WO2019078120A1 - Suspension - Google Patents

Suspension Download PDF

Info

Publication number
WO2019078120A1
WO2019078120A1 PCT/JP2018/038139 JP2018038139W WO2019078120A1 WO 2019078120 A1 WO2019078120 A1 WO 2019078120A1 JP 2018038139 W JP2018038139 W JP 2018038139W WO 2019078120 A1 WO2019078120 A1 WO 2019078120A1
Authority
WO
WIPO (PCT)
Prior art keywords
bush
universal joint
shaft
suspension
movable shaft
Prior art date
Application number
PCT/JP2018/038139
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 郡司
浩保 熊谷
真史 疋田
松田 靖之
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2019511783A priority Critical patent/JP6590115B2/en
Publication of WO2019078120A1 publication Critical patent/WO2019078120A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof

Definitions

  • the present invention relates to a suspension.
  • a suspension is disposed between the vehicle body and the wheel.
  • the suspension is a device for making it difficult to transmit vibrations due to the unevenness of the road surface to the vehicle body, and is a device for positioning the wheel.
  • a multilink type suspension is known as one of suspension types.
  • Patent Document 1 describes an example of a multilink suspension.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a suspension that can easily change the relative attitude of the wheel with respect to the vehicle body.
  • a suspension according to an aspect of the present disclosure includes a plurality of links connecting a vehicle body side member and a hub carrier, and at least one of the plurality of links is a telescopic link;
  • the link includes a fixed shaft, a first universal joint connecting the fixed shaft to the vehicle side member so as to be rotatable and swingable with respect to the vehicle body side member, a movable shaft slidable relative to the fixed shaft, A second universal joint coupling the movable shaft to the hub carrier so as to be rotatable and swingable with respect to the hub carrier, and an actuator fixed to the fixed shaft to move the movable shaft.
  • the suspension can change the attitude of the wheel by moving the movable shaft.
  • the suspension can facilitate changing the relative attitude of the wheel relative to the vehicle body.
  • the suspension is provided with the five telescopic links.
  • the suspension can change the toe angle, the camber angle, the caster angle, the tread width and the wheel base by moving the movable shaft.
  • the suspension can make it easier to change the relative attitude of the wheel with respect to the vehicle body.
  • FIG. 1 is a perspective view of the suspension of the present embodiment.
  • FIG. 2 is a perspective view of the expandable link of the present embodiment.
  • FIG. 3 is an exploded perspective view of the telescopic link of the present embodiment.
  • FIG. 4 is an exploded perspective view of the telescopic link of the present embodiment.
  • FIG. 5 is a plan view of the expandable link of the present embodiment. 6 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 7 is a bottom view of the expandable link of the present embodiment.
  • FIG. 8 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 9 is an exploded perspective view of the fixed shaft of the present embodiment.
  • FIG. 10 is a plan view of the expandable link of the present embodiment.
  • FIG. 11 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 12 is an exploded perspective view of the universal joint of the present embodiment.
  • FIG. 13 is a cross-sectional view taken along the line DD in FIG.
  • FIG. 14 is an exploded perspective view of the clutch of the present embodiment.
  • FIG. 15 is a perspective view of the suspension of the first modification.
  • FIG. 16 is a perspective view of the fixed link.
  • FIG. 17 is a perspective view of the suspension of the second modification.
  • FIG. 18 is a perspective view of a suspension according to a third modification.
  • FIG. 1 is a perspective view of the suspension of the present embodiment.
  • the vehicle 10 of the present embodiment includes a wheel 102, a hub unit 101, a vehicle body side member 18, a hub carrier 19, a suspension 1, and a control device 9.
  • the vehicle 10 includes four wheels 102, each of which includes a hub unit 101.
  • the hub unit 101 incorporates, for example, a hub bearing, two motors, a transmission, and the like.
  • the hub unit 101 rotatably supports the wheel 102 and drives the wheel 102.
  • the vehicle body side member 18 is a member fixed to the vehicle body.
  • the hub carrier 19 is a member fixed to the hub unit 101.
  • the hub carrier 19 is also called knuckle.
  • the suspension 1 is a device that connects the vehicle body (chassis) of the vehicle 10 and the hub unit 101.
  • the suspension 1 is a multilink type. As shown in FIG. 1, the suspension 1 includes a shock absorber 11 and five telescopic links 2 for one wheel 102.
  • the shock absorber 11 is a device for reducing the impact transmitted from the road surface to the vehicle body while the vehicle is traveling. One end of the shock absorber 11 is fixed to the vehicle body. The other end of the shock absorber 11 is fixed to the hub carrier 19. The shock absorber 11 can expand and contract in the vertical direction.
  • FIG. 2 is a perspective view of the expandable link of the present embodiment.
  • FIG. 3 is an exploded perspective view of the telescopic link of the present embodiment.
  • FIG. 4 is an exploded perspective view of the telescopic link of the present embodiment.
  • the expansion link 2 is a member for connecting the vehicle body side member 18 and the hub carrier 19. As shown in FIG. 1, two telescopic links 2 are disposed above the rotation axis of the wheel 102. Three telescopic links 2 are disposed below the rotation axis of the wheel 102. As shown in FIG. 2, the expansion link 2 includes a fixed shaft 3, a movable shaft 4, a first universal joint 6 a, a second universal joint 6 b, and an actuator 5.
  • the fixed shaft 3 is connected to the vehicle body side member 18 (see FIG. 1) via the first universal joint 6a.
  • the fixed shaft 3 is cylindrical.
  • the fixed shaft 3 includes a first member 31 and a second member 32.
  • the first member 31 and the second member 32 are connected by a fastening member 301.
  • two positioning pins 302 are used.
  • the first universal joint 6 a is attached to the first member 31.
  • the movable shaft 4 is connected to the hub carrier 19 (see FIG. 1) via the second universal joint 6b.
  • the movable shaft 4 is a hollow member having an internal space 40. A part of the movable shaft 4 is located inside the fixed shaft 3.
  • the movable shaft 4 can slide relative to the fixed shaft 3.
  • the movable length of the movable shaft 4 is regulated by a stopper 45 (see FIG. 6) provided on the movable shaft 4.
  • the stopper 45 is disposed in a groove 315 provided on the inner peripheral surface of the first member 31. When the stopper 45 reaches the end of the groove 315, the stopper 45 contacts the first member 31 and the movable shaft 4 stops. This prevents the movable shaft 4 from coming off the fixed shaft 3.
  • FIG. 7 is a bottom view of the expandable link of the present embodiment.
  • FIG. 8 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 9 is an exploded perspective view of the fixed shaft of the present embodiment.
  • the movable shaft 4 includes a first flat surface 41, a second flat surface 42, a third flat surface 43, and a fourth flat surface 44 as surfaces facing the fixed shaft 3.
  • the first flat surface 41 and the second flat surface 42 face the first member 31.
  • the second plane 42 is at an angle to the first plane 41.
  • An angle ⁇ between the first plane 41 and the second plane 42 is an acute angle.
  • the third plane 43 and the fourth plane 44 face the second member 32.
  • the fourth plane 44 makes an angle with the third plane 43.
  • the angle ⁇ formed by the third plane 43 and the fourth plane 44 is an acute angle.
  • the third plane 43 is parallel to the first plane 41
  • the fourth plane 44 is parallel to the second plane 42. Therefore, the angle ⁇ is equal to the angle ⁇ .
  • the cross section obtained by cutting the movable shaft 4 in a plane orthogonal to the rotation axis Z is an octagon having four pairs of parallel sides.
  • the rotation axis Z is a rotation axis of a screw shaft 57 described later. That is, the rotation axis Z is a straight line passing through the center of gravity of each cross section when the screw shaft 57 is cut in a plane orthogonal to the direction in which the screw shaft 57 extends.
  • a direction parallel to the rotation axis Z is referred to as an axial direction.
  • the direction orthogonal to the rotation axis Z is described as a radial direction.
  • the first member 31 includes a first opposing surface 311, a second opposing surface 312, a first bush 351, and a second bush 352.
  • the first opposing surface 311 faces the first flat surface 41 of the movable shaft 4.
  • the second opposing surface 312 faces the second flat surface 42 of the movable shaft 4.
  • the first opposing surface 311 is parallel to the first plane 41
  • the second opposing surface 312 is parallel to the second plane 42.
  • the first bush 351 is formed in a plate shape, and is fitted in the recess 311 d provided in the first opposing surface 311. The thickness of the first bush 351 is larger than the depth of the recess 311 d.
  • the first bush 351 is in contact with the first plane 41.
  • the second bush 352 is formed in a plate shape, and is fitted in a recess 312 d provided in the second opposing surface 312.
  • the thickness of the second bush 352 is larger than the depth of the recess 312 d.
  • the second bush 352 is in contact with the second plane 42.
  • the second member 32 includes a third facing surface 323, a fourth facing surface 324, a third bush 353, a fourth bush 354, a first elastic member 363, and a second elastic member. 364 and.
  • the third facing surface 323 faces the third flat surface 43 of the movable shaft 4.
  • the fourth opposing surface 324 faces the fourth plane 44 of the movable shaft 4.
  • the third opposing surface 323 is parallel to the third plane 43
  • the fourth opposing surface 324 is parallel to the fourth plane 44.
  • the third bush 353 is formed in a plate shape, and is fitted in the recess 323 d provided in the third opposing surface 323.
  • the third bush 353 is in contact with the third plane 43.
  • the first elastic member 363 is, for example, a disc spring.
  • the first elastic member 363 is disposed between the bottom surface of the recess 323 d and the third bush 353.
  • the first elastic member 363 presses the third bush 353 against the third plane 43.
  • the fourth bush 354 is formed in a plate shape, and is fitted in the recess 324 d provided in the fourth opposing surface 324.
  • the fourth bush 354 is in contact with the fourth plane 44.
  • the second elastic member 364 is, for example, a disc spring.
  • the second elastic member 364 is disposed between the bottom surface of the recess 324 d and the fourth bush 354.
  • the second elastic member 364 presses the fourth bush 354 against the fourth plane 44.
  • the connecting portion of the first universal joint 6 a with the vehicle body side member 18 and the connecting portion of the second universal joint 6 b with the hub carrier 19 are planes including the rotation axis Z of the screw shaft 57. And the opposite side to the third bush 353 and the fourth bush 354.
  • a connection portion of the first universal joint 6 a with the vehicle body side member 18 and a connection portion of the second universal joint 6 b with the hub carrier 19 are fastening portions 611 described later.
  • the plane including the rotation axis Z of the screw shaft 57 is, for example, a plane PZ shown in FIG.
  • each of the first bush 351, the second bush 352, the third bush 353 and the fourth bush 354 has a plurality of lubricant grooves 35d.
  • the lubricant groove 35d is filled with a lubricant.
  • the lubricant is, for example, grease.
  • the lubricant groove 35d is open on the first plane 41 side.
  • the lubricant groove 35d is open on the second plane 42 side.
  • the lubricant groove 35d is open on the side of the recess 323d.
  • the fourth bush 354 the lubricant groove 35 d is opened to the concave portion 324 d side.
  • angles ⁇ and ⁇ shown in FIG. 8 may not necessarily be acute angles.
  • the third plane 43 may not be parallel to the first plane 41.
  • the fourth plane 44 may not be parallel to the second plane 42.
  • FIG. 10 is a plan view of the expandable link of the present embodiment.
  • FIG. 11 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 12 is an exploded perspective view of the universal joint of the present embodiment.
  • the first universal joint 6 a is attached to the first member 31 of the fixed shaft 3.
  • the first universal joint 6a connects the fixed shaft 3 to the vehicle body side member 18 so as to be rotatable and swingable with respect to the vehicle body side member 18 (see FIG. 1).
  • the second universal joint 6 b is attached to the movable shaft 4.
  • the second universal joint 6b couples the movable shaft 4 to the hub carrier 19 so as to be rotatable and swingable with respect to the hub carrier 19 (see FIG. 1).
  • rotation means rotating around straight line L1 (see FIG. 11), and swing means moving so that the angle ⁇ between straight line L1 and straight line L2 changes.
  • the straight line L1 is a straight line passing through the center of gravity of each cross section obtained by cutting an arm 61 described later in a plane orthogonal to the longitudinal direction.
  • the straight line L2 is a straight line perpendicular to the circle described by the outer shape of the outer bush 63 described later and passing through the center of the circle.
  • An intersection point M (see FIG. 11) of the straight line L1 and the straight line L2 is the center of a convex arm 617p which is a spherical shape described later.
  • the first universal joint 6a and the second universal joint 6b have the same structure.
  • the second universal joint 6b is taken as an example.
  • the description of the second universal joint 6b can also be applied to the description of the first universal joint 6a.
  • the second universal joint 6 b includes a housing 60, an arm 61, an outer bush 63, an inner bush 65, an elastic member 67 and a support member 69.
  • the housing 60 is integrally formed with the distal end portion of the movable shaft 4.
  • the housing 60 is cylindrical.
  • the housing 60 of the first universal joint 6 a is integrally formed with the first member 31.
  • the arm 61 is a member connected to the hub carrier 19 (see FIG. 1).
  • the arm 61 is formed of metal.
  • the metal used for the arm 61 is, for example, steel.
  • a portion of the arm 61 is located inside the housing 60.
  • the arm 61 includes a fastening portion 611, a flange portion 613, an intermediate portion 615, and a sliding portion 617.
  • the fastening portion 611 and the flange portion 613 are located outside the housing 60.
  • the fastening portion 611 is a cylindrical member having a thread on the outer peripheral surface.
  • the flange portion 613 is a substantially conical member which is located on the housing 60 side of the fastening portion 611 and whose diameter increases toward the housing 60.
  • the middle portion 615 is a substantially cylindrical member extending from the flange portion 613 to the housing 60 side.
  • the middle portion 615 has two parallel flat surfaces on the outer circumferential surface.
  • the sliding portion 617 is a substantially hemispherical member located on the housing 60 side of the intermediate portion 615.
  • the sliding portion 617 includes an arm convex surface 617p, an arm concave surface 617q, and an arm end surface 617e.
  • the arm convex surface 617p is an outer surface of the sliding portion 617 and is spherical.
  • the arm concave surface 617 q is an inner surface of the sliding portion 617 and is spherical.
  • the center of the arm concave surface 617 q is the same as the center of the arm convex surface 617 p.
  • the arm end surface 617 e is an end surface of the sliding portion 617 connecting the arm convex surface 617 p and the arm concave surface 617 q.
  • a part of the arm end surface 617 e is formed in a conical surface shape.
  • the outer bush 63 is an annular member located between the inner circumferential surface of the housing 60 and the arm 61.
  • the outer bush 63 is formed of metal.
  • the metal used for the outer bush 63 is, for example, brass.
  • the outer bush 63 is pressed into the inside of the housing 60.
  • the outer bush 63 is provided with a bush concave surface 63q as an inner circumferential surface.
  • the bush concave surface 63q is spherical and contacts the arm convex surface 617p.
  • the center and the radius of the bush concave surface 63q are the same as the center and the radius of the arm convex surface 617p.
  • the inner bush 65 is located inside the sliding portion 617 of the arm 61. That is, the inner bush 65 is located on the opposite side of the sliding portion 617 to the outer bush 63.
  • the inner bush 65 is formed of metal.
  • the metal used for the inner bush 65 is, for example, brass.
  • the inner bush 65 includes a head 651 and a body 653.
  • the head 651 is substantially hemispherical and has a bush convex surface 651p.
  • the bush convex surface 651p is a spherical surface and is in contact with the arm concave surface 617q.
  • the sliding portion 617 is sandwiched between the bush convex surface 651 p of the inner bush 65 and the bush concave surface 63 q of the outer bush 63.
  • the center and the radius of the bush convex surface 651p are the same as the center and the radius of the arm concave surface 617q.
  • the body 653 is a substantially cylindrical member extending from the head 651 to the opposite side to the bush convex surface 651p.
  • the support member 69 supports the inner bush 65. As shown in FIG. 11, it is attached to the inside of the housing 60.
  • the support member 69 is formed of metal.
  • the metal used for the support member 69 is, for example, steel.
  • the support member 69 includes an external thread 691, a first recess 693, and a second recess 695.
  • the male screw 691 engages with the female screw 601 provided in the housing 60.
  • the first recess 693 is a frusto-conical recess that opens toward the inner bush 65.
  • the bottom surface of the first recess 693 is a plane perpendicular to the direction in which the body 653 of the inner bush 65 extends.
  • the second recess 695 is a cylindrical recess provided on the bottom of the first recess 693. The body 653 is fitted in the second recess 695 and is guided by the inner peripheral surface of the second recess 695.
  • the elastic member 67 is located between the inner bush 65 and the support member 69 and pushes the inner bush 65 toward the arm 61.
  • the elastic member 67 is, for example, a disc spring.
  • Two elastic members 67 are disposed so as to overlap between the body 653 and the bottom of the second recess 695.
  • the inside of the housing 60 is filled with a lubricant.
  • the lubricant is, for example, grease.
  • the sliding portion 617 of the arm 61 can move along the outer bush 63 and the inner bush 65. Therefore, the arm 61 can rotate and swing relative to the outer bush 63 and the inner bush 65. Further, as shown in FIG. 11, the arm end surface 617 e is in contact with the bottom surface of the first recess 693. When the arm end face 617 e contacts the bottom surface of the first recess 693, a gap 60 c is generated between the arm 61 and the housing 60.
  • the material used for each member of the 1st universal joint 6a and the 2nd universal joint 6b is not limited to the material mentioned above.
  • the number of elastic members 67 provided in the first universal joint 6a and the second universal joint 6b is not particularly limited, and may be one or three or more.
  • the first universal joint 6a and the second universal joint 6b may not necessarily have the same structure.
  • the first universal joint 6 a and the second universal joint 6 b may not necessarily be used for the expansion and contraction link 2.
  • the expansion link 2 is an example of an object to which the first universal joint 6 a and the second universal joint 6 b are applied.
  • the first universal joint 6a and the second universal joint 6b can be applied to parts other than the suspension 1 of the vehicle 10, and can be applied to devices other than the vehicle 10.
  • the actuator 5 includes a motor 51, a screw shaft 57, a bearing unit 55, a nut 59, a retaining ring 58, and a clutch 7.
  • the motor 51 is disposed at the end of the fixed shaft 3 opposite to the movable shaft 4.
  • the motor 51 is fixed to the fixed shaft 3.
  • the motor 51 is provided with an encoder for detecting the rotation angle of the rotor.
  • a shaft 511 that rotates with the rotor of the motor 51 extends toward the inside of the fixed shaft 3.
  • the screw shaft 57 is coupled to the shaft 511 via the clutch 7.
  • the screw shaft 57 rotates with the shaft 511 around the rotation axis Z.
  • a part of the screw shaft 57 is inserted into the movable shaft 4.
  • the tip of the screw shaft 57 is located in the internal space 40 of the movable shaft 4.
  • the screw shaft 57 passes through the nut 59.
  • the bearing unit 55 supports the screw shaft 57 to be rotatable with respect to the fixed shaft 3.
  • the bearing unit 55 is fixed to the fixed shaft 3 and incorporates a bearing 551.
  • the bearing 551 is fitted on the outer peripheral surface of the screw shaft 57.
  • the nut 59 is fixed to the movable shaft 4 by a retaining ring 58 and moves together with the movable shaft 4.
  • the nut 59 includes two radially projecting protrusions 591.
  • the protrusion 591 is fitted in a recess 49 provided on the end face of the movable shaft 4. Thereby, the rotation of the nut 59 is restricted.
  • the retaining ring 58 is fitted in a substantially annular groove provided on the inner circumferential surface of the movable shaft 4 and positions the nut 59 in the axial direction.
  • FIG. 13 is a cross-sectional view taken along the line DD in FIG.
  • FIG. 14 is an exploded perspective view of the clutch of the present embodiment.
  • the clutch 7 includes an input side member 71, a first brake shoe 73, a second brake shoe 75, a brake drum 77, an engaging element 79, and an elastic member 74. Prepare.
  • the input side member 71 is a substantially cylindrical member, and is attached to the shaft 511.
  • the input side member 71 includes a key groove 715, a main body 710, a first pin 711 and a second pin 712.
  • the main body 710 is substantially cylindrical along the shaft 511 and has a key groove 715.
  • the shaft 511 comprises a key 515 which is an axially extending projection.
  • the key 515 fits into the key groove 715.
  • the first pin 711 and the second pin 712 protrude from the end face of the main body 710 toward the screw shaft 57.
  • the second pin 712 is disposed on the opposite side to the first pin 711 with respect to the rotation axis Z.
  • the radially outer surface of the first pin 711 is an arc.
  • the radially inner surface of the first pin 711 is a flat surface.
  • the outer shape of the second pin 712 in the cross section of FIG. 13 is point-symmetrical to the outer shape of the first pin 711 about the rotation axis Z.
  • the first brake shoe 73 is a substantially semi-cylindrical member.
  • the first brake shoe 73 includes a first fitting portion 730, a first engagement groove 731 and two first elastic member grooves 733.
  • the first fitting portion 730 is a hole penetrating in the axial direction.
  • the first fitting portion 730 can also be referred to as a first hole.
  • the first pin 711 is fitted in the first fitting portion 730.
  • the first engagement groove 731 and the first elastic member groove 733 are grooves provided on the surface on the second brake shoe 75 side.
  • a first engagement groove 731 is disposed between the two first elastic member grooves 733.
  • the first engagement groove 731 extends over the entire length of the first brake shoe 73 in the axial direction.
  • the first elastic member groove 733 is disposed at the axial center of the first brake shoe 73.
  • the first fitting portion 730 may not necessarily be a hole, and may be, for example, a recess.
  • the second brake shoe 75 is a substantially semi-cylindrical member.
  • the second brake shoe 75 includes a second fitting portion 750, a second engagement groove 751, and two second elastic member grooves 753.
  • the second fitting portion 750 is a hole penetrating in the axial direction.
  • the second fitting portion 750 can also be referred to as a second hole.
  • the second pin 712 is fitted in the second fitting portion 750.
  • the second engagement groove 751 and the second elastic member groove 753 are grooves provided on the surface on the first brake shoe 73 side.
  • the second engagement groove 751 is disposed between the two second elastic member grooves 753.
  • the second engagement groove 751 extends over the entire axial length of the second brake shoe 75.
  • the second elastic member groove 753 is disposed at the axial center of the second brake shoe 75.
  • the second fitting portion 750 may not necessarily be a hole, and may be, for example, a recess.
  • an oval-shaped gap is formed by the first engagement groove 731 and the second engagement groove 751 when viewed from the axial direction. Also, a cylindrical gap is formed by the first elastic member groove 733 and the second elastic member groove 753.
  • the brake drum 77 is a member for braking the first brake shoe 73 and the second brake shoe 75.
  • the brake drum 77 includes a base 771 and two arms 773.
  • the base 771 is cylindrical with a hole 770.
  • the first brake shoe 73 and the second brake shoe 75 are inserted into the hole 770.
  • the inner circumferential surface of the base 771 faces the outer circumferential surface of the first brake shoe 73 and the outer circumferential surface of the second brake shoe 75.
  • the arm 773 is a plate-like member protruding from the outer peripheral surface of the base 771.
  • the two arms 773 extend in opposite directions.
  • the arm 773 fits in a recess 327 provided in the second member 32 shown in FIG.
  • the brake drum 77 is fixed to the fixed shaft 3 by the arm 773 being sandwiched between the first member 31 and the second member 32. Therefore, the brake drum 77 does not rotate.
  • the engaging element 79 is attached to the screw shaft 57 and rotates with the screw shaft 57. As shown in FIG. 13, the engaging element 79 viewed in the axial direction has an oval shape. The engagement element 79 fits in the gap formed by the first engagement groove 731 and the second engagement groove 751.
  • the elastic member 74 is, for example, a compression coil spring.
  • the elastic member 74 is disposed in the gap formed by the first elastic member groove 733 and the second elastic member groove 753.
  • the elastic member 74 applies a force in a direction away from each other to the first brake shoe 73 and the second brake shoe 75.
  • the input side member 71 rotates with the shaft 511.
  • the rotation of the first pin 711 and the second pin 712 of the input side member 71 applies a force to the first brake shoe 73 and the second brake shoe 75 in a direction approaching each other.
  • the engagement element 79 is gripped by the first brake shoe 73 and the second brake shoe 75.
  • the rotation of the shaft 511 is transmitted to the screw shaft 57 as the first brake shoe 73, the second brake shoe 75, and the engaging element 79 rotate integrally.
  • the external force applied to the movable shaft 4 when the motor 51 is stopped is an external force transmitted to the movable shaft 4 when the wheel 102 contacts a curb or the like when the vehicle 10 is parked.
  • the external force received by the wheel 102 from a curb or the like is transmitted to the movable shaft 4, and the screw shaft 57 is rotated.
  • the clutch 7 may not necessarily include the elastic member 74.
  • the first elastic member groove 733 and the second elastic member groove 753 may be omitted.
  • the shape of the engaging element 79 viewed in the axial direction may not necessarily be oval, and may not be at least circular. That is, the distance from the rotation axis Z to the outer peripheral surface of the engaging element 79 may not be constant.
  • the control device 9 illustrated in FIG. 1 is a computer, and includes, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an input interface, and an output interface.
  • the control device 9 is, for example, an ECU (Electronic Control Unit) mounted on the vehicle 10.
  • the control device 9 is electrically connected to the motor 51 of each telescopic link 2.
  • the control device 9 controls each motor 51 individually. Thereby, the length (the position of each movable shaft 4) of each expansion-contraction link 2 changes.
  • the suspension 1 of the present embodiment is provided with five telescopic links 2 for one wheel 102.
  • the suspension 1 can change the toe angle, the camber angle, the caster angle, the tread width, and the wheel base by changing the length of each telescopic link 2.
  • the toe angle is an angle formed by a straight line orthogonal to the rotation axis of the wheel 102 with respect to a straight line parallel to the longitudinal direction of the vehicle when the vehicle 10 is viewed from the vertical direction.
  • the camber angle is an angle formed by a straight line perpendicular to the rotation axis of the wheel 102 with respect to the vertical line when the vehicle 10 is viewed from the front-rear direction.
  • the caster angle is an angle formed by a straight line parallel to the longitudinal direction of the shock absorber 11 with respect to the vertical line when the vehicle 10 is viewed from the left and right direction.
  • the tread width is the distance between the centers of the left and right wheels 102.
  • the wheel base is the center-to-center distance of the front and rear wheels 102.
  • the suspension 1 may not necessarily be applied to a vehicle having a hub unit 101 incorporating a motor or the like.
  • the suspension 1 may be connected to a hub carrier provided with a hub bearing supporting the wheel 102.
  • the suspension 1 may not necessarily include the five telescopic links 2.
  • the suspension 1 may include a plurality of links, and at least one of the plurality of links may be the telescopic link 2.
  • the suspension 1 includes a plurality of links connecting the vehicle body side member 18 and the hub carrier 19. At least one of the plurality of links is a telescopic link 2.
  • the expansion link 2 includes a fixed shaft 3, a first universal joint 6 a connecting the fixed shaft 3 to the vehicle side member 18 so as to be rotatable and swingable relative to the vehicle side member 18, and a slide relative to the fixed shaft 3 Movable shaft 4, a second universal joint 6 b connecting the movable shaft 4 to the hub carrier 19 so as to be rotatable and swingable with respect to the hub carrier 19, fixed to the fixed shaft 3 to move the movable shaft 4 And an actuator 5.
  • the suspension 1 can change the attitude of the wheel 102 by moving the movable shaft 4.
  • the suspension 1 can facilitate changing the relative attitude of the wheel 102 with respect to the vehicle body.
  • the suspension 1 also includes five telescopic links 2.
  • the suspension 1 can change the toe angle, the camber angle, the caster angle, the tread width and the wheel base by moving the movable shaft 4.
  • the suspension 1 can make it easier to change the relative attitude of the wheel 102 with respect to the vehicle body.
  • the telescopic link 2 has a cylindrical fixed shaft 3 and a first universal joint 6a connecting the fixed shaft 3 to the vehicle side member 18 so as to be rotatable and swingable with respect to the vehicle side member 18;
  • a movable shaft 4 located inside the shaft 3 and slidable with respect to the fixed shaft 3 and a second universal joint 6b connecting the movable shaft 4 to the hub carrier 19 so as to be rotatable and swingable with respect to the hub carrier 19
  • the actuator 5 has a motor 51 attached to the fixed shaft 3, a screw shaft 57 rotated by the motor 51, and a nut 59 engaged with the screw shaft 57 and fixed to the movable shaft 4.
  • the movable shaft 4 has a first flat surface 41, a second flat surface 42 at an angle to the first flat surface 41, a third flat surface 43 opposite to the first flat surface 41, and an opposite side of the second flat surface 42.
  • a fourth flat surface 44 located on the The fixed shaft 3 includes a first bush 351 in contact with the first plane 41, a second bush 352 in contact with the second plane 42, a third bush 353 in contact with the third plane 43, and a fourth bush in contact with the fourth plane 44.
  • a third elastic member 363 presses the third bush 353 against the third flat surface 43
  • a second elastic member 364 presses the fourth bush 354 against the fourth flat surface 44.
  • the attitude of the wheel 102 can be changed by moving the movable shaft 4 connected to the hub carrier 19.
  • the telescopic link 2 can facilitate changing the relative attitude of the wheel 102 with respect to the vehicle body.
  • first elastic member 363 and the second elastic member 364 keep the first bush 351, the second bush 352, the third bush 353 and the fourth bush 354 in contact with the movable shaft 4. For this reason, the rattling of the movable shaft 4 is suppressed without requiring high processing accuracy.
  • the telescopic link 2 can smooth the movement of the movable shaft 4.
  • the connecting portion (fastening portion 611) of the first universal joint 6 a with the vehicle body side member 18 and the connecting portion (fastening portion 611) of the second universal joint 6 b with the hub carrier 19 have screw shafts 57.
  • the third bush 353 and the fourth bush 354 are on the same side with respect to a plane including the rotation axis Z (e.g., the plane PZ shown in FIG. 8).
  • an angle ⁇ between the first plane 41 and the second plane 42 and an angle ⁇ between the third plane 43 and the fourth plane 44 are acute angles.
  • the movable shaft 4 may be deformed by a wheel load or the like received by the wheel 102 while the vehicle 10 is traveling (in particular, turning).
  • deformation of the movable shaft 4 may occur around an axis parallel to the plane PZ shown in FIG. 8 and orthogonal to the rotation axis Z (about an axis parallel to the vertical direction of the paper surface in FIG. 8).
  • the section coefficient of the movable shaft 4 with respect to the axis when the angles ⁇ and ⁇ are acute is larger than the section coefficient of the movable shaft 4 with respect to the axis when the angles ⁇ and ⁇ are obtuse.
  • the rigidity of the movable shaft 4 with respect to the moment applied to the movable shaft 4 is increased. For this reason, since the deformation of the movable shaft 4 is suppressed, the movement of the movable shaft 4 becomes smoother.
  • each of the first bush 351, the second bush 352, the third bush 353, and the fourth bush 354 includes a plurality of lubricant grooves 35d filled with a lubricant.
  • the lubricant around the movable shaft 4 is less likely to be exhausted, so the movement of the movable shaft 4 becomes smoother. Further, since the deformation of the movable shaft 4 is suppressed by the acute angles ⁇ and ⁇ , the lubricant around the movable shaft 4 is applied to the movable shaft 4.
  • suspension 1 including the above-described expansion / contraction link 2 can smooth the movement of the wheel 102 by the rattle-suppressed movable shaft 4.
  • the universal joint (the first universal joint 6 a or the second universal joint 6 b) is located between the housing 60, the arm 61 partially located inside the housing 60, and the inner peripheral surface of the housing 60 and the arm 61.
  • An outer bush 63, an inner bush 65 positioned on the opposite side of the arm 61 with respect to the outer bush 63, and a support member 69 supporting the inner bush 65 are provided.
  • the arm 61 includes an arm convex surface 617p which is a spherical convex surface and an arm concave surface 617q which is a spherical concave surface.
  • the outer bush 63 includes a bush concave surface 63q which is a spherical concave surface in contact with the arm convex surface 617p.
  • the inner bush 65 includes a bush convex surface 651p which is a spherical convex surface in contact with the arm concave surface 617q.
  • the universal joint (the first universal joint 6a or the second universal joint 6b) of this embodiment, the arm 61 is sandwiched between the bush concave surface 63q of the outer bush 63 and the bush convex face 651p of the inner bush 65. Is held by.
  • the contact area of the arm 61 with the outer bush 63 and the contact area of the arm 61 with the inner bush 65 can be easily maintained constant, so that the allowable load of the universal joint is increased. For this reason, even when the range of motion is increased and the allowable load is increased, the universal joint is smaller than the ball joint. Therefore, the universal joint can widen the range of motion and facilitate miniaturization.
  • the universal joint (the first universal joint 6 a or the second universal joint 6 b) further includes an elastic member 67 that pushes the inner bush 65 toward the arm 61.
  • the gap between the arm 61 and the inner bush 65 and the gap between the arm 61 and the outer bush 63 are less likely to occur. For this reason, rattling in the universal joint (the first universal joint 6a or the second universal joint 6b) is suppressed. As a result, since the attitude of the wheel 102 is stabilized, the traveling stability of the vehicle 10 is improved.
  • the arm 61 includes an arm end surface 617e located between the arm convex surface 617p and the arm concave surface 617q.
  • the arm end face 617 e is in contact with the support member 69, there is a gap 60 c between the arm 61 and the housing 60.
  • the housing 60 is provided with a female screw 601.
  • the support member 69 includes an external thread 691 that engages with the internal thread 601. That is, the support member 69 is fixed to the housing 60 by the engagement of the male screw 691 and the female screw 601.
  • the supporting member 69 is fixed to the housing 60 at low cost as compared with the case where the supporting member 69 is fixed to the housing 60 by caulking the housing 60 or when the supporting member 69 is fixed to the housing 60 by welding. it can.
  • the size of the gap 60c between the arm 61 and the housing 60 can be adjusted.
  • the universal joint (the first universal joint 6 a or the second universal joint 6 b) can suppress the arm 61 from interfering with the housing 60.
  • At least one of the first universal joint 6a and the second universal joint 6b is the universal joint described above.
  • the expansion link 2 can easily change the relative attitude of the wheel 102 with respect to the vehicle body.
  • the universal joint (the first universal joint 6a or the second universal joint 6b) is small, it is possible to arrange a plurality of universal joints in the suspension 1 in close proximity. For this reason, since the suspension 1 can be provided with a plurality of telescopic links 2, it is possible to easily change the relative attitude of the wheel 102 with respect to the vehicle body.
  • the actuator 5 engages with a motor 51 attached to the fixed shaft 3, a screw shaft 57 rotated by the motor 51, a clutch 7 disposed between the motor 51 and the screw shaft 57, and a screw shaft 57 It has a nut 59 fixed to the movable shaft 4.
  • the clutch 7 includes an input side member 71, a first brake shoe 73, a second brake shoe 75, a brake drum 77, and an engaging element 79.
  • the input member 71 rotates with the shaft 511 of the motor 51 and has a first pin 711 and a second pin 712.
  • the first brake shoe 73 has a first fitting portion 730 in which the first pin 711 is fitted.
  • the second brake shoe 75 has a second fitting portion 750 in which the second pin 712 is fitted, and is located opposite to the first brake shoe 73 with respect to the rotation axis Z of the screw shaft 57.
  • the brake drum 77 has an inner circumferential surface facing the outer circumferential surface of the first brake shoe 73 and the second brake shoe 75 and is fixed to the fixed shaft 3. It rotates together with the screw shaft 57 and fits in the gap between the first brake shoe 73 and the second brake shoe 75.
  • the telescopic link 2 can change the attitude of the wheel 102 by moving the movable shaft 4.
  • the telescopic link 2 can facilitate changing the relative attitude of the wheel 102 with respect to the vehicle body.
  • forces in the direction of separating from each other are applied to the first brake shoe 73 and the second brake shoe 75 by the engaging element 79.
  • the first brake shoe 73 and the second brake shoe 75 are pressed against the brake drum 77, so that the engaging element 79 and the screw shaft 57 can not rotate. Therefore, even when an external force is applied to the movable shaft 4 when the motor 51 is stopped, the movement of the movable shaft 4 is restricted.
  • the expansion link 2 can facilitate maintenance of the relative attitude of the wheel 102 with respect to the vehicle body. When the position of the movable shaft 4 is held, power supply to the motor 51 is unnecessary.
  • the expansion and contraction link 2 can suppress power consumption.
  • the telescopic link 2 also includes an elastic member 74 that applies a force in a direction away from each other to the first brake shoe 73 and the second brake shoe 75.
  • the elastic member 74 presses the first brake shoe 73 and the second brake shoe 75 against the brake drum 77.
  • the telescopic link 2 has the first brake shoe 73 and the second brake due to the gap between the engaging element 79 and the first brake shoe 73 and the gap between the engaging element 79 and the second brake shoe 75. The rattling of the shoes 75 can be suppressed.
  • suspension 1 including the actuator 5 described above can suppress power consumption of the vehicle by the presence of the clutch 7.
  • FIG. 15 is a perspective view of the suspension of the first modification.
  • FIG. 16 is a perspective view of the fixed link.
  • symbol is attached
  • the shock absorber 11 is omitted.
  • the suspension 1 ⁇ / b> A of the first modification includes three telescopic links 2 and two fixed links 20.
  • Two telescopic links 2 are disposed above the rotation axis of the wheel 102.
  • Two fixed links 20 are disposed below the rotation axis of the wheel 102, and one telescopic link 2 is disposed below the two fixed links 20.
  • the fixed link 20 includes a bridge portion 201, a first universal joint 6a, and a second universal joint 6b.
  • the bridge portion 201 is a member that does not expand and contract.
  • a first universal joint 6 a is provided at one end of the bridge portion 201, and a second universal joint 6 b is provided at the other end of the bridge portion 201.
  • the fixed link 20 can not expand and contract, but can rotate and swing relative to the vehicle body side member 18 and the hub carrier 19.
  • the suspension 1A of the first modification can change the toe angle and the camber angle by changing the lengths of the respective expansion and contraction links 2, but is not suitable for changing the caster angle, the tread width and the wheel base.
  • the suspension 1A of the first modification can be easily manufactured and easily controlled as compared with the above-described suspension 1.
  • FIG. 17 is a perspective view of the suspension of the second modification.
  • symbol is attached
  • the shock absorber 11 is omitted.
  • the suspension 1 ⁇ / b> B of the second modification includes two telescopic links 2 and three fixed links 20.
  • Two telescopic links 2 are disposed above the rotation axis of the wheel 102.
  • Three fixed links 20 are disposed below the rotation axis of the wheel 102.
  • the suspension 1B can change the toe angle by changing the length of each telescopic link 2, but is not suitable for changing the camber angle, caster angle, tread width, and wheel base. On the other hand, the suspension 1B can be easily manufactured and easily controlled as compared with the suspension 1A of the first modification described above. The suspension 1B is suitable for steering the left and right wheels 102 independently.
  • FIG. 18 is a perspective view of a suspension according to a third modification.
  • symbol is attached
  • the shock absorber 11 is omitted.
  • the suspension 1 ⁇ / b> C of the third modification includes two telescopic links 2 and three fixed links 20.
  • Two fixed links 20 are disposed above the rotation axis of the wheel 102.
  • Two telescopic links 2 are disposed below the rotation axis of the wheel 102, and one fixed link 20 is disposed below the two telescopic links 2.
  • the suspension 1C can change the toe angle by changing the lengths of the respective expansion and contraction links 2, but is not suitable for changing the camber angle, the caster angle, the tread width, and the wheel base. On the other hand, the suspension 1C can be easily manufactured and easily controlled as compared with the suspension 1A of the first modification. The suspension 1C is suitable for steering the left and right wheels 102 independently.
  • the distance between the second universal joints 6b of the two telescopic links 2 is large as compared with the suspension 1B of the second modification. Therefore, when the force applied to the movable shaft 4 is the same, in the suspension 1C, the torque applied to the wheel 102 is increased when changing the toe angle. On the other hand, when the maximum movement distance of the movable shaft 4 is the same, the toe angle that can be realized by the suspension 1C is smaller than the toe angle that can be realized by the suspension 1B of the second modification.

Abstract

This suspension is provided with multiple links that link a vehicle body-side member and a hub carrier. At least one of the multiple links is an expansion link. The expansion link is provided with: a fixed shaft; a first universal joint which links the fixed shaft to the vehicle body-side member so as to enable rotation and swinging with respect to the vehicle body-side member; a movable shaft which can slide with respect to the fixed shaft; a second universal joint which links the movable shaft to the hub carrier so as to enable rotation and swinging with respect to the hub carrier; and an actuator which is fixed to the fixed shaft and moves the movable shaft.

Description

サスペンションsuspension
 本発明は、サスペンションに関する。 The present invention relates to a suspension.
 車両には、車体とホイールとの間にサスペンションが配置されている。サスペンションは、路面の凹凸による振動を車体に伝えにくくするための装置であり、ホイールの位置決めをする装置である。サスペンション形式の1つとして、マルチリンク式のサスペンションが知られている。例えば特許文献1には、マルチリンク式のサスペンションの一例が記載されている。 In the vehicle, a suspension is disposed between the vehicle body and the wheel. The suspension is a device for making it difficult to transmit vibrations due to the unevenness of the road surface to the vehicle body, and is a device for positioning the wheel. A multilink type suspension is known as one of suspension types. For example, Patent Document 1 describes an example of a multilink suspension.
特開2015-155255号公報JP, 2015-155255, A
 ところで、車体に対するホイールの相対的な姿勢を、車両に求められる運動性能に応じて変更できるようにすることが求められることがある。 By the way, it may be required to be able to change the relative attitude of the wheel with respect to the vehicle body according to the motion performance required of the vehicle.
 本開示は、上記の課題に鑑みてなされたものであって、車体に対するホイールの相対的な姿勢の変更を容易にすることができるサスペンションを提供することを目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a suspension that can easily change the relative attitude of the wheel with respect to the vehicle body.
 上記の目的を達成するため、本開示の一態様のサスペンションは、車体側部材とハブキャリアとを連結する複数のリンクを備え、複数の前記リンクの少なくとも1つは、伸縮リンクであり、前記伸縮リンクは、固定シャフトと、前記車体側部材に対して回転でき且つ揺動できるように前記固定シャフトを前記車体側部材に連結する第1自在継手と、前記固定シャフトに対してスライドできる可動シャフトと、前記ハブキャリアに対して回転でき且つ揺動できるように前記可動シャフトを前記ハブキャリアに連結する第2自在継手と、前記固定シャフトに固定されて前記可動シャフトを移動させるアクチュエータと、を備える。 In order to achieve the above object, a suspension according to an aspect of the present disclosure includes a plurality of links connecting a vehicle body side member and a hub carrier, and at least one of the plurality of links is a telescopic link; The link includes a fixed shaft, a first universal joint connecting the fixed shaft to the vehicle side member so as to be rotatable and swingable with respect to the vehicle body side member, a movable shaft slidable relative to the fixed shaft, A second universal joint coupling the movable shaft to the hub carrier so as to be rotatable and swingable with respect to the hub carrier, and an actuator fixed to the fixed shaft to move the movable shaft.
 これにより、サスペンションは、可動シャフトを移動させることで、ホイールの姿勢を変更させることが可能である。サスペンションは、車体に対するホイールの相対的な姿勢の変更を容易にすることができる。 Thereby, the suspension can change the attitude of the wheel by moving the movable shaft. The suspension can facilitate changing the relative attitude of the wheel relative to the vehicle body.
 上記のサスペンションの望ましい態様として、サスペンションは、5つの前記伸縮リンクを備える。 As a desirable mode of the above-mentioned suspension, the suspension is provided with the five telescopic links.
 これにより、サスペンションは、可動シャフトを移動させることで、トー角、キャンバー角、キャスター角、トレッド幅及びホイールベースを変更できる。サスペンションは、車体に対するホイールの相対的な姿勢の変更をより容易にすることができる。 Thereby, the suspension can change the toe angle, the camber angle, the caster angle, the tread width and the wheel base by moving the movable shaft. The suspension can make it easier to change the relative attitude of the wheel with respect to the vehicle body.
 本開示によれば、車体に対するホイールの相対的な姿勢の変更を容易にできるサスペンションを提供することができる。 According to the present disclosure, it is possible to provide a suspension that can easily change the relative attitude of the wheel with respect to the vehicle body.
図1は、本実施形態のサスペンションの斜視図である。FIG. 1 is a perspective view of the suspension of the present embodiment. 図2は、本実施形態の伸縮リンクの斜視図である。FIG. 2 is a perspective view of the expandable link of the present embodiment. 図3は、本実施形態の伸縮リンクの分解斜視図である。FIG. 3 is an exploded perspective view of the telescopic link of the present embodiment. 図4は、本実施形態の伸縮リンクの分解斜視図である。FIG. 4 is an exploded perspective view of the telescopic link of the present embodiment. 図5は、本実施形態の伸縮リンクの平面図である。FIG. 5 is a plan view of the expandable link of the present embodiment. 図6は、図5におけるA-A断面図である。6 is a cross-sectional view taken along the line AA in FIG. 図7は、本実施形態の伸縮リンクの底面図である。FIG. 7 is a bottom view of the expandable link of the present embodiment. 図8は、図7におけるB-B断面図である。FIG. 8 is a cross-sectional view taken along the line BB in FIG. 図9は、本実施形態の固定シャフトの分解斜視図である。FIG. 9 is an exploded perspective view of the fixed shaft of the present embodiment. 図10は、本実施形態の伸縮リンクの平面図である。FIG. 10 is a plan view of the expandable link of the present embodiment. 図11は、図10におけるC-C断面図である。FIG. 11 is a cross-sectional view taken along the line CC in FIG. 図12は、本実施形態の自在継手の分解斜視図である。FIG. 12 is an exploded perspective view of the universal joint of the present embodiment. 図13は、図10におけるD-D断面図である。FIG. 13 is a cross-sectional view taken along the line DD in FIG. 図14は、本実施形態のクラッチの分解斜視図である。FIG. 14 is an exploded perspective view of the clutch of the present embodiment. 図15は、第1変形例のサスペンションの斜視図である。FIG. 15 is a perspective view of the suspension of the first modification. 図16は、固定リンクの斜視図である。FIG. 16 is a perspective view of the fixed link. 図17は、第2変形例のサスペンションの斜視図である。FIG. 17 is a perspective view of the suspension of the second modification. 図18は、第3変形例のサスペンションの斜視図である。FIG. 18 is a perspective view of a suspension according to a third modification.
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited by the following embodiments (hereinafter referred to as embodiments). Further, constituent elements in the following embodiments include those which can be easily conceived by those skilled in the art, those substantially the same, and so-called equivalent ranges. Furthermore, the components disclosed in the following embodiments can be combined as appropriate.
 図1は、本実施形態のサスペンションの斜視図である。本実施形態の車両10は、ホイール102と、ハブユニット101と、車体側部材18と、ハブキャリア19と、サスペンション1と、制御装置9と、を備える。例えば、車両10は4つのホイール102を備えており、それぞれのホイール102がハブユニット101を備えている。ハブユニット101は、例えばハブベアリング、2つのモータ及び変速装置等を内蔵している。ハブユニット101は、ホイール102を回転可能に支持し且つホイール102を駆動する。車体側部材18は、車体に固定された部材である。ハブキャリア19は、ハブユニット101に固定された部材である。ハブキャリア19は、ナックルとも呼ばれる。 FIG. 1 is a perspective view of the suspension of the present embodiment. The vehicle 10 of the present embodiment includes a wheel 102, a hub unit 101, a vehicle body side member 18, a hub carrier 19, a suspension 1, and a control device 9. For example, the vehicle 10 includes four wheels 102, each of which includes a hub unit 101. The hub unit 101 incorporates, for example, a hub bearing, two motors, a transmission, and the like. The hub unit 101 rotatably supports the wheel 102 and drives the wheel 102. The vehicle body side member 18 is a member fixed to the vehicle body. The hub carrier 19 is a member fixed to the hub unit 101. The hub carrier 19 is also called knuckle.
 サスペンション1は、車両10の車体(シャシ)とハブユニット101とを連結する装置である。サスペンション1は、マルチリンク式である。図1に示すように、サスペンション1は、1つのホイール102に対して、ショックアブソーバー11と、5つの伸縮リンク2と、を備える。 The suspension 1 is a device that connects the vehicle body (chassis) of the vehicle 10 and the hub unit 101. The suspension 1 is a multilink type. As shown in FIG. 1, the suspension 1 includes a shock absorber 11 and five telescopic links 2 for one wheel 102.
 ショックアブソーバー11は、車両の走行中に路面から車体に伝わる衝撃を低減するための装置である。ショックアブソーバー11の一端は車体に固定される。ショックアブソーバー11の他端はハブキャリア19に固定される。ショックアブソーバー11は、上下方向に伸縮できる。 The shock absorber 11 is a device for reducing the impact transmitted from the road surface to the vehicle body while the vehicle is traveling. One end of the shock absorber 11 is fixed to the vehicle body. The other end of the shock absorber 11 is fixed to the hub carrier 19. The shock absorber 11 can expand and contract in the vertical direction.
 図2は、本実施形態の伸縮リンクの斜視図である。図3は、本実施形態の伸縮リンクの分解斜視図である。図4は、本実施形態の伸縮リンクの分解斜視図である。図5は、本実施形態の伸縮リンクの平面図である。図6は、図5におけるA-A断面図である。 FIG. 2 is a perspective view of the expandable link of the present embodiment. FIG. 3 is an exploded perspective view of the telescopic link of the present embodiment. FIG. 4 is an exploded perspective view of the telescopic link of the present embodiment. FIG. 5 is a plan view of the expandable link of the present embodiment. 6 is a cross-sectional view taken along the line AA in FIG.
 伸縮リンク2は、車体側部材18及びハブキャリア19を連結するための部材である。図1に示すように、ホイール102の回転軸よりも上側に2つの伸縮リンク2が配置されている。ホイール102の回転軸よりも下側に3つの伸縮リンク2が配置されている。図2に示すように、伸縮リンク2は、固定シャフト3と、可動シャフト4と、第1自在継手6aと、第2自在継手6bと、アクチュエータ5と、を備える。 The expansion link 2 is a member for connecting the vehicle body side member 18 and the hub carrier 19. As shown in FIG. 1, two telescopic links 2 are disposed above the rotation axis of the wheel 102. Three telescopic links 2 are disposed below the rotation axis of the wheel 102. As shown in FIG. 2, the expansion link 2 includes a fixed shaft 3, a movable shaft 4, a first universal joint 6 a, a second universal joint 6 b, and an actuator 5.
 固定シャフト3は、第1自在継手6aを介して車体側部材18(図1参照)に連結される。固定シャフト3は、筒状である。図3及び図4に示すように、固定シャフト3は、第1部材31と、第2部材32と、を備える。第1部材31及び第2部材32は、締結部材301によって連結されている。第1部材31及び第2部材32を組み立てる時には、2つの位置決めピン302が使用される。第1自在継手6aは、第1部材31に取り付けられている。 The fixed shaft 3 is connected to the vehicle body side member 18 (see FIG. 1) via the first universal joint 6a. The fixed shaft 3 is cylindrical. As shown in FIGS. 3 and 4, the fixed shaft 3 includes a first member 31 and a second member 32. The first member 31 and the second member 32 are connected by a fastening member 301. When assembling the first member 31 and the second member 32, two positioning pins 302 are used. The first universal joint 6 a is attached to the first member 31.
 可動シャフト4は、第2自在継手6bを介してハブキャリア19(図1参照)に連結される。図6に示すように、可動シャフト4は内部空間40を有する中空部材である。可動シャフト4の一部は固定シャフト3の内側に位置する。可動シャフト4は、固定シャフト3に対してスライドすることができる。可動シャフト4がスライドできる長さは、可動シャフト4に設けられたストッパー45(図6参照)によって規制される。ストッパー45は、第1部材31の内周面に設けられた溝315に配置されている。ストッパー45が溝315の端部に達すると、ストッパー45が第1部材31に接し、可動シャフト4が止まる。これにより、可動シャフト4の固定シャフト3からの脱落が防止される。 The movable shaft 4 is connected to the hub carrier 19 (see FIG. 1) via the second universal joint 6b. As shown in FIG. 6, the movable shaft 4 is a hollow member having an internal space 40. A part of the movable shaft 4 is located inside the fixed shaft 3. The movable shaft 4 can slide relative to the fixed shaft 3. The movable length of the movable shaft 4 is regulated by a stopper 45 (see FIG. 6) provided on the movable shaft 4. The stopper 45 is disposed in a groove 315 provided on the inner peripheral surface of the first member 31. When the stopper 45 reaches the end of the groove 315, the stopper 45 contacts the first member 31 and the movable shaft 4 stops. This prevents the movable shaft 4 from coming off the fixed shaft 3.
 図7は、本実施形態の伸縮リンクの底面図である。図8は、図7におけるB-B断面図である。図9は、本実施形態の固定シャフトの分解斜視図である。 FIG. 7 is a bottom view of the expandable link of the present embodiment. FIG. 8 is a cross-sectional view taken along the line BB in FIG. FIG. 9 is an exploded perspective view of the fixed shaft of the present embodiment.
 図8に示すように、可動シャフト4は、固定シャフト3に面する表面として第1平面41と、第2平面42と、第3平面43と、第4平面44とを備える。第1平面41及び第2平面42は、第1部材31に面する。第2平面42は第1平面41に対して角度をなす。第1平面41及び第2平面42がなす角度αは鋭角である。第3平面43及び第4平面44は、第2部材32に面する。第4平面44は第3平面43に対して角度をなす。第3平面43及び第4平面44がなす角度βは鋭角である。例えば、第3平面43は第1平面41と平行であり、第4平面44は第2平面42と平行である。このため角度βは角度αと等しい。図8に示すように、回転軸Zに対して直交する平面で可動シャフト4を切った断面は、4対の平行な辺を有する八角形である。 As shown in FIG. 8, the movable shaft 4 includes a first flat surface 41, a second flat surface 42, a third flat surface 43, and a fourth flat surface 44 as surfaces facing the fixed shaft 3. The first flat surface 41 and the second flat surface 42 face the first member 31. The second plane 42 is at an angle to the first plane 41. An angle α between the first plane 41 and the second plane 42 is an acute angle. The third plane 43 and the fourth plane 44 face the second member 32. The fourth plane 44 makes an angle with the third plane 43. The angle β formed by the third plane 43 and the fourth plane 44 is an acute angle. For example, the third plane 43 is parallel to the first plane 41, and the fourth plane 44 is parallel to the second plane 42. Therefore, the angle β is equal to the angle α. As shown in FIG. 8, the cross section obtained by cutting the movable shaft 4 in a plane orthogonal to the rotation axis Z is an octagon having four pairs of parallel sides.
 回転軸Zは、後述するねじ軸57の回転軸である。すなわち、回転軸Zは、ねじ軸57の延びている方向に対して直交する平面でねじ軸57を切った場合の各断面の重心を通る直線である。以下の説明において、回転軸Zに平行な方向は軸方向と記載される。また回転軸Zに対して直交する方向は径方向と記載される。 The rotation axis Z is a rotation axis of a screw shaft 57 described later. That is, the rotation axis Z is a straight line passing through the center of gravity of each cross section when the screw shaft 57 is cut in a plane orthogonal to the direction in which the screw shaft 57 extends. In the following description, a direction parallel to the rotation axis Z is referred to as an axial direction. Further, the direction orthogonal to the rotation axis Z is described as a radial direction.
 図8に示すように、第1部材31は、第1対向面311と、第2対向面312と、第1ブッシュ351と、第2ブッシュ352と、を備える。第1対向面311は、可動シャフト4の第1平面41に面する。第2対向面312は、可動シャフト4の第2平面42に面する。例えば、第1対向面311は第1平面41と平行であり、第2対向面312は第2平面42と平行である。第1ブッシュ351は、板状に形成されており、第1対向面311に設けられた凹部311dに嵌まっている。第1ブッシュ351の厚さは、凹部311dの深さよりも大きい。第1ブッシュ351は、第1平面41に接している。第2ブッシュ352は、板状に形成されており、第2対向面312に設けられた凹部312dに嵌まっている。第2ブッシュ352の厚さは、凹部312dの深さよりも大きい。第2ブッシュ352は、第2平面42に接している。 As shown in FIG. 8, the first member 31 includes a first opposing surface 311, a second opposing surface 312, a first bush 351, and a second bush 352. The first opposing surface 311 faces the first flat surface 41 of the movable shaft 4. The second opposing surface 312 faces the second flat surface 42 of the movable shaft 4. For example, the first opposing surface 311 is parallel to the first plane 41, and the second opposing surface 312 is parallel to the second plane 42. The first bush 351 is formed in a plate shape, and is fitted in the recess 311 d provided in the first opposing surface 311. The thickness of the first bush 351 is larger than the depth of the recess 311 d. The first bush 351 is in contact with the first plane 41. The second bush 352 is formed in a plate shape, and is fitted in a recess 312 d provided in the second opposing surface 312. The thickness of the second bush 352 is larger than the depth of the recess 312 d. The second bush 352 is in contact with the second plane 42.
 図8に示すように、第2部材32は、第3対向面323と、第4対向面324と、第3ブッシュ353と、第4ブッシュ354と、第1弾性部材363と、第2弾性部材364と、を備える。第3対向面323は、可動シャフト4の第3平面43に面する。第4対向面324は、可動シャフト4の第4平面44に面する。例えば、第3対向面323は第3平面43と平行であり、第4対向面324は第4平面44と平行である。第3ブッシュ353は、板状に形成されており、第3対向面323に設けられた凹部323dに嵌まっている。第3ブッシュ353は、第3平面43に接している。第1弾性部材363は、例えば皿ばねである。第1弾性部材363は、凹部323dの底面と第3ブッシュ353との間に配置されている。第1弾性部材363は、第3ブッシュ353を第3平面43に押し付ける。第4ブッシュ354は、板状に形成されており、第4対向面324に設けられた凹部324dに嵌まっている。第4ブッシュ354は、第4平面44に接している。第2弾性部材364は、例えば皿ばねである。第2弾性部材364は、凹部324dの底面と第4ブッシュ354との間に配置されている。第2弾性部材364は、第4ブッシュ354を第4平面44に押し付ける。 As shown in FIG. 8, the second member 32 includes a third facing surface 323, a fourth facing surface 324, a third bush 353, a fourth bush 354, a first elastic member 363, and a second elastic member. 364 and. The third facing surface 323 faces the third flat surface 43 of the movable shaft 4. The fourth opposing surface 324 faces the fourth plane 44 of the movable shaft 4. For example, the third opposing surface 323 is parallel to the third plane 43, and the fourth opposing surface 324 is parallel to the fourth plane 44. The third bush 353 is formed in a plate shape, and is fitted in the recess 323 d provided in the third opposing surface 323. The third bush 353 is in contact with the third plane 43. The first elastic member 363 is, for example, a disc spring. The first elastic member 363 is disposed between the bottom surface of the recess 323 d and the third bush 353. The first elastic member 363 presses the third bush 353 against the third plane 43. The fourth bush 354 is formed in a plate shape, and is fitted in the recess 324 d provided in the fourth opposing surface 324. The fourth bush 354 is in contact with the fourth plane 44. The second elastic member 364 is, for example, a disc spring. The second elastic member 364 is disposed between the bottom surface of the recess 324 d and the fourth bush 354. The second elastic member 364 presses the fourth bush 354 against the fourth plane 44.
 図6及び図8に示すように、第1自在継手6aの車体側部材18との連結部分及び第2自在継手6bのハブキャリア19との連結部分は、ねじ軸57の回転軸Zを含む平面に対して同じ側に位置し、且つ第3ブッシュ353及び第4ブッシュ354とは反対側に位置する。第1自在継手6aの車体側部材18との連結部分及び第2自在継手6bのハブキャリア19との連結部分は、後述する締結部611である。ねじ軸57の回転軸Zを含む平面は、例えば図8に示す平面PZである。 As shown in FIGS. 6 and 8, the connecting portion of the first universal joint 6 a with the vehicle body side member 18 and the connecting portion of the second universal joint 6 b with the hub carrier 19 are planes including the rotation axis Z of the screw shaft 57. And the opposite side to the third bush 353 and the fourth bush 354. A connection portion of the first universal joint 6 a with the vehicle body side member 18 and a connection portion of the second universal joint 6 b with the hub carrier 19 are fastening portions 611 described later. The plane including the rotation axis Z of the screw shaft 57 is, for example, a plane PZ shown in FIG.
 図9に示すように、第1ブッシュ351、第2ブッシュ352、第3ブッシュ353及び第4ブッシュ354は、それぞれ複数の潤滑剤溝35dを備える。潤滑剤溝35dには潤滑剤が充填される。潤滑剤は例えばグリースである。第1ブッシュ351において、潤滑剤溝35dは第1平面41側に開口している。第2ブッシュ352において、潤滑剤溝35dは第2平面42側に開口している。第3ブッシュ353において、潤滑剤溝35dは凹部323d側に開口している。第4ブッシュ354において、潤滑剤溝35dは凹部324d側に開口している。 As shown in FIG. 9, each of the first bush 351, the second bush 352, the third bush 353 and the fourth bush 354 has a plurality of lubricant grooves 35d. The lubricant groove 35d is filled with a lubricant. The lubricant is, for example, grease. In the first bush 351, the lubricant groove 35d is open on the first plane 41 side. In the second bush 352, the lubricant groove 35d is open on the second plane 42 side. In the third bush 353, the lubricant groove 35d is open on the side of the recess 323d. In the fourth bush 354, the lubricant groove 35 d is opened to the concave portion 324 d side.
 なお、図8に示す角度α及び角度βは必ずしも鋭角でなくてもよい。また、第3平面43は第1平面41と平行でなくてもよい。第4平面44は第2平面42と平行でなくてもよい。 Note that the angles α and β shown in FIG. 8 may not necessarily be acute angles. Also, the third plane 43 may not be parallel to the first plane 41. The fourth plane 44 may not be parallel to the second plane 42.
 図10は、本実施形態の伸縮リンクの平面図である。図11は、図10におけるC-C断面図である。図12は、本実施形態の自在継手の分解斜視図である。 FIG. 10 is a plan view of the expandable link of the present embodiment. FIG. 11 is a cross-sectional view taken along the line CC in FIG. FIG. 12 is an exploded perspective view of the universal joint of the present embodiment.
 図10に示すように、第1自在継手6aは固定シャフト3の第1部材31に取り付けられている。第1自在継手6aは、車体側部材18(図1参照)に対して回転でき且つ揺動できるように固定シャフト3を車体側部材18に連結する。第2自在継手6bは、可動シャフト4に取り付けられている。第2自在継手6bは、ハブキャリア19(図1参照)に対して回転でき且つ揺動できるように可動シャフト4をハブキャリア19に連結する。回転でき且つ揺動できるとの記載において、回転は直線L1(図11参照)を中心に回ることを意味し、揺動は直線L1と直線L2とのなす角度θが変わるように動くことを意味する。直線L1は、後述するアーム61を長手方向に対して直交する平面で切った各断面の重心を通る直線である。直線L2は、後述する外側ブッシュ63の外形が描く円に対して直交し且つ円の中心を通る直線である。直線L1及び直線L2の交点M(図11参照)は、後述する球面状であるアーム凸面617pの中心である。本実施形態においては、第1自在継手6a及び第2自在継手6bは同じ構造を有する。以下の詳細な説明については、第2自在継手6bを例に挙げる。第2自在継手6bの説明は、第1自在継手6aの説明にも適用できる。 As shown in FIG. 10, the first universal joint 6 a is attached to the first member 31 of the fixed shaft 3. The first universal joint 6a connects the fixed shaft 3 to the vehicle body side member 18 so as to be rotatable and swingable with respect to the vehicle body side member 18 (see FIG. 1). The second universal joint 6 b is attached to the movable shaft 4. The second universal joint 6b couples the movable shaft 4 to the hub carrier 19 so as to be rotatable and swingable with respect to the hub carrier 19 (see FIG. 1). In the description that it can rotate and swing, rotation means rotating around straight line L1 (see FIG. 11), and swing means moving so that the angle θ between straight line L1 and straight line L2 changes. Do. The straight line L1 is a straight line passing through the center of gravity of each cross section obtained by cutting an arm 61 described later in a plane orthogonal to the longitudinal direction. The straight line L2 is a straight line perpendicular to the circle described by the outer shape of the outer bush 63 described later and passing through the center of the circle. An intersection point M (see FIG. 11) of the straight line L1 and the straight line L2 is the center of a convex arm 617p which is a spherical shape described later. In the present embodiment, the first universal joint 6a and the second universal joint 6b have the same structure. For the following detailed description, the second universal joint 6b is taken as an example. The description of the second universal joint 6b can also be applied to the description of the first universal joint 6a.
 図11及び図12に示すように、第2自在継手6bは、ハウジング60と、アーム61と、外側ブッシュ63と、内側ブッシュ65と、弾性部材67と、支持部材69と、を備える。ハウジング60は、可動シャフト4の先端部分と一体に形成されている。ハウジング60は筒状である。なお、第1自在継手6aのハウジング60は、第1部材31と一体に形成されている。 As shown in FIGS. 11 and 12, the second universal joint 6 b includes a housing 60, an arm 61, an outer bush 63, an inner bush 65, an elastic member 67 and a support member 69. The housing 60 is integrally formed with the distal end portion of the movable shaft 4. The housing 60 is cylindrical. The housing 60 of the first universal joint 6 a is integrally formed with the first member 31.
 アーム61は、ハブキャリア19(図1参照)に連結される部材である。アーム61は金属で形成されている。アーム61に用いられる金属は例えば鋼である。図11に示すように、アーム61の一部はハウジング60の内側に位置する。図11及び図12に示すように、アーム61は、締結部611と、フランジ部613と、中間部615と、摺動部617と、を備える。締結部611及びフランジ部613は、ハウジング60の外部に位置する。締結部611は、外周面にねじ山を有する円柱状の部材である。フランジ部613は、締結部611のハウジング60側に位置し、直径がハウジング60に向かって大きくなる略円錐状の部材である。中間部615は、フランジ部613からハウジング60側に延びる略円柱状の部材である。中間部615は、平行な2つの平面を外周面に有する。摺動部617は、中間部615のハウジング60側に位置する略半球状の部材である。摺動部617は、アーム凸面617pと、アーム凹面617qと、アーム端面617eと、を備える。アーム凸面617pは、摺動部617の外表面であって球面状である。アーム凹面617qは、摺動部617の内表面であって球面状である。アーム凹面617qの中心は、アーム凸面617pの中心と同じである。アーム端面617eは、アーム凸面617p及びアーム凹面617qを繋ぐ摺動部617の端面である。アーム端面617eの一部は、円錐面状に形成されている。 The arm 61 is a member connected to the hub carrier 19 (see FIG. 1). The arm 61 is formed of metal. The metal used for the arm 61 is, for example, steel. As shown in FIG. 11, a portion of the arm 61 is located inside the housing 60. As shown in FIGS. 11 and 12, the arm 61 includes a fastening portion 611, a flange portion 613, an intermediate portion 615, and a sliding portion 617. The fastening portion 611 and the flange portion 613 are located outside the housing 60. The fastening portion 611 is a cylindrical member having a thread on the outer peripheral surface. The flange portion 613 is a substantially conical member which is located on the housing 60 side of the fastening portion 611 and whose diameter increases toward the housing 60. The middle portion 615 is a substantially cylindrical member extending from the flange portion 613 to the housing 60 side. The middle portion 615 has two parallel flat surfaces on the outer circumferential surface. The sliding portion 617 is a substantially hemispherical member located on the housing 60 side of the intermediate portion 615. The sliding portion 617 includes an arm convex surface 617p, an arm concave surface 617q, and an arm end surface 617e. The arm convex surface 617p is an outer surface of the sliding portion 617 and is spherical. The arm concave surface 617 q is an inner surface of the sliding portion 617 and is spherical. The center of the arm concave surface 617 q is the same as the center of the arm convex surface 617 p. The arm end surface 617 e is an end surface of the sliding portion 617 connecting the arm convex surface 617 p and the arm concave surface 617 q. A part of the arm end surface 617 e is formed in a conical surface shape.
 図11に示すように、外側ブッシュ63は、ハウジング60の内周面とアーム61との間に位置する環状の部材である。外側ブッシュ63は金属で形成されている。外側ブッシュ63に用いられる金属としては例えば黄銅である。外側ブッシュ63は、ハウジング60の内側に圧入されている。外側ブッシュ63は、内周面としてブッシュ凹面63qを備える。ブッシュ凹面63qは、球面状であって、アーム凸面617pに接する。ブッシュ凹面63qの中心及び半径は、アーム凸面617pの中心及び半径と同じである。 As shown in FIG. 11, the outer bush 63 is an annular member located between the inner circumferential surface of the housing 60 and the arm 61. The outer bush 63 is formed of metal. The metal used for the outer bush 63 is, for example, brass. The outer bush 63 is pressed into the inside of the housing 60. The outer bush 63 is provided with a bush concave surface 63q as an inner circumferential surface. The bush concave surface 63q is spherical and contacts the arm convex surface 617p. The center and the radius of the bush concave surface 63q are the same as the center and the radius of the arm convex surface 617p.
 図11に示すように、内側ブッシュ65は、アーム61の摺動部617の内側に位置する。すなわち、内側ブッシュ65は、摺動部617に対して外側ブッシュ63とは反対側に位置する。内側ブッシュ65は金属で形成されている。内側ブッシュ65に用いられる金属としては例えば黄銅である。内側ブッシュ65は、頭部651と、胴部653と、を備える。頭部651は、略半球状であって、ブッシュ凸面651pを有する。ブッシュ凸面651pは、球面状の表面であり、アーム凹面617qに接する。このため、摺動部617は、内側ブッシュ65のブッシュ凸面651pと、外側ブッシュ63のブッシュ凹面63qとに挟まれている。ブッシュ凸面651pの中心及び半径は、アーム凹面617qの中心及び半径と同じである。胴部653は、頭部651からブッシュ凸面651pとは反対側に延びる略円筒状の部材である。 As shown in FIG. 11, the inner bush 65 is located inside the sliding portion 617 of the arm 61. That is, the inner bush 65 is located on the opposite side of the sliding portion 617 to the outer bush 63. The inner bush 65 is formed of metal. The metal used for the inner bush 65 is, for example, brass. The inner bush 65 includes a head 651 and a body 653. The head 651 is substantially hemispherical and has a bush convex surface 651p. The bush convex surface 651p is a spherical surface and is in contact with the arm concave surface 617q. For this reason, the sliding portion 617 is sandwiched between the bush convex surface 651 p of the inner bush 65 and the bush concave surface 63 q of the outer bush 63. The center and the radius of the bush convex surface 651p are the same as the center and the radius of the arm concave surface 617q. The body 653 is a substantially cylindrical member extending from the head 651 to the opposite side to the bush convex surface 651p.
 支持部材69は、内側ブッシュ65を支持している。図11に示すように、ハウジング60の内側に取り付けられる。支持部材69は金属で形成されている。支持部材69に用いられる金属は例えば鋼である。支持部材69は、雄ねじ691と、第1凹部693と、第2凹部695と、を備える。雄ねじ691は、ハウジング60に設けられた雌ねじ601に噛み合う。第1凹部693は、内側ブッシュ65に向かって開口する円錐台状の窪みである。第1凹部693の底面は、内側ブッシュ65の胴部653が延びる方向に対して直交する平面である。第2凹部695は、第1凹部693の底面に設けられた円柱状の窪みである。胴部653は、第2凹部695に嵌まっており、第2凹部695の内周面に案内されている。 The support member 69 supports the inner bush 65. As shown in FIG. 11, it is attached to the inside of the housing 60. The support member 69 is formed of metal. The metal used for the support member 69 is, for example, steel. The support member 69 includes an external thread 691, a first recess 693, and a second recess 695. The male screw 691 engages with the female screw 601 provided in the housing 60. The first recess 693 is a frusto-conical recess that opens toward the inner bush 65. The bottom surface of the first recess 693 is a plane perpendicular to the direction in which the body 653 of the inner bush 65 extends. The second recess 695 is a cylindrical recess provided on the bottom of the first recess 693. The body 653 is fitted in the second recess 695 and is guided by the inner peripheral surface of the second recess 695.
 図11に示すように、弾性部材67は、内側ブッシュ65と支持部材69との間に位置し、内側ブッシュ65をアーム61に向かって押している。弾性部材67は、例えば皿ばねである。2つの弾性部材67が、胴部653と第2凹部695の底面との間に重ねて配置されている。 As shown in FIG. 11, the elastic member 67 is located between the inner bush 65 and the support member 69 and pushes the inner bush 65 toward the arm 61. The elastic member 67 is, for example, a disc spring. Two elastic members 67 are disposed so as to overlap between the body 653 and the bottom of the second recess 695.
 ハウジング60の内部には潤滑剤が充填されている。潤滑剤は例えばグリースである。アーム61の摺動部617は、外側ブッシュ63及び内側ブッシュ65に沿って移動できる。このため、アーム61は、外側ブッシュ63及び内側ブッシュ65に対して相対的に回転でき且つ揺動できる。また図11に示すように、アーム端面617eは第1凹部693の底面に接する。アーム端面617eが第1凹部693の底面に接する時、アーム61とハウジング60との間には隙間60cが生じている。 The inside of the housing 60 is filled with a lubricant. The lubricant is, for example, grease. The sliding portion 617 of the arm 61 can move along the outer bush 63 and the inner bush 65. Therefore, the arm 61 can rotate and swing relative to the outer bush 63 and the inner bush 65. Further, as shown in FIG. 11, the arm end surface 617 e is in contact with the bottom surface of the first recess 693. When the arm end face 617 e contacts the bottom surface of the first recess 693, a gap 60 c is generated between the arm 61 and the housing 60.
 なお、第1自在継手6a及び第2自在継手6bの各部材に用いられる材料は、上述した材料に限定されない。第1自在継手6a及び第2自在継手6bが備える弾性部材67の数は特に限定されず、1つであってもよいし、3つ以上であってもよい。また第1自在継手6a及び第2自在継手6bは、必ずしも同じ構造を有していなくてもよい。 In addition, the material used for each member of the 1st universal joint 6a and the 2nd universal joint 6b is not limited to the material mentioned above. The number of elastic members 67 provided in the first universal joint 6a and the second universal joint 6b is not particularly limited, and may be one or three or more. The first universal joint 6a and the second universal joint 6b may not necessarily have the same structure.
 なお、第1自在継手6a及び第2自在継手6bは、必ずしも伸縮リンク2に用いられなくてもよい。伸縮リンク2は、第1自在継手6a及び第2自在継手6bを適用する対象の一例である。例えば、第1自在継手6a及び第2自在継手6bは、車両10のサスペンション1以外の部分にも適用でき、車両10以外の装置にも適用できる。 The first universal joint 6 a and the second universal joint 6 b may not necessarily be used for the expansion and contraction link 2. The expansion link 2 is an example of an object to which the first universal joint 6 a and the second universal joint 6 b are applied. For example, the first universal joint 6a and the second universal joint 6b can be applied to parts other than the suspension 1 of the vehicle 10, and can be applied to devices other than the vehicle 10.
 図3に示すように、アクチュエータ5は、モータ51と、ねじ軸57と、ベアリングユニット55と、ナット59と、止め輪58と、クラッチ7と、を備える。 As shown in FIG. 3, the actuator 5 includes a motor 51, a screw shaft 57, a bearing unit 55, a nut 59, a retaining ring 58, and a clutch 7.
 図6に示すように、モータ51は、固定シャフト3の可動シャフト4とは反対側の端部に配置される。モータ51は、固定シャフト3に固定される。モータ51は、ロータの回転角を検出するためのエンコーダを備えている。モータ51のロータと共に回転するシャフト511は、固定シャフト3の内部に向かって延びている。 As shown in FIG. 6, the motor 51 is disposed at the end of the fixed shaft 3 opposite to the movable shaft 4. The motor 51 is fixed to the fixed shaft 3. The motor 51 is provided with an encoder for detecting the rotation angle of the rotor. A shaft 511 that rotates with the rotor of the motor 51 extends toward the inside of the fixed shaft 3.
 ねじ軸57は、クラッチ7を介してシャフト511に連結されている。ねじ軸57は、シャフト511と共に回転軸Zを中心として回転する。ねじ軸57の一部は、可動シャフト4に挿入されている。ねじ軸57の先端は、可動シャフト4の内部空間40に位置する。ねじ軸57はナット59を貫通している。 The screw shaft 57 is coupled to the shaft 511 via the clutch 7. The screw shaft 57 rotates with the shaft 511 around the rotation axis Z. A part of the screw shaft 57 is inserted into the movable shaft 4. The tip of the screw shaft 57 is located in the internal space 40 of the movable shaft 4. The screw shaft 57 passes through the nut 59.
 ベアリングユニット55は、固定シャフト3に対して回転できるようにねじ軸57を支持する。ベアリングユニット55は、固定シャフト3に固定されており、ベアリング551を内蔵している。ベアリング551は、ねじ軸57の外周面に嵌まっている。 The bearing unit 55 supports the screw shaft 57 to be rotatable with respect to the fixed shaft 3. The bearing unit 55 is fixed to the fixed shaft 3 and incorporates a bearing 551. The bearing 551 is fitted on the outer peripheral surface of the screw shaft 57.
 図6に示すように、ナット59は、止め輪58によって可動シャフト4に固定されており、可動シャフト4と共に移動する。ナット59は、径方向に突出する2つの突起591を備える。突起591は、可動シャフト4の端面に設けられた凹部49に嵌まっている。これにより、ナット59の回転が規制されている。止め輪58は、可動シャフト4の内周面に設けられた略環状の溝に嵌まっており、ナット59を軸方向に位置決めしている。 As shown in FIG. 6, the nut 59 is fixed to the movable shaft 4 by a retaining ring 58 and moves together with the movable shaft 4. The nut 59 includes two radially projecting protrusions 591. The protrusion 591 is fitted in a recess 49 provided on the end face of the movable shaft 4. Thereby, the rotation of the nut 59 is restricted. The retaining ring 58 is fitted in a substantially annular groove provided on the inner circumferential surface of the movable shaft 4 and positions the nut 59 in the axial direction.
 図13は、図10におけるD-D断面図である。図14は、本実施形態のクラッチの分解斜視図である。 FIG. 13 is a cross-sectional view taken along the line DD in FIG. FIG. 14 is an exploded perspective view of the clutch of the present embodiment.
 図13及び図14に示すように、クラッチ7は、入力側部材71と、第1ブレーキシュー73と、第2ブレーキシュー75と、ブレーキドラム77と、係合子79と、弾性部材74と、を備える。 As shown in FIGS. 13 and 14, the clutch 7 includes an input side member 71, a first brake shoe 73, a second brake shoe 75, a brake drum 77, an engaging element 79, and an elastic member 74. Prepare.
 図14に示すように、入力側部材71は、略円筒状の部材であって、シャフト511に取り付けられる。入力側部材71は、キー溝715と、本体710と、第1ピン711と、第2ピン712と、を備える。本体710は、シャフト511に沿った略円筒状であって、キー溝715を有する。シャフト511は、軸方向に延びた突起であるキー515を備える。キー515はキー溝715に嵌まる。これにより、入力側部材71はシャフト511と共に回転する。第1ピン711及び第2ピン712は、本体710の端面からねじ軸57側に突出している。第2ピン712は、回転軸Zに対して第1ピン711とは反対側に配置されている。図13に示すように、回転軸Zに対して直交する平面で第1ピン711及び第2ピン712を切った断面において、第1ピン711の径方向外側の表面は円弧である。第1ピン711の径方向内側の表面は平面である。図13の断面における第2ピン712の外形は、回転軸Zを中心として第1ピン711の外形と点対称である。 As shown in FIG. 14, the input side member 71 is a substantially cylindrical member, and is attached to the shaft 511. The input side member 71 includes a key groove 715, a main body 710, a first pin 711 and a second pin 712. The main body 710 is substantially cylindrical along the shaft 511 and has a key groove 715. The shaft 511 comprises a key 515 which is an axially extending projection. The key 515 fits into the key groove 715. Thereby, the input side member 71 rotates with the shaft 511. The first pin 711 and the second pin 712 protrude from the end face of the main body 710 toward the screw shaft 57. The second pin 712 is disposed on the opposite side to the first pin 711 with respect to the rotation axis Z. As shown in FIG. 13, in a cross section obtained by cutting the first pin 711 and the second pin 712 in a plane orthogonal to the rotation axis Z, the radially outer surface of the first pin 711 is an arc. The radially inner surface of the first pin 711 is a flat surface. The outer shape of the second pin 712 in the cross section of FIG. 13 is point-symmetrical to the outer shape of the first pin 711 about the rotation axis Z.
 図13に示すように、第1ブレーキシュー73は略半円柱状の部材である。第1ブレーキシュー73は、第1嵌合部730と、第1係合溝731と、2つの第1弾性部材溝733と、を備える。第1嵌合部730は、軸方向に貫通する孔である。第1嵌合部730は、第1孔ともいえる。第1嵌合部730には第1ピン711が嵌まる。第1係合溝731及び第1弾性部材溝733は、第2ブレーキシュー75側の表面に設けられた溝である。2つの第1弾性部材溝733の間に第1係合溝731が配置されている。第1係合溝731は、第1ブレーキシュー73の軸方向の全長に亘っている。第1弾性部材溝733は、第1ブレーキシュー73の軸方向の中央に配置されている。なお、第1嵌合部730は、必ずしも孔でなくてもよく、例えば凹部であってもよい。 As shown in FIG. 13, the first brake shoe 73 is a substantially semi-cylindrical member. The first brake shoe 73 includes a first fitting portion 730, a first engagement groove 731 and two first elastic member grooves 733. The first fitting portion 730 is a hole penetrating in the axial direction. The first fitting portion 730 can also be referred to as a first hole. The first pin 711 is fitted in the first fitting portion 730. The first engagement groove 731 and the first elastic member groove 733 are grooves provided on the surface on the second brake shoe 75 side. A first engagement groove 731 is disposed between the two first elastic member grooves 733. The first engagement groove 731 extends over the entire length of the first brake shoe 73 in the axial direction. The first elastic member groove 733 is disposed at the axial center of the first brake shoe 73. The first fitting portion 730 may not necessarily be a hole, and may be, for example, a recess.
 図13に示すように、第2ブレーキシュー75は略半円柱状の部材である。第2ブレーキシュー75は、第2嵌合部750と、第2係合溝751と、2つの第2弾性部材溝753と、を備える。第2嵌合部750は、軸方向に貫通する孔である。第2嵌合部750は、第2孔ともいえる。第2嵌合部750には第2ピン712が嵌まる。第2係合溝751及び第2弾性部材溝753は、第1ブレーキシュー73側の表面に設けられた溝である。2つの第2弾性部材溝753の間に第2係合溝751が配置されている。第2係合溝751は、第2ブレーキシュー75の軸方向の全長に亘っている。第2弾性部材溝753は、第2ブレーキシュー75の軸方向の中央に配置されている。なお、第2嵌合部750は、必ずしも孔でなくてもよく、例えば凹部であってもよい。 As shown in FIG. 13, the second brake shoe 75 is a substantially semi-cylindrical member. The second brake shoe 75 includes a second fitting portion 750, a second engagement groove 751, and two second elastic member grooves 753. The second fitting portion 750 is a hole penetrating in the axial direction. The second fitting portion 750 can also be referred to as a second hole. The second pin 712 is fitted in the second fitting portion 750. The second engagement groove 751 and the second elastic member groove 753 are grooves provided on the surface on the first brake shoe 73 side. The second engagement groove 751 is disposed between the two second elastic member grooves 753. The second engagement groove 751 extends over the entire axial length of the second brake shoe 75. The second elastic member groove 753 is disposed at the axial center of the second brake shoe 75. The second fitting portion 750 may not necessarily be a hole, and may be, for example, a recess.
 図13に示すように、第1係合溝731及び第2係合溝751によって、軸方向から見て長円形状の隙間が形成されている。また、第1弾性部材溝733及び第2弾性部材溝753によって、円柱状の隙間が形成されている。 As shown in FIG. 13, an oval-shaped gap is formed by the first engagement groove 731 and the second engagement groove 751 when viewed from the axial direction. Also, a cylindrical gap is formed by the first elastic member groove 733 and the second elastic member groove 753.
 ブレーキドラム77は、第1ブレーキシュー73及び第2ブレーキシュー75を制動するための部材である。図13に示すように、ブレーキドラム77は、基部771と、2つの腕部773と、を備える。基部771は、孔770を有する円筒状である。孔770には、第1ブレーキシュー73及び第2ブレーキシュー75が挿入されている。基部771の内周面は、第1ブレーキシュー73の外周面及び第2ブレーキシュー75の外周面に面する。腕部773は、基部771の外周面から突出した板状の部材である。2つの腕部773は、互いに反対方向に延びている。腕部773は、図14に示す第2部材32に設けられた凹部327に嵌まる。腕部773が第1部材31及び第2部材32に挟まれることで、ブレーキドラム77が固定シャフト3に固定される。このため、ブレーキドラム77は回転しない。 The brake drum 77 is a member for braking the first brake shoe 73 and the second brake shoe 75. As shown in FIG. 13, the brake drum 77 includes a base 771 and two arms 773. The base 771 is cylindrical with a hole 770. The first brake shoe 73 and the second brake shoe 75 are inserted into the hole 770. The inner circumferential surface of the base 771 faces the outer circumferential surface of the first brake shoe 73 and the outer circumferential surface of the second brake shoe 75. The arm 773 is a plate-like member protruding from the outer peripheral surface of the base 771. The two arms 773 extend in opposite directions. The arm 773 fits in a recess 327 provided in the second member 32 shown in FIG. The brake drum 77 is fixed to the fixed shaft 3 by the arm 773 being sandwiched between the first member 31 and the second member 32. Therefore, the brake drum 77 does not rotate.
 係合子79は、ねじ軸57に取り付けられ、ねじ軸57と共に回転する。図13に示すように、軸方向から見た係合子79は長円形状である。係合子79は、第1係合溝731及び第2係合溝751によって形成される隙間に嵌まる。 The engaging element 79 is attached to the screw shaft 57 and rotates with the screw shaft 57. As shown in FIG. 13, the engaging element 79 viewed in the axial direction has an oval shape. The engagement element 79 fits in the gap formed by the first engagement groove 731 and the second engagement groove 751.
 弾性部材74は、例えば圧縮コイルばねである。弾性部材74は、第1弾性部材溝733及び第2弾性部材溝753によって形成される隙間に配置される。弾性部材74は、第1ブレーキシュー73及び第2ブレーキシュー75に対して互いに離れる方向の力を加えている。 The elastic member 74 is, for example, a compression coil spring. The elastic member 74 is disposed in the gap formed by the first elastic member groove 733 and the second elastic member groove 753. The elastic member 74 applies a force in a direction away from each other to the first brake shoe 73 and the second brake shoe 75.
 モータ51が駆動している時、シャフト511と共に入力側部材71が回転する。入力側部材71の第1ピン711及び第2ピン712が回転することで、第1ブレーキシュー73及び第2ブレーキシュー75に互いに近付く方向の力が加わる。これにより、第1ブレーキシュー73及び第2ブレーキシュー75によって係合子79が把持される。第1ブレーキシュー73、第2ブレーキシュー75及び係合子79が一体となって回転することで、シャフト511の回転がねじ軸57に伝達される。 When the motor 51 is driven, the input side member 71 rotates with the shaft 511. The rotation of the first pin 711 and the second pin 712 of the input side member 71 applies a force to the first brake shoe 73 and the second brake shoe 75 in a direction approaching each other. Thus, the engagement element 79 is gripped by the first brake shoe 73 and the second brake shoe 75. The rotation of the shaft 511 is transmitted to the screw shaft 57 as the first brake shoe 73, the second brake shoe 75, and the engaging element 79 rotate integrally.
 一方、モータ51が停止している時、可動シャフト4に外力が加わる場合がある。可動シャフト4に軸方向の外力が加わると、ねじ軸57が回転する。ねじ軸57と共に係合子79が回転すると、第1ブレーキシュー73及び第2ブレーキシュー75に互いに離れる方向の力が加わる。これにより、第1ブレーキシュー73及び第2ブレーキシュー75がブレーキドラム77に押し付けられる。摩擦力により、第1ブレーキシュー73及び第2ブレーキシュー75の回転が規制される。このため、係合子79及びねじ軸57は回転できない。したがって、モータ51の停止時に可動シャフト4に外力が加わった場合でも、可動シャフト4の移動が規制される。すなわち、可動シャフト4の位置を保持するための反力を生じさせるために、モータ51に電力を供給する必要がない。例えば、モータ51の停止時に可動シャフト4に加わる外力とは、車両10の駐車時にホイール102が縁石等に接触した場合に可動シャフト4に伝わる外力である。ホイール102が縁石等から受けた外力が、可動シャフト4に伝わり、ねじ軸57が回転する。 On the other hand, when the motor 51 is stopped, an external force may be applied to the movable shaft 4. When an external force in the axial direction is applied to the movable shaft 4, the screw shaft 57 rotates. When the engaging element 79 rotates with the screw shaft 57, forces are applied to the first brake shoe 73 and the second brake shoe 75 in a direction away from each other. Thereby, the first brake shoe 73 and the second brake shoe 75 are pressed against the brake drum 77. The frictional force regulates the rotation of the first brake shoe 73 and the second brake shoe 75. For this reason, the engaging element 79 and the screw shaft 57 can not rotate. Therefore, even when an external force is applied to the movable shaft 4 when the motor 51 is stopped, the movement of the movable shaft 4 is restricted. That is, it is not necessary to supply power to the motor 51 in order to generate a reaction force for holding the position of the movable shaft 4. For example, the external force applied to the movable shaft 4 when the motor 51 is stopped is an external force transmitted to the movable shaft 4 when the wheel 102 contacts a curb or the like when the vehicle 10 is parked. The external force received by the wheel 102 from a curb or the like is transmitted to the movable shaft 4, and the screw shaft 57 is rotated.
 なお、クラッチ7は、必ずしも弾性部材74を備えていなくてもよい。この場合、第1弾性部材溝733及び第2弾性部材溝753はなくてもよい。また、軸方向から見た係合子79の形状は、必ずしも長円形でなくてもよく、少なくとも円形でなければよい。すなわち、回転軸Zから係合子79の外周面までの距離が一定でなければよい。 The clutch 7 may not necessarily include the elastic member 74. In this case, the first elastic member groove 733 and the second elastic member groove 753 may be omitted. Also, the shape of the engaging element 79 viewed in the axial direction may not necessarily be oval, and may not be at least circular. That is, the distance from the rotation axis Z to the outer peripheral surface of the engaging element 79 may not be constant.
 図1に示す制御装置9は、コンピュータであり、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力インターフェース、及び出力インターフェースを含む。制御装置9は、例えば車両10に搭載されたECU(Electronic Control Unit)である。制御装置9は、それぞれの伸縮リンク2のモータ51と電気的に接続されている。制御装置9はそれぞれのモータ51を個別に制御する。これにより、それぞれの伸縮リンク2の長さ(それぞれの可動シャフト4の位置)が変化する。 The control device 9 illustrated in FIG. 1 is a computer, and includes, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an input interface, and an output interface. The control device 9 is, for example, an ECU (Electronic Control Unit) mounted on the vehicle 10. The control device 9 is electrically connected to the motor 51 of each telescopic link 2. The control device 9 controls each motor 51 individually. Thereby, the length (the position of each movable shaft 4) of each expansion-contraction link 2 changes.
 本実施形態のサスペンション1は、1つのホイール102に対して5つの伸縮リンク2を備えている。サスペンション1は、それぞれの伸縮リンク2の長さを変化させることで、トー角、キャンバー角、キャスター角、トレッド幅及びホイールベースを変更できる。トー角は、車両10を鉛直方向から見た場合に、車両の前後方向に平行な直線に対してホイール102の回転軸に対して直交する直線がなす角度である。キャンバー角は、車両10を前後方向から見た場合に、鉛直線に対してホイール102の回転軸に対して直交する直線がなす角度である。キャスター角は、車両10を左右方向から見た場合に、鉛直線に対してショックアブソーバー11の長手方向と平行な直線がなす角度である。トレッド幅は、左右のホイール102の中心間距離である。ホイールベースは、前後のホイール102の中心間距離である。 The suspension 1 of the present embodiment is provided with five telescopic links 2 for one wheel 102. The suspension 1 can change the toe angle, the camber angle, the caster angle, the tread width, and the wheel base by changing the length of each telescopic link 2. The toe angle is an angle formed by a straight line orthogonal to the rotation axis of the wheel 102 with respect to a straight line parallel to the longitudinal direction of the vehicle when the vehicle 10 is viewed from the vertical direction. The camber angle is an angle formed by a straight line perpendicular to the rotation axis of the wheel 102 with respect to the vertical line when the vehicle 10 is viewed from the front-rear direction. The caster angle is an angle formed by a straight line parallel to the longitudinal direction of the shock absorber 11 with respect to the vertical line when the vehicle 10 is viewed from the left and right direction. The tread width is the distance between the centers of the left and right wheels 102. The wheel base is the center-to-center distance of the front and rear wheels 102.
 なお、サスペンション1は、必ずしもモータ等を内蔵したハブユニット101を有する車両に適用されなくてもよい。サスペンション1は、ホイール102を支持するハブベアリングを備えたハブキャリアに連結されていてもよい。 The suspension 1 may not necessarily be applied to a vehicle having a hub unit 101 incorporating a motor or the like. The suspension 1 may be connected to a hub carrier provided with a hub bearing supporting the wheel 102.
 なお、サスペンション1は、必ずしも5つの伸縮リンク2を備えていなくてもよい。サスペンション1が複数のリンクを備えており、複数のリンクのうち少なくとも1つのリンクが伸縮リンク2であればよい。 The suspension 1 may not necessarily include the five telescopic links 2. The suspension 1 may include a plurality of links, and at least one of the plurality of links may be the telescopic link 2.
 以上で説明したように、サスペンション1は、車体側部材18とハブキャリア19とを連結する複数のリンクを備える。複数のリンクの少なくとも1つは、伸縮リンク2である。伸縮リンク2は、固定シャフト3と、車体側部材18に対して回転でき且つ揺動できるように固定シャフト3を車体側部材18に連結する第1自在継手6aと、固定シャフト3に対してスライドできる可動シャフト4と、ハブキャリア19に対して回転でき且つ揺動できるように可動シャフト4をハブキャリア19に連結する第2自在継手6bと、固定シャフト3に固定されて可動シャフト4を移動させるアクチュエータ5と、を備える。 As described above, the suspension 1 includes a plurality of links connecting the vehicle body side member 18 and the hub carrier 19. At least one of the plurality of links is a telescopic link 2. The expansion link 2 includes a fixed shaft 3, a first universal joint 6 a connecting the fixed shaft 3 to the vehicle side member 18 so as to be rotatable and swingable relative to the vehicle side member 18, and a slide relative to the fixed shaft 3 Movable shaft 4, a second universal joint 6 b connecting the movable shaft 4 to the hub carrier 19 so as to be rotatable and swingable with respect to the hub carrier 19, fixed to the fixed shaft 3 to move the movable shaft 4 And an actuator 5.
 これにより、サスペンション1は、可動シャフト4を移動させることで、ホイール102の姿勢を変更させることが可能である。サスペンション1は、車体に対するホイール102の相対的な姿勢の変更を容易にすることができる。 Thereby, the suspension 1 can change the attitude of the wheel 102 by moving the movable shaft 4. The suspension 1 can facilitate changing the relative attitude of the wheel 102 with respect to the vehicle body.
 またサスペンション1は、5つの伸縮リンク2を備える。 The suspension 1 also includes five telescopic links 2.
 これにより、サスペンション1は、可動シャフト4を移動させることで、トー角、キャンバー角、キャスター角、トレッド幅及びホイールベースを変更できる。サスペンション1は、車体に対するホイール102の相対的な姿勢の変更をより容易にすることができる。 Thus, the suspension 1 can change the toe angle, the camber angle, the caster angle, the tread width and the wheel base by moving the movable shaft 4. The suspension 1 can make it easier to change the relative attitude of the wheel 102 with respect to the vehicle body.
 伸縮リンク2は、筒状の固定シャフト3と、車体側部材18に対して回転でき且つ揺動できるように固定シャフト3を車体側部材18に連結する第1自在継手6aと、一部が固定シャフト3の内側に位置し且つ固定シャフト3に対してスライドできる可動シャフト4と、ハブキャリア19に対して回転でき且つ揺動できるように可動シャフト4をハブキャリア19に連結する第2自在継手6bと、アクチュエータ5と、を備える。アクチュエータ5は、固定シャフト3に取り付けられるモータ51、モータ51によって回転するねじ軸57、及びねじ軸57に噛み合い且つ可動シャフト4に固定されるナット59を有する。可動シャフト4は、第1平面41と、第1平面41に対して角度をなす第2平面42と、第1平面41の反対側に位置する第3平面43と、第2平面42の反対側に位置する第4平面44と、を備える。固定シャフト3は、第1平面41に接する第1ブッシュ351と、第2平面42に接する第2ブッシュ352と、第3平面43に接する第3ブッシュ353と、第4平面44に接する第4ブッシュ354と、第3ブッシュ353を第3平面43に押し付ける第1弾性部材363と、第4ブッシュ354を第4平面44に押し付ける第2弾性部材364と、を備える。 The telescopic link 2 has a cylindrical fixed shaft 3 and a first universal joint 6a connecting the fixed shaft 3 to the vehicle side member 18 so as to be rotatable and swingable with respect to the vehicle side member 18; A movable shaft 4 located inside the shaft 3 and slidable with respect to the fixed shaft 3 and a second universal joint 6b connecting the movable shaft 4 to the hub carrier 19 so as to be rotatable and swingable with respect to the hub carrier 19 And the actuator 5. The actuator 5 has a motor 51 attached to the fixed shaft 3, a screw shaft 57 rotated by the motor 51, and a nut 59 engaged with the screw shaft 57 and fixed to the movable shaft 4. The movable shaft 4 has a first flat surface 41, a second flat surface 42 at an angle to the first flat surface 41, a third flat surface 43 opposite to the first flat surface 41, and an opposite side of the second flat surface 42. And a fourth flat surface 44 located on the The fixed shaft 3 includes a first bush 351 in contact with the first plane 41, a second bush 352 in contact with the second plane 42, a third bush 353 in contact with the third plane 43, and a fourth bush in contact with the fourth plane 44. A third elastic member 363 presses the third bush 353 against the third flat surface 43, and a second elastic member 364 presses the fourth bush 354 against the fourth flat surface 44.
 これにより、ハブキャリア19に連結された可動シャフト4が移動することで、ホイール102の姿勢を変更させることが可能である。伸縮リンク2は、車体に対するホイール102の相対的な姿勢の変更を容易にすることができる。 As a result, the attitude of the wheel 102 can be changed by moving the movable shaft 4 connected to the hub carrier 19. The telescopic link 2 can facilitate changing the relative attitude of the wheel 102 with respect to the vehicle body.
 さらに、第1弾性部材363及び第2弾性部材364により、第1ブッシュ351、第2ブッシュ352、第3ブッシュ353及び第4ブッシュ354が可動シャフト4に接触した状態が保たれる。このため、高い加工精度を必要とせずに可動シャフト4のガタツキが抑制される。伸縮リンク2は、可動シャフト4の動きを滑らかにすることができる。 Further, the first elastic member 363 and the second elastic member 364 keep the first bush 351, the second bush 352, the third bush 353 and the fourth bush 354 in contact with the movable shaft 4. For this reason, the rattling of the movable shaft 4 is suppressed without requiring high processing accuracy. The telescopic link 2 can smooth the movement of the movable shaft 4.
 また、伸縮リンク2において、第1自在継手6aの車体側部材18との連結部分(締結部611)及び第2自在継手6bのハブキャリア19との連結部分(締結部611)は、ねじ軸57の回転軸Zを含む平面(例えば図8に示す平面PZ)に対して同じ側に位置し、且つ第3ブッシュ353及び第4ブッシュ354とは反対側に位置する。 Further, in the expansion link 2, the connecting portion (fastening portion 611) of the first universal joint 6 a with the vehicle body side member 18 and the connecting portion (fastening portion 611) of the second universal joint 6 b with the hub carrier 19 have screw shafts 57. And the third bush 353 and the fourth bush 354 are on the same side with respect to a plane including the rotation axis Z (e.g., the plane PZ shown in FIG. 8).
 固定シャフト3、第1自在継手6a、可動シャフト4及び第2自在継手6bの位置関係によって、可動シャフト4の移動に伴って可動シャフト4には第1ブッシュ351及び第2ブッシュ352に向かう力が作用する。このような場合でも、第1弾性部材363及び第2弾性部材364により、第3ブッシュ353と第3平面43との間の隙間、及び第4ブッシュ354と第4平面44との間の隙間に隙間が生じにくくなる。このため、伸縮リンク2は、可動シャフト4に径方向の力が加わった場合でも可動シャフト4のガタツキを抑制できる。 According to the positional relationship between the fixed shaft 3, the first universal joint 6a, the movable shaft 4 and the second universal joint 6b, a force directed to the first bush 351 and the second bush 352 is applied to the movable shaft 4 as the movable shaft 4 moves. Works. Even in such a case, the gap between the third bush 353 and the third flat surface 43 and the gap between the fourth bush 354 and the fourth flat surface 44 by the first elastic member 363 and the second elastic member 364 It becomes difficult to form a gap. For this reason, even when a force in the radial direction is applied to the movable shaft 4, the expansion / contraction link 2 can suppress rattling of the movable shaft 4.
 また、伸縮リンク2において、第1平面41と第2平面42とがなす角度α及び第3平面43と第4平面44とがなす角度βは、鋭角である。 Further, in the expansion link 2, an angle α between the first plane 41 and the second plane 42 and an angle β between the third plane 43 and the fourth plane 44 are acute angles.
 例えば、車両10の走行中(特に旋回中)にホイール102が受ける輪荷重等によって、可動シャフト4が変形する可能性がある。特に、図8に示す平面PZと平行であり且つ回転軸Zに対して直交する軸周り(図8において紙面の上下方向と平行な軸周り)の変形が可動シャフト4に生じる可能性がある。角度α及び角度βが鋭角である場合の当該軸に関する可動シャフト4の断面係数は、角度α及び角度βが鈍角である場合の当該軸に関する可動シャフト4の断面係数よりも大きい。これにより、可動シャフト4に加わるモーメントに対する可動シャフト4の剛性が高くなる。このため、可動シャフト4の変形が抑制されるため、可動シャフト4の動きがより滑らかになる。 For example, the movable shaft 4 may be deformed by a wheel load or the like received by the wheel 102 while the vehicle 10 is traveling (in particular, turning). In particular, deformation of the movable shaft 4 may occur around an axis parallel to the plane PZ shown in FIG. 8 and orthogonal to the rotation axis Z (about an axis parallel to the vertical direction of the paper surface in FIG. 8). The section coefficient of the movable shaft 4 with respect to the axis when the angles α and β are acute is larger than the section coefficient of the movable shaft 4 with respect to the axis when the angles α and β are obtuse. Thereby, the rigidity of the movable shaft 4 with respect to the moment applied to the movable shaft 4 is increased. For this reason, since the deformation of the movable shaft 4 is suppressed, the movement of the movable shaft 4 becomes smoother.
 また、伸縮リンク2において、第1ブッシュ351、第2ブッシュ352、第3ブッシュ353及び第4ブッシュ354のそれぞれは、潤滑剤が充填される複数の潤滑剤溝35dを備える。 In the expansion link 2, each of the first bush 351, the second bush 352, the third bush 353, and the fourth bush 354 includes a plurality of lubricant grooves 35d filled with a lubricant.
 これにより、可動シャフト4の周辺の潤滑剤が枯渇しにくくなるので、可動シャフト4の動きがより滑らかになる。また、角度α及び角度βが鋭角であることによって可動シャフト4の変形が抑制されるので、可動シャフト4の周辺の潤滑剤が可動シャフト4に塗布される。 As a result, the lubricant around the movable shaft 4 is less likely to be exhausted, so the movement of the movable shaft 4 becomes smoother. Further, since the deformation of the movable shaft 4 is suppressed by the acute angles α and β, the lubricant around the movable shaft 4 is applied to the movable shaft 4.
 また上述した伸縮リンク2を備えるサスペンション1は、ガタツキの抑制された可動シャフト4によって、ホイール102の動きを滑らかにすることができる。 Further, the suspension 1 including the above-described expansion / contraction link 2 can smooth the movement of the wheel 102 by the rattle-suppressed movable shaft 4.
 自在継手(第1自在継手6a又は第2自在継手6b)は、ハウジング60と、一部がハウジング60の内側に位置するアーム61と、ハウジング60の内周面とアーム61との間に位置する外側ブッシュ63と、アーム61を挟んで外側ブッシュ63とは反対側に位置する内側ブッシュ65と、内側ブッシュ65を支持する支持部材69と、を備える。アーム61は、球面状の凸面であるアーム凸面617pと、球面状の凹面であるアーム凹面617qと、を備える。外側ブッシュ63は、アーム凸面617pに接する球面状の凹面であるブッシュ凹面63qを備える。内側ブッシュ65は、アーム凹面617qに接する球面状の凸面であるブッシュ凸面651pを備える。 The universal joint (the first universal joint 6 a or the second universal joint 6 b) is located between the housing 60, the arm 61 partially located inside the housing 60, and the inner peripheral surface of the housing 60 and the arm 61. An outer bush 63, an inner bush 65 positioned on the opposite side of the arm 61 with respect to the outer bush 63, and a support member 69 supporting the inner bush 65 are provided. The arm 61 includes an arm convex surface 617p which is a spherical convex surface and an arm concave surface 617q which is a spherical concave surface. The outer bush 63 includes a bush concave surface 63q which is a spherical concave surface in contact with the arm convex surface 617p. The inner bush 65 includes a bush convex surface 651p which is a spherical convex surface in contact with the arm concave surface 617q.
 仮に従来からあるボール及びソケットを有するボールジョイントを用いた場合、可動域を広くし且つ許容できる荷重を大きくするためには、ボールの直径を大きくする必要がある。これに対して本実施形態の自在継手(第1自在継手6a又は第2自在継手6b)においては、アーム61が、外側ブッシュ63のブッシュ凹面63qと内側ブッシュ65のブッシュ凸面651pとで挟まれることで保持されている。これにより、アーム61の外側ブッシュ63との接触面積及びアーム61の内側ブッシュ65との接触面積が一定に維持されやすくなるので、自在継手の許容荷重が大きくなる。このため、可動域を広くし且つ許容できる荷重を大きくした場合でも、ボールジョイントと比較して自在継手は小さくなる。したがって、自在継手は、可動域を広くし且つ小型化を容易にすることができる。 If a ball joint having a conventional ball and socket is used, it is necessary to increase the diameter of the ball in order to widen the range of motion and to increase the allowable load. On the other hand, in the universal joint (the first universal joint 6a or the second universal joint 6b) of this embodiment, the arm 61 is sandwiched between the bush concave surface 63q of the outer bush 63 and the bush convex face 651p of the inner bush 65. Is held by. As a result, the contact area of the arm 61 with the outer bush 63 and the contact area of the arm 61 with the inner bush 65 can be easily maintained constant, so that the allowable load of the universal joint is increased. For this reason, even when the range of motion is increased and the allowable load is increased, the universal joint is smaller than the ball joint. Therefore, the universal joint can widen the range of motion and facilitate miniaturization.
 また、自在継手(第1自在継手6a又は第2自在継手6b)において、内側ブッシュ65をアーム61に向かって押す弾性部材67を備える。 The universal joint (the first universal joint 6 a or the second universal joint 6 b) further includes an elastic member 67 that pushes the inner bush 65 toward the arm 61.
 これにより、アーム61と内側ブッシュ65との間の隙間及びアーム61と外側ブッシュ63との間の隙間が生じにくくなる。このため、自在継手(第1自在継手6a又は第2自在継手6b)におけるガタツキが抑制される。その結果、ホイール102の姿勢が安定するので、車両10の走行安定性が向上する。 As a result, the gap between the arm 61 and the inner bush 65 and the gap between the arm 61 and the outer bush 63 are less likely to occur. For this reason, rattling in the universal joint (the first universal joint 6a or the second universal joint 6b) is suppressed. As a result, since the attitude of the wheel 102 is stabilized, the traveling stability of the vehicle 10 is improved.
 また、自在継手(第1自在継手6a又は第2自在継手6b)において、アーム61は、アーム凸面617pとアーム凹面617qとの間に位置するアーム端面617eを備える。アーム端面617eが支持部材69に接している時、アーム61とハウジング60との間には隙間60cがある。 Further, in the universal joint (the first universal joint 6a or the second universal joint 6b), the arm 61 includes an arm end surface 617e located between the arm convex surface 617p and the arm concave surface 617q. When the arm end face 617 e is in contact with the support member 69, there is a gap 60 c between the arm 61 and the housing 60.
 これにより、アーム61がハウジング60に対して最大限に傾いた時にアーム61に加わる曲げ応力が低減される。このため、アーム61の破損が抑制される。 This reduces the bending stress applied to the arm 61 when the arm 61 is maximally inclined with respect to the housing 60. For this reason, breakage of the arm 61 is suppressed.
 また、自在継手(第1自在継手6a又は第2自在継手6b)において、ハウジング60は、雌ねじ601を備える。支持部材69は、雌ねじ601に噛み合う雄ねじ691を備える。すなわち、支持部材69は、雄ねじ691と雌ねじ601との噛み合いによって、ハウジング60に固定されている。 In the universal joint (the first universal joint 6 a or the second universal joint 6 b), the housing 60 is provided with a female screw 601. The support member 69 includes an external thread 691 that engages with the internal thread 601. That is, the support member 69 is fixed to the housing 60 by the engagement of the male screw 691 and the female screw 601.
 これにより、ハウジング60を加締めることによって支持部材69をハウジング60に固定する場合、又は溶接によって支持部材69をハウジング60に固定する場合と比較して、低コストで支持部材69をハウジング60に固定できる。また、アーム61とハウジング60との間の隙間60cの大きさの調整が可能である。これにより、自在継手(第1自在継手6a又は第2自在継手6b)は、アーム61がハウジング60に干渉することを抑制できる。 Thereby, the supporting member 69 is fixed to the housing 60 at low cost as compared with the case where the supporting member 69 is fixed to the housing 60 by caulking the housing 60 or when the supporting member 69 is fixed to the housing 60 by welding. it can. In addition, the size of the gap 60c between the arm 61 and the housing 60 can be adjusted. Thereby, the universal joint (the first universal joint 6 a or the second universal joint 6 b) can suppress the arm 61 from interfering with the housing 60.
 また、伸縮リンク2において、第1自在継手6a及び第2自在継手6bの少なくとも一方が上述した自在継手である。 In the expansion link 2, at least one of the first universal joint 6a and the second universal joint 6b is the universal joint described above.
 これにより、第1自在継手6a又は第2自在継手6bの可動域が広いため、伸縮リンク2は、車体に対するホイール102の相対的な姿勢の変更を容易にすることができる。 Thereby, since the movable range of the first universal joint 6a or the second universal joint 6b is wide, the expansion link 2 can easily change the relative attitude of the wheel 102 with respect to the vehicle body.
 また、自在継手(第1自在継手6a又は第2自在継手6b)が小型であるため、サスペンション1において複数の自在継手を近接して配置することが可能となる。このため、サスペンション1は、複数の伸縮リンク2を備えることができるので、車体に対するホイール102の相対的な姿勢の変更を容易にすることができる。 Further, since the universal joint (the first universal joint 6a or the second universal joint 6b) is small, it is possible to arrange a plurality of universal joints in the suspension 1 in close proximity. For this reason, since the suspension 1 can be provided with a plurality of telescopic links 2, it is possible to easily change the relative attitude of the wheel 102 with respect to the vehicle body.
 伸縮リンク2において、アクチュエータ5は、固定シャフト3に取り付けられるモータ51、モータ51によって回転するねじ軸57、モータ51とねじ軸57との間に配置されるクラッチ7、及びねじ軸57に噛み合い且つ可動シャフト4に固定されるナット59を有する。クラッチ7は、入力側部材71と、第1ブレーキシュー73と、第2ブレーキシュー75と、ブレーキドラム77と、係合子79と、を備える。入力側部材71は、モータ51のシャフト511と共に回転し且つ第1ピン711及び第2ピン712を有する。第1ブレーキシュー73は、第1ピン711が嵌まる第1嵌合部730を有する。第2ブレーキシュー75は、第2ピン712が嵌まる第2嵌合部750を有し且つねじ軸57の回転軸Zに対して第1ブレーキシュー73とは反対側に位置する。ブレーキドラム77は、第1ブレーキシュー73及び第2ブレーキシュー75の外周面に面する内周面を有し且つ固定シャフト3に固定される。ねじ軸57と共に回転し且つ第1ブレーキシュー73と第2ブレーキシュー75との間の隙間に嵌まる。 In the expansion link 2, the actuator 5 engages with a motor 51 attached to the fixed shaft 3, a screw shaft 57 rotated by the motor 51, a clutch 7 disposed between the motor 51 and the screw shaft 57, and a screw shaft 57 It has a nut 59 fixed to the movable shaft 4. The clutch 7 includes an input side member 71, a first brake shoe 73, a second brake shoe 75, a brake drum 77, and an engaging element 79. The input member 71 rotates with the shaft 511 of the motor 51 and has a first pin 711 and a second pin 712. The first brake shoe 73 has a first fitting portion 730 in which the first pin 711 is fitted. The second brake shoe 75 has a second fitting portion 750 in which the second pin 712 is fitted, and is located opposite to the first brake shoe 73 with respect to the rotation axis Z of the screw shaft 57. The brake drum 77 has an inner circumferential surface facing the outer circumferential surface of the first brake shoe 73 and the second brake shoe 75 and is fixed to the fixed shaft 3. It rotates together with the screw shaft 57 and fits in the gap between the first brake shoe 73 and the second brake shoe 75.
 これにより、伸縮リンク2は、可動シャフト4を移動させることで、ホイール102の姿勢を変更させることが可能である。伸縮リンク2は、車体に対するホイール102の相対的な姿勢の変更を容易にすることができる。さらに、可動シャフト4に加わる外力によってねじ軸57が回転した場合、係合子79によって第1ブレーキシュー73及び第2ブレーキシュー75に互いに離れる方向の力が加わる。これにより、第1ブレーキシュー73及び第2ブレーキシュー75がブレーキドラム77に押し付けられるので、係合子79及びねじ軸57が回転できなくなる。したがって、モータ51の停止時に可動シャフト4に外力が加わった場合でも、可動シャフト4の移動が規制される。伸縮リンク2は、車体に対するホイール102の相対的な姿勢の維持を容易にすることができる。可動シャフト4の位置を保持している時にはモータ51への電力供給が不要である。伸縮リンク2は、消費電力を抑制することができる。 Thereby, the telescopic link 2 can change the attitude of the wheel 102 by moving the movable shaft 4. The telescopic link 2 can facilitate changing the relative attitude of the wheel 102 with respect to the vehicle body. Furthermore, when the screw shaft 57 is rotated by the external force applied to the movable shaft 4, forces in the direction of separating from each other are applied to the first brake shoe 73 and the second brake shoe 75 by the engaging element 79. As a result, the first brake shoe 73 and the second brake shoe 75 are pressed against the brake drum 77, so that the engaging element 79 and the screw shaft 57 can not rotate. Therefore, even when an external force is applied to the movable shaft 4 when the motor 51 is stopped, the movement of the movable shaft 4 is restricted. The expansion link 2 can facilitate maintenance of the relative attitude of the wheel 102 with respect to the vehicle body. When the position of the movable shaft 4 is held, power supply to the motor 51 is unnecessary. The expansion and contraction link 2 can suppress power consumption.
 また、伸縮リンク2は、第1ブレーキシュー73及び第2ブレーキシュー75に互いに遠ざかる方向の力を加える弾性部材74を備える。 The telescopic link 2 also includes an elastic member 74 that applies a force in a direction away from each other to the first brake shoe 73 and the second brake shoe 75.
 これにより、係合子79が第1ブレーキシュー73及び第2ブレーキシュー75を押していない時でも、弾性部材74が第1ブレーキシュー73及び第2ブレーキシュー75をブレーキドラム77に押し付ける。このため、伸縮リンク2は、係合子79と第1ブレーキシュー73との間の隙間及び係合子79と第2ブレーキシュー75との間の隙間に起因する、第1ブレーキシュー73及び第2ブレーキシュー75のガタツキを抑制できる。 Thereby, even when the engaging element 79 does not push the first brake shoe 73 and the second brake shoe 75, the elastic member 74 presses the first brake shoe 73 and the second brake shoe 75 against the brake drum 77. For this reason, the telescopic link 2 has the first brake shoe 73 and the second brake due to the gap between the engaging element 79 and the first brake shoe 73 and the gap between the engaging element 79 and the second brake shoe 75. The rattling of the shoes 75 can be suppressed.
 また上述したアクチュエータ5を備えるサスペンション1は、クラッチ7があることにより、車両の消費電力を抑制することができる。 Further, the suspension 1 including the actuator 5 described above can suppress power consumption of the vehicle by the presence of the clutch 7.
(第1変形例)
 図15は、第1変形例のサスペンションの斜視図である。図16は、固定リンクの斜視図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。図15において、ショックアブソーバー11は省略されている。
(First modification)
FIG. 15 is a perspective view of the suspension of the first modification. FIG. 16 is a perspective view of the fixed link. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted. In FIG. 15, the shock absorber 11 is omitted.
 図15に示すように、第1変形例のサスペンション1Aは、3つの伸縮リンク2と、2つの固定リンク20と、を備える。ホイール102の回転軸よりも上側に2つの伸縮リンク2が配置されている。ホイール102の回転軸よりも下側に2つの固定リンク20が配置され、2つの固定リンク20の下側に1つの伸縮リンク2が配置されている。 As shown in FIG. 15, the suspension 1 </ b> A of the first modification includes three telescopic links 2 and two fixed links 20. Two telescopic links 2 are disposed above the rotation axis of the wheel 102. Two fixed links 20 are disposed below the rotation axis of the wheel 102, and one telescopic link 2 is disposed below the two fixed links 20.
 図16に示すように、固定リンク20は、ブリッジ部201と、第1自在継手6aと、第2自在継手6bと、を備える。ブリッジ部201は、伸縮しない部材である。第1自在継手6aがブリッジ部201の一端に設けられ、第2自在継手6bがブリッジ部201の他端に設けられている。固定リンク20は、伸縮できないが、車体側部材18及びハブキャリア19に対して回転でき且つ揺動できる。 As shown in FIG. 16, the fixed link 20 includes a bridge portion 201, a first universal joint 6a, and a second universal joint 6b. The bridge portion 201 is a member that does not expand and contract. A first universal joint 6 a is provided at one end of the bridge portion 201, and a second universal joint 6 b is provided at the other end of the bridge portion 201. The fixed link 20 can not expand and contract, but can rotate and swing relative to the vehicle body side member 18 and the hub carrier 19.
 第1変形例のサスペンション1Aは、それぞれの伸縮リンク2の長さを変化させることでトー角及びキャンバー角を変更できるが、キャスター角、トレッド幅及びホイールベースの変更には適さない。その一方で、第1変形例のサスペンション1Aは、上述したサスペンション1と比較して、容易に製造でき且つ容易に制御できる。 The suspension 1A of the first modification can change the toe angle and the camber angle by changing the lengths of the respective expansion and contraction links 2, but is not suitable for changing the caster angle, the tread width and the wheel base. On the other hand, the suspension 1A of the first modification can be easily manufactured and easily controlled as compared with the above-described suspension 1.
(第2変形例)
 図17は、第2変形例のサスペンションの斜視図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。図17において、ショックアブソーバー11は省略されている。
(2nd modification)
FIG. 17 is a perspective view of the suspension of the second modification. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted. In FIG. 17, the shock absorber 11 is omitted.
 図17に示すように、第2変形例のサスペンション1Bは、2つの伸縮リンク2と、3つの固定リンク20と、を備える。ホイール102の回転軸よりも上側に2つの伸縮リンク2が配置されている。ホイール102の回転軸よりも下側に3つの固定リンク20が配置されている。 As shown in FIG. 17, the suspension 1 </ b> B of the second modification includes two telescopic links 2 and three fixed links 20. Two telescopic links 2 are disposed above the rotation axis of the wheel 102. Three fixed links 20 are disposed below the rotation axis of the wheel 102.
 サスペンション1Bは、それぞれの伸縮リンク2の長さを変化させることでトー角を変更できるが、キャンバー角、キャスター角、トレッド幅及びホイールベースの変更には適さない。その一方で、サスペンション1Bは、上述した第1変形例のサスペンション1Aと比較して、容易に製造でき且つ容易に制御できる。サスペンション1Bは、左右のホイール102を独立して操舵する場合に適している。 The suspension 1B can change the toe angle by changing the length of each telescopic link 2, but is not suitable for changing the camber angle, caster angle, tread width, and wheel base. On the other hand, the suspension 1B can be easily manufactured and easily controlled as compared with the suspension 1A of the first modification described above. The suspension 1B is suitable for steering the left and right wheels 102 independently.
(第3変形例)
 図18は、第3変形例のサスペンションの斜視図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。図18において、ショックアブソーバー11は省略されている。
(Third modification)
FIG. 18 is a perspective view of a suspension according to a third modification. In addition, the same code | symbol is attached | subjected to the same component as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted. In FIG. 18, the shock absorber 11 is omitted.
 図18に示すように、第3変形例のサスペンション1Cは、2つの伸縮リンク2と、3つの固定リンク20と、を備える。ホイール102の回転軸よりも上側に2つの固定リンク20が配置されている。ホイール102の回転軸よりも下側に2つの伸縮リンク2が配置され、2つの伸縮リンク2の下側に1つの固定リンク20が配置されている。 As shown in FIG. 18, the suspension 1 </ b> C of the third modification includes two telescopic links 2 and three fixed links 20. Two fixed links 20 are disposed above the rotation axis of the wheel 102. Two telescopic links 2 are disposed below the rotation axis of the wheel 102, and one fixed link 20 is disposed below the two telescopic links 2.
 サスペンション1Cは、それぞれの伸縮リンク2の長さを変化させることでトー角を変更できるが、キャンバー角、キャスター角、トレッド幅及びホイールベースの変更には適さない。その一方で、サスペンション1Cは、第1変形例のサスペンション1Aと比較して、容易に製造でき且つ容易に制御できる。サスペンション1Cは、左右のホイール102を独立して操舵する場合に適している。 The suspension 1C can change the toe angle by changing the lengths of the respective expansion and contraction links 2, but is not suitable for changing the camber angle, the caster angle, the tread width, and the wheel base. On the other hand, the suspension 1C can be easily manufactured and easily controlled as compared with the suspension 1A of the first modification. The suspension 1C is suitable for steering the left and right wheels 102 independently.
 サスペンション1Cにおいては、第2変形例のサスペンション1Bと比較して、2つの伸縮リンク2の第2自在継手6b間の距離が大きい。このため、可動シャフト4に加えられる力が同じである場合、サスペンション1Cにおいてはトー角を変化させる時にホイール102に加わるトルクが大きくなる。一方、可動シャフト4の最大移動距離が同じである場合、サスペンション1Cによって実現できるトー角は、第2変形例のサスペンション1Bによって実現できるトー角よりも小さくなる。 In the suspension 1C, the distance between the second universal joints 6b of the two telescopic links 2 is large as compared with the suspension 1B of the second modification. Therefore, when the force applied to the movable shaft 4 is the same, in the suspension 1C, the torque applied to the wheel 102 is increased when changing the toe angle. On the other hand, when the maximum movement distance of the movable shaft 4 is the same, the toe angle that can be realized by the suspension 1C is smaller than the toe angle that can be realized by the suspension 1B of the second modification.
1、1A、1B、1C サスペンション
10 車両
101 ハブユニット
102 ホイール
11 ショックアブソーバー
18 車体側部材
19 ハブキャリア
2 伸縮リンク
20 固定リンク
201 ブリッジ部
3 固定シャフト
31 第1部材
311 第1対向面
311d 凹部
312 第2対向面
312d 凹部
315 溝
32 第2部材
323 第3対向面
323d 凹部
324 第4対向面
324d 凹部
351 第1ブッシュ
352 第2ブッシュ
353 第3ブッシュ
354 第4ブッシュ
363 第1弾性部材
364 第2弾性部材
4 可動シャフト
40 内部空間
41 第1平面
42 第2平面
43 第3平面
44 第4平面
45 ストッパー
5 アクチュエータ
51 モータ
511 シャフト
515 キー
55 ベアリングユニット
57 ねじ軸
58 止め輪
59 ナット
6a 第1自在継手
6b 第2自在継手
60 ハウジング
60c 隙間
61 アーム
611 締結部
613 フランジ部
615 中間部
617 摺動部
617e アーム端面
617p アーム凸面
617q アーム凹面
63 外側ブッシュ
63q ブッシュ凹面
65 内側ブッシュ
651 頭部
651p ブッシュ凸面
653 胴部
67 弾性部材
69 支持部材
691 雄ねじ
693 第1凹部
695 第2凹部
7 クラッチ
71 入力側部材
710 本体
711 第1ピン
712 第2ピン
715 キー溝
73 第1ブレーキシュー
730 第1嵌合部
731 第1係合溝
733 第1弾性部材溝
74 弾性部材
75 第2ブレーキシュー
750 第2嵌合部
751 第2係合溝
753 第2弾性部材溝
77 ブレーキドラム
79 係合子
9 制御装置
Z 回転軸
1, 1A, 1B, 1C Suspension 10 Vehicle 101 Hub unit 102 Wheel 11 Shock absorber 18 Vehicle side member 19 Hub carrier 2 Telescopic link 20 Fixed link 201 Bridge part 3 Fixed shaft 31 1st member 311 1st opposing surface 311d Recess 312 2 facing surface 312 d recess 315 groove 32 second member 323 third facing surface 323 d recess 324 fourth facing surface 324 d recess 351 first bush 352 second bush 353 third bush 354 fourth bush 363 first elastic member 364 second elasticity Member 4 Movable shaft 40 Internal space 41 1st plane 42 2nd plane 43 3rd plane 44 4th plane 45 Stopper 5 Actuator 51 Motor 511 Shaft 515 Key 55 Bearing unit 57 Screw shaft 58 Retaining ring 59 Nut 6a 1st self Joint 6b Second universal joint 60 Housing 60c Gap 61 Arm 611 Fastening part 613 Flange part 615 Intermediate part 617 Sliding part 617e Arm end face 617p Arm convex surface 617q Arm concave surface 63 Outer bush 63 q Bush concave surface 65 Inner bush 651 Head 651 p Bush convex surface 653 Body 67 Elastic member 69 Support member 691 Male thread 693 1st concave portion 695 2nd concave portion 7 Clutch 71 Input side member 710 Main body 711 1st pin 712 2nd pin 715 Key groove 73 1st brake shoe 730 1st fitting portion 731 1 engaging groove 733 first elastic member groove 74 elastic member 75 second brake shoe 750 second fitting portion 751 second engaging groove 752 second elastic member groove 77 brake drum 79 engaging element 9 control device Z rotation shaft

Claims (2)

  1.  車体側部材とハブキャリアとを連結する複数のリンクを備え、
     複数の前記リンクの少なくとも1つは、伸縮リンクであり、
     前記伸縮リンクは、
     固定シャフトと、
     前記車体側部材に対して回転でき且つ揺動できるように前記固定シャフトを前記車体側部材に連結する第1自在継手と、
     前記固定シャフトに対してスライドできる可動シャフトと、
     前記ハブキャリアに対して回転でき且つ揺動できるように前記可動シャフトを前記ハブキャリアに連結する第2自在継手と、
     前記固定シャフトに固定されて前記可動シャフトを移動させるアクチュエータと、
     を備えることを特徴とするサスペンション。
    A plurality of links connecting the vehicle body side member and the hub carrier;
    At least one of the plurality of links is a telescopic link,
    The telescopic link is
    With a fixed shaft,
    A first universal joint connecting the fixed shaft to the vehicle body side member so as to be rotatable and swingable with respect to the vehicle body side member;
    A movable shaft that can slide relative to the fixed shaft;
    A second universal joint coupling the movable shaft to the hub carrier for rotation and rocking relative to the hub carrier;
    An actuator fixed to the fixed shaft to move the movable shaft;
    A suspension characterized by comprising.
  2.  5つの前記伸縮リンクを備える
     ことを特徴とする請求項1に記載のサスペンション。
    The suspension according to claim 1, comprising five of the telescopic links.
PCT/JP2018/038139 2017-10-19 2018-10-12 Suspension WO2019078120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511783A JP6590115B2 (en) 2017-10-19 2018-10-12 suspension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-202526 2017-10-19
JP2017202526 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019078120A1 true WO2019078120A1 (en) 2019-04-25

Family

ID=66173658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038139 WO2019078120A1 (en) 2017-10-19 2018-10-12 Suspension

Country Status (2)

Country Link
JP (1) JP6590115B2 (en)
WO (1) WO2019078120A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829155B2 (en) 2017-10-19 2020-11-10 Nsk Ltd. Suspension operation system and suspension operation terminal
US10940730B2 (en) 2017-10-19 2021-03-09 Nsk Ltd. Extension-retraction link and suspension
US11192414B1 (en) 2020-10-13 2021-12-07 Xtravel Suspension, Llc Suspension system
US11511581B1 (en) 2021-06-16 2022-11-29 Xtravel Suspension, Llc Suspension system
US11571939B2 (en) 2020-10-13 2023-02-07 Xtravel Suspension, Llc Suspension system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286447A (en) * 1993-03-31 1994-10-11 Mazda Motor Corp Suspension device for automobile
JP2006064162A (en) * 2004-08-30 2006-03-09 Smc Corp Electric actuator
JP2010052583A (en) * 2008-08-28 2010-03-11 Honda Motor Co Ltd Rear suspension device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141069A (en) * 1988-09-13 1992-08-25 Aisin Seiki Kabushiki Kaisha Steering mechanism with toe-in control
JP2014080113A (en) * 2012-10-16 2014-05-08 Toyota Motor Corp Vehicle opening part opening/closing apparatus and abnormality detection method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286447A (en) * 1993-03-31 1994-10-11 Mazda Motor Corp Suspension device for automobile
JP2006064162A (en) * 2004-08-30 2006-03-09 Smc Corp Electric actuator
JP2010052583A (en) * 2008-08-28 2010-03-11 Honda Motor Co Ltd Rear suspension device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829155B2 (en) 2017-10-19 2020-11-10 Nsk Ltd. Suspension operation system and suspension operation terminal
US10940730B2 (en) 2017-10-19 2021-03-09 Nsk Ltd. Extension-retraction link and suspension
US11192414B1 (en) 2020-10-13 2021-12-07 Xtravel Suspension, Llc Suspension system
US11571939B2 (en) 2020-10-13 2023-02-07 Xtravel Suspension, Llc Suspension system
US11511581B1 (en) 2021-06-16 2022-11-29 Xtravel Suspension, Llc Suspension system

Also Published As

Publication number Publication date
JPWO2019078120A1 (en) 2019-11-14
JP6590115B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6536771B1 (en) Universal joint, telescopic link and suspension
JP6512388B1 (en) Telescopic link and suspension
JP6590115B2 (en) suspension
WO2019111534A1 (en) Extending and contracting link and suspension
KR101024883B1 (en) Tripod type constant velocity joint
US8500133B2 (en) Wheel suspension for a motor vehicle
JP6575722B1 (en) Telescopic link and suspension
KR20160097237A (en) Coupling
JP2006162056A (en) Constant-velocity joint
GB2161581A (en) Drive assembly coupling
JP6512387B1 (en) Telescopic link and suspension
EP3546779B1 (en) Tripod constant-velocity joint
JP4350392B2 (en) Tripod type constant velocity universal joint
JP4726219B2 (en) Constant velocity joint
JP4628277B2 (en) Constant velocity joint
JP2005106117A (en) Connecting structure
KR20180036084A (en) Hub-integraged Constant Velocity Joint Module with Tripod Type Constant Velocity Joint
JPH09324823A (en) Double cardan constant velocity joint
JPS6144011Y2 (en)
JP2019189070A (en) Steering device
JPH10122254A (en) Equal speed universal joint
JPH1122744A (en) Double cardan type uniform coupling
JP2007064404A (en) Fixed constant velocity universal joint
JP2008304004A (en) Slidable tripod type constant velocity universal joint
JP2007198552A (en) Constant velocity joint

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511783

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867793

Country of ref document: EP

Kind code of ref document: A1