WO2019078127A1 - Lighting circuit and vehicle lamp tool - Google Patents

Lighting circuit and vehicle lamp tool Download PDF

Info

Publication number
WO2019078127A1
WO2019078127A1 PCT/JP2018/038176 JP2018038176W WO2019078127A1 WO 2019078127 A1 WO2019078127 A1 WO 2019078127A1 JP 2018038176 W JP2018038176 W JP 2018038176W WO 2019078127 A1 WO2019078127 A1 WO 2019078127A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
lighting circuit
burst
output
Prior art date
Application number
PCT/JP2018/038176
Other languages
French (fr)
Japanese (ja)
Inventor
知幸 市川
賢 菊池
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to CN201880067425.0A priority Critical patent/CN111316548B/en
Priority to JP2019549250A priority patent/JPWO2019078127A1/en
Publication of WO2019078127A1 publication Critical patent/WO2019078127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology

Definitions

  • the present invention relates to a lighting circuit of a light source.
  • Vehicle lamps are generally capable of switching between low beam and high beam.
  • the low beam illuminates the near side with a predetermined illuminance, and a light distribution rule is defined so as not to give glare to oncoming vehicles and preceding vehicles, and is mainly used when traveling in a city area.
  • the high beam illuminates a wide range and a distance ahead with relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles and preceding vehicles. Therefore, although the high beam is more excellent in visibility by the driver than the low beam, there is a problem that glare is given to the driver of the vehicle existing in front of the vehicle and the pedestrian.
  • ADB Adaptive Driving Beam: light distribution variable headlamp
  • FIG. 1 is a circuit diagram of a vehicular lamp.
  • the vehicular lamp 100R includes a light source 110 and a lighting circuit 200 thereof.
  • the lighting circuit 200 uses the battery voltage V BAT supplied from the battery 2 as a power supply, and supplies the light source 110 with a driving current according to the target luminance.
  • the light source 110 includes a plurality of light emitting units 112 connected in series. Assuming that the forward voltage per stage of the light emitting unit 112 is Vf and the number of steps of the light emitting unit is N, the output voltage (load voltage) V LOAD of the lighting circuit 200 is V LOAD > Vf ⁇ N Must be satisfied.
  • the topology of lighting circuit 200 is selected based on the relationship between battery voltage V BAT and output voltage V LOAD .
  • N the maximum value of V LOAD is lower than the battery voltage V BAT , so the lighting circuit 200 can be configured with a step-down converter.
  • lighting circuit 200 must be configured with a boost converter or a combination of a boost converter and a buck converter.
  • the lighting circuit 200R includes a boost converter 210 at a front stage, a step-down converter 220 at a rear stage, and controllers 230 and 240 thereof.
  • the output voltage V OUT1 of the step-up converter 210 is stabilized at the target voltage V OUT1 (REF) , and this target voltage is defined so as to satisfy V OUT1 (REF) > Vf ⁇ N.
  • Controller 230 performs constant voltage control on boost converter 210 such that output voltage V OUT1 approaches target value V OUT1 (REF) .
  • the downstream step-down converter 220 receives the stabilized voltage V OUT1 as an input voltage, and supplies a drive current I DRV to the light source 110. Controller 240 performs constant current control of step-down converter 220 such that drive current I DRV approaches a target value.
  • V OUT1 (REF) Vf (MAX) ⁇ N (1)
  • bypass control may be performed in order to turn on / off the individual light emitting units 112 independently, and a bypass switch SW is provided in parallel with each light emitting unit 112.
  • a bypass switch SW When a certain bypass switch SW is turned on, the current flowing to the light emitting unit 112 in parallel with it is diverted to the bypass switch SW so that it is turned off.
  • the bypass control causes the load voltage V LOAD across the light source 110 to dynamically fluctuate.
  • V LOAD Vf ⁇ n It is.
  • V OUT1 (REF) 60 V.
  • the present invention has been made in view of such problems, and one of the exemplary objects of an aspect thereof is to provide a converter that can be miniaturized.
  • the lighting circuit includes a boost converter, and a step-down converter that receives an output voltage of the boost converter and supplies a drive current to a light source.
  • the boost converter operates in a burst mode (intermittent mode) in which an operation period (operation state) and a stop period (stop state) are repeated according to the state of the step-down converter.
  • the output voltage of the upstream step-up converter is adjusted such that the relationship between the input voltage and the output voltage of the downstream step-down converter becomes appropriate, so that the range of step-down ratio of the step-down converter can be limited.
  • the boost converter may enter an operating period when the potential difference between the input and output of the buck converter decreases to the first threshold.
  • the step-up converter may enter the stop period when the potential difference between the input and output of the step-down converter reaches a second threshold higher than the first threshold.
  • the operation period of the boost converter may be defined by a timer. That is, after entering an operation period, when a certain time passes, it may transition to a stop period.
  • the lighting circuit further includes a voltage detection circuit that generates a detection signal according to the potential difference between the input and output of the step-down converter, and a hysteresis comparator that compares the detection signal with a threshold and generates a burst signal according to the comparison result. You may have.
  • the boost converter may be controlled in response to the burst signal.
  • the lighting circuit compares the detection signal with a predetermined threshold value according to the comparison result, and a voltage detection circuit that generates a detection signal in which the potential difference between the input and output of the step-down converter is multiplied by a coefficient switchable by two values. And a comparator that generates a burst signal.
  • the coefficients change in response to the burst signal, and the boost converter may be controlled in response to the burst signal.
  • the vehicular lamp includes a light source and any of the lighting circuits described above.
  • the size of the converter can be reduced.
  • FIG. 1 is a circuit diagram of a vehicle lamp according to a first embodiment.
  • FIG. 6 is an operation waveform diagram of a lighting circuit.
  • FIG. 6 is an operation waveform diagram of a lighting circuit. It is a circuit diagram of a part of lighting circuit concerning one example.
  • It is a circuit diagram of a burst controller concerning one example.
  • FIGS. 7A to 7C are circuit diagrams showing configuration examples of the voltage detection circuit.
  • FIGS. 9A and 9B are circuit diagrams showing configuration examples of the burst controller.
  • FIGS. 10A and 10B are circuit diagrams showing configuration examples of the boost converter and the converter controller.
  • FIG. 13 is an operation waveform diagram of the burst controller of FIG. 12;
  • FIG. 16 is a circuit diagram of a boost converter and a converter controller according to a fourth modification.
  • the state in which the member A is connected to the member B means that the members A and B are electrically connected in addition to the case where the members A and B are physically and directly connected. It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
  • a state where the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
  • reference numerals attached to electric signals such as voltage signals and current signals or circuit elements such as resistors and capacitors indicate respective voltage values, current values, or resistance values and capacitance values as necessary. It shall represent.
  • FIG. 2 is a circuit diagram of the vehicular lamp 100 according to the first embodiment.
  • the entire lamp system 1 is shown in FIG.
  • the vehicular lamp 100 includes a light source 110 and a lighting circuit 200.
  • the light source 110 includes a plurality of light emitting units 112_1 to 112_N connected in series.
  • the light emitting unit 112 is, for example, an LED, and the light source 110 is also referred to as an LED bar or an LED string.
  • the light emitting unit 112 may be an LD (laser diode) or an organic EL (Electro Luminescence) element.
  • the plurality of light emitting units 112_1 to 112_N respectively illuminate different regions on the virtual vertical screen in front of the vehicle through an optical system (not shown).
  • the lighting circuit 200 supplies the drive current I DRV to the light source 110 to cause it to emit light.
  • the lighting circuit 200 may have a function of individually turning on and off the plurality of light emitting units 112 (bypass control).
  • the lighting circuit 200 receives a control command SPTN instructing a light distribution pattern from a processor (ECU: Electronic Control Unit) (not shown), and turns on and off the plurality of light emitting units 112 according to the control command SPTN. You may control.
  • ECU Electronic Control Unit
  • the lighting circuit 200 includes a boost converter 210, a step-down converter 220, a converter controller 230, a converter controller 240, a burst controller 250, and a lamp ECU 270.
  • the lamp ECU 270 includes a main switch 272 and a processor 274.
  • the processor 274 is communicable with the vehicle ECU 4 and controls on / off of the main switch 272 based on control commands and information from the vehicle ECU 4 or the converter controller 230, so that an appropriate light distribution pattern can be obtained.
  • Control 240 is communicable with the vehicle ECU 4 and controls on / off of the main switch 272 based on control commands and information from the vehicle ECU 4 or the converter controller 230, so that an appropriate light distribution pattern can be obtained.
  • Boost converter 210 When main switch 272 is turned on, battery voltage V BAT is supplied to boost converter 210.
  • Boost converter 210 a switching operation on the basis of the control pulses S 1 to the converter controller 230 generates, and generates an output voltage V OUT1 boosts the battery voltage V BAT.
  • Converter controller 230 is in the operating state of the boost converter 210, up converter 210, to provide a greater power than the power required by the subsequent step-down converter 220 and the light source 110, which generates control pulses S 1.
  • converter controller 230 feeds back the duty ratio of control pulse S 1 by feedback such that output voltage V OUT1 approaches a prescribed target value V OUT1 (REF) sufficiently higher than assumed load voltage V LOAD. You may adjust it. Or the duty ratio of the control pulse S 1 may be fixed to a certain value.
  • the step-down converter 220 steps down the output voltage V OUT1 to supply the drive current I DRV to the light source 110.
  • Converter controller 240 in one embodiment, the drive current I DRV generates a control pulse S 2 so as to approach the target value I REF, the buck converter 220 may be feedback-controlled (constant current control). Converter controller 240 may use known techniques.
  • Boost converter 210 operates in a burst mode in which an operation period and a stop period are repeated according to the state of step-down converter 220.
  • Converter controller 230 switches boost converter 210 when burst signal S BURST is on level (eg, high), and stops switching of boost converter 210 when burst signal S BURST is off level (eg, low). .
  • burst controller 250 sets burst signal S BURST to the on level, and sets boost converter 210 to the operating state.
  • burst controller 250 sets burst signal S BURST to the off level, and boost converter 210 Is set to stop.
  • FIG. 3 is an operation waveform diagram of the lighting circuit 200. As shown in FIG. First, in order to facilitate understanding, the case where the load voltage V LOAD is constant will be described.
  • the output power of the boost converter 210 is larger than the input power of the step-down converter 220 in the subsequent stage in the on period T ON in which the burst signal S BURST is at a high level. Therefore, the output voltage V OUT1 rises with time. At time t 1, the potential difference ⁇ V reaches the second threshold value V TH2, the output voltage V OUT1 other words reaches V LOAD + V TH2, the burst signal S BURST goes low, enters the OFF period T OFF.
  • the control pulse S 1 is stopped, the switching operation of the boost converter 210 is stopped, the output voltage V OUT1 is lowered with time.
  • time t 2 the the potential difference ⁇ V is decreased to a first threshold value V TH1, the output voltage V OUT1 other words decreases to V LOAD + V TH1, the burst signal S BURST becomes high level, and returns to the on-period T ON .
  • the step-up converter 210 at the front stage operates in the burst mode in which operation and stop are repeated according to the potential difference between the input and output of the step-down converter 220 at the rear stage.
  • FIG. 4 is an operation waveform diagram of the lighting circuit 200. As shown in FIG. Even when the load voltage V LOAD fluctuates, the operation is similar to FIG. By the step-up operation of boost converter 210, output voltage V.sub.OUT2 follows load voltage V.sub.LOAD .
  • the potential difference ⁇ V between the input and output of the step-down converter 220 can be limited to a predetermined range. That it is possible to prevent that the minimum value of the step-down ratio K 2 of the step-down converter 220 becomes too small, it can be designed small buck converter 220.
  • This effect is useful even in applications where the load voltage V LOAD is constant, but is particularly effective in applications where the load voltage V LOAD fluctuates, for example, an application that performs dimming based on bypass control.
  • FIG. 5 is a circuit diagram of a part of the lighting circuit 200 according to an embodiment.
  • a step-down converter 220, a converter controller 240 and a burst controller 250 are shown.
  • Step-down converter 220 includes a converter unit 222 and a current smoothing filter 224.
  • the converter controller 240 to stabilize the coil current I L of the converter circuit 222 by a so-called ripple control.
  • the coil current I L is detected by the current sense resistor R S.
  • Converter controller 240 turns off the switching transistor M 1 reaches the peak threshold is detected values of the coil current I L, the switching transistor M 1 drops to bottom a certain threshold detected value of the coil current I L Turn on.
  • the current smoothing filter 224 removes the ripple component from the coil current I L and supplies the DC component to the light source 110 as the drive current I DRV .
  • the control method of converter controller 240 is not limited to this, and constant current control using an error amplifier may be performed. In this case, current smoothing filter 224 may be omitted.
  • the burst controller 250 includes a voltage detection circuit 252 and a hysteresis comparator 254.
  • the hysteresis comparator 254 compares the detection signal V S with the threshold value V THH ⁇ V THL that changes with two values, and generates a burst signal S BURST according to the comparison result.
  • the lower threshold V THL defines the first threshold V TH1 of FIGS. 3 and 4, and the upper threshold V THH defines the second threshold V TH2 of FIGS. 3 and 4. .
  • two comparators may be used.
  • Boost converter 210 at the front stage is controlled in accordance with burst signal S BURST .
  • FIG. 6 is a circuit diagram of a burst controller 250 according to one embodiment.
  • the voltage detection circuit 252 can be configured by a differential amplifier including the resistors R 11 to R 14 and the operational amplifier OA 1 .
  • Hysteresis comparator 254 may be configured with resistors R21 ⁇ R23 and the operational amplifier (voltage comparator) OA 2.
  • the potential difference ⁇ V can be detected with high accuracy using the operational amplifier.
  • FIG. 7 (a) to 7 (c) are circuit diagrams showing configuration examples of the voltage detection circuit 252.
  • FIG. The voltage detection circuit 252 of FIG. 7A includes resistors R 51 and R 52 (both having a resistance value of R), and transistors Tr 51 and Tr 52 .
  • V1 represents an input voltage V IN2 and V2 represents a load voltage V LOAD .
  • the transistors Tr 51 and Tr 52 form a current mirror circuit, and a current (V 2 ⁇ V BE ) / R flows through the transistor Tr 51 and the resistor R 51 .
  • an emitter follower circuit including a transistor Tr 53 and a resistor R 53 is added to the configuration of FIG. 7A.
  • V S (V 1 ⁇ V 2) ⁇ R 55 / (R 54 + R 55 )
  • the voltage detection circuit 252 of FIGS. 7A to 7C although the detection accuracy is lower than that using the operational amplifier, the voltage detection range can be expanded.
  • the configuration of FIG. 6 may be difficult to adopt due to the limitation of the input range of the operational amplifier. In this case, the configurations of FIGS. 7 (a) to 7 (c) are effective.
  • FIG. 8 is a circuit diagram of a burst controller 250 according to one embodiment.
  • the burst controller 250 includes a voltage detection circuit 256 and a comparator 258.
  • the voltage detection circuit 256 generates a detection signal V S obtained by multiplying the potential difference ⁇ V at the input and output of the step-down converter 220 by a coefficient (gain) that can be switched by two values.
  • the comparator 258 compares the detection signal V S with a predetermined threshold value V TH and generates a burst signal S BURST according to the comparison result.
  • FIGS. 9A and 9B are circuit diagrams showing configuration examples of the burst controller 250.
  • the voltage detection circuit 256 includes a variable voltage dividing circuit including a variable resistor R 40 and the fixed resistor R 41.
  • the resistance value of the variable resistor R 40 changes in two values in accordance with the comparison result (S BURST ).
  • S BURST comparison result
  • the comparator 258 compares the detection signal V S with the threshold value V TH .
  • FIG. 9 (b) shows a specific configuration example of the burst controller 250 of FIG. 9 (a).
  • the resistor R 40 includes resistors R 42 and R 43 and a transistor Tr 43 . When the transistor Tr 43 is off, the resistance of the resistor R 40 is equal to R 42, and when the transistor Tr 43 is on, the resistance of the resistor R 40 is a parallel connection of the resistors R 42 and R 43 .
  • the transistor Tr 41 is a voltage comparison unit.
  • a detection voltage V S which is a voltage drop of the resistor R 40 is applied between the base and the emitter of the transistor Tr 41 .
  • the on / off state of the transistor Tr 41 corresponds to the comparison result of the detection voltage V S and the voltage between the base and the emitter.
  • the on / off state of the transistor Tr 41 is converted into a binary burst signal S BURST by an output stage (inverter) including the transistor Tr 44 .
  • the transistor Tr 42 and the resistors R 45 and R 46 control the on / off of the transistor Tr 43 based on the on / off state of the transistor Tr 41 .
  • the resistor R 40 is a variable resistor
  • the resistor R 41 may be a variable resistor.
  • the transistor Tr 41 is used as the voltage comparison means, the present invention is not limited to this, and a voltage comparator including a differential amplifier may be used.
  • FIGS. 10A and 10B are circuit diagrams showing configuration examples of the boost converter 210 and the converter controller 230.
  • FIG. A converter controller 230 may use a commercially available controller IC.
  • a voltage obtained by adding a margin ⁇ to the maximum value V LOAD (MAX) of the load voltage V LOAD is specified as the target voltage V OUT1 (REF) of the output voltage V OUT1 , and the converter controller 230 performs feedback control of the boost converter 210 It is also good.
  • the feedback control by converter controller 230 functions as a limiter of output voltage V OUT1 .
  • Converter controller 230 has a pulse-by-pulse current limiting function.
  • the output voltage V OUT1 of the boost converter 210 is lower than the target voltage V OUT1 (REF) of feedback control.
  • the pulse-by-pulse current limit Prior to the end of the on time (pulse width) required to keep the output voltage V OUT at V OUT1 (REF) , the pulse-by-pulse current limit is activated.
  • the pulse-by-cycle current limit defines the available power of step-up converter 210, which is designed to exceed the input power of step-down converter 220.
  • the maximum on-duty (maximum on-time) may be limited to define the available power during the operation period.
  • the control pulses S 1 supplied to the gate of the switching transistor M 2 is masked by the burst signal S BURST.
  • the logic gate 232 when the burst signal S BURST indicates the operating state, is passed through the control pulses S 1 to the gate of the switching transistor M 2, when the burst signal S BURST indicates a stop state, the low gate of the switching transistor M 2 Fix to
  • converter controller 230 is provided with an enable (EN) pin.
  • Converter controller 230 is configured to stop the switching operation when a predetermined level (for example, low) is input to the EN pin.
  • a predetermined level for example, low
  • the burst signal S BURST may be input to the EN pin.
  • FIG. 11 is a circuit diagram of a part of the lighting circuit 200 according to the second embodiment. Step-down converter 220 and burst controller 250 are shown in FIG.
  • the operation period of boost converter 210 is defined by a timer.
  • the burst controller 250 includes a voltage detection circuit 260, a comparator 262, and a timer 264.
  • Voltage detection circuit 260 generates detection signal V S according to the potential difference ⁇ V between the input and output of step-down converter 220.
  • the configuration of the voltage detection circuit 260 may be the same as that described above.
  • the comparator 262 compares the voltage detection signal V S with the threshold voltage V THL . Then, it generates a trigger signal TRIG that is asserted (for example, high) when the voltage detection signal V S falls to the threshold value V THL .
  • the timer 264 generates a burst signal S BURST that has a predetermined level for a predetermined time from the assertion of the trigger signal TRIG.
  • FIG. 12 is a circuit diagram of a burst controller 250 according to an embodiment.
  • the voltage detection circuit 260 includes resistors R 90 and R 91 , and is configured in the same manner as the voltage detection circuit 256 of FIG. 9A.
  • the voltage detection circuit 260 may be configured in the same manner as the voltage detection circuit 252 shown in FIGS. 6 and 7A to 7C.
  • the comparator 262 includes transistors Tr 91 and Tr 92 and resistors R 92 , R 93 and R 94 , and is configured in the same manner as the comparator 258 in FIG. 9 (b).
  • the comparator 262 may be configured by a voltage comparator.
  • the timer 264 includes a transistor Tr 93 , a capacitor C 91 , and a transistor Tr 94 .
  • the transistor Tr 93 When the trigger signal TRIG becomes high level, the transistor Tr 93 is turned on, the capacitor C 91 is discharged, the capacitor voltage VC 91 becomes zero, and the transistor Tr 94 is turned on.
  • the transistor Tr 93 When the trigger signal TRIG becomes low level, the transistor Tr 93 is turned off, the capacitor C 91 is charged through the resistors R 95 and R 96 , and the capacitor voltage VC 91 rises. As the capacitor voltage V C91 rises, the potential at the connection node of the resistors R 95 and R 96 also rises, and eventually the transistor Tr 94 is turned off.
  • the burst signal S BURST is associated with the on / off state of the transistor Tr 94 , and indicates a stop / low operation when it is high.
  • the off period of the transistor Tr 94 is considered to be the operation period of the boost converter 210.
  • FIG. 13 is an operation waveform diagram of the burst controller 250 of FIG.
  • the timer 264 may be configured by a one-shot multivibrator.
  • step-down converter 220 includes a constant current driver connected in series with light source 110 to stabilize drive current I DRV by the constant current source, and converter controller 240 connects the constant current driver and light source 110 in series. As the load, in which case the voltage across them is the load voltage V LOAD .
  • burst operation of boost converter 210 is controlled based on the potential difference between the input and output of step-down converter 220, but the invention is not limited thereto.
  • burst controller 250 may generate burst signal S BURST so that the step-down ratio of step-down converter 220 does not fall below a predetermined value (within a predetermined range).
  • Modification 3 Although the embodiment has described the fluctuation of the load voltage V LOAD due to the bypass control method, the factor of the fluctuation of the load voltage V LOAD is not particularly limited.
  • FIG. 14 is a circuit diagram of a boost converter and a converter controller according to a fourth modification.
  • PMOS transistor 234 is provided between the gate of the PWM output pin and the switching transistor M 2 of the converter controller 230.
  • the gate of the PMOS transistor 234 is pulled up to the power supply pin through a resistor R 80.
  • the transistor 236 is provided between the gate of the switch 234 and the ground.
  • a resistor R 80 may be provided between the gate and the source (ie, the PWM pin) of the PMOS transistor 234.
  • the drain of the PMOS transistor 234 is connected to the gate of the switching transistor M 2 via a voltage divider circuit including resistors R 81, R 82.
  • the transistor 236 When the burst signal S BURST is high, the transistor 236 is turned on and the gate of the PMOS transistor 234 is low. In this state, when the control pulse S 1 is high, PMOS transistor 234 is turned on, the gate of the switching transistor M 2 also becomes high. When the control pulse S 1 is low, PMOS transistor 234 is turned off to discharge the gate capacitance of the switching transistor M2 through the body diode 238 of the PMOS transistor 234, the switching transistor M 2 is turned on. Thus, while the burst signal S BURST is high, the switching transistor M 2 can be switched according to the control pulse S 1 .
  • 100 vehicle lamp, 110: light source, 112: light emitting unit, 200: lighting circuit, 210: boost converter, 220: step-down converter, 222: converter unit, 224: current smoothing filter, 230, 240: converter controller, 250: Burst controller, 252: voltage detection circuit, 254: hysteresis comparator, 256: voltage detection circuit, 258: comparator, 260: voltage detection circuit, 262: comparator, 264: timer, 270: lamp ECU, 272: main switch, 274: Processor.
  • the present invention relates to a lighting circuit of a light source.

Abstract

A lighting circuit 200 supplies electric power to a light source 110. A step-down converter 220 receives an output voltage Vout1 from a step-up converter 210, and supplies a driving current IDRV to the light source 110. The step-up converter 210 operates in a burst mode where an operation period and a stop period are repeated, in accordance with the state of the step-down converter 220.

Description

点灯回路および車両用灯具Lighting circuit and vehicle lamp
 本発明は、光源の点灯回路に関する。 The present invention relates to a lighting circuit of a light source.
 車両用灯具は、一般にロービームとハイビームとを切りかえることが可能である。ロービームは、近方を所定の照度で照明するものであって、対向車や先行車にグレアを与えないよう配光規定が定められており、主に市街地を走行する場合に用いられる。一方、ハイビームは、前方の広範囲および遠方を比較的高い照度で照明するものであり、主に対向車や先行車が少ない道路を高速走行する場合に用いられる。したがって、ハイビームはロービームと比較してより運転者による視認性に優れているが、車両前方に存在する車両の運転者や歩行者にグレアを与えてしまうという問題がある。 Vehicle lamps are generally capable of switching between low beam and high beam. The low beam illuminates the near side with a predetermined illuminance, and a light distribution rule is defined so as not to give glare to oncoming vehicles and preceding vehicles, and is mainly used when traveling in a city area. On the other hand, the high beam illuminates a wide range and a distance ahead with relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles and preceding vehicles. Therefore, although the high beam is more excellent in visibility by the driver than the low beam, there is a problem that glare is given to the driver of the vehicle existing in front of the vehicle and the pedestrian.
 近年、車両の周囲の状態にもとづいて、ハイビームの配光パターンを動的、適応的に制御するADB(Adaptive Driving Beam:配光可変型ヘッドランプ)技術が提案されている。ADB技術は、車両の前方の先行車、対向車や歩行者の有無を検出し、車両あるいは歩行者に対応する領域を減光あるいは消灯するなどして、車両あるいは歩行者に与えるグレアを低減するものである。 In recent years, ADB (Adaptive Driving Beam: light distribution variable headlamp) technology has been proposed that dynamically and adaptively controls a light distribution pattern of high beams based on the state of the surroundings of a vehicle. ADB technology reduces the glare to be given to a vehicle or pedestrian by detecting the presence or absence of a preceding vehicle in front of the vehicle, an oncoming vehicle or a pedestrian, and reducing or turning off the area corresponding to the vehicle or pedestrian. It is a thing.
 図1は、車両用灯具の回路図である。車両用灯具100Rは、光源110と、その点灯回路200を備える。点灯回路200は、バッテリ2から供給されるバッテリ電圧VBATを電源とし、光源110に、目標輝度に応じた駆動電流を供給する。 FIG. 1 is a circuit diagram of a vehicular lamp. The vehicular lamp 100R includes a light source 110 and a lighting circuit 200 thereof. The lighting circuit 200 uses the battery voltage V BAT supplied from the battery 2 as a power supply, and supplies the light source 110 with a driving current according to the target luminance.
 光源110は、直列に接続される複数の発光ユニット112を備える。発光ユニット112の1段当たりの順電圧をVf、発光ユニットの段数をNとするとき、点灯回路200の出力電圧(負荷電圧)VLOADは、
 VLOAD>Vf×N
を満たさなければならない。
The light source 110 includes a plurality of light emitting units 112 connected in series. Assuming that the forward voltage per stage of the light emitting unit 112 is Vf and the number of steps of the light emitting unit is N, the output voltage (load voltage) V LOAD of the lighting circuit 200 is
V LOAD > Vf × N
Must be satisfied.
 点灯回路200のトポロジーは、バッテリ電圧VBATと出力電圧VLOADの関係にもとづいて選択される。N≦2である場合、VLOADの最大値は、バッテリ電圧VBATより低いため、点灯回路200を、降圧コンバータで構成することができる。 The topology of lighting circuit 200 is selected based on the relationship between battery voltage V BAT and output voltage V LOAD . When N ≦ 2, the maximum value of V LOAD is lower than the battery voltage V BAT , so the lighting circuit 200 can be configured with a step-down converter.
 反対に、N≧3である場合には、出力電圧VLOADの最大値は、バッテリ電圧VBATより高くなる。したがって点灯回路200を、昇圧コンバータ、もしくは、昇圧コンバータと降圧コンバータの組み合わせで構成しなければならない。点灯回路200Rは、前段の昇圧コンバータ210と、後段の降圧コンバータ220、およびそれらのコントローラ230、240を備える。 On the contrary, when NN3 , the maximum value of the output voltage V LOAD is higher than the battery voltage V BAT . Therefore, lighting circuit 200 must be configured with a boost converter or a combination of a boost converter and a buck converter. The lighting circuit 200R includes a boost converter 210 at a front stage, a step-down converter 220 at a rear stage, and controllers 230 and 240 thereof.
 前段の昇圧コンバータ210の出力電圧VOUT1は目標電圧VOUT1(REF)に安定化され、この目標電圧はVOUT1(REF)>Vf×Nを満たすように規定される。コントローラ230は、出力電圧VOUT1が目標値VOUT1(REF)に近づくように、昇圧コンバータ210を定電圧制御する。 The output voltage V OUT1 of the step-up converter 210 is stabilized at the target voltage V OUT1 (REF) , and this target voltage is defined so as to satisfy V OUT1 (REF) > Vf × N. Controller 230 performs constant voltage control on boost converter 210 such that output voltage V OUT1 approaches target value V OUT1 (REF) .
 後段の降圧コンバータ220は、安定化された電圧VOUT1を入力電圧として受け、光源110に駆動電流IDRVを供給する。コントローラ240は、駆動電流IDRVが目標値に近づくように、降圧コンバータ220を定電流制御する。 The downstream step-down converter 220 receives the stabilized voltage V OUT1 as an input voltage, and supplies a drive current I DRV to the light source 110. Controller 240 performs constant current control of step-down converter 220 such that drive current I DRV approaches a target value.
特開2014-176169号公報JP, 2014-176169, A
 本発明者らは、図1の点灯回路200Rについて検討した結果、以下の課題を認識するに至った。
 たとえばVfの典型値は3V程度であるが、そのばらつき、温度特性を考慮し、VOUT1(REF)は式(1)のように規定される。
 VOUT1(REF)=Vf(MAX)×N   …(1)
 Vf(MAX)は、ばらつき、温度特性等を考慮したVfの最大値である。たとえば、N=12、Vf(MAX)=5Vである場合、VOUT1(REF)=60Vとなる。
As a result of examining the lighting circuit 200R of FIG. 1, the present inventors came to recognize the following problems.
For example, although the typical value of Vf is about 3 V, V OUT1 (REF) is defined as equation (1) in consideration of the variation and temperature characteristics.
V OUT1 (REF) = Vf (MAX) × N (1)
Vf (MAX) is the maximum value of Vf in consideration of variations, temperature characteristics, and the like. For example, if N = 12 and Vf (MAX) = 5V, then V OUT1 (REF) = 60V.
 マージンを考慮してVf(MAX)を大きくとると、昇圧コンバータ210の昇圧比K=VOUT/VINが大きくなり、降圧コンバータ220の降圧比K=VOUT/VINが小さくなる。 When Vf (MAX) is increased in consideration of the margin, the step-up ratio K 1 = V OUT / V IN of the step-up converter 210 is increased, and the step-down ratio K 2 = V OUT / V IN of the step-down converter 220 is decreased.
 このことは、昇圧コンバータ210、降圧コンバータ220の部品の大型化、コストアップ、発熱量の増大といった問題を引き起こす。発熱量の増大は、放熱対策に要するコスト(巨大なヒートシンク、あるいは冷却ファンなど)の増大という別の問題を引き起こす。 This causes problems such as upsizing of parts of the step-up converter 210 and the step-down converter 220, an increase in cost, and an increase in the amount of heat generation. An increase in the amount of heat generation causes another problem of an increase in the cost (such as a huge heat sink or a cooling fan) required for heat dissipation measures.
 加えてADB制御の灯具においては、個々の発光ユニット112を独立に点消灯させるために、バイパス制御が行われる場合があり、各発光ユニット112と並列にバイパススイッチSWが設けられる。あるバイパススイッチSWをオンすると、それと並列な発光ユニット112に流れる電流がバイパススイッチSWに迂回するため、消灯する。バイパス制御によって、光源110の両端間の負荷電圧VLOADはダイナミックに変動する。ある時刻において、点灯状態である発光ユニット112の個数をn(0≦n≦N)とするとき、
 VLOAD=Vf×n
である。
In addition, in the ADB controlled lamp, bypass control may be performed in order to turn on / off the individual light emitting units 112 independently, and a bypass switch SW is provided in parallel with each light emitting unit 112. When a certain bypass switch SW is turned on, the current flowing to the light emitting unit 112 in parallel with it is diverted to the bypass switch SW so that it is turned off. The bypass control causes the load voltage V LOAD across the light source 110 to dynamically fluctuate. When the number of light emitting units 112 in the lighting state is n (0 ≦ n ≦ N) at a certain time,
V LOAD = Vf × n
It is.
 Vf(MAX)=5V、N=12とすると、VOUT1(REF)=60Vとなる。n=1であるときの実際の負荷電圧VLOADはVf=3Vである。したがって、後段の降圧コンバータ220の降圧比K=3/60=1/20と非常に小さくなり、降圧コンバータのインダクタのサイズが大きくなる。 Assuming that Vf (MAX) = 5 V and N = 12, V OUT1 (REF) = 60 V. The actual load voltage V LOAD when n = 1 is Vf = 3V. Therefore, the step-down ratio K 2 of the subsequent step-down converter 220 becomes very small, ie, K 2 = 3/60 = 1/20, and the size of the inductor of the step-down converter increases.
 本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、コンバータのサイズを小型化可能な提供にある。 The present invention has been made in view of such problems, and one of the exemplary objects of an aspect thereof is to provide a converter that can be miniaturized.
 本発明のある態様は、光源に電力を供給する点灯回路に関する。点灯回路は、昇圧コンバータと、昇圧コンバータの出力電圧を受け、光源に駆動電流を供給する降圧コンバータと、を備える。昇圧コンバータは、降圧コンバータの状態に応じて、動作期間(動作状態)と停止期間(停止状態)を繰り返すバーストモード(間欠モード)で動作する。 One aspect of the present invention relates to a lighting circuit for supplying power to a light source. The lighting circuit includes a boost converter, and a step-down converter that receives an output voltage of the boost converter and supplies a drive current to a light source. The boost converter operates in a burst mode (intermittent mode) in which an operation period (operation state) and a stop period (stop state) are repeated according to the state of the step-down converter.
 この態様によると、前段の昇圧コンバータの出力電圧は、後段の降圧コンバータの入力電圧と出力電圧の関係が適切となるように調節され、したがって降圧コンバータの降圧比の範囲を制限できる。 According to this aspect, the output voltage of the upstream step-up converter is adjusted such that the relationship between the input voltage and the output voltage of the downstream step-down converter becomes appropriate, so that the range of step-down ratio of the step-down converter can be limited.
 昇圧コンバータは、降圧コンバータの入出力の電位差が第1しきい値まで低下すると、動作期間に入ってもよい。 The boost converter may enter an operating period when the potential difference between the input and output of the buck converter decreases to the first threshold.
 昇圧コンバータは、降圧コンバータの入出力の電位差が、第1しきい値より高い第2しきい値に達すると、停止期間に入ってもよい。 The step-up converter may enter the stop period when the potential difference between the input and output of the step-down converter reaches a second threshold higher than the first threshold.
 昇圧コンバータの動作期間は、タイマーにより規定されてもよい。すなわち動作期間に入ってから、ある時間が経過すると、停止期間に遷移してもよい。 The operation period of the boost converter may be defined by a timer. That is, after entering an operation period, when a certain time passes, it may transition to a stop period.
 点灯回路は、降圧コンバータの入出力の電位差に応じた検出信号を生成する電圧検出回路と、検出信号をしきい値と比較し、比較結果に応じたバースト信号を生成するヒステリシスコンパレータと、をさらに備えてもよい。昇圧コンバータは、バースト信号に応じて制御されてもよい。 The lighting circuit further includes a voltage detection circuit that generates a detection signal according to the potential difference between the input and output of the step-down converter, and a hysteresis comparator that compares the detection signal with a threshold and generates a burst signal according to the comparison result. You may have. The boost converter may be controlled in response to the burst signal.
 点灯回路は、降圧コンバータの入出力の電位差に、2値で切りかえ可能な係数を乗じた検出信号を生成する電圧検出回路と、検出信号を所定のしきい値と比較し、比較結果に応じたバースト信号を生成するコンパレータと、をさらに備えてもよい。係数はバースト信号に応じて変化し、昇圧コンバータは、バースト信号に応じて制御されてもよい。 The lighting circuit compares the detection signal with a predetermined threshold value according to the comparison result, and a voltage detection circuit that generates a detection signal in which the potential difference between the input and output of the step-down converter is multiplied by a coefficient switchable by two values. And a comparator that generates a burst signal. The coefficients change in response to the burst signal, and the boost converter may be controlled in response to the burst signal.
 本発明の別の態様は車両用灯具に関する。車両用灯具は、光源と、上述のいずれかの点灯回路と、を備える。 Another aspect of the present invention relates to a vehicle lamp. The vehicular lamp includes a light source and any of the lighting circuits described above.
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It is to be noted that any combination of the above-described constituent elements, and one in which the constituent elements and expressions of the present invention are mutually replaced among methods, apparatuses, systems, etc. is also effective as an aspect of the present invention.
 さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 Furthermore, the description of this item (Means for Solving the Problems) does not explain all the essential features of the present invention, and therefore, the subcombinations of these described features may also be the present invention. .
 本発明のある態様によれば、コンバータのサイズを小型化できる。 According to an aspect of the present invention, the size of the converter can be reduced.
車両用灯具の回路図である。It is a circuit diagram of a vehicle lamp. 第1の実施の形態に係る車両用灯具の回路図である。FIG. 1 is a circuit diagram of a vehicle lamp according to a first embodiment. 点灯回路の動作波形図である。FIG. 6 is an operation waveform diagram of a lighting circuit. 点灯回路の動作波形図である。FIG. 6 is an operation waveform diagram of a lighting circuit. 一実施例に係る点灯回路の一部の回路図である。It is a circuit diagram of a part of lighting circuit concerning one example. 一実施例に係るバーストコントローラの回路図である。It is a circuit diagram of a burst controller concerning one example. 図7(a)~(c)は、電圧検出回路の構成例を示す回路図である。FIGS. 7A to 7C are circuit diagrams showing configuration examples of the voltage detection circuit. 一実施例に係るバーストコントローラの回路図である。It is a circuit diagram of a burst controller concerning one example. 図9(a)、(b)は、バーストコントローラの構成例を示す回路図である。FIGS. 9A and 9B are circuit diagrams showing configuration examples of the burst controller. 図10(a)、(b)は、昇圧コンバータおよびコンバータコントローラの構成例を示す回路図である。FIGS. 10A and 10B are circuit diagrams showing configuration examples of the boost converter and the converter controller. 第2の実施の形態に係る点灯回路の一部の回路図である。It is a circuit diagram of a part of lighting circuit concerning a 2nd embodiment. 一実施例に係るバーストコントローラの回路図である。It is a circuit diagram of a burst controller concerning one example. 図12のバーストコントローラの動作波形図である。FIG. 13 is an operation waveform diagram of the burst controller of FIG. 12; 変形例4に係る昇圧コンバータおよびコンバータコントローラの回路図である。FIG. 16 is a circuit diagram of a boost converter and a converter controller according to a fourth modification.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and duplicating descriptions will be omitted as appropriate. In addition, the embodiments do not limit the invention and are merely examples, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In the present specification, “the state in which the member A is connected to the member B” means that the members A and B are electrically connected in addition to the case where the members A and B are physically and directly connected. It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "a state where the member C is provided between the member A and the member B" means that the member A and the member C, or the member B and the member C are directly connected, and It also includes the case of indirect connection via other members that do not substantially affect the connection state of the connection or do not impair the function or effect provided by the connection.
 また本明細書において、電圧信号、電流信号などの電気信号、あるいは抵抗、キャパシタなどの回路素子に付された符号は、必要に応じてそれぞれの電圧値、電流値、あるいは抵抗値、容量値を表すものとする。 In the present specification, reference numerals attached to electric signals such as voltage signals and current signals or circuit elements such as resistors and capacitors indicate respective voltage values, current values, or resistance values and capacitance values as necessary. It shall represent.
 本明細書において参照する波形図やタイムチャートの縦軸および横軸は、理解を容易とするために適宜拡大、縮小したものであり、また示される各波形も、理解の容易のために簡略化され、あるいは誇張もしくは強調されている。 The vertical and horizontal axes of the waveform diagrams and time charts referred to in the present specification are scaled up and down appropriately to facilitate understanding, and each waveform shown is also simplified for ease of understanding. Or exaggerated or emphasized.
(第1の実施の形態)
 図2は、第1の実施の形態に係る車両用灯具100の回路図である。図2には灯具システム1全体が示される。車両用灯具100は、光源110および点灯回路200を備える。光源110は直列に接続された複数の発光ユニット112_1~112_Nを含む。発光ユニット112はたとえばLEDであり、光源110をLEDバーあるいはLEDストリングとも称する。なお発光ユニット112は、LD(レーザダイオード)や有機EL(Electro Luminescence)素子であってもよい。たとえば複数の発光ユニット112_1~112_Nはそれぞれ、図示しない光学系を経て、車両前方の仮想鉛直スクリーン上の異なる領域を照射する。
First Embodiment
FIG. 2 is a circuit diagram of the vehicular lamp 100 according to the first embodiment. The entire lamp system 1 is shown in FIG. The vehicular lamp 100 includes a light source 110 and a lighting circuit 200. The light source 110 includes a plurality of light emitting units 112_1 to 112_N connected in series. The light emitting unit 112 is, for example, an LED, and the light source 110 is also referred to as an LED bar or an LED string. The light emitting unit 112 may be an LD (laser diode) or an organic EL (Electro Luminescence) element. For example, the plurality of light emitting units 112_1 to 112_N respectively illuminate different regions on the virtual vertical screen in front of the vehicle through an optical system (not shown).
 点灯回路200は、光源110に駆動電流IDRVを供給して発光させる。 The lighting circuit 200 supplies the drive current I DRV to the light source 110 to cause it to emit light.
 なおオプションとして点灯回路200は、複数の発光ユニット112それぞれを個別にオン、オフ制御する機能を備えてもよい(バイパス制御)。点灯回路200には、図示しないプロセッサ(ECU:Electronic Control Unit)から、配光パターンを指示する制御指令SPTNを受け、この制御指令SPTNに応じて、複数の発光ユニット112のオン、オフを制御してもよい。 As an option, the lighting circuit 200 may have a function of individually turning on and off the plurality of light emitting units 112 (bypass control). The lighting circuit 200 receives a control command SPTN instructing a light distribution pattern from a processor (ECU: Electronic Control Unit) (not shown), and turns on and off the plurality of light emitting units 112 according to the control command SPTN. You may control.
 点灯回路200は、昇圧コンバータ210、降圧コンバータ220、コンバータコントローラ230、コンバータコントローラ240、バーストコントローラ250、灯具ECU270を備える。 The lighting circuit 200 includes a boost converter 210, a step-down converter 220, a converter controller 230, a converter controller 240, a burst controller 250, and a lamp ECU 270.
 灯具ECU270は、メインスイッチ272およびプロセッサ274を備える。プロセッサ274は、車両ECU4と通信可能であり、車両ECU4からの制御指令や情報にもとづいて、メインスイッチ272のオン、オフを制御し、あるいは適切な配光パターンが得られるようにコンバータコントローラ230,240を制御する。 The lamp ECU 270 includes a main switch 272 and a processor 274. The processor 274 is communicable with the vehicle ECU 4 and controls on / off of the main switch 272 based on control commands and information from the vehicle ECU 4 or the converter controller 230, so that an appropriate light distribution pattern can be obtained. Control 240
 メインスイッチ272がオンすると、昇圧コンバータ210にバッテリ電圧VBATが供給される。昇圧コンバータ210は、コンバータコントローラ230が生成する制御パルスSにもとづいてスイッチング動作し、バッテリ電圧VBATを昇圧して出力電圧VOUT1を生成する。 When main switch 272 is turned on, battery voltage V BAT is supplied to boost converter 210. Boost converter 210, a switching operation on the basis of the control pulses S 1 to the converter controller 230 generates, and generates an output voltage V OUT1 boosts the battery voltage V BAT.
 コンバータコントローラ230の制御方式は特に限定されない。コンバータコントローラ230は、昇圧コンバータ210の動作状態において、昇圧コンバータ210が、後段の降圧コンバータ220および光源110が必要とする電力より大きな電力を供給するように、制御パルスSを生成する。 The control method of converter controller 230 is not particularly limited. Converter controller 230 is in the operating state of the boost converter 210, up converter 210, to provide a greater power than the power required by the subsequent step-down converter 220 and the light source 110, which generates control pulses S 1.
 たとえば、コンバータコントローラ230は、出力電圧VOUT1が、想定される負荷電圧VLOADよりも十分に高く規定された目標値VOUT1(REF)に近づくように、フィードバックによって制御パルスSのデューティ比を調節してもよい。あるいは制御パルスSのデューティ比はある値に固定されてもよい。 For example, converter controller 230 feeds back the duty ratio of control pulse S 1 by feedback such that output voltage V OUT1 approaches a prescribed target value V OUT1 (REF) sufficiently higher than assumed load voltage V LOAD. You may adjust it. Or the duty ratio of the control pulse S 1 may be fixed to a certain value.
 降圧コンバータ220は、出力電圧VOUT1を降圧し、光源110に駆動電流IDRVを供給する。一実施例においてコンバータコントローラ240は、駆動電流IDRVが目標値IREFに近づくように制御パルスSを生成し、降圧コンバータ220をフィードバック制御してもよい(定電流制御)。コンバータコントローラ240は公知技術を用いればよい。 The step-down converter 220 steps down the output voltage V OUT1 to supply the drive current I DRV to the light source 110. Converter controller 240 in one embodiment, the drive current I DRV generates a control pulse S 2 so as to approach the target value I REF, the buck converter 220 may be feedback-controlled (constant current control). Converter controller 240 may use known techniques.
 昇圧コンバータ210は、降圧コンバータ220の状態に応じて、動作期間と停止期間を繰り返すバーストモードで動作する。バーストコントローラ250は、降圧コンバータ220の入力電圧VIN2(=VOUT1)と出力電圧VOUT2の関係にもとづいて、昇圧コンバータ210のオン、・オフを規定するバースト信号SBURSTを生成する。コンバータコントローラ230は、バースト信号SBURSTがオンレベル(たとえばハイ)のときに、昇圧コンバータ210をスイッチングし、バースト信号SBURSTがオフレベル(たとえばロー)のときに、昇圧コンバータ210のスイッチングを停止する。 Boost converter 210 operates in a burst mode in which an operation period and a stop period are repeated according to the state of step-down converter 220. Burst controller 250 generates burst signal S BURST defining on / off of boost converter 210 based on the relationship between input voltage V IN2 (= V OUT1 ) of step-down converter 220 and output voltage V OUT2 . Converter controller 230 switches boost converter 210 when burst signal S BURST is on level (eg, high), and stops switching of boost converter 210 when burst signal S BURST is off level (eg, low). .
 一実施例においてバーストコントローラ250は、降圧コンバータ220の入出力の電位差ΔV(=VIN2-VOUT2)にもとづいて、昇圧コンバータ210のオン、オフを制御する。 In one embodiment, burst controller 250 controls on / off of boost converter 210 based on the potential difference ΔV (= V IN2 −V OUT2 ) between the input and output of step-down converter 220.
 バーストコントローラ250は、降圧コンバータ220の入出力の電位差ΔVが第1しきい値VTH1まで低下すると、バースト信号SBURSTをオンレベルとし、昇圧コンバータ210を動作状態にセットする。 When the potential difference ΔV between the input and output of step-down converter 220 decreases to first threshold value V TH1 , burst controller 250 sets burst signal S BURST to the on level, and sets boost converter 210 to the operating state.
 バーストコントローラ250は、降圧コンバータ220の入出力の電位差ΔVが第1しきい値VTH1より高く規定される第2しきい値VTH2まで上昇すると、バースト信号SBURSTをオフレベルとし、昇圧コンバータ210を停止状態にセットする。 When the potential difference ΔV between the input and output of step-down converter 220 rises to second threshold value V TH2 defined higher than first threshold value V TH1 , burst controller 250 sets burst signal S BURST to the off level, and boost converter 210 Is set to stop.
 以上が点灯回路200の構成である。続いてその動作を説明する。図3は、点灯回路200の動作波形図である。はじめに理解の容易化のため、負荷電圧VLOADが一定の場合を説明する。 The above is the configuration of the lighting circuit 200. Subsequently, the operation will be described. FIG. 3 is an operation waveform diagram of the lighting circuit 200. As shown in FIG. First, in order to facilitate understanding, the case where the load voltage V LOAD is constant will be described.
 バースト信号SBURSTがハイレベルであるオン期間TONにおいて、昇圧コンバータ210の出力電力は、後段の降圧コンバータ220の入力電力より大きい。したがって出力電圧VOUT1は、時間とともに上昇する。時刻tに、電位差ΔVが第2しきい値VTH2に達すると、言い換えれば出力電圧VOUT1がVLOAD+VTH2に達すると、バースト信号SBURSTがローレベルとなり、オフ期間TOFFに入る。 The output power of the boost converter 210 is larger than the input power of the step-down converter 220 in the subsequent stage in the on period T ON in which the burst signal S BURST is at a high level. Therefore, the output voltage V OUT1 rises with time. At time t 1, the potential difference ΔV reaches the second threshold value V TH2, the output voltage V OUT1 other words reaches V LOAD + V TH2, the burst signal S BURST goes low, enters the OFF period T OFF.
 オフ期間TOFFの間、制御パルスSが停止し、昇圧コンバータ210のスイッチング動作が停止し、出力電圧VOUT1が時間とともに低下していく。そして時刻tに、電位差ΔVが第1しきい値VTH1まで低下すると、言い換えれば出力電圧VOUT1がVLOAD+VTH1まで低下すると、バースト信号SBURSTがハイレベルとなり、オン期間TONに戻る。 During the off period T OFF, the control pulse S 1 is stopped, the switching operation of the boost converter 210 is stopped, the output voltage V OUT1 is lowered with time. And time t 2, the the potential difference ΔV is decreased to a first threshold value V TH1, the output voltage V OUT1 other words decreases to V LOAD + V TH1, the burst signal S BURST becomes high level, and returns to the on-period T ON .
 このようにして前段の昇圧コンバータ210は、後段の降圧コンバータ220の入出力の電位差に応じて、動作、停止を繰り返すバーストモードで動作する。 In this way, the step-up converter 210 at the front stage operates in the burst mode in which operation and stop are repeated according to the potential difference between the input and output of the step-down converter 220 at the rear stage.
 続いて図4を参照し、負荷電圧VLOADが変動する場合の動作を説明する。図4は、点灯回路200の動作波形図である。負荷電圧VLOADが変動する場合も、動作は図3と同様である。昇圧コンバータ210がバースト動作することにより、出力電圧VOUT2が負荷電圧VLOADに追従する。 Subsequently, with reference to FIG. 4, an operation in the case where the load voltage V LOAD fluctuates will be described. FIG. 4 is an operation waveform diagram of the lighting circuit 200. As shown in FIG. Even when the load voltage V LOAD fluctuates, the operation is similar to FIG. By the step-up operation of boost converter 210, output voltage V.sub.OUT2 follows load voltage V.sub.LOAD .
 以上が点灯回路200の動作である。続いてその利点を説明する。 The above is the operation of the lighting circuit 200. Next, the advantages will be described.
 この点灯回路200によれば、降圧コンバータ220の入出力の電位差ΔVを所定の範囲に制限することができる。つまり降圧コンバータ220の降圧比Kの最小値が小さくなり過ぎるのを防止できるため、降圧コンバータ220を小さく設計できる。 According to this lighting circuit 200, the potential difference ΔV between the input and output of the step-down converter 220 can be limited to a predetermined range. That it is possible to prevent that the minimum value of the step-down ratio K 2 of the step-down converter 220 becomes too small, it can be designed small buck converter 220.
 この効果は、負荷電圧VLOADが一定のアプリケーションにおいても有用であるが、負荷電圧VLOADが変動するアプリケーション、たとえばバイパス制御にもとづく調光を行うアプリケーションにおいて特に有効である。 This effect is useful even in applications where the load voltage V LOAD is constant, but is particularly effective in applications where the load voltage V LOAD fluctuates, for example, an application that performs dimming based on bypass control.
 以下、本発明の第1の実施の形態について、その範囲を狭めるためではなく、その本質や動作の理解を助け、またそれらを明確化するために、より具体的な構成例や実施例を説明する。 In the following, the first embodiment of the present invention is described not to narrow the scope but to help understand the nature and operation of the first embodiment and to explain more specific configuration examples and examples in order to clarify them. Do.
(実施例1.1)
 図5は、一実施例に係る点灯回路200の一部の回路図である。図5には、降圧コンバータ220、コンバータコントローラ240およびバーストコントローラ250が示される。
Example 1.1
FIG. 5 is a circuit diagram of a part of the lighting circuit 200 according to an embodiment. In FIG. 5, a step-down converter 220, a converter controller 240 and a burst controller 250 are shown.
 降圧コンバータ220は、コンバータ部222と、電流平滑フィルタ224を含む。この実施例において、コンバータコントローラ240は、いわゆるリップル制御によってコンバータ部222のコイル電流Iを安定化する。コイル電流Iは、電流センス抵抗Rによって検出される。コンバータコントローラ240は、コイル電流Iの検出値があるピークしきい値に達するとスイッチングトランジスタMをターンオフし、コイル電流Iの検出値があるボトムしきい値まで低下するとスイッチングトランジスタMをターンオンする。 Step-down converter 220 includes a converter unit 222 and a current smoothing filter 224. In this embodiment, the converter controller 240, to stabilize the coil current I L of the converter circuit 222 by a so-called ripple control. The coil current I L is detected by the current sense resistor R S. Converter controller 240 turns off the switching transistor M 1 reaches the peak threshold is detected values of the coil current I L, the switching transistor M 1 drops to bottom a certain threshold detected value of the coil current I L Turn on.
 電流平滑フィルタ224は、コイル電流Iからリップル成分を除去し、そのDC成分を駆動電流IDRVとして光源110に供給する。 The current smoothing filter 224 removes the ripple component from the coil current I L and supplies the DC component to the light source 110 as the drive current I DRV .
 コンバータコントローラ240の制御方式はこれには限定されず、エラーアンプを利用した定電流制御を行ってもよく、この場合、電流平滑フィルタ224は省略しうる。 The control method of converter controller 240 is not limited to this, and constant current control using an error amplifier may be performed. In this case, current smoothing filter 224 may be omitted.
 続いてバーストコントローラ250の構成を説明する。バーストコントローラ250は、電圧検出回路252およびヒステリシスコンパレータ254を備える。電圧検出回路252は、降圧コンバータ220の入出力の電位差ΔV(=VIN2-VLOAD)に応じた検出信号Vを生成する。ヒステリシスコンパレータ254は、検出信号Vを、2値で変化するしきい値VTHH・VTHLと比較し、比較結果に応じたバースト信号SBURSTを生成する。下側しきい値VTHLは、図3、図4の第1しきい値VTH1を規定し、上側しきい値VTHHは、図3、図4の第2しきい値VTH2を規定する。ヒステリシスコンパレータに代えて、2個のコンパレータを用いてもよい。前段の昇圧コンバータ210は、バースト信号SBURSTに応じて制御される。 Subsequently, the configuration of the burst controller 250 will be described. The burst controller 250 includes a voltage detection circuit 252 and a hysteresis comparator 254. Voltage detection circuit 252 generates a detection signal V S according to the potential difference ΔV (= V IN2 −V LOAD ) of the input and output of step-down converter 220. The hysteresis comparator 254 compares the detection signal V S with the threshold value V THH · V THL that changes with two values, and generates a burst signal S BURST according to the comparison result. The lower threshold V THL defines the first threshold V TH1 of FIGS. 3 and 4, and the upper threshold V THH defines the second threshold V TH2 of FIGS. 3 and 4. . Instead of the hysteresis comparator, two comparators may be used. Boost converter 210 at the front stage is controlled in accordance with burst signal S BURST .
 図6は、一実施例に係るバーストコントローラ250の回路図である。電圧検出回路252は、抵抗R11~R14およびオペアンプOAを含む差動アンプで構成することができる。ヒステリシスコンパレータ254は、抵抗R21~R23およびオペアンプ(電圧コンパレータ)OAで構成できる。 FIG. 6 is a circuit diagram of a burst controller 250 according to one embodiment. The voltage detection circuit 252 can be configured by a differential amplifier including the resistors R 11 to R 14 and the operational amplifier OA 1 . Hysteresis comparator 254 may be configured with resistors R21 ~ R23 and the operational amplifier (voltage comparator) OA 2.
 図6の電圧検出回路252によれば、オペアンプを用いて、電位差ΔVを高精度に検出できる。 According to the voltage detection circuit 252 of FIG. 6, the potential difference ΔV can be detected with high accuracy using the operational amplifier.
 図7(a)~(c)は、電圧検出回路252の構成例を示す回路図である。図7(a)の電圧検出回路252は、抵抗R51,R52(抵抗値はともにR)、トランジスタTr51,Tr52を含む。V1は、入力電圧VIN2を、V2は負荷電圧VLOADを表す。トランジスタTr51,Tr52はカレントミラー回路を形成しており、トランジスタTr51および抵抗R51には、電流(V2-VBE)/Rが流れる。VBEはバイポーラトランジスタのベースエミッタ間電圧であり、実質的に定数である。この電流がカレントミラー回路によってコピーされ、抵抗R52にも同じ電流が流れ、その電圧降下は、V2-VBEとなる。したがって、検出信号VとしてV=V1-V2+VBEを得、これは2つの電圧V1とV2の差分に応じている。 7 (a) to 7 (c) are circuit diagrams showing configuration examples of the voltage detection circuit 252. FIG. The voltage detection circuit 252 of FIG. 7A includes resistors R 51 and R 52 (both having a resistance value of R), and transistors Tr 51 and Tr 52 . V1 represents an input voltage V IN2 and V2 represents a load voltage V LOAD . The transistors Tr 51 and Tr 52 form a current mirror circuit, and a current (V 2 −V BE ) / R flows through the transistor Tr 51 and the resistor R 51 . V BE is a voltage between the base and the emitter of the bipolar transistor and is substantially constant. This current is copied by the current mirror circuit, and the same current flows through the resistor R 52 , and the voltage drop is V 2 −V BE . Therefore, V S = V 1 −V 2 + V BE is obtained as the detection signal V S , which corresponds to the difference between the two voltages V 1 and V 2.
 図7(b)では、図7(a)の構成に、トランジスタTr53と抵抗R53を含むエミッタフォロア回路が追加されている。エミッタフォロア回路によって、検出電圧VはVBE、下方にシフトされ、V=V1-V2を得る。つまり電圧VBEのばらつきや変動の影響を抑制できる。 In FIG. 7B, an emitter follower circuit including a transistor Tr 53 and a resistor R 53 is added to the configuration of FIG. 7A. The emitter follower circuit shifts the detection voltage V S downward to V BE to obtain V S = V 1 −V 2. That is, the influence of variations and fluctuations in the voltage V BE can be suppressed.
 図7(c)では、図7(b)の抵抗R53に代えて、分圧抵抗R54,R55が設けられる。
 V=(V1-V2)×R55/(R54+R55
In FIG. 7C, voltage dividing resistors R 54 and R 55 are provided in place of the resistor R 53 in FIG. 7B.
V S = (V 1 −V 2) × R 55 / (R 54 + R 55 )
 図7(a)~(c)の電圧検出回路252によれば、オペアンプを用いたものに比べて検出精度は低下するが、電圧検出レンジを拡大できる。特に負荷電圧VLOADが広範囲で変動するアプリケーションでは、オペアンプの入力レンジの制約により、図6の構成を採用しにくい場合がある。この場合に、図7(a)~(c)の構成は有効である。 According to the voltage detection circuit 252 of FIGS. 7A to 7C, although the detection accuracy is lower than that using the operational amplifier, the voltage detection range can be expanded. In particular, in an application in which the load voltage V LOAD fluctuates over a wide range, the configuration of FIG. 6 may be difficult to adopt due to the limitation of the input range of the operational amplifier. In this case, the configurations of FIGS. 7 (a) to 7 (c) are effective.
(実施例1.2)
 図8は、一実施例に係るバーストコントローラ250の回路図である。バーストコントローラ250は、電圧検出回路256およびコンパレータ258を備える。電圧検出回路256は、降圧コンバータ220の入出力の電位差ΔVに、2値で切りかえ可能な係数(ゲイン)を乗じた検出信号Vを生成する。コンパレータ258は、検出信号Vを所定のしきい値VTHと比較し、比較結果に応じたバースト信号SBURSTを生成する。
Example 1.2
FIG. 8 is a circuit diagram of a burst controller 250 according to one embodiment. The burst controller 250 includes a voltage detection circuit 256 and a comparator 258. The voltage detection circuit 256 generates a detection signal V S obtained by multiplying the potential difference ΔV at the input and output of the step-down converter 220 by a coefficient (gain) that can be switched by two values. The comparator 258 compares the detection signal V S with a predetermined threshold value V TH and generates a burst signal S BURST according to the comparison result.
 図9(a)、(b)は、バーストコントローラ250の構成例を示す回路図である。図9(a)において、電圧検出回路256は、可変抵抗R40および固定抵抗R41を含む可変分圧回路を備える。可変抵抗R40の抵抗値は、比較結果(SBURST)に応じて2値で変化する。可変抵抗R40の電圧降下を検出電圧Vとして捉えると、検出電圧Vは、電位差ΔV=V1-V2に比例する。コンパレータ258は、検出信号Vをしきい値VTHと比較する。 FIGS. 9A and 9B are circuit diagrams showing configuration examples of the burst controller 250. FIG. 9 (a), the voltage detection circuit 256 includes a variable voltage dividing circuit including a variable resistor R 40 and the fixed resistor R 41. The resistance value of the variable resistor R 40 changes in two values in accordance with the comparison result (S BURST ). When the voltage drop of the variable resistor R 40 is taken as the detection voltage V S , the detection voltage V S is proportional to the potential difference ΔV = V 1 −V 2. The comparator 258 compares the detection signal V S with the threshold value V TH .
 図9(b)には、図9(a)のバーストコントローラ250の具体的な構成例が示される。抵抗R40は、抵抗R42,R43、トランジスタTr43を含む。トランジスタTr43がオフのとき、抵抗R40の抵抗値はR42と等しく、トランジスタTr43がオンのとき抵抗R40の抵抗値は、抵抗R42とR43の並列接続である。 FIG. 9 (b) shows a specific configuration example of the burst controller 250 of FIG. 9 (a). The resistor R 40 includes resistors R 42 and R 43 and a transistor Tr 43 . When the transistor Tr 43 is off, the resistance of the resistor R 40 is equal to R 42, and when the transistor Tr 43 is on, the resistance of the resistor R 40 is a parallel connection of the resistors R 42 and R 43 .
 トランジスタTr41は、電圧比較手段である。抵抗R40の電圧降下である検出電圧Vは、トランジスタTr41のベースエミッタ間に印加される。トランジスタTr41のオン、オフは、検出電圧Vとベースエミッタ間電圧の比較結果に応じている。トランジスタTr41のオン、オフの状態は、トランジスタTr44を含む出力段(インバータ)によって2値のバースト信号SBURSTに変換される。また、トランジスタTr42および抵抗R45,R46は、トランジスタTr41のオン、オフの状態にもとづいて、トランジスタTr43のオン、オフを制御する。 The transistor Tr 41 is a voltage comparison unit. A detection voltage V S which is a voltage drop of the resistor R 40 is applied between the base and the emitter of the transistor Tr 41 . The on / off state of the transistor Tr 41 corresponds to the comparison result of the detection voltage V S and the voltage between the base and the emitter. The on / off state of the transistor Tr 41 is converted into a binary burst signal S BURST by an output stage (inverter) including the transistor Tr 44 . The transistor Tr 42 and the resistors R 45 and R 46 control the on / off of the transistor Tr 43 based on the on / off state of the transistor Tr 41 .
 この例では、抵抗R40を可変抵抗としたが、抵抗R41を可変抵抗としてもよい。また、電圧比較手段としてトランジスタTr41を用いたがその限りでなく、差動アンプを含む電圧コンパレータを用いてもよい。 In this example, although the resistor R 40 is a variable resistor, the resistor R 41 may be a variable resistor. Further, although the transistor Tr 41 is used as the voltage comparison means, the present invention is not limited to this, and a voltage comparator including a differential amplifier may be used.
 続いて、昇圧コンバータ210について説明する。
 図10(a)、(b)は、昇圧コンバータ210およびコンバータコントローラ230の構成例を示す回路図である。コンバータコントローラ230は、市販のコントローラICを用いればよい。負荷電圧VLOADの最大値VLOAD(MAX)にマージンαを付加した電圧を、出力電圧VOUT1の目標電圧VOUT1(REF)に規定し、コンバータコントローラ230によって、昇圧コンバータ210をフィードバック制御してもよい。コンバータコントローラ230によるフィードバック制御は、出力電圧VOUT1のリミッタとして機能する。コンバータコントローラ230は、パルスバイパルスの電流制限機能を備える。具体的には、スイッチングトランジスタMに流れる電流が、センス抵抗RCSで検出される。各スイッチングサイクルにおいて、センス抵抗RCSの電圧降下にもとづく電流検出信号が、過電流保護のしきい値を超えると、コンバータコントローラ230は、制御パルスSを直ちにローとする。
Subsequently, boost converter 210 will be described.
FIGS. 10A and 10B are circuit diagrams showing configuration examples of the boost converter 210 and the converter controller 230. FIG. A converter controller 230 may use a commercially available controller IC. A voltage obtained by adding a margin α to the maximum value V LOAD (MAX) of the load voltage V LOAD is specified as the target voltage V OUT1 (REF) of the output voltage V OUT1 , and the converter controller 230 performs feedback control of the boost converter 210 It is also good. The feedback control by converter controller 230 functions as a limiter of output voltage V OUT1 . Converter controller 230 has a pulse-by-pulse current limiting function. Specifically, the current flowing through the switching transistor M 2 is detected by the sense resistor R CS. In each switching cycle, when the current detection signal based on the voltage drop of sense resistor R CS exceeds the threshold value of the over current protection, converter controller 230 immediately brings control pulse S 1 low.
 動作期間の間、図3や図4に示すように、昇圧コンバータ210の出力電圧VOUT1は、フィードバック制御の目標電圧VOUT1(REF)よりも低い。出力電圧VOUTをVOUT1(REF)に保つために必要なオン時間(パルス幅)が終了するより前に、パルスバイパルスの電流制限が作動する。言い換えれば、パルスバイサイクルの電流制限によって、昇圧コンバータ210の供給可能電力が規定され、この供給可能電力が、降圧コンバータ220の入力電力を超えるように設計される。 During the operation period, as shown in FIG. 3 and FIG. 4, the output voltage V OUT1 of the boost converter 210 is lower than the target voltage V OUT1 (REF) of feedback control. Prior to the end of the on time (pulse width) required to keep the output voltage V OUT at V OUT1 (REF) , the pulse-by-pulse current limit is activated. In other words, the pulse-by-cycle current limit defines the available power of step-up converter 210, which is designed to exceed the input power of step-down converter 220.
 パルスバイパルスの電流制限に代えて、最大オンデューティ(最大オン時間)を制限することにより、動作期間中の、供給可能電力を規定してもよい。 In place of the pulse-by-pulse current limit, the maximum on-duty (maximum on-time) may be limited to define the available power during the operation period.
 図10(a)の昇圧コンバータ210では、スイッチングトランジスタMのゲートに供給される制御パルスSが、バースト信号SBURSTによってマスクされる。論理ゲート232は、バースト信号SBURSTが動作状態を示すとき、スイッチングトランジスタMのゲートに制御パルスSを通過させ、バースト信号SBURSTが停止状態を示すとき、スイッチングトランジスタMのゲートをローに固定する。 In the boost converter 210 in FIG. 10 (a), the control pulses S 1 supplied to the gate of the switching transistor M 2 is masked by the burst signal S BURST. The logic gate 232, when the burst signal S BURST indicates the operating state, is passed through the control pulses S 1 to the gate of the switching transistor M 2, when the burst signal S BURST indicates a stop state, the low gate of the switching transistor M 2 Fix to
 図10(b)において、コンバータコントローラ230にはイネーブル(EN)ピンが設けられる。コンバータコントローラ230は、ENピンに所定レベル(たとえばロー)が入力されると、スイッチング動作を停止するように構成される。この場合、ENピンにバースト信号SBURSTを入力すればよい。 In FIG. 10B, converter controller 230 is provided with an enable (EN) pin. Converter controller 230 is configured to stop the switching operation when a predetermined level (for example, low) is input to the EN pin. In this case, the burst signal S BURST may be input to the EN pin.
(第2の実施の形態)
 図11は、第2の実施の形態に係る点灯回路200の一部の回路図である。図11には、降圧コンバータ220およびバーストコントローラ250が示される。
Second Embodiment
FIG. 11 is a circuit diagram of a part of the lighting circuit 200 according to the second embodiment. Step-down converter 220 and burst controller 250 are shown in FIG.
 この実施の形態において、昇圧コンバータ210の動作期間は、タイマーにより規定される。バーストコントローラ250は、電圧検出回路260、コンパレータ262、タイマー264を備える。電圧検出回路260は、降圧コンバータ220の入出力の電位差ΔVに応じた検出信号Vを生成する。電圧検出回路260の構成は、上述したものと同じであってもよい。 In this embodiment, the operation period of boost converter 210 is defined by a timer. The burst controller 250 includes a voltage detection circuit 260, a comparator 262, and a timer 264. Voltage detection circuit 260 generates detection signal V S according to the potential difference ΔV between the input and output of step-down converter 220. The configuration of the voltage detection circuit 260 may be the same as that described above.
 コンパレータ262は、電圧検出信号Vをしきい値電圧VTHLと比較する。そして電圧検出信号Vがしきい値VTHLまで低下するとアサート(たとえばハイ)されるトリガー信号TRIGを生成する。タイマー264は、トリガー信号TRIGのアサートから一定時間、所定レベルとなるバースト信号SBURSTを生成する。 The comparator 262 compares the voltage detection signal V S with the threshold voltage V THL . Then, it generates a trigger signal TRIG that is asserted (for example, high) when the voltage detection signal V S falls to the threshold value V THL . The timer 264 generates a burst signal S BURST that has a predetermined level for a predetermined time from the assertion of the trigger signal TRIG.
 図12は、一実施例に係るバーストコントローラ250の回路図である。電圧検出回路260は、抵抗R90,R91を含み、図9(a)の電圧検出回路256と同様に構成される。もちろん電圧検出回路260を、図6、図7(a)~(c)の電圧検出回路252と同様に構成してもよい。 FIG. 12 is a circuit diagram of a burst controller 250 according to an embodiment. The voltage detection circuit 260 includes resistors R 90 and R 91 , and is configured in the same manner as the voltage detection circuit 256 of FIG. 9A. Of course, the voltage detection circuit 260 may be configured in the same manner as the voltage detection circuit 252 shown in FIGS. 6 and 7A to 7C.
 またコンパレータ262は、トランジスタTr91,Tr92および抵抗R92,R93,R94を含み、図9(b)のコンパレータ258と同様に構成される。コンパレータ262を、電圧コンパレータで構成してもよい。 The comparator 262 includes transistors Tr 91 and Tr 92 and resistors R 92 , R 93 and R 94 , and is configured in the same manner as the comparator 258 in FIG. 9 (b). The comparator 262 may be configured by a voltage comparator.
 タイマー264は、トランジスタTr93、キャパシタC91、トランジスタTr94を含む。トリガー信号TRIGがハイレベルになると、トランジスタTr93がターンオンし、キャパシタC91が放電され、キャパシタ電圧VC91がゼロとなり、トランジスタTr94がオンする。トリガー信号TRIGがローレベルになると、トランジスタTr93がオフし、キャパシタC91が、抵抗R95,R96を介して充電され、キャパシタ電圧VC91が上昇する。キャパシタ電圧VC91の上昇にともない、抵抗R95,R96の接続ノードの電位も上昇し、やがてトランジスタTr94がターンオフする。バースト信号SBURSTは、トランジスタTr94のオン、オフ状態に対応付けられ、ハイのときに停止、ローのときの動作を示す。トランジスタTr94のオフ期間が、昇圧コンバータ210の動作期間に想到する。図13は、図12のバーストコントローラ250の動作波形図である。 The timer 264 includes a transistor Tr 93 , a capacitor C 91 , and a transistor Tr 94 . When the trigger signal TRIG becomes high level, the transistor Tr 93 is turned on, the capacitor C 91 is discharged, the capacitor voltage VC 91 becomes zero, and the transistor Tr 94 is turned on. When the trigger signal TRIG becomes low level, the transistor Tr 93 is turned off, the capacitor C 91 is charged through the resistors R 95 and R 96 , and the capacitor voltage VC 91 rises. As the capacitor voltage V C91 rises, the potential at the connection node of the resistors R 95 and R 96 also rises, and eventually the transistor Tr 94 is turned off. The burst signal S BURST is associated with the on / off state of the transistor Tr 94 , and indicates a stop / low operation when it is high. The off period of the transistor Tr 94 is considered to be the operation period of the boost converter 210. FIG. 13 is an operation waveform diagram of the burst controller 250 of FIG.
 タイマー264は、ワンショットマルチバイブレータで構成してもよい。 The timer 264 may be configured by a one-shot multivibrator.
 以上、本発明について実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。 The present invention has been described above based on the embodiments. It is understood by those skilled in the art that this embodiment is an exemplification, and that various modifications can be made to the combination of each component and each processing process, and such a modification is also within the scope of the present invention. is there. Hereinafter, such modifications will be described.
(変形例1)
 一実施例において、降圧コンバータ220は、光源110と直列に接続された定電流ドライバを含み、定電流源によって駆動電流IDRVを安定化し、コンバータコントローラ240は、定電流ドライバと光源110の直列接続を負荷としてもよく、この場合、それらの両端間電圧が負荷電圧VLOADとなる。
(Modification 1)
In one embodiment, step-down converter 220 includes a constant current driver connected in series with light source 110 to stabilize drive current I DRV by the constant current source, and converter controller 240 connects the constant current driver and light source 110 in series. As the load, in which case the voltage across them is the load voltage V LOAD .
(変形例2)
 実施の形態では、降圧コンバータ220の入出力の電位差にもとづいて、昇圧コンバータ210のバースト動作を制御したがその限りでない。別の観点から見ると、バーストコントローラ250は、降圧コンバータ220の降圧比が、所定値を下回らないように(所定の範囲に含まれるように)、バースト信号SBURSTを生成してもよい。
(Modification 2)
In the embodiment, the burst operation of boost converter 210 is controlled based on the potential difference between the input and output of step-down converter 220, but the invention is not limited thereto. From another point of view, burst controller 250 may generate burst signal S BURST so that the step-down ratio of step-down converter 220 does not fall below a predetermined value (within a predetermined range).
(変形例3)
 実施の形態では、バイパス制御方式にともなう負荷電圧VLOADの変動を説明したが、負荷電圧VLOADの変動の要因は特に限定されない。
(Modification 3)
Although the embodiment has described the fluctuation of the load voltage V LOAD due to the bypass control method, the factor of the fluctuation of the load voltage V LOAD is not particularly limited.
(変形例4)
 図14は、変形例4に係る昇圧コンバータおよびコンバータコントローラの回路図である。コンバータコントローラ230のPWM出力ピンとスイッチングトランジスタMのゲートの間には、PMOSトランジスタ234が設けられる。PMOSトランジスタ234のゲートは、抵抗R80を介して電源ピンにプルアップされる。トランジスタ236は、スイッチ234のゲートと接地の間に設けられる。なお抵抗R80をPMOSトランジスタ234のゲートとソース(すなわちPWMピン)の間に設けてもよい。PMOSトランジスタ234のドレインは、抵抗R81,R82を含む分圧回路を介してスイッチングトランジスタMのゲートと接続される。
(Modification 4)
FIG. 14 is a circuit diagram of a boost converter and a converter controller according to a fourth modification. Between the gate of the PWM output pin and the switching transistor M 2 of the converter controller 230, PMOS transistor 234 is provided. The gate of the PMOS transistor 234 is pulled up to the power supply pin through a resistor R 80. The transistor 236 is provided between the gate of the switch 234 and the ground. A resistor R 80 may be provided between the gate and the source (ie, the PWM pin) of the PMOS transistor 234. The drain of the PMOS transistor 234 is connected to the gate of the switching transistor M 2 via a voltage divider circuit including resistors R 81, R 82.
 バースト信号SBURSTがハイのとき、トランジスタ236がオンとなり、PMOSトランジスタ234のゲートがローとなる。この状態において、制御パルスSがハイのとき、PMOSトランジスタ234がオンとなり、スイッチングトランジスタMのゲートもハイとなる。制御パルスSがローのとき、PMOSトランジスタ234はオフするが、PMOSトランジスタ234のボディダイオード238を介してスイッチングトランジスタM2のゲート容量を放電し、スイッチングトランジスタMがオンする。このように、バースト信号SBURSTがハイの間は、制御パルスSに応じてスイッチングトランジスタMをスイッチングさせることができる。 When the burst signal S BURST is high, the transistor 236 is turned on and the gate of the PMOS transistor 234 is low. In this state, when the control pulse S 1 is high, PMOS transistor 234 is turned on, the gate of the switching transistor M 2 also becomes high. When the control pulse S 1 is low, PMOS transistor 234 is turned off to discharge the gate capacitance of the switching transistor M2 through the body diode 238 of the PMOS transistor 234, the switching transistor M 2 is turned on. Thus, while the burst signal S BURST is high, the switching transistor M 2 can be switched according to the control pulse S 1 .
 バースト信号SBURSTがローのとき、トランジスタ236がオフとなり、PMOSトランジスタ234のゲートは、抵抗R80を介してプルアップされる。この状態では、PWMピンの制御パルスSのハイ/ローにかかわらず、スイッチングトランジスタMのゲートはローとなり、スイッチングトランジスタM2はオフを維持する。 When the burst signal S BURST is low, transistor 236 is off and the gate of PMOS transistor 234 is pulled up through resistor R80. In this state, regardless of the high / low control pulses S 1 of the PWM pin, the gate of the switching transistor M 2 becomes low, the switching transistor M2 is kept turned off.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 While the present invention has been described using specific terms based on the embodiments, the embodiments merely show the principles and applications of the present invention, and the embodiments are defined in the claims. Many variations and modifications of the arrangement can be made without departing from the concept of the present invention.
100…車両用灯具、110…光源、112…発光ユニット、200…点灯回路、210…昇圧コンバータ、220…降圧コンバータ、222…コンバータ部、224…電流平滑フィルタ、230,240…コンバータコントローラ、250…バーストコントローラ、252…電圧検出回路、254…ヒステリシスコンパレータ、256…電圧検出回路、258…コンパレータ、260…電圧検出回路、262…コンパレータ、264…タイマー、270…灯具ECU、272…メインスイッチ、274…プロセッサ。 100: vehicle lamp, 110: light source, 112: light emitting unit, 200: lighting circuit, 210: boost converter, 220: step-down converter, 222: converter unit, 224: current smoothing filter, 230, 240: converter controller, 250: Burst controller, 252: voltage detection circuit, 254: hysteresis comparator, 256: voltage detection circuit, 258: comparator, 260: voltage detection circuit, 262: comparator, 264: timer, 270: lamp ECU, 272: main switch, 274: Processor.
 本発明は、光源の点灯回路に関する。 The present invention relates to a lighting circuit of a light source.

Claims (8)

  1.  光源に電力を供給する点灯回路であって、
     昇圧コンバータと、
     前記昇圧コンバータの出力電圧を受け、前記光源に駆動電流を供給する降圧コンバータと、
     を備え、
     前記昇圧コンバータは、前記降圧コンバータの状態に応じて、動作期間と停止期間を繰り返すバーストモードで動作することを特徴とする点灯回路。
    A lighting circuit for supplying power to the light source;
    A boost converter,
    A step-down converter that receives an output voltage of the step-up converter and supplies a drive current to the light source;
    Equipped with
    The lighting circuit characterized in that the boost converter operates in a burst mode in which an operation period and a stop period are repeated according to the state of the step-down converter.
  2.  前記昇圧コンバータは、前記降圧コンバータの入出力の電位差が第1しきい値まで低下すると、動作期間に入ることを特徴とする請求項1に記載の点灯回路。 The lighting circuit according to claim 1, wherein the step-up converter enters an operation period when the potential difference between the input and the output of the step-down converter decreases to a first threshold value.
  3.  前記昇圧コンバータは、前記降圧コンバータの入出力の電位差が、前記第1しきい値より高い第2しきい値に達すると、停止期間に入ることを特徴とする請求項2に記載の点灯回路。 The lighting circuit according to claim 2, wherein the step-up converter enters a stop period when the potential difference between the input and the output of the step-down converter reaches a second threshold value higher than the first threshold value.
  4.  前記昇圧コンバータの前記動作期間は、タイマーにより規定されることを特徴とする請求項1または2に記載の点灯回路。 The lighting circuit according to claim 1, wherein the operation period of the boosting converter is defined by a timer.
  5.  前記降圧コンバータの入出力の電位差に応じた検出信号を生成する電圧検出回路と、
     前記検出信号をしきい値と比較し、比較結果に応じたバースト信号を生成するヒステリシスコンパレータと、
     をさらに備え、前記昇圧コンバータは、前記バースト信号に応じて制御されることを特徴とする請求項1から3のいずれかに記載の点灯回路。
    A voltage detection circuit that generates a detection signal according to the potential difference between the input and output of the step-down converter;
    A hysteresis comparator that compares the detection signal with a threshold and generates a burst signal according to the comparison result;
    The lighting circuit according to any one of claims 1 to 3, further comprising: the boost converter is controlled according to the burst signal.
  6.  前記降圧コンバータの入出力の電位差に、2値で切りかえ可能な係数を乗じた検出信号を生成する電圧検出回路と、
     前記検出信号を所定のしきい値と比較し、比較結果に応じたバースト信号を生成するコンパレータと、
     をさらに備え、前記係数は前記バースト信号に応じて変化し、前記昇圧コンバータは、前記バースト信号に応じて制御されることを特徴とする請求項1または2に記載の点灯回路。
    A voltage detection circuit that generates a detection signal obtained by multiplying the potential difference between the input and output of the step-down converter by a coefficient that can be switched by two values;
    A comparator that compares the detection signal with a predetermined threshold and generates a burst signal according to the comparison result;
    The lighting circuit according to claim 1, further comprising: the coefficient changing in response to the burst signal, and the boost converter being controlled in response to the burst signal.
  7.  前記電圧検出回路は、前記降圧コンバータの入出力の電位差を分圧する可変分圧回路を含むことを特徴とする請求項6に記載の点灯回路。 The lighting circuit according to claim 6, wherein the voltage detection circuit includes a variable voltage dividing circuit that divides a potential difference between the input and the output of the step-down converter.
  8.  光源と、
     請求項1から7のいずれかに記載の点灯回路と、
     を備えることを特徴とする車両用灯具。
    Light source,
    A lighting circuit according to any one of claims 1 to 7;
    A vehicle lamp comprising:
PCT/JP2018/038176 2017-10-16 2018-10-12 Lighting circuit and vehicle lamp tool WO2019078127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880067425.0A CN111316548B (en) 2017-10-16 2018-10-12 Lighting circuit and vehicle lamp
JP2019549250A JPWO2019078127A1 (en) 2017-10-16 2018-10-12 Lighting circuit and vehicle lighting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017200332 2017-10-16
JP2017-200332 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019078127A1 true WO2019078127A1 (en) 2019-04-25

Family

ID=66174483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038176 WO2019078127A1 (en) 2017-10-16 2018-10-12 Lighting circuit and vehicle lamp tool

Country Status (3)

Country Link
JP (1) JPWO2019078127A1 (en)
CN (1) CN111316548B (en)
WO (1) WO2019078127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388793B2 (en) * 2020-07-28 2022-07-12 Ch Lighting Technology Co., Ltd. Dimmable lighting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335089A (en) * 1997-06-03 1998-12-18 Rohm Co Ltd Dimming burst pulse generating circuit for backlight lighting system
JP2014524141A (en) * 2011-06-17 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ DC-DC driver device with input and output filters for driving a load, in particular an LED unit
JP2015170534A (en) * 2014-03-07 2015-09-28 パナソニックIpマネジメント株式会社 Lighting device and luminaire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686539A (en) * 1992-09-03 1994-03-25 Toyo Electric Mfg Co Ltd Converter circuit
US6153962A (en) * 1998-09-21 2000-11-28 Murata Manufacturing Co., Ltd. Piezoelectric transformer inverter
JP4683365B2 (en) * 2001-03-09 2011-05-18 Tdk株式会社 Grid interconnection inverter
JP4177412B2 (en) * 2003-08-05 2008-11-05 松下電器産業株式会社 DC power supply device and battery-powered electronic device incorporating the same
JP5479940B2 (en) * 2010-02-16 2014-04-23 株式会社小糸製作所 Buck-boost DC-DC converter and vehicular lamp
JP5592667B2 (en) * 2010-02-22 2014-09-17 パナソニック株式会社 LED lighting circuit
US8674620B2 (en) * 2010-11-30 2014-03-18 Infineon Technologies Ag Multi channel LED driver
CN102006703A (en) * 2010-12-03 2011-04-06 何志雄 Light-emitting diode (LED) lamp driving power supply
JP5785814B2 (en) * 2011-08-18 2015-09-30 ローム株式会社 Switching power supply control circuit, control method, and switching power supply and electronic device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335089A (en) * 1997-06-03 1998-12-18 Rohm Co Ltd Dimming burst pulse generating circuit for backlight lighting system
JP2014524141A (en) * 2011-06-17 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ DC-DC driver device with input and output filters for driving a load, in particular an LED unit
JP2015170534A (en) * 2014-03-07 2015-09-28 パナソニックIpマネジメント株式会社 Lighting device and luminaire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388793B2 (en) * 2020-07-28 2022-07-12 Ch Lighting Technology Co., Ltd. Dimmable lighting apparatus

Also Published As

Publication number Publication date
CN111316548A (en) 2020-06-19
CN111316548B (en) 2024-01-23
JPWO2019078127A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
US10000150B2 (en) Lighting circuit and vehicle lamp
JP6262557B2 (en) VEHICLE LAMP, ITS DRIVE DEVICE, AND CONTROL METHOD THEREOF
US9386646B2 (en) Vehicle lamp and vehicle lamp driving device
US10166912B2 (en) Automotive LED driving apparatus
US8994287B2 (en) Light source control device
JP6916668B2 (en) Lighting circuit for vehicle lighting equipment and light source
JP7183018B2 (en) Lighting circuit and vehicle lamp
JP6767860B2 (en) Converter controller and vehicle lighting
JP6307302B2 (en) VEHICLE LIGHT AND DRIVE DEVICE THEREOF
US9992826B1 (en) Dual mode constant current LED driver
US20180132319A1 (en) Lighting device
WO2019078127A1 (en) Lighting circuit and vehicle lamp tool
WO2013161215A1 (en) Light source control device
US20200120767A1 (en) Vehicle lamp and lighting circuit
JP5225940B2 (en) Load drive circuit
JP6283542B2 (en) VEHICLE LIGHT AND DRIVE DEVICE THEREOF
WO2021010325A1 (en) Lighting circuit and vehicular lamp
JP7271554B2 (en) Lighting circuit and vehicle lamp
JP6282905B2 (en) VEHICLE LIGHT AND DRIVE DEVICE THEREOF
KR101987296B1 (en) Apparatus for driving led for vehicle
JP6680080B2 (en) Vehicle lamp control device
KR102074667B1 (en) Apparatus for driving led for vehicle
JP6932500B2 (en) Lighting circuit and vehicle lighting
JP6826381B2 (en) Lighting circuit for vehicle lighting equipment and light source
JP2015147445A (en) Vehicle lighting appliance and its drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868549

Country of ref document: EP

Kind code of ref document: A1