WO2019078013A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2019078013A1
WO2019078013A1 PCT/JP2018/037158 JP2018037158W WO2019078013A1 WO 2019078013 A1 WO2019078013 A1 WO 2019078013A1 JP 2018037158 W JP2018037158 W JP 2018037158W WO 2019078013 A1 WO2019078013 A1 WO 2019078013A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
magnetic flux
flux density
switching
carrier frequency
Prior art date
Application number
PCT/JP2018/037158
Other languages
French (fr)
Japanese (ja)
Inventor
信太朗 田中
久保 謙二
大内 貴之
裕二 曽部
高橋 直也
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/757,201 priority Critical patent/US11101739B2/en
Priority to CN201880065828.1A priority patent/CN111201701B/en
Priority to DE112018004544.7T priority patent/DE112018004544B4/en
Publication of WO2019078013A1 publication Critical patent/WO2019078013A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device used to control a power conversion device.
  • a DC-DC converter includes a switching circuit capable of switching operation, and performs voltage conversion of DC power by controlling on / off of the switching circuit. Specifically, the input DC power is temporarily converted into AC power using a switching circuit, and the AC power is transformed (boosted or stepped down) using a transformer. Then, the AC power after transformation is converted again into DC power using an output circuit such as a rectifier circuit. Thereby, a DC output having a voltage different from the input voltage can be obtained.
  • the switching circuit is configured using, for example, a semiconductor switch element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the loss generated in the DC-DC converter includes a switching loss generated by a switching operation, a resistance loss (copper loss) generated in a transformer or a semiconductor switch element, and the like.
  • a switching loss generated by a switching operation a resistance loss (copper loss) generated in a transformer or a semiconductor switch element, and the like.
  • the following Patent Document 1 is known.
  • the power converter disclosed in Patent Document 1 monitors the transformer current flowing into the isolation transformer, and raises the switching carrier frequency when the transformer current exceeds a current reference value set in consideration of magnetic saturation. Implement control. This reduces the switching frequency and reduces the switching loss.
  • the control device controls a power conversion device that converts input first direct current power into second direct current power and outputs the second direct current power, and the power conversion device includes the first direct current.
  • a switching circuit that converts power into alternating current power, a transformer that performs voltage conversion of the alternating current power, and an output circuit that converts the alternating current power voltage-converted by the transformer into the second direct current power;
  • the control device calculates a magnetic flux density value of the transformer, and controls a drive frequency of the switching circuit based on the calculated magnetic flux density value.
  • the switching loss of the power converter can be sufficiently reduced.
  • FIG. 1 is a diagram showing a basic circuit configuration of a DC-DC converter according to a first embodiment of the present invention. It is a figure showing composition of a control circuit concerning a 1st embodiment of the present invention. It is a figure explaining operation of a comparator. It is a control flowchart of a control circuit.
  • FIG. 7 is a diagram showing a basic circuit configuration of a DC-DC converter according to a second embodiment of the present invention. It is a figure which shows an example of the relationship between transformer temperature and magnetic flux density command value.
  • FIG. 7 is a diagram showing a basic circuit configuration of a DC-DC converter according to a third embodiment of the present invention.
  • FIG. 1 is a view showing a configuration of a vehicle power supply according to an embodiment of the present invention.
  • the vehicle power supply according to the present embodiment is mounted on a vehicle 1000, and is a power supply that performs mutual power conversion between high voltage battery V1 and low voltage battery V2 using DC-DC converter 100. It is a lineage.
  • the low voltage side of DC-DC converter 100 that is, the side connected to low voltage battery V2 is referred to as "L side”
  • L side the high voltage side of DC-DC converter 100, ie, high voltage battery V1. This side is called "H side”.
  • One end of the low voltage battery V2 is connected to one end on the L side of the DC-DC converter 100, and the other end of the low voltage battery V2 is connected to the other end on the L side of the DC-DC converter 100.
  • One end of the auxiliary device 400 such as an air conditioner is connected to one end of the L side of the DC-DC converter 100 and one end of the low voltage battery V2, and the other end of the auxiliary device 400 is the other side of the DC side of the DC-DC converter 100 It is connected to the end and the other end of the low voltage battery V2.
  • One end of the HV device 300 is connected to one end of the DC side of the DC-DC converter 100 and one end of the high voltage battery V1, and the other end of the HV device 300 is the other end of the DC side of the DC to DC converter 100 and high voltage It is connected to the other end of the battery V1.
  • One end of the high voltage battery V1 is connected to one end of the DC-DC converter 100 on the H side, and the other end of the high voltage battery V1 is connected to the other end of the DC-DC converter 100 on the H side.
  • the DC-DC converter 100, the HV system device 300 and the auxiliary device 400 are connected to the vehicle power control unit 200.
  • Vehicle power supply control unit 200 controls the operation of each of these devices, the power transmission direction of the power exchanged between each of these devices and high voltage battery V1 and low voltage battery V2, the amount of power, and the like.
  • FIG. 2 is a diagram showing a basic circuit configuration of the DC-DC converter 100 according to the first embodiment of the present invention.
  • the DC-DC converter 100 according to the present embodiment includes the switching circuit 10, the transformer 20, and the output circuit 30, and is connected to the control circuit 50 via the gate driver 90.
  • the switching circuit 10 is connected to the high voltage battery V1 via the positive electrode input terminal 1 and the negative electrode input terminal 2.
  • the switching circuit 10 includes switch elements 11a to 14a connected in a bridge connection, and converts the DC power input from the high voltage battery V1 into high frequency AC power by switching the switch elements 11a to 14a. Output to the primary side of the transformer 20.
  • the transformer 20 insulates between the primary side and the secondary side, performs voltage conversion of AC power between the primary side and the secondary side, and reduces (steps up) the AC power generated by the switching circuit 10
  • the alternating current power is output to the output circuit 30.
  • the output circuit 30 is connected to the low voltage battery V 2 via the positive electrode output terminal 3 and the negative electrode output terminal 4.
  • the output circuit 30 includes diodes 31 and 32, and rectifies AC power voltage-converted by the transformer 20 using the diodes 31 and 32, converts the AC power into DC power, and outputs the DC power to the low voltage battery V2. .
  • Control circuit 50 is provided, for example, in vehicle power supply control unit 200 of FIG. 1, and generates and outputs output signals 51 to 54 for controlling the switching operations of switch elements 11a to 14a in switching circuit 10, respectively. .
  • the gate driver 90 converts the output signals 51 to 54 output from the control circuit 50 into drive signals 91 to 94 for driving the switch elements 11a to 14a, respectively, and outputs the drive signals 91 to 94 to the switching circuit 10.
  • the gate driver 90 mounts an isolation transformer 90 a and isolates between the switching circuit 10 and the control circuit 50.
  • Switching circuit 10 converts DC power input from high voltage battery V1 through positive electrode input terminal 1 and negative electrode input terminal 2 into high frequency AC power according to control of control circuit 50, and provides a primary winding of transformer 20. It has a role of supplying N1. Between the positive electrode input terminal 1 and the negative electrode input terminal 2, a voltage detector 41 and a smoothing capacitor C1 are connected in parallel with the high voltage battery V1. The voltage detector 41 detects the voltage of the DC power input to the switching circuit 10, and outputs the detected value to the control circuit 50 as the input voltage Vin.
  • the switching circuit 10 has a configuration in which four switch elements 11a to 14a are full-bridge connected. That is, a series circuit of two switch elements 11a and 12a (hereinafter referred to as "first leg") between the positive electrode input terminal 1 and the negative electrode input terminal 2, and two switch elements 13a and 14a. Series circuits (hereinafter referred to as “second legs") are connected to one another.
  • the connection point A between the switch element 11a and the switch element 12a in the first leg is connected to one end of the primary winding N1 of the transformer 20, and the connection between the switch element 13a and the switch element 14a in the second leg
  • the point B is connected to the other end of the primary winding N1 of the transformer 20.
  • the switch elements 11a to 14a can be configured using any element capable of switching operation, and for example, an FET (field effect transistor) or the like is preferable.
  • Diodes 11b to 14b for flywheel and capacitors 11c to 14c are connected in parallel to the switch elements 11a to 14a, respectively.
  • the diodes 11b to 14b and the capacitors 11c to 14c may be configured separately from the switch elements 11a to 14a, or may be parasitic components of the switch elements 11a to 14a. Moreover, you may use these together.
  • phase shift control method which is a driving method capable of reducing the switching loss is used.
  • the switch element 11a located on the upper side of the first leg and the switch element 14a located on the lower side of the second leg Is controlled according to the output voltage of the DC-DC converter 100.
  • the on / off phase difference between the switch element 12a below the first leg and the switch element 13a above the second leg is also controlled according to the output voltage of the DC-DC converter 100.
  • the period in which the switch element 11a and the switch element 14a are simultaneously turned on and the period in which the switch element 12a and the switch element 13a are simultaneously turned on are adjusted according to the output voltage.
  • the power transmitted from the switching circuit 10 (primary side of the transformer 20) to the output circuit 30 (secondary side of the transformer 20) is a period during which the switch element 11a and the switch element 14a are simultaneously turned on, and It depends on the period when the element 12a and the switch element 13a are simultaneously turned on. Therefore, by controlling the phase difference as described above, the output voltage of DC-DC converter 100 can be stabilized at a desired value.
  • the period in which the switch element 11a and the switch element 14a are simultaneously turned on and the period in which the switch element 12a and the switch element 13a are simultaneously turned on have the same length. Also, the ratio of the lengths of these periods in one cycle may be referred to as a duty ratio.
  • the transformer 20 has a role of performing voltage conversion on the AC power generated by the switching circuit 10 and outputting the AC power after the voltage conversion to the output circuit 30.
  • the transformer 20 includes a primary winding N1 connected to the switching circuit 10 and a secondary winding N2 connected to the output circuit 30.
  • the transformer 20 has a center tap configuration to realize a full wave rectification circuit in combination with the output circuit 30, and the secondary winding N2 is divided into two secondary windings N2a and N2b in the middle ing.
  • the turns ratio (N1 / N2a or N1 / N2b) between primary winding N1 and secondary windings N2a and N2b is the voltage range of input voltage Vin applied between positive electrode input terminal 1 and negative electrode input terminal 2, and It is set according to the voltage range of the output voltage Vout to be supplied between the positive electrode output terminal 3 and the negative electrode output terminal 4.
  • the transformer 20 has a resonant inductance L1 in series with the primary winding N1.
  • the resonant inductance L1 and the capacitance components of the capacitors 11c to 14c respectively connected in parallel to the switch elements 11a to 14a in the switching circuit 10 form a resonant circuit that reduces the switching loss generated in the switching circuit 10. .
  • the value of the resonant inductance L1 in the transformer 20 is small, the value of the inductance of the resonant circuit may be increased by connecting an inductor of another element in series with the resonant inductance L1.
  • connection point A which is the middle point of the first leg in the switching circuit 10, via a resonant inductance L1.
  • connection point B which is a middle point of the second leg in the switching circuit 10.
  • a neutral point T which is a connection point between the secondary winding N2a and the secondary winding N2b, is connected to the output circuit 30 along with both ends of the secondary winding N2.
  • Output circuit 30 smoothes and rectifies AC power appearing in secondary windings N2a and N2b in accordance with AC power flowing through primary winding N1 of transformer 20 to convert it into DC power, and outputs positive electrode output terminal 3 and negative electrode output It has a role of outputting to the low voltage battery V2 through the terminal 4.
  • a voltage detector 42 is connected between the positive electrode output terminal 3 and the negative electrode output terminal 4 in parallel with the low voltage battery V2. The voltage detector 42 detects the voltage of the DC power output from the output circuit 30, and outputs the detected value to the control circuit 50 as the output voltage Vout.
  • the output circuit 30 includes two diodes 31 and 32 whose anodes are connected to each other at a rectifying connection point S, a smoothing coil L2 and a capacitor C2.
  • the diode 31 is connected between one end of the secondary winding N2a of the transformer 20 and the rectification node S
  • the diode 32 is connected between one end of the secondary winding N2b of the transformer 20 and the rectification node S It is done.
  • the smoothing coil L2 is connected between the neutral point T, which is the other end of the secondary windings N2a and N2b of the transformer 20, and the positive electrode output terminal 3, and the capacitor C2 includes the positive electrode output terminal 3 and the negative electrode output terminal 4 Connected between.
  • the diodes 31 and 32 constitute a rectifier circuit that rectifies AC power output from the secondary windings N2a and N2b of the transformer 20 and converts the AC power into DC power.
  • the smoothing coil L2 and the capacitor C2 constitute a smoothing circuit that smoothes the rectified output generated at the neutral point T.
  • the conduction loss may be further reduced by replacing the diodes 31 and 32 with switch elements such as FETs to perform synchronous rectification operation according to a known technique.
  • the control circuit 50 is a circuit that controls the operation of the switch elements 11a to 14a of the switching circuit 10 so that the output voltage Vout of the DC-DC converter 100 becomes a predetermined voltage target value. As shown in FIG. 2, the control circuit 50 includes a voltage control unit 60, a switching carrier frequency setting unit 70, a signal generation unit 80, and a clock unit 65.
  • Voltage control unit 60 calculates a duty ratio when switching elements 11 a to 14 a are switched in switching circuit 10.
  • output voltage Vout of DC power output from output circuit 30 is controlled according to the value of the duty ratio.
  • the switching carrier frequency setting unit 70 sets a switching carrier frequency according to a drive frequency when the switching elements 11a to 14a perform switching operation in the switching circuit 10.
  • switch elements 11a-14a are driven at a drive frequency corresponding to the switching carrier frequency.
  • the signal generation unit 80 generates the output signals 51 to 54 based on the duty ratio calculated by the voltage control unit 60 and the switching carrier frequency set by the switching carrier frequency setting unit 70.
  • the output signals 51 to 54 generated by the signal generation unit 80 are output from the control circuit 50 to the gate driver 90, and are converted into drive signals 91 to 94 in the gate driver 90.
  • the drive signals 91 to 94 are input to the gate terminals of the switch elements 11a to 14a in the switching circuit 10, and the operation timings according to the duty ratio and the switching carrier frequency when the output signals 51 to 54 are generated The elements 11a to 14a are driven respectively. Thereby, the operation of the switching circuit 10 is controlled by the control circuit 50.
  • the clock unit 65 internally has two counters that are counted up for each fixed clock, and controls the execution timing of the voltage control unit 60 and the switching carrier frequency setting unit 70 based on the count values of these counters. Do.
  • FIG. 3 is a diagram showing the configuration of the control circuit 50 according to the first embodiment of the present invention. The details of the voltage control unit 60, the switching carrier frequency setting unit 70, the signal generation unit 80, and the clock unit 65 of the control circuit 50 in the present embodiment will be described below with reference to FIG.
  • the voltage control unit 60 includes a subtracting unit 61, a PI control unit 62, and a duty limiting unit 63.
  • Subtraction unit 61 calculates a difference between voltage command value Vref, which is a target value of the output voltage set in advance, and output voltage Vout detected by voltage detector 42, and outputs the difference to PI control unit 62.
  • the PI control unit 62 performs PI operation on the difference obtained by the subtraction unit 61 to perform PI control (proportional integration control) so that the difference approaches 0, and the switch element 11 a of the switching circuit 10
  • a duty value D which is the value of the duty ratio for.
  • Duty limiting unit 63 sets a predetermined lower limit value and an upper limit value for duty value D determined by PI control unit 62, and duty instruction value D * limited within a range from the lower limit value to the upper limit value.
  • Ask for The duty instruction value D * obtained by the duty limiting unit 63 is output from the voltage control unit 60 to the switching carrier frequency setting unit 70, the signal generation unit 80, and the clock unit 65.
  • duty instruction value D * output from voltage control unit 60 is expressed by the following equation (1) Meet the relationship. Dmin D D * D Dmax (1)
  • the switching carrier frequency setting unit 70 includes a multiplying unit 71, a proportional unit 72, a subtracting unit 73, a magnetic flux density command value setting unit 74, a PI control unit 75, and a frequency limiting unit 76.
  • Multiplication unit 71 calculates a multiplication value of duty instruction value D * output from duty limit unit 63 of voltage control unit 60 and input voltage Vin detected by voltage detector 41, and outputs the product to proportional unit 72.
  • the proportional unit 72 converts the multiplication value into the magnetic flux density value B of the transformer 20 by multiplying the multiplication value obtained by the multiplication unit 71 by a predetermined proportional constant.
  • Subtraction unit 73 sets a magnetic flux density command value Bref which is a target value of the magnetic flux density preset by magnetic flux density command value setting unit 74 based on the saturation magnetic flux density of transformer 20, and a magnetic flux density value obtained by proportional unit 72.
  • the difference with B is calculated and output to PI control unit 75.
  • the PI control unit 75 performs PI control on the difference obtained by the subtraction unit 73 to perform PI control (proportional integration control) such that the difference approaches 0, and the driving frequency of the switching circuit 10 is set to The switching carrier frequency f according to is determined.
  • the frequency limiting unit 76 sets a predetermined lower limit value and an upper limit value for the switching carrier frequency f determined by the PI control unit 75, and the switching carrier frequency setting is limited within the range from the lower limit value to the upper limit value. Find the value f *.
  • Switching carrier frequency setting value f * obtained by frequency limiting unit 76 is output from switching carrier frequency setting unit 70 to signal generation unit 80 and clock unit 65, respectively.
  • the switching carrier frequency setting unit 70 outputs the switching carrier frequency setting value f * obtained as described above to the signal generation unit 80.
  • the clock unit 65 internally has an A counter and a B counter.
  • the A counter is a counter used to control the execution timing of the voltage control unit 60, and is counted up every fixed clock.
  • the B counter is a counter used to control the execution timing of the switching carrier frequency setting unit 70, and, like the A counter, counts up every fixed clock.
  • Duty instruction value D * input from voltage control unit 60 to clock unit 65 is stored in clock unit 65 as the previous duty instruction value Da *. If the value of the A counter is less than the predetermined threshold value, the clock unit 65 outputs the stored previous duty instruction value Da * to the signal generation unit 80. When the value of the A counter exceeds the predetermined threshold value, the clock unit 65 outputs an execution command to the voltage control unit 60, and causes the voltage control unit 60 to calculate the duty instruction value D *. Thus, the new duty instruction value D * is calculated by the voltage control unit 60 and input to the signal generation unit 80, and the previous duty instruction value Da * stored in the clock unit 65 is updated.
  • the switching carrier frequency setting value f * input from the switching carrier frequency setting unit 70 to the clock unit 65 is stored as the previous switching carrier frequency setting value fa * in the clock unit 65. If the value of the B counter is less than the predetermined threshold value, the clock unit 65 outputs the stored previous switching carrier frequency set value fa * to the signal generation unit 80. When the value of the B counter exceeds the predetermined threshold value, the clock unit 65 outputs an execution command to the switching carrier frequency setting unit 70, and causes the switching carrier frequency setting unit 70 to calculate the switching carrier frequency setting value f *. . Thereby, the new switching carrier frequency setting value f * is calculated by the switching carrier frequency setting unit 70 and input to the signal generating unit 80, and the previous switching carrier frequency setting value fa * stored in the clock unit 65 is It will be updated.
  • clock unit 65 outputs the previous duty instruction value Da * or the execution command to voltage control unit 60 according to the value of A counter, and the previous setting of the switching carrier frequency according to the value of B counter.
  • the value fa * or an execution command to the switching carrier frequency setting unit 70 is output. Thereby, the execution timing of the voltage control unit 60 and the switching carrier frequency setting unit 70 can be controlled.
  • the same value may be set as the threshold value of the A counter and the threshold value of the B counter, or different values may be set.
  • the signal generation unit 80 includes an operation determination unit 81, a dead time setting unit 82, a threshold setting unit 83, an operation determination unit 84, a carrier signal generation unit 85, and a comparator 86.
  • operation determination unit 81 outputs input duty instruction value D * to threshold setting unit 83, and voltage control unit 60 outputs the duty instruction value.
  • the duty instruction value Da * is input last time from the clock unit 65 without the calculation of D * being performed, the inputted previous duty instruction value Da * is output to the threshold value setting unit 83.
  • the dead time setting unit 82 outputs, to the threshold setting unit 83, a dead time set value Dd when the switch elements 11a to 14a are subjected to switching operation. Based on duty instruction value D * or duty instruction value Da * input from operation determination unit 81 and dead time set value Dd input from dead time setting unit 82, threshold setting unit 83 selects switch element 11a.
  • the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b for respectively determining the on / off timing of the timings 14a to 14a are set and output to the comparator 86.
  • the on timing threshold 51a to 54a and the off timing threshold 51b to 54b are set as follows. Ru.
  • Cmax represents the maximum value of the carrier signal generated by the carrier signal generator 85.
  • ON timing threshold OFF timing threshold 51a Cmax 51b: 0.5Cmax-Dd_12 52a: 0.5Cmax 52b: Cmax-Dd_12 53a: D * + Dd_34 53b: D * + 0.5 Cmax 54a: D * + 0.5Cmax + Dd_34 54b: D *
  • the calculation determining unit 84 outputs the inputted switching carrier frequency setting value f * to the carrier signal generation unit 85, and switching is performed.
  • the switching carrier frequency setting value fa * is previously input from the clock unit 65 without calculation of the switching carrier frequency setting value f * in the carrier frequency setting unit 70
  • the previous switching carrier frequency setting value fa * input is The signal is output to the carrier signal generator 85.
  • Carrier signal generation unit 85 generates carrier signal 55 having a frequency according to these setting values based on switching carrier frequency setting value f * or previous switching carrier frequency setting value fa * input from operation determining unit 84. , Output to the comparator 86.
  • the carrier signal 55 generated by the carrier signal generation unit 85 is a periodic signal such as a triangular wave which continuously changes from 0 to a predetermined maximum value Cmax, and the switching carrier frequency setting value f * or the previous switching carrier frequency setting value It changes repeatedly in a cycle according to fa *.
  • the comparator 86 compares the carrier signal 55 input from the carrier signal generation unit 85 with the on-timing thresholds 51a to 54a and the off-timing thresholds 51b to 54b input from the threshold setting unit 83 to obtain a duty instruction value. Pulse modulation is performed according to D * or the previous duty instruction value Da *, and output signals 51 to 54 are generated.
  • the control circuit 50 controls the on / off of the switch elements 11 a to 14 a of the switching circuit 10 by outputting the output signals 51 to 54 generated by the comparator 86 to the gate driver 90.
  • FIG. 4 is a diagram for explaining the operation of the comparator 86.
  • FIG. 4A is an example of the case where the frequency of the carrier signal 55 is high (when the cycle is short), and the waveform of the carrier signal 55 is indicated by a symbol 55a.
  • FIG. 4B is an example of the case where the frequency of the carrier signal 55 is low (when the cycle is long), and the waveform of the carrier signal 55 is indicated by reference numeral 55b.
  • the inclination of the carrier signal 55 corresponds to the switching carrier frequency set value f * output from the calculation determination unit 84 or the previous switching carrier frequency set value fa *. Change accordingly.
  • the comparator 86 compares the carrier signal 55 with the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b. As a result, as shown in FIGS. 4A and 4B, when the value of the carrier signal 55 exceeds the on timing thresholds 51a to 54a, the output signals 51 to 54 are respectively turned off (L level) Switch to on (H level). Also, when the value of the carrier signal 55 exceeds the off timing thresholds 51b to 54b, the output signals 51 to 54 are switched from on (H level) to off (L level). Specifically, for example, when the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b are set to the values as described above, the on / off of the output signals 51 to 54 are sequentially switched as follows. .
  • the output signal 54 is turned off at the timing when the value of the carrier signal 55 reaches the off timing threshold signal 54 b.
  • the output signal 53 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 53a.
  • the output signal 51 is turned off at the timing when the value of the carrier signal 55 reaches the on timing threshold signal 51 b.
  • the output signal 52 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 52a.
  • the output signal 53 is turned off at the timing when the value of the carrier signal 55 reaches the off timing threshold signal 53b.
  • the output signal 54 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 54a.
  • the output signal 52 is turned off at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 52b.
  • the output signal 51 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 51a.
  • the signal generation unit 80 generates the output signals 51 to 54 for setting the on / off timings of the switch elements 11a to 14a, respectively.
  • FIG. 5 is a control flow diagram of the control circuit 50. Hereinafter, the operation of the control circuit 50 described above will be described using the control flow diagram of FIG.
  • step S10 the control circuit 50 determines whether the value of the A counter of the clock unit 65 is equal to or greater than a predetermined threshold value Ta. If the value of the A counter is greater than or equal to the threshold value Ta, the process proceeds to step S20, and if less than the threshold value Ta, the process proceeds to step S40.
  • step S20 the control circuit 50 causes the voltage control unit 60 to obtain the difference between the output voltage Vout detected by the voltage detector 42 and the voltage command value Vref by the subtraction unit 61, and performs PI control based on the difference.
  • the duty limiting unit 63 sets the lower limit value and the upper limit value for the duty value D obtained by the PI control in step S20, and determines the duty indication value D *.
  • the control circuit 50 outputs the determined duty instruction value D * to the switching carrier frequency setting unit 70, the signal generation unit 80, and the clock unit 65, and the process proceeds to step S50.
  • control circuit 50 outputs the previous duty instruction value Da * stored in clock unit 65 to signal generation unit 80, and the process proceeds to step S50.
  • a predetermined initial value for example, 0
  • step S50 the control circuit 50 determines whether the value of the B counter of the clock unit 65 is equal to or greater than a predetermined threshold value Tb. If the value of the B counter is greater than or equal to the threshold Tb, the process proceeds to step S60, and if less than the threshold Tb, the process proceeds to step S100.
  • step S60 the control circuit 50 causes the switching carrier frequency setting unit 70 to multiply the duty instruction value D * input from the voltage control unit 60 and the input voltage Vin detected by the voltage detector 41 by the multiplication unit 71.
  • the proportional value is converted to the magnetic flux density value B of the transformer 20 by the proportional unit 72.
  • steps S70 to S90 PI control is performed so that the difference between the magnetic flux density value B calculated in step S60 and the magnetic flux density command value Bref approaches zero.
  • the difference between the magnetic flux density value B and the magnetic flux density command value Bref is determined by the subtraction unit 73, and PI control based on the difference is performed by the PI control unit 75 to determine the switching carrier frequency f.
  • step S110 setting of the lower limit value and the upper limit value is performed on the obtained switching carrier frequency f by the frequency limiting unit 76, and the switching carrier frequency setting value f * is determined.
  • the switching carrier frequency setting value f * is decreased (S80)
  • B ⁇ Bref S70: No
  • the switching carrier frequency setting value f * is increased (S70) S90).
  • the control circuit 50 outputs the determined switching carrier frequency set value f * to the signal generation unit 80 and the clock unit 65, and the process proceeds to step S110.
  • control circuit 50 outputs the previous switching carrier frequency set value fa * stored in clock unit 65 to signal generation unit 80, and the process proceeds to step S110.
  • the switching carrier frequency set value fa * is not stored in the clock unit 65 last time, such as in the initial state immediately after activation of the control circuit 50, the predetermined initial value (for example, maximum switching carrier frequency fmax) is switched to the previous time. It may be output as the carrier frequency set value fa *.
  • step S110 the control circuit 50 causes the signal generation unit 80 to set the duty instruction value D * obtained in step S30 or S40 or the previous duty instruction value Da * and the switching carrier frequency obtained in step S80, S90 or S100.
  • Output signals 51 to 54 are generated based on the set value f * or the previous switching carrier frequency set value fa *.
  • the signal generation unit 80 outputs the duty instruction value D * or the previous duty instruction value Da * from the operation determination unit 81 to the threshold setting unit 83, and the threshold setting unit 83 responds to the dead time setting value Dd.
  • the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b are set.
  • the switching carrier frequency set value f * or the previous switching carrier frequency set value fa * is output from the calculation determination unit 84 to the carrier signal generation unit 85, and the carrier signal generation unit 85 generates the carrier signal 55.
  • the comparator 86 compares the carrier signal 55 with the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b to generate output signals 51 to 54.
  • the control circuit 50 outputs the generated output signals 51 to 54 to the gate driver 90, and the process proceeds to step S120.
  • control circuit 50 determines whether or not to stop DC-DC converter 100. For example, when a predetermined stop condition such as an external control stop command for the DC-DC converter 100 is input from outside, the control circuit 50 determines that the DC-DC converter 100 is to be stopped, and the control flow of FIG. Stop the operation. On the other hand, when the stop condition is not satisfied, the control circuit 50 determines that the DC-DC converter 100 is not to be stopped, returns to step S10, and repeats the above process.
  • a predetermined stop condition such as an external control stop command for the DC-DC converter 100 is input from outside
  • the control circuit 50 determines that the DC-DC converter 100 is to be stopped, and the control flow of FIG. Stop the operation.
  • the stop condition is not satisfied, the control circuit 50 determines that the DC-DC converter 100 is not to be stopped, returns to step S10, and repeats the above process.
  • the DC-DC converter 100 which is a power conversion device, performs voltage conversion using the switching circuit 10 for converting the input first DC power into AC power, the transformer 20 for performing voltage conversion of AC power, and the transformer 20 And an output circuit 30 for converting the AC power into a second DC power.
  • the control circuit 50 that controls the DC-DC converter 100 calculates the magnetic flux density value B of the transformer 20, and controls the drive frequency of the switching circuit 10 based on the calculated magnetic flux density value B. As a result, the switching loss of the DC-DC converter 100 can be sufficiently reduced.
  • the control circuit 50 calculates the duty command value D * for controlling the output voltage Vout of the output circuit 30, and based on the duty command value D * and the input voltage Vin of the switching circuit 10.
  • Switching carrier frequency setting unit 70 which calculates magnetic flux density value B and sets the switching carrier frequency according to the driving frequency of switching circuit 10 based on calculated magnetic flux density value B, and duty instruction value D * and switching carrier frequency
  • a signal generator 80 for generating output signals 51 to 54 for driving the switching circuit 10 and outputting the generated output signals 51 to 54 to the switching circuit 10 via the gate driver 90. Since this is done, without detecting the current of the transformer 20, it is possible to operate the DC-DC converter 100 at an appropriate drive frequency while reliably preventing the magnetic saturation of the transformer 20, and to reduce the switching loss.
  • the switching carrier frequency setting unit 70 lowers the drive frequency of the switching circuit 10 and the magnetic flux density value B Is larger than the magnetic flux density command value Bref, the switching carrier frequency is set so as to increase the drive frequency of the switching circuit 10. Since this is done, DC-DC converter 100 can be operated at an appropriate drive frequency such that magnetic flux density value B approaches magnetic flux density command value Bref.
  • the control circuit 50 further includes a clock unit 65 that controls the execution timing of the voltage control unit 60 and the switching carrier frequency setting unit 70.
  • a clock unit 65 that controls the execution timing of the voltage control unit 60 and the switching carrier frequency setting unit 70.
  • FIG. 6 is a diagram showing a basic circuit configuration of a DC-DC converter 100 according to a second embodiment of the present invention. As shown in FIG. 6, the DC-DC converter 100 according to the present embodiment has been described in the first embodiment except that the temperature detector 43 for detecting the temperature of the transformer 20 is provided in the vicinity of the transformer 20. It has the same configuration as that of
  • the temperature detector 43 detects the temperature of the transformer 20 and outputs the detected value to the control circuit 50.
  • the control value of the transformer temperature output from the temperature detector 43 is input to the magnetic flux density command value setting unit 74 of the switching carrier frequency setting unit 70 in the control circuit 50.
  • the magnetic flux density command value setting unit 74 changes the magnetic flux density command value Bref to be output to the subtracting unit 73 based on the input detection value of the transformer temperature.
  • FIG. 7 is a diagram showing an example of the relationship between the transformer temperature and the magnetic flux density command value Bref.
  • FIG. 7A shows an example in which the magnetic flux density command value Bref is increased at a constant rate according to the rise of the transformer temperature, and the magnetic flux density command value Bref is decreased at a constant rate according to the drop of the transformer temperature.
  • FIG. 7B the magnetic flux density command value Bref is continuously changed in the area where the transformer temperature is less than the predetermined value in consideration of the temperature dependency, and in the area where the transformer temperature is equal to or more than the predetermined value
  • An example is shown where it is constant without changing. Note that the magnetic flux density command value Bref may be changed according to the transformer temperature using a relationship other than that illustrated in FIG. 7A or 7B.
  • the magnetic flux density command value Bref may be decreased according to the rise of the transformer temperature, and the magnetic flux density command value Bref may be increased according to the fall of the transformer temperature. Also, the transformer temperature and the magnetic flux density command value Bref may not be in a proportional relationship, or may not be a relationship defined by a continuous function.
  • the DC-DC converter 100 which is a power conversion device further includes the temperature detector 43 for detecting the temperature of the transformer 20.
  • the switching carrier frequency setting unit 70 changes the magnetic flux density command value Bref based on the temperature detection value of the transformer 20 by the temperature detector 43. Since this is done, in addition to the effects described in the first embodiment, the DC-DC converter 100 can be more accurately controlled.
  • FIG. 8 is a diagram showing a basic circuit configuration of a DC-DC converter 100 according to a third embodiment of the present invention.
  • the current detector 44 for detecting the output current of the DC-DC converter 100 output from the output circuit 30 to the low voltage battery V2 has a low voltage It has the same configuration as that described in the first embodiment except that it is provided between the batteries V2.
  • the current detector 44 detects the output current from the output circuit 30, and outputs the detected value to the control circuit 50.
  • the current detector 44 is connected to the negative electrode output terminal 4 side in FIG. 8, it may be connected to the positive electrode output terminal 3 side.
  • the detected value of the output current output from the current detector 44 is input to the magnetic flux density command value setting unit 74 of the switching carrier frequency setting unit 70 in the control circuit 50.
  • the magnetic flux density command value setting unit 74 changes the magnetic flux density command value Bref to be output to the subtracting unit 73 based on the input detection value of the output current.
  • FIG. 9 is a diagram showing an example of the relationship between the output current and the magnetic flux density command value Bref.
  • FIG. 9A shows an example in which the magnetic flux density command value Bref is increased at a constant rate according to the rise of the output current, and the magnetic flux density command value Bref is decreased at a constant rate according to the fall of the output current.
  • FIG. 9B the flux density command value Bref is continuously changed in the area where the output current is less than the predetermined value in consideration of the output current dependency, and in the area where the output current is equal to or more than the predetermined value, the flux density command value Bref.
  • An example is shown in which it is made constant without changing.
  • the magnetic flux density command value Bref may be changed according to the output current using a relationship other than that illustrated in FIGS. 9A and 9B.
  • the magnetic flux density command value Bref may be decreased according to the rise of the output current, and the magnetic flux density command value Bref may be increased according to the fall of the output current.
  • the output current and the magnetic flux density command value Bref may not be in a proportional relationship, or may not be a relationship defined by a continuous function.
  • the DC-DC converter 100 which is a power conversion device, further includes a current detector 44 that detects the output current from the output circuit 30.
  • the switching carrier frequency setting unit 70 changes the magnetic flux density command value Bref based on the detection value of the output current by the current detector 44.
  • FIG. 10 is a diagram showing a configuration of a control circuit 50 according to a fourth embodiment of the present invention.
  • the control circuit 50 of this embodiment is the first embodiment except that the switching carrier frequency setting unit 70 further includes a gain adjustment unit 75a connected to the PI control unit 75. It has the same configuration as that described above. Below, the added gain adjustment part 75a is demonstrated.
  • the PI control unit 75 performs PI control according to the difference between the magnetic flux density command value Bref and the magnetic flux density value B by PI calculation using a predetermined PI control gain.
  • the PI control gain is increased, the change of the switching carrier frequency when the magnetic flux density value B approaches the magnetic flux density command value Bref is quickened, and the responsiveness of the switching circuit 10 is improved.
  • the PI control gain is lowered, the change of the switching carrier frequency when the magnetic flux density value B approaches the magnetic flux density command value Bref is delayed, and the responsiveness of the switching circuit 10 is lowered. Therefore, in the control circuit 50 of the present embodiment, the responsiveness of the switching circuit 10 is adjusted by appropriately adjusting the PI control gain used in the PI control unit 75 in the gain adjustment unit 75a.
  • FIG. 11 is a diagram illustrating an example of a method of adjusting the PI control gain by the gain adjustment unit 75a.
  • FIG. 11 (a) shows an example of adjusting the PI control gain according to the switching carrier frequency
  • FIG. 11 (b) shows an example of adjusting the PI control gain according to the output current from the output circuit 30. It shows.
  • the gain adjustment unit 75a can change the PI control gain based on the switching carrier frequency and the output current as illustrated in, for example, FIG. 11A and FIG. 11B. It is also possible to adjust the PI control gain using both the switching carrier frequency and the output current, or to adjust the PI control gain using information other than these.
  • the switching carrier frequency setting unit 70 performs PI control based on the difference between the magnetic flux density value B and the magnetic flux density command value Bref with a predetermined PI control gain.
  • the gain control unit 75a changes the PI control gain based on at least one of the switching carrier frequency and the output current from the output circuit 30. Since this is done, in addition to the effect described in the first embodiment, there is an effect that the responsiveness of the switching circuit 10 can be appropriately adjusted while reliably preventing the magnetic saturation of the transformer 20.
  • FIG. 12 is a diagram showing a configuration of a control circuit 50 according to a fifth embodiment of the present invention.
  • the control circuit 50 of the present embodiment is the first embodiment except that the switching carrier frequency setting unit 70 further includes a limit value setting unit 76 a connected to the frequency limiting unit 76. It has the same configuration as that described in the embodiment.
  • the added limit value setting unit 76a will be described.
  • Limit value setting unit 76a determines the upper limit value and the lower limit value of switching carrier frequency setting value f * output from frequency limiting unit 76, that is, the maximum switching carrier frequency fmax and the minimum switching carrier frequency fmin in the above equation (2). These determined values are output to the frequency limiting unit 76.
  • limit value setting unit 76 a responds to a target value of magnetic flux density based on the saturation magnetic flux density of transformer 20, ie, magnetic flux density command value Bref, and the cross-sectional area of the core of transformer 20 and the number of turns of primary winding N 1. Determine the maximum switching carrier frequency fmax.
  • limit value setting unit 76a determines minimum switching carrier frequency fmin in accordance with the upper limit value of the magnetic flux density set in advance based on the saturation magnetic flux density of insulating transformer 90a in gate driver 90, for example. Specifically, the minimum switching carrier frequency fmin is determined using the following equation (3) so that the magnetic flux density of the insulating transformer 90a does not exceed the saturation magnetic flux density even when the switching carrier frequency is lowered.
  • Vdd is a voltage value input to the gate driver 90 through the insulating transformer 90a
  • Bmax is an upper limit value of magnetic flux density of the insulating transformer 90a
  • N1 is insulating It is a transformer winding number of the transformer 90a.
  • the limit value setting unit 76a may determine the minimum switching carrier frequency fmin such that the current ripple flowing through the smoothing coil L2 in the output circuit 30 is equal to or less than a predetermined ripple current value. Specifically, even when the switching carrier frequency is lowered, the following equation (4) is used so that the current ripple in the output current from output circuit 30 flowing in smoothing coil L2 does not exceed the predetermined ripple current value. The minimum switching carrier frequency fmin is determined.
  • Vin is an input voltage value of the DC-DC converter 100 detected by the voltage detector 41
  • Vout is an output voltage of the DC-DC converter 100 detected by the voltage detector 42
  • D * is a voltage
  • L2 is the inductance value of the smoothing coil L2
  • ⁇ ILmax is the difference between the peak maximum ripple current value and the peak maximum ripple current value
  • Nt is the turns ratio of the transformer 20.
  • the limit value setting unit 76a may determine the minimum switching carrier frequency fmin using something other than the above equation (3) or (4). As long as the magnetic flux density of isolation transformer 90a does not exceed the saturation magnetic flux density or the current ripple in the output current from output circuit 30 does not exceed a predetermined ripple current value, the minimum switching carrier frequency fmin should be determined by any method. Is possible. The minimum switching carrier frequency fmin can be determined based on both the saturation magnetic flux density of the isolation transformer 90a and the current ripple in the output current, or the minimum switching carrier frequency fmin can be determined based on other information. It is.
  • the switching circuit 10 is connected to the control circuit 50 via the gate driver 90 which is an insulated gate driver mounting the isolation transformer 90 a.
  • switching carrier frequency setting unit 70 has frequency limiting unit 76 that limits the switching carrier frequency to a predetermined minimum switching carrier frequency fmin or more.
  • limit value setting unit 76a the saturation magnetic flux density of isolation transformer 90a and The minimum switching carrier frequency fmin is determined based on at least one of the current ripple in the output current from the output circuit 30.
  • the switching circuit 10 which is a voltage-type full bridge circuit configured by four switch elements 11a to 14a, and the transformer 20, which is a current-type center tap circuit, are combined.
  • the present invention has been described using the example of the control circuit 50 that controls the DC-DC converter 100 according to the phase shift control method, the present invention is not limited to this.
  • Switching circuit for converting input first DC power into AC power, transformer for performing voltage conversion of AC power, and output circuit for converting AC power subjected to voltage conversion by the transformer to second DC power The present invention can be applied to any control device that controls a power conversion device having the above-described components, and the same operation and effect as those described in the embodiments can be obtained.
  • each embodiment described above may be applied independently, and may be combined arbitrarily.
  • SYMBOLS 1 positive electrode input terminal, 2 ... negative electrode input terminal, 3 ... positive electrode output terminal, 4 ... negative electrode output terminal, 10 ... switching circuit, 11a to 14a ... switching element, 11b to 14b ... diode, 11c to 14c ... capacitor, 20 ...
  • Transformer 30 30 output circuit 31, 32 diode 41, 42 voltage detector 43 temperature detector 44 current detector 50 control circuit 51 to 54 output signal 60 voltage controller , 61: subtraction unit, 62: PI control unit, 63: duty limitation unit, 65: clock unit, 70: switching carrier frequency setting unit, 71: multiplication unit, 72: proportional unit, 73: subtraction unit, 74: magnetic flux density Reference value setting unit 75 PI control unit 75a Gain adjustment unit 76 Frequency limiting unit 76a Limit value setting unit 80 Signal generation unit 81 Operation determination unit 82 Dead Time setting unit 83 Threshold setting unit 84 Operation determination unit 85 Carrier signal generation unit 86 Comparator 90 Gate driver 90a Insulated transformer 91 to 94 Drive signal 100 DC-DC Converter, 200: vehicle power control unit, 300: HV system equipment, 400: auxiliary equipment, 1000: vehicle, N1: primary winding, N2a, N2b: secondary winding, S: rectification connection point, T: neutral Point, V1 ... high voltage battery, V2 ... low

Abstract

The present invention sufficiently reduces the switching loss of a power conversion device. A DC-DC converter 100 has: a switching circuit 10 that converts inputted first direct current power into alternating current power; a transformer 20 that performs voltage conversion with respect to the alternating current power; and an output circuit 30 that converts the alternating current power into second direct current power, said alternating current power having been subjected to the voltage conversion by means of the transformer 20. A control circuit 50 that controls the DC-DC converter 100 calculates a magnetic flux density value B of the transformer 20, and controls the driving frequency of the switching circuit 10 on the basis of the magnetic flux density value B thus calculated.

Description

制御装置Control device
 本発明は、電力変換装置の制御に用いられる制御装置に関する。 The present invention relates to a control device used to control a power conversion device.
 近年、化石燃料の枯渇や地球環境問題を背景として、ハイブリッド自動車や電気自動車のような、電気エネルギーを利用して走行する自動車への関心が高まっており、実用化されている。このような電気エネルギーを利用して走行する自動車には、車輪を駆動するためのモータに電力を供給する高圧バッテリが備えられている。さらに、高圧バッテリからの出力電力を降圧して、自動車に搭載された低圧の電気機器、例えばエアコンやオーディオ、各種ECU(Electronic Control Unit)等へ必要な電力を供給する電力変換装置が備えられることもある。こうした電力変換装置は、入力された直流電力を異なる電圧の直流電力に変換するものであり、DC-DCコンバータとも呼ばれる。 BACKGROUND ART In recent years, with the background of exhaustion of fossil fuels and global environmental problems, interest in vehicles traveling using electrical energy, such as hybrid vehicles and electric vehicles, has increased and has been put to practical use. An automobile that travels using such electrical energy is equipped with a high voltage battery that supplies power to a motor for driving the wheels. Furthermore, a power conversion device is provided which steps down the output power from the high-voltage battery and supplies necessary power to low-voltage electric devices mounted on a car, such as an air conditioner, audio, various ECUs (Electronic Control Units), etc. There is also. Such a power conversion device converts input DC power into DC power of different voltages, and is also called a DC-DC converter.
 一般にDC-DCコンバータは、スイッチング動作可能なスイッチング回路を有しており、このスイッチング回路のオン/オフを制御することで、直流電力の電圧変換を行う。具体的には、入力された直流電力をスイッチング回路を用いて交流電力に一旦変換し、その交流電力をトランスを用いて変圧(昇圧または降圧)する。そして、整流回路などの出力回路を用いて、変圧後の交流電力を再び直流電力に変換する。これにより、入力電圧とは異なる電圧を持った直流出力を得ることができる。スイッチング回路は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などの半導体スイッチ素子を用いて構成される。 In general, a DC-DC converter includes a switching circuit capable of switching operation, and performs voltage conversion of DC power by controlling on / off of the switching circuit. Specifically, the input DC power is temporarily converted into AC power using a switching circuit, and the AC power is transformed (boosted or stepped down) using a transformer. Then, the AC power after transformation is converted again into DC power using an output circuit such as a rectifier circuit. Thereby, a DC output having a voltage different from the input voltage can be obtained. The switching circuit is configured using, for example, a semiconductor switch element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
 車載用の電力変換装置では、自然エネルギーの有効活用や二酸化炭素の削減を目的として、一般に高効率が求められる。そのため、電力変換時の損失をできるだけ低減することが重要となる。ここで、DC-DCコンバータにおいて発生する損失には、スイッチング動作により発生するスイッチング損失や、トランスや半導体スイッチ素子で発生する抵抗損失(銅損)等がある。スイッチング素子を低減する手段としては、例えば下記の特許文献1が知られている。特許文献1に開示された電力変換装置は、絶縁トランスに流れ込むトランス電流を監視して、トランス電流が磁気飽和を考慮して設定された電流基準値を超えた際に、スイッチングキャリア周波数を上昇させる制御を実施する。これにより、スイッチング周波数を低下させ、スイッチング損失を低減している。 In a vehicle-mounted power converter, high efficiency is generally required for the purpose of effective use of natural energy and reduction of carbon dioxide. Therefore, it is important to reduce the loss during power conversion as much as possible. Here, the loss generated in the DC-DC converter includes a switching loss generated by a switching operation, a resistance loss (copper loss) generated in a transformer or a semiconductor switch element, and the like. As means for reducing the number of switching elements, for example, the following Patent Document 1 is known. The power converter disclosed in Patent Document 1 monitors the transformer current flowing into the isolation transformer, and raises the switching carrier frequency when the transformer current exceeds a current reference value set in consideration of magnetic saturation. Implement control. This reduces the switching frequency and reduces the switching loss.
特開2008-278723号公報JP 2008-278723 A
 特許文献1に記載の技術では、トランス電流の監視結果を用いてスイッチングキャリア周波数の制御を行っているため、トランス電流の変化が急激である場合などに制御遅れが生じてしまい、その結果、スイッチング損失の低減が不十分になることがある。 In the technology described in Patent Document 1, since the control of the switching carrier frequency is performed using the monitoring result of the transformer current, a control delay occurs when, for example, the change of the transformer current is abrupt, and as a result, switching Loss reduction may be inadequate.
 本発明による制御装置は、入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行うものであって、前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、を有し、制御装置は、前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数を制御する。 The control device according to the present invention controls a power conversion device that converts input first direct current power into second direct current power and outputs the second direct current power, and the power conversion device includes the first direct current. A switching circuit that converts power into alternating current power, a transformer that performs voltage conversion of the alternating current power, and an output circuit that converts the alternating current power voltage-converted by the transformer into the second direct current power; The control device calculates a magnetic flux density value of the transformer, and controls a drive frequency of the switching circuit based on the calculated magnetic flux density value.
 本発明によれば、電力変換装置のスイッチング損失を十分に低減することができる。 According to the present invention, the switching loss of the power converter can be sufficiently reduced.
本発明の一実施形態に係る車両電源の構成を示す図である。It is a figure showing composition of a vehicle power supply concerning one embodiment of the present invention. 本発明の第1の実施形態に係るDC-DCコンバータの基本回路構成を示す図である。FIG. 1 is a diagram showing a basic circuit configuration of a DC-DC converter according to a first embodiment of the present invention. 本発明の第1の実施形態に係る制御回路の構成を示す図である。It is a figure showing composition of a control circuit concerning a 1st embodiment of the present invention. 比較器の動作を説明する図である。It is a figure explaining operation of a comparator. 制御回路の制御フロー図である。It is a control flowchart of a control circuit. 本発明の第2の実施形態に係るDC-DCコンバータの基本回路構成を示す図である。FIG. 7 is a diagram showing a basic circuit configuration of a DC-DC converter according to a second embodiment of the present invention. トランス温度と磁束密度指令値との関係の一例を示す図である。It is a figure which shows an example of the relationship between transformer temperature and magnetic flux density command value. 本発明の第3の実施形態に係るDC-DCコンバータの基本回路構成を示す図である。FIG. 7 is a diagram showing a basic circuit configuration of a DC-DC converter according to a third embodiment of the present invention. 出力電流と磁束密度指令値との関係の一例を示す図である。It is a figure which shows an example of the relationship between an output current and magnetic flux density command value. 本発明の第4の実施形態に係る制御回路の構成を示す図である。It is a figure which shows the structure of the control circuit which concerns on the 4th Embodiment of this invention. ゲイン調整部によるPI制御ゲインの調整方法の一例を示す図である。It is a figure which shows an example of the adjustment method of PI control gain by a gain adjustment part. 本発明の第5の実施形態に係る制御回路の構成を示す図である。It is a figure showing composition of a control circuit concerning a 5th embodiment of the present invention.
 以下、図面を参照して、本発明に係る電力変換装置の実施の形態について説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。ただし、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of a power conversion device according to the present invention will be described with reference to the drawings. In the drawings, the same elements will be denoted by the same reference symbols and redundant description will be omitted. However, the present invention is not limited to the following embodiments, and includes various modifications and applications within the technical concept of the present invention.
-第1の実施形態-
(車両電源構成)
 図1は、本発明の一実施形態に係る車両電源の構成を示す図である。図1に示すように、本実施形態に係る車両電源は、車両1000に搭載されており、DC-DCコンバータ100を使用して高圧バッテリV1と低圧バッテリV2の間で相互に電力変換を行う電源系統である。なお、以下の説明では、DC-DCコンバータ100の低圧側、すなわち低圧バッテリV2に接続されている側を「L側」と称し、DC-DCコンバータ100の高圧側、すなわち高圧バッテリV1に接続されている側を「H側」と称する。
-First Embodiment-
(Vehicle power supply configuration)
FIG. 1 is a view showing a configuration of a vehicle power supply according to an embodiment of the present invention. As shown in FIG. 1, the vehicle power supply according to the present embodiment is mounted on a vehicle 1000, and is a power supply that performs mutual power conversion between high voltage battery V1 and low voltage battery V2 using DC-DC converter 100. It is a lineage. In the following description, the low voltage side of DC-DC converter 100, that is, the side connected to low voltage battery V2 is referred to as "L side", and is connected to the high voltage side of DC-DC converter 100, ie, high voltage battery V1. This side is called "H side".
 低圧バッテリV2の一端は、DC-DCコンバータ100のL側の一端に接続され、低圧バッテリV2の他端は、DC-DCコンバータ100のL側の他端に接続されている。エアコンなどの補機機器400の一端は、DC-DCコンバータ100のL側の一端および低圧バッテリV2の一端に接続され、補機機器400の他端は、DC-DCコンバータ100のL側の他端および低圧バッテリV2の他端に接続されている。HV系機器300の一端は、DC-DCコンバータ100のH側の一端および高圧バッテリV1の一端に接続され、HV系機器300の他端は、DC-DCコンバータ100のH側の他端および高圧バッテリV1の他端に接続されている。高圧バッテリV1の一端は、DC-DCコンバータ100のH側の一端に接続され、高圧バッテリV1の他端は、DC-DCコンバータ100のH側の他端に接続されている。 One end of the low voltage battery V2 is connected to one end on the L side of the DC-DC converter 100, and the other end of the low voltage battery V2 is connected to the other end on the L side of the DC-DC converter 100. One end of the auxiliary device 400 such as an air conditioner is connected to one end of the L side of the DC-DC converter 100 and one end of the low voltage battery V2, and the other end of the auxiliary device 400 is the other side of the DC side of the DC-DC converter 100 It is connected to the end and the other end of the low voltage battery V2. One end of the HV device 300 is connected to one end of the DC side of the DC-DC converter 100 and one end of the high voltage battery V1, and the other end of the HV device 300 is the other end of the DC side of the DC to DC converter 100 and high voltage It is connected to the other end of the battery V1. One end of the high voltage battery V1 is connected to one end of the DC-DC converter 100 on the H side, and the other end of the high voltage battery V1 is connected to the other end of the DC-DC converter 100 on the H side.
 DC-DCコンバータ100、HV系機器300および補機機器400は、車両電源制御部200と接続されている。車両電源制御部200は、これらの各機器の動作や、これらの各機器と高圧バッテリV1および低圧バッテリV2との間でやり取りされる電力の送電方向、電力量等を制御する。 The DC-DC converter 100, the HV system device 300 and the auxiliary device 400 are connected to the vehicle power control unit 200. Vehicle power supply control unit 200 controls the operation of each of these devices, the power transmission direction of the power exchanged between each of these devices and high voltage battery V1 and low voltage battery V2, the amount of power, and the like.
(DC-DCコンバータ100の基本構成)
 図2は、本発明の第1の実施形態に係るDC-DCコンバータ100の基本回路構成を示す図である。図2に示すように、本実施形態のDC-DCコンバータ100は、スイッチング回路10、トランス20および出力回路30を有しており、ゲートドライバ90を介して制御回路50と接続されている。
(Basic configuration of DC-DC converter 100)
FIG. 2 is a diagram showing a basic circuit configuration of the DC-DC converter 100 according to the first embodiment of the present invention. As shown in FIG. 2, the DC-DC converter 100 according to the present embodiment includes the switching circuit 10, the transformer 20, and the output circuit 30, and is connected to the control circuit 50 via the gate driver 90.
 スイッチング回路10は、正極入力端子1および負極入力端子2を介して高圧バッテリV1と接続されている。スイッチング回路10は、ブリッジ接続されたスイッチ素子11a~14aを有しており、これらのスイッチ素子11a~14aをスイッチング動作させることで、高圧バッテリV1から入力された直流電力を高周波の交流電力に変換し、トランス20の一次側に出力する。 The switching circuit 10 is connected to the high voltage battery V1 via the positive electrode input terminal 1 and the negative electrode input terminal 2. The switching circuit 10 includes switch elements 11a to 14a connected in a bridge connection, and converts the DC power input from the high voltage battery V1 into high frequency AC power by switching the switch elements 11a to 14a. Output to the primary side of the transformer 20.
 トランス20は、一次側と二次側の間を絶縁すると共に、一次側と二次側の間で交流電力の電圧変換を行い、スイッチング回路10で生成された交流電力から降圧(または昇圧)された交流電力を出力回路30に出力する。 The transformer 20 insulates between the primary side and the secondary side, performs voltage conversion of AC power between the primary side and the secondary side, and reduces (steps up) the AC power generated by the switching circuit 10 The alternating current power is output to the output circuit 30.
 出力回路30は、正極出力端子3および負極出力端子4を介して低圧バッテリV2と接続されている。出力回路30は、ダイオード31、32を有しており、これらのダイオード31、32を用いて、トランス20により電圧変換された交流電力を整流して直流電力に変換し、低圧バッテリV2に出力する。 The output circuit 30 is connected to the low voltage battery V 2 via the positive electrode output terminal 3 and the negative electrode output terminal 4. The output circuit 30 includes diodes 31 and 32, and rectifies AC power voltage-converted by the transformer 20 using the diodes 31 and 32, converts the AC power into DC power, and outputs the DC power to the low voltage battery V2. .
 制御回路50は、例えば図1の車両電源制御部200内に設けられており、スイッチング回路10におけるスイッチ素子11a~14aのスイッチング動作をそれぞれ制御するための出力信号51~54を生成して出力する。 Control circuit 50 is provided, for example, in vehicle power supply control unit 200 of FIG. 1, and generates and outputs output signals 51 to 54 for controlling the switching operations of switch elements 11a to 14a in switching circuit 10, respectively. .
 ゲートドライバ90は、制御回路50から出力された出力信号51~54を、スイッチ素子11a~14aを駆動するための駆動信号91~94にそれぞれ変換し、スイッチング回路10に出力する。ゲートドライバ90は、絶縁トランス90aを搭載しており、スイッチング回路10と制御回路50の間を絶縁する。 The gate driver 90 converts the output signals 51 to 54 output from the control circuit 50 into drive signals 91 to 94 for driving the switch elements 11a to 14a, respectively, and outputs the drive signals 91 to 94 to the switching circuit 10. The gate driver 90 mounts an isolation transformer 90 a and isolates between the switching circuit 10 and the control circuit 50.
 以下では、DC-DCコンバータ100が有するスイッチング回路10、トランス20および出力回路30の各構成および制御回路50の詳細について説明する。 Hereinafter, details of each configuration of the switching circuit 10, the transformer 20, and the output circuit 30, which the DC-DC converter 100 has, and the control circuit 50 will be described.
(スイッチング回路10)
 スイッチング回路10は、高圧バッテリV1から正極入力端子1および負極入力端子2を介して入力される直流電力を、制御回路50の制御に応じて高周波の交流電力に変換し、トランス20の一次巻線N1に供給する役割を有する。正極入力端子1と負極入力端子2の間には、高圧バッテリV1と並列に電圧検出器41および平滑コンデンサC1が接続されている。電圧検出器41は、スイッチング回路10に入力される直流電力の電圧を検出し、その検出値を入力電圧Vinとして制御回路50に出力する。
(Switching circuit 10)
Switching circuit 10 converts DC power input from high voltage battery V1 through positive electrode input terminal 1 and negative electrode input terminal 2 into high frequency AC power according to control of control circuit 50, and provides a primary winding of transformer 20. It has a role of supplying N1. Between the positive electrode input terminal 1 and the negative electrode input terminal 2, a voltage detector 41 and a smoothing capacitor C1 are connected in parallel with the high voltage battery V1. The voltage detector 41 detects the voltage of the DC power input to the switching circuit 10, and outputs the detected value to the control circuit 50 as the input voltage Vin.
 スイッチング回路10は、4つのスイッチ素子11a~14aがフルブリッジ接続された構成を有する。すなわち、正極入力端子1と負極入力端子2の間に、2つのスイッチ素子11aおよびスイッチ素子12aの直列回路(以下、「第1レッグ」と称する)と、2つのスイッチ素子13aおよびスイッチ素子14aの直列回路(以下、「第2レッグ」と称する)とが、それぞれ接続されている。第1レッグにおけるスイッチ素子11aとスイッチ素子12aの間の接続点Aは、トランス20の一次巻線N1の一端側に接続されており、第2レッグにおけるスイッチ素子13aとスイッチ素子14aの間の接続点Bは、トランス20の一次巻線N1の他端側に接続されている。なお、スイッチ素子11a~14aは、スイッチング動作が可能な任意の素子を用いて構成することができ、例えばFET(電界効果トランジスタ)等が好適である。 The switching circuit 10 has a configuration in which four switch elements 11a to 14a are full-bridge connected. That is, a series circuit of two switch elements 11a and 12a (hereinafter referred to as "first leg") between the positive electrode input terminal 1 and the negative electrode input terminal 2, and two switch elements 13a and 14a. Series circuits (hereinafter referred to as "second legs") are connected to one another. The connection point A between the switch element 11a and the switch element 12a in the first leg is connected to one end of the primary winding N1 of the transformer 20, and the connection between the switch element 13a and the switch element 14a in the second leg The point B is connected to the other end of the primary winding N1 of the transformer 20. The switch elements 11a to 14a can be configured using any element capable of switching operation, and for example, an FET (field effect transistor) or the like is preferable.
 スイッチ素子11a~14aには、フライホイール用のダイオード11b~14bおよびコンデンサ11c~14cがそれぞれ並列接続されている。これらのダイオード11b~14bおよびコンデンサ11c~14cは、スイッチ素子11a~14aとは別素子で構成しても良いし、あるいはスイッチ素子11a~14aの寄生成分であっても良い。また、これらを併用しても良い。 Diodes 11b to 14b for flywheel and capacitors 11c to 14c are connected in parallel to the switch elements 11a to 14a, respectively. The diodes 11b to 14b and the capacitors 11c to 14c may be configured separately from the switch elements 11a to 14a, or may be parasitic components of the switch elements 11a to 14a. Moreover, you may use these together.
 本実施形態のDC-DCコンバータ100では、スイッチング回路10の制御方式として、スイッチング損失を低減可能な駆動方式である位相シフト制御方式が用いられる。位相シフト制御方式においては、フルブリッジ型のスイッチング回路10を構成する4つのスイッチ素子11a~14aのうち、第1レッグの上側にあるスイッチ素子11aと第2レッグの下側にあるスイッチ素子14aとのオン/オフの位相差が、DC-DCコンバータ100の出力電圧に応じて制御される。同様に、第1レッグの下側にあるスイッチ素子12aと第2レッグの上側にあるスイッチ素子13aとのオン/オフの位相差も、DC-DCコンバータ100の出力電圧に応じて制御される。これにより、スイッチ素子11aとスイッチ素子14aが同時にオン状態となる期間、並びに、スイッチ素子12aとスイッチ素子13aが同時にオン状態となる期間が、出力電圧に応じて調整される。ここで、スイッチング回路10(トランス20の一次側)から出力回路30(トランス20の二次側)に伝送される電力は、スイッチ素子11aとスイッチ素子14aが同時にオン状態となる期間、並びに、スイッチ素子12aとスイッチ素子13aが同時にオン状態となる期間によって決まる。したがって、上記のように位相差を制御することで、DC-DCコンバータ100の出力電圧を所望の値に安定させることが可能となる。なお、以下の説明では、スイッチ素子11aとスイッチ素子14aが同時にオン状態となる期間と、スイッチ素子12aとスイッチ素子13aが同時にオン状態となる期間とが、同じ長さであるものとする。また、一周期におけるこれらの期間の長さの比率を、デューティ比と呼ぶこともある。 In the DC-DC converter 100 of the present embodiment, as a control method of the switching circuit 10, a phase shift control method which is a driving method capable of reducing the switching loss is used. In the phase shift control method, among the four switch elements 11a to 14a constituting the full bridge type switching circuit 10, the switch element 11a located on the upper side of the first leg and the switch element 14a located on the lower side of the second leg Is controlled according to the output voltage of the DC-DC converter 100. Similarly, the on / off phase difference between the switch element 12a below the first leg and the switch element 13a above the second leg is also controlled according to the output voltage of the DC-DC converter 100. Thus, the period in which the switch element 11a and the switch element 14a are simultaneously turned on and the period in which the switch element 12a and the switch element 13a are simultaneously turned on are adjusted according to the output voltage. Here, the power transmitted from the switching circuit 10 (primary side of the transformer 20) to the output circuit 30 (secondary side of the transformer 20) is a period during which the switch element 11a and the switch element 14a are simultaneously turned on, and It depends on the period when the element 12a and the switch element 13a are simultaneously turned on. Therefore, by controlling the phase difference as described above, the output voltage of DC-DC converter 100 can be stabilized at a desired value. In the following description, it is assumed that the period in which the switch element 11a and the switch element 14a are simultaneously turned on and the period in which the switch element 12a and the switch element 13a are simultaneously turned on have the same length. Also, the ratio of the lengths of these periods in one cycle may be referred to as a duty ratio.
(トランス20) 
 トランス20は、スイッチング回路10により生成された交流電力に対して電圧変換を行い、電圧変換後の交流電力を出力回路30に出力する役割を有する。トランス20は、スイッチング回路10に接続されている一次巻線N1と、出力回路30に接続されている二次巻線N2とを備える。なお、トランス20は、出力回路30と組み合わせて全波整流回路を実現するためにセンタータップ構成を有しており、二次巻線N2が中間で2つの二次巻線N2a、N2bに分割されている。一次巻線N1と二次巻線N2a、N2bとの巻数比(N1/N2aまたはN1/N2b)は、正極入力端子1と負極入力端子2の間に印加される入力電圧Vinの電圧範囲、および正極出力端子3と負極出力端子4の間に供給すべき出力電圧Voutの電圧範囲に応じて設定される。
(Trans 20)
The transformer 20 has a role of performing voltage conversion on the AC power generated by the switching circuit 10 and outputting the AC power after the voltage conversion to the output circuit 30. The transformer 20 includes a primary winding N1 connected to the switching circuit 10 and a secondary winding N2 connected to the output circuit 30. The transformer 20 has a center tap configuration to realize a full wave rectification circuit in combination with the output circuit 30, and the secondary winding N2 is divided into two secondary windings N2a and N2b in the middle ing. The turns ratio (N1 / N2a or N1 / N2b) between primary winding N1 and secondary windings N2a and N2b is the voltage range of input voltage Vin applied between positive electrode input terminal 1 and negative electrode input terminal 2, and It is set according to the voltage range of the output voltage Vout to be supplied between the positive electrode output terminal 3 and the negative electrode output terminal 4.
 トランス20は、一次巻線N1と直列に共振用インダクタンスL1を有する。この共振用インダクタンスL1と、スイッチング回路10においてスイッチ素子11a~14aにそれぞれ並列接続されているコンデンサ11c~14cの容量成分とにより、スイッチング回路10において発生するスイッチング損失を低減する共振回路が形成される。なお、トランス20における共振用インダクタンスL1の値が小さい場合、共振用インダクタンスL1と直列に別素子のインダクタを接続することで、共振回路のインダクタンスの値を大きくしても良い。 The transformer 20 has a resonant inductance L1 in series with the primary winding N1. The resonant inductance L1 and the capacitance components of the capacitors 11c to 14c respectively connected in parallel to the switch elements 11a to 14a in the switching circuit 10 form a resonant circuit that reduces the switching loss generated in the switching circuit 10. . When the value of the resonant inductance L1 in the transformer 20 is small, the value of the inductance of the resonant circuit may be increased by connecting an inductor of another element in series with the resonant inductance L1.
 一次巻線N1の一端は、スイッチング回路10における第1レッグの中点である接続点Aに共振用インダクタンスL1を介して接続されている。また、一次巻線N1の他端は、スイッチング回路10における第2レッグの中点である接続点Bに接続されている。二次巻線N2aと二次巻線N2bとの接続点である中性点Tは、二次巻線N2の両端と共に出力回路30に接続されている。 One end of the primary winding N1 is connected to a connection point A, which is the middle point of the first leg in the switching circuit 10, via a resonant inductance L1. Further, the other end of the primary winding N1 is connected to a connection point B which is a middle point of the second leg in the switching circuit 10. A neutral point T, which is a connection point between the secondary winding N2a and the secondary winding N2b, is connected to the output circuit 30 along with both ends of the secondary winding N2.
(出力回路30)
 出力回路30は、トランス20の一次巻線N1に流れる交流電力に応じて二次巻線N2aおよびN2bに現れる交流電力を平滑および整流することで直流電力に変換し、正極出力端子3および負極出力端子4を介して低圧バッテリV2に出力する役割を有する。正極出力端子3と負極出力端子4の間には、低圧バッテリV2と並列に電圧検出器42が接続されている。電圧検出器42は、出力回路30から出力される直流電力の電圧を検出し、その検出値を出力電圧Voutとして制御回路50に出力する。
(Output circuit 30)
Output circuit 30 smoothes and rectifies AC power appearing in secondary windings N2a and N2b in accordance with AC power flowing through primary winding N1 of transformer 20 to convert it into DC power, and outputs positive electrode output terminal 3 and negative electrode output It has a role of outputting to the low voltage battery V2 through the terminal 4. A voltage detector 42 is connected between the positive electrode output terminal 3 and the negative electrode output terminal 4 in parallel with the low voltage battery V2. The voltage detector 42 detects the voltage of the DC power output from the output circuit 30, and outputs the detected value to the control circuit 50 as the output voltage Vout.
 出力回路30は、整流接続点Sでアノード同士が接続されている2つのダイオード31、32と、平滑コイルL2およびコンデンサC2とを有する。ダイオード31は、トランス20の二次巻線N2aの一端と整流接続点Sの間に接続されており、ダイオード32は、トランス20の二次巻線N2bの一端と整流接続点Sの間に接続されている。平滑コイルL2は、トランス20の二次巻線N2a、N2bの他端である中性点Tと正極出力端子3の間に接続されており、コンデンサC2は、正極出力端子3と負極出力端子4の間に接続されている。 The output circuit 30 includes two diodes 31 and 32 whose anodes are connected to each other at a rectifying connection point S, a smoothing coil L2 and a capacitor C2. The diode 31 is connected between one end of the secondary winding N2a of the transformer 20 and the rectification node S, and the diode 32 is connected between one end of the secondary winding N2b of the transformer 20 and the rectification node S It is done. The smoothing coil L2 is connected between the neutral point T, which is the other end of the secondary windings N2a and N2b of the transformer 20, and the positive electrode output terminal 3, and the capacitor C2 includes the positive electrode output terminal 3 and the negative electrode output terminal 4 Connected between.
 上記のような回路構成の出力回路30において、ダイオード31、32は、トランス20の二次巻線N2a、N2bから出力される交流電力を整流して直流電力に変換する整流回路を構成する。また、平滑コイルL2とコンデンサC2は、中性点Tに発生する整流出力を平滑する平滑回路を構成する。なお、ダイオード31、32をFETなどのスイッチ素子に置き換えることで、公知技術である同期整流動作を行うようにして、さらに導通損失を低減させても良い。 In the output circuit 30 having the above-described circuit configuration, the diodes 31 and 32 constitute a rectifier circuit that rectifies AC power output from the secondary windings N2a and N2b of the transformer 20 and converts the AC power into DC power. The smoothing coil L2 and the capacitor C2 constitute a smoothing circuit that smoothes the rectified output generated at the neutral point T. The conduction loss may be further reduced by replacing the diodes 31 and 32 with switch elements such as FETs to perform synchronous rectification operation according to a known technique.
(制御回路50)
 制御回路50は、DC-DCコンバータ100の出力電圧Voutが予め定められた電圧目標値となるように、スイッチング回路10のスイッチ素子11a~14aの動作を制御する回路である。図2に示すように、制御回路50は、電圧制御部60、スイッチングキャリア周波数設定部70、信号生成部80およびクロック部65を備える。
(Control circuit 50)
The control circuit 50 is a circuit that controls the operation of the switch elements 11a to 14a of the switching circuit 10 so that the output voltage Vout of the DC-DC converter 100 becomes a predetermined voltage target value. As shown in FIG. 2, the control circuit 50 includes a voltage control unit 60, a switching carrier frequency setting unit 70, a signal generation unit 80, and a clock unit 65.
 電圧制御部60は、スイッチング回路10においてスイッチ素子11a~14aをスイッチング動作させる際のデューティ比を算出する。DC-DCコンバータ100では、このデューティ比の値に応じて、出力回路30から出力される直流電力の出力電圧Voutが制御される。 Voltage control unit 60 calculates a duty ratio when switching elements 11 a to 14 a are switched in switching circuit 10. In DC-DC converter 100, output voltage Vout of DC power output from output circuit 30 is controlled according to the value of the duty ratio.
 スイッチングキャリア周波数設定部70は、スイッチング回路10においてスイッチ素子11a~14aをスイッチング動作させる際の駆動周波数に応じたスイッチングキャリア周波数を設定する。DC-DCコンバータ100では、このスイッチングキャリア周波数に応じた駆動周波数でスイッチ素子11a~14aが駆動される。 The switching carrier frequency setting unit 70 sets a switching carrier frequency according to a drive frequency when the switching elements 11a to 14a perform switching operation in the switching circuit 10. In DC-DC converter 100, switch elements 11a-14a are driven at a drive frequency corresponding to the switching carrier frequency.
 信号生成部80は、電圧制御部60が算出したデューティ比と、スイッチングキャリア周波数設定部70が設定したスイッチングキャリア周波数とに基づいて、出力信号51~54を生成する。信号生成部80が生成した出力信号51~54は、制御回路50からゲートドライバ90に出力され、ゲートドライバ90において駆動信号91~94にそれぞれ変換される。駆動信号91~94は、スイッチング回路10においてスイッチ素子11a~14aがそれぞれ有する各ゲート端子に入力され、出力信号51~54を生成した際のデューティ比およびスイッチングキャリア周波数に応じた動作タイミングで、スイッチ素子11a~14aをそれぞれ駆動させる。これにより、スイッチング回路10の動作が制御回路50によって制御される。 The signal generation unit 80 generates the output signals 51 to 54 based on the duty ratio calculated by the voltage control unit 60 and the switching carrier frequency set by the switching carrier frequency setting unit 70. The output signals 51 to 54 generated by the signal generation unit 80 are output from the control circuit 50 to the gate driver 90, and are converted into drive signals 91 to 94 in the gate driver 90. The drive signals 91 to 94 are input to the gate terminals of the switch elements 11a to 14a in the switching circuit 10, and the operation timings according to the duty ratio and the switching carrier frequency when the output signals 51 to 54 are generated The elements 11a to 14a are driven respectively. Thereby, the operation of the switching circuit 10 is controlled by the control circuit 50.
 クロック部65は、一定クロックごとにカウントアップされる2つのカウンタを内部に有しており、これらのカウンタのカウント値に基づいて、電圧制御部60およびスイッチングキャリア周波数設定部70の実行タイミングを制御する。 The clock unit 65 internally has two counters that are counted up for each fixed clock, and controls the execution timing of the voltage control unit 60 and the switching carrier frequency setting unit 70 based on the count values of these counters. Do.
 図3は、本発明の第1の実施形態に係る制御回路50の構成を示す図である。以下では図3を参照して、本実施形態における制御回路50の電圧制御部60、スイッチングキャリア周波数設定部70、信号生成部80およびクロック部65の詳細を説明する。 FIG. 3 is a diagram showing the configuration of the control circuit 50 according to the first embodiment of the present invention. The details of the voltage control unit 60, the switching carrier frequency setting unit 70, the signal generation unit 80, and the clock unit 65 of the control circuit 50 in the present embodiment will be described below with reference to FIG.
(電圧制御部60)
 電圧制御部60は、減算部61、PI制御部62およびデューティ制限部63を有する。減算部61は、予め設定された出力電圧の目標値である電圧指令値Vrefと、電圧検出器42で検出された出力電圧Voutとの差分を演算し、PI制御部62に出力する。PI制御部62は、減算部61で求められた差分に対してPI演算を実施することで、その差分が0に近づくようにPI制御(比例積分制御)を行い、スイッチング回路10のスイッチ素子11a~14aに対するデューティ比の値であるデューティ値Dを求める。
(Voltage control unit 60)
The voltage control unit 60 includes a subtracting unit 61, a PI control unit 62, and a duty limiting unit 63. Subtraction unit 61 calculates a difference between voltage command value Vref, which is a target value of the output voltage set in advance, and output voltage Vout detected by voltage detector 42, and outputs the difference to PI control unit 62. The PI control unit 62 performs PI operation on the difference obtained by the subtraction unit 61 to perform PI control (proportional integration control) so that the difference approaches 0, and the switch element 11 a of the switching circuit 10 A duty value D, which is the value of the duty ratio for.
 デューティ制限部63は、PI制御部62で求められたデューティ値Dに対して所定の下限値および上限値を設定し、当該下限値から上限値までの範囲内に制限されたデューティ指示値D*を求める。デューティ制限部63で求められたデューティ指示値D*は、電圧制御部60からスイッチングキャリア周波数設定部70、信号生成部80およびクロック部65にそれぞれ出力される。 Duty limiting unit 63 sets a predetermined lower limit value and an upper limit value for duty value D determined by PI control unit 62, and duty instruction value D * limited within a range from the lower limit value to the upper limit value. Ask for The duty instruction value D * obtained by the duty limiting unit 63 is output from the voltage control unit 60 to the switching carrier frequency setting unit 70, the signal generation unit 80, and the clock unit 65.
 なお、電圧制御部60から出力されるデューティ指示値D*は、デューティ制限部63において設定される上限値と下限値をそれぞれ最大デューティ値Dmax、最小デューティ値Dminとすると、以下の式(1)の関係を満たす。
 Dmin ≦ D* ≦ Dmax   (1)
Assuming that the upper limit value and the lower limit value set by duty limiting unit 63 are set as maximum duty value Dmax and minimum duty value Dmin, duty instruction value D * output from voltage control unit 60 is expressed by the following equation (1) Meet the relationship.
Dmin D D * D Dmax (1)
(スイッチングキャリア周波数設定部70)
 スイッチングキャリア周波数設定部70は、乗算部71、比例部72、減算部73、磁束密度指令値設定部74、PI制御部75および周波数制限部76を有する。乗算部71は、電圧制御部60のデューティ制限部63から出力されたデューティ指示値D*と、電圧検出器41で検出された入力電圧Vinとの乗算値を演算し、比例部72に出力する。比例部72は、乗算部71で求められた乗算値に対して所定の比例定数を乗算することで、乗算値をトランス20の磁束密度値Bへと変換する。減算部73は、磁束密度指令値設定部74においてトランス20の飽和磁束密度に基づいて予め設定された磁束密度の目標値である磁束密度指令値Brefと、比例部72で求められた磁束密度値Bとの差分を演算し、PI制御部75に出力する。PI制御部75は、減算部73で求められた差分に対してPI演算を実施することで、その差分が0に近づくようにPI制御(比例積分制御)を行い、スイッチング回路10の駆動周波数に応じたスイッチングキャリア周波数fを求める。
(Switching carrier frequency setting unit 70)
The switching carrier frequency setting unit 70 includes a multiplying unit 71, a proportional unit 72, a subtracting unit 73, a magnetic flux density command value setting unit 74, a PI control unit 75, and a frequency limiting unit 76. Multiplication unit 71 calculates a multiplication value of duty instruction value D * output from duty limit unit 63 of voltage control unit 60 and input voltage Vin detected by voltage detector 41, and outputs the product to proportional unit 72. . The proportional unit 72 converts the multiplication value into the magnetic flux density value B of the transformer 20 by multiplying the multiplication value obtained by the multiplication unit 71 by a predetermined proportional constant. Subtraction unit 73 sets a magnetic flux density command value Bref which is a target value of the magnetic flux density preset by magnetic flux density command value setting unit 74 based on the saturation magnetic flux density of transformer 20, and a magnetic flux density value obtained by proportional unit 72. The difference with B is calculated and output to PI control unit 75. The PI control unit 75 performs PI control on the difference obtained by the subtraction unit 73 to perform PI control (proportional integration control) such that the difference approaches 0, and the driving frequency of the switching circuit 10 is set to The switching carrier frequency f according to is determined.
 周波数制限部76は、PI制御部75で求められたスイッチングキャリア周波数fに対して所定の下限値および上限値を設定し、当該下限値から上限値までの範囲内に制限されたスイッチングキャリア周波数設定値f*を求める。周波数制限部76で求められたスイッチングキャリア周波数設定値f*は、スイッチングキャリア周波数設定部70から信号生成部80およびクロック部65にそれぞれ出力される。 The frequency limiting unit 76 sets a predetermined lower limit value and an upper limit value for the switching carrier frequency f determined by the PI control unit 75, and the switching carrier frequency setting is limited within the range from the lower limit value to the upper limit value. Find the value f *. Switching carrier frequency setting value f * obtained by frequency limiting unit 76 is output from switching carrier frequency setting unit 70 to signal generation unit 80 and clock unit 65, respectively.
 なお、スイッチングキャリア周波数設定部70から出力されるスイッチングキャリア周波数設定値f*は、周波数制限部76において設定される上限値と下限値をそれぞれ最大スイッチングキャリア周波数fmax、最小スイッチングキャリア周波数fminとすると、以下の式(2)の関係を満たす。
 fmin ≦ f* ≦ fmax   (2)
Assuming that the switching carrier frequency setting value f * output from the switching carrier frequency setting unit 70 has the upper limit value and the lower limit value set in the frequency limiting unit 76 as the maximum switching carrier frequency fmax and the minimum switching carrier frequency fmin, respectively. The relationship of the following equation (2) is satisfied.
fmin ≦ f * ≦ fmax (2)
 スイッチングキャリア周波数設定部70は、上記のようにして求められたスイッチングキャリア周波数設定値f*を信号生成部80に出力する。これにより、トランス20の磁束密度値Bが磁束密度指令値Brefよりも小さい場合はスイッチング回路10の駆動周波数を低くし、反対にトランス20の磁束密度値Bが磁束密度指令値Brefよりも大きい場合はスイッチング回路10の駆動周波数を高くするように、信号生成部80が出力信号51~54を生成する際のスイッチングキャリア周波数を設定することができる。 The switching carrier frequency setting unit 70 outputs the switching carrier frequency setting value f * obtained as described above to the signal generation unit 80. Thereby, when the magnetic flux density value B of the transformer 20 is smaller than the magnetic flux density command value Bref, the drive frequency of the switching circuit 10 is lowered, and conversely, when the magnetic flux density value B of the transformer 20 is larger than the magnetic flux density command value Bref Can set the switching carrier frequency when the signal generation unit 80 generates the output signals 51 to 54 so as to increase the drive frequency of the switching circuit 10.
(クロック部65)
 クロック部65は、内部にAカウンタおよびBカウンタを有する。Aカウンタは、電圧制御部60の実行タイミングを制御するために用いられるカウンタであり、一定クロックごとにカウントアップされる。Bカウンタは、スイッチングキャリア周波数設定部70の実行タイミングを制御するために用いられるカウンタであり、Aカウンタと同様に一定クロックごとにカウントアップされる。
(Clock section 65)
The clock unit 65 internally has an A counter and a B counter. The A counter is a counter used to control the execution timing of the voltage control unit 60, and is counted up every fixed clock. The B counter is a counter used to control the execution timing of the switching carrier frequency setting unit 70, and, like the A counter, counts up every fixed clock.
 電圧制御部60からクロック部65に入力されたデューティ指示値D*は、クロック部65において前回デューティ指示値Da*として記憶される。Aカウンタの値が所定の閾値未満であれば、クロック部65は記憶している前回デューティ指示値Da*を信号生成部80に出力する。Aカウンタの値が所定の閾値以上になると、クロック部65は電圧制御部60に対して実行指令を出力し、電圧制御部60にデューティ指示値D*の演算を実行させる。これにより、新たなデューティ指示値D*が電圧制御部60により演算されて信号生成部80に入力されると共に、クロック部65に記憶されている前回デューティ指示値Da*が更新される。 Duty instruction value D * input from voltage control unit 60 to clock unit 65 is stored in clock unit 65 as the previous duty instruction value Da *. If the value of the A counter is less than the predetermined threshold value, the clock unit 65 outputs the stored previous duty instruction value Da * to the signal generation unit 80. When the value of the A counter exceeds the predetermined threshold value, the clock unit 65 outputs an execution command to the voltage control unit 60, and causes the voltage control unit 60 to calculate the duty instruction value D *. Thus, the new duty instruction value D * is calculated by the voltage control unit 60 and input to the signal generation unit 80, and the previous duty instruction value Da * stored in the clock unit 65 is updated.
 また、スイッチングキャリア周波数設定部70からクロック部65に入力されたスイッチングキャリア周波数設定値f*は、クロック部65において前回スイッチングキャリア周波数設定値fa*として記憶される。Bカウンタの値が所定の閾値未満であれば、クロック部65は記憶している前回スイッチングキャリア周波数設定値fa*を信号生成部80に出力する。Bカウンタの値が所定の閾値以上になると、クロック部65はスイッチングキャリア周波数設定部70に対して実行指令を出力し、スイッチングキャリア周波数設定部70にスイッチングキャリア周波数設定値f*の演算を実行させる。これにより、新たなスイッチングキャリア周波数設定値f*がスイッチングキャリア周波数設定部70により演算されて信号生成部80に入力されると共に、クロック部65に記憶されている前回スイッチングキャリア周波数設定値fa*が更新される。 The switching carrier frequency setting value f * input from the switching carrier frequency setting unit 70 to the clock unit 65 is stored as the previous switching carrier frequency setting value fa * in the clock unit 65. If the value of the B counter is less than the predetermined threshold value, the clock unit 65 outputs the stored previous switching carrier frequency set value fa * to the signal generation unit 80. When the value of the B counter exceeds the predetermined threshold value, the clock unit 65 outputs an execution command to the switching carrier frequency setting unit 70, and causes the switching carrier frequency setting unit 70 to calculate the switching carrier frequency setting value f *. . Thereby, the new switching carrier frequency setting value f * is calculated by the switching carrier frequency setting unit 70 and input to the signal generating unit 80, and the previous switching carrier frequency setting value fa * stored in the clock unit 65 is It will be updated.
 クロック部65は、上記のようにして、Aカウンタの値に応じて前回デューティ指示値Da*または電圧制御部60への実行指令を出力すると共に、Bカウンタの値に応じて前回スイッチングキャリア周波数設定値fa*またはスイッチングキャリア周波数設定部70への実行指令を出力する。これにより、電圧制御部60およびスイッチングキャリア周波数設定部70の実行タイミングを制御することができる。なお、Aカウンタの閾値とBカウンタの閾値には同じ値を設定してもよいし、異なる値を設定してもよい。 As described above, clock unit 65 outputs the previous duty instruction value Da * or the execution command to voltage control unit 60 according to the value of A counter, and the previous setting of the switching carrier frequency according to the value of B counter. The value fa * or an execution command to the switching carrier frequency setting unit 70 is output. Thereby, the execution timing of the voltage control unit 60 and the switching carrier frequency setting unit 70 can be controlled. The same value may be set as the threshold value of the A counter and the threshold value of the B counter, or different values may be set.
(信号生成部80)
 信号生成部80は、演算判定部81、デッドタイム設定部82、閾値設定部83、演算判定部84、キャリア信号生成部85および比較器86を有する。演算判定部81は、電圧制御部60においてデューティ指示値D*の演算が行われた場合は、入力されたデューティ指示値D*を閾値設定部83に出力し、電圧制御部60においてデューティ指示値D*の演算が行われずにクロック部65から前回デューティ指示値Da*が入力された場合は、入力された前回デューティ指示値Da*を閾値設定部83に出力する。
(Signal generation unit 80)
The signal generation unit 80 includes an operation determination unit 81, a dead time setting unit 82, a threshold setting unit 83, an operation determination unit 84, a carrier signal generation unit 85, and a comparator 86. When voltage control unit 60 calculates duty instruction value D *, operation determination unit 81 outputs input duty instruction value D * to threshold setting unit 83, and voltage control unit 60 outputs the duty instruction value. When the duty instruction value Da * is input last time from the clock unit 65 without the calculation of D * being performed, the inputted previous duty instruction value Da * is output to the threshold value setting unit 83.
 デッドタイム設定部82は、スイッチ素子11a~14aをスイッチング動作させる際のデッドタイム設定値Ddを閾値設定部83に出力する。閾値設定部83は、演算判定部81から入力されたデューティ指示値D*または前回デューティ指示値Da*と、デッドタイム設定部82から入力されたデッドタイム設定値Ddとに基づいて、スイッチ素子11a~14aのオン/オフのタイミングをそれぞれ決定するためのオンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bを設定し、比較器86に出力する。例えば、第1レッグに対するデッドタイム設定値DdをDd_12、第2レッグに対するデッドタイム設定値DdをDd_34とすると、オンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bは、それぞれ下記のように設定される。なお、下記において「Cmax」は、キャリア信号生成部85が生成するキャリア信号の最大値を表している。 The dead time setting unit 82 outputs, to the threshold setting unit 83, a dead time set value Dd when the switch elements 11a to 14a are subjected to switching operation. Based on duty instruction value D * or duty instruction value Da * input from operation determination unit 81 and dead time set value Dd input from dead time setting unit 82, threshold setting unit 83 selects switch element 11a. The on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b for respectively determining the on / off timing of the timings 14a to 14a are set and output to the comparator 86. For example, assuming that the dead time set value Dd for the first leg is Dd_12 and the dead time set value Dd for the second leg is Dd_34, the on timing threshold 51a to 54a and the off timing threshold 51b to 54b are set as follows. Ru. In the following, “Cmax” represents the maximum value of the carrier signal generated by the carrier signal generator 85.
 オンタイミング閾値            オフタイミング閾値
  51a:Cmax               51b:0.5Cmax - Dd_12
  52a:0.5Cmax              52b:Cmax - Dd_12
  53a:D* + Dd_34            53b:D* + 0.5Cmax
  54a:D* + 0.5Cmax + Dd_34       54b:D*
ON timing threshold OFF timing threshold 51a: Cmax 51b: 0.5Cmax-Dd_12
52a: 0.5Cmax 52b: Cmax-Dd_12
53a: D * + Dd_34 53b: D * + 0.5 Cmax
54a: D * + 0.5Cmax + Dd_34 54b: D *
 なお、上記では閾値設定部83にデューティ指示値D*が入力された場合の例を示しているが、前回デューティ指示値Da*が入力された場合は、D*をDa*に置き換えることで、同様にしてオンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bを設定することが可能である。 In the above, an example in which the duty instruction value D * is input to the threshold setting unit 83 is shown. However, when the duty instruction value Da * is input last time, the D * is replaced with Da *. Similarly, on timing thresholds 51a to 54a and off timing thresholds 51b to 54b can be set.
 演算判定部84は、スイッチングキャリア周波数設定部70においてスイッチングキャリア周波数設定値f*の演算が行われた場合は、入力されたスイッチングキャリア周波数設定値f*をキャリア信号生成部85に出力し、スイッチングキャリア周波数設定部70においてスイッチングキャリア周波数設定値f*の演算が行われずにクロック部65から前回スイッチングキャリア周波数設定値fa*が入力された場合は、入力された前回スイッチングキャリア周波数設定値fa*をキャリア信号生成部85に出力する。キャリア信号生成部85は、演算判定部84から入力されたスイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*に基づいて、これらの設定値に応じた周波数のキャリア信号55を生成し、比較器86に出力する。なお、キャリア信号生成部85が生成するキャリア信号55は、0から所定の最大値Cmaxまで連続的に変化する三角波等の周期信号であり、スイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*に応じた周期で繰り返し変化する。 When the switching carrier frequency setting unit 70 calculates the switching carrier frequency setting value f *, the calculation determining unit 84 outputs the inputted switching carrier frequency setting value f * to the carrier signal generation unit 85, and switching is performed. When the switching carrier frequency setting value fa * is previously input from the clock unit 65 without calculation of the switching carrier frequency setting value f * in the carrier frequency setting unit 70, the previous switching carrier frequency setting value fa * input is The signal is output to the carrier signal generator 85. Carrier signal generation unit 85 generates carrier signal 55 having a frequency according to these setting values based on switching carrier frequency setting value f * or previous switching carrier frequency setting value fa * input from operation determining unit 84. , Output to the comparator 86. The carrier signal 55 generated by the carrier signal generation unit 85 is a periodic signal such as a triangular wave which continuously changes from 0 to a predetermined maximum value Cmax, and the switching carrier frequency setting value f * or the previous switching carrier frequency setting value It changes repeatedly in a cycle according to fa *.
 比較器86は、キャリア信号生成部85から入力されたキャリア信号55を、閾値設定部83から入力されたオンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bとそれぞれ比較することで、デューティ指示値D*または前回デューティ指示値Da*に応じたパルス変調を行い、出力信号51~54を生成する。比較器86で生成された出力信号51~54をゲートドライバ90に出力することで、制御回路50はスイッチング回路10のスイッチ素子11a~14aのオン/オフを制御する。 The comparator 86 compares the carrier signal 55 input from the carrier signal generation unit 85 with the on-timing thresholds 51a to 54a and the off-timing thresholds 51b to 54b input from the threshold setting unit 83 to obtain a duty instruction value. Pulse modulation is performed according to D * or the previous duty instruction value Da *, and output signals 51 to 54 are generated. The control circuit 50 controls the on / off of the switch elements 11 a to 14 a of the switching circuit 10 by outputting the output signals 51 to 54 generated by the comparator 86 to the gate driver 90.
 図4は、比較器86の動作を説明する図である。図4(a)は、キャリア信号55の周波数が高い場合(周期が短い場合)の例であり、キャリア信号55の波形を符号55aで示している。図4(b)は、キャリア信号55の周波数が低い場合(周期が長い場合)の例であり、キャリア信号55の波形を符号55bで示している。なお、図4(a)、図4(b)に示すように、キャリア信号55の傾きは、演算判定部84から出力されるスイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*に応じて変化する。 FIG. 4 is a diagram for explaining the operation of the comparator 86. FIG. 4A is an example of the case where the frequency of the carrier signal 55 is high (when the cycle is short), and the waveform of the carrier signal 55 is indicated by a symbol 55a. FIG. 4B is an example of the case where the frequency of the carrier signal 55 is low (when the cycle is long), and the waveform of the carrier signal 55 is indicated by reference numeral 55b. As shown in FIGS. 4A and 4B, the inclination of the carrier signal 55 corresponds to the switching carrier frequency set value f * output from the calculation determination unit 84 or the previous switching carrier frequency set value fa *. Change accordingly.
 比較器86は、キャリア信号55とオンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bとを比較する。その結果、図4(a)、図4(b)に示すように、キャリア信号55の値がオンタイミング閾値51a~54aを超えたときに、出力信号51~54をそれぞれオフ(Lレベル)からオン(Hレベル)に切り替える。また、キャリア信号55の値がオフタイミング閾値51b~54bを超えたときに、出力信号51~54をそれぞれオン(Hレベル)からオフ(Lレベル)に切り替える。具体的には、例えばオンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bがそれぞれ前述のような値で設定されているときに、出力信号51~54のオン/オフを以下のように順次切り替える。 The comparator 86 compares the carrier signal 55 with the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b. As a result, as shown in FIGS. 4A and 4B, when the value of the carrier signal 55 exceeds the on timing thresholds 51a to 54a, the output signals 51 to 54 are respectively turned off (L level) Switch to on (H level). Also, when the value of the carrier signal 55 exceeds the off timing thresholds 51b to 54b, the output signals 51 to 54 are switched from on (H level) to off (L level). Specifically, for example, when the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b are set to the values as described above, the on / off of the output signals 51 to 54 are sequentially switched as follows. .
(1)キャリア信号55の値がオフタイミング閾値信号54bに達したタイミングで、出力信号54をオフにする。
(2)キャリア信号55の値がオンタイミング閾値信号53aに達したタイミングで、出力信号53をオンにする。
(3)キャリア信号55の値がオンタイミング閾値信号51bに達したタイミングで、出力信号51をオフにする。
(4)キャリア信号55の値がオンタイミング閾値信号52aに達したタイミングで、出力信号52をオンにする。
(5)キャリア信号55の値がオフタイミング閾値信号53bに達したタイミングで、出力信号53をオフにする。
(6)キャリア信号55の値がオンタイミング閾値信号54aに達したタイミングで、出力信号54をオンにする。
(7)キャリア信号55の値がオンタイミング閾値信号52bに達したタイミングで、出力信号52をオフにする。
(8)キャリア信号55の値がオンタイミング閾値信号51aに達したタイミングで、出力信号51をオンにする。
(1) The output signal 54 is turned off at the timing when the value of the carrier signal 55 reaches the off timing threshold signal 54 b.
(2) The output signal 53 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 53a.
(3) The output signal 51 is turned off at the timing when the value of the carrier signal 55 reaches the on timing threshold signal 51 b.
(4) The output signal 52 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 52a.
(5) The output signal 53 is turned off at the timing when the value of the carrier signal 55 reaches the off timing threshold signal 53b.
(6) The output signal 54 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 54a.
(7) The output signal 52 is turned off at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 52b.
(8) The output signal 51 is turned on at the timing when the value of the carrier signal 55 reaches the on-timing threshold signal 51a.
 信号生成部80では、上記のようにして、スイッチ素子11a~14aのオン/オフのタイミングをそれぞれ設定するための出力信号51~54が生成される。 As described above, the signal generation unit 80 generates the output signals 51 to 54 for setting the on / off timings of the switch elements 11a to 14a, respectively.
(制御フロー)
 図5は、制御回路50の制御フロー図である。以下では図5の制御フロー図を用いて、以上で説明した制御回路50の動作を説明する。
(Control flow)
FIG. 5 is a control flow diagram of the control circuit 50. Hereinafter, the operation of the control circuit 50 described above will be described using the control flow diagram of FIG.
 ステップS10において、制御回路50は、クロック部65のAカウンタの値が所定の閾値Ta以上であるか否かを判定する。Aカウンタの値が閾値Ta以上であれば処理をステップS20に進め、閾値Ta未満であれば処理をステップS40に進める。 In step S10, the control circuit 50 determines whether the value of the A counter of the clock unit 65 is equal to or greater than a predetermined threshold value Ta. If the value of the A counter is greater than or equal to the threshold value Ta, the process proceeds to step S20, and if less than the threshold value Ta, the process proceeds to step S40.
 ステップS20において、制御回路50は、電圧制御部60により、電圧検出器42で検出された出力電圧Voutと電圧指令値Vrefとの差分を減算部61で求め、その差分によるPI制御をPI制御部62で実施する。その後、ステップS30において、ステップS20のPI制御により求められたデューティ値Dに対して下限値および上限値の設定をデューティ制限部63で行い、デューティ指示値D*を決定する。ステップS30を実施したら、制御回路50は、決定したデューティ指示値D*をスイッチングキャリア周波数設定部70、信号生成部80およびクロック部65にそれぞれ出力し、処理をステップS50に進める。 In step S20, the control circuit 50 causes the voltage control unit 60 to obtain the difference between the output voltage Vout detected by the voltage detector 42 and the voltage command value Vref by the subtraction unit 61, and performs PI control based on the difference. Implement at 62. Thereafter, in step S30, the duty limiting unit 63 sets the lower limit value and the upper limit value for the duty value D obtained by the PI control in step S20, and determines the duty indication value D *. After step S30, the control circuit 50 outputs the determined duty instruction value D * to the switching carrier frequency setting unit 70, the signal generation unit 80, and the clock unit 65, and the process proceeds to step S50.
 ステップS40において、制御回路50は、クロック部65に記憶されている前回デューティ指示値Da*を信号生成部80に出力し、処理をステップS50に進める。なお、制御回路50の起動直後における初期状態など、クロック部65に前回デューティ指示値Da*が記憶されていない場合は、予め定められた初期値(例えば0)を前回デューティ指示値Da*として出力すればよい。 In step S40, control circuit 50 outputs the previous duty instruction value Da * stored in clock unit 65 to signal generation unit 80, and the process proceeds to step S50. When the previous duty instruction value Da * is not stored in the clock unit 65, such as in the initial state immediately after activation of the control circuit 50, a predetermined initial value (for example, 0) is output as the previous duty instruction value Da *. do it.
 ステップS50において、制御回路50は、クロック部65のBカウンタの値が所定の閾値Tb以上であるか否かを判定する。Bカウンタの値が閾値Tb以上であれば処理をステップS60に進め、閾値Tb未満であれば処理をステップS100に進める。 In step S50, the control circuit 50 determines whether the value of the B counter of the clock unit 65 is equal to or greater than a predetermined threshold value Tb. If the value of the B counter is greater than or equal to the threshold Tb, the process proceeds to step S60, and if less than the threshold Tb, the process proceeds to step S100.
 ステップS60において、制御回路50は、スイッチングキャリア周波数設定部70により、電圧制御部60から入力されたデューティ指示値D*と電圧検出器41で検出された入力電圧Vinとを乗算部71で乗算し、その乗算値を比例部72でトランス20の磁束密度値Bに変換する。その後、ステップS70~S90において、ステップS60で算出した磁束密度値Bと磁束密度指令値Brefとの差分が0に近づくようにPI制御を行う。具体的には、磁束密度値Bと磁束密度指令値Brefとの差分を減算部73で求め、その差分によるPI制御をPI制御部75で実施することにより、スイッチングキャリア周波数fを求める。そして、求められたスイッチングキャリア周波数fに対して下限値および上限値の設定を周波数制限部76で行い、スイッチングキャリア周波数設定値f*を決定する。これにより、B<Brefの場合(S70:Yes)はスイッチングキャリア周波数設定値f*を減少させ(S80)、B≧Brefの場合(S70:No)はスイッチングキャリア周波数設定値f*を増加させる(S90)ようにする。ステップS80またはS90を実施したら、制御回路50は、決定したスイッチングキャリア周波数設定値f*を信号生成部80およびクロック部65にそれぞれ出力し、処理をステップS110に進める。 In step S60, the control circuit 50 causes the switching carrier frequency setting unit 70 to multiply the duty instruction value D * input from the voltage control unit 60 and the input voltage Vin detected by the voltage detector 41 by the multiplication unit 71. The proportional value is converted to the magnetic flux density value B of the transformer 20 by the proportional unit 72. Thereafter, in steps S70 to S90, PI control is performed so that the difference between the magnetic flux density value B calculated in step S60 and the magnetic flux density command value Bref approaches zero. Specifically, the difference between the magnetic flux density value B and the magnetic flux density command value Bref is determined by the subtraction unit 73, and PI control based on the difference is performed by the PI control unit 75 to determine the switching carrier frequency f. Then, setting of the lower limit value and the upper limit value is performed on the obtained switching carrier frequency f by the frequency limiting unit 76, and the switching carrier frequency setting value f * is determined. Thus, when B <Bref (S70: Yes), the switching carrier frequency setting value f * is decreased (S80), and when B ≧ Bref (S70: No), the switching carrier frequency setting value f * is increased (S70) S90). After step S80 or S90, the control circuit 50 outputs the determined switching carrier frequency set value f * to the signal generation unit 80 and the clock unit 65, and the process proceeds to step S110.
 ステップS100において、制御回路50は、クロック部65に記憶されている前回スイッチングキャリア周波数設定値fa*を信号生成部80に出力し、処理をステップS110に進める。なお、制御回路50の起動直後における初期状態など、クロック部65に前回スイッチングキャリア周波数設定値fa*が記憶されていない場合は、予め定められた初期値(例えば最大スイッチングキャリア周波数fmax)を前回スイッチングキャリア周波数設定値fa*として出力すればよい。 In step S100, control circuit 50 outputs the previous switching carrier frequency set value fa * stored in clock unit 65 to signal generation unit 80, and the process proceeds to step S110. When the switching carrier frequency set value fa * is not stored in the clock unit 65 last time, such as in the initial state immediately after activation of the control circuit 50, the predetermined initial value (for example, maximum switching carrier frequency fmax) is switched to the previous time. It may be output as the carrier frequency set value fa *.
 ステップS110において、制御回路50は、信号生成部80により、ステップS30またはS40で得られたデューティ指示値D*または前回デューティ指示値Da*と、ステップS80、S90またはS100で得られたスイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*とに基づき、出力信号51~54を生成する。具体的には、信号生成部80は、デューティ指示値D*または前回デューティ指示値Da*を演算判定部81から閾値設定部83に出力し、閾値設定部83でデッドタイム設定値Ddに応じたオンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bを設定する。また、スイッチングキャリア周波数設定値f*または前回スイッチングキャリア周波数設定値fa*を演算判定部84からキャリア信号生成部85に出力し、キャリア信号生成部85でキャリア信号55を生成する。そして、比較器86でキャリア信号55をオンタイミング閾値51a~54aおよびオフタイミング閾値51b~54bと比較して、出力信号51~54を生成する。ステップS110を実施したら、制御回路50は、生成した出力信号51~54をゲートドライバ90に出力し、処理をステップS120に進める。 In step S110, the control circuit 50 causes the signal generation unit 80 to set the duty instruction value D * obtained in step S30 or S40 or the previous duty instruction value Da * and the switching carrier frequency obtained in step S80, S90 or S100. Output signals 51 to 54 are generated based on the set value f * or the previous switching carrier frequency set value fa *. Specifically, the signal generation unit 80 outputs the duty instruction value D * or the previous duty instruction value Da * from the operation determination unit 81 to the threshold setting unit 83, and the threshold setting unit 83 responds to the dead time setting value Dd. The on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b are set. Further, the switching carrier frequency set value f * or the previous switching carrier frequency set value fa * is output from the calculation determination unit 84 to the carrier signal generation unit 85, and the carrier signal generation unit 85 generates the carrier signal 55. Then, the comparator 86 compares the carrier signal 55 with the on timing thresholds 51a to 54a and the off timing thresholds 51b to 54b to generate output signals 51 to 54. After step S110, the control circuit 50 outputs the generated output signals 51 to 54 to the gate driver 90, and the process proceeds to step S120.
 ステップS120において、制御回路50は、DC-DCコンバータ100を停止するか否かを判定する。例えば、外部からDC-DCコンバータ100の制御停止命令が入力されるなどの所定の停止条件を満たす場合、制御回路50はDC-DCコンバータ100を停止すると判定し、図5の制御フローを終了して動作を停止する。一方、こうした停止条件を満たさない場合、制御回路50はDC-DCコンバータ100を停止しないと判定し、ステップS10に戻って上記処理を繰り返す。 At step S120, control circuit 50 determines whether or not to stop DC-DC converter 100. For example, when a predetermined stop condition such as an external control stop command for the DC-DC converter 100 is input from outside, the control circuit 50 determines that the DC-DC converter 100 is to be stopped, and the control flow of FIG. Stop the operation. On the other hand, when the stop condition is not satisfied, the control circuit 50 determines that the DC-DC converter 100 is not to be stopped, returns to step S10, and repeats the above process.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following effects can be obtained.
(1)電力変換装置であるDC-DCコンバータ100は、入力された第1の直流電力を交流電力に変換するスイッチング回路10と、交流電力の電圧変換を行うトランス20と、トランス20により電圧変換された交流電力を第2の直流電力に変換する出力回路30とを有する。このDC-DCコンバータ100の制御を行う制御回路50は、トランス20の磁束密度値Bを算出し、算出した磁束密度値Bに基づいてスイッチング回路10の駆動周波数を制御する。このようにしたので、DC-DCコンバータ100のスイッチング損失を十分に低減することができる。 (1) The DC-DC converter 100, which is a power conversion device, performs voltage conversion using the switching circuit 10 for converting the input first DC power into AC power, the transformer 20 for performing voltage conversion of AC power, and the transformer 20 And an output circuit 30 for converting the AC power into a second DC power. The control circuit 50 that controls the DC-DC converter 100 calculates the magnetic flux density value B of the transformer 20, and controls the drive frequency of the switching circuit 10 based on the calculated magnetic flux density value B. As a result, the switching loss of the DC-DC converter 100 can be sufficiently reduced.
(2)制御回路50は、出力回路30の出力電圧Voutを制御するためのデューティ指示値D*を算出する電圧制御部60と、デューティ指示値D*およびスイッチング回路10の入力電圧Vinに基づいて磁束密度値Bを算出し、算出した磁束密度値Bに基づいてスイッチング回路10の駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部70と、デューティ指示値D*およびスイッチングキャリア周波数に基づいてスイッチング回路10を駆動させるための出力信号51~54を生成し、生成した出力信号51~54をゲートドライバ90を介してスイッチング回路10に出力する信号生成部80と、を備える。このようにしたので、トランス20の電流を検出することなく、トランス20の磁気飽和を確実に防ぎつつDC-DCコンバータ100を適切な駆動周波数で動作させ、スイッチング損失の低減を図ることができる。 (2) The control circuit 50 calculates the duty command value D * for controlling the output voltage Vout of the output circuit 30, and based on the duty command value D * and the input voltage Vin of the switching circuit 10. Switching carrier frequency setting unit 70 which calculates magnetic flux density value B and sets the switching carrier frequency according to the driving frequency of switching circuit 10 based on calculated magnetic flux density value B, and duty instruction value D * and switching carrier frequency And a signal generator 80 for generating output signals 51 to 54 for driving the switching circuit 10 and outputting the generated output signals 51 to 54 to the switching circuit 10 via the gate driver 90. Since this is done, without detecting the current of the transformer 20, it is possible to operate the DC-DC converter 100 at an appropriate drive frequency while reliably preventing the magnetic saturation of the transformer 20, and to reduce the switching loss.
(3)スイッチングキャリア周波数設定部70は、磁束密度値Bがトランス20の飽和磁束密度に基づく所定の磁束密度指令値Brefよりも小さい場合はスイッチング回路10の駆動周波数を低くし、磁束密度値Bが磁束密度指令値Brefよりも大きい場合はスイッチング回路10の駆動周波数を高くするように、スイッチングキャリア周波数を設定する。このようにしたので、磁束密度値Bが磁束密度指令値Brefに近づくように、DC-DCコンバータ100を適切な駆動周波数で動作させることができる。 (3) When the magnetic flux density value B is smaller than a predetermined magnetic flux density command value Bref based on the saturation magnetic flux density of the transformer 20, the switching carrier frequency setting unit 70 lowers the drive frequency of the switching circuit 10 and the magnetic flux density value B Is larger than the magnetic flux density command value Bref, the switching carrier frequency is set so as to increase the drive frequency of the switching circuit 10. Since this is done, DC-DC converter 100 can be operated at an appropriate drive frequency such that magnetic flux density value B approaches magnetic flux density command value Bref.
(4)制御回路50は、電圧制御部60およびスイッチングキャリア周波数設定部70の実行タイミングを制御するクロック部65をさらに備える。このようにしたので、電圧制御部60およびスイッチングキャリア周波数設定部70をそれぞれ適切なタイミングで動作させることができる。 (4) The control circuit 50 further includes a clock unit 65 that controls the execution timing of the voltage control unit 60 and the switching carrier frequency setting unit 70. Thus, the voltage control unit 60 and the switching carrier frequency setting unit 70 can be operated at appropriate timings.
-第2の実施形態-
 次に本発明の第2の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74において、トランス20の温度に応じて磁束密度指令値Brefを変化させる例を説明する。
-Second embodiment-
Next, a second embodiment of the present invention will be described. In this embodiment, an example in which the magnetic flux density command value Bref is changed according to the temperature of the transformer 20 in the magnetic flux density command value setting unit 74 of the switching carrier frequency setting unit 70 will be described.
 図6は、本発明の第2の実施形態に係るDC-DCコンバータ100の基本回路構成を示す図である。図6に示すように、本実施形態のDC-DCコンバータ100は、トランス20の温度を検出する温度検出器43がトランス20の近傍に設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。 FIG. 6 is a diagram showing a basic circuit configuration of a DC-DC converter 100 according to a second embodiment of the present invention. As shown in FIG. 6, the DC-DC converter 100 according to the present embodiment has been described in the first embodiment except that the temperature detector 43 for detecting the temperature of the transformer 20 is provided in the vicinity of the transformer 20. It has the same configuration as that of
 本実施形態において、温度検出器43は、トランス20の温度を検出し、その検出値を制御回路50に出力する。温度検出器43から出力されたトランス温度の検出値は、制御回路50において、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74に入力される。磁束密度指令値設定部74は、入力されたトランス温度の検出値に基づいて、減算部73に出力する磁束密度指令値Brefを変更する。 In the present embodiment, the temperature detector 43 detects the temperature of the transformer 20 and outputs the detected value to the control circuit 50. The control value of the transformer temperature output from the temperature detector 43 is input to the magnetic flux density command value setting unit 74 of the switching carrier frequency setting unit 70 in the control circuit 50. The magnetic flux density command value setting unit 74 changes the magnetic flux density command value Bref to be output to the subtracting unit 73 based on the input detection value of the transformer temperature.
 図7は、トランス温度と磁束密度指令値Brefとの関係の一例を示す図である。図7(a)は、トランス温度の上昇に応じて磁束密度指令値Brefを一定の割合で増加させ、トランス温度の下降に応じて磁束密度指令値Brefを一定の割合で減少させる例を示している。図7(b)は、トランス温度が所定値未満の領域では温度依存性を考慮して磁束密度指令値Brefを連続的に変化させ、トランス温度が所定値以上の領域では磁束密度指令値Brefを変化させずに一定とする例を示している。なお、図7(a)や図7(b)に例示した以外の関係を用いて、トランス温度に応じて磁束密度指令値Brefを変化させてもよい。例えば、トランス温度の上昇に応じて磁束密度指令値Brefを減少させ、トランス温度の下降に応じて磁束密度指令値Brefを増加させてもよい。また、トランス温度と磁束密度指令値Brefとは比例関係でなくてもよいし、連続的な関数で定められた関係でなくてもよい。 FIG. 7 is a diagram showing an example of the relationship between the transformer temperature and the magnetic flux density command value Bref. FIG. 7A shows an example in which the magnetic flux density command value Bref is increased at a constant rate according to the rise of the transformer temperature, and the magnetic flux density command value Bref is decreased at a constant rate according to the drop of the transformer temperature. There is. In FIG. 7B, the magnetic flux density command value Bref is continuously changed in the area where the transformer temperature is less than the predetermined value in consideration of the temperature dependency, and in the area where the transformer temperature is equal to or more than the predetermined value An example is shown where it is constant without changing. Note that the magnetic flux density command value Bref may be changed according to the transformer temperature using a relationship other than that illustrated in FIG. 7A or 7B. For example, the magnetic flux density command value Bref may be decreased according to the rise of the transformer temperature, and the magnetic flux density command value Bref may be increased according to the fall of the transformer temperature. Also, the transformer temperature and the magnetic flux density command value Bref may not be in a proportional relationship, or may not be a relationship defined by a continuous function.
 以上説明した本発明の第2の実施形態によれば、電力変換装置であるDC-DCコンバータ100は、トランス20の温度を検出する温度検出器43をさらに有する。制御回路50において、スイッチングキャリア周波数設定部70は、温度検出器43によるトランス20の温度検出値に基づいて磁束密度指令値Brefを変更する。このようにしたので、第1の実施形態で説明した効果に加えて、さらに、DC-DCコンバータ100の制御をより一層正確に行うことができるという効果を奏する。 According to the second embodiment of the present invention described above, the DC-DC converter 100 which is a power conversion device further includes the temperature detector 43 for detecting the temperature of the transformer 20. In the control circuit 50, the switching carrier frequency setting unit 70 changes the magnetic flux density command value Bref based on the temperature detection value of the transformer 20 by the temperature detector 43. Since this is done, in addition to the effects described in the first embodiment, the DC-DC converter 100 can be more accurately controlled.
-第3の実施形態-
 次に本発明の第3の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74において、DC-DCコンバータ100からの出力電流に応じて磁束密度指令値Brefを変化させる例を説明する。
-Third embodiment-
Next, a third embodiment of the present invention will be described. In the present embodiment, an example in which the magnetic flux density command value Bref is changed in accordance with the output current from the DC-DC converter 100 in the magnetic flux density command value setting unit 74 of the switching carrier frequency setting unit 70 will be described.
 図8は、本発明の第3の実施形態に係るDC-DCコンバータ100の基本回路構成を示す図である。図8に示すように、本実施形態のDC-DCコンバータ100は、出力回路30から低圧バッテリV2に出力されるDC-DCコンバータ100の出力電流を検出する電流検出器44が出力回路30と低圧バッテリV2の間に設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。 FIG. 8 is a diagram showing a basic circuit configuration of a DC-DC converter 100 according to a third embodiment of the present invention. As shown in FIG. 8, in the DC-DC converter 100 of the present embodiment, the current detector 44 for detecting the output current of the DC-DC converter 100 output from the output circuit 30 to the low voltage battery V2 has a low voltage It has the same configuration as that described in the first embodiment except that it is provided between the batteries V2.
 本実施形態において、電流検出器44は、出力回路30からの出力電流を検出し、その検出値を制御回路50に出力する。なお、図8では電流検出器44が負極出力端子4側に接続されているが、正極出力端子3側に接続されていてもよい。電流検出器44から出力された出力電流の検出値は、制御回路50において、スイッチングキャリア周波数設定部70の磁束密度指令値設定部74に入力される。磁束密度指令値設定部74は、入力された出力電流の検出値に基づいて、減算部73に出力する磁束密度指令値Brefを変更する。 In the present embodiment, the current detector 44 detects the output current from the output circuit 30, and outputs the detected value to the control circuit 50. In addition, although the current detector 44 is connected to the negative electrode output terminal 4 side in FIG. 8, it may be connected to the positive electrode output terminal 3 side. The detected value of the output current output from the current detector 44 is input to the magnetic flux density command value setting unit 74 of the switching carrier frequency setting unit 70 in the control circuit 50. The magnetic flux density command value setting unit 74 changes the magnetic flux density command value Bref to be output to the subtracting unit 73 based on the input detection value of the output current.
 図9は、出力電流と磁束密度指令値Brefとの関係の一例を示す図である。図9(a)は、出力電流の上昇に応じて磁束密度指令値Brefを一定の割合で増加させ、出力電流の下降に応じて磁束密度指令値Brefを一定の割合で減少させる例を示している。図9(b)は、出力電流が所定値未満の領域では出力電流依存性を考慮して磁束密度指令値Brefを連続的に変化させ、出力電流が所定値以上の領域では磁束密度指令値Brefを変化させずに一定とする例を示している。なお、図9(a)や図9(b)に例示した以外の関係を用いて、出力電流に応じて磁束密度指令値Brefを変化させてもよい。例えば、出力電流の上昇に応じて磁束密度指令値Brefを減少させ、出力電流の下降に応じて磁束密度指令値Brefを増加させてもよい。また、出力電流と磁束密度指令値Brefとは比例関係でなくてもよいし、連続的な関数で定められた関係でなくてもよい。 FIG. 9 is a diagram showing an example of the relationship between the output current and the magnetic flux density command value Bref. FIG. 9A shows an example in which the magnetic flux density command value Bref is increased at a constant rate according to the rise of the output current, and the magnetic flux density command value Bref is decreased at a constant rate according to the fall of the output current. There is. In FIG. 9B, the flux density command value Bref is continuously changed in the area where the output current is less than the predetermined value in consideration of the output current dependency, and in the area where the output current is equal to or more than the predetermined value, the flux density command value Bref. An example is shown in which it is made constant without changing. The magnetic flux density command value Bref may be changed according to the output current using a relationship other than that illustrated in FIGS. 9A and 9B. For example, the magnetic flux density command value Bref may be decreased according to the rise of the output current, and the magnetic flux density command value Bref may be increased according to the fall of the output current. Further, the output current and the magnetic flux density command value Bref may not be in a proportional relationship, or may not be a relationship defined by a continuous function.
 以上説明した本発明の第3の実施形態によれば、電力変換装置であるDC-DCコンバータ100は、出力回路30からの出力電流を検出する電流検出器44をさらに有する。制御回路50において、スイッチングキャリア周波数設定部70は、電流検出器44による出力電流の検出値に基づいて磁束密度指令値Brefを変更する。このようにしたので、第2の実施形態と同様に、第1の実施形態で説明した効果に加えて、さらに、DC-DCコンバータ100の制御をより一層正確に行うことができるという効果を奏する。 According to the third embodiment of the present invention described above, the DC-DC converter 100, which is a power conversion device, further includes a current detector 44 that detects the output current from the output circuit 30. In the control circuit 50, the switching carrier frequency setting unit 70 changes the magnetic flux density command value Bref based on the detection value of the output current by the current detector 44. With this configuration, as in the second embodiment, in addition to the effects described in the first embodiment, the DC-DC converter 100 can be more accurately controlled. .
-第4の実施形態-
 次に本発明の第4の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70のPI制御部75において実施するPI制御に対して、ゲイン調整を行う例を説明する。
-Fourth Embodiment-
Next, a fourth embodiment of the present invention will be described. In the present embodiment, an example will be described in which gain adjustment is performed on PI control performed by the PI control unit 75 of the switching carrier frequency setting unit 70.
 図10は、本発明の第4の実施形態に係る制御回路50の構成を示す図である。図10に示すように、本実施形態の制御回路50は、スイッチングキャリア周波数設定部70において、PI制御部75に接続されるゲイン調整部75aがさらに設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。以下では、追加したゲイン調整部75aについて説明する。 FIG. 10 is a diagram showing a configuration of a control circuit 50 according to a fourth embodiment of the present invention. As shown in FIG. 10, the control circuit 50 of this embodiment is the first embodiment except that the switching carrier frequency setting unit 70 further includes a gain adjustment unit 75a connected to the PI control unit 75. It has the same configuration as that described above. Below, the added gain adjustment part 75a is demonstrated.
(ゲイン調整部75a)
 PI制御部75では、所定のPI制御ゲインを用いたPI演算により、磁束密度指令値Brefと磁束密度値Bとの差分に応じたPI制御を行っている。このPI制御ゲインが高くなると、磁束密度値Bが磁束密度指令値Brefに近づく際のスイッチングキャリア周波数の変化が早くなり、スイッチング回路10の応答性が向上する。反対に、PI制御ゲインが低くなると、磁束密度値Bが磁束密度指令値Brefに近づく際のスイッチングキャリア周波数の変化が遅くなり、スイッチング回路10の応答性が低下する。そこで、本実施形態の制御回路50では、PI制御部75で用いられるPI制御ゲインをゲイン調整部75aにおいて適切に調整することで、スイッチング回路10の応答性を調整するようにしている。
(Gain adjustment unit 75a)
The PI control unit 75 performs PI control according to the difference between the magnetic flux density command value Bref and the magnetic flux density value B by PI calculation using a predetermined PI control gain. When the PI control gain is increased, the change of the switching carrier frequency when the magnetic flux density value B approaches the magnetic flux density command value Bref is quickened, and the responsiveness of the switching circuit 10 is improved. On the other hand, when the PI control gain is lowered, the change of the switching carrier frequency when the magnetic flux density value B approaches the magnetic flux density command value Bref is delayed, and the responsiveness of the switching circuit 10 is lowered. Therefore, in the control circuit 50 of the present embodiment, the responsiveness of the switching circuit 10 is adjusted by appropriately adjusting the PI control gain used in the PI control unit 75 in the gain adjustment unit 75a.
 図11は、ゲイン調整部75aによるPI制御ゲインの調整方法の一例を示す図である。図11(a)は、スイッチングキャリア周波数に応じてPI制御ゲインを調整する例を示しており、図11(b)は、出力回路30からの出力電流に応じてPI制御ゲインを調整する例を示している。ゲイン調整部75aは、例えば図11(a)や図11(b)に例示したように、スイッチングキャリア周波数や出力電流に基づいてPI制御ゲインを変更することができる。なお、スイッチングキャリア周波数と出力電流の両方を用いてPI制御ゲインを調整したり、これら以外の情報を用いてPI制御ゲインを調整したりすることも可能である。 FIG. 11 is a diagram illustrating an example of a method of adjusting the PI control gain by the gain adjustment unit 75a. FIG. 11 (a) shows an example of adjusting the PI control gain according to the switching carrier frequency, and FIG. 11 (b) shows an example of adjusting the PI control gain according to the output current from the output circuit 30. It shows. The gain adjustment unit 75a can change the PI control gain based on the switching carrier frequency and the output current as illustrated in, for example, FIG. 11A and FIG. 11B. It is also possible to adjust the PI control gain using both the switching carrier frequency and the output current, or to adjust the PI control gain using information other than these.
 以上説明した本発明の第4の実施形態によれば、スイッチングキャリア周波数設定部70は、磁束密度値Bと磁束密度指令値Brefとの差分に基づくPI制御を所定のPI制御ゲインにより行うPI制御部75を有しており、ゲイン調整部75aにおいて、スイッチングキャリア周波数および出力回路30からの出力電流の少なくとも一つに基づいてPI制御ゲインを変更する。このようにしたので、第1の実施形態で説明した効果に加えて、さらに、トランス20の磁気飽和を確実に防ぎつつスイッチング回路10の応答性を適切に調整できるという効果を奏する。 According to the fourth embodiment of the present invention described above, the switching carrier frequency setting unit 70 performs PI control based on the difference between the magnetic flux density value B and the magnetic flux density command value Bref with a predetermined PI control gain. The gain control unit 75a changes the PI control gain based on at least one of the switching carrier frequency and the output current from the output circuit 30. Since this is done, in addition to the effect described in the first embodiment, there is an effect that the responsiveness of the switching circuit 10 can be appropriately adjusted while reliably preventing the magnetic saturation of the transformer 20.
-第5の実施形態-
 次に本発明の第5の実施形態について説明する。本実施形態では、スイッチングキャリア周波数設定部70の周波数制限部76において設定するスイッチングキャリア周波数設定値f*の上限値と下限値の決定方法を説明する。
-Fifth embodiment-
Next, a fifth embodiment of the present invention will be described. In this embodiment, a method of determining the upper limit value and the lower limit value of the switching carrier frequency set value f * set in the frequency limiting unit 76 of the switching carrier frequency setting unit 70 will be described.
 図12は、本発明の第5の実施形態に係る制御回路50の構成を示す図である。図12に示すように、本実施形態の制御回路50は、スイッチングキャリア周波数設定部70において、周波数制限部76に接続される制限値設定部76aがさらに設けられている以外は、第1の実施形態で説明したのと同様の構成を有している。以下では、追加した制限値設定部76aについて説明する。 FIG. 12 is a diagram showing a configuration of a control circuit 50 according to a fifth embodiment of the present invention. As shown in FIG. 12, the control circuit 50 of the present embodiment is the first embodiment except that the switching carrier frequency setting unit 70 further includes a limit value setting unit 76 a connected to the frequency limiting unit 76. It has the same configuration as that described in the embodiment. Hereinafter, the added limit value setting unit 76a will be described.
(制限値設定部76a)
 制限値設定部76aは、周波数制限部76から出力されるスイッチングキャリア周波数設定値f*の上限値および下限値、すなわち前述の式(2)における最大スイッチングキャリア周波数fmaxおよび最小スイッチングキャリア周波数fminを決定し、決定したこれらの値を周波数制限部76に出力する。制限値設定部76aは、例えば、トランス20の飽和磁束密度に基づく磁束密度の目標値、すなわち磁束密度指令値Brefと、トランス20のコアの断面積および一次巻線N1の巻数とに応じて、最大スイッチングキャリア周波数fmaxを決定する。
(Limit value setting unit 76a)
Limit value setting unit 76a determines the upper limit value and the lower limit value of switching carrier frequency setting value f * output from frequency limiting unit 76, that is, the maximum switching carrier frequency fmax and the minimum switching carrier frequency fmin in the above equation (2). These determined values are output to the frequency limiting unit 76. For example, limit value setting unit 76 a responds to a target value of magnetic flux density based on the saturation magnetic flux density of transformer 20, ie, magnetic flux density command value Bref, and the cross-sectional area of the core of transformer 20 and the number of turns of primary winding N 1. Determine the maximum switching carrier frequency fmax.
 一方、制限値設定部76aは、例えば、ゲートドライバ90における絶縁トランス90aの飽和磁束密度に基づいて予め設定された磁束密度の上限値に応じて、最小スイッチングキャリア周波数fminを決定する。具体的には、スイッチングキャリア周波数を低くした際においても絶縁トランス90aの磁束密度が飽和磁束密度を超えないように、以下の式(3)を用いて最小スイッチングキャリア周波数fminを決定する。なお式(3)において、Vddは絶縁トランス90aを介してゲートドライバ90に入力される電圧値、Asは絶縁トランス90aのコア断面積、Bmaxは絶縁トランス90aの磁束密度の上限値、N1は絶縁トランス90aのトランス巻数である。 On the other hand, limit value setting unit 76a determines minimum switching carrier frequency fmin in accordance with the upper limit value of the magnetic flux density set in advance based on the saturation magnetic flux density of insulating transformer 90a in gate driver 90, for example. Specifically, the minimum switching carrier frequency fmin is determined using the following equation (3) so that the magnetic flux density of the insulating transformer 90a does not exceed the saturation magnetic flux density even when the switching carrier frequency is lowered. In Equation (3), Vdd is a voltage value input to the gate driver 90 through the insulating transformer 90a, As is a core cross-sectional area of the insulating transformer 90a, Bmax is an upper limit value of magnetic flux density of the insulating transformer 90a, and N1 is insulating It is a transformer winding number of the transformer 90a.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、制限値設定部76aは、例えば、出力回路30において平滑コイルL2に流れる電流リップルが所定のリップル電流値以下となるように、最小スイッチングキャリア周波数fminを決定しても良い。具体的には、スイッチングキャリア周波数を低くした際においても、平滑コイルL2に流れる出力回路30からの出力電流における電流リップルが所定のリップル電流値を超えないように、以下の式(4)を用いて最小スイッチングキャリア周波数fminを決定する。なお式(4)において、Vinは電圧検出器41で検出されたDC-DCコンバータ100の入力電圧値、Voutは電圧検出器42で検出されたDC-DCコンバータ100の出力電圧、D*は電圧制御部60で求められたデューティ指示値、L2は平滑コイルL2のインダクタンス値、ΔILmaxはピーク最大リップル電流値とピーク最大リップル電流値の差分、Ntはトランス20の巻数比である。 In addition, for example, the limit value setting unit 76a may determine the minimum switching carrier frequency fmin such that the current ripple flowing through the smoothing coil L2 in the output circuit 30 is equal to or less than a predetermined ripple current value. Specifically, even when the switching carrier frequency is lowered, the following equation (4) is used so that the current ripple in the output current from output circuit 30 flowing in smoothing coil L2 does not exceed the predetermined ripple current value. The minimum switching carrier frequency fmin is determined. In Equation (4), Vin is an input voltage value of the DC-DC converter 100 detected by the voltage detector 41, Vout is an output voltage of the DC-DC converter 100 detected by the voltage detector 42, and D * is a voltage The duty instruction value determined by the control unit 60, L2 is the inductance value of the smoothing coil L2, ΔILmax is the difference between the peak maximum ripple current value and the peak maximum ripple current value, and Nt is the turns ratio of the transformer 20.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、制限値設定部76aは、上記の式(3)や式(4)以外を用いて最小スイッチングキャリア周波数fminを決定してもよい。絶縁トランス90aの磁束密度が飽和磁束密度を超えたり、出力回路30からの出力電流における電流リップルが所定のリップル電流値を超えたりしない限りは、任意の方法で最小スイッチングキャリア周波数fminを決定することが可能である。なお、絶縁トランス90aの飽和磁束密度と出力電流における電流リップルの両方に基づいて最小スイッチングキャリア周波数fminを決定したり、これら以外の情報に基づいて最小スイッチングキャリア周波数fminを決定したりすることも可能である。 However, the limit value setting unit 76a may determine the minimum switching carrier frequency fmin using something other than the above equation (3) or (4). As long as the magnetic flux density of isolation transformer 90a does not exceed the saturation magnetic flux density or the current ripple in the output current from output circuit 30 does not exceed a predetermined ripple current value, the minimum switching carrier frequency fmin should be determined by any method. Is possible. The minimum switching carrier frequency fmin can be determined based on both the saturation magnetic flux density of the isolation transformer 90a and the current ripple in the output current, or the minimum switching carrier frequency fmin can be determined based on other information. It is.
 以上説明した本発明の第5の実施形態によれば、スイッチング回路10は、絶縁トランス90aを搭載した絶縁ゲートドライバであるゲートドライバ90を介して制御回路50と接続されている。また、スイッチングキャリア周波数設定部70は、スイッチングキャリア周波数を所定の最小スイッチングキャリア周波数fmin以上に制限する周波数制限部76を有しており、制限値設定部76aにおいて、絶縁トランス90aの飽和磁束密度および出力回路30からの出力電流における電流リップルの少なくとも一つに基づいて最小スイッチングキャリア周波数fminを決定する。このようにしたので、第1の実施形態で説明した効果に加えて、さらに、トランス20の磁気飽和だけでなく、ゲートドライバ90における絶縁トランス90aの磁気飽和や、DC-DCコンバータ100の出力電流における電流リップルについても、増大を防ぐことが可能となる。 According to the fifth embodiment of the present invention described above, the switching circuit 10 is connected to the control circuit 50 via the gate driver 90 which is an insulated gate driver mounting the isolation transformer 90 a. In addition, switching carrier frequency setting unit 70 has frequency limiting unit 76 that limits the switching carrier frequency to a predetermined minimum switching carrier frequency fmin or more. In limit value setting unit 76a, the saturation magnetic flux density of isolation transformer 90a and The minimum switching carrier frequency fmin is determined based on at least one of the current ripple in the output current from the output circuit 30. Since this is done, in addition to the effects described in the first embodiment, not only the magnetic saturation of the transformer 20, but also the magnetic saturation of the insulating transformer 90a in the gate driver 90 and the output current of the DC-DC converter 100 It is also possible to prevent an increase in the current ripple in
 なお、以上説明した本発明の各実施形態では、4つのスイッチ素子11a~14aにより構成された電圧形フルブリッジ回路であるスイッチング回路10と、電流形センタータップ回路であるトランス20とを組み合わせて構成されたDC-DCコンバータ100を、位相シフト制御方式により制御する制御回路50の例を用いて本発明を説明したが、本発明はこれに限定されない。入力された第1の直流電力を交流電力に変換するスイッチング回路と、交流電力の電圧変換を行うトランスと、トランスにより電圧変換された交流電力を第2の直流電力に変換して出力する出力回路とを有する電力変換装置の制御を行う制御装置であれば、本発明を適用可能であり、各実施形態で説明したのと同様の作用効果を奏することができる。また、以上説明した各実施形態は、それぞれ単独で適用してもよく、任意に組み合わせてもよい。 In each of the embodiments of the present invention described above, the switching circuit 10, which is a voltage-type full bridge circuit configured by four switch elements 11a to 14a, and the transformer 20, which is a current-type center tap circuit, are combined. Although the present invention has been described using the example of the control circuit 50 that controls the DC-DC converter 100 according to the phase shift control method, the present invention is not limited to this. Switching circuit for converting input first DC power into AC power, transformer for performing voltage conversion of AC power, and output circuit for converting AC power subjected to voltage conversion by the transformer to second DC power The present invention can be applied to any control device that controls a power conversion device having the above-described components, and the same operation and effect as those described in the embodiments can be obtained. Moreover, each embodiment described above may be applied independently, and may be combined arbitrarily.
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments and the various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. In addition, although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention.
1…正極入力端子、2…負極入力端子、3…正極出力端子、4…負極出力端子、10…スイッチング回路、11a~14a…スイッチ素子、11b~14b…ダイオード、11c~14c…コンデンサ、20…トランス、30…出力回路、31,32…ダイオード、41,42…電圧検出器、43…温度検出器、44…電流検出器、50…制御回路、51~54…出力信号、60…電圧制御部、61…減算部、62…PI制御部、63…デューティ制限部、65…クロック部、70…スイッチングキャリア周波数設定部、71…乗算部、72…比例部、73…減算部、74…磁束密度指令値設定部、75…PI制御部、75a…ゲイン調整部、76…周波数制限部、76a…制限値設定部、80…信号生成部、81…演算判定部、82…デッドタイム設定部、83…閾値設定部、84…演算判定部、85…キャリア信号生成部、86…比較器、90…ゲートドライバ、90a…絶縁トランス、91~94…駆動信号、100…DC-DCコンバータ、200…車両電源制御部、300…HV系機器、400…補機機器、1000…車両、N1…一次巻線、N2a,N2b…二次巻線、S…整流接続点、T…中性点、V1…高圧バッテリ、V2…低圧バッテリ DESCRIPTION OF SYMBOLS 1 ... positive electrode input terminal, 2 ... negative electrode input terminal, 3 ... positive electrode output terminal, 4 ... negative electrode output terminal, 10 ... switching circuit, 11a to 14a ... switching element, 11b to 14b ... diode, 11c to 14c ... capacitor, 20 ... Transformer 30 30 output circuit 31, 32 diode 41, 42 voltage detector 43 temperature detector 44 current detector 50 control circuit 51 to 54 output signal 60 voltage controller , 61: subtraction unit, 62: PI control unit, 63: duty limitation unit, 65: clock unit, 70: switching carrier frequency setting unit, 71: multiplication unit, 72: proportional unit, 73: subtraction unit, 74: magnetic flux density Reference value setting unit 75 PI control unit 75a Gain adjustment unit 76 Frequency limiting unit 76a Limit value setting unit 80 Signal generation unit 81 Operation determination unit 82 Dead Time setting unit 83 Threshold setting unit 84 Operation determination unit 85 Carrier signal generation unit 86 Comparator 90 Gate driver 90a Insulated transformer 91 to 94 Drive signal 100 DC-DC Converter, 200: vehicle power control unit, 300: HV system equipment, 400: auxiliary equipment, 1000: vehicle, N1: primary winding, N2a, N2b: secondary winding, S: rectification connection point, T: neutral Point, V1 ... high voltage battery, V2 ... low voltage battery

Claims (8)

  1.  入力された第1の直流電力を第2の直流電力に変換して出力する電力変換装置の制御を行う制御装置であって、
     前記電力変換装置は、前記第1の直流電力を交流電力に変換するスイッチング回路と、前記交流電力の電圧変換を行うトランスと、前記トランスにより電圧変換された前記交流電力を前記第2の直流電力に変換する出力回路と、を有し、
     前記トランスの磁束密度値を算出し、算出した前記磁束密度値に基づいて前記スイッチング回路の駆動周波数を制御する制御装置。
    A control device that controls a power conversion device that converts an input first DC power into a second DC power and outputs the second DC power.
    The power conversion device includes a switching circuit that converts the first DC power into AC power, a transformer that performs voltage conversion of the AC power, and the second DC power of the AC power converted by the transformer. And an output circuit for converting into
    The control apparatus which calculates the magnetic flux density value of the said transformer, and controls the drive frequency of the said switching circuit based on the calculated said magnetic flux density value.
  2.  請求項1に記載の制御装置において、
     前記出力回路の出力電圧を制御するためのデューティ指示値を算出する電圧制御部と、
     前記デューティ指示値および前記スイッチング回路の入力電圧に基づいて前記磁束密度値を算出し、算出した前記磁束密度値に基づいて前記駆動周波数に応じたスイッチングキャリア周波数を設定するスイッチングキャリア周波数設定部と、
     前記デューティ指示値および前記スイッチングキャリア周波数に基づいて前記スイッチング回路を駆動させるための出力信号を生成し、生成した前記出力信号を前記スイッチング回路に出力する信号生成部と、を備える制御装置。
    In the control device according to claim 1,
    A voltage control unit that calculates a duty indication value for controlling an output voltage of the output circuit;
    A switching carrier frequency setting unit that calculates the magnetic flux density value based on the duty indication value and the input voltage of the switching circuit, and sets a switching carrier frequency according to the drive frequency based on the calculated magnetic flux density value;
    A control signal generator configured to generate an output signal for driving the switching circuit based on the duty instruction value and the switching carrier frequency, and to output the generated output signal to the switching circuit.
  3.  請求項2に記載の制御装置において、
     前記スイッチングキャリア周波数設定部は、前記磁束密度値が前記トランスの飽和磁束密度に基づく所定の磁束密度指令値よりも小さい場合は前記駆動周波数を低くし、前記磁束密度値が前記磁束密度指令値よりも大きい場合は前記駆動周波数を高くするように、前記スイッチングキャリア周波数を設定する制御装置。
    In the control device according to claim 2,
    The switching carrier frequency setting unit lowers the driving frequency when the magnetic flux density value is smaller than a predetermined magnetic flux density command value based on the saturation magnetic flux density of the transformer, and the magnetic flux density value is higher than the magnetic flux density command value. The control apparatus which sets the said switching carrier frequency so that the said driving frequency may be made high when also large.
  4.  請求項2または請求項3に記載の制御装置において、
     前記電圧制御部および前記スイッチングキャリア周波数設定部の実行タイミングを制御するクロック部をさらに備える制御装置。
    In the control device according to claim 2 or 3,
    The control device further comprising a clock unit that controls execution timings of the voltage control unit and the switching carrier frequency setting unit.
  5.  請求項3に記載の制御装置において、
     前記電力変換装置は、前記トランスの温度を検出する温度検出器をさらに有し、
     前記スイッチングキャリア周波数設定部は、前記温度検出器による前記トランスの温度検出値に基づいて前記磁束密度指令値を変更する制御装置。
    In the control device according to claim 3,
    The power converter further includes a temperature detector for detecting the temperature of the transformer,
    The control device, wherein the switching carrier frequency setting unit changes the magnetic flux density command value based on a temperature detection value of the transformer by the temperature detector.
  6.  請求項3または請求項5に記載の制御装置において、
     前記電力変換装置は、前記出力回路からの出力電流を検出する電流検出器をさらに有し、
     前記スイッチングキャリア周波数設定部は、前記電流検出器による前記出力電流の検出値に基づいて前記磁束密度指令値を変更する制御装置。
    In the control device according to claim 3 or 5,
    The power converter further includes a current detector that detects an output current from the output circuit,
    The control device, wherein the switching carrier frequency setting unit changes the magnetic flux density command value based on a detected value of the output current by the current detector.
  7.  請求項3、請求項5または請求項6に記載の制御装置において、
     前記スイッチングキャリア周波数設定部は、前記磁束密度値と前記磁束密度指令値との差分に基づく比例積分制御を所定の制御ゲインにより行うPI制御部を有し、
     前記スイッチングキャリア周波数および前記出力回路からの出力電流の少なくとも一つに基づいて前記制御ゲインを変更する制御装置。
    In the control device according to claim 3, claim 5 or claim 6.
    The switching carrier frequency setting unit has a PI control unit that performs proportional integral control based on a difference between the magnetic flux density value and the magnetic flux density command value with a predetermined control gain,
    A control device for changing the control gain based on at least one of the switching carrier frequency and an output current from the output circuit.
  8.  請求項2から請求項7までのいずれか一項に記載の制御装置において、
     前記スイッチング回路は、絶縁トランスを搭載した絶縁ゲートドライバを介して前記制御装置と接続されており、
     前記スイッチングキャリア周波数設定部は、前記スイッチングキャリア周波数を所定の最小周波数以上に制限する周波数制限部を有し、
     前記絶縁トランスの飽和磁束密度および前記出力回路からの出力電流における電流リップルの少なくとも一つに基づいて前記最小周波数を決定する制御装置。
    In the control device according to any one of claims 2 to 7,
    The switching circuit is connected to the control device via an insulated gate driver mounted with an isolation transformer,
    The switching carrier frequency setting unit has a frequency limiting unit that limits the switching carrier frequency to a predetermined minimum frequency or higher.
    A control device that determines the minimum frequency based on at least one of a saturation magnetic flux density of the isolation transformer and a current ripple in an output current from the output circuit.
PCT/JP2018/037158 2017-10-17 2018-10-04 Control device WO2019078013A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/757,201 US11101739B2 (en) 2017-10-17 2018-10-04 Control device with magnetic flux density calculation
CN201880065828.1A CN111201701B (en) 2017-10-17 2018-10-04 control device
DE112018004544.7T DE112018004544B4 (en) 2017-10-17 2018-10-04 CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201403 2017-10-17
JP2017201403A JP6913599B2 (en) 2017-10-17 2017-10-17 Control device

Publications (1)

Publication Number Publication Date
WO2019078013A1 true WO2019078013A1 (en) 2019-04-25

Family

ID=66173620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037158 WO2019078013A1 (en) 2017-10-17 2018-10-04 Control device

Country Status (5)

Country Link
US (1) US11101739B2 (en)
JP (1) JP6913599B2 (en)
CN (1) CN111201701B (en)
DE (1) DE112018004544B4 (en)
WO (1) WO2019078013A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298496B2 (en) 2020-01-31 2023-06-27 トヨタ自動車株式会社 vehicle
JP7384136B2 (en) 2020-09-18 2023-11-21 株式会社明電舎 Bidirectional isolated DC/DC converter and its control method
CN116530004A (en) * 2020-12-18 2023-08-01 三菱电机株式会社 Power conversion device
CN112688574B (en) * 2021-03-18 2021-07-20 深圳市正浩创新科技股份有限公司 Resonant converter and limit frequency variable control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399767A (en) * 1986-10-13 1988-05-02 Fujitsu Denso Ltd Fly-back converter
JPH08317646A (en) * 1995-05-22 1996-11-29 Nemic Lambda Kk Switching power-supply apparatus
JP2014236653A (en) * 2013-06-05 2014-12-15 三菱電機株式会社 Power converter and air conditioner using the same
KR20150127855A (en) * 2012-07-25 2015-11-18 현대모비스 주식회사 Synchronous low voltage dc-dc converter
JP2017189011A (en) * 2016-04-05 2017-10-12 株式会社デンソー Electric power conversion device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454226A (en) * 1977-10-06 1979-04-28 Sony Corp Protective system for switching regulator system power source
JP2003259640A (en) * 2002-02-28 2003-09-12 Tdk Corp Switching power supply unit
JP3959077B2 (en) * 2004-06-30 2007-08-15 Tdk株式会社 Parallel drive power supply
US7639518B2 (en) * 2006-04-26 2009-12-29 Nissan Motor Co., Ltd. Device and method for controlling power converting device
JP2008092709A (en) * 2006-10-03 2008-04-17 Toyota Industries Corp System linkage inverter device
JP5060827B2 (en) 2007-05-07 2012-10-31 河村電器産業株式会社 Fuel cell grid-connected inverter
JP5055083B2 (en) * 2007-10-19 2012-10-24 日立コンピュータ機器株式会社 Digital control power supply
CN101889319B (en) 2007-12-25 2013-01-02 日立金属株式会社 Stacked inductor and power converter using the stacked inductor
US8363439B2 (en) * 2008-04-22 2013-01-29 Flextronics Ap, Llc Efficiency improvement in power factor correction
WO2010090032A1 (en) * 2009-02-06 2010-08-12 新電元工業株式会社 Current detecting circuit and transformer current measuring system
CN102918757B (en) * 2010-05-31 2015-06-17 三菱电机株式会社 Power conversion device
JP5622228B2 (en) * 2010-06-25 2014-11-12 株式会社ダイヘン Inverter power supply
JP2012095442A (en) * 2010-10-27 2012-05-17 Daihen Corp Welding power supply device
US8934267B2 (en) 2010-11-09 2015-01-13 Tdk-Lambda Corporation Loosely regulated feedback control for high efficiency isolated DC-DC converters
JP5355655B2 (en) * 2011-10-20 2013-11-27 三菱電機株式会社 DCDC converter and control method of DCDC converter
EP2812987B1 (en) * 2012-02-09 2017-11-15 Telefonaktiebolaget LM Ericsson (publ) Control of transformer flux density in an isolated switched mode power supply
JP5938008B2 (en) * 2013-05-27 2016-06-22 株式会社デンソー Power converter
JP6114660B2 (en) * 2013-08-23 2017-04-12 日立オートモティブシステムズ株式会社 Power converter
JP6554323B2 (en) * 2015-05-25 2019-07-31 日立オートモティブシステムズ株式会社 Power supply
US10554138B2 (en) * 2016-10-25 2020-02-04 Infineon Technologies Austria Ag Flux limited fast transient response in isolated DC-DC converters
WO2018146840A1 (en) * 2017-02-07 2018-08-16 三菱電機株式会社 Power conversion device
US11563368B2 (en) * 2017-04-03 2023-01-24 Mitsubishi Electric Corporation Power conversion device
DE112018002259T5 (en) * 2017-05-31 2020-01-16 Hitachi Automotive Systems, Ltd. Switching power supply device
EP3637605A4 (en) * 2017-06-07 2021-03-03 Hitachi Automotive Systems, Ltd. Power conversion device
JP6993905B2 (en) * 2018-03-06 2022-01-14 株式会社Soken DC / DC converter control device
JP6369737B1 (en) * 2018-04-06 2018-08-08 富士電機株式会社 Insulated DC / DC converter, control device therefor, and DC / AC converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399767A (en) * 1986-10-13 1988-05-02 Fujitsu Denso Ltd Fly-back converter
JPH08317646A (en) * 1995-05-22 1996-11-29 Nemic Lambda Kk Switching power-supply apparatus
KR20150127855A (en) * 2012-07-25 2015-11-18 현대모비스 주식회사 Synchronous low voltage dc-dc converter
JP2014236653A (en) * 2013-06-05 2014-12-15 三菱電機株式会社 Power converter and air conditioner using the same
JP2017189011A (en) * 2016-04-05 2017-10-12 株式会社デンソー Electric power conversion device

Also Published As

Publication number Publication date
JP6913599B2 (en) 2021-08-04
JP2019075913A (en) 2019-05-16
CN111201701A (en) 2020-05-26
US11101739B2 (en) 2021-08-24
DE112018004544B4 (en) 2023-03-16
US20210135578A1 (en) 2021-05-06
DE112018004544T5 (en) 2020-05-28
CN111201701B (en) 2023-11-10

Similar Documents

Publication Publication Date Title
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US9093908B2 (en) Bidirectional DC-DC converter and method of controlling bidirectional DC-DC converter
WO2019078013A1 (en) Control device
JP6397757B2 (en) Power supply
US20120091970A1 (en) Charging equipment of variable frequency control for power factor
JP6132887B2 (en) Power converter
JP6012822B1 (en) Power converter
JP2015204639A (en) Power conversion apparatus and control method thereof
US9209698B2 (en) Electric power conversion device
JPWO2013093963A1 (en) Charger
JP2006129548A (en) Power converter
US10651751B2 (en) Switching power supply device
JP2006345641A (en) Dc/ac converter circuit and method for converting dc into ac
WO2018235438A1 (en) Dc-dc converter, power supply system using dc-dc converter, and automobile using power supply system
JP2008086114A (en) Switching power supply and voltage detection circuit
US11689112B2 (en) DC-DC converter and vehicle
Cetin High efficiency design procedure of a second stage phase shifted full bridge converter for battery charge applications based on wide output voltage and load ranges
WO2018070185A1 (en) Dc-dc converter and automobile
US11936297B2 (en) DC-DC converter including first and second coils magnetically coupled such that current flows through second coil in forward direction of diode by mutual induction as current flowing through first coil from intermediate terminal to output terminal increases and vehicle
WO2019208008A1 (en) Power conversion device
US20240072676A1 (en) Power conversion apparatus and power conversion system
JP2024051940A (en) Power Conversion Equipment
JP2021083185A (en) Insulation type dc-dc converter
JP2013201882A (en) Bidirectional dc-dc conversion device and conversion device
JP2005198388A (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868417

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18868417

Country of ref document: EP

Kind code of ref document: A1