WO2019077990A1 - Substrate laminate, and imaging device - Google Patents

Substrate laminate, and imaging device Download PDF

Info

Publication number
WO2019077990A1
WO2019077990A1 PCT/JP2018/036783 JP2018036783W WO2019077990A1 WO 2019077990 A1 WO2019077990 A1 WO 2019077990A1 JP 2018036783 W JP2018036783 W JP 2018036783W WO 2019077990 A1 WO2019077990 A1 WO 2019077990A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
connection
mounting
imaging device
imaging element
Prior art date
Application number
PCT/JP2018/036783
Other languages
French (fr)
Japanese (ja)
Inventor
周作 柴田
裕宗 春田
秀一 若木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201880063095.8A priority Critical patent/CN111164957B/en
Publication of WO2019077990A1 publication Critical patent/WO2019077990A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits

Definitions

  • the present invention relates to a substrate laminate and an imaging device including the substrate laminate.
  • an imaging device such as a camera module mounted on a cellular phone or the like generally includes an optical lens, a housing for housing and holding the optical lens, an imaging element such as a CMOS sensor or a CCD sensor, and an imaging element And an imaging element mounting substrate for electrically connecting to external wiring.
  • the imaging element is mounted on a substantially central portion of the imaging element mounting substrate, and the housing is disposed on the peripheral end of the imaging element mounting substrate so as to surround the imaging element.
  • Patent Document 1 discloses such a substrate.
  • an imaging device used for a mobile phone or the like is required to be further reduced in thickness (reduced in height).
  • One way to reduce the height of the imaging device is to reduce the thickness of the imaging element mounting substrate.
  • a thick rigid wired circuit board in which the entire back surface is reinforced with a metal plate
  • a thin flexible wired circuit board FPC
  • Two types are used.
  • the FPC is not reinforced by a metal plate, it can be thinner than a rigid wired circuit board.
  • the materials of the imaging device and the imaging device mounting substrate are different from each other, thermal distortion occurs when the imaging unit including the imaging device and the imaging device mounting substrate is placed in an external environment in which high temperature and low temperature are repeated. In some cases, a warp may occur in the imaging unit. As a result, a shift occurs in the position of the imaging element and the optical lens, causing a problem that the image is distorted.
  • an FPC in which the total thickness of the FPC and the thickness of the metal wiring are extremely reduced.
  • Such an FPC can suppress the occurrence of warpage because the thermal stress is significantly reduced.
  • actuator modules such as an auto-focusing element and a camera shake correction mechanism are also disposed. For this reason, it is necessary to supply more current as the entire imaging device.
  • the imaging element mounting substrate it is difficult to flow more current because the metal wiring is made thinner. As a result, the actuator module can not be disposed (mounted).
  • the present invention is to provide a substrate laminate and an imaging device in which occurrence of warpage can be suppressed and an actuator module can be disposed.
  • the present invention [1] can be electrically connected to an imaging element mounting substrate for mounting an imaging element, and an actuator module requiring a larger amount of current than the imaging element, and the imaging element mounting substrate And a flexible printed circuit board electrically connected, the imaging element mounting board has a metal wiring, the thickness of the metal wiring is 12 ⁇ m or less, and the total thickness of the imaging element mounting board is 60 ⁇ m It is the following, and a part of the flexible printed circuit board includes a substrate laminate disposed in an area other than a mounting area where the imaging element is mounted on the imaging element mounting board.
  • the imaging device mounting substrate since the thickness of the metal wiring of the imaging device mounting substrate is 12 ⁇ m or less and the total thickness of the imaging device mounting substrate is 60 ⁇ m or less, the imaging device mounting substrate and the metal wiring thereof are very thin. Therefore, in accordance with the thermal expansion of the imaging device, the imaging device mounting board can be flexibly deformed to suppress the generation of thermal stress. As a result, the occurrence of warpage can be suppressed.
  • the actuator module can be electrically connected directly to the flexible printed circuit board without passing through the imaging device mounting board. Therefore, the actuator module can be arranged and operated on the substrate stack.
  • the present invention [2] includes the substrate laminate according to [1], wherein the part of the flexible printed circuit board is disposed in a region on which the imaging device is mounted.
  • the height of the imaging device in which the imaging device is mounted on the imaging device mounting substrate can be reduced.
  • the present invention [3] is the substrate laminate body according to [1] or [2], wherein the part of the flexible printed circuit board is disposed along at least one end of the imaging element mounting substrate Contains.
  • the contact area between the imaging element mounting substrate and the flexible printed circuit board is large, the bonding strength is high. As a result, even when the substrate stack is bent, separation and breakage of the imaging device mounting substrate and the flexible printed circuit board can be suppressed.
  • the present invention [4] is the substrate laminate according to any one of [1] to [3], wherein the part of the flexible printed circuit board is disposed so as to surround four sides of the mounting area. Contains.
  • the contact area between the imaging element mounting substrate and the flexible printed circuit board is larger, the bonding strength is further enhanced. As a result, even if the substrate stack is bent, separation and breakage of the imaging device mounting substrate and the flexible printed circuit can be more reliably suppressed.
  • the present invention [5] includes the substrate laminate according to any one of [1] to [4], further including a rigid substrate disposed in the region on the side where the imaging device is mounted.
  • the rigid rigid substrate is disposed on the imaging device mounting substrate, it is possible to more reliably suppress the warping of the imaging device mounting substrate.
  • the present invention [6] includes the substrate laminate according to [5], wherein the rigid substrate can be electrically connected to the actuator module.
  • the actuator module can be directly mounted on a hard rigid substrate, the actuator module can be stably disposed on the substrate laminate with the rigid substrate, and as a result, it can be easily mounted. be able to.
  • the present invention [7] is any one of [1] to [6], wherein in the imaging element mounting substrate, the equivalent elastic modulus of the wiring area in which the metal wiring is disposed is 5 GPa or more and 55 GPa or less It contains the substrate laminate of the description.
  • the present invention [8] comprises the substrate laminate according to any one of [1] to [7], an imaging device mounted on the substrate laminate, and the imaging device mounted on the substrate laminate. And an imaging device comprising an actuator module that requires more current.
  • the substrate laminate and the imaging device of the present invention can suppress the occurrence of warpage of the imaging element mounting substrate.
  • the actuator module can be mounted and operated.
  • FIG. 1A-B show a first embodiment of a substrate laminate according to the present invention
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along AA in FIG. 1A
  • FIG. 2 shows a plan view of a mounting substrate of the substrate laminate shown in FIG. 1A
  • FIG. 3 shows a cross-sectional view taken along the line AA of FIG. 2A
  • 4A-B are cross-sectional views of the substrate laminate shown in FIG. 1A
  • FIG. 4A is a cross-sectional view of B-B
  • FIG. 4B is a cross-sectional view of C-C
  • 5A-B show an imaging unit provided with the substrate laminate shown in FIG. 1A
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view taken along AA in FIG. 5A.
  • 6A-B show an imaging device provided with the substrate laminate shown in FIG. 1A
  • FIG. 6A is a plan view
  • FIG. 6B is a cross-sectional view taken along AA in FIG. 6A.
  • 7A-B show an imaging device provided with a second embodiment of the substrate laminate of the present invention (a form in which a connection substrate is provided below the peripheral region)
  • FIG. 7A is a plan view
  • FIG. 7B is FIG. 7A.
  • Sectional view on AA of FIG. 8A-B show an imaging device provided with a third embodiment (a form provided with a rigid substrate) of the substrate laminate of the present invention
  • FIG. 8A is a plan view
  • FIG. 8B is a cross section taken along AA of FIG. Figure shows.
  • FIG. 9A-B shows an imaging device provided with a modification of the third embodiment of the substrate laminate of the present invention (a form in which a rigid substrate is disposed on the upper side of a connection substrate), and
  • FIG. 9A is a plan view, a diagram 9B shows a cross-sectional view taken along line AA of FIG. 9A.
  • FIG. 10 is a plan view of a fourth embodiment of the substrate laminate according to the present invention (a form in which a connection substrate is disposed along one end of a mounting substrate).
  • FIG. 11 is a plan view of a fifth embodiment of the substrate laminate according to the present invention (a form in which connection substrates are arranged along the two ends of the mounting substrate).
  • FIG. 12 is a plan view of a sixth embodiment of the substrate laminate according to the present invention (a form in which connection substrates are arranged along the three ends of the mounting substrate).
  • the left-right direction in the drawing is the front-rear direction (first direction, longitudinal direction), the left side in the drawing is the front side (one side in the first direction), and the right side in the drawing is the rear side (the other side in the first direction).
  • the vertical direction of the drawing is the left-right direction (the second direction perpendicular to the first direction, width direction), the upper side of the drawing is the left side (one side in the second direction), and the lower side of the drawing is the right side (the other side in the second direction).
  • the paper thickness direction is the vertical direction (thickness direction, third direction orthogonal to the first direction and the second direction), and the paper front side is the upper side (thickness direction one side, third direction one side), and the paper rear side is It is the lower side (thickness direction other side, third direction other side). Specifically, it conforms to the directional arrow in each figure.
  • Substrate Stack A first embodiment of a substrate stack according to the present invention will be described with reference to FIGS. 1A-4B.
  • the substrate laminate 1 of the first embodiment shown in FIG. 1A is a wired circuit board for mounting an imaging device 41 (described later), and does not have the imaging device 41 yet.
  • the substrate laminate 1 includes an imaging element mounting substrate 2, an external device connection flexible wiring circuit substrate 3 as an example of a flexible wiring circuit substrate, and a connector 4.
  • the imaging device mounting board 2 (hereinafter, referred to as mounting board) is a flexible printed circuit board for mounting the imaging device 41. As shown in FIGS. 1A-B and 2, it has a flat plate shape (sheet shape) having a substantially rectangular shape in plan view extending in the front-rear direction and the left-right direction (plane direction).
  • the mounting board 2 is divided into a mounting area 5 and a peripheral area 6 as shown in FIG.
  • the mounting area 5 is an area in which the imaging device 41 is disposed. That is, the mounting area 5 is an area overlapping with the imaging element 41 when projected in the thickness direction when the imaging element 41 is disposed on the mounting substrate 2. Specifically, the mounting area 5 is divided into a substantially rectangular shape at the approximate center of the mounting substrate 2 in plan view, as indicated by the phantom line in FIG. 1. A plurality of imaging element connection terminals 12 (described later) for electrically connecting to the imaging element 41 are disposed in the outer peripheral portion of the mounting area 5. The mounting area 5 does not have a metal support plate such as stainless steel.
  • the peripheral region 6 is a region other than the mounting region 5.
  • the peripheral area 6 is an area in which a housing 42 (described later) and the external device connection flexible printed circuit board 3 are disposed. That is, when the housing 42 (described later) is disposed on the mounting substrate 2, the peripheral region 6 is a region overlapping the housing 42 and the external device connection flexible printed circuit board 3 when projected in the thickness direction (mounting Except area 3).
  • the peripheral region 6 is formed in a substantially rectangular frame shape whose outer shape and inner shape are both substantially rectangular in a plan view, and the inner end edge thereof is continuous with the outer end edge of the mounting region 5.
  • a plurality of connection board connection terminals 13 (described later) for electrically connecting with the external device connection flexible printed circuit board 3 are arranged at the rear end edge of the peripheral region 6.
  • the mounting substrate 2 includes the first base insulating layer 7, the first conductor pattern 8, and the first cover insulating layer 9.
  • the first base insulating layer 7 is disposed on the top layer of the mounting substrate 2.
  • the first base insulating layer 7 forms the outer shape of the mounting substrate 2 and is formed in a substantially rectangular shape in plan view.
  • the upper surface of the first base insulating layer 7 is formed to be flat.
  • a plurality of imaging element connection terminal openings 10 and a plurality of connection board connection terminal openings 11 are formed in the first base insulating layer 7.
  • the plurality of imaging element connection terminal openings 10 are openings for exposing the imaging element connection terminals 12 from the top surface.
  • the plurality of first openings 10 are arranged at intervals along the circumferential edge of the mounting area 5 so as to form a rectangular frame.
  • the first opening 10 penetrates the first insulating base layer 7 in the thickness direction, and has a substantially circular shape in plan view.
  • the first opening 10 has a tapered shape in which the cross-sectional area decreases in the upward direction.
  • connection substrate connection terminal openings 11 are openings for exposing the connection substrate connection terminals 13 from the top surface.
  • the plurality of second openings 11 are arranged at the rear end edge of the peripheral area 6 at intervals in the left-right direction.
  • the second opening 11 penetrates the first insulating base layer 7 in the thickness direction, and has a substantially rectangular shape (rectangular shape) in plan view.
  • the second opening 11 is formed to extend forward from the rear end edge of the peripheral region 6 in a plan view.
  • the first base insulating layer 7 is formed of an insulating material.
  • the insulating material include synthetic resins such as polyimide resin, polyamideimide resin, acrylic resin, polyether nitrile resin, polyether sulfone resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyvinyl chloride resin and the like.
  • the first base insulating layer 7 is formed of polyimide resin.
  • the elastic modulus of the first insulating base layer 7 is, for example, 1 GPa or more, preferably 5 GPa or more, and for example, 20 GPa or less, preferably 15 GPa or less.
  • the elastic modulus of a resin layer such as an insulating layer can be measured, for example, by dynamic viscoelasticity measurement, in accordance with JIS K7244 or ISO 6721.
  • the thermal expansion coefficient of the first base insulating layer 7 is, for example, 1 ppm / K or more, preferably 5 ppm / K or more, and for example, 50 ppm / K or less, preferably 30 ppm / K or less.
  • the thermal expansion coefficient of the resin layer such as the insulating layer is a linear thermal expansion coefficient in the surface direction, and can be measured, for example, by thermal mechanical analysis under the condition of JIS K7197.
  • the first conductor pattern 8 is provided below the first insulating base layer 7 so as to be in contact with the lower surface of the first insulating base layer 7.
  • the first conductor pattern 8 includes a plurality of imaging element connection terminals 12, a plurality of connection board connection terminals 13, and a plurality of first metal wires 14.
  • the plurality of imaging element connection terminals 12 are arranged at intervals on the circumferential end of the mounting area 5 so as to form a rectangular frame. That is, the plurality of imaging element connection terminals 12 are provided to correspond to the plurality of terminals 46 (described later) of the imaging element 41 to be mounted.
  • the imaging element connection terminal 12 has a substantially circular shape in plan view.
  • the imaging element connection terminal 12 is disposed in the first opening 10, and is formed to be convex upward in a side cross sectional view.
  • the upper surface of the inner portion of the imaging element connection terminal 12 is exposed from the first opening 10 and is formed flush with the upper surface of the first insulating base layer 7.
  • the plurality of connection board connection terminals 13 are arranged at the rear end edge of the peripheral area 6 at intervals in the left-right direction. That is, the plurality of connection board connection terminals 13 are provided to correspond to the plurality of mounting board connection terminals 24 (described later).
  • the connection board connection terminal 13 has a substantially rectangular shape (rectangular shape) in plan view.
  • the connection substrate connection terminal 13 is disposed in the second opening 11, and the upper surface thereof is exposed from the second opening 11. In FIG. 2, a part of the plurality of connection board connection terminals 13 (central part in the left-right direction) is omitted.
  • the plurality of first metal wires 14 include the plurality of first connection wires 15 and the plurality of ground wires 16.
  • the plurality of first connection wirings 15 are provided to correspond to the plurality of imaging element connection terminals 12 (or the plurality of connection substrate connection terminals 13). Specifically, the first connection wiring 15 is integrally formed with the imaging element connection terminal 12 and the connection substrate connection terminal 13 so as to connect them. That is, one end of the first connection wiring 15 is continuous with the imaging element connection terminal 12, and the other end of the first connection wiring 15 is continuous with the connection substrate connection terminal 13 to electrically connect them.
  • the plurality of ground wirings 16 are provided to correspond to the plurality of first connection wirings 15. Specifically, the plurality of ground wirings 16 are provided outside the plurality of first connection wirings 15 so as to be along them. A ground terminal (not shown) is integrally connected to one end of the ground wiring 16.
  • a region in plan view or bottom view where the first metal wiring 14 (metal wiring) exists is taken as a wiring region 17.
  • Examples of the material of the first conductor pattern 8 include metal materials such as copper, silver, gold, nickel or alloys containing them, and solder. Preferably, copper is mentioned.
  • the elastic modulus of the first conductor pattern 8 is, for example, 50 GPa or more, preferably 100 GPa or more, and for example, 200 GPa or less, preferably 150 GPa or less.
  • the elastic modulus of a metal such as a conductor pattern can be measured, for example, by tensile test measurement in accordance with JIS Z 2241.
  • the thermal expansion coefficient of the first conductor pattern 8 is, for example, 1 ppm / K or more, preferably 5 ppm / K or more, and for example, 30 ppm / K or less, preferably 20 ppm / K or less.
  • the thermal expansion coefficient of a metal such as a conductor pattern is a linear thermal expansion coefficient in the surface direction, and can be measured, for example, by a thermomechanical analyzer or an optical scanning type measuring device in accordance with JIS Z 2285.
  • the thickness T 2 of the first conductor pattern 8 (the first metal wiring 14 and each of the terminals 12 and 13) (thus, the total thickness of the metal wiring) is 12 ⁇ m or less, from the viewpoint of suppressing the warpage of the mounting substrate 2 during mounting. Preferably, it is 8 ⁇ m or less, more preferably 5 ⁇ m or less. Also, from the viewpoint of handleability, the thickness is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more.
  • the width of the first metal wiring 14 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the first cover insulating layer 9 is provided below the first base insulating layer 7 and the first conductor pattern 8 so as to cover the first conductor pattern 8. That is, the first cover insulating layer 9 is disposed in contact with the lower surface and the side surface of the first conductor pattern 8 and the lower surface of the first base insulating layer 7 exposed from the first conductor pattern 8.
  • the outer shape of the first cover insulating layer 9 is formed to be substantially the same as the outer shape of the first base insulating layer 7 except for the portion where the second opening 11 is formed.
  • the first cover insulating layer 9 is formed of an insulating material similar to the above-described insulating material in the first base insulating layer 7, and is preferably formed of a polyimide resin.
  • the elastic modulus of the first cover insulating layer 9 is, for example, 1 GPa or more, preferably 5 GPa or more, and for example, 20 GPa or less, preferably 15 GPa or less.
  • the thermal expansion coefficient of the first cover insulating layer 9 is, for example, 1 ppm / K or more, preferably 5 ppm / K or more, and for example, 50 ppm / K or less, preferably 30 ppm / K or less.
  • the equivalent elastic modulus in the wiring area 17 of the mounting substrate 2 is, for example, 5 GPa or more, preferably 10 GPa or more, and for example, 55 GPa or less, preferably 50 GPa or less, more preferably 40 GPa or less, more preferably, It is 30 GPa or less, particularly preferably 20 GPa or less.
  • the equivalent elastic modulus D is obtained by dividing the thickness fraction of each layer into the elastic modulus of each layer (for example, the first base insulating layer 7, the first metal wiring 14, and the first cover insulating layer 9) constituting the wiring region 17. They are multiplied and summed up. Specifically, for example, in the embodiment shown in FIG. 2 to FIG. 3, it can be obtained by the following formula.
  • D ⁇ D 1 ⁇ T 1 + D 2 ⁇ T 2 + D 3 ⁇ T 3 ⁇ / ⁇ T 1 + T 2 + T 3 ⁇ D 1 represents a modulus of elasticity of the first insulating base layer 7, T 1 indicates the thickness of the first insulating base layer 7.
  • D 2 represents the elastic modulus of the first metal wiring 14, T 2 indicates the thickness of the first metal interconnect 14.
  • D 3 represents the elastic modulus of the first insulating cover layer 9, T 3 represents a thickness of the first insulating cover layer 9.
  • the ratio of the total thickness of the metal to the total thickness of the insulating layer ie, the ratio of the thickness of the first metal wiring 14 to the total thickness of the first base insulating layer 7 and the first cover insulating layer 9 (T 2 / (T 1 + T 3 )) is, for example, 0.05 or more, preferably 0.10 or more, more preferably 0.20 or more, and for example, 0.90 or less, preferably 0.70.
  • it is 0.50 or less, more preferably, 0.20 or less.
  • the total thickness (maximum thickness) of the mounting substrate 2 is 60 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m, from the viewpoint of warpage suppression and handleability. Or less, and for example, 1 ⁇ m or more, preferably 5 ⁇ m or more.
  • the mounting substrate 2 for example, a step of preparing a metal supporting substrate (for example, a stainless steel substrate) having a flat upper surface, and forming the first insulating base layer 7 in which each opening (10, 11) is formed on the upper surface Forming the first conductor pattern 8 on the upper surface of the first base insulating layer 7 and the upper surface of the metal supporting substrate exposed from the openings, and covering the first base insulating layer 7 and the first conductor pattern 8 It can manufacture by the process of forming the 1st cover insulating layer 9, and the process of removing a metal support substrate. Then, the manufactured mounting substrate 2 is turned upside down to obtain the mounting substrate 2 shown in FIG.
  • a metal supporting substrate for example, a stainless steel substrate
  • a flexible printed circuit board 3 (hereinafter referred to as a connection board) is a flexible printed circuit board for electrically connecting the mounting board 2 and an external device (not shown) such as a motherboard, and an actuator It is a flexible printed circuit board for electrically connecting a module 45 (described later) and an external device electrically.
  • connection substrate 3 is divided into a mounting substrate arrangement region 20, a connection region 21 and a connector region 22 as shown in FIGS. 1A-B.
  • the mounting substrate placement area 20 (hereinafter referred to as a placement area) is disposed at the front end of the connection substrate 3 and is an area overlapping the mounting substrate 2 when projected in the thickness direction.
  • the arrangement area 20 has a substantially rectangular frame shape whose outer shape and inner shape are both substantially rectangular in a plan view. That is, the placement area 20 is formed in a substantially rectangular shape in a plan view, and a mounting area opening 23 having a substantially rectangular shape in a plan view is formed in the central portion thereof in the thickness direction.
  • the outer shape of the placement area 20 is slightly smaller than the outer shape of the mounting substrate 2, and the inner shape thereof is slightly larger than the mounting region 5 of the mounting substrate 2.
  • a mounting substrate connection terminal 24 (described later) for electrically connecting with the mounting substrate 2 and a module connection terminal 25 (described later) for electrically connecting with the actuator module 45 are provided at the rear end of the arrangement region 20. A plurality of each are arranged.
  • connection region 21 is disposed at the center of the connection substrate 3 in the front-rear direction, and has a substantially rectangular shape in plan view extending in the front-rear direction.
  • the front end of the connection area 21 is continuous with the rear end of the placement area 20, and the rear end of the connection area 21 is continuous with the connector area 22.
  • a plurality of second metal connection wires 30 (described later) extending in the front-rear direction are arranged at intervals in the left-right direction.
  • the connector region 22 is disposed at the rear end of the connection substrate 3 and has a substantially rectangular planar shape.
  • the front end of the connector area 22 is continuous with the rear end of the connection area 21.
  • a plurality of connector connection terminals 32 for electrically connecting to the connector 4 are arranged in the connector area 22.
  • connection substrate 3 includes a second base insulating layer 26, a second conductor pattern 27, and a second cover insulating layer 28, as shown in FIGS. 4A-B.
  • the second base insulating layer 26 is disposed in the lowermost layer of the connection substrate 3.
  • the second base insulating layer 26 has an outer shape of the connection substrate 3 and is formed in a substantially rectangular shape in plan view.
  • a plurality of mounting substrate connection terminal openings 29 are formed in the second base insulating layer 26 in the arrangement region 20.
  • the plurality of mounting substrate connection terminal openings 29 are openings for exposing the mounting substrate connection terminals 24 from the lower surface.
  • the plurality of third openings 29 are aligned at intervals in the left-right direction so as to correspond to the plurality of second openings 11 at the center in the width direction of the rear end portion of the arrangement region 20.
  • the third opening 29 penetrates the second insulating base layer 26 in the thickness direction, and has a substantially rectangular shape (rectangular shape) in plan view.
  • the second base insulating layer 26 is formed of an insulating material.
  • the insulating material is formed of the same insulating material as the insulating material described above in the first base insulating layer 7, and is preferably formed of polyimide resin.
  • the thickness T 4 of the second insulating base layer 26 is, for example, 5 [mu] m or more, preferably not less 10 ⁇ m or more, and is, for example, 50 [mu] m or less, preferably 30 ⁇ m or less.
  • the second conductor pattern 27 is provided on the upper side of the second insulating base layer 26 so as to be in contact with the upper surface of the second insulating base layer 26.
  • the second conductor pattern 27 includes a plurality of mounting substrate connection terminals 24, a plurality (two) of module connection terminals 25, a plurality of connector connection terminals 32, and a plurality of second metal connection wirings 30.
  • the plurality of mounting board connection terminals 24 are aligned at the center in the left-right direction of the rear end portion of the placement area 20 at intervals in the left-right direction. That is, the plurality of mounting board connection terminals 24 are provided to correspond to the plurality of connection board connection terminals 13.
  • the mounting substrate connection terminal 24 has a substantially rectangular shape (rectangular shape) in plan view. The mounting substrate connection terminal 24 is disposed in the third opening 29, and the lower surface thereof is exposed from the third opening 29.
  • the plurality of (two) module connection terminals 25 are arranged at the rear end of the arrangement area 20 in the left-right direction at intervals in the left-right direction. That is, the plurality of module connection terminals 25 are provided to correspond to the plurality (two) of the housing side terminals 47 (described later) when the housing 42 (described later) is disposed in the arrangement area 20.
  • the module connection terminal 25 has a substantially rectangular shape in plan view.
  • the module connection terminal 25 is disposed in a module connection terminal opening 31 (described later), and the upper surface thereof is exposed from the module connection terminal opening 31.
  • the plurality of connector connection terminals 32 are terminals for electrically connecting each of the plurality of mounting board connection terminals 24 and the plurality of module connection terminals 25 to the connector 4, and the number thereof is the mounting board connection terminals 24 and the module connection terminals It is a total number of 25.
  • the plurality of connector connection terminals 32 are aligned in the connector area 22 at intervals in the left-right direction. That is, they are provided to correspond to the plurality of connector terminals 38 (described later) of the connector 4.
  • the connector connection terminal 32 is disposed in a fifth opening 33 (described later), and the upper surface thereof is exposed from the fifth opening 33.
  • the plurality of second metal connection wirings 30 are provided to correspond to the plurality of mounting substrate connection terminals 24 and the plurality of module connection terminals 25. Specifically, some of the plurality of second metal connection wires 30 are integrally formed with the mounting substrate connection terminals 24 and the connector connection terminals 32 in the front-rear direction. That is, one end of the second metal connection wiring 30 is continuous with the mounting substrate connection terminal 24, and the other end of the second metal connection wiring 34 is continuous with the connector connection terminal 32 to electrically connect them. . Further, some (two) of the plurality of second metal connection wires 30 are integrally formed with the module connection terminals 25 and the connector connection terminals 32 so as to connect them in the front-rear direction. That is, one end of the second metal connection wiring 30 is continuous with the module connection terminal 25, and the other end of the second metal connection wiring 34 is continuous with the connector connection terminal 32 to electrically connect them.
  • the material of the second conductor pattern 27 is formed of the same metal material as that described above for the first conductor pattern 8, and preferably includes copper.
  • the thickness T 5 of the second conductor pattern 27 (the second metal connection wire 30 and each of the terminals 24 and 25) (thus, the total thickness of the metal wires) is the thickness of the first conductor pattern 8 from the viewpoint of the magnitude of the current flowed. It is thicker than T 2 , for example, more than 12 ⁇ m, preferably 15 ⁇ m or more, and for example, 40 ⁇ m or less, preferably 25 ⁇ m or less.
  • the ratio (T 5 / T 2 ) of the thickness T 5 of the second conductor pattern 27 to the thickness T 2 of the first conductor pattern 8 (thus, the metal wiring of the connection substrate 3 with respect to the total thickness of the metal wiring of the mounting substrate 2)
  • the ratio of the total thickness is, for example, 1.2 or more, preferably 1.5 or more, and for example, 10 or less, preferably 5 or less.
  • the width of the second metal connection wiring 30 is, for example, 15 ⁇ m or more, preferably 25 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the second cover insulating layer 28 is provided on the second base insulating layer 26 and the upper side of the second conductor pattern 27 so as to cover the second conductor pattern 27. That is, the second cover insulating layer 28 is disposed in contact with the upper surface and the side surface of the second conductive pattern 27 and the upper surface of the second base insulating layer 26 exposed from the second conductive pattern 27.
  • the outer shape of the second cover insulating layer 28 is formed to be the same as the second base insulating layer 26.
  • a plurality of module connection terminal openings 31 and a plurality of connector connection terminal openings 33 are formed in the second cover insulating layer 28.
  • the plurality of module connection terminal openings 31 are openings for exposing the module connection terminals 25 from the top surface.
  • the plurality of fourth openings 31 are aligned at intervals in the left-right direction corresponding to the plurality of module connection terminals 25 on the outside in the width direction of the rear portion of the arrangement area 20.
  • the plurality of fourth openings 31 penetrate the second cover insulating layer 28 in the thickness direction, and have a substantially rectangular shape in plan view.
  • the plurality of connector connection terminal openings 33 are openings for exposing the connector connection terminals 32 from the top surface.
  • the plurality of fifth openings 33 are aligned in the connector area 22 at intervals in the left-right direction corresponding to the plurality of connector connection terminals 32.
  • the second cover insulating layer 28 is formed of an insulating material similar to the above-described insulating material of the second base insulating layer 26, and is preferably formed of a polyimide resin.
  • the thickness T 6 of the second cover insulating layer 28 is, for example, 10 ⁇ m or more, preferably 15 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the total thickness (maximum thickness) of the connection substrate 3 is thicker than the mounting substrate 2 from the viewpoint of the magnitude of the flowable current and the handleability, for example, exceeds 60 ⁇ m, preferably 80 ⁇ m or more, For example, it is 200 ⁇ m or less, preferably 120 ⁇ m or less.
  • the ratio of the total thickness of the connection substrate 3 to the total thickness of the mounting substrate 2 is, for example, 1.5 or more, preferably 2.0 or more, and for example, 10 or less, preferably 5 or less.
  • connection substrate 3 includes a step of forming the second base insulating layer 26, a step of forming the second conductor pattern 27 on the upper surface of the second base insulating layer 26, a second conductor pattern 27 and a second base insulating layer 26. It can manufacture by the process of forming the 2nd cover insulating layer 28 so that it may coat
  • the connector 4 is a connection element for electrically connecting the connection substrate 3 and an external device (not shown).
  • the connector 4 has a generally rectangular shape in plan view extending in the left-right direction, as shown in FIGS. 1A-B.
  • the connector 4 includes a plurality of connector terminals 38 for electrically connecting with the plurality of connector connection terminals 32.
  • the substrate laminate 1 includes a mounting substrate 2, a connection substrate 3 disposed on the upper side of the mounting substrate 2, and a connector 4 disposed on the upper side of the connection substrate 3 as shown in FIG. 1A-B.
  • connection substrate 3 is disposed on the upper side of the peripheral region 6 of the mounting substrate 2 so that the lower surface of the arrangement region 20 (a part of the connection substrate 3) contacts the upper surface of the peripheral region 6 of the mounting substrate 2. That is, when projected in the thickness direction, the connection substrate 3 overlaps the mounting substrate 2 in the arrangement region 20 but does not overlap the connection region 21 and the connector region 22 with the mounting substrate 2. It is arranged.
  • the mounting substrate 2 When projected in the thickness direction, the mounting substrate 2 includes the arrangement region 20 of the connection substrate 3. That is, in plan view, the mounting substrate 2 is slightly larger than the arrangement region 20 of the connection substrate 3.
  • the placement area 20 is disposed along the four ends (the front end, the rear end, the left end, and the right end) of the mounting substrate 2. Specifically, the mounting area 20 is arranged so that the mounting area 5 is arranged in the mounting area opening 23 and surrounds four sides of the mounting area 5. That is, the mounting area opening 23 includes the entire area of the mounting area 5 in a plan view, and the peripheral edge of the mounting area opening 23 is separated from the peripheral edge of the mounting area 5.
  • connection substrate 3 is fixed to the upper surface of the peripheral region 6 via an insulating adhesive or the like (not shown).
  • the connection substrate 3 is electrically connected to the mounting substrate 2. Specifically, as shown in FIG. 4B, the connection substrate 3 is electrically connected via a conductive bonding material 35 such as solder or conductive adhesive.
  • the connection board connection terminal 13 and the mounting board connection terminal 24 are joined.
  • the connector 4 is disposed on the upper side of the connector area 22 of the connection substrate 3 so that the lower surface of the connector 4 is in contact with the upper surface of the connector area 22 of the connection substrate 3. When projected in the thickness direction, the connector 4 is disposed substantially in the center of the connector area 22 in plan view.
  • the connector 4 is fixed to the upper surface of the connector area 22 via an insulating adhesive or the like (not shown). Further, the connector 4 is electrically connected to the connection substrate 3. Specifically, the connector connection terminal 32 and the connector side terminal 38 are bonded via the conductive bonding material 35.
  • Such a substrate laminate 1 is used, for example, as a printed circuit board for mounting an imaging device 41 (described later). That is, the substrate laminate 1 is used for an imaging device such as a camera module.
  • Imaging Device With reference to FIGS. 5A-6B, an imaging device 40 comprising the substrate stack 1 will be described.
  • the imaging device 40 includes the substrate stack 1, an imaging element 41, a housing 42, an optical lens 43, a filter 44, and an actuator module 45.
  • the imaging device 41 is a semiconductor device that converts light into an electrical signal, and examples thereof include solid-state imaging devices such as a CMOS sensor and a CCD sensor.
  • the current required to operate the imaging device 41 is, for example, 500 mA or less, preferably less than 300 mA, and for example, 50 mA or more.
  • the imaging device 41 is formed in a flat plate shape substantially rectangular in plan view, and includes silicon such as a Si substrate, and a photodiode (photoelectric conversion device) and a color filter disposed thereon, although not shown.
  • a plurality of terminals 46 corresponding to the imaging element connection terminals 12 of the mounting substrate 2 are provided on the lower surface of the imaging element 41.
  • the elastic modulus of the imaging device 41 (in particular, the Si substrate) is, for example, 100 GPa or more, preferably 120 GPa or more, and for example, 200 GPa or less, preferably 150 GPa or less.
  • the elastic modulus of the imaging device 41 can be measured, for example, by tensile test measurement in accordance with JIS Z 2241.
  • the thermal expansion coefficient of the imaging device 41 (in particular, the Si substrate) is, for example, 1 ppm / K or more, preferably 2 ppm / K or more, and for example, 10 ppm / K or less, preferably 5 ppm / K or less.
  • the thermal expansion coefficient of the imaging device 41 is a linear thermal expansion coefficient in the surface direction, and can be measured, for example, by a thermomechanical analyzer or an optical scanning measurement device in accordance with JIS Z 2285.
  • the thickness of the imaging device 41 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the imaging element 41 is mounted on the mounting area 5 of the mounting substrate 2. That is, the terminals 46 of the imaging device 41 are flip chip mounted via the imaging device connection terminals 12 of the corresponding mounting substrate 2 and the conductive bonding material 35 such as solder. Thus, the imaging element 41 is disposed on the upper surface of the mounting area 5 of the mounting substrate 2 and is electrically connected to the imaging element connection terminal 12 of the mounting substrate 2.
  • the imaging element 41 is mounted on the mounting area 5 of the mounting substrate 2 to configure an imaging unit 49 as shown in FIG. 5A-B. That is, the imaging unit 49 includes the substrate laminate 1 and the imaging device 41 mounted thereon.
  • the housing 42 is disposed on the top surface of the peripheral region 6 so as to be spaced apart from the imaging device 41 in the surface direction.
  • the housing 42 has a cylindrical shape substantially rectangular in plan view. At the upper end of the housing 42, a fixing portion for fixing the optical lens 43 is provided.
  • the housing 42 further includes a housing side terminal 47 provided at the lower end (end portion) of the housing 42 and a module connection wiring 48 extending from the actuator module 45 to the housing side terminal 47.
  • the housing side terminal 47 is bonded to the module connection terminal 25 via the conductive bonding material 35.
  • the actuator module 45 is directly electrically connected to the connection substrate 3 without the mounting substrate 2.
  • the optical lens 43 is disposed on the upper side of the mounting substrate 2 at a distance from the mounting substrate 2 and the imaging device 41.
  • the optical lens 43 is formed in a substantially circular shape in a plan view, and is fixed by the fixing portion so that light from the outside reaches the imaging element 41.
  • the filter 44 is disposed at the center in the vertical direction of the imaging device 41 and the optical lens 43 at a distance from them, and is fixed to the housing 42.
  • the actuator module 45 is an element that converts an electrical signal from an external device into physical motion, and includes, for example, an autofocus element, an optical image stabilizer, and the like.
  • the current required to operate the actuator module 45 is, for example, 200 mA or more, preferably 300 mA or more, and for example, 1000 mA or less.
  • the actuator module 45 is fixed to the housing 42 around the optical lens 43.
  • the substrate laminate 1 includes the mounting substrate 2 and the connection substrate 3.
  • the mounting substrate 2 has the first metal wiring 14, and the thickness of the first metal wiring 14 is 12 ⁇ m or less.
  • the total thickness of 2 is 60 ⁇ m or less.
  • the arrangement area 20 of the connection substrate 3 is arranged in the peripheral area 6 of the mounting substrate 2.
  • the mounting substrate 2 and the first metal wiring 14 are very thin. Therefore, according to the thermal expansion of the imaging element 41, the mounting area 5 of the mounting substrate 2 can be flexibly deformed to suppress the generation of thermal stress. As a result, under the environment where high temperature and low temperature are repeated, it is possible to suppress the occurrence of warpage of the mounting area 5 of the mounting substrate 2 and hence the imaging device 40.
  • connection substrate 3 is arranged on the upper side of the peripheral area 6 of the mounting substrate 2. Therefore, the actuator module 45 can be electrically connected directly to the connection substrate 3 without the mounting substrate 2. Therefore, the actuator module 45 can be disposed on the substrate stack 1 to be electrically connected, and the actuator module 45 can be operated.
  • the arrangement region 20 of the connection substrate 3 is arranged on the upper side of the peripheral region 6 (the side on which the imaging device 41 is mounted).
  • the height of the imaging device 40 can be reduced. That is, the vertical distance between the upper end and the lower end of the imaging device 40 (the vertical distance between the upper end of the housing 42 and the lower surface of the mounting substrate 2 in FIG. 6B) can be reduced.
  • the vertical distance between the upper end and the lower end of the imaging device 40 is the housing 42.
  • the first embodiment shown in FIG. 6B is reduced in height by a thickness of the connection substrate 3 compared to the second embodiment shown in FIG. Can.
  • the vertical distance between the center of the optical lens 43 and the upper surface of the imaging device 41 ie, the focal length, D 1 shown in FIG. 7B
  • the vertical distance (D 2 shown in FIG. 7B) between the upper end of the upper surface of the mounting substrate 2 and the upper surface of the mounting substrate 2 is also the same.
  • the arrangement region 20 of the connection substrate 3 is arranged along the four end portions of the mounting substrate 2. That is, the arrangement area 20 is arranged to surround four sides of the mounting area 5.
  • the equivalent elastic modulus of the wiring region 17 is 5 GPa or more and 55 GPa or less.
  • the elastic modulus of the wiring area 17 is small and flexible. Therefore, the warpage of the mounting substrate 2 can be well and surely suppressed.
  • the imaging device 40 also includes the substrate stack 1, the imaging device 41, and the actuator module 45.
  • the warp of the imaging device 40 can be suppressed, and the actuator module 45 can be operated.
  • the mounting substrate 2 shown in FIG. 3 includes the first base insulating layer 7, the first conductor pattern 8 and the first cover insulating layer 9 in the thickness direction in order.
  • the conductor layer is a single layer, for example, although not shown, the conductor layer of the mounting substrate 2 may be a multilayer (for example, two or more layers, preferably 2 to 4 layers) . That is, for example, the mounting substrate 2 sequentially includes the first base insulating layer 7, the first conductor pattern 8, the first cover insulating layer 9, the third conductor pattern, and the third cover insulating layer in the thickness direction.
  • the mounting substrate 2 may include the first base insulating layer 7, the first conductor pattern 8, the first cover insulating layer 9, the third conductor pattern, and the third base pattern.
  • a cover insulating layer, a fourth conductor pattern, and a fourth cover insulating layer may be provided in order in the thickness direction (conductor layer 3-layer configuration).
  • the configurations of the third conductor pattern and the fourth conductor pattern are respectively the same as the configuration of the first conductor pattern 8, and the configurations of the third cover insulating layer and the fourth cover insulating layer are respectively the first cover insulation It is similar to the configuration of layer 9.
  • the total thickness of the mounting substrate 2 is also the same as that of the embodiment shown in FIG. 3 (for example, 60 ⁇ m or less).
  • the total thickness of the metal wiring in the mounting substrate 2 (for example, the total thickness of the first metal wiring 14 provided in the first conductor pattern, the metal wiring provided in the third conductor pattern, and the metal wiring provided in the fourth conductor pattern) is, for example From the viewpoint of suppression of warpage, for example, 12 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and from the viewpoint of handleability, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more.
  • the ratio of the total thickness of the metal wiring of the connection board 3 to the total thickness of the metal wiring of the mounting board 2 is also the same as in the embodiment shown in FIG. 1 (for example, 1.2 or more).
  • the equivalent elastic modulus D of the wiring area (the area where the metal wiring of each conductor layer exists), the ratio of the total thickness of all metals to the total thickness of all insulating layers, etc. are the same as the embodiment shown in FIG. .
  • connection substrate 3 shown in FIG. 4A-B includes the second base insulating layer 26, the second conductor pattern 27, and the second cover insulating layer 28 in the thickness direction in order.
  • the conductor layer is a single layer, for example, although not shown, the conductor layer of the connection substrate 3 may be a multilayer (for example, two or more layers, preferably 2 to 4 layers) . That is, for example, the connection substrate 3 sequentially includes the second base insulating layer 26, the second conductor pattern 27, the second cover insulating layer 28, the fifth conductor pattern, and the fifth cover insulating layer in the thickness direction.
  • the connection substrate 3 may include the second base insulating layer 26, the second conductive pattern 27, the second cover insulating layer 28, the fifth conductive pattern, and the fifth conductive pattern.
  • a cover insulating layer, a sixth conductor pattern, and a sixth cover insulating layer may be provided in order in the thickness direction (conductor layer 3-layer configuration).
  • the configurations of the fifth conductor pattern and the sixth conductor pattern are the same as those of the second conductor pattern 27, respectively, and the configurations of the fifth cover insulating layer and the sixth cover insulating layer are each the configuration of the second cover insulating layer 28 Is the same as
  • connection substrate 3 is also the same as the embodiment shown in FIG. 4A-B (for example, more than 60 ⁇ m).
  • the total thickness of the metal wiring (specifically, the total thickness of the second metal connection wiring 30 provided in the second conductor pattern, the metal connection wiring provided in the fifth conductor pattern, and the metal connection wiring provided in the sixth conductor pattern) is For example, from the viewpoint of passing more current, for example, it exceeds 12 ⁇ m, preferably 15 ⁇ m or more, and for example 40 ⁇ m or less, preferably 25 ⁇ m or less. Further, the ratio of the total thickness of the metal wiring of the connection substrate 3 to the total thickness of the metal wiring of the mounting substrate 2 is also the same as in the embodiment shown in FIG. 1 (for example, 1.2 or more).
  • the imaging device 41 is flip-chip mounted on the mounting substrate 2.
  • the imaging device 41 is mounted on the mounting substrate 2 by wire bonding. You can also.
  • the module connection terminal 25 is electrically connected to the housing side terminal 47 via the conductive bonding material 35.
  • the module connection terminal 25 can also be electrically connected to the housing side terminal 47 by wire bonding.
  • Second Embodiment A second embodiment of the substrate laminate 1 and the imaging device 40 will be described with reference to FIGS. 7A-B.
  • the same members as those in the first embodiment shown in the above-described drawings are denoted by the same reference numerals, and the description thereof will be omitted.
  • the arrangement region 20 of the connection substrate 3 is arranged on the upper side of the peripheral region 6, but in the mounting substrate 2 of the second embodiment, as shown in FIG.
  • the arrangement area 20 of the connection substrate 3 is arranged below the peripheral area 6.
  • connection board connection terminals 13 of the mounting board 2 are disposed to be exposed to the lower side, and the mounting board connection terminals 24 of the connection board 3 are disposed to be exposed to the upper side. Are electrically connected via the conductive bonding material 35.
  • through holes 36 are provided in the mounting substrate 2 at positions corresponding to the housing side terminals 47 and the module connection terminals 25.
  • the housing side terminal 47 of the housing 42 is electrically connected to the module connection terminal 25 through the through hole 36 and the conductive bonding material 35 inside the module connection terminal opening 31.
  • the same effects as those of the substrate laminate 1 and the imaging device 40 of the first embodiment can be obtained for the substrate laminate 1 and the imaging device 40 of the second embodiment.
  • the first embodiment can be mentioned.
  • the same modification as the first embodiment can be applied to the second embodiment.
  • FIGS. 8A-B A third embodiment of the substrate laminate 1 and the imaging device 40 will be described with reference to FIGS. 8A-B.
  • the same members as those in the first embodiment shown in the above-described drawings are given the same reference numerals, and the description thereof will be omitted.
  • the substrate laminate 1 according to the first embodiment includes the mounting substrate 2, the connection substrate 3, and the connector 4, but the substrate laminate 1 according to the third embodiment has the mounting substrate 2 as shown in FIGS. 8A-B. , A connection board 3, a connector 4, and a rigid board 50.
  • the rigid substrate 50 is a hard wiring substrate having no flexibility, and is made of, for example, a ceramic substrate, a glass epoxy substrate, or the like.
  • the rigid substrate 50 is disposed between the mounting substrate 2 and the connection substrate 3 in the vertical direction. Specifically, the upper side of peripheral region 6 and the lower surface of rigid substrate 50 are in contact with the upper surface of peripheral region 6 of mounting substrate 2, and the upper surface is in contact with the lower surface of arrangement region 20 of connection substrate 3. It is arranged under the arrangement area 20.
  • the rigid substrate 50 is formed in a substantially rectangular frame shape whose outer shape and inner shape are both substantially rectangular in a plan view, and when projected in the thickness direction, matches the arrangement region 20 of the connection substrate 3. That is, the shape of the rigid substrate 50 is substantially the same as the shape of the arrangement region 20 of the connection substrate 3 in a plan view.
  • connection substrate connection terminals 13 and the mounting substrate connection terminals 24 in the thickness direction are provided.
  • the thickness of the rigid substrate 50 is, for example, 20 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 200 ⁇ m or less.
  • connection substrate 3 is disposed on the upper side of the rigid substrate 50. Specifically, the connection substrate 3 is disposed on the upper side of the rigid substrate 50 such that the lower surface thereof is in contact with the upper surface of the rigid substrate 50.
  • the rigid substrate 50 is disposed on the upper side of the mounting substrate 2 and the lower side of the connection substrate 3, but as shown in FIG. 9A-B, for example, the rigid substrate 50 is Can also be disposed on the upper side of the connection substrate 3. That is, the rigid substrate 50 can be disposed on the upper side of the connection substrate 3 and the lower side of the housing 42. In this case, a plurality of via conduction parts 51 electrically connecting the module connection terminals 25 and the housing side terminals 47 in the thickness direction are provided at the rear end of the rigid substrate 50. Thus, the rigid substrate 50 can be electrically connected directly to the actuator module 45.
  • the substrate laminate 1 and the imaging device 40 of the third embodiment also exhibit the same effects as the substrate laminate 1 and the imaging device 40 of the first embodiment.
  • the peripheral region 6 of the mounting substrate 2 is reinforced by the rigid substrate 50 and warpage of the mounting substrate 2 can be suppressed more reliably, preferably, the substrate laminate 1 and the imaging device 40 of the third embodiment.
  • the housing 42 in which the actuator module 45 is fixed can be mounted directly on the hard rigid substrate 50. Therefore, the actuator module 45 and the housing 42 can be stably disposed on the substrate stack 1 shown in FIG. 9A, and can be easily mounted.
  • the same modification as the first embodiment can be applied to the third embodiment.
  • the arrangement region 20 of the connection substrate 3 is disposed along the four end portions of the mounting substrate 2.
  • FIG. 2 the arrangement area 20 of the connection substrate 3 is arranged along one end (rear end) of the mounting substrate 2.
  • the arrangement region 20 of the connection substrate 3 is formed in a generally rectangular shape in plan view extending in the left-right direction.
  • the same effects as those of the substrate laminate 1 and the imaging device 40 of the first embodiment can be obtained.
  • the first embodiment is preferably mentioned.
  • the same modification as the first embodiment can also be applied to the fourth embodiment.
  • the arrangement region 20 of the connection substrate 3 is disposed along the four end portions of the mounting substrate 2, but in the substrate laminate 1 of the fifth embodiment, FIG. As shown in FIG. 1, the arrangement area 20 of the connection substrate 3 is arranged along the two ends (rear end and right end) of the mounting substrate 2. That is, in the fifth embodiment, the arrangement region 20 of the connection substrate 3 is formed in a substantially inverted L shape in plan view extending in the left-right direction and the front-rear direction.
  • the arrangement region 20 of the connection substrate 3 is along the three end portions (rear end portion, right end portion and left end portion) of the mounting substrate 2. Are arranged. That is, in the sixth embodiment, the arrangement region 20 of the connection substrate 3 is formed in a substantially U shape in plan view in which the front end portion is opened.
  • the same function and effect as the substrate laminate 1 and the imaging device 40 of the first embodiment can be obtained.
  • the first embodiment is preferably mentioned.
  • the same modification as the first embodiment can be applied to the fifth to sixth embodiments.
  • the substrate laminate and the imaging device of the present invention can be applied to various industrial products, and for example, are suitably used for a camera module and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

This substrate laminate is provided with: an imaging element mounting substrate for mounting an imaging element; and a flexible wiring circuit board which is capable of being electrically connected to an actuator module, and which is electrically connected to the imaging element mounting substrate. The imaging element mounting substrate is provided with metal wiring. The thickness of the metal wiring is 12 µm or lower. The total thickness of the imaging element mounting substrate is 60 µm or lower. A portion of the flexible wiring circuit board is provided in a region of the imaging element mounting substrate other than a mounting region where the imaging element is mounted.

Description

基板積層体、および、撮像装置Substrate laminate and imaging device
 本発明は、基板積層体、および、基板積層体を備える撮像装置に関する。 The present invention relates to a substrate laminate and an imaging device including the substrate laminate.
 従来より、携帯電話などに搭載されているカメラモジュールなどの撮像装置は、一般的に、光学レンズと、光学レンズを収容および保持するハウジングと、CMOSセンサやCCDセンサなどの撮像素子と、撮像素子を実装し、外部配線に電気的に接続するための撮像素子実装基板とを備えている。撮像素子実装基板の略中央部の上に、撮像素子が実装されており、撮像素子を取り囲むように撮像素子実装基板の周端部の上に、ハウジングが配置されている。特許文献1には、そのような基板が開示されている。 2. Description of the Related Art Conventionally, an imaging device such as a camera module mounted on a cellular phone or the like generally includes an optical lens, a housing for housing and holding the optical lens, an imaging element such as a CMOS sensor or a CCD sensor, and an imaging element And an imaging element mounting substrate for electrically connecting to external wiring. The imaging element is mounted on a substantially central portion of the imaging element mounting substrate, and the housing is disposed on the peripheral end of the imaging element mounting substrate so as to surround the imaging element. Patent Document 1 discloses such a substrate.
特開2005-210628号公報JP 2005-210628 A
 携帯電話などに用いられる撮像装置は、携帯電話の小型化の要求に伴い、より一層の薄型化(低背化)が求められている。撮像装置の低背化の手段の一つとしては、撮像素子実装基板の薄型化が挙げられる。 With the demand for downsizing of a mobile phone, an imaging device used for a mobile phone or the like is required to be further reduced in thickness (reduced in height). One way to reduce the height of the imaging device is to reduce the thickness of the imaging element mounting substrate.
 ところで、撮像素子実装基板には、一般的に、金属板で裏面全面を補強した厚いリジット型配線回路基板と、金属板で裏面全体を補強されていない薄いフレキシブル型配線回路基板(FPC)との2種類が用いられている。 By the way, in the image pickup element mounting substrate, generally, a thick rigid wired circuit board in which the entire back surface is reinforced with a metal plate, and a thin flexible wired circuit board (FPC) in which the entire back surface is not reinforced with a metal plate. Two types are used.
 FPCは、金属板で補強しないため、リジッド型配線回路基板よりも薄型化が可能である。しかしながら、その反面、撮像素子および撮像素子実装基板の材料は、互いに異なるため、撮像素子および撮像素子実装基板を備える撮像ユニットを、高温および低温を繰り返す外部環境下に置くと、熱歪みが生じて、撮像ユニットに反りが生じる場合がある。その結果、撮像素子と光学レンズとの位置にずれが生じ、像が歪む不具合が生じる。 Since the FPC is not reinforced by a metal plate, it can be thinner than a rigid wired circuit board. However, since the materials of the imaging device and the imaging device mounting substrate are different from each other, thermal distortion occurs when the imaging unit including the imaging device and the imaging device mounting substrate is placed in an external environment in which high temperature and low temperature are repeated. In some cases, a warp may occur in the imaging unit. As a result, a shift occurs in the position of the imaging element and the optical lens, causing a problem that the image is distorted.
 そこで、FPCの総厚みや金属配線の厚みを非常に薄くしたFPCを用いることが検討される。このようなFPCは、熱応力が大幅に低下されているために、反りの発生を抑制することができる。 Therefore, it is considered to use an FPC in which the total thickness of the FPC and the thickness of the metal wiring are extremely reduced. Such an FPC can suppress the occurrence of warpage because the thermal stress is significantly reduced.
 ところで、撮像装置には、オートフォーカス素子や手振れ補正機構などのアクチュエータモジュールも配置される。このため、撮像装置全体として、より多くの電流を流す必要がある。 Incidentally, in the imaging device, actuator modules such as an auto-focusing element and a camera shake correction mechanism are also disposed. For this reason, it is necessary to supply more current as the entire imaging device.
 しかしながら、この撮像素子実装基板では、金属配線を薄くしているため、より多くの電流を流すことが困難となる。その結果、アクチュエータモジュールの配置(実装)ができない不具合が生じる。 However, in the imaging element mounting substrate, it is difficult to flow more current because the metal wiring is made thinner. As a result, the actuator module can not be disposed (mounted).
 本発明は、反りの発生を抑制し、アクチュエータモジュールを配置することができる基板積層体および撮像装置を提供することにある。 The present invention is to provide a substrate laminate and an imaging device in which occurrence of warpage can be suppressed and an actuator module can be disposed.
 本発明[1]は、撮像素子を実装するための撮像素子実装基板と、前記撮像素子よりも多くの電流が必要とされるアクチュエータモジュールと電気的に接続可能であり、前記撮像素子実装基板と電気的に接続されるフレキシブル配線回路基板とを備え、前記撮像素子実装基板は、金属配線を有し、前記金属配線の厚みが、12μm以下であり、前記撮像素子実装基板の総厚みが、60μm以下であり、前記フレキシブル配線回路基板の一部が、前記撮像素子実装基板において、前記撮像素子が実装される実装領域以外の領域に、配置されている、基板積層体を含んでいる。 The present invention [1] can be electrically connected to an imaging element mounting substrate for mounting an imaging element, and an actuator module requiring a larger amount of current than the imaging element, and the imaging element mounting substrate And a flexible printed circuit board electrically connected, the imaging element mounting board has a metal wiring, the thickness of the metal wiring is 12 μm or less, and the total thickness of the imaging element mounting board is 60 μm It is the following, and a part of the flexible printed circuit board includes a substrate laminate disposed in an area other than a mounting area where the imaging element is mounted on the imaging element mounting board.
 この基板積層体によれば、撮像素子実装基板の金属配線の厚みが、12μm以下であり、撮像素子実装基板の総厚みが、60μm以下であるため、撮像素子実装基板およびその金属配線が非常に薄い。そのため、撮像素子の熱膨張に合わせて、撮像素子実装基板は、柔軟に変形して、熱応力の発生を抑制することができる。結果、反りの発生を抑制することができる。 According to this substrate laminate, since the thickness of the metal wiring of the imaging device mounting substrate is 12 μm or less and the total thickness of the imaging device mounting substrate is 60 μm or less, the imaging device mounting substrate and the metal wiring thereof are very thin. Therefore, in accordance with the thermal expansion of the imaging device, the imaging device mounting board can be flexibly deformed to suppress the generation of thermal stress. As a result, the occurrence of warpage can be suppressed.
 また、フレキシブル配線回路基板の一部が、撮像素子実装基板において、撮像素子が実装される実装領域以外の領域に配置されている。そのため、アクチュエータモジュールは、撮像素子実装基板を介さずにフレキシブル配線回路基板に直接電気的に接続することができる。そのため、アクチュエータモジュールを基板積層体に配置および稼働させることができる。 Further, a part of the flexible printed circuit board is disposed in an area other than the mounting area where the imaging element is mounted on the imaging element mounting board. Therefore, the actuator module can be electrically connected directly to the flexible printed circuit board without passing through the imaging device mounting board. Therefore, the actuator module can be arranged and operated on the substrate stack.
 本発明[2]は、前記フレキシブル配線回路基板の前記一部は、前記撮像素子が実装される側の領域に配置されている、[1]に記載の基板積層体を含んでいる。 The present invention [2] includes the substrate laminate according to [1], wherein the part of the flexible printed circuit board is disposed in a region on which the imaging device is mounted.
 この基板積層体によれば、撮像素子実装基板に撮像素子を実装した撮像装置の低背化を図ることができる。 According to this substrate laminate, the height of the imaging device in which the imaging device is mounted on the imaging device mounting substrate can be reduced.
 本発明[3]は、前記フレキシブル配線回路基板の前記一部は、前記撮像素子実装基板の少なくとも一つの端部に沿って配置されている、[1]または[2]に記載の基板積層体を含んでいる。 The present invention [3] is the substrate laminate body according to [1] or [2], wherein the part of the flexible printed circuit board is disposed along at least one end of the imaging element mounting substrate Contains.
 この基板積層体によれば、撮像素子実装基板とフレキシブル配線回路基板との接触面積が大きいため、接合強度が高くなっている。その結果、基板積層体を曲げても、撮像素子実装基板とフレキシブル配線回路基板との分離破壊を抑制できる。 According to this substrate laminate, since the contact area between the imaging element mounting substrate and the flexible printed circuit board is large, the bonding strength is high. As a result, even when the substrate stack is bent, separation and breakage of the imaging device mounting substrate and the flexible printed circuit board can be suppressed.
 本発明[4]は、前記フレキシブル配線回路基板の前記一部は、前記実装領域の四方を囲うように配置されている、[1]~[3]のいずれか一項に記載の基板積層体を含んでいる。 The present invention [4] is the substrate laminate according to any one of [1] to [3], wherein the part of the flexible printed circuit board is disposed so as to surround four sides of the mounting area. Contains.
 この基板積層体によれば、撮像素子実装基板とフレキシブル配線回路基板との接触面積がさらに大きいため、接合強度がより一層高くなっている。その結果、基板積層体を曲げても、撮像素子実装基板とフレキシブル配線回路基板との分離破壊をより確実に抑制できる。 According to this substrate laminate, since the contact area between the imaging element mounting substrate and the flexible printed circuit board is larger, the bonding strength is further enhanced. As a result, even if the substrate stack is bent, separation and breakage of the imaging device mounting substrate and the flexible printed circuit can be more reliably suppressed.
 本発明[5]は、前記撮像素子が実装される側の領域に配置されるリジッド基板をさらに備える、[1]~[4]のいずれか一項に記載の基板積層体を含んでいる。 The present invention [5] includes the substrate laminate according to any one of [1] to [4], further including a rigid substrate disposed in the region on the side where the imaging device is mounted.
 この基板積層体によれば、硬いリジッド基板が撮像素子実装基板に配置されているため、撮像素子実装基板の反りをより確実に抑制することができる。 According to this substrate laminate, since the rigid rigid substrate is disposed on the imaging device mounting substrate, it is possible to more reliably suppress the warping of the imaging device mounting substrate.
 本発明[6]は、前記リジッド基板が、前記アクチュエータモジュールと電気的に接続可能である、[5]に記載の基板積層体を含んでいる。 The present invention [6] includes the substrate laminate according to [5], wherein the rigid substrate can be electrically connected to the actuator module.
 この基板積層体によれば、硬いリジッド基板にアクチュエータモジュールを直接実装することができるため、アクチュエータモジュールをリジッド基板付の基板積層体に安定して配置することができ、その結果、容易に実装することができる。 According to this substrate laminate, since the actuator module can be directly mounted on a hard rigid substrate, the actuator module can be stably disposed on the substrate laminate with the rigid substrate, and as a result, it can be easily mounted. be able to.
 本発明[7]は、前記撮像素子実装基板において、前記金属配線が配置される配線領域の等価弾性率が、5GPa以上、55GPa以下である、[1]~[6]のいずれか一項に記載の基板積層体を含んでいる。 The present invention [7] is any one of [1] to [6], wherein in the imaging element mounting substrate, the equivalent elastic modulus of the wiring area in which the metal wiring is disposed is 5 GPa or more and 55 GPa or less It contains the substrate laminate of the description.
 この基板積層体によれば、配線領域の弾性率が小さく、柔軟であるため、撮像素子実装基板の反りを良く確実に抑制することができる。 According to this substrate laminate, since the elastic modulus of the wiring region is small and flexible, it is possible to suppress the warp of the imaging element mounting substrate well and reliably.
 本発明[8]は、[1]~[7]のいずれか一項に記載の基板積層体と、前記基板積層体に実装される撮像素子と、前記基板積層体に実装され、前記撮像素子よりも多くの電流が必要とされるアクチュエータモジュールとを備える、撮像装置を含んでいる。 The present invention [8] comprises the substrate laminate according to any one of [1] to [7], an imaging device mounted on the substrate laminate, and the imaging device mounted on the substrate laminate. And an imaging device comprising an actuator module that requires more current.
 この撮像装置によれば、撮像装置の反りを抑制することができるとともに、アクチュエータモジュールを稼働させることができる。 According to this imaging device, warpage of the imaging device can be suppressed, and the actuator module can be operated.
 本発明の基板積層体および撮像装置は、撮像素子実装基板の反りの発生を抑制することができる。また、より多くの電流を流すことができるため、アクチュエータモジュールを実装および稼働することができる。 The substrate laminate and the imaging device of the present invention can suppress the occurrence of warpage of the imaging element mounting substrate. In addition, since more current can flow, the actuator module can be mounted and operated.
図1A-Bは、本発明の基板積層体の第1実施形態を示し、図1Aは、平面図、図1Bは、図1AのA-Aにおける断面図を示す。1A-B show a first embodiment of a substrate laminate according to the present invention, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along AA in FIG. 1A. 図2は、図1Aに示す基板積層体の実装基板の平面図を示す。FIG. 2 shows a plan view of a mounting substrate of the substrate laminate shown in FIG. 1A. 図3は、図2AのA-Aにおける断面図を示す。FIG. 3 shows a cross-sectional view taken along the line AA of FIG. 2A. 図4A-Bは、図1Aに示す基板積層体の断面図であり、図4Aは、B-Bにおける断面図、図4Bは、C-Cにおける断面図を示す。4A-B are cross-sectional views of the substrate laminate shown in FIG. 1A, FIG. 4A is a cross-sectional view of B-B, and FIG. 4B is a cross-sectional view of C-C. 図5A-Bは、図1Aに示す基板積層体を備える撮像ユニットであり、図5Aは、平面図、図5Bは、図5AのA-Aにおける断面図を示す。5A-B show an imaging unit provided with the substrate laminate shown in FIG. 1A, FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view taken along AA in FIG. 5A. 図6A-Bは、図1Aに示す基板積層体を備える撮像装置であり、図6Aは、平面図、図6Bは、図6AのA-Aにおける断面図を示す。6A-B show an imaging device provided with the substrate laminate shown in FIG. 1A, FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along AA in FIG. 6A. 図7A-Bは、本発明の基板積層体の第2実施形態(周辺領域の下側に接続基板を備える形態)を備える撮像装置を示し、図7Aは、平面図、図7Bは、図7AのA-Aにおける断面図を示す。7A-B show an imaging device provided with a second embodiment of the substrate laminate of the present invention (a form in which a connection substrate is provided below the peripheral region), FIG. 7A is a plan view, and FIG. 7B is FIG. 7A. Sectional view on AA of FIG. 図8A-Bは、本発明の基板積層体の第3実施形態(リジット基板を備える形態)を備える撮像装置を示し、図8Aは、平面図、図8Bは、図8AのA-Aにおける断面図を示す。8A-B show an imaging device provided with a third embodiment (a form provided with a rigid substrate) of the substrate laminate of the present invention, FIG. 8A is a plan view, and FIG. 8B is a cross section taken along AA of FIG. Figure shows. 図9A-Bは、本発明の基板積層体の第3実施形態の変形例(リジッド基板が、接続基板の上側に配置される形態)を備える撮像装置を示し、図9Aは、平面図、図9Bは、図9AのA-Aにおける断面図を示す。FIG. 9A-B shows an imaging device provided with a modification of the third embodiment of the substrate laminate of the present invention (a form in which a rigid substrate is disposed on the upper side of a connection substrate), and FIG. 9A is a plan view, a diagram 9B shows a cross-sectional view taken along line AA of FIG. 9A. 図10は、本発明の基板積層体の第4実施形態(実装基板の一つの端部に沿って接続基板が配置されている形態)の平面図を示す。FIG. 10 is a plan view of a fourth embodiment of the substrate laminate according to the present invention (a form in which a connection substrate is disposed along one end of a mounting substrate). 図11は、本発明の基板積層体の第5実施形態(実装基板の2つの端部に沿って接続基板が配置されている形態)の平面図を示す。FIG. 11 is a plan view of a fifth embodiment of the substrate laminate according to the present invention (a form in which connection substrates are arranged along the two ends of the mounting substrate). 図12は、本発明の基板積層体の第6実施形態(実装基板の3つの端部に沿って接続基板が配置されている形態)の平面図を示す。FIG. 12 is a plan view of a sixth embodiment of the substrate laminate according to the present invention (a form in which connection substrates are arranged along the three ends of the mounting substrate).
 図1Aにおいて、紙面左右方向は、前後方向(第1方向、長手方向)であって、紙面左側が前側(第1方向一方側)、紙面右側が後側(第1方向他方側)である。紙面上下方向は、左右方向(第1方向と直交する第2方向、幅方向)であって、紙面上側が左側(第2方向一方側)、紙面下側が右側(第2方向他方側)である。紙面紙厚方向は、上下方向(厚み方向、第1方向および第2方向と直交する第3方向)であって、紙面手前側が上側(厚み方向一方側、第3方向一方側)、紙面奥側が下側(厚み方向他方側、第3方向他方側)である。具体的には、各図の方向矢印に準拠する。 In FIG. 1A, the left-right direction in the drawing is the front-rear direction (first direction, longitudinal direction), the left side in the drawing is the front side (one side in the first direction), and the right side in the drawing is the rear side (the other side in the first direction). The vertical direction of the drawing is the left-right direction (the second direction perpendicular to the first direction, width direction), the upper side of the drawing is the left side (one side in the second direction), and the lower side of the drawing is the right side (the other side in the second direction). . The paper thickness direction is the vertical direction (thickness direction, third direction orthogonal to the first direction and the second direction), and the paper front side is the upper side (thickness direction one side, third direction one side), and the paper rear side is It is the lower side (thickness direction other side, third direction other side). Specifically, it conforms to the directional arrow in each figure.
  <第1実施形態>
 1.基板積層体
 図1A-図4Bを参照して、本発明の基板積層体の第1実施形態を説明する。
First Embodiment
1. Substrate Stack A first embodiment of a substrate stack according to the present invention will be described with reference to FIGS. 1A-4B.
 図1Aに示す第1実施形態の基板積層体1は、撮像素子41(後述)を実装するための配線回路基板であって、撮像素子41を未だ備えていない。基板積層体1は、撮像素子実装基板2と、フレキシブル配線回路基板の一例としての外部機器接続フレキシブル配線回路基板3と、コネクタ4とを備える。 The substrate laminate 1 of the first embodiment shown in FIG. 1A is a wired circuit board for mounting an imaging device 41 (described later), and does not have the imaging device 41 yet. The substrate laminate 1 includes an imaging element mounting substrate 2, an external device connection flexible wiring circuit substrate 3 as an example of a flexible wiring circuit substrate, and a connector 4.
 (撮像素子実装基板)
 撮像素子実装基板2(以下、実装基板と略する。)は、撮像素子41を実装するためのフレキシブル配線回路基板である。図1A-Bおよび図2に示すように、前後方向および左右方向(面方向)に延びる平面視略矩形の平板形状(シート形状)を有する。
(Image sensor mounting board)
The imaging device mounting board 2 (hereinafter, referred to as mounting board) is a flexible printed circuit board for mounting the imaging device 41. As shown in FIGS. 1A-B and 2, it has a flat plate shape (sheet shape) having a substantially rectangular shape in plan view extending in the front-rear direction and the left-right direction (plane direction).
 実装基板2は、図2に示すように、実装領域5、および、周辺領域6に区画される。 The mounting board 2 is divided into a mounting area 5 and a peripheral area 6 as shown in FIG.
 実装領域5は、撮像素子41が配置される領域である。すなわち、実装領域5は、撮像素子41が実装基板2に配置された場合において、厚み方向に投影したときに、撮像素子41と重複する領域である。具体的には、実装領域5は、図1の仮想線に示すように、実装基板2の平面視略中央において、略矩形状に区画される。実装領域5の外周部には、撮像素子41と電気的に接続するための撮像素子接続端子12(後述)が複数配置されている。実装領域5は、ステンレスなどの金属支持板を有しない。 The mounting area 5 is an area in which the imaging device 41 is disposed. That is, the mounting area 5 is an area overlapping with the imaging element 41 when projected in the thickness direction when the imaging element 41 is disposed on the mounting substrate 2. Specifically, the mounting area 5 is divided into a substantially rectangular shape at the approximate center of the mounting substrate 2 in plan view, as indicated by the phantom line in FIG. 1. A plurality of imaging element connection terminals 12 (described later) for electrically connecting to the imaging element 41 are disposed in the outer peripheral portion of the mounting area 5. The mounting area 5 does not have a metal support plate such as stainless steel.
 実装基板2において、周辺領域6は、実装領域5以外の領域である。また、周辺領域6は、ハウジング42(後述)、および、外部機器接続フレキシブル配線回路基板3が配置される領域である。すなわち、周辺領域6は、ハウジング42(後述)が実装基板2に配置された場合において、厚み方向に投影したときに、ハウジング42および外部機器接続フレキシブル配線回路基板3と重複する領域である(実装領域3を除く)。具体的には、周辺領域6は、外形および内形がともに平面視略矩形状である略矩形枠状に形成されており、その内端縁は、実装領域5の外端縁と連続する。周辺領域6の後端縁には、外部機器接続フレキシブル配線回路基板3と電気的に接続するための接続基板接続端子13(後述)が複数配置されている。 In the mounting substrate 2, the peripheral region 6 is a region other than the mounting region 5. The peripheral area 6 is an area in which a housing 42 (described later) and the external device connection flexible printed circuit board 3 are disposed. That is, when the housing 42 (described later) is disposed on the mounting substrate 2, the peripheral region 6 is a region overlapping the housing 42 and the external device connection flexible printed circuit board 3 when projected in the thickness direction (mounting Except area 3). Specifically, the peripheral region 6 is formed in a substantially rectangular frame shape whose outer shape and inner shape are both substantially rectangular in a plan view, and the inner end edge thereof is continuous with the outer end edge of the mounting region 5. A plurality of connection board connection terminals 13 (described later) for electrically connecting with the external device connection flexible printed circuit board 3 are arranged at the rear end edge of the peripheral region 6.
 実装基板2は、図3に示すように、第1ベース絶縁層7と、第1導体パターン8と、第1カバー絶縁層9とを備える。 As shown in FIG. 3, the mounting substrate 2 includes the first base insulating layer 7, the first conductor pattern 8, and the first cover insulating layer 9.
 第1ベース絶縁層7は、実装基板2の最上層に配置されている。第1ベース絶縁層7は、実装基板2の外形をなし、平面視略矩形状に形成されている。第1ベース絶縁層7の上面は、平坦となるように形成されている。第1ベース絶縁層7には、複数の撮像素子接続端子開口部10、および、複数の接続基板接続端子開口部11が形成されている。 The first base insulating layer 7 is disposed on the top layer of the mounting substrate 2. The first base insulating layer 7 forms the outer shape of the mounting substrate 2 and is formed in a substantially rectangular shape in plan view. The upper surface of the first base insulating layer 7 is formed to be flat. A plurality of imaging element connection terminal openings 10 and a plurality of connection board connection terminal openings 11 are formed in the first base insulating layer 7.
 複数の撮像素子接続端子開口部10(以下、第1開口部と略する。)は、撮像素子接続端子12を上面から露出するための開口部である。複数の第1開口部10は、実装領域5の周端部に、矩形枠状となるように、互いに間隔を隔てて整列配置されている。第1開口部10は、第1ベース絶縁層7を厚み方向に貫通し、平面視略円形状を有する。第1開口部10は、上側に向かうに従って断面積が小さくなるテーパ形状を有する。 The plurality of imaging element connection terminal openings 10 (hereinafter, abbreviated as first openings) are openings for exposing the imaging element connection terminals 12 from the top surface. The plurality of first openings 10 are arranged at intervals along the circumferential edge of the mounting area 5 so as to form a rectangular frame. The first opening 10 penetrates the first insulating base layer 7 in the thickness direction, and has a substantially circular shape in plan view. The first opening 10 has a tapered shape in which the cross-sectional area decreases in the upward direction.
 複数の接続基板接続端子開口部11(以下、第2開口部と略する。)は、接続基板接続端子13を上面から露出するための開口部である。複数の第2開口部11は、周辺領域6の後端縁に、左右方向に互いに間隔を隔てて整列配置されている。第2開口部11は、第1ベース絶縁層7を厚み方向に貫通し、平面視略矩形状(長方形状)を有する。第2開口部11は、平面視において、周辺領域6の後端縁から前側に向かって延びるように、形成されている。 The plurality of connection substrate connection terminal openings 11 (hereinafter, abbreviated as second openings) are openings for exposing the connection substrate connection terminals 13 from the top surface. The plurality of second openings 11 are arranged at the rear end edge of the peripheral area 6 at intervals in the left-right direction. The second opening 11 penetrates the first insulating base layer 7 in the thickness direction, and has a substantially rectangular shape (rectangular shape) in plan view. The second opening 11 is formed to extend forward from the rear end edge of the peripheral region 6 in a plan view.
 第1ベース絶縁層7は、絶縁性材料から形成されている。絶縁性材料としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂、ポリエーテルニトリル樹脂、ポリエーテルスルホン樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリ塩化ビニル樹脂などの合成樹脂などが挙げられる。好ましくは、第1ベース絶縁層7は、ポリイミド樹脂から形成されている。 The first base insulating layer 7 is formed of an insulating material. Examples of the insulating material include synthetic resins such as polyimide resin, polyamideimide resin, acrylic resin, polyether nitrile resin, polyether sulfone resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyvinyl chloride resin and the like. Preferably, the first base insulating layer 7 is formed of polyimide resin.
 第1ベース絶縁層7の弾性率は、例えば、1GPa以上、好ましくは、5GPa以上であり、また、例えば、20GPa以下、好ましくは、15GPa以下である。絶縁層などの樹脂層の弾性率は、例えば、動的粘弾性測定により、JIS K7244やISO 6721に準拠して測定することができる。 The elastic modulus of the first insulating base layer 7 is, for example, 1 GPa or more, preferably 5 GPa or more, and for example, 20 GPa or less, preferably 15 GPa or less. The elastic modulus of a resin layer such as an insulating layer can be measured, for example, by dynamic viscoelasticity measurement, in accordance with JIS K7244 or ISO 6721.
 第1ベース絶縁層7の熱膨張係数は、例えば、1ppm/K以上、好ましくは、5ppm/K以上であり、また、例えば、50ppm/K以下、好ましくは、30ppm/K以下である。絶縁層などの樹脂層の熱膨張係数は、面方向の線熱膨張係数であって、例えば、熱機械分析により、JIS K7197の条件にて測定することができる。 The thermal expansion coefficient of the first base insulating layer 7 is, for example, 1 ppm / K or more, preferably 5 ppm / K or more, and for example, 50 ppm / K or less, preferably 30 ppm / K or less. The thermal expansion coefficient of the resin layer such as the insulating layer is a linear thermal expansion coefficient in the surface direction, and can be measured, for example, by thermal mechanical analysis under the condition of JIS K7197.
 第1ベース絶縁層7の厚みTは、例えば、1μm以上、好ましくは、5μm以上であり、また、例えば、30μm以下、好ましくは、10μm以下、より好ましくは、8μm以下である。 The thickness T 1 of the first insulating base layer 7, for example, 1 [mu] m or more, preferably not less 5μm or more, and is, for example, 30 [mu] m or less, preferably, 10 [mu] m or less, more preferably 8μm or less.
 第1導体パターン8は、第1ベース絶縁層7の下面と接触するように、第1ベース絶縁層7の下側に設けられている。第1導体パターン8は、複数の撮像素子接続端子12、複数の接続基板接続端子13、および、複数の第1金属配線14を備える。 The first conductor pattern 8 is provided below the first insulating base layer 7 so as to be in contact with the lower surface of the first insulating base layer 7. The first conductor pattern 8 includes a plurality of imaging element connection terminals 12, a plurality of connection board connection terminals 13, and a plurality of first metal wires 14.
 複数の撮像素子接続端子12は、図2に示すように、実装領域5の周端部に、矩形枠状となるように、互いに間隔を隔てて整列配置されている。すなわち、複数の撮像素子接続端子12は、実装される撮像素子41の複数の端子46(後述)に対応するように設けられている。 As shown in FIG. 2, the plurality of imaging element connection terminals 12 are arranged at intervals on the circumferential end of the mounting area 5 so as to form a rectangular frame. That is, the plurality of imaging element connection terminals 12 are provided to correspond to the plurality of terminals 46 (described later) of the imaging element 41 to be mounted.
 撮像素子接続端子12は、平面視略円形状を有する。撮像素子接続端子12は、第1開口部10内に配置され、側断面視において、上側に凸となるように形成されている。撮像素子接続端子12の内側部の上面は、第1開口部10から露出しており、第1ベース絶縁層7の上面と面一となるように形成されている。 The imaging element connection terminal 12 has a substantially circular shape in plan view. The imaging element connection terminal 12 is disposed in the first opening 10, and is formed to be convex upward in a side cross sectional view. The upper surface of the inner portion of the imaging element connection terminal 12 is exposed from the first opening 10 and is formed flush with the upper surface of the first insulating base layer 7.
 複数の接続基板接続端子13は、周辺領域6の後端縁に、左右方向に互いに間隔を隔てて整列配置されている。すなわち、複数の接続基板接続端子13は、複数の実装基板接続端子24(後述)と対応するように設けられている。接続基板接続端子13は、平面視略矩形状(長方形状)を有する。接続基板接続端子13は、第2開口部11内に配置され、その上面は、第2開口部11から露出している。なお、図2では、複数の接続基板接続端子13のうち一部(左右方向中央部)を省略している。 The plurality of connection board connection terminals 13 are arranged at the rear end edge of the peripheral area 6 at intervals in the left-right direction. That is, the plurality of connection board connection terminals 13 are provided to correspond to the plurality of mounting board connection terminals 24 (described later). The connection board connection terminal 13 has a substantially rectangular shape (rectangular shape) in plan view. The connection substrate connection terminal 13 is disposed in the second opening 11, and the upper surface thereof is exposed from the second opening 11. In FIG. 2, a part of the plurality of connection board connection terminals 13 (central part in the left-right direction) is omitted.
 複数の第1金属配線14は、図3に示すように、複数の第1接続配線15および複数のグランド配線16を備える。 As shown in FIG. 3, the plurality of first metal wires 14 include the plurality of first connection wires 15 and the plurality of ground wires 16.
 複数の第1接続配線15は、複数の撮像素子接続端子12(または複数の接続基板接続端子13)に対応するように設けられている。具体的には、第1接続配線15は、撮像素子接続端子12と接続基板接続端子13とを接続するように、これらと一体的に形成されている。すなわち、第1接続配線15の一端は、撮像素子接続端子12と連続し、第1接続配線15の他端は、接続基板接続端子13と連続して、これらを電気的に接続している。 The plurality of first connection wirings 15 are provided to correspond to the plurality of imaging element connection terminals 12 (or the plurality of connection substrate connection terminals 13). Specifically, the first connection wiring 15 is integrally formed with the imaging element connection terminal 12 and the connection substrate connection terminal 13 so as to connect them. That is, one end of the first connection wiring 15 is continuous with the imaging element connection terminal 12, and the other end of the first connection wiring 15 is continuous with the connection substrate connection terminal 13 to electrically connect them.
 複数のグランド配線16は、複数の第1接続配線15に対応するように設けられている。具体的には、複数のグランド配線16は、複数の第1接続配線15の外側に、これらに沿うように設けられている。グランド配線16の一端には、図示しないグランド端子が一体的に接続されている。 The plurality of ground wirings 16 are provided to correspond to the plurality of first connection wirings 15. Specifically, the plurality of ground wirings 16 are provided outside the plurality of first connection wirings 15 so as to be along them. A ground terminal (not shown) is integrally connected to one end of the ground wiring 16.
 なお、実装基板2を厚み方向に投影したときに、第1金属配線14(金属配線)が存在する平面視または底面視の領域を、配線領域17とする。 When the mounting substrate 2 is projected in the thickness direction, a region in plan view or bottom view where the first metal wiring 14 (metal wiring) exists is taken as a wiring region 17.
 第1導体パターン8の材料としては、例えば、銅、銀、金、ニッケルまたはそれらを含む合金、半田などの金属材料が挙げられる。好ましくは、銅が挙げられる。 Examples of the material of the first conductor pattern 8 include metal materials such as copper, silver, gold, nickel or alloys containing them, and solder. Preferably, copper is mentioned.
 第1導体パターン8の弾性率は、例えば、50GPa以上、好ましくは、100GPa以上であり、また、例えば、200GPa以下、好ましくは、150GPa以下である。導体パターンなどの金属の弾性率は、例えば、引っ張り試験測定により、JIS Z 2241に準拠して測定することができる。 The elastic modulus of the first conductor pattern 8 is, for example, 50 GPa or more, preferably 100 GPa or more, and for example, 200 GPa or less, preferably 150 GPa or less. The elastic modulus of a metal such as a conductor pattern can be measured, for example, by tensile test measurement in accordance with JIS Z 2241.
 第1導体パターン8の熱膨張係数は、例えば、1ppm/K以上、好ましくは、5ppm/K以上であり、また、例えば、30ppm/K以下、好ましくは、20ppm/K以下である。導体パターンなどの金属の熱膨張係数は、面方向の線熱膨張係数であって、例えば、熱機械分析装置や光走査式測定装置により、JIS Z 2285に準拠して測定することができる。 The thermal expansion coefficient of the first conductor pattern 8 is, for example, 1 ppm / K or more, preferably 5 ppm / K or more, and for example, 30 ppm / K or less, preferably 20 ppm / K or less. The thermal expansion coefficient of a metal such as a conductor pattern is a linear thermal expansion coefficient in the surface direction, and can be measured, for example, by a thermomechanical analyzer or an optical scanning type measuring device in accordance with JIS Z 2285.
 第1導体パターン8(第1金属配線14、各端子12、13)の厚みT(ひいては、金属配線の総厚み)は、実装時の実装基板2の反りを抑制する観点から、12μm以下、好ましくは、8μm以下、より好ましくは、5μm以下である。また、取扱い性の観点から、例えば、1μm以上、好ましくは、3μm以上である。 The thickness T 2 of the first conductor pattern 8 (the first metal wiring 14 and each of the terminals 12 and 13) (thus, the total thickness of the metal wiring) is 12 μm or less, from the viewpoint of suppressing the warpage of the mounting substrate 2 during mounting. Preferably, it is 8 μm or less, more preferably 5 μm or less. Also, from the viewpoint of handleability, the thickness is, for example, 1 μm or more, preferably 3 μm or more.
 第1金属配線14の幅は、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 The width of the first metal wiring 14 is, for example, 5 μm or more, preferably 10 μm or more, and for example, 100 μm or less, preferably 50 μm or less.
 第1カバー絶縁層9は、第1導体パターン8を被覆するように、第1ベース絶縁層7および第1導体パターン8の下側に設けられている。すなわち、第1カバー絶縁層9は、第1導体パターン8の下面および側面、および、第1導体パターン8から露出する第1ベース絶縁層7の下面と接触するように、配置されている。第1カバー絶縁層9の外形は、第2開口部11の形成部分を除いて、第1ベース絶縁層7の外形と略同一となるように形成されている。 The first cover insulating layer 9 is provided below the first base insulating layer 7 and the first conductor pattern 8 so as to cover the first conductor pattern 8. That is, the first cover insulating layer 9 is disposed in contact with the lower surface and the side surface of the first conductor pattern 8 and the lower surface of the first base insulating layer 7 exposed from the first conductor pattern 8. The outer shape of the first cover insulating layer 9 is formed to be substantially the same as the outer shape of the first base insulating layer 7 except for the portion where the second opening 11 is formed.
 第1カバー絶縁層9は、第1ベース絶縁層7で上記した絶縁性材料と同様の絶縁性材料から形成され、好ましくは、ポリイミド樹脂から形成されている。 The first cover insulating layer 9 is formed of an insulating material similar to the above-described insulating material in the first base insulating layer 7, and is preferably formed of a polyimide resin.
 第1カバー絶縁層9の弾性率は、例えば、1GPa以上、好ましくは、5GPa以上であり、また、例えば、20GPa以下、好ましくは、15GPa以下である。 The elastic modulus of the first cover insulating layer 9 is, for example, 1 GPa or more, preferably 5 GPa or more, and for example, 20 GPa or less, preferably 15 GPa or less.
 第1カバー絶縁層9の熱膨張係数は、例えば、1ppm/K以上、好ましくは、5ppm/K以上であり、また、例えば、50ppm/K以下、好ましくは、30ppm/K以下である。 The thermal expansion coefficient of the first cover insulating layer 9 is, for example, 1 ppm / K or more, preferably 5 ppm / K or more, and for example, 50 ppm / K or less, preferably 30 ppm / K or less.
 第1カバー絶縁層9の厚みTは、例えば、1μm以上、好ましくは、2μm以上であり、また、例えば、30μm以下、好ましくは、10μm以下、より好ましくは、5μm以下である。 The thickness T 3 of the first insulating cover layer 9, for example, 1 [mu] m or more, preferably not 2μm or more, and is, for example, 30 [mu] m or less, preferably, 10 [mu] m or less, more preferably 5μm or less.
 実装基板2の配線領域17における等価弾性率は、例えば、5GPa以上、好ましくは、10GPa以上であり、また、例えば、55GPa以下、好ましくは、50GPa以下、より好ましくは、40GPa以下、さらに好ましくは、30GPa以下、とりわけ好ましくは、20GPa以下である。配線領域17の等価弾性率を上記上限以下とすることにより、実装基板2の反りの発生を抑制することができる。また、配線領域17の等価弾性率を上記下限以上とすることにより、基板積層体1の取り扱い性に優れる。 The equivalent elastic modulus in the wiring area 17 of the mounting substrate 2 is, for example, 5 GPa or more, preferably 10 GPa or more, and for example, 55 GPa or less, preferably 50 GPa or less, more preferably 40 GPa or less, more preferably, It is 30 GPa or less, particularly preferably 20 GPa or less. By making the equivalent elastic modulus of the wiring region 17 equal to or less than the above-described upper limit, the occurrence of warpage of the mounting substrate 2 can be suppressed. Further, by setting the equivalent elastic modulus of the wiring region 17 to the above lower limit or more, the handleability of the substrate laminate 1 is excellent.
 等価弾性率Dは、配線領域17を構成する各層(例えば、第1ベース絶縁層7、第1金属配線14、第1カバー絶縁層9)の弾性率のそれぞれに、その各層の厚み分率を掛けて、これらを合算したものである。具体的には、例えば、図2~図3に示す実施形態では、下記の計算式にて得られる。 The equivalent elastic modulus D is obtained by dividing the thickness fraction of each layer into the elastic modulus of each layer (for example, the first base insulating layer 7, the first metal wiring 14, and the first cover insulating layer 9) constituting the wiring region 17. They are multiplied and summed up. Specifically, for example, in the embodiment shown in FIG. 2 to FIG. 3, it can be obtained by the following formula.
 D={D×T+D×T+D×T}/{T+T+T}
は、第1ベース絶縁層7の弾性率を示し、Tは、第1ベース絶縁層7の厚みを示す。
は、第1金属配線14の弾性率を示し、Tは、第1金属配線14の厚みを示す。
は、第1カバー絶縁層9の弾性率を示し、Tは、第1カバー絶縁層9の厚みを示す。
D = {D 1 × T 1 + D 2 × T 2 + D 3 × T 3 } / {T 1 + T 2 + T 3 }
D 1 represents a modulus of elasticity of the first insulating base layer 7, T 1 indicates the thickness of the first insulating base layer 7.
D 2 represents the elastic modulus of the first metal wiring 14, T 2 indicates the thickness of the first metal interconnect 14.
D 3 represents the elastic modulus of the first insulating cover layer 9, T 3 represents a thickness of the first insulating cover layer 9.
 なお、上記等価弾性率Dは、第1層および第2層が積層された平行平板モデルにおけるVoigt則:E=V+V(Eは、全体のヤング率、Vは、第1層の体積、Eは、第1層の材料のヤング率、Vは、第2層の体積、Eは、第2層の材料のヤング率を示す。)から近似的に導出される。 The above equivalent elastic modulus D is the Voigt rule in a parallel plate model in which the first layer and the second layer are stacked: E y = V 1 E 1 + V 2 E 2 (E y is the overall Young's modulus, V 1 Is the volume of the first layer, E 1 is the Young's modulus of the material of the first layer, V 2 is the volume of the second layer, and E 2 is the Young's modulus of the material of the second layer. Derived from
 配線領域17において、絶縁層の合計厚みに対する金属の合計厚みの割合、すなわち、第1ベース絶縁層7および第1カバー絶縁層9の合計厚みに対する第1金属配線14の厚みの割合(T/(T+T))が、例えば、0.05以上、好ましくは、0.10以上、より好ましくは、0.20以上であり、また、例えば、0.90以下、好ましくは、0.70以下、より好ましくは、0.50以下、さらに好ましくは、0.20以下である。上記割合を上記範囲とすることにより、等価弾性率を適正な範囲(例えば、5GPa以上、55GPa以下)に容易に調整することができ、その結果、反りの発生をより確実に抑制することができる。 In the wiring region 17, the ratio of the total thickness of the metal to the total thickness of the insulating layer, ie, the ratio of the thickness of the first metal wiring 14 to the total thickness of the first base insulating layer 7 and the first cover insulating layer 9 (T 2 / (T 1 + T 3 )) is, for example, 0.05 or more, preferably 0.10 or more, more preferably 0.20 or more, and for example, 0.90 or less, preferably 0.70. Hereinafter, more preferably, it is 0.50 or less, more preferably, 0.20 or less. By setting the ratio to the above range, the equivalent elastic modulus can be easily adjusted to an appropriate range (for example, 5 GPa or more and 55 GPa or less), and as a result, the occurrence of warpage can be suppressed more reliably. .
 実装基板2の総厚み(最大厚み)は、反りの抑制および取扱い性の観点から、60μm以下、好ましくは、40μm以下、より好ましくは、30μm以下、さらに好ましくは、20μm以下、とりわけ好ましくは、10μm以下であり、また、例えば、1μm以上、好ましくは、5μm以上である。 The total thickness (maximum thickness) of the mounting substrate 2 is 60 μm or less, preferably 40 μm or less, more preferably 30 μm or less, still more preferably 20 μm or less, particularly preferably 10 μm, from the viewpoint of warpage suppression and handleability. Or less, and for example, 1 μm or more, preferably 5 μm or more.
 実装基板2は、例えば、上面が平坦な金属支持基板(例えば、ステンレス基板)を用意する工程、その上面に、各開口部(10、11)が形成された第1ベース絶縁層7を形成する工程、その第1ベース絶縁層7の上面および各開口部から露出する金属支持基板の上面に第1導体パターン8を形成する工程、第1ベース絶縁層7および第1導体パターン8を被覆するように第1カバー絶縁層9を形成する工程、金属支持基板を除去する工程により、製造することができる。そして、製造した実装基板2を上下反転することにより、図3に示す実装基板2を得る。 In the mounting substrate 2, for example, a step of preparing a metal supporting substrate (for example, a stainless steel substrate) having a flat upper surface, and forming the first insulating base layer 7 in which each opening (10, 11) is formed on the upper surface Forming the first conductor pattern 8 on the upper surface of the first base insulating layer 7 and the upper surface of the metal supporting substrate exposed from the openings, and covering the first base insulating layer 7 and the first conductor pattern 8 It can manufacture by the process of forming the 1st cover insulating layer 9, and the process of removing a metal support substrate. Then, the manufactured mounting substrate 2 is turned upside down to obtain the mounting substrate 2 shown in FIG.
 (外部機器接続フレキシブル配線回路基板)
 外部機器接続フレキシブル配線回路基板3(以下、接続基板と略する)は、実装基板2とマザーボードなどの外部機器(図示せず)とを電気的に接続するためのフレキブル配線回路基板、かつ、アクチュエータモジュール45(後述)と外部機器とを電気的とを電気的に接続するためのフレキブル配線回路基板である。
(External device connection flexible wired circuit board)
External device connection A flexible printed circuit board 3 (hereinafter referred to as a connection board) is a flexible printed circuit board for electrically connecting the mounting board 2 and an external device (not shown) such as a motherboard, and an actuator It is a flexible printed circuit board for electrically connecting a module 45 (described later) and an external device electrically.
 接続基板3は、図1A-Bに示すように、実装基板配置領域20、接続領域21、および、コネクタ領域22に区画される。 The connection substrate 3 is divided into a mounting substrate arrangement region 20, a connection region 21 and a connector region 22 as shown in FIGS. 1A-B.
 実装基板配置領域20(以下、配置領域と略する。)は、接続基板3の前端部に配置されており、厚み方向に投影したときに、実装基板2と重複する領域である。配置領域20は、外形および内形がともに平面視略矩形状である略矩形枠状を有する。すなわち、配置領域20は、平面視略矩形状に形成され、その中央部において、厚み方向に貫通する平面視略矩形状の実装領域開口部23が形成されている。配置領域20の外形は、実装基板2の外形よりも僅かに小さく、その内形は、実装基板2の実装領域5よりも僅かに大きい。配置領域20の後端部には、実装基板2と電気的に接続するための実装基板接続端子24(後述)、および、アクチュエータモジュール45と電気的に接続するためのモジュール接続端子25(後述)がそれぞれ複数配置されている。 The mounting substrate placement area 20 (hereinafter referred to as a placement area) is disposed at the front end of the connection substrate 3 and is an area overlapping the mounting substrate 2 when projected in the thickness direction. The arrangement area 20 has a substantially rectangular frame shape whose outer shape and inner shape are both substantially rectangular in a plan view. That is, the placement area 20 is formed in a substantially rectangular shape in a plan view, and a mounting area opening 23 having a substantially rectangular shape in a plan view is formed in the central portion thereof in the thickness direction. The outer shape of the placement area 20 is slightly smaller than the outer shape of the mounting substrate 2, and the inner shape thereof is slightly larger than the mounting region 5 of the mounting substrate 2. A mounting substrate connection terminal 24 (described later) for electrically connecting with the mounting substrate 2 and a module connection terminal 25 (described later) for electrically connecting with the actuator module 45 are provided at the rear end of the arrangement region 20. A plurality of each are arranged.
 接続領域21は、接続基板3の前後方向中央に配置されており、前後方向に延びる平面視略矩形状を有する。接続領域21の前端は、配置領域20の後端に連続し、接続領域21の後端は、コネクタ領域22に連続する。接続領域21には、前後方向に延びる複数の第2金属接続配線30(後述)が左右方向に間隔を隔てて配置されている。 The connection region 21 is disposed at the center of the connection substrate 3 in the front-rear direction, and has a substantially rectangular shape in plan view extending in the front-rear direction. The front end of the connection area 21 is continuous with the rear end of the placement area 20, and the rear end of the connection area 21 is continuous with the connector area 22. In the connection region 21, a plurality of second metal connection wires 30 (described later) extending in the front-rear direction are arranged at intervals in the left-right direction.
 コネクタ領域22は、接続基板3の後端部に配置されており、平面略矩形状を有する。コネクタ領域22の前端は、接続領域21の後端に連続する。 The connector region 22 is disposed at the rear end of the connection substrate 3 and has a substantially rectangular planar shape. The front end of the connector area 22 is continuous with the rear end of the connection area 21.
 コネクタ領域22には、コネクタ4と電気的に接続するためのコネクタ接続端子32が複数配置されている。 A plurality of connector connection terminals 32 for electrically connecting to the connector 4 are arranged in the connector area 22.
 接続基板3は、図4A-Bに示すように、第2ベース絶縁層26、第2導体パターン27、および、第2カバー絶縁層28を備える。 The connection substrate 3 includes a second base insulating layer 26, a second conductor pattern 27, and a second cover insulating layer 28, as shown in FIGS. 4A-B.
 第2ベース絶縁層26は、接続基板3の最下層に配置されている。第2ベース絶縁層26は、接続基板3の外形をなし、平面視略矩形状に形成されている。第2ベース絶縁層26には、配置領域20において、複数の実装基板接続端子開口部29が形成されている。 The second base insulating layer 26 is disposed in the lowermost layer of the connection substrate 3. The second base insulating layer 26 has an outer shape of the connection substrate 3 and is formed in a substantially rectangular shape in plan view. A plurality of mounting substrate connection terminal openings 29 are formed in the second base insulating layer 26 in the arrangement region 20.
 複数の実装基板接続端子開口部29(以下、第3開口部と略する。)は、実装基板接続端子24を下面から露出するための開口部である。複数の第3開口部29は、配置領域20の後端部の幅方向中央において、複数の第2開口部11に対応するように、左右方向に互いに間隔を隔てて整列配置されている。第3開口部29は、第2ベース絶縁層26を厚み方向に貫通し、平面視略矩形状(長方形状)を有する。 The plurality of mounting substrate connection terminal openings 29 (hereinafter, referred to as third openings) are openings for exposing the mounting substrate connection terminals 24 from the lower surface. The plurality of third openings 29 are aligned at intervals in the left-right direction so as to correspond to the plurality of second openings 11 at the center in the width direction of the rear end portion of the arrangement region 20. The third opening 29 penetrates the second insulating base layer 26 in the thickness direction, and has a substantially rectangular shape (rectangular shape) in plan view.
 第2ベース絶縁層26は、絶縁性材料から形成されている。絶縁性材料としては、第1ベース絶縁層7で上記した絶縁性材料と同様の絶縁性材料から形成され、好ましくは、ポリイミド樹脂から形成されている。 The second base insulating layer 26 is formed of an insulating material. The insulating material is formed of the same insulating material as the insulating material described above in the first base insulating layer 7, and is preferably formed of polyimide resin.
 第2ベース絶縁層26の厚みTは、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、50μm以下、好ましくは、30μm以下である。 The thickness T 4 of the second insulating base layer 26 is, for example, 5 [mu] m or more, preferably not less 10μm or more, and is, for example, 50 [mu] m or less, preferably 30μm or less.
 第2導体パターン27は、第2ベース絶縁層26の上面と接触するように、第2ベース絶縁層26の上側に設けられている。第2導体パターン27は、複数の実装基板接続端子24、複数(2つ)のモジュール接続端子25、複数のコネクタ接続端子32、および、複数の第2金属接続配線30を備える。 The second conductor pattern 27 is provided on the upper side of the second insulating base layer 26 so as to be in contact with the upper surface of the second insulating base layer 26. The second conductor pattern 27 includes a plurality of mounting substrate connection terminals 24, a plurality (two) of module connection terminals 25, a plurality of connector connection terminals 32, and a plurality of second metal connection wirings 30.
 複数の実装基板接続端子24は、配置領域20の後端部の左右方向中央に、左右方向に互いに間隔を隔てて整列配置されている。すなわち、複数の実装基板接続端子24は、複数の接続基板接続端子13と対応するように設けられている。実装基板接続端子24は、平面視略矩形状(長方形状)を有する。実装基板接続端子24は、第3開口部29内に配置され、その下面は、第3開口部29から露出している。 The plurality of mounting board connection terminals 24 are aligned at the center in the left-right direction of the rear end portion of the placement area 20 at intervals in the left-right direction. That is, the plurality of mounting board connection terminals 24 are provided to correspond to the plurality of connection board connection terminals 13. The mounting substrate connection terminal 24 has a substantially rectangular shape (rectangular shape) in plan view. The mounting substrate connection terminal 24 is disposed in the third opening 29, and the lower surface thereof is exposed from the third opening 29.
 複数(2つ)のモジュール接続端子25は、配置領域20の後側の左右方向端部に、左右方向に互いに間隔を隔てて整列配置されている。すなわち、複数のモジュール接続端子25は、ハウジング42(後述)を配置領域20に配置した際に、複数(2つ)のハウジング側端子47(後述)と対応するように設けられている。モジュール接続端子25は、平面視略矩形状を有する。モジュール接続端子25は、モジュール接続端子開口部31(後述)内に配置され、その上面は、モジュール接続端子開口部31から露出している。 The plurality of (two) module connection terminals 25 are arranged at the rear end of the arrangement area 20 in the left-right direction at intervals in the left-right direction. That is, the plurality of module connection terminals 25 are provided to correspond to the plurality (two) of the housing side terminals 47 (described later) when the housing 42 (described later) is disposed in the arrangement area 20. The module connection terminal 25 has a substantially rectangular shape in plan view. The module connection terminal 25 is disposed in a module connection terminal opening 31 (described later), and the upper surface thereof is exposed from the module connection terminal opening 31.
 複数のコネクタ接続端子32は、複数の実装基板接続端子24および複数のモジュール接続端子25のそれぞれをコネクタ4に電気的に接続する端子であり、その数は、実装基板接続端子24およびモジュール接続端子25の合計数である。複数のコネクタ接続端子32は、コネクタ領域22に、左右方向に互いに間隔を隔てて整列配置されている。すなわち、コネクタ4の複数のコネクタ側端子38(後述)と対応するように設けられている。コネクタ接続端子32は、第5開口部33(後述)内に配置され、その上面は、第5開口部33から露出している。 The plurality of connector connection terminals 32 are terminals for electrically connecting each of the plurality of mounting board connection terminals 24 and the plurality of module connection terminals 25 to the connector 4, and the number thereof is the mounting board connection terminals 24 and the module connection terminals It is a total number of 25. The plurality of connector connection terminals 32 are aligned in the connector area 22 at intervals in the left-right direction. That is, they are provided to correspond to the plurality of connector terminals 38 (described later) of the connector 4. The connector connection terminal 32 is disposed in a fifth opening 33 (described later), and the upper surface thereof is exposed from the fifth opening 33.
 複数の第2金属接続配線30は、複数の実装基板接続端子24および複数のモジュール接続端子25に対応するように設けられている。具体的には、複数の第2金属接続配線30の一部は、実装基板接続端子24とコネクタ接続端子32とを前後方向に接続するように、これらと一体的に形成されている。すなわち、第2金属接続配線30の一端は、実装基板接続端子24と連続し、第2金属接続配線34の他端は、コネクタ接続端子32と連続して、これらを電気的に接続している。また、複数の第2金属接続配線30の一部(2つ)は、モジュール接続端子25とコネクタ接続端子32とを前後方向に接続するように、これらと一体的に形成されている。すなわち、第2金属接続配線30の一端は、モジュール接続端子25と連続し、第2金属接続配線34の他端は、コネクタ接続端子32と連続して、これらを電気的に接続している。 The plurality of second metal connection wirings 30 are provided to correspond to the plurality of mounting substrate connection terminals 24 and the plurality of module connection terminals 25. Specifically, some of the plurality of second metal connection wires 30 are integrally formed with the mounting substrate connection terminals 24 and the connector connection terminals 32 in the front-rear direction. That is, one end of the second metal connection wiring 30 is continuous with the mounting substrate connection terminal 24, and the other end of the second metal connection wiring 34 is continuous with the connector connection terminal 32 to electrically connect them. . Further, some (two) of the plurality of second metal connection wires 30 are integrally formed with the module connection terminals 25 and the connector connection terminals 32 so as to connect them in the front-rear direction. That is, one end of the second metal connection wiring 30 is continuous with the module connection terminal 25, and the other end of the second metal connection wiring 34 is continuous with the connector connection terminal 32 to electrically connect them.
 第2導体パターン27の材料は、第1導体パターン8で上記した金属材料と同様の金属材料から形成され、好ましくは、銅が挙げられる。 The material of the second conductor pattern 27 is formed of the same metal material as that described above for the first conductor pattern 8, and preferably includes copper.
 第2導体パターン27(第2金属接続配線30、各端子24、25)の厚みT(ひいては、金属配線の総厚み)は、流せる電流の大きさの観点から、第1導体パターン8の厚みTよりも厚く、例えば、12μmを超過し、好ましくは、15μm以上であり、また、例えば、40μm以下、好ましくは、25μm以下である。また、第1導体パターン8の厚みTに対する第2導体パターン27の厚みTの比(T/T)(ひいては、実装基板2の金属配線の総厚みに対する接続基板3の金属配線の総厚みの比)は、例えば、1.2以上、好ましくは、1.5以上であり、また、例えば、10以下、好ましくは、5以下である。 The thickness T 5 of the second conductor pattern 27 (the second metal connection wire 30 and each of the terminals 24 and 25) (thus, the total thickness of the metal wires) is the thickness of the first conductor pattern 8 from the viewpoint of the magnitude of the current flowed. It is thicker than T 2 , for example, more than 12 μm, preferably 15 μm or more, and for example, 40 μm or less, preferably 25 μm or less. Further, the ratio (T 5 / T 2 ) of the thickness T 5 of the second conductor pattern 27 to the thickness T 2 of the first conductor pattern 8 (thus, the metal wiring of the connection substrate 3 with respect to the total thickness of the metal wiring of the mounting substrate 2) The ratio of the total thickness) is, for example, 1.2 or more, preferably 1.5 or more, and for example, 10 or less, preferably 5 or less.
 第2金属接続配線30の幅は、例えば、15μm以上、好ましくは、25μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。 The width of the second metal connection wiring 30 is, for example, 15 μm or more, preferably 25 μm or more, and for example, 1000 μm or less, preferably 500 μm or less.
 第2カバー絶縁層28は、第2導体パターン27を被覆するように、第2ベース絶縁層26および第2導体パターン27の上側に設けられている。すなわち、第2カバー絶縁層28は、第2導体パターン27の上面および側面、および、第2導体パターン27から露出する第2ベース絶縁層26の上面と接触するように、配置されている。第2カバー絶縁層28の外形は、第2ベース絶縁層26と同一となるように形成されている。 The second cover insulating layer 28 is provided on the second base insulating layer 26 and the upper side of the second conductor pattern 27 so as to cover the second conductor pattern 27. That is, the second cover insulating layer 28 is disposed in contact with the upper surface and the side surface of the second conductive pattern 27 and the upper surface of the second base insulating layer 26 exposed from the second conductive pattern 27. The outer shape of the second cover insulating layer 28 is formed to be the same as the second base insulating layer 26.
 第2カバー絶縁層28には、複数のモジュール接続端子開口部31および複数のコネクタ接続端子開口部33が形成されている。 A plurality of module connection terminal openings 31 and a plurality of connector connection terminal openings 33 are formed in the second cover insulating layer 28.
 複数のモジュール接続端子開口部31(以下、第4開口部と略する。)は、モジュール接続端子25を上面から露出するための開口部である。複数の第4開口部31は、配置領域20の後部の幅方向外側において、複数のモジュール接続端子25に対応して、左右方向に互いに間隔を隔てて整列配置されている。複数の第4開口部31は、第2カバー絶縁層28を厚み方向に貫通し、平面視略矩形状を有する。 The plurality of module connection terminal openings 31 (hereinafter, referred to as fourth openings) are openings for exposing the module connection terminals 25 from the top surface. The plurality of fourth openings 31 are aligned at intervals in the left-right direction corresponding to the plurality of module connection terminals 25 on the outside in the width direction of the rear portion of the arrangement area 20. The plurality of fourth openings 31 penetrate the second cover insulating layer 28 in the thickness direction, and have a substantially rectangular shape in plan view.
 複数のコネクタ接続端子開口部33(以下、第5開口部と略する。)は、コネクタ接続端子32を上面から露出するための開口部である。複数の第5開口部33は、コネクタ領域22において、複数のコネクタ接続端子32に対応して、左右方向に互いに間隔を隔てて整列配置されている。 The plurality of connector connection terminal openings 33 (hereinafter, referred to as fifth openings) are openings for exposing the connector connection terminals 32 from the top surface. The plurality of fifth openings 33 are aligned in the connector area 22 at intervals in the left-right direction corresponding to the plurality of connector connection terminals 32.
 第2カバー絶縁層28は、第2ベース絶縁層26で上記した絶縁性材料と同様の絶縁性材料から形成され、好ましくは、ポリイミド樹脂から形成されている。 The second cover insulating layer 28 is formed of an insulating material similar to the above-described insulating material of the second base insulating layer 26, and is preferably formed of a polyimide resin.
 第2カバー絶縁層28の厚みTは、例えば、10μm以上、好ましくは、15μm以上であり、また、例えば、50μm以下、好ましくは、30μm以下である。 The thickness T 6 of the second cover insulating layer 28 is, for example, 10 μm or more, preferably 15 μm or more, and for example, 50 μm or less, preferably 30 μm or less.
 接続基板3の総厚み(最大厚み)は、流せる電流の大きさの観点および取扱い性の観点から、実装基板2よりも厚く、例えば、60μmを超過し、好ましくは、80μm以上であり、また、例えば、200μm以下、好ましくは、120μm以下である。実装基板2の総厚みに対する接続基板3の総厚みの比は、例えば、1.5以上、好ましくは、2.0以上であり、また、例えば、10以下、好ましくは、5以下である。 The total thickness (maximum thickness) of the connection substrate 3 is thicker than the mounting substrate 2 from the viewpoint of the magnitude of the flowable current and the handleability, for example, exceeds 60 μm, preferably 80 μm or more, For example, it is 200 μm or less, preferably 120 μm or less. The ratio of the total thickness of the connection substrate 3 to the total thickness of the mounting substrate 2 is, for example, 1.5 or more, preferably 2.0 or more, and for example, 10 or less, preferably 5 or less.
 接続基板3は、例えば、第2ベース絶縁層26を形成する工程、第2ベース絶縁層26の上面に第2導体パターン27を形成する工程、第2導体パターン27および第2ベース絶縁層26を被覆するように第2カバー絶縁層28を形成する工程により、製造することができる。 For example, the connection substrate 3 includes a step of forming the second base insulating layer 26, a step of forming the second conductor pattern 27 on the upper surface of the second base insulating layer 26, a second conductor pattern 27 and a second base insulating layer 26. It can manufacture by the process of forming the 2nd cover insulating layer 28 so that it may coat | cover.
 (コネクタ)
 コネクタ4は、接続基板3と外部機器(図示せず)とを電気的に接続するための接続素子である。コネクタ4は、図1A-Bに示すように、左右方向に延びる平面視略矩形状を有する。コネクタ4は、複数のコネクタ接続端子32と電気的に接続するためのコネクタ側端子38を複数備える。
(connector)
The connector 4 is a connection element for electrically connecting the connection substrate 3 and an external device (not shown). The connector 4 has a generally rectangular shape in plan view extending in the left-right direction, as shown in FIGS. 1A-B. The connector 4 includes a plurality of connector terminals 38 for electrically connecting with the plurality of connector connection terminals 32.
 (基板積層体)
 基板積層体1は、図1A-Bに示すように、実装基板2と、実装基板2の上側に配置される接続基板3と、接続基板3の上側に配置されるコネクタ4とを備える。
(Board laminate)
The substrate laminate 1 includes a mounting substrate 2, a connection substrate 3 disposed on the upper side of the mounting substrate 2, and a connector 4 disposed on the upper side of the connection substrate 3 as shown in FIG. 1A-B.
 接続基板3は、配置領域20(接続基板3の一部)の下面が実装基板2の周辺領域6の上面に接触するように、実装基板2の周辺領域6の上側に配置されている。すなわち、厚み方向に投影したときに、接続基板3は、配置領域20は実装基板2と重複するが、接続領域21およびコネクタ領域22は実装基板2と重複しないように、実装基板2の上側に配置されている。厚み方向に投影したときに、実装基板2は、接続基板3の配置領域20を含んでいる。すなわち、平面視において、実装基板2は、接続基板3の配置領域20よりも僅かに大きい。 The connection substrate 3 is disposed on the upper side of the peripheral region 6 of the mounting substrate 2 so that the lower surface of the arrangement region 20 (a part of the connection substrate 3) contacts the upper surface of the peripheral region 6 of the mounting substrate 2. That is, when projected in the thickness direction, the connection substrate 3 overlaps the mounting substrate 2 in the arrangement region 20 but does not overlap the connection region 21 and the connector region 22 with the mounting substrate 2. It is arranged. When projected in the thickness direction, the mounting substrate 2 includes the arrangement region 20 of the connection substrate 3. That is, in plan view, the mounting substrate 2 is slightly larger than the arrangement region 20 of the connection substrate 3.
 配置領域20は、実装基板2の4つの端部(前端部、後端部、左端部および右端部)に沿って配置されている。具体的には、配置領域20は、実装領域5が実装領域開口部23内に配置され、実装領域5の四方を囲うように配置されている。すなわち、実装領域開口部23は、平面視において、実装領域5の全域を含んでおり、実装領域開口部23の周端縁は、実装領域5の周端縁と間隔を隔てている。 The placement area 20 is disposed along the four ends (the front end, the rear end, the left end, and the right end) of the mounting substrate 2. Specifically, the mounting area 20 is arranged so that the mounting area 5 is arranged in the mounting area opening 23 and surrounds four sides of the mounting area 5. That is, the mounting area opening 23 includes the entire area of the mounting area 5 in a plan view, and the peripheral edge of the mounting area opening 23 is separated from the peripheral edge of the mounting area 5.
 接続基板3は、周辺領域6の上面に、図示しない絶縁性接着剤などを介して、固定されている。また、接続基板3は、実装基板2と電気的に接続されており、具体的には、図4Bに参照されるように、半田、導電性接着剤などの導電性接合材35を介して、接続基板接続端子13と実装基板接続端子24とが接合されている。 The connection substrate 3 is fixed to the upper surface of the peripheral region 6 via an insulating adhesive or the like (not shown). The connection substrate 3 is electrically connected to the mounting substrate 2. Specifically, as shown in FIG. 4B, the connection substrate 3 is electrically connected via a conductive bonding material 35 such as solder or conductive adhesive. The connection board connection terminal 13 and the mounting board connection terminal 24 are joined.
 コネクタ4は、コネクタ4の下面が接続基板3のコネクタ領域22の上面に接触するように、接続基板3のコネクタ領域22の上側に配置されている。厚み方向に投影したときに、コネクタ4は、コネクタ領域22の平面視略中央に配置されている。 The connector 4 is disposed on the upper side of the connector area 22 of the connection substrate 3 so that the lower surface of the connector 4 is in contact with the upper surface of the connector area 22 of the connection substrate 3. When projected in the thickness direction, the connector 4 is disposed substantially in the center of the connector area 22 in plan view.
 コネクタ4は、コネクタ領域22の上面に、図示しない絶縁性接着剤などを介して、固定されている。また、コネクタ4は、接続基板3と電気的に接続されており、具体的には、導電性接合材35を介して、コネクタ接続端子32とコネクタ側端子38とが接合されている。 The connector 4 is fixed to the upper surface of the connector area 22 via an insulating adhesive or the like (not shown). Further, the connector 4 is electrically connected to the connection substrate 3. Specifically, the connector connection terminal 32 and the connector side terminal 38 are bonded via the conductive bonding material 35.
 このような基板積層体1は、例えば、撮像素子41(後述)を実装するための配線回路基板に用いられる。すなわち、基板積層体1は、カメラモジュールなどの撮像装置に用いられる。 Such a substrate laminate 1 is used, for example, as a printed circuit board for mounting an imaging device 41 (described later). That is, the substrate laminate 1 is used for an imaging device such as a camera module.
 2.撮像装置
 図5A-図6Bを参照して、基板積層体1を備える撮像装置40を説明する。
2. Imaging Device With reference to FIGS. 5A-6B, an imaging device 40 comprising the substrate stack 1 will be described.
 撮像装置40は、基板積層体1、撮像素子41、ハウジング42、光学レンズ43、フィルター44、および、アクチュエータモジュール45を備える。 The imaging device 40 includes the substrate stack 1, an imaging element 41, a housing 42, an optical lens 43, a filter 44, and an actuator module 45.
 撮像素子41は、光を電気信号に変換する半導体素子であって、例えば、CMOSセンサ、CCDセンサなどの固体撮像素子が挙げられる。撮像素子41を稼働するために必要な電流は、例えば、500mA以下、好ましくは、300mA未満であり、また、例えば、50mA以上である。 The imaging device 41 is a semiconductor device that converts light into an electrical signal, and examples thereof include solid-state imaging devices such as a CMOS sensor and a CCD sensor. The current required to operate the imaging device 41 is, for example, 500 mA or less, preferably less than 300 mA, and for example, 50 mA or more.
 撮像素子41は、平面視略矩形の平板形状に形成されており、図示しないが、Si基板などのシリコンと、その上に配置されるフォトダイオード(光電変換素子)およびカラーフィルターとを備える。撮像素子41の下面には、実装基板2の撮像素子接続端子12と対応する端子46が複数設けられている。 The imaging device 41 is formed in a flat plate shape substantially rectangular in plan view, and includes silicon such as a Si substrate, and a photodiode (photoelectric conversion device) and a color filter disposed thereon, although not shown. A plurality of terminals 46 corresponding to the imaging element connection terminals 12 of the mounting substrate 2 are provided on the lower surface of the imaging element 41.
 撮像素子41(特にSi基板)の弾性率は、例えば、100GPa以上、好ましくは、120GPa以上であり、また、例えば、200GPa以下、好ましくは、150GPa以下である。撮像素子41の弾性率は、例えば、引っ張り試験測定により、JIS Z 2241に準拠して測定することができる。 The elastic modulus of the imaging device 41 (in particular, the Si substrate) is, for example, 100 GPa or more, preferably 120 GPa or more, and for example, 200 GPa or less, preferably 150 GPa or less. The elastic modulus of the imaging device 41 can be measured, for example, by tensile test measurement in accordance with JIS Z 2241.
 撮像素子41(特にSi基板)の熱膨張係数は、例えば、1ppm/K以上、好ましくは、2ppm/K以上であり、また、例えば、10ppm/K以下、好ましくは、5ppm/K以下である。撮像素子41の熱膨張係数は、面方向の線熱膨張係数であって、例えば、熱機械分析装置や光走査式測定装置により、JIS Z 2285に準拠して測定することができる。 The thermal expansion coefficient of the imaging device 41 (in particular, the Si substrate) is, for example, 1 ppm / K or more, preferably 2 ppm / K or more, and for example, 10 ppm / K or less, preferably 5 ppm / K or less. The thermal expansion coefficient of the imaging device 41 is a linear thermal expansion coefficient in the surface direction, and can be measured, for example, by a thermomechanical analyzer or an optical scanning measurement device in accordance with JIS Z 2285.
 撮像素子41の厚みは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。 The thickness of the imaging device 41 is, for example, 10 μm or more, preferably 50 μm or more, and for example, 1000 μm or less, preferably 500 μm or less.
 撮像素子41は、実装基板2の実装領域5に実装されている。すなわち、撮像素子41の端子46は、対応する実装基板2の撮像素子接続端子12と、半田などの導電性接合材35などを介して、フリップチップ実装されている。これにより、撮像素子41は、実装基板2の実装領域5の上面に配置され、実装基板2の撮像素子接続端子12と電気的に接続されている。 The imaging element 41 is mounted on the mounting area 5 of the mounting substrate 2. That is, the terminals 46 of the imaging device 41 are flip chip mounted via the imaging device connection terminals 12 of the corresponding mounting substrate 2 and the conductive bonding material 35 such as solder. Thus, the imaging element 41 is disposed on the upper surface of the mounting area 5 of the mounting substrate 2 and is electrically connected to the imaging element connection terminal 12 of the mounting substrate 2.
 撮像素子41は、実装基板2の実装領域5に実装されることにより、図5A-Bに示すように、撮像ユニット49を構成する。すなわち、撮像ユニット49は、基板積層体1と、それに実装される撮像素子41とを備える。 The imaging element 41 is mounted on the mounting area 5 of the mounting substrate 2 to configure an imaging unit 49 as shown in FIG. 5A-B. That is, the imaging unit 49 includes the substrate laminate 1 and the imaging device 41 mounted thereon.
 ハウジング42は、周辺領域6の上面に、撮像素子41と面方向に間隔を隔てて囲うように配置されている。ハウジング42は、平面視略矩形状の筒状を有する。ハウジング42の上端には、光学レンズ43を固定するための固定部が設けられている。 The housing 42 is disposed on the top surface of the peripheral region 6 so as to be spaced apart from the imaging device 41 in the surface direction. The housing 42 has a cylindrical shape substantially rectangular in plan view. At the upper end of the housing 42, a fixing portion for fixing the optical lens 43 is provided.
 また、ハウジング42には、ハウジング42の下端(端部)に設けられるハウジング側端子47と、アクチュエータモジュール45からハウジング側端子47まで延びるモジュール接続配線48とを備える。ハウジング側端子47は、導電性接合材35を介して、モジュール接続端子25と接合されている。これにより、アクチュエータモジュール45は、実装基板2を介さずに、接続基板3と直接電気的に接続されている。 The housing 42 further includes a housing side terminal 47 provided at the lower end (end portion) of the housing 42 and a module connection wiring 48 extending from the actuator module 45 to the housing side terminal 47. The housing side terminal 47 is bonded to the module connection terminal 25 via the conductive bonding material 35. Thus, the actuator module 45 is directly electrically connected to the connection substrate 3 without the mounting substrate 2.
 光学レンズ43は、実装基板2の上側に、実装基板2および撮像素子41と間隔を隔てて配置されている。光学レンズ43は、平面視略円形状に形成され、外部からの光が、撮像素子41に到達するように、固定部によって固定されている。 The optical lens 43 is disposed on the upper side of the mounting substrate 2 at a distance from the mounting substrate 2 and the imaging device 41. The optical lens 43 is formed in a substantially circular shape in a plan view, and is fixed by the fixing portion so that light from the outside reaches the imaging element 41.
 フィルター44は、撮像素子41および光学レンズ43の上下方向中央に、これらと間隔を隔てて配置され、ハウジング42に固定されている。 The filter 44 is disposed at the center in the vertical direction of the imaging device 41 and the optical lens 43 at a distance from them, and is fixed to the housing 42.
 アクチュエータモジュール45は、外部機器からの電気信号を物理的運動に変換する素子であって、例えば、オートフォーカス素子(autofocus)、手振れ補正機構(optical image stabilizer)などが挙げられる。アクチュエータモジュール45を稼働するために必要な電流は、例えば、200mA以上、好ましくは、300mA以上であり、また、例えば、1000mA以下である。 The actuator module 45 is an element that converts an electrical signal from an external device into physical motion, and includes, for example, an autofocus element, an optical image stabilizer, and the like. The current required to operate the actuator module 45 is, for example, 200 mA or more, preferably 300 mA or more, and for example, 1000 mA or less.
 アクチュエータモジュール45は、光学レンズ43の周辺において、ハウジング42に固定されている。 The actuator module 45 is fixed to the housing 42 around the optical lens 43.
 そして、基板積層体1は、実装基板2と、接続基板3とを備え、実装基板2は、第1金属配線14を有し、第1金属配線14の厚みが、12μm以下であり、実装基板2の総厚みが、60μm以下である。また、接続基板3の配置領域20が、実装基板2の周辺領域6に配置されている。 The substrate laminate 1 includes the mounting substrate 2 and the connection substrate 3. The mounting substrate 2 has the first metal wiring 14, and the thickness of the first metal wiring 14 is 12 μm or less. The total thickness of 2 is 60 μm or less. Further, the arrangement area 20 of the connection substrate 3 is arranged in the peripheral area 6 of the mounting substrate 2.
 この基板積層体1では、実装基板2および第1金属配線14が非常に薄い。そのため、撮像素子41の熱膨張に合わせて、実装基板2の実装領域5は、柔軟に変形して、熱応力の発生を抑制することができる。結果、高温および低温を繰り返す環境下において、実装基板2の実装領域5、ひいては、撮像装置40の反りの発生を抑制することができる。 In the substrate laminate 1, the mounting substrate 2 and the first metal wiring 14 are very thin. Therefore, according to the thermal expansion of the imaging element 41, the mounting area 5 of the mounting substrate 2 can be flexibly deformed to suppress the generation of thermal stress. As a result, under the environment where high temperature and low temperature are repeated, it is possible to suppress the occurrence of warpage of the mounting area 5 of the mounting substrate 2 and hence the imaging device 40.
 また、接続基板3の配置領域20が、実装基板2の周辺領域6の上側に配置されている。そのため、アクチュエータモジュール45は、実装基板2を介さずに、接続基板3に直接電気的に接続することができる。そのため、アクチュエータモジュール45を基板積層体1に配置して、電気的に接続可能となり、アクチュエータモジュール45を稼働させることができる。 Further, the arrangement area 20 of the connection substrate 3 is arranged on the upper side of the peripheral area 6 of the mounting substrate 2. Therefore, the actuator module 45 can be electrically connected directly to the connection substrate 3 without the mounting substrate 2. Therefore, the actuator module 45 can be disposed on the substrate stack 1 to be electrically connected, and the actuator module 45 can be operated.
 また、基板積層体1では、接続基板3の配置領域20が、周辺領域6の上側(撮像素子41が実装される側)に配置されている。 Further, in the substrate laminate 1, the arrangement region 20 of the connection substrate 3 is arranged on the upper side of the peripheral region 6 (the side on which the imaging device 41 is mounted).
 このため、撮像装置40の低背化を図ることができる。すなわち、撮像装置40の上端と下端との上下方向距離(図6Bでは、ハウジング42の上端と、実装基板2の下面との上下方向距離)を小さくできる。具体的には、接続基板3が、周辺領域6の下側に配置されている図7Bに示す第2実施形態(後述)では、撮像装置40の上端と下端との上下方向距離は、ハウジング42と接続基板3の下面との上下方向距離となるため、図6Bに示す第1実施形態は、図7Bに示す第2実施形態と比して、接続基板3の厚み分、低背化することができる。なお、第1実施形態および第2実施形態ともに、光学レンズ43の中心と撮像素子41の上面との上下方向距離(すなわち、焦点距離、図7Bに示すD)は同一であるため、ハウジング42の上端と実装基板2の上面との上下方向距離(図7Bに示すD)も、互いに同一である。 Therefore, the height of the imaging device 40 can be reduced. That is, the vertical distance between the upper end and the lower end of the imaging device 40 (the vertical distance between the upper end of the housing 42 and the lower surface of the mounting substrate 2 in FIG. 6B) can be reduced. Specifically, in the second embodiment (described later) shown in FIG. 7B in which the connection substrate 3 is disposed below the peripheral region 6, the vertical distance between the upper end and the lower end of the imaging device 40 is the housing 42. The first embodiment shown in FIG. 6B is reduced in height by a thickness of the connection substrate 3 compared to the second embodiment shown in FIG. Can. In both of the first embodiment and the second embodiment, the vertical distance between the center of the optical lens 43 and the upper surface of the imaging device 41 (ie, the focal length, D 1 shown in FIG. 7B) is the same. The vertical distance (D 2 shown in FIG. 7B) between the upper end of the upper surface of the mounting substrate 2 and the upper surface of the mounting substrate 2 is also the same.
 また、基板積層体1では、接続基板3の配置領域20は、実装基板2の4つの端部に沿って配置されている。すなわち、配置領域20は、実装領域5の四方を囲うように配置されている。 Further, in the substrate laminate 1, the arrangement region 20 of the connection substrate 3 is arranged along the four end portions of the mounting substrate 2. That is, the arrangement area 20 is arranged to surround four sides of the mounting area 5.
 このため、実装基板2と接続基板3との接触面積が大きくなっているため、これらの接合強度がより一層高くなっている。その結果、基板積層体1を上下方向に折り曲げても、実装基板2と接続基板3との接合点において、分離破壊を確実に抑制できる。 For this reason, since the contact area of the mounting substrate 2 and the connection substrate 3 is large, the bonding strength of these is further increased. As a result, even when the substrate stack 1 is bent in the vertical direction, separation and breakage can be reliably suppressed at the junction between the mounting substrate 2 and the connection substrate 3.
 また、基板積層体1では、実装基板2において、配線領域17の等価弾性率が、5GPa以上、55GPa以下である。 In the substrate laminate 1, in the mounting substrate 2, the equivalent elastic modulus of the wiring region 17 is 5 GPa or more and 55 GPa or less.
 このため、配線領域17の弾性率が小さく、柔軟である。したがって、実装基板2の反りを良く確実に抑制することができる。 Therefore, the elastic modulus of the wiring area 17 is small and flexible. Therefore, the warpage of the mounting substrate 2 can be well and surely suppressed.
 また、撮像装置40は、基板積層体1、撮像素子41およびアクチュエータモジュール45を備える。 The imaging device 40 also includes the substrate stack 1, the imaging device 41, and the actuator module 45.
 このため、撮像装置40の反りを抑制することができるとともに、アクチュエータモジュール45を稼働させることができる。 Therefore, the warp of the imaging device 40 can be suppressed, and the actuator module 45 can be operated.
 3.変形例
 (1)図3に示す実装基板2は、第1ベース絶縁層7と、第1導体パターン8と、第1カバー絶縁層9とを厚み方向に順に備えるが、すなわち、実装基板2の導体層(導体パターン)は、単層であるが、例えば、図示しないが、実装基板2の導体層は、複層(例えば、2層以上、好ましくは、2~4層)であってもよい。すなわち、例えば、実装基板2は、第1ベース絶縁層7と、第1導体パターン8と、第1カバー絶縁層9と、第3導体パターンと、第3カバー絶縁層とを厚み方向に順に備えていてもよく(導体層2層構成)、また、実装基板2は、第1ベース絶縁層7と、第1導体パターン8と、第1カバー絶縁層9と、第3導体パターンと、第3カバー絶縁層と、第4導体パターンと、第4カバー絶縁層とを厚み方向に順に備えていてもよい(導体層3層構成)。
3. Modifications (1) The mounting substrate 2 shown in FIG. 3 includes the first base insulating layer 7, the first conductor pattern 8 and the first cover insulating layer 9 in the thickness direction in order. Although the conductor layer (conductor pattern) is a single layer, for example, although not shown, the conductor layer of the mounting substrate 2 may be a multilayer (for example, two or more layers, preferably 2 to 4 layers) . That is, for example, the mounting substrate 2 sequentially includes the first base insulating layer 7, the first conductor pattern 8, the first cover insulating layer 9, the third conductor pattern, and the third cover insulating layer in the thickness direction. The mounting substrate 2 may include the first base insulating layer 7, the first conductor pattern 8, the first cover insulating layer 9, the third conductor pattern, and the third base pattern. A cover insulating layer, a fourth conductor pattern, and a fourth cover insulating layer may be provided in order in the thickness direction (conductor layer 3-layer configuration).
 第3導体パターンおよび第4導体パターンの構成は、それぞれ、第1導体パターン8の構成と同様であり、また、第3カバー絶縁層および第4カバー絶縁層の構成は、それぞれ、第1カバー絶縁層9の構成と同様である。 The configurations of the third conductor pattern and the fourth conductor pattern are respectively the same as the configuration of the first conductor pattern 8, and the configurations of the third cover insulating layer and the fourth cover insulating layer are respectively the first cover insulation It is similar to the configuration of layer 9.
 実装基板2の総厚みも、図3に示す実施形態と同様(例えば、60μm以下など)である。 The total thickness of the mounting substrate 2 is also the same as that of the embodiment shown in FIG. 3 (for example, 60 μm or less).
 実装基板2における金属配線の総厚み(例えば、第1導体パターンが備える第1金属配線14、第3導体パターンが備える金属配線、および、第4導体パターンが備える金属配線の合計厚み)は、例えば、反りの抑制の観点から、例えば、12μm以下、好ましくは、10μm以下、より好ましくは、8μm以下であり、また、取扱い性の観点から、例えば、1μm以上、好ましくは、3μm以上である。実装基板2の金属配線の総厚みに対する接続基板3の金属配線の総厚みの比も、図1に示す実施形態と同様(例えば、1.2以上など)である。また、配線領域(各導体層の金属配線が存在する領域)の等価弾性率Dや、全絶縁層の合計厚みに対する全金属の合計厚みの割合なども、図1に示す実施形態と同様である。 The total thickness of the metal wiring in the mounting substrate 2 (for example, the total thickness of the first metal wiring 14 provided in the first conductor pattern, the metal wiring provided in the third conductor pattern, and the metal wiring provided in the fourth conductor pattern) is, for example From the viewpoint of suppression of warpage, for example, 12 μm or less, preferably 10 μm or less, more preferably 8 μm or less, and from the viewpoint of handleability, for example, 1 μm or more, preferably 3 μm or more. The ratio of the total thickness of the metal wiring of the connection board 3 to the total thickness of the metal wiring of the mounting board 2 is also the same as in the embodiment shown in FIG. 1 (for example, 1.2 or more). Further, the equivalent elastic modulus D of the wiring area (the area where the metal wiring of each conductor layer exists), the ratio of the total thickness of all metals to the total thickness of all insulating layers, etc. are the same as the embodiment shown in FIG. .
 (2)図4A-Bに示す接続基板3は、第2ベース絶縁層26と、第2導体パターン27と、第2カバー絶縁層28とを厚み方向に順に備えるが、すなわち、接続基板3の導体層(導体パターン)は、単層であるが、例えば、図示しないが、接続基板3の導体層は、複層(例えば、2層以上、好ましくは、2~4層)であってもよい。すなわち、例えば、接続基板3は、第2ベース絶縁層26と、第2導体パターン27と、第2カバー絶縁層28と、第5導体パターンと、第5カバー絶縁層とを厚み方向に順に備えていてもよく(導体層2層構成)、また、接続基板3は、第2ベース絶縁層26と、第2導体パターン27と、第2カバー絶縁層28と、第5導体パターンと、第5カバー絶縁層と、第6導体パターンと、第6カバー絶縁層とを厚み方向に順に備えていてもよい(導体層3層構成)。 (2) The connection substrate 3 shown in FIG. 4A-B includes the second base insulating layer 26, the second conductor pattern 27, and the second cover insulating layer 28 in the thickness direction in order. Although the conductor layer (conductor pattern) is a single layer, for example, although not shown, the conductor layer of the connection substrate 3 may be a multilayer (for example, two or more layers, preferably 2 to 4 layers) . That is, for example, the connection substrate 3 sequentially includes the second base insulating layer 26, the second conductor pattern 27, the second cover insulating layer 28, the fifth conductor pattern, and the fifth cover insulating layer in the thickness direction. The connection substrate 3 may include the second base insulating layer 26, the second conductive pattern 27, the second cover insulating layer 28, the fifth conductive pattern, and the fifth conductive pattern. A cover insulating layer, a sixth conductor pattern, and a sixth cover insulating layer may be provided in order in the thickness direction (conductor layer 3-layer configuration).
 第5導体パターンおよび第6導体パターンの構成は、それぞれ、第2導体パターン27と同様であり、第5カバー絶縁層および第6カバー絶縁層の構成は、それぞれ、第2カバー絶縁層28の構成と同様である。 The configurations of the fifth conductor pattern and the sixth conductor pattern are the same as those of the second conductor pattern 27, respectively, and the configurations of the fifth cover insulating layer and the sixth cover insulating layer are each the configuration of the second cover insulating layer 28 Is the same as
 接続基板3の総厚みも、図4A-Bに示す実施形態と同様(例えば、60μm超など)である。 The total thickness of the connection substrate 3 is also the same as the embodiment shown in FIG. 4A-B (for example, more than 60 μm).
 金属配線の総厚み(具体的には、第2導体パターンが備える第2金属接続配線30、第5導体パターンが備える金属接続配線、および、第6導体パターンが備える金属接続配線の合計厚み)は、例えば、より多くの電流を流す観点から、例えば、12μmを超過し、好ましくは、15μm以上、また、例えば、40μm以下、好ましくは、25μm以下である。また、実装基板2の金属配線の総厚みに対する接続基板3の金属配線の総厚みの比も、図1に示す実施形態と同様(例えば、1.2以上など)である。 The total thickness of the metal wiring (specifically, the total thickness of the second metal connection wiring 30 provided in the second conductor pattern, the metal connection wiring provided in the fifth conductor pattern, and the metal connection wiring provided in the sixth conductor pattern) is For example, from the viewpoint of passing more current, for example, it exceeds 12 μm, preferably 15 μm or more, and for example 40 μm or less, preferably 25 μm or less. Further, the ratio of the total thickness of the metal wiring of the connection substrate 3 to the total thickness of the metal wiring of the mounting substrate 2 is also the same as in the embodiment shown in FIG. 1 (for example, 1.2 or more).
 (3)図6Bに示す撮像装置40では、撮像素子41は、実装基板2にフリップチップ実装されているが、例えば、図示しないが、撮像素子41は、実装基板2にワイヤボンディングによって実装することもできる。 (3) In the imaging device 40 shown in FIG. 6B, the imaging device 41 is flip-chip mounted on the mounting substrate 2. For example, although not shown, the imaging device 41 is mounted on the mounting substrate 2 by wire bonding. You can also.
 (4)図6に示す撮像装置40では、モジュール接続端子25は、ハウジング側端子47と、導電性接合材35を介して電気的に接続されているが、例えば、図示しないが、モジュール接続端子25は、ハウジング側端子47とワイヤボンディングによって電気的に接続することもできる。 (4) In the imaging device 40 shown in FIG. 6, the module connection terminal 25 is electrically connected to the housing side terminal 47 via the conductive bonding material 35. For example, although not shown, the module connection terminal 25 can also be electrically connected to the housing side terminal 47 by wire bonding.
 <第2実施形態>
 図7A-Bを参照して、基板積層体1および撮像装置40の第2実施形態について説明する。なお、第2実施形態の基板積層体1および撮像装置40において、上記した図に示す第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Second Embodiment
A second embodiment of the substrate laminate 1 and the imaging device 40 will be described with reference to FIGS. 7A-B. In the substrate laminate 1 and the imaging device 40 according to the second embodiment, the same members as those in the first embodiment shown in the above-described drawings are denoted by the same reference numerals, and the description thereof will be omitted.
 第1実施形態の実装基板2では、接続基板3の配置領域20は、周辺領域6の上側に配置されているが、第2実施形態の実装基板2では、図7A-Bに示すように、接続基板3の配置領域20は、周辺領域6の下側に配置されている。 In the mounting substrate 2 of the first embodiment, the arrangement region 20 of the connection substrate 3 is arranged on the upper side of the peripheral region 6, but in the mounting substrate 2 of the second embodiment, as shown in FIG. The arrangement area 20 of the connection substrate 3 is arranged below the peripheral area 6.
 第2実施形態では、実装基板2の接続基板接続端子13は、下側に露出するように配置され、接続基板3の実装基板接続端子24は、上側に露出するように配置されており、これらが、導電性接合材35を介して、電気的に接続されている。 In the second embodiment, the connection board connection terminals 13 of the mounting board 2 are disposed to be exposed to the lower side, and the mounting board connection terminals 24 of the connection board 3 are disposed to be exposed to the upper side. Are electrically connected via the conductive bonding material 35.
 また、実装基板2には、ハウジング側端子47およびモジュール接続端子25に対応する位置に貫通孔36が設けられている。ハウジング42のハウジング側端子47は、貫通孔36およびモジュール接続端子開口部31内部の導電性接合材35を介して、モジュール接続端子25と電気的に接続されている。 Further, through holes 36 are provided in the mounting substrate 2 at positions corresponding to the housing side terminals 47 and the module connection terminals 25. The housing side terminal 47 of the housing 42 is electrically connected to the module connection terminal 25 through the through hole 36 and the conductive bonding material 35 inside the module connection terminal opening 31.
 第2実施形態の基板積層体1および撮像装置40についても、第1実施形態の基板積層体1および撮像装置40と同様の作用効果を奏する。撮像装置40の低背化の観点から、好ましくは、第1実施形態が挙げられる。また、第2実施形態についても第1実施形態と同様の変形例を適用できる。 The same effects as those of the substrate laminate 1 and the imaging device 40 of the first embodiment can be obtained for the substrate laminate 1 and the imaging device 40 of the second embodiment. From the viewpoint of reducing the height of the imaging device 40, preferably, the first embodiment can be mentioned. The same modification as the first embodiment can be applied to the second embodiment.
 <第3実施形態>
 図8A-Bを参照して、基板積層体1および撮像装置40の第3実施形態について説明する。なお、第3実施形態の基板積層体1および撮像装置40において、上記した図に示す第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Third Embodiment
A third embodiment of the substrate laminate 1 and the imaging device 40 will be described with reference to FIGS. 8A-B. In the substrate laminate 1 and the imaging device 40 according to the third embodiment, the same members as those in the first embodiment shown in the above-described drawings are given the same reference numerals, and the description thereof will be omitted.
 第1実施形態の基板積層体1は、実装基板2、接続基板3およびコネクタ4を備えているが、第3実施形態の基板積層体1は、図8A-Bに示すように、実装基板2、接続基板3、コネクタ4、および、リジッド基板50を備えている。 The substrate laminate 1 according to the first embodiment includes the mounting substrate 2, the connection substrate 3, and the connector 4, but the substrate laminate 1 according to the third embodiment has the mounting substrate 2 as shown in FIGS. 8A-B. , A connection board 3, a connector 4, and a rigid board 50.
 リジッド基板50は、可撓性を有しない硬質の配線基板であり、例えば、セラミック基板、ガラスエポキシ基板などから構成されている。 The rigid substrate 50 is a hard wiring substrate having no flexibility, and is made of, for example, a ceramic substrate, a glass epoxy substrate, or the like.
 リジッド基板50は、上下方向において、実装基板2と接続基板3との間に配置されている。具体的には、リジッド基板50は、その下面が実装基板2の周辺領域6の上面と接触し、その上面が接続基板3の配置領域20の下面と接触するように、周辺領域6の上側および配置領域20の下側に配置されている。リジッド基板50は、外形および内形がともに平面視略矩形状である略矩形枠状に形成されており、厚み方向に投影したときに、接続基板3の配置領域20と一致する。すなわち、リジッド基板50の形状は、平面視において、接続基板3の配置領域20の形状と略同一である。 The rigid substrate 50 is disposed between the mounting substrate 2 and the connection substrate 3 in the vertical direction. Specifically, the upper side of peripheral region 6 and the lower surface of rigid substrate 50 are in contact with the upper surface of peripheral region 6 of mounting substrate 2, and the upper surface is in contact with the lower surface of arrangement region 20 of connection substrate 3. It is arranged under the arrangement area 20. The rigid substrate 50 is formed in a substantially rectangular frame shape whose outer shape and inner shape are both substantially rectangular in a plan view, and when projected in the thickness direction, matches the arrangement region 20 of the connection substrate 3. That is, the shape of the rigid substrate 50 is substantially the same as the shape of the arrangement region 20 of the connection substrate 3 in a plan view.
 リジッド基板50の後端部には、接続基板接続端子13と実装基板接続端子24とを厚み方向に電気的に接続する導通部(図示せず)が複数設けられている。 At the rear end portion of the rigid substrate 50, a plurality of conductive portions (not shown) for electrically connecting the connection substrate connection terminals 13 and the mounting substrate connection terminals 24 in the thickness direction are provided.
 リジッド基板50の厚みは、例えば、20μm以上、好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下である。 The thickness of the rigid substrate 50 is, for example, 20 μm or more, preferably 30 μm or more, and for example, 300 μm or less, preferably 200 μm or less.
 接続基板3は、リジッド基板50の上側に配置されている。具体的には、接続基板3は、その下面がリジッド基板50の上面と接触するように、リジッド基板50の上側に配置されている。 The connection substrate 3 is disposed on the upper side of the rigid substrate 50. Specifically, the connection substrate 3 is disposed on the upper side of the rigid substrate 50 such that the lower surface thereof is in contact with the upper surface of the rigid substrate 50.
 また、図8A-Bに示す実施形態では、リジッド基板50は、実装基板2の上側および接続基板3の下側に配置されているが、例えば、図9A-Bに示すように、リジッド基板50は、接続基板3の上側に配置することもできる。すなわち、リジッド基板50は、接続基板3の上側およびハウジング42の下側に配置することができる。この場合、リジッド基板50の後端部には、モジュール接続端子25とハウジング側端子47とを厚み方向に電気的に接続するビア導通部51が複数設けられている。これにより、リジッド基板50は、アクチュエータモジュール45と直接、電気的に接続可能となる。 Further, in the embodiment shown in FIGS. 8A-B, the rigid substrate 50 is disposed on the upper side of the mounting substrate 2 and the lower side of the connection substrate 3, but as shown in FIG. 9A-B, for example, the rigid substrate 50 is Can also be disposed on the upper side of the connection substrate 3. That is, the rigid substrate 50 can be disposed on the upper side of the connection substrate 3 and the lower side of the housing 42. In this case, a plurality of via conduction parts 51 electrically connecting the module connection terminals 25 and the housing side terminals 47 in the thickness direction are provided at the rear end of the rigid substrate 50. Thus, the rigid substrate 50 can be electrically connected directly to the actuator module 45.
 第3実施形態(図8~図9)の基板積層体1および撮像装置40についても、第1実施形態の基板積層体1および撮像装置40と同様の作用効果を奏する。リジッド基板50によって実装基板2の周辺領域6が補強されており、実装基板2の反りをより確実に抑制することができる観点から、好ましくは、第3実施形態の基板積層体1および撮像装置40が挙げられる。さらに、図9A-Bに示す実施形態では、硬いリジッド基板50に、アクチュエータモジュール45が固定されたハウジング42を直接実装することができる。このため、アクチュエータモジュール45やハウジング42を、図9Aに示す基板積層体1に安定して配置することができ、容易に実装することができる。また、第3実施形態についても第1実施形態と同様の変形例を適用できる。 The substrate laminate 1 and the imaging device 40 of the third embodiment (FIGS. 8 to 9) also exhibit the same effects as the substrate laminate 1 and the imaging device 40 of the first embodiment. From the viewpoint that the peripheral region 6 of the mounting substrate 2 is reinforced by the rigid substrate 50 and warpage of the mounting substrate 2 can be suppressed more reliably, preferably, the substrate laminate 1 and the imaging device 40 of the third embodiment. Can be mentioned. Furthermore, in the embodiment shown in FIGS. 9A-B, the housing 42 in which the actuator module 45 is fixed can be mounted directly on the hard rigid substrate 50. Therefore, the actuator module 45 and the housing 42 can be stably disposed on the substrate stack 1 shown in FIG. 9A, and can be easily mounted. The same modification as the first embodiment can be applied to the third embodiment.
 <第4実施形態>
 図10を参照して、基板積層体1の第4実施形態について説明する。なお、第4実施形態の基板積層体1において、上記した図に示す第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Fourth Embodiment
A fourth embodiment of the substrate laminate 1 will be described with reference to FIG. In the substrate laminate 1 of the fourth embodiment, the same members as those in the first embodiment shown in the above-described drawings are denoted by the same reference numerals, and the description thereof will be omitted.
 第1実施形態の基板積層体1では、接続基板3の配置領域20は、実装基板2の4つの端部に沿って配置されているが、第4実施形態の基板積層体1では、図10に示すように、接続基板3の配置領域20は、実装基板2の1つの端部(後端部)に沿って配置されている。 In the substrate laminate 1 of the first embodiment, the arrangement region 20 of the connection substrate 3 is disposed along the four end portions of the mounting substrate 2. However, in the substrate laminate 1 of the fourth embodiment, FIG. As shown in FIG. 2, the arrangement area 20 of the connection substrate 3 is arranged along one end (rear end) of the mounting substrate 2.
 第4実施形態では、接続基板3の配置領域20は、左右方向に延びる平面視略矩形状に形成されている。 In the fourth embodiment, the arrangement region 20 of the connection substrate 3 is formed in a generally rectangular shape in plan view extending in the left-right direction.
 第4実施形態の基板積層体1および撮像装置40についても、第1実施形態の基板積層体1および撮像装置40と同様の作用効果を奏する。実装基板2と接続基板3との接合強度が高く、実装基板2と接続基板3との分離破壊を確実に抑制できる観点から、好ましくは、第1実施形態が挙げられる。また、第4実施形態についても第1実施形態と同様の変形例を適用できる。 Also in the substrate laminate 1 and the imaging device 40 of the fourth embodiment, the same effects as those of the substrate laminate 1 and the imaging device 40 of the first embodiment can be obtained. From the viewpoint of high bonding strength between the mounting substrate 2 and the connection substrate 3 and reliable suppression of separation and breakage between the mounting substrate 2 and the connection substrate 3, the first embodiment is preferably mentioned. The same modification as the first embodiment can also be applied to the fourth embodiment.
 <第5~6実施形態>
 図11~図12を参照して、基板積層体1の第5~6実施形態について説明する。なお、第5~6実施形態の基板積層体1において、上記した図に示す第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Fifth to Sixth Embodiments
Fifth to sixth embodiments of the substrate laminate 1 will be described with reference to FIGS. 11 to 12. In the substrate laminate 1 of the fifth to sixth embodiments, the same members as those of the first embodiment shown in the above-described drawings are denoted by the same reference numerals, and the description thereof will be omitted.
 第1実施形態の基板積層体1では、接続基板3の配置領域20は、実装基板2の4つの端部に沿って配置されているが、第5実施形態の基板積層体1では、図11に示すように、接続基板3の配置領域20は、実装基板2の2つの端部(後端部および右端部)に沿って配置されている。すなわち、第5実施形態では、接続基板3の配置領域20は、左右方向および前後方向に延びる平面視略逆L字状に形成されている。 In the substrate laminate 1 of the first embodiment, the arrangement region 20 of the connection substrate 3 is disposed along the four end portions of the mounting substrate 2, but in the substrate laminate 1 of the fifth embodiment, FIG. As shown in FIG. 1, the arrangement area 20 of the connection substrate 3 is arranged along the two ends (rear end and right end) of the mounting substrate 2. That is, in the fifth embodiment, the arrangement region 20 of the connection substrate 3 is formed in a substantially inverted L shape in plan view extending in the left-right direction and the front-rear direction.
 また、第6実施形態の基板積層体1では、図12に示すように、接続基板3の配置領域20は、実装基板2の3つの端部(後端部、右端部および左端部)に沿って配置されている。すなわち、第6実施形態では、接続基板3の配置領域20は、前端部が開放される平面視略コ字状に形成されている。 Further, in the substrate laminate 1 of the sixth embodiment, as shown in FIG. 12, the arrangement region 20 of the connection substrate 3 is along the three end portions (rear end portion, right end portion and left end portion) of the mounting substrate 2. Are arranged. That is, in the sixth embodiment, the arrangement region 20 of the connection substrate 3 is formed in a substantially U shape in plan view in which the front end portion is opened.
 第5~6実施形態の基板積層体1および撮像装置40についても、第1実施形態の基板積層体1および撮像装置40と同様の作用効果を奏する。実装基板2と接続基板3との接合強度が高く、実装基板2と接続基板3との分離破壊を確実に抑制できる観点から、好ましくは、第1実施形態が挙げられる。また、第5~6実施形態についても第1実施形態と同様の変形例を適用できる。 Also in the substrate laminate 1 and the imaging device 40 of the fifth to sixth embodiments, the same function and effect as the substrate laminate 1 and the imaging device 40 of the first embodiment can be obtained. From the viewpoint of high bonding strength between the mounting substrate 2 and the connection substrate 3 and reliable suppression of separation and breakage between the mounting substrate 2 and the connection substrate 3, the first embodiment is preferably mentioned. The same modification as the first embodiment can be applied to the fifth to sixth embodiments.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当事者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention is provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the invention that are apparent to those skilled in the art are within the scope of the following claims.
本発明の基板積層体および撮像装置は、各種の工業製品に適用することができ、例えば、カメラモジュールなどに好適に用いられる。 The substrate laminate and the imaging device of the present invention can be applied to various industrial products, and for example, are suitably used for a camera module and the like.
1 基板積層体
2 撮像素子実装基板
3 外部機器接続フレキシブル配線回路基板
5 実装領域
6 周辺領域
14 第1金属配線
17 配線領域
20 実装基板配置領域
40 撮像装置
41 撮像素子
45 アクチュエータモジュール
50 リジッド基板
DESCRIPTION OF SYMBOLS 1 substrate laminate 2 imaging element mounting substrate 3 external device connection flexible wiring circuit substrate 5 mounting region 6 peripheral region 14 first metal wiring 17 wiring region 20 mounting substrate arrangement region 40 imaging device 41 imaging device 45 actuator module 50 rigid substrate

Claims (8)

  1.  撮像素子を実装するための撮像素子実装基板と、
     アクチュエータモジュールと電気的に接続可能であり、前記撮像素子実装基板と電気的に接続されるフレキシブル配線回路基板と
    を備え、
     前記撮像素子実装基板は、金属配線を有し、
     前記金属配線の厚みが、12μm以下であり、
     前記撮像素子実装基板の総厚みが、60μm以下であり、
     前記フレキシブル配線回路基板の一部が、前記撮像素子実装基板において、前記撮像素子が実装される実装領域以外の領域に、配置されていることを特徴とする、基板積層体。
    An imaging element mounting substrate for mounting the imaging element;
    A flexible printed circuit board electrically connectable to the actuator module and electrically connected to the imaging element mounting board;
    The imaging element mounting substrate has metal wiring,
    The thickness of the metal wiring is 12 μm or less,
    The total thickness of the imaging element mounting substrate is 60 μm or less,
    A substrate laminate, wherein a part of the flexible printed circuit board is disposed in an area other than a mounting area where the imaging element is mounted on the imaging element mounting board.
  2.  前記フレキシブル配線回路基板の前記一部は、前記撮像素子が実装される側の領域に配置されていることを特徴とする、請求項1に記載の基板積層体。 The substrate laminate according to claim 1, wherein the part of the flexible printed circuit board is disposed in an area on which the imaging device is mounted.
  3.  前記フレキシブル配線回路基板の前記一部は、前記撮像素子実装基板の少なくとも一つの端部に沿って配置されていることを特徴とする、請求項1に記載の基板積層体。 The substrate laminate according to claim 1, wherein the part of the flexible printed circuit board is disposed along at least one end of the imaging element mounting board.
  4.  前記フレキシブル配線回路基板の前記一部は、前記実装領域の四方を囲うように配置されていることを特徴とする、請求項1に記載の基板積層体。 The substrate laminate according to claim 1, wherein the part of the flexible printed circuit board is disposed to surround four sides of the mounting area.
  5.  前記撮像素子が実装される側の領域に配置されるリジッド基板をさらに備えることを特徴とする、請求項1に記載の基板積層体。 The substrate laminate according to claim 1, further comprising a rigid substrate disposed in an area on the side where the imaging device is mounted.
  6.  前記リジッド基板が、前記アクチュエータモジュールと電気的に接続可能であることを特徴とする、請求項5に記載の基板積層体。 The substrate laminate according to claim 5, wherein the rigid substrate is electrically connectable to the actuator module.
  7.  前記撮像素子実装基板において、前記金属配線が配置される配線領域の等価弾性率が、5GPa以上、55GPa以下であることを特徴とする、請求項1に記載の基板積層体。 The substrate laminate according to claim 1, wherein, in the imaging element mounting substrate, an equivalent elastic modulus of a wiring region in which the metal wiring is disposed is 5 GPa or more and 55 GPa or less.
  8.  請求項1に記載の基板積層体と、
     前記基板積層体に実装される撮像素子と、
     前記基板積層体に実装され、アクチュエータモジュールと
    を備えることを特徴とする、撮像装置。
    The substrate laminate according to claim 1;
    An imaging device mounted on the substrate laminate;
    And an actuator module mounted on the substrate stack.
PCT/JP2018/036783 2017-10-18 2018-10-02 Substrate laminate, and imaging device WO2019077990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880063095.8A CN111164957B (en) 2017-10-18 2018-10-02 Substrate laminate and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017201998A JP6998725B2 (en) 2017-10-18 2017-10-18 Substrate stack and image pickup device
JP2017-201998 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019077990A1 true WO2019077990A1 (en) 2019-04-25

Family

ID=66174458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036783 WO2019077990A1 (en) 2017-10-18 2018-10-02 Substrate laminate, and imaging device

Country Status (4)

Country Link
JP (1) JP6998725B2 (en)
CN (1) CN111164957B (en)
TW (1) TWI758549B (en)
WO (1) WO2019077990A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018847A1 (en) * 2022-07-21 2024-01-25 日東電工株式会社 Wiring circuit substrate
WO2024024365A1 (en) * 2022-07-26 2024-02-01 日東電工株式会社 Wiring circuit board and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312104A (en) * 2007-06-18 2008-12-25 Panasonic Corp Solid-state imaging apparatus, and method for manufacturing the same
WO2014174943A1 (en) * 2013-04-26 2014-10-30 株式会社村田製作所 Method for producing camera module
JP2015038908A (en) * 2012-03-06 2015-02-26 イビデン株式会社 Flex-rigid wiring board
WO2015104960A1 (en) * 2014-01-09 2015-07-16 富士フイルム株式会社 Imaging module, imaging module production method, and electronic device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631548B2 (en) * 1989-03-15 1997-07-16 日本シイエムケイ株式会社 Printed wiring board with shield layer
JP4405062B2 (en) * 2000-06-16 2010-01-27 株式会社ルネサステクノロジ Solid-state imaging device
CN1236498C (en) * 2002-05-17 2006-01-11 台湾积体电路制造股份有限公司 CMUS image sensing element
JP4919755B2 (en) * 2006-10-02 2012-04-18 日東電工株式会社 Wiring circuit board and electronic equipment
EP1983742A1 (en) * 2007-04-16 2008-10-22 STMicroelectronics (Research & Development) Limited Image sensor power distribution
JP2009081351A (en) * 2007-09-27 2009-04-16 Sanyo Electric Co Ltd Semiconductor device, and manufacturing method thereof
TWI334305B (en) * 2007-11-09 2010-12-01 Hon Hai Prec Ind Co Ltd Camera module
JP6169370B2 (en) * 2013-02-26 2017-07-26 京セラ株式会社 Imaging device and imaging apparatus
JP2014175423A (en) * 2013-03-07 2014-09-22 Sharp Corp Flexible substrate and mounting method thereof
TWI584014B (en) * 2016-01-12 2017-05-21 致伸科技股份有限公司 Camera module and method for assembling camera module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312104A (en) * 2007-06-18 2008-12-25 Panasonic Corp Solid-state imaging apparatus, and method for manufacturing the same
JP2015038908A (en) * 2012-03-06 2015-02-26 イビデン株式会社 Flex-rigid wiring board
WO2014174943A1 (en) * 2013-04-26 2014-10-30 株式会社村田製作所 Method for producing camera module
WO2015104960A1 (en) * 2014-01-09 2015-07-16 富士フイルム株式会社 Imaging module, imaging module production method, and electronic device

Also Published As

Publication number Publication date
JP2019075506A (en) 2019-05-16
CN111164957A (en) 2020-05-15
CN111164957B (en) 2022-04-05
TW201929527A (en) 2019-07-16
JP6998725B2 (en) 2022-01-18
TWI758549B (en) 2022-03-21

Similar Documents

Publication Publication Date Title
US8928803B2 (en) Solid state apparatus
US9585287B2 (en) Electronic component, electronic apparatus, and method for manufacturing the electronic component
US8194162B2 (en) Imaging device
US20140061841A1 (en) Semiconductor package
WO2019077990A1 (en) Substrate laminate, and imaging device
WO2019082923A1 (en) Imaging-element mounting substrate, imaging device, and imaging module
KR102515701B1 (en) Imaging device mounted substrate, manufacturing method therefor, and mounted substrate assembly
JP5498604B1 (en) Hollow package for solid-state image sensor
JP6131308B2 (en) Camera module and manufacturing method thereof
KR102185063B1 (en) Sensing package and manufacturing method for the same
JP6236367B2 (en) Sensor module and method of manufacturing sensor module
US11183448B2 (en) Wiring circuit board and imaging device
JP2019040903A (en) Circuit board and semiconductor module
JP2017060145A (en) Camera module and manufacturing method of the same
KR100471700B1 (en) Flexible printed circuit board and semiconductor device using it
WO2018190215A1 (en) Imaging element mounting substrate, method for producing same and mounting substrate assembly
JP2005210409A (en) Camera module
JP2012134397A (en) Optical device module
US20240113141A1 (en) Electronic component and method of manufacturing the same
JP6102145B2 (en) Mounting structure and manufacturing method of mounting structure
US20230171874A1 (en) Image sensor package and camera device including same
JP2006147956A (en) Optical semiconductor package
JP2012238666A (en) Optical sensor and method for manufacturing optical sensor
WO2018199017A1 (en) Wired circuit board and imaging device
JP2023148524A (en) Electronic module and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868416

Country of ref document: EP

Kind code of ref document: A1