.5 2.00 0.73 10.0 5.7 1300 95 41.5-302.5 2.39 0.12 0.6 - Comparative Example 1 1300 rectangle 111 49.0-302.5 1.78 1.71 70.2 - 1400 110 49
  • FIG. 5 is a SEM photograph of oxygen donor particles prepared according to an embodiment of the present invention, (B) shows examples of oxygen donor particles prepared by Example 2 and (C). As shown in FIG. 5, the prepared oxygen donor particles have a spherical shape.
  • Table 2 shows the physical properties of the NiO and Mn 3 O 4 oxygen donor particles prepared by the Examples and Comparative Examples, as shown in Table 2, NiO oxygen donor particle average particle size is 85 ⁇ m to 100 ⁇ m The particle size distribution is 41.5 ⁇ m to 302.5 ⁇ m.
  • the packing density is 1.3 g / ml to 2.8 g / ml, the specific surface area is 0.16 m 2 / g or more, the wear index is 60% or less, and the oxygen transfer capacity is 6 wt% or more.
  • Comparative Example 1 using a mixture of ⁇ -Al 2 O 3 and MgO as a support and Comparative Example 2 using MgAl 2 O 4 as the support were prepared according to the examples of oxygen produced by the example having a wear index of 50% or more at a firing temperature of 1300 ° C. Much weaker strength than donor particles. Therefore, the oxygen donor particles of Comparative Example 1 and Comparative Example 2 should be calcined at a temperature higher than 1300 ° C. in order to obtain higher strength. When the baking temperature is 1400 ° C in Comparative Example 2, the strength suitable for the fluidized bed process is shown.
  • the shape of the Mn 3 O 4 oxygen donor particles prepared in Example 5 is spherical, the average particle size is about 95 ⁇ m, and the particle size distribution is 41.5 ⁇ m to 302.5 ⁇ m.
  • the packing density is 2.0 g / ml to 2.5 g / ml
  • the specific surface area is 0.12 m 2 / g or more
  • the wear index is 10% or less
  • the oxygen transfer ability is 3 wt% or more.
  • Comparative Example 3 using MgAl 2 O 4 as the support shows a lower wear resistance at the same firing temperature as compared to the Mn 3 O 4 oxygen donor particles prepared in Example with a wear index of 27.2% at a firing temperature of 1300 °C.
  • the oxygen donor particles oxygen donor particles using gamma alumina and magnesia as support bodies
  • the examples can obtain stronger strength even at a lower firing temperature than the comparative example.
  • the oxygen donor particles according to the present invention is excellent in physical properties such as strength even at a low firing temperature, and can be preferably used in a fluidized bed process.

Abstract

The present invention relates to an oxygen carrier having a holder including magnesia and an active material having metallic oxide. The oxygen carrier of the present invention features excellent physical characteristics, such as intensity, even at a low firing temperature, and can be useful in fluidized bed processing.

Description

산소공여입자 및 그 제조방법Oxygen donor particle and its manufacturing method
본 발명은 산소공여입자 및 그 제조방법에 관한 것이다. The present invention relates to an oxygen donor particle and a method for producing the same.
대기 중 이산화탄소 농도의 증가에 따른 온실효과로 인해 지구의 평균기온이 상승하면서 기후변화의 피해가 지속적으로 나타나고 있다. 화력발전소는 인위적 이산화탄소 배출이 가장 많은 고정 배출원이다.Due to the greenhouse effect of increasing atmospheric CO2 concentrations, the global average temperature has risen, causing damage to climate change. Thermal power plants are the largest source of anthropogenic carbon dioxide emissions.
화력발전소에서의 이산화탄소 배출 저감은 이산화탄소 포집 및 저장(Carbon Dioxide Capture and Storage: CCS) 기술을 통해 달성할 수 있다. 하지만 CCS 기술을 발전소에 적용할 경우 발전효율이 감소되고, 이에 따라 발전원가가 상승되는 문제점이 생긴다. 따라서 발전효율의 감소를 최소화하고, CO2 포집 비용을 낮추기 위한 새로 신기술이 요구되고 있다. Reduction of carbon dioxide emissions from thermal power plants can be achieved through carbon dioxide capture and storage (CCS) technology. However, when CCS technology is applied to power plants, power generation efficiency is reduced, resulting in an increase in power generation costs. Therefore, new technologies are required to minimize the reduction of power generation efficiency and to lower the cost of CO 2 capture.
매체순환식 가스연소(CLC, chemical looping combustion)기술은 발전효율의 저하없이 CO2를 원천분리할 수 있는 기술로 주목 받고 있다. 상기 매체순환식 가스연소 기술은 공기대신 금속 산화물에 포함된 산소로 연료를 연소시키므로, 연료의 연소 후 배출되는 가스에는 수증기와 CO2만 포함하게 된다. 따라서, 배출 가스 중 수증기만 응축 제거하면 CO2만 남게 되므로 CO2 원천분리가 가능하다. 매체순환식 가스연소 기술은 산소전달 매체로 산소공여입자를 사용한다. 매체순환식 가스연소 공정은 산소공여입자에 함유된 산소가 연료로 전달되면서 상기 산소공여입자는 환원(reduction)되는 반응이 일어나는 유동층 반응기(환원 반응기) 및 환원된 산소공여입자가 공기로부터 산소를 받아 산화(oxidation)되는 반응이 일어나는 유동층 반응기(산화 반응기)가 서로 연결된 조합으로 구성되는 순환유동층공정(circulating fluidized-bed process)을 사용한다. Chemical looping combustion (CLC) technology is attracting attention as a technology that can separate CO 2 source without degrading power generation efficiency. Since the medium-circulating gas combustion technology burns fuel with oxygen contained in metal oxides instead of air, the gas discharged after combustion of the fuel includes only water vapor and CO 2 . Therefore, when only the removal of condensed water vapor exhaust gas is possible because the CO 2 source separated, leaving the CO 2. Media circulating gas combustion technology uses oxygen donor particles as the oxygen delivery medium. In the medium-circulating gas combustion process, a fluidized bed reactor (reduction reactor) and a reduced oxygen donor particle receive oxygen from the air in which oxygen contained in the oxygen donor particle is delivered to the fuel while the oxygen donor particle is reduced. A circulating fluidized-bed process is used in which a fluidized bed reactor (oxidation reactor) in which an oxidizing reaction takes place is composed of a combination connected to each other.
따라서, 상기 산소공여입자는 유동층 공정특성에 적합한 여러 가지 조건을 만족시켜야 한다. 우선 유동층 공정에 적합한 물성, 즉 충분한 강도, 유동에 적합한 형상, 충진밀도(packing density 또는 tapped density), 평균 입자크기, 입자크기 분포 및 반응 가스의 확산에 유리한 기공 구조를 지녀야 한다. 또한 반응성 측면에서 높은 산소전달능력(oxygen transfer capacity)을 지니고 있어 연료의 연소에 필요한 충분한 산소를 연료가 연료반응기를 통과하는 동안 공급할 수 있어야 한다. Therefore, the oxygen donor particles must satisfy various conditions suitable for the fluidized bed process characteristics. First of all, it should have a pore structure that is advantageous for the fluidized bed process, that is, sufficient strength, shape suitable for flow, packing density or packing density, average particle size, particle size distribution and diffusion of the reaction gas. In addition, it has a high oxygen transfer capacity in terms of reactivity so that it can supply enough oxygen for combustion of fuel while it passes through the fuel reactor.
산소공여입자는 매체순환개질에도 이용될 수 있다. 상기 매체순환개질은 산소공여입자의 산소를 주고받는 특성을 이용하여 연료로부터 수소를 생산하는 기술이며, 순환유동층 공정을 사용할 수 있다.Oxygen donor particles can also be used for media circulation reforming. The medium circulation reforming is a technique for producing hydrogen from a fuel by using oxygen exchange characteristics of oxygen donor particles, and may use a circulating fluidized bed process.
산소를 주고받는 금속산화물로 산화니켈(NiO)을 사용하는 산소공여입자의 성형 방법으로 함침법(impregnation), 공침법 (coprecipitation), 원료물질을 물에 혼합하여 반죽하고 건조 및 소성한 후 분쇄하여 입자를 성형하는 물리적 혼합법 (physical mixing method) 및 동결 건조법 (freeze granulation) 등이 주로 이용되고 있다. 하지만 이들 방법들로 제조된 산소공여입자는 성형 후 형상을 비롯한 충진밀도, 입자크기 및 강도 등의 물성이 유동층 공정에 부적합하거나 또는 NiO의 함량이 낮아 산소전달량이 낮거나, 대량생산에 부적합하다. Oxygen donor particles that use nickel oxide (NiO) as a metal oxide that exchanges oxygen are formed by impregnation, coprecipitation, and raw materials mixed with water, kneaded, dried, calcined and ground. Physical mixing methods and freeze granulation methods for forming particles are mainly used. However, the oxygen donor particles prepared by these methods are not suitable for the fluidized bed process, such as the shape after filling, the filling density, particle size and strength, or the NiO content is low, or is not suitable for mass production.
유동층 공정에 적합한 물성을 갖는 산소공여입자를 대량으로 생산하기 위한 방법으로 분무건조법(spray-drying method)이 사용되고 있다. 원료를 물에 혼합한 슬러리를 노즐을 이용하여 분무하여 수십에서 수백 마이크론 크기의 입자 크기 분포를 갖는 구형의 입자로 성형하기 위해서는 슬러리를 균질하고 안정된 유동성 특성을 갖도록 하는 제조 과정이 매우 중요하다. 슬러리 특성 제어가 잘못된 경우 구형이 아닌 타원형이나 도우넛형, 홈이 파인 형태의 입자가 만들어져 유동층 공정 적용시 입자 마모손실이 크지는 원인이 된다. 문헌에 나타난 분무건조법으로 제조된 산소공여입자는 제조된 입자의 상당 부분이 도우넛형 또는 홈이 파인 형태를 보이고 있어 이에 대한 개선이 필요하다. Spray-drying method has been used as a method for producing large quantities of oxygen donor particles having suitable physical properties for fluidized bed process. In order to form a spherical particle having a particle size distribution of several tens to several hundred microns by spraying a slurry obtained by mixing a raw material with water using a nozzle, a manufacturing process for making the slurry to have homogeneous and stable fluidity characteristics is very important. Incorrect control of the slurry properties creates particles of elliptical, donut, and grooved shapes rather than spherical shape, which causes large particle wear loss in the fluidized bed process. Oxygen donor particles produced by the spray drying method shown in the literature is a significant portion of the prepared particles are shown in the form of doughnut or grooved, there is a need for improvement.
Ni계 산소공여입자는 활성물질인 NiO와 지지체로 구성된다. 지지체는 NiO의 분산도(dispersion)를 높이고, 입자에 강도를 부여하고, 소성 과정 및 고온에서 운전되는 매체순환연소 과정에서 발생할 수 NiO의 소결(Sintering)현상을 억제하는 역할을 한다. 지지체의 종류에 따라 최종 제조된 산소공여입자의 반응성과 물성은 차이를 나타낸다. 알루미나(Al2O3)를 NiO의 지지체로 사용하면, 높은 강도의 산소공여입자를 얻을 수 있어 Ni계 산소공여입자의 경우 지지체로 알루미나를 주로 사용하고 있다. Ni-based oxygen donor particles are composed of an active material NiO and a support. The support serves to increase the dispersion of NiO, to impart strength to the particles, and to suppress sintering of NiO, which may occur during the calcination process and the circulating combustion process operated at high temperature. Depending on the type of support, the reactivity and physical properties of the final oxygen donor particles are different. When alumina (Al 2 O 3 ) is used as the support for NiO, oxygen donor particles of high strength can be obtained. In the case of Ni-based oxygen donor particles, alumina is mainly used as the support.
분무 건조하여 성형된 소성 전 입자(Green body)는 강도 구현을 위해 소성 과정을 거치게 되며, 이때, NiO의 일부는 지지체와 강하게 상호작용하여 안정한 화합물을 형성하기 때문에 산소전달능력 감소를 초래한다. 일례로 NiO와 알루미나를 사용하는 경우, 소성과정에서 니켈알루미네이트(NiAl2O4)가 생성된다. NiO 산소공여입자에 대한 종래의 기술에서는 NiO와 지지체간의 상호작용을 최소화하기 위해 구조적으로 안정된 형태인 알파알루미나(α-Al2O3)나 니켈알루미네이트(NiAl2O4), 마그네슘알루미네이트(MgAl2O4)가 지지체원료로 주로 사용되고 있다.The green body, which is formed by spray drying, undergoes a sintering process for strength, and at this time, part of NiO strongly interacts with the support to form a stable compound, resulting in reduced oxygen transfer capacity. For example, when NiO and alumina are used, nickel aluminate (NiAl 2 O 4) is generated during the firing process. Conventional techniques for NiO oxygen donor particles include structurally stable forms of alpha alumina (α-Al 2 O 3 ), nickel aluminate (NiAl 2 O 4 ), magnesium aluminate ( MgAl 2 O 4 ) is mainly used as a support material.
마그네슘 성분을 포함하는 NiO 산소공여입자를 분무건조법으로 제조하는 종래의 기술에서도 알파알루미나(α-Al2O3)와 마그네슘알루미네이트(MgAl2O3)를 지지체로 사용하였다. 이 경우 지지체가 구조적으로 안정된 형태여서 유동층 공정 적용에 필요한 강도를 얻기 위해 분무 성형한 입자를 1400 ℃ 이상의 고온으로 소성하였다. 하지만 1400 ℃ 이상 고온 소성 시 소성 후 입자의 충진밀도가 높아져 유동화에 더 많은 에너지가 소모되며, 입자의 수축에 의해 비표면적이 작아지고 반응성이 떨어지는 문제점을 안고 있다. 또한 고온 소성으로 인해 소성비용도 상승한다. 대량의 산소공여입자 제조 시 고온 소성은 입자의 제조 비용을 높이기 때문에 유동층 공정에서 요구되는 강도를 얻는데 필요한 소성온도를 최대한 낮출 필요가 있다.In the conventional technique of preparing NiO oxygen donor particles including magnesium components by spray drying, alpha alumina (α-Al 2 O 3 ) and magnesium aluminate (MgAl 2 O 3 ) were used as a support. In this case, the support was structurally stable, so that the spray-molded particles were fired at a high temperature of 1400 ° C. or more to obtain the strength required for the fluidized bed process application. However, when firing at a high temperature of 1400 ℃ or higher, the packing density of the particles is increased after firing, and thus more energy is consumed in fluidization, and the specific surface area is reduced and the reactivity is decreased due to shrinkage of the particles. In addition, the firing cost also increases due to high temperature firing. Since high temperature firing increases the production cost of the particles when producing a large amount of oxygen donor particles, it is necessary to lower the firing temperature necessary to obtain the strength required in the fluidized bed process.
본 발명은 산소공여입자의 지지체로 마그네시아 및 알루미나를 사용함으로써, 낮은 소성온도에서도 강도 등의 물리적 특성이 순환유동층 공정에 적합하고, 반응성이 우수한 산소공여입자를 제공할 수 있다.According to the present invention, by using magnesia and alumina as a support for oxygen donor particles, it is possible to provide oxygen donor particles having excellent reactivity with physical properties such as strength even at low firing temperatures, and excellent reactivity.
본 발명은 금속 산화물을 포함하는 활성물질; 및The present invention is an active material including a metal oxide; And
감마알루미나 및 마그네시아를 포함하는 지지체를 가지는 산소공여입자에 관한 것이다. It relates to an oxygen donor particle having a support comprising gamma alumina and magnesia.
또한, 본 발명은 금속 산화물, 감마알루미나 및 마그네시아를 포함하는 고체원료가 용매에 혼합된 슬러리 조성물에 관한 것이다.The present invention also relates to a slurry composition in which a solid raw material comprising a metal oxide, gamma alumina and magnesia is mixed in a solvent.
또한, 본 발명은 (A) 금속 산화물, 감마알루미나 및 마그네시아를 포함하는 고체원료를 용매와 혼합하는 단계; (B) 균질화된 슬러리를 제조하는 단계; (C) 슬러리를 분무 건조하여 산소공여입자를 성형하는 단계; 및In addition, the present invention comprises the steps of (A) mixing a solid material comprising a metal oxide, gamma alumina and magnesia with a solvent; (B) preparing a homogenized slurry; (C) spray drying the slurry to form oxygen donor particles; And
(D) 성형된 산소공여입자를 건조 소성시켜 최종 산소공여입자를 제조하는 단계를 포함하는 산소공여입자의 제조방법에 관한 것이다.(D) a method of producing oxygen donor particles comprising the step of dry firing the molded oxygen donor particles to produce the final oxygen donor particles.
또한, 본 발명은 감마알루미나 및 마그네시아를 포함하는 지지체에 담지된 금속 산화물을 포함하는 산소공여입자를 기체연료와 반응시켜 상기 산소공여입자를 환원시키고 연료가스를 연소시키는 단계; 및 In addition, the present invention comprises the steps of reacting the oxygen donor particles including a metal oxide supported on a support including gamma alumina and magnesia with gaseous fuel to reduce the oxygen donor particles and to burn fuel gas; And
상기 환원된 산소공여입자를 산소와 반응시켜 산화시키는 단계를 포함하는 매체순환식 가스연소 방법에 관한 것이다. It relates to a medium-circulating gas combustion method comprising the step of reacting the reduced oxygen donor particles with oxygen to oxidize.
또한, 본 발명은 산소공여입자를 기체연료와 반응시켜 상기 산소공여입자를 환원시키고 연료가스를 연소시키는 환원반응기; 및 상기 환원된 산소공여입자를 산소와 반응시켜 산화시키는 산화반응기를 포함하는 매체순환식 가스 연료장치에 있어서,In addition, the present invention comprises a reduction reactor for reacting oxygen donor particles with gaseous fuel to reduce the oxygen donor particles and burn fuel gas; And a oxidation reactor for reacting the reduced oxygen donor particles with oxygen to oxidize them.
상기 산소공여입자는 감마알루미나 및 마그네시아를 포함하는 지지체에 담지된 금속 산화물을 포함하는 매체순환식 가스연소 장치에 관한 것이다. The oxygen donor particle relates to a medium-circulating gas combustion device including a metal oxide supported on a support including gamma alumina and magnesia.
본 발명은 산소공여입자의 지지체로 마그네시아 및 알루미나를 사용함으로써, 낮은 소성온도에서도 강도 등의 물리적 특성이 유동층 공정에 적합하고, 반응성이 우수한 산소공여입자를 제공할 수 있다.According to the present invention, by using magnesia and alumina as a support for oxygen donor particles, even at low firing temperatures, physical properties such as strength can be provided for fluidized bed processes, and oxygen donor particles having excellent reactivity can be provided.
도 1은 본 발명에 따른 감마알루미나(γ-Al2O3) 및 마그네시아(MgO)의 혼합물을 지지체 원료로 사용하는 산소공여입자를 제조하는 과정을 나타낸 공정도이다.1 is a process chart showing a process for preparing oxygen donor particles using a mixture of gamma alumina (γ-Al 2 O 3 ) and magnesia (MgO) according to the present invention as a support material.
도 2는 고체원료를 물에 혼합한 후 균질화된 슬러리로 제조하는 과정을 나타낸 공정도이다.2 is a process chart showing a process of preparing a homogenized slurry after mixing a solid raw material in water.
도 3은 슬러리를 분무건조하여 산소공여입자를 성형하는 과정을 나타낸 공정도이다.3 is a process chart showing a process of forming oxygen donor particles by spray drying the slurry.
도 4는 분무건조법으로 성형된 산소공여입자를 건조 소성시켜 최종 산소공여입자를 제조하는 과정을 나타낸 공정도이다.Figure 4 is a process diagram showing a process for producing the final oxygen donor particles by dry firing the oxygen donor particles formed by the spray drying method.
도 5는 본 발명에 따른 산소공여입자의 SEM 사진이다.5 is a SEM photograph of the oxygen donor particles according to the present invention.
도 6은 매체순화식 가스연소 장치의 기본 개념도이다.6 is a basic conceptual view of a medium purifying gas combustion apparatus.
본 발명은 금속 산화물을 포함하는 활성물질; 및The present invention is an active material including a metal oxide; And
감마알루미나 및 마그네시아를 포함하는 지지체를 가지는 산소공여입자에 관한 것이다.It relates to an oxygen donor particle having a support comprising gamma alumina and magnesia.
본 발명에 따른 감마알루미나 및 마그네시아를 지지체로 포함하는 산소공여입자는 순환유동층 공정(circulating fluidized-bed process)에 적합한 형상, 입자크기, 입자크기 분포, 충진밀도 및 산소전달능력 등을 가질 수 있으며, 기존의 소성온도보다 낮은 소성온도에서 제조될 수 있다. Oxygen donor particles comprising gamma alumina and magnesia according to the present invention may have a shape suitable for a circulating fluidized-bed process, particle size, particle size distribution, packing density, and oxygen transfer ability. It can be produced at a lower firing temperature than the conventional firing temperature.
본 발명의 산소공여입자의 형상은 구형일 수 있다. 상기 형상이 구형이 아닌 타원형, 도우넛 형 또는 홈이 파인 형태일 경우 입자의 마모손실이 커지게 된다. The shape of the oxygen donor particles of the present invention may be spherical. If the shape is not spherical but elliptical, donut-shaped or grooved, the wear loss of the particles increases.
본 발명의 산소공여입자의 평균 입자크기는 특별히 제한되지 않으며, 예를 들면, 50 ㎛ 내지 150㎛일 수 있다. The average particle size of the oxygen donor particles of the present invention is not particularly limited, and may be, for example, 50 μm to 150 μm.
본 발명에서 상기 산소공여입자의 입자크기 분포는 특별히 제한되지 않으며, 예를 들면, 30 ㎛ 내지 400㎛일 수 있다. In the present invention, the particle size distribution of the oxygen donor particles is not particularly limited, and may be, for example, 30 μm to 400 μm.
본 발명에서, 산소공여입자의 충진밀도는 특별히 제한되지 않으며, 예를 들면, 1.0 g/mL 내지 3.0 g/mL일 수 있다. In the present invention, the packing density of the oxygen donor particles is not particularly limited, and may be, for example, 1.0 g / mL to 3.0 g / mL.
본 발명에서, 산소공여입자의 비표면적(BET)은 특별히 제한되지 않으며, 예를 들면, 0.1 ㎡/g 내지 100 ㎡/g일 수 있다. In the present invention, the specific surface area (BET) of the oxygen donor particles is not particularly limited, and may be, for example, 0.1 m 2 / g to 100 m 2 / g.
본 발명에서, 내마모도는 마모지수(AI)로 표현되며, 상기 마모지수가 낮을수록 내마도도가 좋다는 것을 의미한다. 상기 산소공여입자의 내마모도는 특별히 제한되지 않으며, 예를 들면, 40%이하일 수 있다. 상기 내마모도가 40%를 초과하면, 미세분말 등이 많이 발생하여 순환유동층 공정 등에 사용하기 어렵다. 본 발명에서 상기 내마모도의 하한은 특별히 제한되지 않고, 1% 이상인 것이 좋다. In the present invention, the wear resistance is represented by the wear index (AI), which means that the lower the wear index is the better the wear resistance. The wear resistance of the oxygen donor particles is not particularly limited, and may be, for example, 40% or less. When the wear resistance exceeds 40%, a lot of fine powder is generated, which makes it difficult to use the circulating fluidized bed process. In the present invention, the lower limit of the wear resistance is not particularly limited and is preferably 1% or more.
또한, 본 발명에서, 산소공여입자의 산소전달능력은 특별히 제한되지 않으며, 예를 들면, 5 wt% 내지 17 wt% 일 수 있다. In addition, in the present invention, the oxygen transfer capacity of the oxygen donor particles is not particularly limited, for example, may be 5 wt% to 17 wt%.
이하, 본 발명에 따른 산소공여입자를 보다 자세하게 설명하도록 한다. Hereinafter, the oxygen donor particles according to the present invention will be described in more detail.
본 발명에 따른 산소공여입자는 활성물질 및 지지체를 포함할 수 있다. Oxygen donor particles according to the present invention may include an active material and a support.
상기 활성물질은 연료로 산소를 전달하고 공기나 수증기로부터 산소를 다시 받을 수 있는 물질을 의미한다. 본 발명에서 상기 활성물질의 종류는 특별히 제한되지 않으며, 예를 들면 금속 산화물일 수 있다. 금속 산화물의 구체적인 예로는, 산화니켈(NiO) 등의 니켈계 산화물 및 산화망간(MnO, MnO2, Mn2O3, Mn3O4) 등의 망간계 산화물을 들 수 있다. 본 발명에서는 활성물질로 산화니켈(NiO) 또는 산화망간(Mn3O4)을 사용하는 것이 바람직하다.The active material means a material capable of delivering oxygen to fuel and receiving oxygen from air or water vapor again. In the present invention, the type of the active material is not particularly limited and may be, for example, a metal oxide. Specific examples of the metal oxides include nickel oxides such as nickel oxide (NiO) and manganese oxides such as manganese oxide (MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 ). In the present invention, it is preferable to use nickel oxide (NiO) or manganese oxide (Mn 3 O 4 ) as the active material.
본 발명에서 활성물질의 함량은 특별히 제한되지 않으며, 예를 들면, 산소공여입자에 대하여 50 중량부 내지 80 중량부의 함량으로 포함될 수 있으며, 바람직하게는 60 중량부 내지 70 중량부의 함량으로 포함될 수 있다. In the present invention, the content of the active substance is not particularly limited. For example, the active substance may be included in an amount of 50 parts by weight to 80 parts by weight with respect to the oxygen donor particles, and preferably may be included in an amount of 60 parts by weight to 70 parts by weight. .
본 발명의 산소공여입자에 포함되는 지지체는 활성물질이 입자 전체에 고루 분산되도록 지지하고, 반응가스의 확산에 필요한 기공구조를 제공하며, 소성 후 산소공여입자에 유동층 공정에서 요구하는 충분한 강도를 제공해 줄 수 있다. 즉, 상기 지지체는 활성물질을 지지하는 기능과 소성 시 서로 결합하면서 산소공여입자에 강도를 주는 바인더로서의 역할을 동시에 할 수 있다. 또한, 고온에서 금속이 산화 환원 사이클을 반복하는 동안 서로 응집되는 현상을 억제하며, 반응 전후의 가스가 입자 외부에서 활성물질까지의 입출입(확산)을 원활하도록 통로를 만들어주는 역할을 할 수 있다.The support included in the oxygen donor particles of the present invention supports the active material to be dispersed evenly throughout the particles, provides a pore structure necessary for diffusion of the reaction gas, and provides the oxygen donor particles with sufficient strength required in the fluidized bed process after firing. Can give In other words, the support may simultaneously serve as a binder that gives strength to the oxygen donor particles while binding to each other during the function of supporting the active material and firing. In addition, at a high temperature, metals may be prevented from agglomerating with each other while repeating a redox cycle, and the gas before and after the reaction may serve to make a passage to facilitate the ingress and diffusion (diffusion) from the outside of the particles to the active material.
본 발명에서 상기 지지체의 종류는 특별히 제한되지 않으며, 예를 들면, 세라믹류를 사용할 수 있고, 바람직하게는 감마알루미나(γ-Al2O3) 및 마그네시아(MgO)를 사용할 수 있다.In the present invention, the type of the support is not particularly limited. For example, ceramics may be used, and gamma alumina (γ-Al 2 O 3 ) and magnesia (MgO) may be preferably used.
상기 감마알루미나(γ-Al2O3)는 높은 강도의 산소공여입자를 얻을 수 있게 한다. 본 발명에서 감마알루미나(γ-Al2O3)의 함량은 특별히 제한되지 않으며, 예를 들면, 산소공여입자에 대하여 10 중량부 내지 49 중량부의 함량으로 포함될 수 있으며, 바람직하게는 20 중량부 내지 40 중량부의 함량으로 포함될 수 있다. The gamma alumina (γ-Al 2 O 3 ) makes it possible to obtain oxygen donor particles of high strength. In the present invention, the content of gamma alumina (γ-Al 2 O 3 ) is not particularly limited, and may be included, for example, in an amount of 10 parts by weight to 49 parts by weight with respect to the oxygen donor particles, preferably 20 parts by weight to It may be included in an amount of 40 parts by weight.
본 발명에서 마그네시아(MgO)는 산소공여입자의 연료 전환율을 높이고 입자간의 응집현상을 억제하기 위해 사용 한다. 본 발명에서 마그네시아(MgO)의 함량은 특별히 제한되지 않으며, 예를 들면, 산소공여입자에 대하여 1 중량부 내지 20 중량부의 함량으로 포함될 수 있다. In the present invention, magnesia (MgO) is used to increase the fuel conversion rate of the oxygen donor particles and to suppress the aggregation phenomenon between the particles. In the present invention, the content of magnesia (MgO) is not particularly limited, and may be included, for example, in an amount of 1 to 20 parts by weight based on the oxygen donor particles.
본 발명에서 지지체 즉 감마알루미나 및 마그네시아는 산소공여입자에 대하여 20 중량부 내지 50 중량부의 함량으로 사용되는 것이 바람직하다. In the present invention, the support, that is gamma alumina and magnesia, is preferably used in an amount of 20 parts by weight to 50 parts by weight based on the oxygen donor particles.
본 발명은 또한, 금속 산화물, 감마알루미나 및 마그네시아를 포함하는 고체원료가 용매에 혼합된 슬러리 조성물에 관한 것이다.The present invention also relates to a slurry composition in which a solid raw material comprising a metal oxide, gamma alumina and magnesia is mixed in a solvent.
본 발명에서 금속 산화물, 감마알루미나 및 마그네시아는 앞에서 전술한 소재를 사용할 수 있다. 또한, 상기 고체원료에 포함되는 금속 산화물, 감마알루미나 및 마그네시아 각각의 함량은 앞에서 전술한 범위를 사용할 수 있다.In the present invention, the metal oxide, gamma alumina, and magnesia may use the aforementioned materials. In addition, the content of each of the metal oxide, gamma alumina, and magnesia included in the solid raw material may use the aforementioned range.
본 발명에서 용매는 특별히 제한되지 않으며, 예를 들면, 물을 사용할 수 있다. The solvent in the present invention is not particularly limited, and water may be used, for example.
또한, 본 발명에서 고체원료의 함량은 특별히 제한되지 않으며, 예를 들면, 슬러리 조성물 100 중량부에 대하여 15 중량부 내지 50 중량부를 사용할 수 있다. In addition, the content of the solid raw material in the present invention is not particularly limited, for example, 15 parts by weight to 50 parts by weight based on 100 parts by weight of the slurry composition may be used.
본 발명에 따른 슬러리 조성물은 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상의 유기첨가제를 추가로 포함할 수 있다. 본 발명에서는 상기 분산제, 소포제 및 유기결합제를 모두 사용하는 것이 좋다. The slurry composition according to the present invention may further comprise at least one organic additive selected from the group consisting of a dispersant, an antifoaming agent and an organic binder. In the present invention, it is preferable to use both the dispersant, the antifoaming agent and the organic binder.
본 발명에서 분산제는 고체원료가 물에 잘 섞이고, 서로 응집되는 현상을 억제하기 위해 사용된다. 분산제의 종류는 특별히 제한되지 않으며, 예를 들면, 음이온계 계면활성제(anionic surfactant) 또는 비이온계 계면활성제(nonionic surfactant)를 사용할 수 있다. 상기 음이온계 계면활성제의 구체적인 예로는 암모늄폴리카르복실산(Poly carboxylate ammonium salts) 또는 아민폴리카르복실산(Poly carboxylate amine salts) 등을 들 수 있다.In the present invention, the dispersant is used to suppress the phenomenon that the solid raw material is well mixed with water and aggregates with each other. The type of dispersant is not particularly limited, and for example, anionic surfactant or nonionic surfactant can be used. Specific examples of the anionic surfactant include poly carboxylate ammonium salts or poly carboxylate amine salts.
본 발명에서 상기 분산제의 함량은 특별히 제한되지 않으며, 예를 들면, 고체원료 100 중량부에 대하여 0.01 중량부 내지 10 중량부를 사용할 수 있다. In the present invention, the content of the dispersant is not particularly limited, and for example, 0.01 part by weight to 10 parts by weight may be used based on 100 parts by weight of the solid raw material.
본 발명에서 소포제는 슬러리의 제조 과정에서 발생될 수 있는 거품을 억제 또는 제거하기 위해 사용할 수 있다. 상기 소포제의 종류는 특별히 제한되지 않으며, 예를 들면, 실리콘계, 금속비누계, 아마이드계, 폴리에테르계 또는 알콜계 등을 사용할 수 있다. Antifoaming agent in the present invention can be used to suppress or remove the foam that may be generated during the production of the slurry. The kind of the antifoaming agent is not particularly limited, and for example, silicone, metal soap, amide, polyether or alcohol may be used.
본 발명에서 상기 소포제의 함량은 특별히 제한되지 않으며, 예를 들면, 고체원료 100 중량부에 대하여 0.001 중량부 내지 1 중량부를 사용할 수 있다.In the present invention, the content of the antifoaming agent is not particularly limited. For example, 0.001 part by weight to 1 part by weight based on 100 parts by weight of the solid raw material may be used.
본 발명에서 유기결합제는 슬러리에 가소성(plasticity) 및 유동성을 부여하고, 분무건조 시 입자의 형상을 유지하게 하기 위해 사용된다. 또한, 상기 유기결합제는 성형 후 산소공여입자에 강도를 부여함으로써 건조 및 소성 전에 산소공여입자의 취급을 용이하게 할 수 있다. 상기 유기결합제의 종류는 특별히 제한되지 않으며, 예를 들면, 폴리비닐알콜계(polyvinylalcohols), 폴리에틸렌글라이콜계 (polyethyleneglycols) 또는 메틸셀룰로즈계(methylcelluloses) 등을 사용할 수 있다. In the present invention, the organic binder is used to impart plasticity and fluidity to the slurry and to maintain the shape of the particles during spray drying. In addition, the organic binder may facilitate handling of the oxygen donor particles before drying and firing by imparting strength to the oxygen donor particles after molding. The type of the organic binder is not particularly limited, and for example, polyvinylalcohols, polyethyleneglycols or methylcelluloses may be used.
본 발명에서 상기 유기결합제의 함량은 특별히 제한되지 않으며, 예를 들면, 고체원료 100 중량부에 대하여 0.5 중량부 내지 5 중량부를 사용할 수 있다.In the present invention, the content of the organic binder is not particularly limited. For example, 0.5 parts by weight to 5 parts by weight may be used based on 100 parts by weight of the solid raw material.
본 발명에 따른 산소공여입자를 제조하는 방법은 특별히 제한되지 않는다. 본 발명에서는 분무건조방법을 이용하여 상기 산소공여입자를 제조할 수 있다.The method for producing the oxygen donor particles according to the present invention is not particularly limited. In the present invention, the oxygen donor particles may be prepared using a spray drying method.
상기 분무건조방법을 사용함으로써 유동층 공정에 적합한 물성을 가지는 산소공여입자를 대량으로 생산할 수 있다.By using the spray drying method it is possible to produce a large amount of oxygen donor particles having physical properties suitable for the fluidized bed process.
본 발명의 산소공여입자는 (A) 금속 산화물, 감마알루미나 및 마그네시아를 포함하는 고체원료를 용매와 혼합하는 단계; (B) 균질화된 슬러리를 제조하는 단계; (C) 슬러리를 분무 건조하여 산소공여입자를 성형하는 단계; 및Oxygen donor particles of the present invention comprises the steps of (A) mixing a solid material comprising a metal oxide, gamma alumina and magnesia with a solvent; (B) preparing a homogenized slurry; (C) spray drying the slurry to form oxygen donor particles; And
(D) 성형된 산소공여입자를 건조 소성시켜 최종 산소공여입자를 제조하는 단계를 포함하는 방법으로 제조될 수 있다. (D) may be prepared by a method comprising the step of dry firing the molded oxygen donor particles to produce the final oxygen donor particles.
단계 (A)는 고체원료를 용매와 혼합하는 단계로 상기 고체원료는 금속 산화물, 감마알루미나 및 마그네시아를 포함한다. 상기 금속 산화물, 감마알루미나 및 마그네시아는 앞에서 전술한 소재를 사용할 수 있다. 또한, 상기 고체원료에 포함되는 금속 산화물, 감마알루미나 및 마그네시아 각각의 함량은 앞에서 전술한 범위를 사용할 수 있다.Step (A) is a step of mixing a solid raw material with a solvent, the solid raw material including a metal oxide, gamma alumina and magnesia. The metal oxide, gamma alumina, and magnesia may use the aforementioned materials. In addition, the content of each of the metal oxide, gamma alumina, and magnesia included in the solid raw material may use the aforementioned range.
본 발명에서 사용되는 용매의 종류는 특별히 제한되지 않으며, 바람직하게는 물을 사용할 수 있다. The kind of solvent used in the present invention is not particularly limited, and water may be preferably used.
본 발명에서 고체원료의 함량은 특별히 제한되지 않으며, 예를 들면, 혼합물(또는 하기의 슬러리) 100 중량부에 대하여 15 중량부 내지 50 중량부일 수 있다. In the present invention, the content of the solid raw material is not particularly limited, and may be, for example, 15 parts by weight to 50 parts by weight based on 100 parts by weight of the mixture (or the following slurry).
본 발명에서 단계 (B)는 단계 (A)에 의해 제조된 혼합물을 균질화된 슬러리로 제조하는 단계로, 상기 단계는 분산제를 첨가하는 단계; 소포제를 첨가하는 단계; 및 In the present invention, step (B) is a step of preparing a homogenized slurry of the mixture prepared by step (A), the step of adding a dispersant; Adding an antifoam; And
유기결합제를 첨가하는 단계로부터 선택된 하나 이상의 단계를 추가로 포함할 수 있다. 본 발명에서는 상기 세 단계를 모두 포함하는 것이 바람직하다. 상기 유기첨가제(분산제, 소포제 및 유기결합제)를 사용함으로써 안정되고 균질화된 슬러리를 얻을 수 있다. It may further comprise one or more steps selected from adding an organic binder. In the present invention, it is preferable to include all three steps. By using the organic additives (dispersant, antifoaming agent and organic binder), a stable and homogenized slurry can be obtained.
상기 분산제, 소포제 및 유기결합제는 앞에서 전술한 종류 및 함량으로 사용될 수 있다. The dispersant, the antifoaming agent, and the organic binder may be used in the above-mentioned kinds and contents.
본 발명에서는 고체원료 및 용매를 혼합하여 슬러리를 제조한 뒤, 상기 슬러리 중의 입자를 분쇄하는 단계를 추가로 포함할 수 있다. 상기 분쇄는 습식 분쇄기를 사용하여 수행될 수 있으며, 슬러리 중의 입자를 수 마이크론(㎛) 이하로 분쇄하는 것이 좋다. 상기 단계에 의해 분쇄된 입자는 슬러리 내에 더욱 균질하게 분산되고, 첨가된 분산제에 의해 슬러리 내 입자의 응집이 억제되므로 균질하고 안정한 슬러리가 제조될 수 있다. In the present invention, after preparing a slurry by mixing a solid raw material and a solvent, the method may further include grinding the particles in the slurry. The milling may be performed using a wet mill, and it is preferable to mill the particles in the slurry to several microns or less. The particles pulverized by the above step are more homogeneously dispersed in the slurry, and the added dispersant suppresses the aggregation of the particles in the slurry, so that a homogeneous and stable slurry can be produced.
필요에 따라 상기 분쇄 단계는 수회 반복할 수 있으며, 각 분쇄 단계 사이에 분산제 및 소포제를 추가로 첨가하여 슬러리의 유동성을 조절할 수 있다. 또한, 유기결합제를 첨가하여 분무 건조 시 입자 형상을 유지하도록 할 수 있다. 한편, 고체원료 입자가 수 마이크론 이하이면 습식 분쇄과정을 생략할 수도 있다.If necessary, the grinding step may be repeated several times, and the flowability of the slurry may be adjusted by further adding a dispersant and an antifoaming agent between each grinding step. In addition, an organic binder may be added to maintain the particle shape during spray drying. On the other hand, if the raw material particles are several microns or less, the wet grinding process may be omitted.
본 발명에 따른 산소공여입자 제조방법은 제조된 슬러리의 이물질을 제거하는 단계를 추가로 포함할 수 있다. 상기 단계를 통하여, 분무 성형 시 노즐 막힘 등의 원인이 될 수 있는 이물질이나 덩어리진 원료를 제거할 수 있다. 상기 이물질의 제거는 체거름을 통해 수행될 수 있다. Oxygen donor particle production method according to the invention may further comprise the step of removing foreign matter in the prepared slurry. Through the above step, it is possible to remove the foreign matter or agglomerated raw materials that may cause the nozzle clogging during spray molding. Removal of the foreign matter may be carried out through sieving.
본 발명에 의해 제조된 최종 슬러리의 유동성에 대한 특별한 제한은 없으며, 펌프로 이송이 가능하다면 어떤 점도도 가능하다.There is no particular limitation on the flowability of the final slurry produced by the present invention, and any viscosity is possible if it can be transferred to a pump.
본 발명의 단계 (C)는 단계 (B)에 의해 제조된 슬러리를 분무 건조기를 사용하여 산소공여입자를 성형하는 단계이다. Step (C) of the present invention is a step of molding the oxygen donor particles using a spray dryer of the slurry prepared by step (B).
상기 단계는 단계 (B)에서 제조된 슬러리를 펌프를 이용해 분무 건조기로 이송시킨 뒤, 상기 이송된 슬러리를 분무 건조기 내로 분사하여 산소공여입자를 성형할 수 있다.The step may transfer the slurry prepared in step (B) to the spray dryer using a pump, and then spray the transferred slurry into the spray dryer to form oxygen donor particles.
본 발명에서 분무 건조기 내에서 산소공여입자를 성형하기 위한 분무 건조기의 운전조건은 이 분야에서 일반적으로 사용되는 운전조건을 적용할 수 있다. In the present invention, the operating conditions of the spray dryer for molding the oxygen donor particles in the spray dryer may be applied to the operating conditions generally used in this field.
또한, 본 발명에서 상기 슬러리의 분무방식은 특별히 제한되지 않으며, 예를 들면, 가압노즐을 사용하여 건조용 공기의 흐름과 반대 방향으로 분사하는 향류식 분무방식을 사용할 수 있다.In addition, in the present invention, the spraying method of the slurry is not particularly limited, and for example, a countercurrent spraying method may be used in which the spray nozzle is sprayed in a direction opposite to the flow of drying air.
본 발명에서 분무 건조기의 입구온도는 260℃ 내지 300℃이며, 출구온도는 90℃ 내지 150℃일 수 있다.Inlet temperature of the spray dryer in the present invention is 260 ℃ to 300 ℃, the outlet temperature may be 90 ℃ to 150 ℃.
상기 단계에서 제조되는 산소공여입자의 입자 크기 분포는 30 ㎛ 내지 303 ㎛인 것이 바람직하다.It is preferable that the particle size distribution of the oxygen donor particles prepared in the step is 30 μm to 303 μm.
본 발명의 단계 (D)는 성형된 산소공여입자를 건조 소성시켜 최종 산소공여입자를 제조하는 단계이다. Step (D) of the present invention is a step of producing a final oxygen donor particles by dry firing the molded oxygen donor particles.
상기 단계 (D)는 단계 (C)에 의해 성형된 산소공여입자를 예비 건조한 후, 소성시켜 최종 산소공여입자를 제조할 수 있다.In step (D), the oxygen donor particles formed by step (C) are preliminarily dried and then calcined to produce final oxygen donor particles.
상기 예비 건조는 성형된 산소공여입자를 110℃ 내지 130℃의 환류 건조기에서 2시간 이상 건조하여 수행할 수 있다. 상기 예비 건조는 공기 분위기에서 이루어 진다.The preliminary drying may be performed by drying the molded oxygen donor particles in a reflux dryer at 110 ° C to 130 ° C for at least 2 hours. The predrying is done in an air atmosphere.
상기 예비 건조가 완료되면, 건조된 산소공여입자를 고온 소성로에 넣고 1℃/min 내지 5℃/min의 속도로 소성 온도를 1100℃ 내지 1300℃ 까지 올리고, 2 시간 내지 10 시간 동안 소성시킨다. 상기 소성에 의해 슬러리의 제조 시 투입된 유기첨가제(분산제, 소포제 및 유기결합제)는 연소되고, 원료물질들 간의 결합이 이루어져 입자의 강도가 향상하게 된다.When the preliminary drying is completed, the dried oxygen donor particles are placed in a high temperature kiln and the firing temperature is raised to 1100 ° C to 1300 ° C at a rate of 1 ° C / min to 5 ° C / min, and calcined for 2 to 10 hours. The organic additives (dispersant, antifoaming agent and organic binder) introduced during the preparation of the slurry by the firing are burned, and the strength of the particles is improved by bonding between the raw materials.
상기 단계를 통해 최종 성형된 산소공여입자는 600℃ 내지 1400℃에서 산소를 전달할 수 있으며, 유동층 반응에 적합한 조건들을 가질 수 있다. The final formed oxygen donor particles through this step may deliver oxygen at 600 ℃ to 1400 ℃, may have conditions suitable for fluidized bed reaction.
또한, 본 발명은 감마알루미나 및 마그네시아를 포함하는 지지체에 담지된 금속 산화물을 포함하는 산소공여입자를 기체연료와 반응시켜 상기 산소공여입자를 환원시키고 연료가스를 연소시키는 단계; 및 In addition, the present invention comprises the steps of reacting the oxygen donor particles including a metal oxide supported on a support including gamma alumina and magnesia with gaseous fuel to reduce the oxygen donor particles and to burn fuel gas; And
상기 환원된 산소공여입자를 산소와 반응시켜 산화시키는 단계를 포함하는 매체순환식 가스연소 방법에 관한 것이다.It relates to a medium-circulating gas combustion method comprising the step of reacting the reduced oxygen donor particles with oxygen to oxidize.
여기서, 산소공여입자는 앞에서 전술한 산소공여입자를 사용할 수 있다. Here, the oxygen donor particles may use the oxygen donor particles described above.
산소공여입자를 기체연료와 반응시키면 산소공여입자의 금속 산화물은 환원되어 금속 입자를 형성하고, 이산화탄소와 물을 발생시킨다. 상기 환원된 산소공여입자 중의 금속 입자를 산소와 반응시키면 상기 금속 입자는 산화하여 다시 금속 산화물 형태를 이루게 된다. When the oxygen donor particles are reacted with the gaseous fuel, the metal oxides of the oxygen donor particles are reduced to form metal particles and generate carbon dioxide and water. When the metal particles in the reduced oxygen donor particles react with oxygen, the metal particles are oxidized to form a metal oxide again.
본 발명의 매체순환식 가스연소 방법에서는 상기와 같은 과정을 반복하게 된다.In the medium circulation gas combustion method of the present invention, the above process is repeated.
본 발명에서 사용되는 기체연료는 특별히 제한되지 않으며, 예를 들면, 메탄, 수소, 일산화탄소, 알칸(alkane, CnH2n+2), LNG 및 syngas 로 이루어진 그룹으로부터 선택된 하나 이상일 수 있다. The gaseous fuel used in the present invention is not particularly limited and may be, for example, one or more selected from the group consisting of methane, hydrogen, carbon monoxide, alkanes (C n H 2n + 2 ), LNG, and syngas.
또한, 환원된 산소공여입자에 산소의 제공은 공기를 통해 이루어 질 수 있다.In addition, the provision of oxygen to the reduced oxygen donor particles may be made through air.
본 발명은 또한, 산소공여입자를 기체연료와 반응시켜 상기 산소공여입자를 환원시키고 연료가스를 연소시키는 환원반응기; 및 상기 환원된 산소공여입자를 산소와 반응시켜 산화시키는 산화반응기를 포함하는 매체 순환식 가스 연료 장치에 있어서,The present invention also comprises a reduction reactor for reacting oxygen donor particles with gaseous fuel to reduce the oxygen donor particles and burn fuel gas; And a oxidation reactor for reacting the reduced oxygen donor particles with oxygen to oxidize them.
상기 산소공여입자는 감마알루미나 및 마그네시아를 포함하는 지지체에 담지된 금속 산화물을 포함하는 매체 순환식 가스 연소 장치에 관한 것이다.The oxygen donor particle relates to a medium-circulating gas combustion apparatus including a metal oxide supported on a support including gamma alumina and magnesia.
본 발명의 산소공여입자는 앞에서 전술한 산소공여입자를 사용할 수 있다. The oxygen donor particles of the present invention may use the oxygen donor particles described above.
본 발명에서 산화반응기 및 환원반응기는 서로 연결된 조합으로 구성될 수 있다.In the present invention, the oxidation reactor and the reduction reactor may be composed of a combination connected to each other.
이하, 본 발명의 일 예에 따른 산소공여입자의 제조방법을 첨부한 도면을 따라 상세하게 설명한다.Hereinafter, a method of manufacturing oxygen donor particles according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 예에 따른 감마알루미나(γ-Al2O3) 및 마그네시아(MgO)의 혼합물을 지지체 원료로 사용한 산화니켈(NiO) 산소공여입자를 제조하는 과정을 나타낸 공정도이다.1 is a process chart showing a process for preparing nickel oxide (NiO) oxygen donor particles using a mixture of gamma alumina (γ-Al 2 O 3 ) and magnesia (MgO) according to an embodiment of the present invention as a support material.
도 1에 나타난 바와 같이, 상기 산소공여입자의 제조는 고체원료를 물에 첨가하여 혼합하는 단계(S10), 물 및 고체원료의 혼합물을 분쇄와 분산을 통해 균질화된 슬러리로 제조하는 단계(S20), 제조된 슬러리를 분무 건조시켜 산소공여입자를 성형하는 단계(S30) 및 성형된 산소공여입자를 건조 소성시켜 최종 산소공여입자를 제조하는 단계(S40)를 포함한다.As shown in Figure 1, the preparation of the oxygen donor particles by adding a solid material to the water mixing step (S10), preparing a mixture of water and a solid material into a homogenized slurry through grinding and dispersion (S20) , Spray drying the prepared slurry to form oxygen donor particles (S30) and drying firing the molded oxygen donor particles to prepare final oxygen donor particles (S40).
본 발명의 도 2는 고체원료 및 물의 혼합물을 슬러리로 제조하는 과정을 나타낸 공정도이다.Figure 2 of the present invention is a process chart showing a process for producing a mixture of a solid raw material and water into a slurry.
도 2에 나타난 바와 같이, 슬러리의 제조는 고체원료를 물에 혼합하는 단계(S11), 유기첨가제를 첨가하여 물과 고체원료가 잘 혼합되도록 하는 단계(S21), 혼합된 슬러리를 분쇄 및 분산시켜 균질하고 분산된 슬러리를 제조하는 단계(S22) 및 슬러리에 포함된 이물질을 제거하는 단계(S23)로 이루어진다.As shown in Figure 2, the preparation of the slurry is a step of mixing the solid material in water (S11), the step of mixing the water and the solid material by adding an organic additive (S21), by grinding and dispersing the mixed slurry It comprises a step of preparing a homogeneous and dispersed slurry (S22) and removing the foreign matter contained in the slurry (S23).
여기서, 유기첨가제로는 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 모두를 사용할 수 있다. Here, as the organic additive, one or more selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be used, and preferably all may be used.
도 3은 슬러리를 분무건조하여 산소공여입자를 성형하는 과정을 나타낸 공정도이다.3 is a process chart showing a process of forming oxygen donor particles by spray drying the slurry.
도 3에 나타난 바와 같이, 슬러리를 분무건조하여 산소공여입자를 성형하는 단계(S30)는 슬러리를 분무 건조기로 이송하는 단계(S31) 및 이송된 슬러리를 분무 건조기 내로 분사하여 산소공여입자를 성형하는 단계(S32)로 이루어진다.As shown in FIG. 3, the step of spray drying the slurry to form oxygen donor particles (S30) includes transferring the slurry to the spray dryer (S31) and spraying the transferred slurry into the spray dryer to form the oxygen donor particles. Step S32 is made.
도 4는 분무건조법으로 성형된 산소공여입자를 건조 소성시켜 최종 산소공여입자를 제조하는 과정을 나타낸 공정도이다.Figure 4 is a process diagram showing a process for producing the final oxygen donor particles by dry firing the oxygen donor particles formed by the spray drying method.
도 4에 나타난 바와 같이, 성형된 산소공여입자는 예비 건조과정(S41)을 거친 후, 소성과정(S42)을 통해 최종 산소공여입자로 제조된다.As shown in FIG. 4, the molded oxygen donor particles are prepared as final oxygen donor particles through a preliminary drying process (S41), and then calcined (S42).
본 발명에서 도 6은 매체순환식 가스연료 장치의 기본 개념도이다.6 is a basic conceptual view of a medium-circulating gas fuel device.
상기에서는 기체연료를 메탄을 사용하였다.In the above gaseous fuel was used methane.
환원반응기에서는 산소공여입자 내의 금속 산화물(MO)은 기체연료와 반응하여 환원되고, 금속 입자(M)가 된다. 이 때, 기체연료는 연소된다.In the reduction reactor, the metal oxide (MO) in the oxygen donor particles reacts with the gaseous fuel and is reduced to become metal particles (M). At this time, the gaseous fuel is burned.
상기 환원된 산소공여입자 내의 금속 입자(M)는 산화반응기로 이동하고, 상기 산화반응기에서 공기 중의 산소와 반응하여 다시 금속 산화물로 산화된다. The metal particles (M) in the reduced oxygen donor particles move to an oxidation reactor, and react with oxygen in the air in the oxidation reactor to be oxidized back to the metal oxide.
상기 산화된 금속 산화물은 환원반응기로 순환되어 위의 과정을 반복하게 된다.The oxidized metal oxide is circulated to a reduction reactor to repeat the above process.
상기 환원반응기 및 금속반응기 내에서의 반응을 하기 반응식 1 및 2로 나타내었다. 하기 반응식 1은 환원반응기 내에서의 반응이며, 반응식 2는 산화반응기 내에서 일어나는 반응을 나타낸 것이다.The reactions in the reduction reactor and the metal reactor are shown in Schemes 1 and 2 below. Scheme 1 below is a reaction in a reduction reactor, and Scheme 2 shows a reaction occurring in an oxidation reactor.
<반응식 1><Scheme 1>
CH4 + 4MO → CO2 + 2H2O + 4MCH 4 + 4MO → CO 2 + 2H 2 O + 4M
<반응식 2><Scheme 2>
M + 1/2O2 → MOM + 1 / 2O 2 → MO
실시예Example
실시예 1Example 1
총 질량이 8 kg이 되도록 산화니켈(순도 98% 이상, 분말형태) 60 중량부, 감마알루미나(순도 95% 이상, 비표면적 150㎡/g) 24.3 중량부 및 마그네시아(순도 98.2% 이상, 비표면적 45㎡/g) 5.7 중량부를 혼합하여 고체원료를 제조하였다. 60 parts by weight of nickel oxide (at least 98% pure, in powder form), 2 parts by weight of gamma alumina (at least 95% pure, specific surface area 150 m 2 / g) and magnesia (at least 98.2% pure, specific surface area) 45 m 2 / g) 5.7 parts by weight was mixed to prepare a solid raw material.
물에 고체원료를 교반기로 교반하면서 첨가하여 혼합 슬러리를 제조하였다. 여기서, 혼합 슬러리 100 중량부에 대하여, 고체원료의 함량은 약 40 중량부였다. 이 과정에서 분산제(음이온계 계면활성제) 및 소포제(금속비누계)를 첨가하였다. 상기 혼합 슬러리를 3차례에 걸쳐 고에너지볼밀(High Energy Ball Mill)로 분쇄하였다. 상기 과정에서 2차 분쇄 후 폴리에틸렌글라이콜계의 유기결합제를 첨가하고 3차 분쇄를 진행하여 안정되고 균질한 유동성 콜로이드 슬러리(colloidal slurry)를 제조하였다. 이 때, 슬러리의 점도는 2800 cP이며, 분쇄를 마친 슬러리를 체거름을 통해 이물질을 제거하고 측정한 최종 슬러리 고체농도는 35.8 중량부였다.A solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry. Here, the content of the solid raw material was about 40 parts by weight based on 100 parts by weight of the mixed slurry. In this process, a dispersant (anionic surfactant) and an antifoaming agent (metal soap system) were added. The mixed slurry was ground three times in a high energy ball mill. In the above process, after the second grinding, a polyethylene glycol-based organic binder was added and the third grinding was performed to prepare a stable and homogeneous colloidal slurry. At this time, the viscosity of the slurry was 2800 cP, and the final slurry solid concentration was 35.8 parts by weight after removing the foreign matter by sieving the finished slurry.
상기 제조된 콜로이드 슬러리를 펌프로 분무건조기로 이송하고 분무 건조하여 제조한 산소공여입자를 120℃의 공기분위기 환류 건조기에서 2시간 이상 동안 건조하고, 소성로에서 공기 분위기에서 승온 속도 5 ℃/min으로 1100℃ 내지 1,300℃로 온도를 올린 후, 4시간 이상 소성하여 산소공여입자를 제조하였다. 소성온도에 도달하기 전 200℃, 400℃, 500℃ 및 650℃ 온도에서 각각 1시간 정도 등온으로 유지하였다. Oxygen donor particles prepared by transferring the prepared colloid slurry to a spray dryer with a pump and spray drying are dried in an air atmosphere reflux dryer at 120 ° C. for 2 hours or more, and at a heating temperature of 5 ° C./min in an air atmosphere in a firing furnace at 1100. After raising the temperature to ℃ to 1,300 ℃, firing for at least 4 hours to prepare oxygen donor particles. Before reaching the firing temperature, the mixture was maintained at isothermal temperature for about 1 hour at 200 ° C, 400 ° C, 500 ° C and 650 ° C.
상기 산소공여입자의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 1에 나타내었다.The content and slurry properties of the components used to prepare the oxygen donor particles are shown in Table 1 below.
실시예 2 내지 5 및 비교예 1 내지 3Examples 2 to 5 and Comparative Examples 1 to 3
실시예 1과 같은 방법으로 산소공여입자를 제조하되, 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 1에 나타내었다.Oxygen donor particles were prepared in the same manner as in Example 1, but the content and slurry properties of the components used in the preparation are shown in Table 1 below.
표 1
산소공여입자(Oxygen Carrier) 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1 비교예 2 빅교예 3
NiO, 중량부 60 60 70 70 0 70 70 0
Mn3O4, 중량부 0 0 0 0 70 0 0 70
γ-Al2O3, 중량부 24.3 28.6 25.8 21.6 21.6 0 0 0
α-Al2O3, 중량부 0 0 0 0 0 21.6 0 0
MgO, 중량부 5.7 11.4 4.2 8.4 8.4 8.4 0 0
MgAl2O4 중량부 0 0 0 0 0 0 30 30
총 고체 함량, 중량부 100 100 100 100 100 100 100 100
분산제, 중량부 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.3
소포제, 중량부 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2
유기결합제, 중량부 3.0 3.0 3.0 3.0 3.0 3.0 4.0 30
슬러리 함량, 중량부 35.8 35.9 35.5 40.0 33.1 54.4 60.4 41.4
슬러리 점도, cP 2,800 6,900 1,550 3,020 1,613 1,810 1,580 1,546
Table 1
Oxygen Carrier Example 1 Example 2 Example 3 Example 4 Example 5 Comparative Example 1 Comparative Example 2 Big Art 3
NiO, parts by weight 60 60 70 70 0 70 70 0
Mn 3 O 4 , parts by weight 0 0 0 0 70 0 0 70
γ-Al 2 O 3 , parts by weight 24.3 28.6 25.8 21.6 21.6 0 0 0
α-Al 2 O 3 , parts by weight 0 0 0 0 0 21.6 0 0
MgO, parts by weight 5.7 11.4 4.2 8.4 8.4 8.4 0 0
MgAl 2 O 4 parts by weight 0 0 0 0 0 0 30 30
Total solids content, parts by weight 100 100 100 100 100 100 100 100
Dispersant, parts by weight 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.3
Antifoam, weight part 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2
Organic binder, parts by weight 3.0 3.0 3.0 3.0 3.0 3.0 4.0 30
Slurry content, parts by weight 35.8 35.9 35.5 40.0 33.1 54.4 60.4 41.4
Slurry viscosity, cP 2,800 6,900 1,550 3,020 1,613 1,810 1,580 1,546
실험예Experimental Example
(1) 산소공여입자의 형상 측정(1) Measurement of shape of oxygen donor particles
산소공여입자의 형상은 SEM(JOEL JSM 6400) 사진을 이용하여 측정하였다.The shape of the oxygen donor particles was measured by SEM (JOEL JSM 6400) photograph.
(2) 평균 입자 크기 및 입자 크기 분포의 측정(2) measurement of average particle size and particle size distribution
산소공여입자의 평균 입자 크기 및 입자 크기 분포는 ASTM E-11에 따라 표준 체를 이용하여 측정하였다. Average particle size and particle size distribution of the oxygen donor particles were measured using a standard sieve according to ASTM E-11.
(3) 충진 밀도 측정 (3) filling density measurement
산소공여입자의 충진 밀도는 ASTM D 4164-88에 따라 탭(tap) 밀도계(Quantachrome Autotap)을 사용하여 측정하였다. The packing density of the oxygen donor particles was measured using a tap density meter (Quantachrome Autotap) according to ASTM D 4164-88.
(4) 비표면적(BET) 측정(4) Measurement of specific surface area (BET)
산소공여입자의 비표면적은 비표면적분석기(Micromeritics, ASAP 2420)를 사용하여 측정하였다.The specific surface area of the oxygen donor particles was measured using a specific surface area analyzer (Micromeritics, ASAP 2420).
(5) 내마모도(AI) 측정(5) Wear resistance (AI) measurement
산소공여입자의 내마모도는 ASTM D 5757-95에 따라 마모 시험기로 측정하였다. 마모 지수(AI)는 상기 ASTM 방법에 기재된 대로 5시간에 걸쳐 10 slpm (분당 표준 부피)에서 결정하였으며, 상기 마모 지수를 5시간에 걸쳐 발생된 미세분말(fine)의 비율로 나타냈다. The wear resistance of the oxygen donor particles was measured by a wear tester in accordance with ASTM D 5757-95. The wear index (AI) was determined at 10 slpm (standard volume per minute) over 5 hours as described in the ASTM method above, and the wear index was expressed as the percentage of fines generated over 5 hours.
고속 유동층 반응기에서 30% 미만, 나아가 버블링 유동층 반응기에서 60% 미만의 AI를 갖는 물질은 대기압에서도 충분히 사용 가능하고, 이 물질은 유동층 매체순환공정 및 매체순환개질 공정에서도 사용 가능하다. 마모지수(AI)가 낮을수록 벌크 입자의 내마모도는 향상한다.Materials with less than 30% AI in high speed fluidized bed reactors and even less than 60% in bubbling fluidized bed reactors are fully usable at atmospheric pressure and can also be used in fluidized bed media circulation and media circulation reforming processes. The lower the wear index (AI), the better the wear resistance of the bulk particles.
(6) 산소전달능력 측정(6) Oxygen Transport Capacity Measurement
산소공여입자의 산소전달능력(oxygen transfer capacity)은 열중량 분석법(thermogravimetric analysis, TGA)을 사용하여 평가하였다. 상기 산소공여입자의 환원반응에 사용한 반응가스의 조성은 10 vol% CH4, 90 vol% CO2였고, 환원된 산소공여입자를 산화시키기 위한 반응가스로는 공기를 사용하였다. 산화반응과 환원반응 사이에는 100% 질소를 공급하여 연료와 공기가 반응기 내에서 직접 접촉하지 않도록 하였다. 실험에 사용한 산소공여입자 샘플량은 약 30 mg이었다. 각 반응 가스의 유량은 150 std ml/분이었고, 산소공여입자의 산화/환원 반응을 최소 5회 이상 반복 실시하여 산소전달능력을 측정하였으며, 여기서 산소전달능력은 원료에 포함된 NiO 중량을 기준으로 산소공여입자가 완전히 산화되었을 때의 이론적인 최대 산소공여입자 무게에서 주어진 실험조건에서 산소공여입자의 환원반응이 종료되었을 때 측정된 산소공여입자 무게를 감하여 얻은 무게변화량을 산소공여입자가 완전히 산화되었을 때의 이론적인 최대 산소공여입자 무게로 나누어 무게백분율로 표시한 값을 의미한다.Oxygen transfer capacity of oxygen donor particles was evaluated using thermogravimetric analysis (TGA). The composition of the reaction gas used for the reduction of the oxygen donor particles was 10 vol% CH 4 , 90 vol% CO 2 , and air was used as the reaction gas for oxidizing the reduced oxygen donor particles. 100% nitrogen was supplied between the oxidation and reduction reactions to prevent direct fuel and air contact in the reactor. The sample amount of oxygen donor particles used in the experiment was about 30 mg. The flow rate of each reaction gas was 150 std ml / min, and the oxygen transfer capacity was measured by repeating the oxidation / reduction reaction of the oxygen donor particles at least five times, where the oxygen transfer capacity was based on the NiO weight contained in the raw material. When the oxygen donor particle is completely oxidized, the weight change obtained by subtracting the oxygen donor particle weight measured at the end of the reduction reaction of the oxygen donor particle at the given experimental conditions at the theoretical maximum oxygen donor particle weight may be completely oxidized. The theoretical maximum oxygen donor particle weight divided by the weight percentage.
상기 실시예 1 내지 4 및 비교예 1 내지 2의 물성 및 산소전달능력을 측정하여 측정된 결과를 하기 표 2에 나타냈다. The results measured by measuring the physical properties and oxygen transfer capacity of the Examples 1 to 4 and Comparative Examples 1 to 2 are shown in Table 2 below.
표 2
산소공여입자 소성온도/℃ 형상 평균입자크기/㎛ 입자크기분포 충진밀도,g/ml 비표면적(BET),m2/g 내마모도(AI),% 산소전달능력,wt%
실시예 1 1200 구형 96 41.5-302.5 2.06 - 27.5 10.1
1300 88 41.5-302.5 2.49 0.85 5.2 8.7
실시예2 1100 구형 97 41.5-302.5 1.25 - 38.3 -
1200 94 41.5-302.5 2.02 - 28.3 10.4
1300 87 41.5-302.5 2.64 0.50 2.8 6.3
실시예 3 1300 구형 91 41.5-302.5 2.60 0.16 4.1 12.7
실시예4 1300 구형 90 41.5-302.5 2.76 0.74 2.4 12.6
실시예5 1100 구형 96 41.5-302.5 2.00 0.73 10.0 5.7
1300 95 41.5-302.5 2.39 0.12 0.6 -
비교예1 1300 구형 111 49.0-302.5 1.78 1.71 70.2 -
1400 110 49.0-302.5 1.98 - 44.1 13.4
비교예 2 1300 구형 112 49.0-302.5 2.33 0.5 50.7 -
1400 99 49.0-231.0 2.60 - 22.1 14.0
비교예3 1300 구형 122 58.0-302.5 1.61 0.23 27.2 4.7
TABLE 2
Oxygen donor particles Firing temperature / ℃ shape Average particle size / ㎛ Particle Size Distribution Filling density, g / ml Specific Surface Area (BET), m 2 / g Wear resistance (AI),% Oxygen transfer capacity, wt%
Example 1 1200 rectangle 96 41.5-302.5 2.06 - 27.5 10.1
1300 88 41.5-302.5 2.49 0.85 5.2 8.7
Example 2 1100 rectangle 97 41.5-302.5 1.25 - 38.3 -
1200 94 41.5-302.5 2.02 - 28.3 10.4
1300 87 41.5-302.5 2.64 0.50 2.8 6.3
Example 3 1300 rectangle 91 41.5-302.5 2.60 0.16 4.1 12.7
Example 4 1300 rectangle 90 41.5-302.5 2.76 0.74 2.4 12.6
Example 5 1100 rectangle 96 41.5-302.5 2.00 0.73 10.0 5.7
1300 95 41.5-302.5 2.39 0.12 0.6 -
Comparative Example 1 1300 rectangle 111 49.0-302.5 1.78 1.71 70.2 -
1400 110 49.0-302.5 1.98 - 44.1 13.4
Comparative Example 2 1300 rectangle 112 49.0-302.5 2.33 0.5 50.7 -
1400 99 49.0-231.0 2.60 - 22.1 14.0
Comparative Example 3 1300 rectangle 122 58.0-302.5 1.61 0.23 27.2 4.7
도 5는 본 발명의 실시예에 의해 제조된 산소공여입자의 SEM 사진으로, (B)는 실시예 2 및 (C)는 실시예 3에 의해 제조된 산소공여입자를 나타낸다. 상기 도 5에 나타난 바와 같이, 제조된 산소공여입자는 구형의 형상을 지닌다.FIG. 5 is a SEM photograph of oxygen donor particles prepared according to an embodiment of the present invention, (B) shows examples of oxygen donor particles prepared by Example 2 and (C). As shown in FIG. 5, the prepared oxygen donor particles have a spherical shape.
상기 표 2는 실시예 및 비교예에 의해 제조된 NiO 및 Mn3O4 산소공여입자의 물성을 나타낸 것으로, 상기 표 2에 나타난 바와 같이, NiO 산소공여입자평균 입자크기가 85 ㎛ 내지 100 ㎛이고, 입자크기 분포는 41.5 ㎛ 내지 302.5 ㎛ 이다. 또한, 충진밀도는 1.3 g/ml 내지 2.8 g/ml, 비표면적은 0.16 ㎡/g이상, 마모지수는 60%이하 및 산소전달능력은 6 wt% 이상이다. Table 2 shows the physical properties of the NiO and Mn 3 O 4 oxygen donor particles prepared by the Examples and Comparative Examples, as shown in Table 2, NiO oxygen donor particle average particle size is 85 ㎛ to 100 ㎛ The particle size distribution is 41.5 μm to 302.5 μm. In addition, the packing density is 1.3 g / ml to 2.8 g / ml, the specific surface area is 0.16 m 2 / g or more, the wear index is 60% or less, and the oxygen transfer capacity is 6 wt% or more.
지지체로 α-Al2O3 및 MgO의 혼합물을 사용한 비교예 1 및 지지체로 MgAl2O4를 사용한 비교예 2는 1300℃의 소성온도에서 마모지수가 50% 이상으로 실시예에 의해 제조된 산소공여입자보다 훨씬 약한 강도를 나타내었다. 따라서, 비교예 1 및 비교예 2의 산소공여입자는 더 높은 강도를 얻기 위해서는 1300℃보다 더 높은 온도에서 소성되어야 한다. 비교예 2에서 소성 온도를 1400℃로 했을 때, 유동층 공정에 적합한 강도를 나타낸다. Comparative Example 1 using a mixture of α-Al 2 O 3 and MgO as a support and Comparative Example 2 using MgAl 2 O 4 as the support were prepared according to the examples of oxygen produced by the example having a wear index of 50% or more at a firing temperature of 1300 ° C. Much weaker strength than donor particles. Therefore, the oxygen donor particles of Comparative Example 1 and Comparative Example 2 should be calcined at a temperature higher than 1300 ° C. in order to obtain higher strength. When the baking temperature is 1400 ° C in Comparative Example 2, the strength suitable for the fluidized bed process is shown.
그리고, 실시예 5에 의해 제조된 Mn3O4 산소공여입자의 형상은 구형이며, 평균 입자크기가 약 95 ㎛이고, 입자크기 분포는 41.5 ㎛ 내지 302.5 ㎛ 이다. 또한, 충진밀도는 2.0 g/ml 내지 2.5 g/ml, 비표면적은 0.12 ㎡/g이상, 마모지수는 10%이하, 산소전달능력은 3 wt% 이상이다. 지지체로 MgAl2O4를 사용한 비교예 3은 1300℃의 소성온도에서 마모지수가 27.2%로 실시예에 의해 제조된 Mn3O4 산소공여입자에 비해 동일 소성온도에서 더 낮은 내마모도를 보이고 있다.The shape of the Mn 3 O 4 oxygen donor particles prepared in Example 5 is spherical, the average particle size is about 95 μm, and the particle size distribution is 41.5 μm to 302.5 μm. In addition, the packing density is 2.0 g / ml to 2.5 g / ml, the specific surface area is 0.12 m 2 / g or more, the wear index is 10% or less, and the oxygen transfer ability is 3 wt% or more. Comparative Example 3 using MgAl 2 O 4 as the support shows a lower wear resistance at the same firing temperature as compared to the Mn 3 O 4 oxygen donor particles prepared in Example with a wear index of 27.2% at a firing temperature of 1300 ℃.
따라서, 상기 표 2로부터 실시예에 의해 제조된 산소공여입자(지지체로 감마알루미나 및 마그네시아를 사용한 산소공여입자)는 비교예보다 더 낮은 소성온도에서도 더 강한 강도를 얻을 수 있음을 알 수 있다.Therefore, it can be seen from Table 2 that the oxygen donor particles (oxygen donor particles using gamma alumina and magnesia as support bodies) prepared by the examples can obtain stronger strength even at a lower firing temperature than the comparative example.
이상에서 설명한 바와 같이, 본 발명에 따른 바람직한 실시예를 기초로 설명하였으나, 본 발명은 특정 실시예에 한정되는 것은 아니며, 해당분야 통상의 지식을 가진 자가 특허청구범위 내에서 기재된 범주 내에서 변경할 수 있다.As described above, the present invention has been described based on the preferred embodiments, but the present invention is not limited to the specific embodiments, and those skilled in the art can change the scope within the scope of the claims. have.
본 발명에 따른 산소공여입자를 사용함으로써, 낮은 소성온도에서도 강도 등의 물리적 특성이 우수하며, 유동층 공정에 바람직하게 사용할 수 있다By using the oxygen donor particles according to the present invention, it is excellent in physical properties such as strength even at a low firing temperature, and can be preferably used in a fluidized bed process.

Claims (25)

  1. 금속 산화물을 포함하는 활성물질; 및Active materials including metal oxides; And
    감마알루미나 및 마그네시아를 포함하는 지지체를 가지는 산소공여입자.Oxygen donor particles having a support comprising gamma alumina and magnesia.
  2. 제 1 항에 있어서, The method of claim 1,
    형상은 구형인 산소공여입자.The shape is spherical oxygen donor particles.
  3. 제 1 항에 있어서, The method of claim 1,
    평균 입자크기는 50 ㎛ 내지 150 ㎛이고, 입자분포는 30 ㎛ 내지 400 ㎛인 산소공여입자.Oxygen donor particles having an average particle size of 50 μm to 150 μm and a particle distribution of 30 μm to 400 μm.
  4. 제 1 항에 있어서, The method of claim 1,
    충진밀도는 1.0 g/mL 내지 3.0 g/mL인 산소공여입자.Oxygen donor particles having a packing density of 1.0 g / mL to 3.0 g / mL.
  5. 제 1 항에 있어서, The method of claim 1,
    비표면적은 0.1 ㎡/g 내지 100 ㎡/g인 산소공여입자.Oxygen donor particles having a specific surface area of 0.1 m 2 / g to 100 m 2 / g.
  6. 제 1 항에 있어서, The method of claim 1,
    내마모도는 40% 이하인 산소공여입자.Abrasion resistance is less than 40% oxygen donor particles.
  7. 제 1 항에 있어서, The method of claim 1,
    산소전달능력은 5 wt% 내지 17 wt%인 산소공여입자.Oxygen donating particles of 5 wt% to 17 wt%.
  8. 제 1 항에 있어서, The method of claim 1,
    금속 산화물은 니켈계 산화물 및 망간계 산화물로 이루어진 그룹으로부터 선택된 하나 이상인 산소공여입자.The metal oxide is at least one oxygen donor particle selected from the group consisting of nickel oxide and manganese oxide.
  9. 제 1 항에 있어서,The method of claim 1,
    활성물질로 금속 산화물 50 중량부 내지 80 중량부, 지지체로 감마알루미나 10 중량부 내지 49 중량부 및 마그네시아 1 중량부 내지 20 중량부를 포함하는 산소공여입자.Oxygen donor particles comprising 50 parts by weight to 80 parts by weight of metal oxide as active material, 10 parts by weight to 49 parts by weight of gamma alumina as support, and 1 part by weight to 20 parts by weight of magnesia.
  10. 금속 산화물, 감마알루미나 및 마그네시아를 포함하는 고체원료가 용매에 혼합된 슬러리 조성물.A slurry composition in which a solid raw material including a metal oxide, gamma alumina, and magnesia is mixed in a solvent.
  11. 제 10 항에 있어서, The method of claim 10,
    고체원료는 슬러리 조성물 100 중량부에 대하여 15 중량부 내지 50 중량부를 포함하는 슬러리 조성물.The solid raw material is a slurry composition comprising 15 parts by weight to 50 parts by weight based on 100 parts by weight of the slurry composition.
  12. 제 10 항에 있어서, The method of claim 10,
    분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상의 유기첨가제를 추가로 포함하는 슬러리 조성물.Slurry composition further comprising at least one organic additive selected from the group consisting of dispersants, defoamers and organic binders.
  13. 제 12 항에 있어서, The method of claim 12,
    분산제는 음이온계 계면활성제 또는 비이온계 계면활성제이며, 고체원료에 대하여 0.01 중량부 내지 10 중량부를 포함하는 슬러리 조성물.The dispersant is an anionic surfactant or a nonionic surfactant, the slurry composition comprising 0.01 parts by weight to 10 parts by weight with respect to the solid raw material.
  14. 제 12 항에 있어서, The method of claim 12,
    소포제는 실리콘계, 금속비누계, 아마이드계, 폴리에테르계 또는 알코올계이며, 고체원료에 대하여 0.001 중량부 내지 1 중량부 포함하는 슬러리 조성물.Antifoaming agent is a silicone, metal soap, amide, polyether or alcohol-based, slurry composition containing 0.001 parts by weight to 1 part by weight based on the solid material.
  15. 제 12 항에 있어서, The method of claim 12,
    유기결합제는 폴리비닐알콜계, 폴리에틸렌글라이콜계 또는 메틸셀룰로오즈계이며, 고체원료에 대하여 0.5 중량부 내지 5 중량부 포함하는 슬러리 조성물.The organic binder is a polyvinyl alcohol-based, polyethylene glycol-based or methyl cellulose-based, slurry composition containing 0.5 parts by weight to 5 parts by weight based on the solid raw material.
  16. (A) 금속 산화물, 감마알루미나 및 마그네시아를 포함하는 고체원료를 용매와 혼합하는 단계; (B) 균질화된 슬러리를 제조하는 단계; (C) 슬러리를 분무 건조하여 산소공여입자를 성형하는 단계; 및(A) mixing a solid raw material comprising a metal oxide, gamma alumina and magnesia with a solvent; (B) preparing a homogenized slurry; (C) spray drying the slurry to form oxygen donor particles; And
    (D) 성형된 산소공여입자를 건조 소성시켜 최종 산소공여입자를 제조하는 단계를 포함하는 산소공여입자의 제조방법.(D) dry firing the shaped oxygen donor particles to produce a final oxygen donor particles.
  17. 제 16 항에 있어서, The method of claim 16,
    균질화된 슬러리의 제조는 분산제를 첨가하는 단계; 소포제를 첨가하는 단계; 및 Preparation of the homogenized slurry comprises adding a dispersant; Adding an antifoam; And
    유기결합제를 첨가하는 단계로부터 선택된 하나 이상의 단계를 추가로 포함하는 산소공여입자의 제조방법.A method for producing oxygen donor particles further comprising at least one step selected from adding an organic binder.
  18. 제 16 항에 있어서, The method of claim 16,
    슬러리를 제조한 뒤, 슬러리 중의 입자를 분쇄하는 단계를 추가로 포함하는 산소공여입자의 제조방법.After preparing the slurry, the method of producing the oxygen donor particles further comprising the step of grinding the particles in the slurry.
  19. 제 16 항에 있어서, The method of claim 16,
    슬러리를 제조한 뒤, 슬러리 중의 이물질을 제거하는 단계를 추가로 포함하는 산소공여입자의 제조방법.After preparing the slurry, the method for producing oxygen donor particles further comprising the step of removing foreign matter in the slurry.
  20. 제 19 항에 있어서, The method of claim 19,
    이물질을 제거는 체거름을 사용하여 수행되는 산소공여입자의 제조방법.Method for producing the oxygen donor particles to remove the foreign material is carried out using a sieve.
  21. 제 16 항에 있어서, The method of claim 16,
    최종 산소공여입자의 제조는 건조된 산소공여입자를 고온 소성로에서 1℃/min 내지 5℃/min의 속도로 1100℃ 내지 1300℃로 상승시킨 후 2 시간 내지 10 시간 동안 소성시키는 산소공여입자의 제조방법.The preparation of the final oxygen donor particles is to prepare the oxygen donor particles to raise the dried oxygen donor particles to 1100 ℃ to 1300 ℃ at a rate of 1 ℃ / min to 5 ℃ / min in a high temperature kiln for 2 to 10 hours Way.
  22. 제 21 항에 있어서, The method of claim 21,
    산소공여입자의 건조는 10℃ 내지 130℃ 및 2 시간 내지 24 시간 동안 수행되는 산소공여입자의 제조방법.Drying of the oxygen donor particles is a method for producing oxygen donor particles are carried out for 10 to 130 ℃ and 2 to 24 hours.
  23. 감마알루미나 및 마그네시아를 포함하는 지지체에 담지된 금속 산화물을 포함하는 산소공여입자를 기체연료와 반응시켜 상기 산소공여입자를 환원시키고 연료가스를 연소시키는 단계; 및 Reacting the oxygen donor particles including the metal oxide supported on the support including gamma alumina and magnesia with gaseous fuel to reduce the oxygen donor particles and combust the fuel gas; And
    상기 환원된 산소공여입자를 산소와 반응시켜 산화시키는 단계를 포함하는 매체순환식 가스연소 방법.And oxidizing the reduced oxygen donor particles with oxygen to oxidize the reduced oxygen donor particles.
  24. 제 23 항에 있어서, The method of claim 23,
    기체연료는 메탄, 수소, 일산화탄소, 알칸(alkane, CnH2n+2), LNG 및 syngas 로 이루어진 그룹으로부터 선택된 하나 이상인 매체순환식 가스연소 방법.The gaseous fuel is at least one selected from the group consisting of methane, hydrogen, carbon monoxide, alkanes (C n H 2n + 2 ), LNG and syngas.
  25. 산소공여입자를 기체연료와 반응시켜 상기 산소공여입자를 환원시키고 연료가스를 연소시키는 환원반응기; 및 상기 환원된 산소공여입자를 산소와 반응시켜 산화시키는 산화반응기를 포함하는 매체순환식 가스 연료장치에 있어서,A reduction reactor for reacting oxygen donor particles with gaseous fuel to reduce the oxygen donor particles and combust the fuel gas; And a oxidation reactor for reacting the reduced oxygen donor particles with oxygen to oxidize them.
    상기 산소공여입자는 감마알루미나 및 마그네시아를 포함하는 지지체에 담지된 금속 산화물을 포함하는 매체순환식 가스연소 장치.And the oxygen donor particle comprises a metal oxide supported on a support including gamma alumina and magnesia.
PCT/KR2010/006673 2010-08-04 2010-09-30 Oxygen carrier and method for manufacturing same WO2012018156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100075358A KR101691899B1 (en) 2010-08-04 2010-08-04 Oxygen carriers and manufacturing method thereof
KR10-2010-0075358 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012018156A1 true WO2012018156A1 (en) 2012-02-09

Family

ID=45559644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006673 WO2012018156A1 (en) 2010-08-04 2010-09-30 Oxygen carrier and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101691899B1 (en)
WO (1) WO2012018156A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000452A (en) * 2012-06-22 2014-01-03 한국전력공사 Spinel type oxygen carrier and manufacturing method thereof
US11835227B2 (en) 2016-09-23 2023-12-05 Korea Electric Power Corporation Raw material composition for preparing oxygen carrier particles, oxygen carrier particles prepared by using same, and method for preparing oxygen carrier particles
KR102000912B1 (en) * 2017-10-17 2019-07-17 한국전력공사 Raw material composition for oxygen carrier, oxygen carrier using the same and method of manufacturing the oxygen carrier
KR102122327B1 (en) * 2018-06-25 2020-06-12 한국전력공사 Raw material composition for oxygen carrier, oxygen carrier using the same and method of manufacturing the oxygen carrier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447024A (en) * 1992-06-03 1995-09-05 Tokyo Electric Power Co., Inc. Chemical-looping combustion power generation plant system
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447024A (en) * 1992-06-03 1995-09-05 Tokyo Electric Power Co., Inc. Chemical-looping combustion power generation plant system
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE, JI HYEON ET AL., THE KOREA SOCIETY FOR ENERGY ENGINEERING (2007) JOURNAL OF FALL CONFERENCE, 2007 *
PILAR GAYAN ET AL.: "Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion", FUEL, vol. 87, no. 12, 2008, IPC SCIENCE AND TECHNOLOGY PRESS, GUILDFORD, GB, pages 2641 - 2650, XP022679796 *
RYU, HO-JUNG ET AL., KOREAN CHEM. ENG. RES., vol. 42, no. 5, 2004, pages 588 - 597 *

Also Published As

Publication number Publication date
KR101691899B1 (en) 2017-01-03
KR20120013151A (en) 2012-02-14

Similar Documents

Publication Publication Date Title
WO2012043960A1 (en) Oxygen carrier particles and method for manufacturing same
CN101386539B (en) Aluminium nitride ceramics material and preparation method thereof
WO2012018156A1 (en) Oxygen carrier and method for manufacturing same
WO2013176358A1 (en) Method for manufacturing alumina-based abrasive grains for abrasive material, and alumina-based abrasive grains for abrasive material manufactured thereby
WO2015046715A1 (en) Solid carbon dioxide absorbent composition and solid carbon dioxide absorbent containing same
WO2013048191A2 (en) Carbon dioxide absorbent, and preparation method thereof
WO2012036336A1 (en) Desulfurizing agent and preparation method thereof
WO2012033250A1 (en) Carbon dioxide absorbent and preparation method thereof
KR20190017333A (en) Manufacturing method of YOF based powder
WO2012043904A1 (en) Hybrid particle for fluidized bed sorption-enhanced water gas shift reaction process and method for preparing same
WO2012043905A1 (en) Catalyst for sorption enhanced water gas shift and preparation method thereof
WO2018043800A1 (en) Method for preparing high-specific surface area hard carbon-based electrode active material through control of carbonization process and electrode active material prepared thereby
WO2020004751A1 (en) Raw material composition for manufacturing oxygen transfer particles, oxygen transfer particles manufactured using same, and manufacturing method for oxygen transfer particles
WO2018056766A1 (en) Raw material composition for preparing oxygen carrier particles, oxygen carrier particles prepared by using same, and method for preparing oxygen carrier particles
WO2018066751A1 (en) Solid raw material for carbon dioxide absorbent, carbon dioxide absorbent composition comprising same, and carbon dioxide absorbent prepared using same
KR20130035642A (en) Oxygen carriers and manufacturing method thereof
WO2011052828A1 (en) Zinc-based desulfurizing agent formed by spray drying method, and preparation method thereof
WO2019078413A1 (en) Material composition for preparing oxygen transfer particles, oxygen transfer particles prepared using same, and method for preparing oxygen transfer particles
WO2011052825A1 (en) Oxygen donor particles for chemical looping combustion or chemical looping reforming, and preparation method thereof
WO2014175519A1 (en) Ceramic ink composition for inkjet printing and preparation method therefor
WO2018190642A2 (en) Catalyst system for oxidative dehydrogenation reaction, reactor for oxidative dehydrogenation comprising same, and oxidative dehydrogenation method
KR101919300B1 (en) Raw material composition for oxygen carrier, oxygen carrier using the same and method of manufacturing the oxygen carrier
WO2023101198A1 (en) Apparatus for producing magnesium oxide
WO2022154148A1 (en) Yttrium aluminum garnet sintered body with high purity and high density and manufacturing method therefor
WO2023095954A1 (en) Black alumina sintered body and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855669

Country of ref document: EP

Kind code of ref document: A1