WO2019077873A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2019077873A1
WO2019077873A1 PCT/JP2018/031117 JP2018031117W WO2019077873A1 WO 2019077873 A1 WO2019077873 A1 WO 2019077873A1 JP 2018031117 W JP2018031117 W JP 2018031117W WO 2019077873 A1 WO2019077873 A1 WO 2019077873A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
island
terminal
terminals
unit
Prior art date
Application number
PCT/JP2018/031117
Other languages
French (fr)
Japanese (ja)
Inventor
幸幹 松下
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019077873A1 publication Critical patent/WO2019077873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Definitions

  • the present disclosure relates to a control device that controls driving of switching elements that constitute upper and lower arms.
  • Patent Document 1 discloses a semiconductor module in which switching elements constituting upper and lower arms for one phase and a control device (control circuit) for controlling driving of the switching elements are integrated.
  • the same number of semiconductor modules as the number of phases of the stator winding of the rotating electrical machine are required. Therefore, when one of the upper arm and the lower arm generates a short circuit failure or a temperature abnormal failure, the switching element failed in the communication period from the control device of the failed semiconductor module to the control device of the other semiconductor module. Current concentrates on the Therefore, the switching element can not be properly protected.
  • the control device is normally activated from the sleep state using a phase voltage which is an output voltage of the upper and lower arms as a trigger.
  • a phase voltage which is an output voltage of the upper and lower arms as a trigger.
  • the control device can not be activated when the lower arm fails in a short circuit. Therefore, the control device can not detect the failure of the switching element and appropriately protect the switching element.
  • An object of the present disclosure is to provide a control device capable of appropriately protecting a switching element in the event of a failure.
  • a control device that configures a semiconductor module with a high-side switching element and a low-side switching element as switching elements configuring upper and lower arms of multiple phases and controls driving of the switching elements.
  • a voltage detection unit that detects a voltage between main electrodes of the switching element that configures each arm, or a phase voltage of each phase upper and lower arm, and the switching element based on a voltage value detected by the voltage detection unit
  • a determination unit for determining whether or not a short circuit failure has occurred, and turning off the switching element in which the failure has occurred if it is determined by the determination unit that a failure has occurred, and And a driver for turning on the switching elements on the same side.
  • the failed switching element when a short circuit failure occurs, the failed switching element is turned off. In addition, the switching element of another phase in the same semiconductor module and on the same side is turned on. Thus, in the same semiconductor module, a normal phase which has not failed is immediately transferred to the protection operation.
  • the switching element can be appropriately protected at the time of the short failure.
  • a control device that configures a semiconductor module together with a high-side switching element and a low-side switching element as switching elements configuring upper and lower arms of multiple phases and controls driving of the switching elements. Determining whether or not a temperature abnormality failure has occurred in the switching element based on a temperature detection unit that detects the temperature of the switching element that configures each arm, and the temperature detected by the temperature detection unit And, when it is determined by the determination unit that a failure has occurred, the switching device that has a failure is turned off, and the switching device on the same side that is a phase different from the switching device that has a failure is turned on. And a drive unit.
  • the failed switching element when a failure due to a temperature abnormality occurs, the failed switching element is turned off. In addition, the switching element of another phase in the same semiconductor module and on the same side is turned on. Thus, in the same semiconductor module, a normal phase which has not failed is immediately transferred to the protection operation.
  • the switching element can be appropriately protected at the time of failure due to temperature abnormality.
  • a control device that controls driving of switching elements forming upper and lower arms of a plurality of phases includes a processing unit that executes a predetermined process and phase voltages of the upper and lower arms of the plurality of phases. And an activation unit configured to activate the processing unit from a sleep state when at least one of the phase voltages exceeds a threshold voltage.
  • control unit includes: an activation unit that activates the processing unit from a sleep state when at least one of the phase voltages exceeds a threshold voltage. Therefore, the switching element can be properly protected.
  • FIG. 2 is a cross-sectional view showing a controller-integrated electric rotating machine according to a first embodiment; It is an expanded sectional view showing a control device part, Is an equivalent circuit diagram,
  • FIG. 10 is a plan view showing the arrangement of semiconductor modules and bus bars; It is a plan view showing a connection structure of a main terminal and a bus bar, It is a perspective view showing a semiconductor module, It is a front view showing a semiconductor module, It is a rear view showing a semiconductor module, It is a top view which shows a semiconductor module, It is a bottom view showing a semiconductor module, FIG.
  • FIG. 8 is a side view seen from the X1 direction shown in FIG. 7; 8 is a cross-sectional view taken along the line XII-XII in FIG. 7; FIG. 8 is a cross-sectional view taken along the line XIII-XIII of FIG. 7; It is the perspective view which abbreviate
  • omitted the sealing resin body It is an exploded perspective view, It is the front view which omitted the sealing resin body, It is the rear view which omitted the sealing resin body, It is the top view which omitted the sealing resin body, It is the bottom view which omitted the sealing resin body, 17 is a side view seen from the X1 direction shown in FIG.
  • FIG. 16 It is a plan view showing a lead frame before tie bar cut, It is a schematic diagram which shows arrangement
  • FIG. 5 is a diagram showing the extending direction of the shunt resistor and the tie bar, It is a figure which shows the effect by parallel arrangement, It is a top view which shows a modification, It is a figure showing a modification, FIG. 7 is a cross-sectional view showing a controller-integrated electric rotating machine of a second embodiment; Is an equivalent circuit diagram, It is a plan view seen from the controller side, In the state which removed the cover, it is the top view seen from the control apparatus part side, Fig.
  • FIG. 6 is an exploded view of the power assembly; It is a perspective view showing a semiconductor module, It is a front view showing a semiconductor module, It is a rear view showing a semiconductor module, It is a top view which shows a semiconductor module, It is a bottom view showing a semiconductor module, 40 is a side view seen from the X1 direction shown in FIG. 40; 40 is a cross-sectional view along the line XLV-XLV in FIG.
  • FIG. 51 is a side view seen from the X1 direction shown in FIG. 48, It is a plan view showing a lead frame before tie bar cut, It is a figure showing a drive part, FIG. 7 is a diagram showing a connection structure between a plurality of semiconductor modules, It is a figure which shows the signal which notifies a failure, FIG.
  • FIG. 17 is a diagram showing control when a short failure occurs, In the reference example, it is a timing chart when a short failure occurs, It is a timing chart when a short failure occurs, It is a figure showing control when temperature abnormality arises,
  • FIG. 10 is a diagram showing control when an open failure occurs, It is a figure which shows the 1st modification of a drive part, It is a figure showing the circuit composition of a drive part, It is a timing chart at startup,
  • FIG. 7 is a diagram showing a through current across phases at the time of digital circuit failure;
  • FIG. 10 is a diagram showing a reference example of a circuit that protects a switching element from a through current,
  • FIG. 73 is a diagram showing a problem when a digital circuit fails in the reference example shown in FIG. 66, It is a figure which shows the 2nd modification of a drive part.
  • FIG. 5 shows a connection structure between the positive electrode terminal and the negative electrode terminal of the main terminals and the bus bar.
  • the signal terminal and the dummy terminal are abbreviate
  • the controller integrated electric rotating machine 1 includes a rotating electric machine unit 10 and a control unit 20 for controlling the rotating electric machine unit 10, and the control unit 20 controls rotation. It is integrated with the electric unit 10.
  • a direction along the rotation axis is referred to as an axial direction.
  • the direction from the control device unit 20 side to the rotating electrical machine unit 10 side is referred to as the front, and the direction from the rotating electrical machine unit 10 side to the control device unit 20 is as the rear.
  • the direction orthogonal to the axial direction is referred to as the radial direction.
  • the rotating electrical machine unit 10 is mounted on a vehicle and generates power for driving the vehicle by being supplied with electric power from a battery.
  • the rotating electrical machine unit 10 functions as, for example, a motor (starter motor) for starting an engine.
  • the rotating electrical machine unit 10 functions as a generator (alternator) that generates electric power for charging the battery by being supplied with driving force from the engine.
  • the rotating electrical machine unit 10 is also referred to as an ISG (Integrated Starter Generator).
  • the rotating electrical machine unit 10 includes a housing 11, a stator 12, a rotor 13, a pulley 14, a slip ring 15, a brush 16, and a magnet 17 for detecting a rotation angle. Is equipped.
  • the housing 11 accommodates the stator 12 and the rotor 13.
  • the housing 11 rotatably supports the rotor 13.
  • a control device unit 20 is fixed to the rear side in the axial direction of the housing 11.
  • the housing 11 has a front housing 110 disposed on the front side in the axial direction and a rear housing 111 disposed on the rear side in the axial direction.
  • the stator 12 forms a part of a magnetic path and generates a rotating magnetic field by being supplied with electric power, specifically, alternating current. Further, by interlinking with the magnetic flux generated by the rotor 13, an alternating current is generated.
  • the stator 12 has a stator core 120 and a stator winding 121.
  • the stator core 120 has a substantially annular shape.
  • the stator core 120 is provided with a plurality of slots (not shown).
  • the stator winding 121 is accommodated in the slot of the stator core 120 and held by the stator core 120.
  • the stator winding 121 is wound around the stator core 120.
  • a Y-connected three-phase winding is used as the stator winding 121.
  • the stator winding 121 includes a stator winding 121a consisting of U-phase, V-phase, and W-phase three-phase windings, and X-phase, Y-phase, and Z-phase three-phase windings.
  • a stator winding 121b The stator windings 121a and 121b are arranged offset from each other by a predetermined electrical angle (for example, 30 °).
  • the rotor 13 constitutes a part of a magnetic path and forms a magnetic pole by being supplied with electric power, specifically, direct current.
  • the rotor 13 generates a rotational force by interlinking with the magnetic flux generated by the stator winding 121. Further, the rotor 13 is rotated by the driving force supplied from the engine, and the generated magnetic flux is interlinked with the stator winding 121, whereby the stator winding 121 generates an alternating current.
  • the rotor 13 has a rotor core 130, a rotor winding 131, a fan 132, and a rotating shaft 133.
  • the rotor core 130 has an annular hollow portion 130 a that accommodates the rotor winding 131.
  • the rotor core 130 has a through hole 130 b to which the rotating shaft 133 is fixed in a state of being inserted.
  • the rotor 13 is disposed such that the outer peripheral surface of the rotor core 130 faces the inner peripheral surface of the stator core 120 at a predetermined distance.
  • the rotor winding 131 generates a magnetic flux by being supplied with direct current, and forms a magnetic pole on the outer peripheral surface of the rotor core 130.
  • the rotor winding 131 is accommodated in the hollow portion 130 a of the rotor core 130 and held by the rotor core 130.
  • the rotor winding 131 is also referred to as a field winding.
  • the fan 132 is provided integrally with the rotor core 130.
  • the fan 132 rotates with the rotor core 130 and distributes the air outside the rotating electrical machine 1 to the inside of the rotating electrical machine unit 10 and the inside of the control device unit 20 through a through hole formed in the housing 11.
  • the fans 132 are respectively provided on both end surfaces of the rotor core 130 in the axial direction which is the extending direction of the rotating shaft 133.
  • the rotating shaft 133 is fixed to the rotor core 130 and rotatably supported by the housing 11.
  • the rotating shaft 133 rotates with the rotor core 130.
  • the rotation shaft 133 has a substantially cylindrical shape, and the axial center portion is fixed to the rotor core 130 in a state of being inserted into the through hole 130 b.
  • the rotation shaft 133 is also referred to as a shaft.
  • a portion of the rotation shaft 133 protrudes forward of the front housing 110 through a through hole provided in the bottom wall of the front housing 110.
  • the rotation shaft 133 is rotatably supported by the front housing 110.
  • a part of the rotation shaft 133 protrudes to the rear of the rear housing 111 through a through hole provided in the bottom wall of the rear housing 111.
  • the rotating shaft 133 is rotatably supported by the rear housing 111.
  • the pulley 14 is connected to a portion of the rotation shaft 133 that protrudes forward from the front housing 110.
  • the pulley 14 rotates with the rotation shaft 133.
  • a belt (not shown) is engaged with the pulley 14. The rotational movement of the rotating shaft 133 is transmitted to the crankshaft of the engine via the belt.
  • the slip ring 15 is fixed to an outer peripheral surface of a portion of the rotation shaft 133 which protrudes rearward from the rear housing 111 via an insulating member 18.
  • the slip ring 15 is a cylindrical member made of metal and is connected to the rotor winding 131 via a wire.
  • the brush 16 is, for example, pressed by a spring toward the rotating shaft 133 in the radial direction, and is in contact with the outer peripheral surface of the slip ring 15.
  • the brush 16 is held by a brush holder 160. Direct current is supplied to the rotor winding 131 via the brush 16 and the slip ring 15.
  • the magnet 17 generates a magnetic field for detecting the rotation angle of the rotor 13.
  • the magnet 17 is fixed to an axial rear end portion of the rotating shaft 133.
  • Control unit When the rotating electrical machine unit 10 functions as an alternator, the control device unit 20 converts the power generated by the rotating electrical machine unit 10 into direct current, and supplies the power to the battery. On the other hand, when the rotating electrical machine unit 10 is made to function as a motor, the power supplied from the battery is converted into an alternating current, and the power is supplied to the rotating electrical machine unit 10.
  • the controller unit 20 includes a case 21, a wiring board 22, an inverter circuit unit 23, a heat sink 24, a field circuit unit 25, a control circuit unit 26, and a bus bar 27. Is equipped. Furthermore, the control device unit 20 is provided with a rotation angle detection element (not shown) that constitutes a rotation angle detection unit together with the magnet 17.
  • the controller unit 20 may include a smoothing capacitor and a snubber capacitor.
  • the case 21 is provided at an axial rear end of the rear housing 111.
  • the case 21 is formed in a box shape using a resin material.
  • the wiring board 22, the inverter circuit unit 23, the heat sink 24, the field circuit unit 25, the control circuit unit 26, the above-described brush 16 and the like are accommodated.
  • the case 21 has a main body portion 210 and a lid portion 211.
  • the wiring board 22, the inverter circuit unit 23, the field circuit unit 25, and the control circuit unit 26 are fixed to the main body unit 210.
  • the bus bar 27 and other bus bars for wiring are fixed to the main body portion 210 which is a resin member.
  • the main body portion 210 has a through hole 210 a at the central portion.
  • the main body portion 210 is fixed to an axial rear end portion of the rear housing 111.
  • the lid portion 211 covers the rear side of the main body portion 210.
  • the wiring board 22 is a so-called printed board.
  • the field circuit unit 25 and the control circuit unit 26 are mounted on the wiring board 22.
  • a power supply circuit and the like are also mounted on the wiring board 22.
  • the wiring substrate 22 is disposed such that the thickness direction thereof substantially coincides with the axial direction.
  • the wiring board 22 is substantially U-shaped with a notch at a part in the circumferential direction of the rotating shaft 133.
  • the wiring board 22 is disposed on the front side in the axial direction with respect to the inverter circuit portion 23 at a distance from the rear housing 111 and the inverter circuit portion 23.
  • the wiring substrate 22, the inverter circuit unit 23, the field circuit unit 25, and the control circuit unit 26 are sealed with a resin 28 in the case 21.
  • the inverter circuit unit 23 supplies alternating current to the stator winding 121.
  • the inverter circuit unit 23 rectifies alternating current supplied from the stator winding 121 and converts it into direct current.
  • the inverter circuit unit 23 is configured by three semiconductor modules 40. Details of the semiconductor module 40 will be described later, and only a brief description will be given here.
  • each of the semiconductor modules 40 has a plurality of switching elements 70 constituting upper and lower arms for two phases.
  • the switching element 70 a MOSFET or an IGBT can be employed. In the present embodiment, an n-channel MOSFET is employed.
  • the switching element 70 has a parasitic diode.
  • the first semiconductor module 40 constitutes upper and lower arms of U phase and V phase
  • the second semiconductor module 40 constitutes upper and lower arms of W phase and X phase
  • the third semiconductor A module 40 constitutes upper and lower arms of Y phase and Z phase.
  • each arm is configured by one switching element 70. That is, the semiconductor module 40 has four switching elements 70 each.
  • the switching element 70 As the switching element 70, the switching element 700H on the upper arm side and the switching element 700L on the lower arm side constituting the first upper and lower arms, and the switching on the upper arm side constituting the second upper and lower arm It has the element 701H and the switching element 701L on the lower arm side. Switching elements 700H and 700L are connected in series, and switching elements 701H and 701L are connected in series.
  • the high potential side electrode of the upper arm side switching elements 700H and 701H, ie, the drain electrode, is connected to the positive electrode side of the battery, and the low potential side electrode of the lower arm side switching elements 700L and 701L, ie, the source electrode is It is connected to the negative side of the battery.
  • the source electrodes of the upper arm side switching elements 700H and 701H and the corresponding drain electrodes of the lower arm side switching elements 700L and 701L are connected to each other.
  • the first upper and lower arms constitute U-phase upper and lower arms
  • the second upper and lower arms constitute V-phase upper and lower arms.
  • the connection point between the switching element 700H and the switching element 700L is connected to the U phase of the stator winding 121a.
  • the connection point between the switching element 701H and the switching element 701L is connected to the V phase of the stator winding 121a.
  • the first upper and lower arms constitute a W-phase upper and lower arm
  • the second upper and lower arms constitute an X-phase upper and lower arm.
  • the connection point between the switching element 700H and the switching element 700L is connected to the W phase of the stator winding 121a.
  • the connection point between the switching element 701H and the switching element 701L is connected to the X phase of the stator winding 121b.
  • the first upper and lower arms constitute Y phase upper and lower arms
  • the second upper and lower arms constitute Z phase upper and lower arms.
  • the connection point between the switching element 700H and the switching element 700L is connected to the Y phase of the stator winding 121b.
  • the connection point between the switching element 701H and the switching element 701L is connected to the Z phase of the stator winding 121b.
  • the semiconductor module 40 has a main terminal 63 as an external connection terminal as shown in FIGS. 4 and 5. Also, as the main terminals 63, positive electrode terminals 63B1 and 63B2, negative electrode terminals 63E1 and 63E2, and output terminals 63P1 and 63P2 are provided. Each of the semiconductor modules 40 is disposed on the rear side in the axial direction of the wiring board 22.
  • the heat sink 24 is a metal member that radiates the heat generated by the semiconductor module 40.
  • the heat sink 24 has a main body 240 and a plurality of fins 241.
  • the main body portion 240 has a substantially rectangular parallelepiped shape, and the fins 241 project from the surface of the main body portion 240 opposite to the semiconductor module 40.
  • the heat sink 24 is insert-molded on the main body portion 210 of the case 21. In the state of being integrated with the main body portion 210, one surface of the main body portion 240 is exposed in the main body portion 210, and the fin 241 protrudes from the opposite surface.
  • the semiconductor module 40 is in contact with one surface of the main body 240.
  • the heat sink 24 is thermally connected to the semiconductor module 40. For example, a thermally conductive adhesive is interposed between the heat sink 24 and the semiconductor module 40.
  • the field circuit unit 25 is a circuit that supplies DC to the rotor winding 131.
  • the field circuit unit 25 has a switching element.
  • an H bridge circuit is configured by switching elements.
  • the switching element is mounted on the wiring board 22.
  • the control circuit unit 26 is a circuit that controls the inverter circuit unit 23 and the field circuit unit 25.
  • Control circuit unit 26 includes, for example, a microcomputer (microcomputer).
  • the control circuit unit 26 includes, for example, a drive circuit that generates a drive signal of each of the switching elements 70.
  • the drive circuit performs, for example, PWM control of the switching element 70 by a 120-degree conduction method.
  • the drive circuit outputs the generated drive signal to a drive unit 80 described later.
  • the control circuit unit 26 has a current detection circuit that detects the current flowing in each phase based on the voltage value proportional to the current flowing in each phase detected by the shunt resistor 901. The current detection circuit detects the current of each phase via the signal terminal 64 without passing through the drive unit 80.
  • the control circuit unit 26 includes an abnormality detection circuit that detects an abnormality of the switching element 70 based on a notification signal transmitted from the drive unit 80.
  • the control circuit unit 26 has a temperature detection circuit that acquires the forward voltage Vf of the temperature sensing diode integrally formed with the switching element 70 and detects the temperature of the switching element 70. The temperature detection circuit obtains the forward voltage Vf via the drive unit 80.
  • the bus bar 27 is a wiring member connected to the inverter circuit unit 23.
  • the bus bar 27 is insert-molded in the main body portion 210 of the case 21 in a state where the connection portion 270 with the inverter circuit portion 23 is exposed.
  • the bus bar 27 is insert-molded in the main body portion 210 in a state of extending axially forward.
  • the connection portion 270 extends in the same direction as the main terminal 63 in a state adjacent to the corresponding main terminal 63 of the semiconductor module 40. And the adjacent connection part 270 and the main terminal 63 are joined. Specifically, the main terminal 63 and the bus bar 27 are joined by arc welding.
  • the bus bar 27 includes a positive electrode bus bar 27B, a negative electrode bus bar 27E, and output bus bars 27P1 and 27P2.
  • the positive electrode bus bar 27B and the negative electrode bus bar 27E are disposed on the rotary shaft 133 side, ie, the radial inner side with respect to the semiconductor module 40, and the output bus bar 27P1 on the opposite side to the rotary shaft 133, ie, the radial outer side. , 27P2 are arranged.
  • FIG. 4 the positive electrode bus bar 27B and the negative electrode bus bar 27E are disposed on the rotary shaft 133 side, ie, the radial inner side with respect to the semiconductor module 40, and the output bus bar 27P1 on the opposite side to the rotary shaft 133, ie, the radial outer side. , 27P2 are arranged.
  • the positive electrode bus bar 27B is shown inside the negative electrode bus bar 27E for the sake of simplicity in order to clearly show the connection between the positive electrode bus bar 27B and the negative electrode bus bar 27E and the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2.
  • the positive electrode bus bar 27B is a bus bar 27 that connects the power supply connection portion of the wiring board 22 and the positive electrode terminals 63B1 and 63B2 of the semiconductor module 40 to the positive electrode terminal of the battery.
  • the negative bus bar 27E is a bus bar 27 that connects the power supply connection portion of the wiring board 22 and the negative terminals 63E1 and 63E2 of the semiconductor module 40 directly to the negative terminal of the battery or via the vehicle body.
  • the output bus bar 27P1 is a bus bar 27 that connects the output terminal 63P1 of the semiconductor module 40 to the stator winding 121.
  • the output bus bar 27P2 is a bus bar 27 that connects the output terminal 63P2 to the stator winding 121.
  • the positive electrode bus bar 27B and the negative electrode bus bar 27E are formed, for example, by punching and bending a copper plate.
  • the positive bus bar 27 ⁇ / b> B and the negative bus bar 27 ⁇ / b> E are mutually insulated by the case 21.
  • the positive electrode bus bar 27B exposes the connection portion connected to the wiring board 22 and the connection portion 270 with the positive electrode terminals 63B1 and 63B2 of each semiconductor module 40 to the inside of the case 21 and the connection portion 271 on the battery side It is insert-molded in the case 21 in the state which exposed to the exterior of.
  • the negative bus bar 27E exposes the connecting portion connected to the wiring board 22 and the connecting portion 270 with the negative terminals 63E1 and 63E2 of each semiconductor module 40 to the inside of the case 21, and the connecting portion 272 on the battery side It is insert-molded in the case 21 in the state which exposed to the exterior of.
  • connection portion 271 on the battery side of the positive electrode bus bar 27B and the connection portion 272 on the battery side of the negative electrode bus bar 27E are disposed on the cutout side of the wiring board 22.
  • Two connection portions 271 of the positive electrode bus bar 27B are provided.
  • the two connection parts 271 are connected to each other.
  • One connection portion 272 of the negative electrode bus bar 27E is provided.
  • the connection portion 272 is provided radially outward at an equal distance from the two connection portions 271.
  • the positive electrode bus bar 27 B extends from each of the two connection portions 271.
  • the positive electrode bus bar 27 B extends in parallel to a plane orthogonal to the rotation axis 133.
  • the positive electrode bus bars 27B are arranged in line symmetry with respect to an imaginary line passing through the midpoints of the two connection portions 271 and the center of the rotation shaft 133.
  • one of the positive electrode bus bars 27B extends in the clockwise direction around the rotation axis 133
  • the other positive electrode bus bar 27B extends in the counterclockwise direction around the rotation axis 133.
  • the positive electrode bus bar 27B has an opening on the opposite side to the middle point of the two connection portions 271 with the rotary shaft 133 interposed therebetween.
  • the pair of positive electrode bus bars 27B are separated from each other through the opening without being connected to each other at positions opposite to each other with respect to the middle point of the two connection portions 271 with respect to the rotation shaft 133.
  • the negative bus bar 27 ⁇ / b> E also extends parallel to the plane orthogonal to the rotation axis 133.
  • the negative bus bar 27E is branched into two at the end extending from the connection portion 272 on the battery side toward the rotation shaft 133, one extending clockwise around the rotation shaft 133, and the other counterclockwise around the rotation shaft 133 It extends to
  • the negative bus bar 27 ⁇ / b> E is arranged in line symmetry with respect to an imaginary line passing through the connection portion 272 and the center of the rotating shaft 133.
  • the negative electrode bus bar 27 ⁇ / b> E has an opening on the opposite side to the connecting portion 272 with the rotating shaft 133 interposed therebetween.
  • the branched negative electrode bus bar 27E is separated from the connecting portion 272 via the opening without being connected to each other at the opposite side of the rotary shaft 133.
  • the positive electrode bus bar 27B and the negative electrode bus bar 27E are arranged along each other.
  • the positive electrode bus bar 27B and the negative electrode bus bar 27E are separated in a state in which a predetermined distance is maintained in the radial direction over substantially the entire area of the portions extending along each other.
  • currents flow in opposite directions to each other. Therefore, the inductance can be reduced.
  • the positive electrode bus bar 27B extended in the counterclockwise direction includes positive electrode terminals 63B1 and 63B2 of the semiconductor module 40 constituting upper and lower arms of U phase and V phase, and W phase
  • the positive electrode terminal 63B1 corresponding to the upper and lower arms of the W phase among the semiconductor modules 40 constituting the upper and lower arms of the X phase is connected.
  • the negative electrode bus bar 27E extended counterclockwise the negative terminals 63E1 and 63E2 of the semiconductor module 40 constituting the U-phase and V-phase upper and lower arms and the semiconductor module 40 constituting the W-phase and X-phase upper and lower arms Among them, the negative electrode terminal 63E1 corresponding to the W-phase upper and lower arms is connected.
  • positive electrode bus bar 27B extended clockwise positive electrode terminal 63B2 corresponding to upper and lower arms of X phase among semiconductor modules 40 constituting upper and lower arms of W phase and X phase, Y phase and Z phase
  • the positive terminals 63B1 and 63B2 of the semiconductor module 40 constituting the upper and lower arms are connected.
  • the negative electrode bus bar 27E extended clockwise the negative electrode terminal 63E2 corresponding to the upper and lower arms of the X phase among the semiconductor modules 40 constituting the upper and lower arms of the W phase and the X phase, and the upper and lower sides of the Y phase and the Z phase.
  • the negative terminals 63E1 and 63E2 of the semiconductor module 40 constituting the arm are connected.
  • the three semiconductor modules 40 include the semiconductor module 40 configuring the U-phase and V-phase upper and lower arms, the semiconductor module 40 configuring the W-phase and X-phase upper and lower arms, and the Y-phase and Z-phase upper and lower arms
  • the semiconductor modules 40 to be configured are arranged around the rotation axis 133 in the order.
  • direct current is supplied to the inverter circuit unit 23 through the positive electrode bus bar 27B, the negative electrode bus bar 27E, and the like. Further, direct current is supplied to the field circuit unit 25 and the control circuit unit 26 through the other bus bars for wiring and the wiring board 22.
  • Control circuit unit 26 controls inverter circuit unit 23 and field circuit unit 25 based on a signal input from the outside, for example, an engine ECU.
  • the field circuit unit 25 is controlled by the control circuit unit 26 and supplies direct current to the rotor winding 131 via the brush 16 and the slip ring 15.
  • the inverter circuit unit 23 is controlled by the control circuit unit 26, and converts direct current supplied via the positive electrode bus bar 27B and the negative electrode bus bar 27E into alternating current.
  • the control circuit unit 26 controls the on / off of the switching element 70 to sequentially switch the flowing direction of the current, thereby converting direct current into alternating current.
  • the alternating current converted by the inverter circuit unit 23 is supplied to the stator winding 121 via the output bus bars 27P1 and 27P2.
  • the rotating electrical machine unit 10 generates a driving force to drive the vehicle.
  • the rotational state of the rotor 13 is detected by the rotational angle detection element. Further, the shunt resistor 901 provided in the semiconductor module 40 detects the current flowing in each phase of the stator winding 121. The control circuit unit 26 controls the rotation of the rotary electric machine 1 using these detected values.
  • the stator windings 121a and 121b are alternating current (3 Phase exchange).
  • the inverter circuit unit 23 is controlled by the control circuit unit 26, and converts alternating current supplied from the stator winding 121 via the output bus bars 27P1 and 27P2 into direct current.
  • the control circuit unit 26 controls the on / off of the switching element 70 to sequentially switch the flowing direction of the current to rectify the alternating current. During the dead time of the switching element 70, alternating current is rectified by the parasitic diode.
  • the direct current converted by the inverter circuit unit 23 is supplied to the battery. Thereby, the battery is charged by the power generated by the rotating electrical machine unit 10.
  • the thickness direction of the switching element 70 is orthogonal to the Z direction and the Z direction, and the arrangement direction of the plurality of signal terminals 64 is referred to as the X direction. Further, a direction orthogonal to both the Z direction and the X direction is referred to as a Y direction.
  • the shape when viewed in the XY plane is a plane shape.
  • XY plane view can be said to be projection view in the Z direction.
  • the Z direction substantially coincides with the axial direction. Further, a position near the center of the lead frame 60 in the X direction is indicated as inside, and a position far from the center is indicated as outside. Further, in the Z direction, the direction from the back surface 50b to the one surface 50a of the sealing resin body 50 is referred to as upper, and the direction from the one surface 50a to the back 50b is as lower.
  • the semiconductor module 40 includes a sealing resin body 50, a lead frame 60, a switching element 70, a drive unit 80, and a bridge member 90.
  • the sealing resin body 50 is omitted.
  • the switching element 70, the drive unit 80, and the cross-linking member 90 are mounted, and the lead frame 60 before the molding of the sealing resin body 50, that is, before the tie bar cut is shown.
  • the bonding wires 41 are omitted for the sake of convenience.
  • the semiconductor module 40 is also referred to as a semiconductor package, a switching module, or a semiconductor device.
  • sealing resin body 50 integrally seals a part of the lead frame 60, the switching element 70, the driving unit 80, and the bridging member 90.
  • Sealing resin body 50 is formed using, for example, an epoxy resin.
  • the sealing resin body 50 has a surface 50a which is a surface in the Z direction, a back surface 50b opposite to the surface 50a, and a side surface connecting the surface 50a and the back surface 50b.
  • the semiconductor module 40 is disposed such that the back surface 50 b side of the sealing resin body 50 is in contact with the heat sink 24.
  • the sealing resin body 50 is a substantially rectangular parallelepiped, and has four side surfaces.
  • a main terminal 63 and a signal terminal 64 protrude from a side surface 50c which is a first side surface in the Y direction and a side surface 50d which is a second side surface opposite to the side surface 50c.
  • the sealing resin body 50 is formed by transfer molding. As shown in FIGS. 6 and 7 etc., the sealing resin body 50 has a recess 51.
  • the recess 51 is open to the one surface 50 a and the side surface 50 c.
  • the bottom surface of the recess 51 is substantially flat.
  • the two concave portions 51 are provided corresponding to the positive electrode terminals 63B1 and 63B2.
  • the concave portion 51 is provided at a position overlapping the corresponding positive electrode terminals 63B1 and 63B2 in the projection view from the Z direction.
  • the recess 51 is provided such that a part of the jig can be inserted.
  • the sealing resin body 50 has a convex portion 52 derived from an air vent provided in a molding die not shown.
  • the convex portion 52 protrudes from the side surfaces 50c and 50d.
  • the air vents are provided on the upper and lower molds constituting the mold in order to reduce voids and weld lines caused by air entrainment at the time of molding.
  • the air vents are provided at positions overlapping with the main terminals 63 in the projection view from the Z direction at the portions forming the side surfaces 50 c and 50 d of the upper and lower dies. Therefore, the main terminal 63 is disposed between the protrusions 52 in the Z direction.
  • Reference numeral 53 shown in FIGS. 6 to 8 denotes pin marks derived from ejector pins.
  • Reference numeral 54 shown in FIGS. 6 and 7 denotes a gate mark of a mold.
  • the lead frame 60 is a plate made of metal.
  • the lead frame 60 is formed by punching and bending a metal plate.
  • the lead frame 60 includes an island 61, a wiring portion 62, a main terminal 63 and a signal terminal 64 which are terminals for external connection, and a dummy terminal 65.
  • the lead frame 60 is substantially line symmetrical with respect to the center in the X direction. In FIG. 21, the center of the lead frame 60 in the X direction is indicated by an alternate long and short dash line.
  • the switching element 70 and the drive unit 80 are disposed on the island 61.
  • the lead frame 60 has five islands 610 to 614 in which the switching element 70 and the driving unit 80 are individually disposed.
  • the islands 610 to 614 have substantially the same thickness and are arranged in the same plane in the Z direction.
  • the islands 610 to 614 are arranged in line symmetry with respect to the center in the X direction.
  • the island 610 is a portion where the drive unit 80 is disposed.
  • the islands 611 to 614 are portions where the switching element 70 is disposed and to which the drain electrode of the disposed switching element 70 is connected.
  • the switching element 700 H is disposed on the island 611, and the switching element 700 L is disposed on the island 612.
  • the switching element 701 H is disposed on the island 613, and the switching element 701 L is disposed on the island 614.
  • the areas of the islands 611 to 614 along the XY plane are substantially equal to one another.
  • the heat release surface 610 a opposite to the arrangement surface of the drive unit 80 is exposed from the back surface 50 b of the sealing resin body 50.
  • the heat radiation surfaces 611a to 614a opposite to the arrangement surface of the switching element 70 are exposed from the back surface 50b.
  • the portion of the island 61 excluding the heat radiation surfaces 610a to 614a is sealed by a sealing resin body 50.
  • the convex part is provided in the side of each island 61. As shown in FIG.
  • the island 610 has a substantially rectangular planar shape.
  • the island 610 is disposed at the center of the lead frame 60 in the X direction.
  • the island 610 as shown in FIG. 16 and FIG. 21, etc., has a convex portion 610b that protrudes in the Y direction from the center of the end opposite to the signal terminal 64.
  • the convex portion 610b may be provided at a position not interfering with the bonding wire 41. For example, when the distance between the pads 71 of the switching elements 700H and 701H is shorter than that of the present embodiment, the convex portions 610b may be provided at both ends instead of the center.
  • the islands 611 to 614 are disposed around the island 610.
  • the islands 612 and 614 in which the lower arm side switching elements 700L and 701L are disposed are provided so as to sandwich the island 610 in the X direction.
  • the islands 612 and 614 are arranged in line symmetry with each other in the X direction.
  • the islands 612 and 614 both have a substantially rectangular planar shape.
  • the islands 612 and 614 each have a predetermined gap with the island 610 in the X direction.
  • the islands 611 and 613 in which the switching elements 700H and 701H on the upper arm side are disposed are provided on the side opposite to the signal terminal 64 in the Y direction with respect to the island 610.
  • the islands 611 and 613 are arranged side by side in the X direction with a predetermined gap.
  • the islands 611 and 613 are arranged in line symmetry with each other in the X direction.
  • the islands 611 and 613 both have a substantially rectangular planar shape.
  • the island 611 faces the islands 610 and 612 in the Y direction.
  • the island 613 faces the islands 610 and 614 in the Y direction.
  • the islands 611 and 613 have convex portions 611 b and 613 b protruding in the Y direction from the end on the signal terminal 64 side, as shown in FIGS.
  • the convex portions 611 b and 613 b are provided to face the island 610 in the Y direction.
  • the convex portion 611 b is provided at the end on the island 613 side in the X direction.
  • the bonding wire 41 is connected to a position away from the island 613 in the convex portion 611 b.
  • the bonding wire 41 is connected to detect the drain potential of the switching element 700H.
  • the convex portion 613 b is provided at the end on the island 611 side in the X direction.
  • the bonding wire 41 is connected to a position away from the island 611 in the convex portion 613 b.
  • the bonding wire 41 is connected to detect the drain potential of the switching element 701H.
  • the wiring portion 62 includes a wiring portion 620 connecting the islands 611 and 612, a wiring portion 621 connecting the island 612 and the negative electrode terminal 63E1, a wiring portion 622 connecting the islands 613 and 614, an island 614 and the negative electrode terminal 63E2.
  • a wiring portion 623 to be connected is provided.
  • the wiring portion 620 is connected to the end of the island 612 opposite to the signal terminal 64.
  • the wiring portion 620 is connected to the end of the island 612 opposite to the island 610 side.
  • the wiring portion 620 is extended in the Y direction, and its tip portion is arranged in parallel with the island 611 while having a predetermined gap with the island 611 in the X direction.
  • the wiring portion 620 is disposed outside the island 611 in the X direction.
  • the wiring portion 621 is connected to the negative electrode terminal 63E1.
  • the wiring portion 621 extends from the negative electrode terminal 63E1 in the Y direction, and its tip end portion is disposed side by side with the island 612 while having a predetermined gap with the island 612 in the X direction.
  • the wiring portion 621 is disposed outside the island 612 in the X direction.
  • the wiring portion 622 is connected to the end of the island 614 opposite to the signal terminal 64.
  • the wiring portion 622 is connected to the end of the island 614 opposite to the island 610 side.
  • the wiring portion 622 is extended in the Y direction, and the tip portion thereof is disposed in parallel with the island 613 while having a predetermined gap with the island 613 in the X direction.
  • the wiring portion 622 is disposed outside the island 613 in the X direction.
  • the wiring portion 623 is connected to the negative electrode terminal 63E2.
  • the wiring portion 623 extends from the negative electrode terminal 63E2 in the Y direction, and its tip end portion is disposed side by side with the island 614 while having a predetermined gap with the island 614 in the X direction.
  • the wiring portion 623 is disposed outside the island 614 in the X direction.
  • the wiring portion 621, the island 612, the island 610, the island 614, and the wiring portion 623 are arranged in this order in the X direction. Further, at the positions of the islands 611 and 613 in the Y direction, the wiring portion 621, the wiring portion 620, the island 611, the island 613, the wiring portion 622, and the wiring portion 623 are sequentially arranged in the X direction.
  • the wiring portions 620 and 621 on the upper arm side and the wiring portions 622 and 623 on the lower arm side are arranged in line symmetry in the X direction.
  • the heat radiation surfaces 620a to 623a opposite to the arrangement surface of the cross-linking member 90 are exposed from the back surface 50b of the sealing resin body 50.
  • the heat radiation surfaces 620a to 623a are surfaces opposite to the surface on the switching element 70 side.
  • heat can be dissipated from the heat dissipation surfaces 620a to 623a.
  • the portions excluding the heat dissipation surfaces 620 a to 623 a are sealed by the sealing resin body 50.
  • the heat radiation surfaces 610a to 614a and 620a to 623a are exposed from the back surface 50b by bringing the heat radiation surfaces 610a to 614a and 620a to 623a into contact with the molding die.
  • the convex part is provided in the side of each wiring part 62. As shown in FIG. 12 etc., in order to suppress peeling of the sealing resin body 50, the convex part is provided in the side of each wiring part 62. As shown in FIG.
  • the portions of the island 61 and the wiring portion 62 are thicker than the portions of the main terminal 63, the signal terminal 64 and the dummy terminal 65.
  • the central portion of the lead frame 60 is thicker than the central portion. Between the broken lines shown in FIG. 21 are thick portions.
  • the heat of the switching element 70 and the drive unit 80 can be dissipated efficiently.
  • the island 61 and the wiring portion 62 are thick, it is possible to suppress the warpage of the lead frame 60 due to the cure shrinkage of the sealing resin body 50.
  • the main terminal 63 and the signal terminal 64 which are terminals for external connection are made thin, punching and bending workability can be improved.
  • the signal terminals 64 can be narrowed in pitch.
  • the main terminal 63 has the positive electrode terminals 63B1 and 63B2, the negative electrode terminals 63E1 and 63E2, and the output terminals 63P1 and 63P2.
  • the positive electrode terminals 63B1 and 63B2 are power supply terminals connected to the positive electrode side of the battery.
  • the positive electrode terminals 63B1 and 63B2 are also referred to as high potential side DC terminals.
  • the positive electrode terminal 63B1 is continuous with the island 611 of the switching element 700H.
  • the positive electrode terminal 63B1 is continued to the end of the island 611 opposite to the island 613 side.
  • the positive electrode terminal 63B1 extends from the end of the island 611 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c of the sealing resin body 50, is bent outside the sealing resin body 50, and extends in the Z direction. It extends upward.
  • the positive electrode terminal 63B2 is connected to the island 613 of the switching element 701H.
  • the positive electrode terminal 63B2 is connected to the end of the island 613 opposite to the island 611 side.
  • the positive electrode terminal 63B2 extends from the end of the island 613 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the positive terminals 63B1 and 63B2 are arranged in line symmetry with each other in the X direction.
  • Negative electrode terminals 63E1 and 63E2 are power supply terminals connected to the negative electrode side of the battery.
  • the negative electrode terminals E1 and E2 are also referred to as low potential side DC terminals.
  • the negative electrode terminal 63E1 is disposed outside the positive electrode terminal 63B1 in the X direction.
  • the negative electrode terminal 63E1 extends in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the negative electrode terminal 63E2 is disposed outside the positive electrode terminal 63B2 in the X direction.
  • the negative electrode terminal 63E2 is extended in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the negative terminals 63E1 and 63E2 are arranged in line symmetry with each other in the X direction.
  • the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are arranged in the order of the negative electrode terminal 63E1, the positive electrode terminal 63B1, the positive electrode terminal 63B2 and the negative electrode terminal 63E2 in the X direction.
  • the distance between the negative electrode terminal 63E1 and the positive electrode terminal 63B1 and the distance between the negative electrode terminal 63E2 and the positive electrode terminal 63B2 are shorter than the distance between the positive electrode terminals 63B1 and 63B2.
  • the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are substantially L-shaped in the YZ plane.
  • the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 respectively have tie bar marks 66a and 66b as shown in FIG. 7, FIG. 9, FIG. 14 and FIG.
  • the tie bar marks 66a and 66b are cut marks of the tie bar 66 and slightly protrude in the X direction.
  • the tie bar mark 66a is a cut mark of a first tie bar 660a closer to the island 61 in the Y direction
  • the tie bar mark 66b is a cut mark of a second tie bar 660b farther from the island 61 than the tie bar 660a.
  • the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 have bent portions between the tie bar marks 66a and 66b in the extending direction.
  • the output terminals 63P1 and 63P2 are also referred to as AC terminals.
  • the output terminal 63P1 is connected to the island 612.
  • the output terminal 63P1 is continuous with the end of the island 612 opposite to the island 610, and is extended obliquely to be apart from the island 612 in the X direction. Specifically, it is obliquely extended to a position not overlapping the switching element 700L in the X direction. Then, the tip is extended in the Y direction, protrudes from the side surface 50d opposite to the positive electrode terminal 63B1, is bent outside the sealing resin body 50, and extends further in the Z direction.
  • the output terminal 63P2 is connected to the island 614.
  • the output terminal 63P2 is continuous with the end of the island 614 opposite to the island 610, and is extended diagonally so as to be apart from the island 614 in the X direction. Specifically, it is obliquely extended to a position not overlapping the switching element 701L in the X direction. Then, it is extended in the Y direction at the tip thereof, protrudes from the side surface 50d, is bent outside the sealing resin body 50, and further extends upward in the Z direction.
  • the output terminals 63P1 and 63P2 are also substantially L-shaped in the YZ plane.
  • the output terminals 63P1 and 63P2 are arranged in line symmetry with each other in the X direction.
  • the output terminals 63P1 and 63P2 also have tie bar marks 66a and 66b, respectively.
  • the tie bar mark 66a is a cut mark of the first tie bar 661a closer to the island 61 in the Y direction
  • the tie bar mark 66b is a cut mark of the second tie bar 661b farther from the island 61 than the tie bar 661a.
  • the output terminals 63P1 and 63P2 have bending portions between the tie bar marks 66a and 66b in the extending directions.
  • the width of the bent portion is narrowed.
  • a narrow portion 63a is provided so as to include the bent portion, and a wide portion is provided so as to sandwich the narrow portion 63a in the extending direction.
  • the portions having the tie bar marks 66a and 66b are wide portions, and a narrow portion 63a including a bent portion is provided therebetween.
  • the width of the portion forming the bent portion is narrowed to reduce the rigidity, so that the bending load at the time of forming the bent portion can be reduced. Also, the bending accuracy can be improved.
  • the corner portion of the projecting tip is chamfered. In other words, it has a tapered shape.
  • a relatively large current tens of amps
  • the main terminal 63 flows to the main terminal 63 in order to rotate the rotating electrical machine 1, so the width of the main terminal 63 is wide.
  • welding can be stably performed at the center in the width direction.
  • the signal terminal 64 is a terminal for outputting a signal to the outside or inputting a signal from the outside.
  • the plurality of signal terminals 64 are arranged side by side in the X direction.
  • Each signal terminal 64 is extended in the Y direction, protrudes from the side surface 50d, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the signal terminal 64 is also substantially L-shaped in the YZ plane. In the present embodiment, the signal terminals 64 are inserted into and mounted on the wiring board 22.
  • the signal terminal 64 includes a signal terminal 640 connected to the wiring board 22 and set to the ground potential (GND).
  • the signal terminal 640 is disposed in the middle of the plurality of signal terminals 64.
  • the signal terminal 640 is continuous with the center of the end of the island 610 on the signal terminal 64 side.
  • the signal terminal 640 is disposed at the center of the lead frame 60 in the X direction.
  • the signal terminal 640 is connected to the pad 81 of the drive unit 80 by the bonding wire 41.
  • the bonding wire 41 is connected to the wiring portions 621 and 623 connected to the negative terminals 63E1 and 63E2 and the negative terminals 63E1 and 63E2 without securing the ground potential. Good. That is, the bonding wires 41 may not be connected across the other potential parts such as the islands 612 and 614 and the wiring parts 620 and 622. Therefore, the bonding wire 41 can be prevented from coming into contact with other potential parts to cause a short circuit.
  • the signal terminal 64 includes two signal terminals 641.
  • One of the signal terminals 641 is continuous with the end of the island 612 on the signal terminal 64 side, and the other signal terminal 641 is continuous with the end of the island 614 on the signal terminal 64 side.
  • the island 612 is connected to the source electrode 72 of the switching element 700H via the wiring portion 620 and the clip 900.
  • the island 614 is connected to the source electrode 72 of the switching element 701H via the wiring portion 622 and the clip 900.
  • the wiring portion 620 and the island 612 are wires that connect the source electrode 72 of the switching element 700H and the output terminal 63P1.
  • the wiring portion 622 and the island 614 are wires that connect the source electrode 72 of the switching element 701H and the output terminal 63P2.
  • a drive source potential for driving which is a reference of the drive signal on the upper arm side is supplied from the drive circuit of the control circuit unit 26. Therefore, the inductance of the wiring can be reduced compared to the configuration in which the source potential is supplied from the output terminals 63P1 and 63P2. Thereby, the controllability of the switching element 70 by the control circuit unit 26 can be improved, and the delay of switching can be suppressed.
  • the drive source potential serving as the reference of the lower arm side drive signal from the drive circuit of the control circuit unit 26 is connected to the signal terminal 64 connected to the high potential side of the shunt resistor 901 via the bonding wire 41. Supplied.
  • the semiconductor module 40 has fifteen signal terminals 64. As described above, one is a signal terminal 640 for the ground potential, and two are signal terminals 641 for the source potential on the upper arm side. Of the remaining twelve, four are for drive signals of the switching elements 70, and four are for two shunt resistors 901. One is for acquiring the power supply VCC (for example, 5 V) from the wiring substrate 22 side, and one is for output of any one forward voltage Vf of the temperature sensitive diodes. One is for notification of abnormality or the like, and one is a spare to which the bonding wire 41 is not connected.
  • VCC for example, 5 V
  • the signal terminal 64 excluding the signal terminal 640 has at least one crank portion 64a which is a crank-shaped portion.
  • the crank portion 64a By having the crank portion 64a, the width occupied by the plurality of signal terminals 64 in the X direction is narrowed on the connection side with the wiring substrate 22 than the end on the island 61 side, that is, the connection side of the bonding wire 41 ing.
  • the position of the cranks 64a is set such that the length of the straight portion between the cranks 64a is 2 mm or more.
  • One of the crank portions 64a is provided in the vicinity of the tie bar 661a, and the other crank portion 64a is provided in the vicinity of the tie bar 661b.
  • the mounting portions of the signal terminals 64 on the wiring board 22 are arranged in a zigzag in the XY plane. That is, the signal terminals 64 adjacent to each other in the X direction are shifted in the Y direction.
  • the signal terminals 64 are arranged in two stages. Thus, the space occupied by the signal terminals 64 in the X direction can be reduced, and the semiconductor module 40 can be miniaturized.
  • the wiring substrate 22 can also be miniaturized. Furthermore, since the adjacent signal terminals 64 are spaced apart in the Y direction, noise and interference between the terminals can be reduced.
  • the signal terminal 64 is disposed between the output terminals 63P1 and 63P2 in the X direction.
  • FIG. 22 is a schematic view showing an arrangement image of the output terminals 63P1 and 63P2 and the signal terminal 64. As shown in FIG. The upper part of FIG. 22 shows the present embodiment, and the middle part and the lower part show reference examples. In the reference example, r is added to the end of the reference numerals of the relevant elements of this embodiment.
  • the signal terminals 64 are integrated between the output terminals 63P1 and 63P2.
  • Output terminals 63P1 and 63P2 are disposed at both ends of the signal terminal 64 in the X direction. Therefore, a vacant space 64b indicated by a broken line is generated between the output terminal 63P1 and the signal terminal 64 at one end, and a space 64b is similarly generated between the output terminal 63P2 and the signal terminal 64 at the other end. .
  • the output terminal 63P1r is disposed in the same manner as in the present embodiment, the output terminal 63P2r is disposed between the signal terminals 64r, and the plurality of signal terminals 64r are divided into two. According to this, spaces 64br are generated on both sides of the output terminal 63P2r. Further, in the lower reference example, the output terminals 63P1r and 63P2r are disposed adjacent to each other, and the plurality of signal terminals 64r are divided into two by the output terminals 63P1r and 63P2r. According to this, spaces 64br are generated on both sides of each of the output terminals 63P1r and 63P2r.
  • the arrangement space for the external connection terminals can be reduced in the X direction. That is, waste space can be reduced and the size of the semiconductor module 40 can be miniaturized.
  • the end of the signal terminal 64 on the island 61 side that is, the connection portion of the bonding wire 41 is wider in the X direction than the other portions of the signal terminal 64. .
  • the bonding wire 41 can be stably connected.
  • the width of the part excluding the connection part with the bonding wire 41 is narrow, the arrangement space of the signal terminal 64 can be made small in combination with the above-mentioned crank part 64a.
  • the end on the side of the wide island 61 is caught by the sealing resin body 50, it is possible to suppress the removal of the signal terminal 64 while reducing the arrangement space by the lock hole effect.
  • connection portion of the bonding wire 41 is flat.
  • the bonding wires 41 are respectively connected to the signal terminals 64 and the above-described convex portions 611 b and 613 b.
  • the connection portions of the convex portions 611 b and 613 b and the connection portions of the signal terminals 64 are both flat. Specifically, the flatness of the connection portion is secured by tapping. Thereby, the connection reliability of the bonding wire 41 can be improved. Further, by punching, burrs (not shown) generated when forming the lead frame 60 can be struck and crushed to suppress foreign matter biting at the time of bonding.
  • the dummy terminal 65 does not provide an electrical connection function, and is a portion connected to the tie bar 66 before the tie bar is cut. As shown in FIGS. 7 and 16, a part of the dummy terminal 65 is extended in the Y direction and protrudes from the side surface 50c of the sealing resin body 50. The remainder of the dummy terminal 65 is extended in the Y direction and protrudes from the side surface 50 d. Four dummy terminals 65 are arranged respectively.
  • the dummy terminals 65 are connected to the islands 611 and 613 and the wiring parts 620 and 622, respectively. As shown in FIG. 16 etc., one of the dummy terminals 65 is an end opposite to the signal terminal 64 in the island 611 and extends in the Y direction from the end opposite to the positive electrode terminal 63B1 side. . Another dummy terminal 65 is an end of the island 613 opposite to the signal terminal 64 and extends in the Y direction from the end opposite to the positive electrode terminal 63B2 side.
  • Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 620, that is, the end opposite to the island 612.
  • Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 622, that is, the end opposite to the island 614.
  • one dummy terminal 65 is disposed between the negative electrode terminal 63E1 and the positive electrode terminal 63B1, and between the negative electrode terminal 63E2 and the positive electrode terminal 63B2. Further, two dummy terminals 65 are disposed between the positive electrode terminals 63B1 and 63B2. As shown in FIG. 21, the dummy terminals 65 on the side of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are extended to the first stage tie bar 660a. Therefore, in the state after tie bar cutting, as shown in FIG. 7 and FIG. 16 etc., the tie bar mark 66a of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 is extended to almost the same position in the Y direction. .
  • one of the dummy terminals 65 is extended in the Y direction from the end of the wiring portion 621, that is, the end opposite to the negative electrode terminal 63E1.
  • Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 623, that is, the end opposite to the negative electrode terminal 63E2.
  • the remaining two dummy terminals 65 are connected to a part of the signal terminal 64 connected to the shunt resistor 901 via the bonding wire 41 and are respectively arranged outside the signal terminal 64.
  • One dummy terminal 65 is disposed outside the output terminals 63P1 and 63P2 in the X direction. In addition, one dummy terminal 65 is disposed between the output terminals 63P1 and 63P2 and the signal terminal 64, respectively. As shown in FIG. 21, the output terminals 63P1 and 63P2 and the dummy terminal 65 on the signal terminal 64 side are extended to the tie bar 661a of the first stage. Therefore, in the state after tie bar cutting, as shown in FIG. 7 and FIG. 16 etc., the tie bar mark 66a of the output terminals 63P1 and 63P2 and the signal terminal 64 is extended to almost the same position in the Y direction.
  • the dummy terminal 65 is extended to substantially the same position as the tie bar mark 66 a. That is, it extends only to a position before the bent portions of the main terminal 63 and the signal terminal 64. Therefore, unlike the main terminal 63 and the signal terminal 64, the dummy terminal 65 does not have a bent portion.
  • the width of the dummy terminal 65 is smaller than the width of the main terminal 63.
  • the switching element 70 has a vertical structure, and has main electrodes on both sides in the Z direction which is the thickness direction of the chip.
  • the pad 71 described above which is a first pad, is provided on one side.
  • the drain electrode (not shown) is formed on the surface facing the island 61, and the source electrode 72 is formed on the surface opposite to the drain electrode formation surface.
  • the pad 71 is formed on the same main surface as the source electrode 72 at a position different from that of the source electrode 72.
  • a temperature sensitive diode is integrally formed.
  • the switching element 70 has a planar rectangular shape. As shown in FIG. 21, the pad 71 is arranged along one side of the switching element 70, specifically, the side opposite to the drive unit 80. In the present embodiment, the switching element 70 has four pads 71, which are arranged in order of source potential detection, gate electrode, anode of temperature sensitive diode, and cathode.
  • the switching element 70 includes the switching element 700H on the upper arm side constituting the first upper and lower arms and the switching element 700L on the lower arm side constituting the first upper and lower arms.
  • it has a switching element 701H on the upper arm side constituting the second upper and lower arms, and a switching element 701L on the lower arm side constituting the second upper and lower arms.
  • the switching element 700H is disposed on the island 611, and the switching element 700L is disposed on the island 612.
  • the switching element 701 H is disposed on the island 613, and the switching element 701 L is disposed on the island 614.
  • the switching elements 700H and 701H on the upper arm side are arranged in line symmetry in the X direction.
  • the lower arm side switching elements 700L and 701L are arranged in line symmetry in the X direction as in the corresponding islands 612 and 614.
  • the switching elements 700H and 701H on the upper arm side are arranged such that the alignment direction of the pad 71 and the source electrode 72 is the Y direction. That is, the pads 71 are arranged in the X direction.
  • the switching elements 700L and 701L on the lower arm side are arranged such that the alignment direction of the pad 71 and the source electrode 72 is the X direction. That is, the arrangement direction of the pads 71 is arranged in the Y direction.
  • the switching elements 70 are positioned and arranged with respect to the corresponding islands 61 so that their centers substantially coincide with each other.
  • the lower arm side switching elements 700L and 701L are disposed outside in the X direction with respect to the upper arm side switching elements 700H and 701H of the same phase. In the X direction, the switching element 700L, the switching element 700H, the switching element 701H, and the switching element 701L are arranged in this order.
  • the positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 connected to the drain electrode of each switching element 70 are of the output terminal 63P1, the positive terminal 63B1, the positive terminal 63B2 and the output terminal 63P2. They are arranged in order. As described above, the arrangement order of the switching elements 70 and the arrangement order of the positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 coincide with each other. Further, the main terminal 63 and the signal terminal 64 protrude only from the opposite side surfaces 50c and 50d.
  • the layout of the lead frame 60 is simplified, and the physical size of the semiconductor module 40 can be miniaturized by increasing the wiring density. Further, since the main terminals 63 and the signal terminals 64 protrude from only the two surfaces of the sealing resin body 50, the connection structure with the bus bar 27 can be simplified also when configuring the control unit 20.
  • the drain electrode of the switching element 70 is connected to the corresponding island 61 through the solder 42.
  • Source electrode 72 is connected to corresponding bridge member 90 via solder 42.
  • the drain electrode of the switching element 700H is connected to the island 611, and the drain electrode of the switching element 700L is connected to the island 612.
  • the drain electrode of the switching element 701H is connected to the island 613, and the drain electrode of the switching element 701L is connected to the island 614.
  • the drive unit 80 drives the switching element 70.
  • the drive signal generated by the drive circuit of the control circuit unit 26 is input to the gate electrode of each of the switching elements 70 via the drive unit 80. That is, the switching element 70 is driven by the drive signal output from the drive unit 80.
  • the drive unit 80 is configured as an IC chip such as an ASIC.
  • the driving unit 80 is fixed to the island 610 via a conductive adhesive 43 such as Ag paste.
  • a plurality of pads 81 On the surface opposite to the surface fixed to the island 610 in the drive unit 80, a plurality of pads 81, which are second pads, are formed.
  • a part of the pad 81 is connected to the pad 71 of the switching element 70 via the bonding wire 41.
  • Another pad 81 is connected to the islands 611 and 613 via bonding wires 41.
  • the rest of the pad 81 is connected to the signal terminal 64 through the bonding wire 41.
  • the drive unit 80 has a circuit for protecting the switching element 70. For example, it has a circuit for detecting the gate-source voltage Vgs of each of the switching elements 70 and a circuit for detecting the drain-source voltage Vds.
  • the drive unit 80 acquires the source potential from the pad 71 via the bonding wire 41.
  • the drain potential is acquired from the islands 611 and 613 through the bonding wire 41.
  • the drive unit 80 has a circuit for detecting the forward voltage Vf of each temperature sensitive diode. The drive unit 80 acquires the anode potential and the cathode potential from the pad 71 via the bonding wire 41.
  • the drive unit 80 further includes a determination circuit that determines an abnormality of the switching element 70 based on the gate-source voltage Vgs, the drain-source voltage Vds, and the forward voltage Vf. Specifically, the determination circuit determines whether overheating of the switching element 70, overcurrent, simultaneous turning on of the upper and lower arms, and the like have occurred.
  • the drive unit 80 has a notification circuit that notifies the control circuit unit 26 of the determination result through the signal terminal 64.
  • the drive unit 80 has a substantially rectangular planar shape.
  • the drive units 80 are arranged in line symmetry with respect to the center line of the lead frame 60 in the X direction.
  • the center of the drive unit 80 substantially coincides with the center line of the lead frame 60 in the X direction. Further, in the X direction, the center of the drive unit 80 substantially coincides with the center of the island 610. Accordingly, the switching elements 700L and 701L on the lower arm side are arranged in line symmetry with respect to the drive unit 80.
  • the driving unit 80 is disposed between the lower arm side switching elements 700L and 701H.
  • the switching element 700H on the upper arm side faces the switching element 700L and the drive unit 80 in the Y direction.
  • the pad 71 of the switching element 700H is disposed outside the island 610 in the X direction.
  • the switching element 701H on the upper arm side faces the switching element 701L and the drive unit 80 in the Y direction.
  • the pad 71 of the switching element 701H is disposed outside the island 610 in the X direction.
  • the four switching elements 70 are disposed around the drive unit 80 in plan view from the Z direction. Thereby, the length of the bonding wire 41 connecting the pad 71 of the switching element 70 and the drive unit 80 can be shortened. Since the relay wiring board is unnecessary, the number of parts can be reduced, and the physical size of the semiconductor module 40 can be miniaturized. In addition, when molding the sealing resin body 50, it is possible to suppress the occurrence of disconnection, connection failure or the like in the bonding wire 41. Since the length is short, the bonding wire 41 can also be inhibited from contacting other parts. That is, defects in the bonding wire 41 can be suppressed. In addition, the wiring density of the bonding wires 41 can be improved to reduce unnecessary space, and the physical size of the semiconductor module 40 can be miniaturized.
  • the drive unit 80 has a substantially rectangular planar shape, and as shown in FIG. 21, the pads 81 of the drive unit 80 are provided on the sides facing the switching elements 70 respectively.
  • pads 81 connected to the switching element 70 are concentrated on three consecutive sides of the drive unit 80. Thereby, the length of the bonding wire 41 can be shortened. Therefore, defects in the bonding wire 41 at the time of molding can be reduced.
  • the size of the semiconductor module 40 can be miniaturized. Note that only the pad 81 connected to the signal terminal 64 is disposed on the remaining one side of the drive unit 80.
  • the switching element 70 has a substantially square shape in detail. As shown in FIG. 21, the pads 71 are arranged in the vicinity of the center of one side of the switching element 70 along the side. As described above, since the pad 71 is disposed at the center of one side, the switching element 70 can be made common as one type of chip. In addition, the bonding wires 41 can be connected to the pads 71 and 81 on the upper arm side and the lower arm side, which are different in the arrangement by 90 degrees, though being made common. Moreover, the length of the bonding wire 41 can be shortened.
  • the signal terminals 64 are collectively arranged on one side of the drive unit 80 in the Y direction. All the signal terminals 64 are arranged on the opposite side of the drive unit 80 to the switching elements 700H and 701H on the upper arm side. The switching element 70 is opposed to the remaining three sides of the drive unit 80. According to this, the connection structure with the drive part 80 can be simplified including the signal terminal 64. Therefore, the length of the bonding wire 41 can be shortened, and the size of the semiconductor module 40 can be reduced.
  • the output terminals 63P1 and 63P2 are connected to the stator winding 121 of the rotary electric machine unit 10 via the output bus bars 27P1 and 27P2, so heat is transmitted from the rotary electric machine unit 10 side. Therefore, the switching element on the lower arm side is susceptible to heat.
  • the drive unit 80 is disposed between the switching elements 700L and 701L on the lower arm side. Further, in the X direction, the switching elements 700H and 701H are arranged in line symmetry, and the switching elements 700L and 701L are arranged in line symmetry. That is, the four switching elements 70 are equally arranged in the XY plane. Then, as shown in FIG. 16, assuming that the distance between the switching elements 700H and 701H on the upper arm side is L1 and the distance between the switching elements 700L and 701L on the lower arm side is L2, the distance L2 is longer than the distance L1. It is done.
  • the switching elements 700L and 701L which are heated by heat received from the rotary electric machine 10 are separated from each other.
  • the thermal interference between the switching elements 700L and 701L can be reduced more than the thermal interference between the switching elements 700H and 701H. Therefore, local overheating in the XY plane can be suppressed, and performance degradation due to heat can be suppressed for all the switching elements 70.
  • the sealing resin body 50 and the bonding wire 41 are not shown.
  • the heat release surfaces 611a to 614a opposite to the arrangement surface of the switching element 70 are exposed from the sealing resin body 50. Therefore, the heat of switching element 70 can be dissipated effectively.
  • the heat release surface 610a opposite to the arrangement surface of the drive unit 80 is exposed from the sealing resin body 50. Accordingly, the heat generated by the drive unit 80 and the heat received from the switching element 70 disposed around the drive unit 80 can be effectively dissipated. Moreover, the drive part 80 can also be miniaturized by the improvement of heat dissipation.
  • the heat release surfaces 620a and 622a opposite to the surfaces on the switching elements 700L and 701L side are sealing resin bodies Exposed from 50.
  • the heat of the switching elements 700L and 701L can be dissipated from the heat radiation surfaces 620a and 622a. That is, it is possible to effectively dissipate heat received from the rotating electrical machine unit 10.
  • the heat of the switching elements 700H and 701H can be dissipated from the heat dissipation surfaces 620a and 622a via the clip 900.
  • the bridging member 90 bridges the two wires. Specifically, the source electrode 72 of the switching element 70 and the corresponding wiring portion 62 are bridged.
  • the bridging member 90 is also referred to as a bridge.
  • the bridge member 90 is also referred to as a relay member because it electrically relays the source electrode 72 and the wiring portion 62.
  • the bridge member 90 has a pair of connection parts 91 as shown in FIGS. 12 and 13 for connection with the source electrode 72 and the wiring part 62.
  • the bridging member 90 is extended in one direction.
  • the bridging member 90 is extended in a direction perpendicular to the thickness direction of the connecting portion 91.
  • the connecting portions 91 are provided at both ends in the extending direction of the bridging member 90.
  • the connection portion 91 is connected to each of the source electrode 72 and the wiring portion 62 through the solder 42.
  • the bridge member 90 has an upper bottom portion 92 and a connecting portion 93 in addition to the pair of connecting portions 91.
  • the connection portion 91 and the upper bottom portion 92 have a thickness direction as a Z direction, and are disposed at different positions in the Z direction.
  • the connecting portion 93 connects the connecting portion 91 and the upper bottom portion 92.
  • the connecting portion 93 has an inclined portion and bent portions provided at both ends of the inclined portion.
  • the shape defined by the upper bottom portion 92 and the connecting portions 93 connected to both ends of the upper bottom portion 92 has a substantially trapezoidal shape in the ZX plane.
  • the upper bottom portion 92 is convex with respect to the connection portion 91.
  • the bridging member 90 is convex on the side opposite to the connecting surface with the solder 42.
  • the bridge member 90 has a clip 900 for relaying electrically and a shunt resistor 901 used for current detection in addition to the relay for electric ing.
  • the bridging member 90 has two clips 900 and two shunt resistors 901 corresponding to the four switching elements 70.
  • the clip 900 connects the switching elements 700H and 701H on the upper arm side and the corresponding wiring parts 620 and 622, respectively.
  • a constituent material of the clip 900 for example, Cu can be used.
  • the surface of Cu is plated with Ni.
  • a pair of bonding wires 41 is connected to the surface opposite to the connection surface of the solder 42.
  • the voltage drop is detected by the bonding wire 41, and the current value of the current flowing between the two wires is detected.
  • the shunt resistor 901 connects the switching elements 700L and 701L on the lower arm side to the corresponding wiring parts 621 and 623, respectively.
  • the detected value of the shunt resistor 901 is output to the control circuit unit 26 via the bonding wire 41 and the signal terminal 64.
  • the clip 900 and the shunt resistor 901 are each arranged such that the extending direction is the X direction and the width direction is the Y direction.
  • the shunt resistor 901 includes a resistor 901a, a pair of electrodes 901b, a joint 901c, and a mark 901d.
  • the shunt resistor 901 has an upper surface 901 e to which the bonding wire 41 for current detection is connected, and a lower surface 901 f to which the solder 42 is connected.
  • the resistor 901a has a resistivity set in advance to detect a current.
  • CuMnNi can be used as the resistor 901 a.
  • the resistor 901a has a flat plate shape.
  • the resistor 901a has a substantially rectangular planar shape.
  • the pair of electrodes 901b is disposed to sandwich the resistor 901a.
  • a resistor 901a is disposed between the pair of electrodes 901b.
  • the electrodes 901b are respectively disposed at both ends of the resistor 901a in one direction orthogonal to the thickness direction of the resistor 901a.
  • a metal having a resistivity smaller than that of the resistor 901a for example, Cu can be used.
  • the surface of Cu is plated with Ni.
  • the electrode 901 b has a substantially crank shape in the ZX plane.
  • the electrode 901 b has two bends respectively.
  • the electrode 901 b forms all of the connection portion 91 described above, all of the connection portion 93, and a part of the upper bottom portion 92.
  • the resistor 901a is supported at a position away from the connection portion 91 in the Z direction by the crank-shaped electrode 901b.
  • the pair of electrodes 901 b is a pair of legs supporting the resistor 901 a.
  • the bonding portion 901 c is a bonding region between the resistor 901 a and the electrode 901 b.
  • the bonding portion 901c is formed at the interface between the resistor 901a and the electrode 901b.
  • the joint portion 901c is formed by welding the resistor 901a and the electrode 901b. For this reason, the joint portion 901c is also referred to as a weld bead area.
  • the width W1 on the upper surface 901e is greater than the width W2 on the lower surface 901f, as shown in FIG. It is narrowed.
  • the width W1 is, for example, 0.6 mm or less.
  • the width of the joint portion 901c is maximized at the lower surface 901f, minimized at the upper surface 901e, and gradually narrowed from the lower surface 901f toward the upper surface 901e.
  • the mark 901 d is a reference of the connection position of the pair of bonding wires 41 for current detection.
  • the electrodes 901 b are formed in the vicinity of the bonding portions 811.
  • the mark 901 d can be formed by press processing, printing, laser irradiation, or the like.
  • a pair of marks 901 d are provided at equal distances from the center so as to straddle the center in the width direction. Thereby, the bonding wire 41 can be connected to the center in the width direction without a mark based on the pair of marks 901d. Thereby, the bondability can be improved.
  • the resistor 901a and the electrode 901b are prepared, and the resistor 901a is disposed between the pair of electrodes 901b. Then, in a state where each of the electrodes 901b is in contact with the resistor 901a, a beam such as an electron beam is irradiated from the lower surface 901f side to weld each of the electrodes 901b with the resistor 901a. Thus, the bonding portion 901c is formed at the interface between the one electrode 901b and the resistor 901a and at the interface between the other electrode 901b and the resistor 901a.
  • the width of the bonding portion 901c becomes maximum at the lower surface 901f and gradually narrows from the lower surface 901f to the upper surface 901e.
  • the shunt resistor 901 can be obtained through punching from a roll material, Ni plating of the electrode 901b, bending of the electrode 901b, and the like.
  • the electrode 901 b is formed of a metal having a resistivity smaller than that of the resistor 901 a, for example, Cu.
  • the Cu is also contained in the bonding portion 901c.
  • Cu has a high TCR (temperature coefficient of resistance) compared to the metal constituting the resistor 901 a. Therefore, in order to improve the current detection accuracy, it is preferable to connect the bonding wire 41 in the vicinity of the end of the resistor 901 a and to reduce Cu between the bonding wires 41 as much as possible. That is, it is preferable to make the electrode 901 b and the bonding portion 901 c existing between the bonding wires 41 as small as possible.
  • the surface of the joint and its periphery are contaminated by spatter, fumes and the like. Also, the surface of the joint and its surroundings are rough. For this reason, in order to ensure bondability, it is necessary to provide a predetermined gap to the joint and connect the bonding wire.
  • the width of the bonding portion 901c is wider at the beam irradiation surface than at the non-irradiation surface of the beam.
  • the beam irradiation surface has a greater effect of sputtering, fumes, etc. on the surface of the bonding portion 901c and its periphery.
  • the irradiated surface of the beam is larger in the rough portion in the bonding portion 901c and the periphery thereof. That is, the portion with a large surface roughness becomes wide. Therefore, when the beam irradiation surface and the bonding surface coincide with each other, the gap must be increased.
  • the width W1 on the upper surface 901e side is smaller than the width W2 on the lower surface 901f side. Therefore, even if a predetermined gap is provided for the bonding portion 901c, the bonding wire 41 can be connected near the end of the resistor 901a.
  • the configuration of W1 ⁇ W2 is realized by irradiating the beam from the lower surface 901f side.
  • the upper surface 901 e is not a beam irradiation surface, and therefore the influence of sputtering and fumes can be reduced as compared to the lower surface 901 f.
  • the portion with large surface roughness can be made smaller. Thereby, the gap with respect to the bonding portion 901c can be reduced.
  • the bonding wire 41 can be connected closer to the end of the resistor 901 a. That is, the detection accuracy of the current can be improved. In the current detection device including the shunt resistor 901 and the bonding wire 41, the detection accuracy of the current can be improved. Further, in the upper surface 901e, which is the suction surface at the time of transportation, the portion having a large surface roughness including the bonding portion 901c is small, so the shunt resistor 901 can be easily suctioned and transported.
  • the mark 901 d is formed on the upper surface 901 e. Therefore, the bonding wire 41 can be accurately connected to the predetermined position using the mark 901 d as a position reference. Thereby, the variation in bonding position can be reduced, and the current detection accuracy can be further enhanced.
  • the structure which does not have the mark 901d is also employable.
  • each of the pair of bonding wires 41 may be connected to the resistor 901a.
  • the upper surface 901e which is the non-irradiated surface of the beam, can reduce the effects of sputtering and fumes as compared to the lower surface 901f. Therefore, the bonding wire 41 can be connected near the end of the resistor 901a, more specifically, near the bonding portion 901c. As a result, while the bonding wire 41 is connected to the resistor 901a, it is possible to suppress a decrease in the detection voltage range (dynamic range). In addition, the influence of the TCR can be eliminated, whereby the current detection accuracy can be improved.
  • one bonding wire 41 may be connected to the electrode 901b, and the other bonding wire 41 may be connected to the resistor 901a.
  • the width of the connection portion 91 of the shunt resistor 901 is shorter than the width of the source electrode 72 of the switching element 70. If the width of the source electrode 72 is equal to or larger than the width of the connection portion 91 of the shunt resistor 901, the change in the width of the connection portion 91 in the shunt resistor 901 can be taken even if the chip size of the switching element 70 changes. be able to. That is, the upper bottom 92 including the resistor 901a, the joint 901c, and part of the electrode 901b may not be changed. Therefore, the design of shunt resistor 901 can be made common.
  • FIG. 28 shows, for example, a case where a current flows from the output terminal 63P1 to the negative electrode terminal 63E1 via the switching element 700L, the shunt resistor 901, and the wiring portion 621.
  • the broken line arrow indicates the current flowing toward the drain electrode of the switching element 700L
  • the solid line arrow indicates the current flowing from the source electrode 72 of the switching element 700L toward the negative electrode terminal 63E1.
  • the shunt resistor 901 is disposed such that the extending direction of the shunt resistor 901 is the X direction. Further, the output terminal 63P1 is drawn outward with respect to the island 612 in an oblique direction, and is extended in the Y direction at the end of the output terminal 63P1.
  • the current flowing through the shunt resistor 901 has a component in the opposite direction to the current flowing through the obliquely extended portion of the output terminal 63P1. Therefore, the mutual inductance of the shunt resistors 901 and hence the ESL can be reduced, thereby enhancing the detection accuracy.
  • the ESL can be reduced while suppressing the complication of the wiring structure, that is, the increase in size of the semiconductor module 40.
  • the bus bar 27 and the rotating electrical machine unit 10 are included.
  • a current loop is formed.
  • the current loop can be made smaller compared to the configuration having the upper and lower arms for one phase in the semiconductor module. This can reduce the radiation noise.
  • FIG. 29 the sealing resin body 50 and the bonding wire 41 are omitted.
  • the broken line arrows shown in FIG. 29 indicate the current paths at the timing when the switching elements 700H and 701L are turned on and the switching elements 700L and 701H are turned off.
  • the switching elements 700H and 700L constituting the first upper and lower arms, the positive electrode terminal 63B1, the negative electrode terminal 63E1, and the output terminal 63P1 are formed by the islands 611 and 612, the wiring portions 620 and 621, the clip 900, and the shunt resistor 901
  • the lines S1 are connected to each other.
  • the switching elements 700H and 700L are connected in series between the batteries by the wiring S1.
  • the switching elements 701H and 701L constituting the second upper and lower arms, the positive electrode terminal 63B2, the negative electrode terminal 63E2, and the output terminal 63P2 are formed by the islands 613 and 614, the wiring portions 622 and 623, the clip 900, and the shunt resistor 901.
  • the interconnections S2 are connected to each other.
  • the switching elements 701H and 701L are connected in series between the batteries by the wiring S2.
  • a conductive member having a permeability higher than that of the sealing resin body 50 is disposed in a region sandwiched by the wires S1 and S2, unlike the wires S1 and S2.
  • the island 610 of the drive unit 80 is disposed as a conductive member.
  • An eddy current is generated in the conductive member by the current loop.
  • the magnetic field generated by the eddy current is generated in the direction that prevents the magnetic field generated by the current loop including the bus bar 27 and the rotating electrical machine unit 10. Thereby, radiation noise can be effectively reduced.
  • the direction of the magnetic field shown on the islands 611 and 613 is due to the current loop
  • the direction of the magnetic field shown on the conductive member (island 610) is due to the eddy current.
  • the arrangement of the main terminals 63 is not particularly limited as long as the island 610 can be arranged in the region sandwiched by the wirings S1 and S2.
  • the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 protrude from the side surface 50c of the sealing resin body 50, and the output terminals 63P1 and 63P2 protrude from the opposite side surface 50d.
  • the island 610 is disposed between the wirings S1 and S2 in the X direction. Therefore, the effect of canceling the magnetic field of the current loop can be enhanced by the eddy current. Further, the connection structure with the bus bar 27 can be simplified.
  • positioned is used as a conductive member.
  • the configuration can be simplified and the size of the semiconductor module 40 can be reduced as compared with the configuration using another conductive member with the island 610.
  • the signal terminal 640 of the ground potential is connected to the island 610, and the island 610, which is a conductive member, is grounded. Thereby, the potential fluctuation of the island 610 can be suppressed. And an electric field component can be suppressed and radiation noise can be reduced further.
  • the example of the island 610 is shown as a conductive member, it is not limited to this. Any conductive member having higher permeability than the sealing resin body 50 can be employed.
  • the lead frame 60 before the tie bar cut includes the tie bar 66, the outer frame 67, in addition to the island 61, the wiring portion 62, the main terminal 63, the signal terminal 64, and the dummy terminal 65 described above.
  • a connecting portion 68 is provided.
  • the outer frame 67 has a substantially rectangular ring shape in the XY plane, and a plurality of through holes for positioning the lead frame 60 are provided.
  • the tie bar 66 is provided on the side of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 in the Y direction, the first stage tie bar 660a near the island 61 and the second stage provided at a position farther from the island 61 than the tie bar 660a.
  • the tie bar 66 has a first stage tie bar 661a near the island 61 and a second stage tie bar 661b provided at a position farther from the island 61 than the tie bar 661 on the output terminals 63P1 and 63P2 and the signal terminal 64 side. doing.
  • Each of the tie bars 66 is connected to the outer frame 67 at both ends in the X direction.
  • the tie bar 660a connects the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 to the outer frame 67.
  • the tie bar 660a is connected to each of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 at a position closer to the island 61 than the narrow portion 63a.
  • the tie bars 660 a extend in a straight line along the X direction.
  • the islands 611 and 613 and the wiring portions 620 and 622 in which the clip 900 which is the bridging member 90 is disposed are connected to the tie bar 660a by corresponding positive terminals 63B1 and 63B2 and dummy terminals 65.
  • the wiring portions 620 and 622 are connected to the tie bar 660 a by the dummy terminals 65.
  • the tie bar 660b is connected to each of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 at a position farther from the island 61 than the narrow portion 63a and closer to the connection portion with the bus bar 27 There is.
  • the tie bar 660b is connected to the end of the wide portion adjacent to the narrow portion 63a.
  • the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are located at the same positions as the start points of extension from the islands 611 and 613 and the wiring portions 621 and 623, respectively.
  • the tie bar 660a has a portion extending in the X direction and a portion extending in the Y direction.
  • the portions connected to the positive electrode terminals 63B1 and 63B2 are closer to the island 61 in the Y direction than the portions connected to the negative electrode terminals 63E1 and 63E2.
  • An extending portion in the Y direction is disposed between the positive electrode terminal 63B1 and the negative electrode terminal 63E1, and between the positive electrode terminal 63B2 and the negative electrode terminal 63E2.
  • the tie bars 660a and 660b are connected to the outer frame 67 also in the Y direction by the connecting portion 68.
  • the connecting portion 68 is connected to the tie bar 660 a and the tie bar 660 b at a position between the positive electrode terminal 63 B 1 and the dummy terminal 65 connected to the island 611.
  • Another connecting portion 68 is connected at a position between the positive electrode terminal 63B2 connected to the island 613 and the dummy terminal 65.
  • Two connecting portions 68 are disposed between the positive electrode terminals 63B1 and 63B2.
  • Another connecting portion 68 is connected to the tie bar 660 a and the tie bar 660 b at a position between the positive electrode terminal 63 B 1 and the dummy terminal 65 connected to the wiring portion 620.
  • Another connecting portion 68 is connected to the tie bar 660 a and the tie bar 660 b at a position between the positive electrode terminal 63 B 2 and the dummy terminal 65 connected to the wiring portion 622.
  • Each of the connecting portions 68 extends in the Y direction, one end thereof is connected to the tie bar 660 a, and the other end is connected to the outer frame 67.
  • the tie bar 661a connects the output terminals 63P1 and 63P2 and the signal terminal 64 to the outer frame 67.
  • the tie bars 661a extend in a straight line along the X direction.
  • the tie bar 661a is connected to a position closer to the island 61 than the narrow portion 63a of the output terminals 63P1 and 63P2 and the crank portion 64a of the signal terminal 64.
  • the islands 612 and 614 and the wiring portions 621 and 623 in which the shunt resistor 901 which is the bridging member 90 is disposed the islands 612 and 614 are connected to the tie bar 661a by the corresponding output terminals 63P1 and 63P2 and the signal terminal 641.
  • the wiring portions 622 and 623 are connected to the tie bar 661 a by the dummy terminal 65.
  • the tie bar 661b is connected to a position farther from the island 61 than the narrow portions 63a of the output terminals 63P1 and 63P2 and the crank portion 64a of the signal terminal 64 and closer to a connection portion with the bus bar 27 and the wiring board 22 It is done.
  • the tie bars 661b extend in a straight line along the X direction.
  • the second tier tie bars 660b and 661b are wider than the first tier tie bars 660a and 661a. Since the width of the tie bars 660a and 661a is narrow, the tie bars 660a and 661a do not obstruct the bending of the main terminals 63 and the signal terminals 64, and the size of the semiconductor module 40 can be miniaturized. In addition, dimensional deviation at the time of tie bar cutting can be reduced. On the other hand, since the width of the tie bars 660 b and 661 b is wide, the rigidity can be improved thereby, and the deformation of the tie bars 66 can be suppressed at the time of molding the sealing resin body 50. Therefore, the positional accuracy of the main terminal 63 and the signal terminal 64 can be improved. In particular, the positional accuracy of the signal terminal 64 can be improved.
  • connection parts with the outside in the main terminal 63 and the signal terminal 64 are not connected with the outer frame 67, and are free.
  • the main terminals 63 and the signal terminals 64 are separated from the outer frame 67 when the lead frame 60 is punched out of a metal plate.
  • the tip of the signal terminal 64 is swaged as shown in FIG. 6, FIG. 14, and FIG.
  • the tip of the signal terminal 64 is crushed by swaging to have a slope, and has a quadrangular pyramid shape.
  • the signal terminals 64 can be efficiently inserted into and mounted on the wiring board 22. It is possible to crush the burrs by swaging.
  • the dummy terminals 65 disposed adjacent to the signal terminals 64 are extended in the Y direction and connected to the outer frame 67, as shown in FIG. As a result, the number of hanging points with the outer frame 67 increases, so that deformation of the tie bars 661a and 661b can be suppressed at the time of molding. Therefore, the positional accuracy of the output terminals 63P1 and 63P2 and the signal terminal 64 can be improved. In particular, the positional accuracy of the signal terminal 64 can be improved.
  • the bridging member 90 connects the island 61 and the wiring portion 62 via the switching element 70.
  • One of the clips 900 is disposed on the island 611 and the wiring portion 620.
  • Another clip 900 is disposed on the island 613 and the wiring portion 622.
  • One of the shunt resistors 901 is disposed on the island 612 and the wiring portion 621.
  • Another shunt resistor 901 is disposed on the island 614 and the wiring portion 623.
  • a portion where the bridging member 90 is disposed in other words, a projected portion from the Z direction is indicated by a broken line.
  • An arrangement portion 60a of the bridge member 90 in the island 61 and an arrangement portion 60b of the bridge member 90 in the wiring portion 62 in which the same bridge member 90 is arranged are arranged side by side in the X direction. That is, the arranging direction of the placement parts 60a and 60b with respect to the same bridging member 90 is the same as the extending direction of the first stage tie bars 660a and 661a to which the island 61 and the wiring part 62 are connected.
  • the arranging direction of the first stage tie bar marks 66a arranged on the same side with respect to the island 61 and the extending direction of the bridging members 90 are made the same direction (X direction). There is.
  • FIG. 31 compares this embodiment with a reference example.
  • r is added to the end of the reference numerals of the relevant elements of this embodiment.
  • the extending direction of the tie bars 660a and 661a and the extending direction of the bridging member 90 substantially coincide with each other.
  • the extending direction of the tie bars 660ar and 661ar and the extending direction of the bridging member 90r are substantially orthogonal to each other.
  • the maximum length from the tie bar 66 to the bridging member 90 is made longer in the direction orthogonal to the extending direction of the tie bar 66 as compared to the arrangement in which the arrangement is orthogonal. Can.
  • the island 61 and the wiring portion 62 in contact with the molding die are easily bent.
  • the islands 611 to 614 and the wiring portions 62 corresponding to a plurality of phases are provided, height variations easily occur in the islands 611 to 614 and the wiring portions 62 in the Z direction.
  • the islands 611 to 614 and the wiring portion 62 are brought into contact with the molding die in order to expose the heat radiating surfaces 611a to 614a and 620a to 623a from the back surface 50b, height variations occur. Even if it does, the island 61 and the wiring part 62 can relieve stress. Therefore, the stress acting on the junctions between the islands 611 to 614 and the corresponding switching elements 70 can be reduced.
  • the length of the tie bar 66 is also longer in the X direction.
  • at least one of the islands 611 to 614 and the wiring portion 62 which is the arrangement target of the bridging member 90, is connected to the same tie bar 66 at a plurality of places.
  • the islands 611 to 614 are connected to the same tie bar 66 at two places respectively. According to this, it is possible to suppress the deformation of the tie bar 66 at the time of molding the sealing resin body 50. By suppressing the tie bar deformation, it is possible to reduce the stress acting on the junction between the islands 611 to 614 and the corresponding switching element 70.
  • the islands 611 and 613 are connected to the tie bar 660 a by the corresponding positive electrode terminals 63 B 1 and 63 B 2 and to the tie bar 660 a by the dummy terminal 65.
  • the dummy terminal 65 narrower than the main terminal 63, it is possible to suppress an increase in physical size of the lead frame 60 while suppressing the deformation of the tie bar 660a.
  • the dummy terminals 65 connected to the islands 611 and 613 are connected to the outer frame 67 in the Y direction by the connecting portion 68. Also by this, the rigidity can be improved and the deformation of the tie bars 660a and 660b can be suppressed. In addition, since the connecting portion 68 does not provide an electrical connection function, welding to the bus bar 27 is not affected even if it is separated from the outer frame 67 at the time of tie bar cutting.
  • the islands 612 and 614 are connected to the tie bars 661a and 661b by the corresponding output terminals 63P1 and 63P2 and the signal terminal 641.
  • the signal terminal 641 narrower than the main terminal 63, it is possible to suppress an increase in physical size of the lead frame 60 while suppressing the deformation of the tie bars 661a and 661b.
  • the island 61 and the wiring portion 62 in which the same bridging member 90 is disposed are connected to different tie bars 660a and 661a. According to this, the island 61 and the wiring portion 62 are both suspended with respect to the tie bar 66. Therefore, deformation of the tie bar 66 can be suppressed at the time of molding.
  • the extending direction of the bridging member is the Y direction
  • shear stress in the X direction acts on the joint portion of the switching element 70 due to tie bar deformation in the both suspension structure.
  • the extending direction of the bridging member 90 is the same X direction as the tie bar 66, shear stress can be suppressed.
  • the islands 612 and 614 in which the shunt resistor 901 is disposed are connected to the tie bar 661 a by the corresponding output terminals 63P1 and 63P2 and the signal terminal 640, and via the wiring portions 620 and 622 and the dummy terminals 65 connected to the islands 612 and 614. It is connected to a tie bar 660a.
  • the wiring portions 621 and 623 in which the shunt resistor 901 is disposed are connected to the tie bars 660a and 660b via the corresponding negative terminals 63E1 and 63E2, and are connected to the tie bar 661a via the dummy terminals 65.
  • the islands 612 and 614 and the wiring portions 621 and 623 in which the shunt resistor 901 is disposed are both suspended.
  • FIG. 32 shows a modification of the semiconductor module 40.
  • the signal terminal 64 is omitted, and the sealing resin body 50 and the main terminal 63 are illustrated in a simplified manner.
  • the positive electrode terminal 63B1 and the negative electrode terminal 63E1, and the positive electrode terminal 63B2 and the negative electrode terminal 63E2 protruding from the same side surface 50c are arranged in proximity to each other in the X direction.
  • the capacitor 44 is disposed on one of the surface 50a and the back surface 50b of the sealing resin body 50, and the capacitor 44 is connected to the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2.
  • a capacitor 44 for the snubber circuit is employed, and two capacitors 44 are disposed on the one surface 50a.
  • Recesses 55 which are also open to the side surface 50c are formed in two places on the one surface 50a, and the capacitors 44 are individually disposed in each of the recesses 55.
  • the leads 44a of the capacitor 44 are connected to the positive electrode terminal 63B1 and the negative electrode terminal 63E1, respectively.
  • the leads 44a of another capacitor 44 are connected to the positive electrode terminal 63B2 and the negative electrode terminal 63E2, respectively. According to this, the capacitor 44 can be integrated without increasing the physique in the XY plane.
  • a smoothing capacitor may be disposed instead of the capacitor 44 for the snubber circuit.
  • FIG. 33 shows a modification of the semiconductor module 40.
  • the drive unit 80 has a current detection circuit that detects the current of each phase.
  • the low potential of the shunt resistor 901 is input to the pad 81 of the drive unit 80 through the bonding wire 41, the signal terminal 64, and the bonding wire 41.
  • the switching element 701 L side is also configured the same. According to the above, the length of the bonding wire 41 connected to the shunt resistor 901 can be shortened. For example, generation of defects in bonding wire 41 can be suppressed during molding.
  • the signal terminal 64 corresponding to the low potential side of the shunt resistor 901 is formed by connecting two signal terminals 64 by a connecting portion extending in the X direction.
  • the high potential of the shunt resistor 901 input to the drive unit 80 is substituted by the source potential of the switching element 700L.
  • Second Embodiment This embodiment can refer to the preceding embodiments. Therefore, the description of the portions common to the rotating electrical machine 1 and the semiconductor module 40 shown in the preceding embodiment is simplified or omitted.
  • the rotating electrical machine 1 of the present embodiment also includes the rotating electrical machine unit 10 and the control device unit 20 for controlling the rotating electrical machine unit 10, and the control device unit 20 is a controlled object. Integrated with 10
  • the rotating electrical machine unit 10 functions as a generator (alternator) that generates electric power for charging the battery by being supplied with driving force from the engine.
  • the rotating electrical machine unit 10 includes a housing 11, a stator 12, a rotor 13, a pulley 14, a slip ring 15, and a brush 16 as in the first embodiment.
  • the housing 11 accommodates the stator 12 and the rotor 13 and rotatably supports the rotor 13.
  • a control device unit 20 is fixed to the rear side in the axial direction of the housing 11.
  • the stator 12 has a stator core 120 and a stator winding 121.
  • the stator winding 121 has a stator winding 121a consisting of three-phase windings of U-phase, V-phase and W-phase, and X-phase, Y-phase and Z-phase.
  • a stator winding 121b consisting of three-phase windings.
  • the stator windings 121a and 121b are arranged offset from each other by a predetermined electrical angle (for example, 30 degrees).
  • the rotor 13 is rotated by the driving force supplied from the engine, and the generated magnetic flux is interlinked with the stator winding 121, whereby the stator winding 121 generates an alternating current.
  • the rotor 13 has a rotor core 130, a rotor winding 131, a fan 132, and a rotating shaft 133, as in the first embodiment.
  • the pulley 14 is connected to a portion of the rotating shaft 133 that protrudes forward from the housing 11 and rotates with the rotating shaft 133.
  • the slip ring 15 is fixed to an outer peripheral surface of a portion of the rotation shaft 133 which protrudes rearward from the housing 11 via an insulating member.
  • the slip ring 15 is connected to the rotor winding 131 via a wire.
  • the brush 16 is pressed to the rotary shaft 133 side in the radial direction, for example, by a spring, and is in contact with the outer peripheral surface of the slip ring 15.
  • the brush 16 is held by a brush holder 160. Direct current is supplied to the rotor winding 131 via the brush 16 and the slip ring 15.
  • control unit 20 In order to charge the battery, control unit 20 converts the power generated by rotating electrical machine 10 into direct current, and supplies the power to the battery.
  • the control device unit 20 includes a regulator (not shown) and a rectifier circuit unit 30 shown in FIG.
  • the regulator controls the direct current supplied to the rotor winding 131 to maintain the voltage at a predetermined voltage suitable for charging the battery.
  • the rectifying circuit unit 30 rectifies the alternating current supplied from the rotating electrical machine unit 10 by the switching element 70 and converts it into direct current.
  • the configuration of the rectifier circuit unit 30 is the same as that of the inverter circuit unit 23 shown in the first embodiment.
  • the rectifier circuit unit 30 is configured of three semiconductor modules 40.
  • Each semiconductor module 40 has a plurality of switching elements 70 constituting upper and lower arms for two phases. Also in the present embodiment, an n-channel MOSFET is employed as the switching element 70.
  • the first semiconductor module 40 constitutes upper and lower arms of U phase and V phase
  • the second semiconductor module 40 constitutes upper and lower arms of W phase and X phase
  • the third semiconductor A module 40 constitutes upper and lower arms of Y phase and Z phase.
  • Each arm is constituted by one switching element 70, and each of the semiconductor modules 40 has four switching elements 70.
  • the semiconductor module 40 includes the switching element 700H on the upper arm side and the switching element 700L on the lower arm side constituting the first upper and lower arms, and the switching element 701H on the upper arm side and the lower arm side constituting the second upper and lower arm.
  • Each has a switching element 701L. Switching elements 700H and 700L are connected in series, and switching elements 701H and 701L are connected in series.
  • the control device unit 20 includes power assemblies PA1, PA2 and PA3 constituting the rectifier circuit unit 30, and a cover 31.
  • the power assembly PA1 includes a semiconductor module 40, a heat sink 24, and a bus bar assembly BA1 including a bus bar 27.
  • the power assembly PA2 includes a semiconductor module 40, a heat sink 24, and a bus bar assembly BA2 including a bus bar 27.
  • the power assembly PA3 includes a semiconductor module 40, a heat sink 24, and a bus bar assembly BA3 including a bus bar 27.
  • the heat sink 24 of each of the power assemblies PA1, PA2, PA3 dissipates the heat generated by the corresponding semiconductor module 40.
  • switching elements 700H and 700L constitute U-phase upper and lower arms, and switching elements 701H and 701L constitute V-phase upper and lower arms.
  • the switching elements 700H and 700L constitute W-phase upper and lower arms, and the switching elements 701H and 701L constitute X-phase upper and lower arms.
  • the switching elements 700H and 700L constitute Y-phase upper and lower arms, and the switching elements 701H and 701L constitute Z-phase upper and lower arms.
  • the bus bar assemblies BA1, BA2, BA3 are a collection of bus bars 27 for wiring the corresponding semiconductor modules 40.
  • positive electrode bus bar 27B, negative electrode bus bar 27E, and output bus bars 27P1 and 27P2 for wiring semiconductor module 40 are fixed to the same resin member by insert molding or the like.
  • the positive electrode bus bar 27B, the negative electrode bus bar 27E, and the output bus bars 27P1 and 27P2 are integrated by resin in a state where a predetermined distance is left.
  • the positive electrode bus bar 27B and the negative electrode bus bar 27E are stacked and arranged via a resin.
  • the positive electrode bus bar 27B is connected to the drain electrodes of the switching elements 700H and 701H on the upper arm side.
  • the negative bus bar 27E is connected to the source electrodes of the switching elements 700L and 701L on the lower arm side.
  • the output bus bar 27P1 is connected to the connection point of the switching elements 700H and 700L.
  • the output bus bar 27P2 is connected to the connection point of the switching elements 701H and 701L.
  • semiconductor module 40 is fixed to corresponding bus bar assemblies BA1, BA2 and BA3 in a state of being connected to bus bar 27. Further, the heat sink 24 is fixed to the heat dissipation surface side of the semiconductor module 40.
  • the power supply terminal 32 is integrated only in the power assembly PA1. As shown in FIGS. 37 and 38, the power assembly PA1 includes a power supply terminal 32 and a fixing member 33 in addition to the semiconductor module 40, the heat sink 24, and the bus bar assembly BA1.
  • a wire from the positive electrode of the battery is connected to the power supply terminal 32.
  • the power supply terminal 32 is fixed to the bus bar assembly BA1 by a fixing member 33.
  • the power supply terminal 32 is fixed to the fixing member 33 by a nut 34.
  • the fixing member 33 is integrated with the positive electrode bus bar 27B, the negative electrode bus bar 27E, and the output bus bars 27P1 and 27P2 with resin in a state of being in contact with the positive electrode bus bar 27B.
  • the power assemblies PA1, PA2, PA3 are arranged in a substantially U-shape at the axial rear end of the housing 11 of the rotary electric machine 10 so as to surround the rotary shaft 133. Specifically, around the rotation axis 133, the power assembly PA1, the power assembly PA2, and the power assembly PA3 are arranged in this order. And as shown in FIG. 37, it is fixing to the housing 11 by the volt
  • the positive electrode bus bars 27B are connected to each other in the adjacent power assemblies PA1 and PA2, and the positive electrode bus bars 27B are connected to each other in the adjacent power assemblies PA2 and PA3.
  • the negative bus bars 27E are connected to each other, and in the adjacent power assemblies PA2 and PA3, the negative bus bars 27E are connected to each other.
  • the negative bus bar 27E of the power assembly PA1 is connected to the housing 11 fixed to the vehicle body, and is connected to the negative electrode of the battery via the vehicle body.
  • output bus bar 27P1 is connected to the U phase of stator winding 121a, and output bus bar 27P2 is connected to the V phase of stator winding 121a.
  • output bus bar 27P1 is connected to the W phase of stator winding 121a, and output bus bar 27P2 is connected to the X phase of stator winding 121b.
  • output bus bar 27P1 is connected to the Y phase of stator winding 121b, and output bus bar 27P2 is connected to the Z phase of stator winding 121b.
  • the cover 31 is a resin member that covers the power assemblies PA1, PA2, and PA3.
  • the cover 31 is fixed to the housing 11 so as to cover the power assemblies PA1, PA2, and PA3 in a state in which a part of the power supply terminal 32 is exposed to the outside.
  • the stator windings 121a and 121b are alternating current (3 Phase exchange).
  • the rectifier circuit unit 30 is controlled by the drive unit 80 and rectifies alternating current supplied from the stator winding 121 via the output bus bars 27P1 and 27P2.
  • the drive unit 80 controls the on / off of the switching element 70 to sequentially switch the current flow direction to rectify alternating current.
  • alternating current is rectified by the parasitic diode.
  • the direct current converted by the rectifier circuit unit 30 is supplied to the battery. Thereby, the battery is charged by the power generated by the rotating electrical machine unit 10.
  • the semiconductor module 40 As shown in FIGS. 39 to 53, the semiconductor module 40 according to the present embodiment also includes the sealing resin body 50, the lead frame 60, the switching element 70, the driving unit 80, and the bridging member 90.
  • the sealing resin body 50 is not shown.
  • the lead frame 60 before tie bar cutting is shown.
  • the bonding wire 41 is omitted for the sake of convenience.
  • the sealing resin body 50 has substantially the same configuration as that of the first embodiment.
  • This sealing resin body 50 is also molded by a transfer molding method using, for example, an epoxy resin.
  • the sealing resin body 50 has one surface 50a and a back surface 50b, which are surfaces in the Z direction, and a side surface.
  • the bus bar assemblies BA1, BA2, and BA3 corresponding to the one surface 50a side are disposed, and the heat sink 24 is disposed on the back surface 50b side.
  • side surfaces 50c and 50d from which the main terminal 63 and the signal terminal 64 protrude are provided.
  • a pin mark 53 derived from an ejector pin and a gate mark 54 of a mold are provided on the one surface 50a.
  • a pin mark 53 is provided on the back surface 50b.
  • the islands 611 and 613 are integrated by the connecting portion 615.
  • the notch 615b is provided in the connection part 615, and it enables it to arrange
  • the notches 615 b are respectively provided on both sides of the connecting portion 615 in the Y direction. As a result, the ejector pins are disposed in a well-balanced manner in the XY plane, and in particular, the releasability around the islands 611 and 613 can be improved.
  • the lead frame 60 also includes an island 61, a wiring portion 62, a main terminal 63 and a signal terminal 64 which are terminals for external connection, and a dummy terminal 65.
  • the lead frame 60 is substantially line symmetrical with respect to the center in the X direction except for the arrangement of the signal terminals 64. In FIG. 53, the center of the lead frame 60 in the X direction is indicated by an alternate long and short dash line.
  • the island 61 has islands 610 to 614.
  • the drive unit 80 is disposed on the island 610, and the switching elements 700H, 700L, 701H, and 701L are individually disposed on the islands 611, 612, 613, and 614.
  • the five islands 610 to 614 have substantially the same thickness and are arranged in the same plane in the Z direction.
  • the areas of the islands 611 to 614 along the XY plane are substantially equal to one another.
  • the heat radiation surfaces 610 a to 614 a of the islands 610 to 614 are exposed from the back surface 50 b of the sealing resin body 50.
  • the heat can be dissipated efficiently from the heat dissipation surfaces 610a to 614a.
  • the portion of the island 61 excluding the heat radiation surfaces 610a to 614a is sealed by a sealing resin body 50.
  • convex portions are provided on the side surfaces of each of the islands 61 in order to suppress peeling of the sealing resin body 50.
  • the island 610 has a substantially rectangular planar shape.
  • the drive unit 80 is disposed closer to the signal terminal 64 in the Y direction with respect to the island 610.
  • the island 610 has a non-arranged portion 610 c which is a portion where the drive portion 80 is not arranged on the opposite side to the signal terminal 64, ie, the islands 611 and 613 side. There is.
  • the non-arranged portion 610c can be pressed by a clamp jig (not shown).
  • the island 610 can be stabilized, and the bondability can be improved.
  • the pads 81 are concentrated on three sides of the drive unit 80 having a substantially rectangular planar shape, and the pads 81 on the side opposite to the signal terminal 64 are reduced. There is. In particular, the central pads 81 on the sides are reduced. Therefore, the island 610 can be clamped without disturbing the bonding wire 41.
  • the islands 611 to 614 are disposed around the island 610.
  • the islands 612 and 614 are provided to sandwich the island 610 in the X direction.
  • the islands 612 and 614 both have a substantially rectangular planar shape.
  • the islands 612 and 614 each have a predetermined gap with the island 610 in the X direction.
  • Two bonding wires 41 are connected to the islands 612 and 614, respectively.
  • the bonding wire 41 is connected to the end on the side of the island 610 in the islands 612 and 614, which is opposite to the end on the side of the signal terminal 64.
  • the islands 611 and 613 are provided on the side opposite to the signal terminal 64 in the Y direction with respect to the island 610.
  • the islands 611 and 613 are arranged side by side in the X direction with a predetermined gap.
  • the islands 611 and 613 both have a substantially rectangular planar shape.
  • the island 611 faces the islands 610 and 612 in the Y direction.
  • the island 613 faces the islands 610 and 614 in the Y direction.
  • the islands 611 and 613 are integrated by the connecting portion 615 as an island 61 on the upper arm side.
  • the connecting portion 615 extends in the X direction, and is disposed between the islands 611 and 613.
  • One end of the connecting portion 615 is continuous with the end of the island 611 on the island 613 side, and the other end is continuous with the end of the island 613 on the island 611 side.
  • the connecting portion 615 has substantially the same thickness as the islands 611 and 163, and is disposed in the same plane in the Z direction.
  • the heat release surface 615a opposite to the switching elements 700H and 701H is exposed from the back surface 50b of the sealing resin body 50.
  • the heat of the switching elements 700H and 701H can be dissipated from the heat dissipation surface 615a.
  • notches 615b are provided at both ends in the Y direction, whereby the connecting portion 615 is continuous with the centers of the end portions of the islands 611 and 613.
  • the notches 615 b have substantially the same depth on both sides, and the islands 611 and 613 including the connecting portion 615 have a substantially H shape. That is, in the integrated islands 611 and 613 and the connecting portion 615, the middle connecting portion 615 is a narrow portion, and the islands 611 and 613 sandwiching the connecting portion 615 are a wide portion.
  • Two bonding wires 41 are connected to the connecting portion 615.
  • the islands 61 are arranged in line symmetry in the X direction.
  • the wiring unit 62 has a wiring unit 620 for connecting the islands 611 and 612, a wiring unit 621 for connecting the island 612 and the negative terminal 63E1, a wiring unit 622 for connecting the islands 613 and 614, and an island.
  • a wiring portion 623 for connecting the 614 and the negative electrode terminal 63E2 is provided.
  • the wiring portion 620 is connected to the end of the island 612 opposite to the signal terminal 64.
  • the wiring portion 620 is connected to the end of the island 612 opposite to the island 610 side.
  • the wiring portion 620 is extended in the Y direction, and its tip portion is arranged in parallel with the island 611 while having a predetermined gap with the island 611 in the X direction.
  • the wiring portion 620 is disposed outside the island 611 in the X direction.
  • an output terminal 63P1 is connected. That is, in the present embodiment, in the Y direction, the island 612 is connected to one end of the wiring portion 620, and the output terminal 63P1 is connected to the other end.
  • the island 612 side is a narrow portion
  • the output terminal 63P1 side is a wide portion.
  • the wiring portion 621 is connected to the negative electrode terminal 63E1.
  • the wiring portion 621 extends from the negative electrode terminal 63E1 in the Y direction, and its tip end portion is disposed side by side with the island 612 while having a predetermined gap with the island 612 in the X direction.
  • the wiring portion 621 is disposed outside the island 612 in the X direction.
  • the wiring portion 621 is opposed to the wide portion of the wiring portion 620 in the Y direction.
  • the wiring portion 622 is connected to the end of the island 614 opposite to the signal terminal 64.
  • the wiring portion 622 is connected to the end of the island 614 opposite to the island 610 side.
  • the wiring portion 622 is extended in the Y direction, and the tip portion thereof is disposed in parallel with the island 613 while having a predetermined gap with the island 613 in the X direction.
  • the wiring portion 622 is disposed outside the island 613 in the X direction.
  • an output terminal 63P2 is connected. That is, in the present embodiment, the island 614 is connected to one end of the wiring portion 622 in the Y direction, and the output terminal 63P2 is connected to the other end.
  • the island 614 side is a narrow portion
  • the output terminal 63P2 side is a wide portion.
  • the wiring portion 623 is connected to the negative electrode terminal 63E2.
  • the wiring portion 623 extends from the negative electrode terminal 63E2 in the Y direction, and its tip end portion is disposed side by side with the island 614 while having a predetermined gap with the island 614 in the X direction.
  • the wiring portion 623 is disposed outside the island 614 in the X direction.
  • the wiring portion 623 is opposed to the wide portion of the wiring portion 622 in the Y direction.
  • the wiring portion 621, the island 612, the island 610, the island 614, and the wiring portion 623 are sequentially arranged in the X direction. Further, at the positions of the islands 611 and 613 in the Y direction, the wiring portion 620, the island 611, the island 613, and the wiring portion 622 are arranged in this order in the X direction.
  • the wiring portions 62 are arranged in line symmetry in the X direction.
  • the heat radiation surfaces 620 a to 623 a of the wiring portions 620 to 623 are exposed from the back surface 50 b of the sealing resin body 50.
  • heat can be dissipated from the heat dissipation surfaces 620a to 623a.
  • the portions of the wiring portions 620 to 623 excluding the heat radiation surfaces 620 a to 623 a are sealed by the sealing resin body 50.
  • convex portions are provided on the side surfaces of the wiring portions 62 in order to suppress peeling of the sealing resin body 50.
  • the portions of the island 61 and the wiring portion 62 are thicker than the portions of the main terminal 63, the signal terminal 64, and the dummy terminal 65. Between the broken lines shown in FIG. 53 are thick portions.
  • the heat of the switching element 70 and the drive unit 80 can be dissipated efficiently.
  • warpage of the lead frame 60 caused by curing and shrinkage of the sealing resin body 50 can be suppressed.
  • the main terminals 63 and the signal terminals 64 are thin, punching and bending workability can be improved.
  • the signal terminals 64 can be narrowed in pitch.
  • the main terminal 63 has positive electrode terminals 63B1 and 63B2, negative electrode terminals 63E1 and 63E2, and output terminals 63P1 and 63P2, as in the first embodiment.
  • the positive electrode terminal 63B1 is continuous with the island 611 of the switching element 700H.
  • the positive electrode terminal 63B1 extends from the end of the island 611 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c of the sealing resin body 50, is bent outside the sealing resin body 50, and extends in the Z direction. It extends upward.
  • the positive electrode terminal 63B2 is connected to the island 613 of the switching element 701H.
  • the positive electrode terminal 63B2 extends from the end of the island 613 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the positive electrode terminals 63B1 and 63B2 are also integrated. As shown in FIGS. 39 and 53, the positive electrode terminals 63B1 and 63B2 each have a base 63Ba, a connection portion 63Bb, and a connection portion 63Bc. The positive electrode terminals 63B1 and 63B2 are integrated by the connecting portion 63Bd.
  • the base 63Ba is a portion connected to the corresponding island 611 or 613.
  • the base 63 ⁇ / b> Ba is continuous with the islands 611 and 613 at a position closer to the connecting portion 615 than the center in the X direction of the corresponding islands 611 and 613.
  • positive electrode terminal 63B1, B2 has a bending part in the middle of each base 63Ba.
  • the base portion 63Ba is extended in the Y direction before the tie bar cut, and in the state after the tie bar cut and forming, has a substantially L shape in the YZ plane.
  • connection portion 63Bb is a connection portion with the positive electrode bus bar 27B. While integrating the islands 611 and 613, the connecting portion 63Bb is divided into two. In the X direction, the distance between the connection portions 63Bb is longer than any of the distance between the base portions 63Ba and the distance between the switching elements 700H and 701H.
  • the connecting portion 63Bc connects the base portion 63Ba and the connecting portion 63Bb.
  • the connecting portion 63Bb is drawn outward in the X direction from the corresponding base portion 63Ba by the connecting portion 63Bc.
  • the connecting portion 63Bd connects the base portions 63Ba adjacent to each other in the X direction.
  • the connecting portion 63Bd extends in the X direction.
  • One end of the connecting portion 63Bd is connected to the base 63Ba on the positive electrode terminal 63B1 side, and the other end is connected to the base 63Ba on the positive electrode terminal 63B2 side.
  • the output terminal 63P1 is disposed on the outer side in the X direction with respect to the positive electrode terminal 63B1.
  • the output terminal 63P1 is connected to one end of the wiring portion 620 as described above.
  • the output terminal 63P1 extends in the Y direction, protrudes from the same side surface 50c as the positive electrode terminal 63B1, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the output terminal 63P2 is connected to one end of the wiring portion 622 as described above.
  • the output terminal 63P2 is disposed on the outer side in the X direction with respect to the positive electrode terminal 63B2.
  • the output terminal 63P2 extends in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 are arranged in the order of the output terminal 63P1, the positive electrode terminal 63B1, the positive electrode terminal 63B2 and the output terminal 63P2 in the X direction.
  • the distance between the output terminal 63P1 and the positive electrode terminal 63B1 and the distance between the output terminal 63P2 and the positive electrode terminal 63B2 are shorter than the distance between the positive electrode terminals 63B1 and 63B2.
  • the distance here is the distance at the connection portion with the corresponding bus bar 27.
  • the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 are substantially L-shaped in the YZ plane.
  • the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 respectively have tie bar marks 66a and 66b as in the first embodiment.
  • the tie bar mark 66 a is a cut mark of the tie bar 660 a of the first stage
  • the tie bar mark 66 b is a cut mark of the tie bar 660 b of the second stage.
  • the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 have bent portions between tie bar marks 66a and 66b.
  • the negative electrode terminals 63E1 and 63E2 are disposed on the opposite side of the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 with the island 61 and the wiring portion 62 interposed therebetween.
  • the negative electrode terminal 63E1 extends in the Y direction, protrudes from the side surface 50d opposite to the positive electrode terminal 63B1, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the negative electrode terminal 63E2 extends in the Y direction, protrudes from the side surface 50d, is bent outside the sealing resin body 50, and extends upward in the Z direction.
  • the negative electrode terminals 63E1 and 63E2 are also substantially L-shaped in the YZ plane.
  • the negative electrode terminal 63E1 is continued to the end of the wiring portion 621 on the signal terminal 64 side.
  • the negative electrode terminal 63E2 is continued to the end of the wiring portion 623 on the signal terminal 64 side.
  • the negative electrode terminals 63E1 and 63E2 are connected to the island 610 by the connecting portion 69.
  • the connecting portion 69 is extended in the X direction.
  • An island 610 is continuous at the center of the connecting portion 69 in the X direction.
  • the connecting portion 69 is continuous with the end of the island 610 on the signal terminal 64 side.
  • the negative electrode terminal 63E1 is connected to one end of the connecting portion 69, and the negative electrode terminal 63E2 is connected to the other end.
  • the connecting portion 69 is thin like the main terminal 63 and the signal terminal 64.
  • the width of the connecting portion 69 is narrower than the width of the signal terminal 64.
  • the connecting portion 69 is continuous on the inner side in the X direction and the wiring portions 621 and 623 corresponding to the outer side in the X direction are continuous.
  • the negative electrode terminals 63E1 and 63E2 are disposed on the signal terminal 64 side, and the connection portion 69 suspends the island 610 from the negative electrode terminals 63E1 and 63E2 on both sides in the X direction.
  • This arrangement can improve the retention strength of the island 610. Further, since the holding strength can be secured by the connecting portion 69, the number of the signal terminals 64 can be increased as compared with the structure reinforced by the dummy terminals.
  • the negative electrode terminals 63E1 and 63E2 also have tie bar marks 66a and 66b, respectively.
  • the tie bar mark 66a is a cut mark of the tie bar 661a of the first stage
  • the tie bar mark 66b is a cut mark of the tie bar 661 b of the second stage.
  • Negative electrode terminal 63E1, 63E2 has a bending part between tie bar mark 66a, 66b.
  • the semiconductor module 40 has two positive electrode terminals 63B1 and 63B2 and two negative electrode terminals 63E1 and 63E2. Therefore, even if welding failure occurs at one of the positive electrode terminals 63B1 and 63B2, for example, the other can maintain the electrical connection. Compared with the structure which has only one positive electrode terminal and one negative electrode terminal, it can suppress that switching element 70 etc. fail by welding detachment.
  • the plurality of signal terminals 64 are arranged side by side in the X direction.
  • signal terminals 642 and 643 for error notification and a test terminal 644 are provided as the signal terminals 64.
  • the signal terminal 642 is a terminal for notifying the other semiconductor modules 40 constituting the rectifier circuit unit 30 that the switching element 70 is abnormal.
  • the signal terminal 643 is a terminal for notifying the regulator of an abnormality of the switching element 70.
  • the signal terminals 642 and 643 extend in the Y direction, project from the side surface 50 d, are bent outside the sealing resin body 50, and extend upward in the Z direction.
  • the signal terminals 642 and 643 are substantially L-shaped in the YZ plane.
  • the test terminal 644 is used to test the rectifier circuit unit 30, for example, to inspect the electrical characteristics before shipping the product.
  • the test terminal 644 extends in the Y direction and protrudes from the side surface 50 d.
  • the test terminal 644 is extended to substantially the same position as the first stage tie bar mark 66 a in the Y direction. Therefore, the test terminal 644 does not have a bend.
  • the sixteen signal terminals 64 two are signal terminals 642 and 643 for error notification, and the remaining 14 are test terminals 644.
  • the second terminal from both ends is used as signal terminals 642 and 643.
  • a capacitor 45 for noise absorption is arranged between the adjacent test terminals 644.
  • the capacitor 45 is a ceramic chip capacitor.
  • the electrode of the capacitor 45 is connected to the test terminal 644 by the solder 42.
  • four capacitors 45 are arranged.
  • connection portions which are projecting tips of the signal terminals 642 and 643 protruding from the side surface 50d are connection portions 63Bb of the positive electrode terminals 63B1 and 63B2 protruding from the side surface 50c to the bus bar 27B and The positions where the output terminals 63P1 and 63P2 do not overlap with the connection portions with the bus bars 27P1 and 27P2 are set.
  • the signal terminals 642 and 643 can be welded from the side surface 50c using the welding electrode in a state where the semiconductor module 40 is placed so that the side surface 50d side is the lower side and the side surface 50c is the upper side. Therefore, the assemblability can be improved.
  • test terminals 644 is a terminal 644 a connected to the island 610 via the connecting portion 69.
  • the test terminal 644a is set to the ground potential (GND) at the time of test.
  • the test terminal 644 a is connected to the pad 81 of the drive unit 80 by the bonding wire 41. Since the bonding wire 41 does not have to straddle other potential portions, the occurrence of short circuit can be suppressed.
  • test terminal 644a in order to secure the ground potential, bonding is performed to the test terminal 644a, not to the connection portion 69 which is extended in the X direction and is flexible.
  • the test terminal 644a is connected to the tie bars 661a and 661b.
  • the test terminal 644 a is wider than the connecting portion 69 and wider than the other signal terminals 64. Therefore, the bondability can be improved while securing the ground potential.
  • a through hole 69a is provided in the connecting portion 69 between the island 610 and the test terminal 644a.
  • the through hole 69a is provided to straddle the test terminal 644a in the X direction.
  • the sealing resin body 50 passes through the through holes 69 a and is disposed on both sides of the thin-walled connecting portion 69.
  • the bonding wire 41 connected to the test terminal 644 a passes over the through hole 69 a and is connected to the pad 81. According to this, due to the lock hole effect, it is possible to suppress the exfoliation on the drive unit 80 side from progressing to the connection portion of the bonding wire 41 in the test terminal 644a. Therefore, the connection reliability of the bonding wire 41 can be improved.
  • the end on the side to which the bonding wire 41 is connected is in the XY plane It inclines to the drive part 80 side.
  • the length of the bonding wire 41 can be shortened for the signal terminal 64 at a position away from the drive unit 80. Therefore, at the time of molding of the sealing resin body 50, generation of defects in the bonding wire 41 can be suppressed. Further, by shortening the wire length, the connection strength of the bonding wire 41 can be improved. In addition, generation of resonance can be suppressed at the time of ultrasonic bonding.
  • all the signal terminals 64 are integrated between the negative terminals 63E1 and 63E2 which are the main terminals 63. Therefore, the arrangement space of the external connection terminal can be reduced in the X direction. That is, waste space can be reduced and the size of the semiconductor module 40 can be miniaturized.
  • connection portion of the bonding wire 41 is flat.
  • the connection portions of the bonding wires 41 at the islands 612 and 614, the connection portion 615, and the signal terminal 64 are all flattened by tapping. Thereby, the connection reliability of the bonding wire 41 can be improved. In addition, burrs can be hit and crushed to suppress foreign matter biting during bonding.
  • the dummy terminals 65 are extended in the Y direction and project two from the side surface 50 c of the sealing resin body 50.
  • One of the dummy terminals 65 is extended in the Y direction from the end of the wiring portion 620 opposite to the island 612.
  • An output terminal 63P1 connected to the same wiring portion 620 is disposed outside the dummy terminal 65 in the X direction.
  • Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 622 opposite to the island 614.
  • An output terminal 63P2 connected to the same wiring portion 622 is disposed outside the dummy terminal 65 in the X direction.
  • the dummy terminal 65 is extended to substantially the same position in the Y direction as the tie bar mark 66a of the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 in the state after the tie bar cut. Therefore, the dummy terminal 65 does not have a bend.
  • the width of the dummy terminal 65 is smaller than the width of the main terminal 63.
  • the switching element 70 has a vertical structure, and the pad 71 and the source electrode 72 are formed on the surface opposite to the island 61 as in the first embodiment. In addition, a temperature sensitive diode is integrally formed. As shown in FIGS. 45 and 47, the drain electrode of the switching element 70 is connected to the corresponding island 61 via the solder 42. Source electrode 72 is connected to corresponding bridge member 90 via solder 42.
  • the switching element 70 has a planar rectangular shape. As shown in FIGS. 48 and 53, the pad 71 is disposed along one side of the switching element 70, specifically, the side opposite to the drive unit 80.
  • the switching element 70 has three pads 71, which are arranged in order of a gate electrode, an anode of a temperature sensitive diode, and a cathode.
  • the switching elements 700H and 701H on the upper arm side are arranged in line symmetry in the X direction.
  • the switching elements 700H and 701H are arranged such that the arrangement direction of the pads 71 is the X direction.
  • the lower arm side switching elements 700L and 701L are arranged in line symmetry in the X direction as in the corresponding islands 612 and 614.
  • the switching elements 700L and 701L are arranged such that the arrangement direction of the pads 71 is the Y direction. In the X direction, the switching element 700L, the switching element 700H, the switching element 701H, and the switching element 701L are arranged in this order.
  • the arrangement order of the switching element 70 and the arrangement order of the positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 connected to the drain electrode of the switching element 70 coincide with each other. Further, the main terminal 63 and the signal terminal 64 protrude only from the opposite side surfaces 50c and 50d. Thereby, the layout of the lead frame 60 can be simplified, and the size of the semiconductor module 40 can be miniaturized. Further, the connection structure with the bus bar 27 can be simplified.
  • the drive unit 80 of the present embodiment has a drive circuit that generates a drive signal.
  • the drive unit 80 is configured as an IC chip such as an ASIC.
  • the driving unit 80 is also referred to as a control IC in order to control ON / OFF as well as driving the switching element 70.
  • the drive unit 80 is fixed to the island 610 via the conductive adhesive 43.
  • a plurality of pads 81 are formed on the surface of the drive unit 80 opposite to the surface fixed to the island 610.
  • a part of the pad 81 is connected to the pad 71 of the switching element 70 via the bonding wire 41.
  • Another pad 81 is connected to the connection portion 615, that is, the drains of the switching elements 700H and 701H via the bonding wire 41.
  • Another pad 81 is connected to the islands 612 and 614 via bonding wires 41. The rest of the pad 81 is connected to the signal terminal 64 through the bonding wire 41.
  • the drive circuit of the drive unit 80 controls the on / off of the switching element 70 based on the potentials of the islands 612 and 614, that is, phase voltages P1 and P2 that are output voltages to the rotating electrical machine unit 10.
  • the drive unit 80 is externally connected to the control circuit unit 26 through the signal terminals 642 and 643, with a circuit for protecting the switching element 70, a determination circuit for determining an abnormality of the switching element 70, and the determination result. Has a notification circuit to notify to. The details of the drive unit 80 will be described later.
  • the drive unit 80 has a substantially rectangular planar shape.
  • the drive units 80 are arranged in line symmetry with respect to the center line of the lead frame 60 in the X direction.
  • the switching elements 700 L and 701 L on the lower arm side are arranged in line symmetry with respect to the drive unit 80.
  • the driving unit 80 is disposed between the lower arm side switching elements 700L and 701H.
  • the pads 71 of the switching elements 700H and 701H are disposed outside the island 610 in the X direction.
  • the driving unit 80 has a substantially rectangular planar shape, and the pads 81 are provided on the sides facing the switching elements 70 respectively.
  • the pads 81 connected to the switching element 70 are integrated on three consecutive sides of the drive unit 80. Thereby, the length of the bonding wire 41 can be shortened. Only the pad 81 connected to the signal terminal 64 is disposed on the other side of the drive unit 80.
  • the switching element 70 has a substantially square shape.
  • the pads 71 are arranged in the vicinity of the center of one side of the switching element 70 along the side.
  • the bonding wires 41 can be connected to the pads 71 and 81 on the upper arm side and the lower arm side, which are different in the arrangement by 90 degrees, though being made common.
  • the length of the bonding wire 41 can be shortened.
  • the signal terminals 64 are collectively arranged on one side of the drive unit 80 in the Y direction. All the signal terminals 64 are arranged on the opposite side of the drive unit 80 to the switching elements 700H and 701H on the upper arm side. According to this, the connection structure with the drive part 80 can be simplified including the signal terminal 64. Therefore, the length of the bonding wire 41 can be shortened, and the size of the semiconductor module 40 can be reduced.
  • the drive unit 80 is disposed between the lower arm side switching elements 700L and 701L. Further, in the X direction, the switching elements 700H and 701H are arranged in line symmetry, and the switching elements 700L and 701L are arranged in line symmetry. That is, the four switching elements 70 are equally arranged in the XY plane. Then, as shown in FIG. 48, assuming that the distance between the switching elements 700H and 701H on the upper arm side is L1 and the distance between the switching elements 700L and 701L on the lower arm side is L2, the distance L2 is longer than the distance L1. It is done.
  • the switching elements 700L and 701L which are heated by heat received from the rotating electrical machine 10 are kept away from each other, so that thermal interference between the switching elements 700L and 701L It can reduce than the thermal interference between 701H.
  • thermal interference between the switching elements 700L and 701L can reduce than the thermal interference between 701H.
  • the heat radiation surfaces 611 a to 614 a of the islands 611 to 614 are exposed from the sealing resin body 50. Therefore, the heat of switching element 70 can be dissipated effectively.
  • the heat dissipation surface 610 a of the island 610 is exposed from the sealing resin body 50. Accordingly, the heat generated by the drive unit 80 and the heat received from the switching element 70 disposed around the drive unit 80 can be effectively dissipated.
  • the drive part 80 can also be miniaturized by the improvement of heat dissipation.
  • the heat radiation surfaces 620 a and 622 a of the wiring portions 620 and 622 are exposed from the sealing resin body 50.
  • the heat of the switching elements 700L and 701L can be dissipated from the heat radiation surfaces 620a and 622a.
  • the wiring portions 620 and 622 are connected to the output terminals 63P1 and 63P2, the heat from the rotary electric machine portion 10 can be effectively dissipated.
  • the heat transmitted to the switching elements 700L and 701L can be reduced.
  • the clip 900 is employed as the bridging member 90.
  • the semiconductor module 40 has four clips 900.
  • the connection distance between the source electrode 72 of the switching element 70 and the wiring portion 62 is made substantially equal to each other by the above-described line symmetrical arrangement. Therefore, the four clips 900 can be made common to one type, and the number of parts can be reduced (A173).
  • each of the clips 900 is arranged so that the extending direction is the X direction and the width direction is the Y direction.
  • the lead frame 60 before the tie bar cut has a tie bar 66 and an outer frame 67. And a connecting portion 68.
  • the tie bar 66 of this embodiment also has tie bars 660a and 660b on one side and tie bars 661a and 661b on the other side so as to sandwich the island 61 and the wiring portion 62 in the Y direction.
  • Each tie bar 66 is connected to the outer frame 67 at both ends in the X direction.
  • the tie bar 660a connects the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 to the outer frame 67.
  • the tie bars 660a and 660b are both connected to the extending portions in the Y direction of the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2, respectively.
  • the tie bars 660a and 660b are connected to the base 63Ba at, for example, the positive electrode terminals 63B1 and 63B2.
  • Each of the tie bars 660a and 660b extends in a straight line along the X direction.
  • the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 are bent between the tie bars 660a and 660b.
  • the islands 611 and 613 are connected to the tie bars 660a and 660b via the bases 63Ba of the corresponding positive electrode terminals 63B1 and 63B2.
  • the islands 612 and 614 and the wiring portions 620 and 621 are connected to the tie bars 660 a and 660 b via the corresponding dummy terminals 65 and output terminals 63 P 1 and 63 P 2.
  • the positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 have extension points from the islands 611 and 613 and the wiring parts 620 and 622 at the same start position in the Y direction, and the end point of the extension Almost the same position.
  • the positive electrode terminals 63B1 and 63B2 are connected to the outer frame 67 also in the Y direction by the connecting portion 68.
  • the connecting portion 68 is connected to the tip of each of the base portions 63Ba. That is, in the positive electrode terminals 63B1 and 63B2, the connection portion 63Bb with the bus bar 27B is continued to a different portion.
  • the connecting portion 68 extends in the Y direction.
  • the connecting portion 63 ⁇ / b> Bb is disposed outside the connecting portion 68 in the X direction.
  • the semiconductor module 40 has a connection mark 68 a which is a cut mark of the connection portion 68 after the tie bar cut.
  • Dummy terminals 65 connected to the same wiring portions 620 and 622 as the output terminals 63P1 and 63P2 are extended along the corresponding output terminals 63P1 and 63P2.
  • the dummy terminal 65 is extended to the outer frame 67 in the Y direction.
  • the tie bar 661a connects the negative electrode terminals 63E1 and 63E2 and the signal terminal 64 to the outer frame 67.
  • the tie bars 661a and 661b are both connected to the extending portions of the negative terminals 63E1 and 63E2 and the signal terminal 64 in the Y direction.
  • the negative terminals 63E1 and 63E2 and the signal terminal 642 are bent between the tie bars 661a and 661b.
  • the wiring portions 621 and 623 are connected to the tie bars 661 a and 661 b via the negative electrode terminals 63E1 and 63E2.
  • the island 610 is connected to the tie bars 661a and 661b via the connection portion 69 and the negative electrode terminals 63E1 and 63E2.
  • the island 610 is connected to the tie bars 661 a and 661 b through the connecting portion 69 and the test terminal 644 a.
  • the test terminal 644a is connected to the outer frame 67 opposite to the island 610 side as described above.
  • connection between the main terminal 63 and the bus bar 27 is not connected to the outer frame 67 and is free.
  • the signal terminal 64 is connected to the outer frame 67 in the Y direction.
  • the signal terminal 64 is disconnected from the outer frame 67 at the time of tie bar cutting. Since the signal terminal 64 is connected to the outer frame 67, deformation of the tie bars 661a and 661b can be suppressed at the time of molding.
  • Connecting portions 68 are respectively disposed between the signal terminal 64 and the negative electrode terminals 63E1 and 63E2.
  • the connecting portion 68 extends in the Y direction, one end thereof is connected to the tie bar 661 a, and the other end is connected to the outer frame 67.
  • the connecting portion 68 is separated along with the tie bar 66.
  • the connecting portion 68 increases the number of hanging points with the outer frame 67, so that deformation of the tie bars 661a and 661b can be suppressed at the time of molding. Therefore, the positional accuracy of the negative electrode terminals 63E1 and 63E2 and the signal terminals 642 and 643 can be improved.
  • the second tier tie bars 660b and 661b are wider than the first tier tie bars 660a and 661a. Since the width of the tie bars 660a and 661a is narrow, the tie bars 660a and 661a do not obstruct the bending of the main terminals 63 and the signal terminals 64, and the size of the semiconductor module 40 can be miniaturized. In addition, dimensional deviation at the time of tie bar cutting can be reduced. Since the width of the tie bars 660 b and 661 b is wide, the rigidity can be improved thereby, and the deformation of the tie bars 66 can be suppressed at the time of molding the sealing resin body 50.
  • the arrangement portion 60a of the clip 900 in the island 61 and the arrangement portion 60b in the wiring portion 62 in which the same clip 900 is arranged are arranged side by side in the X direction. That is, the arranging direction of the placement parts 60a and 60b with respect to the same clip 900 is the same as the extending direction of the first stage tie bars 660a and 661a to which the island 61 and the wiring part 62 are connected. In this manner, since the maximum length from the tie bar 66 to the clip 900 can be increased by parallel arrangement, the stress acting on the junction between the islands 611 to 614 and the corresponding switching element 70 can be reduced. it can. In the semiconductor module 40 after tie bar cutting, the alignment direction of the tie bar marks 66 a of the first stage disposed on the same side with respect to the island 61 and the extension direction of the clips 900 are the same (X direction). It is done.
  • the island 612 and the wiring portion 620, and the island 614 and the wiring portion 622 are respectively connected to the same tie bars 660a and 660b at a plurality of locations. According to this, it is possible to suppress the deformation of the tie bars 660a and 660b at the time of molding. By suppressing the tie bar deformation, it is possible to reduce the stress acting on the junction between the islands 612 and 614 and the corresponding switching elements 700L and 701L. In addition, it is possible to suppress the drooping of the islands 612 and 614 at positions away from the output terminals 63P1 and 63P2.
  • the island 612 and the wiring portion 620 are connected to the tie bar 660 a via the output terminal 63 P 1 and the dummy terminal 65.
  • the island 614 and the wiring portion 622 are connected to the tie bar 660a via the output terminal 63P2 and the dummy terminal 65.
  • the dummy terminal 65 is connected to the outer frame 67 in the Y direction. Also by this, the rigidity of the lead frame 60 can be improved, and for example, deformation of the tie bars 660a and 660b can be suppressed.
  • the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 can not be connected to the outer frame 67, so connectivity with the bus bar 27 can be secured.
  • the islands 612 and 614 and the wiring parts 621 and 623 in which the same clip 900 is disposed are connected to different tie bars 660a and 661a. Since the islands 612 and 614 and the wiring portions 621 and 623 are both suspended with respect to the tie bar 66, deformation of the tie bar 66 can be suppressed at the time of molding. Further, since the extension direction of the clip 900 is the same X direction as the tie bar 66, it is possible to suppress the shear stress in the X direction with respect to the joint portion of the switching element 70.
  • the islands 611 and 613 are connected to the tie bars 660a and 660b via the positive electrode terminals 63B1 and 63B2.
  • the positive electrode terminals 63B1 and 63B2 are connected to the outer frame 67 by the connecting portion 68 except for the connection portion 63Bb with the positive electrode bus bar 27B.
  • the rigidity of lead frame 60 can be improved, and deformation of tie bars 660a and 660b can be more effectively suppressed, for example.
  • the connecting portion 68 is connected to the portion excluding the connecting portion 63Bb, it does not affect the welding between the connecting portion 63Bb and the positive electrode bus bar 27B.
  • the drive unit 80 includes a voltage detection circuit 82, a temperature detection circuit 83, a determination circuit 84, a drive circuit 85, and a notification circuit 86.
  • the upper arm side is also referred to as high side
  • the lower arm side is also referred to as low side.
  • the voltage detection circuit 82 corresponds to a voltage detection unit.
  • the voltage detection circuit 82 detects the voltage between the main electrodes of the switching element 70 constituting each arm, that is, the voltage Vds between the drain and the source, or the phase voltages P1 and P2 of the upper and lower arms of each phase.
  • the phase voltage P1 is an output voltage of the first upper and lower arms by the switching elements 700H and 700L.
  • the phase voltage P2 is an output voltage of the second upper and lower arms by the switching elements 701H and 701L.
  • the phase voltages P1 and P2 can be detected from the islands 612 and 614 as described above.
  • the voltage Vds can be detected from the connecting portion 615 and the pad 71 for the source potential.
  • the temperature detection circuit 83 corresponds to a temperature detection unit.
  • the temperature detection circuit 83 detects the temperature of the switching element 70 based on a temperature sensitive diode.
  • the temperature detection circuit 83 detects the temperature by obtaining the anode potential and the cathode potential from the pad 71 for the anode and the cathode.
  • the determination circuit 84 corresponds to a determination unit.
  • the determination circuit 84 determines, based on the voltage value detected by the voltage detection circuit 82, whether or not the switching element 70 is shorted. For example, when switching element 701H is shorted, phase voltage P2 is fixed at power supply voltage VB, and when switching element 701L is shorted, phase voltage P2 is fixed at the ground potential. When switching element 701H is shorted, voltage Vds continues at a constant value of zero, and when switching element 701L is shorted, the source of switching element 701H sticks to the ground, so that voltage Vds is a constant value larger than zero. Continue at (power supply voltage VB).
  • the determination circuit 84 can determine whether or not the switching element 70 is shorted.
  • the determination circuit 84 determines, based on the temperature (forward voltage Vf) detected by the temperature detection circuit 83, whether or not a failure in temperature abnormality occurs in the switching element 70.
  • the drive circuit 85 corresponds to a drive unit.
  • the drive circuit 85 generates a drive signal (gate drive signal) for controlling the switching element 70.
  • the drive circuit 85 controls the on / off of the switching element 70 according to the determination result of the determination circuit 84.
  • the drive circuit 85 turns off the switching element 70 determined to have a failure, and turns on the switching element 70 on the same side as the phase different from the failed switching element 70. For example, when the switching element 700H on the high side fails, the switching element 700H is turned off and the switching element 701H is turned on. When the low side switching element 700L fails, the switching element 700L is turned off and the switching element 701L is turned on.
  • the notification circuit 86 corresponds to a notification unit.
  • the notification circuit 86 notifies another semiconductor module 40 constituting the control device unit 20 of the occurrence of the failure and the information on the side of the failed switching element 70.
  • the semiconductor module 40 has the signal terminal 642 for abnormality notification.
  • reference numerals 40a, 40b and 40c are given in FIG.
  • the semiconductor module 40a constitutes upper and lower arms of U phase and V phase
  • the semiconductor module 40b constitutes upper and lower arms of W phase and X phase
  • the semiconductor module 40c constitutes upper and lower arms of Y phase and Z phase.
  • the signal terminals 642 of the three semiconductor modules 40a, 40b, and 40c are connected to each other to enable bi-directional communication.
  • FIG. 56 shows an example of failure notification of the switching element 70 in the notification signal.
  • a pulse having a width (Hi width) at time t1 indicates occurrence of a failure.
  • a pulse transmitted after a pulse indicating failure occurrence and having a width of time t2 narrower than time t1 indicates a failure on the high side.
  • a pulse transmitted after a pulse indicating failure occurrence and having a width of time t3 narrower than time t1 and wider than time t2 indicates a low side failure.
  • the time t2 may be wider than the time t3. In this way, high side faults and low side faults can be distinguished by changing the pulse width (duty ratio).
  • FIG. 57 shows control when a short failure occurs in the switching element 701L of the semiconductor module 40a. If the determination circuit 84 determines that a short failure has occurred in the switching element 701L based on the voltage value detected by the voltage detection circuit 82, the drive circuit 85 first turns off the switching element 701L and is another phase and is the same. The side switching element 700L is turned on. The other switching elements 70 are turned off. Further, the notification circuit 86 outputs, to the other semiconductor modules 40b and 40c, a notification signal indicating that a failure has occurred on the low side.
  • the drive circuit 85 of the semiconductor modules 40 b and 40 c turns off all the switching elements 70 when receiving the notification signal indicating the failure. This can suppress the flow of through current.
  • the drive circuit 85 turns on all the low-side switching elements 700L and 701L in which a failure occurs in the semiconductor module 40a.
  • FIG. 58 shows a reference example, specifically, a timing chart in the case where a control device unit is configured by using six semiconductor modules constituting upper and lower arms for one phase.
  • a notification signal indicating the failure is output to the other five semiconductor modules. Therefore, after passing a predetermined communication time, the switching elements on the same side are turned on in the other semiconductor modules. Therefore, during communication, current concentrates only on the failed switching element. At the time of power generation, even if the faulty switching element is turned off, the current flows through the parasitic diode, so it can not be shut off.
  • the drive circuit 85 executes the control described above. For this reason, as shown in FIG. 59, when a failure occurs, the switching element 70 on the same side which is another phase in the same semiconductor module 40 is turned on. As described above, when a failure occurs, the normal phase which has not failed in the same semiconductor module 40 immediately shifts to the protection operation. Thus, a current path is formed in addition to the failed switching element 70. Therefore, it is possible to suppress current concentration on the failed switching element 70. Further, when the communication is completed, the switching element 70 on the same side is turned on also in the other semiconductor modules 40. Thereby, the current path is further increased, so that the stress of the switching element 70, the current stress, and the thermal stress can be reduced.
  • FIG. 60 shows control when a temperature abnormality occurs in the switching element 701H of the semiconductor module 40a. If the determination circuit 84 determines that a failure in temperature abnormality has occurred in the switching element 701H based on the temperature detected by the temperature detection circuit 83, the drive circuit 85 first turns off the switching element 701H and is another phase. The switching element 700H on the same side is turned on. The other switching elements 70 are turned off. Further, the notification circuit 86 outputs a notification signal indicating that a failure has occurred on the high side to the other semiconductor modules 40 b and 40 c.
  • the drive circuit 85 of the semiconductor modules 40 b and 40 c turns off all the switching elements 70 when receiving the notification signal indicating the failure. This can suppress the flow of through current.
  • the drive circuit 85 turns on all of the high-side switching elements 700H and 701H in which a failure occurs in the semiconductor module 40a. Therefore, even when the temperature abnormality occurs, the same effect as the short failure can be obtained.
  • the open failure is a failure in which no current flows, the phase voltages P1 and P2 may become abnormal due to inductance components of the stator winding 121 and the like, which may lead to a further failure.
  • FIG. 61 when an open failure occurs, all the switching elements 70 are turned off. Thereby, secondary failure can be suppressed.
  • FIG. 61 shows an example where an open failure has occurred in the switching element 701L.
  • FIG. 62 shows a first modification of the drive unit 80.
  • the drive unit 80 acquires the processing circuit 87 executing predetermined processing and the phase voltages P1 and P2, respectively. When at least one of the phase voltages P1 and P2 exceeds the threshold voltage, the processing circuit 87 is activated from the sleep state. And a power supply circuit 89 for supplying power to the processing circuit 87.
  • the processing circuit 87 corresponds to a processing unit
  • the start circuit 88 corresponds to a start unit
  • the power supply circuit 89 corresponds to a power supply unit.
  • FIG. 63 shows a more specific configuration of the drive unit 80.
  • the processing circuit 87 includes an analog circuit 870 and a digital circuit 871.
  • the processing circuit 87 includes, for example, the voltage detection circuit 82, the temperature detection circuit 83, the determination circuit 84, the drive circuit 85, and the notification circuit 86 described above.
  • the start-up circuit 88 includes an OR gate 880 and a start switch 881 provided downstream of the OR gate 880. Phase voltages P1 and P2 are input to the OR gate 880.
  • the OR gate 880 outputs a Hi level signal when at least one of the phase voltages P1 and P2 exceeds a preset threshold voltage Vth. Thus, the start switch 881 is switched from off to on.
  • the start switch 881 When the start switch 881 is turned on, the power supply circuit 89 is connected to the ground to start operation. Then, the power supply VCC1 is supplied to the analog circuit 870, and the power supply VCC2 is supplied to the digital circuit 871. Thereby, the analog circuit 870 and the digital circuit 871 are switched from the sleep state to the awake state.
  • FIG. 64 shows a case where the phase voltage P2 is fixed to the ground potential due to a short circuit failure of the switching element 701L.
  • the power supply circuit 89 is operated by the phase voltage P1 opposite to the short failure, whereby the power supplies VCC1 and VCC2 can rise and the processing circuit 87 can be activated.
  • the processing circuit 87 can be activated from the sleep state. Therefore, the drive unit 80 can detect a failure of the switching element 70 and protect the failed switching element 70.
  • the circuit delay is omitted.
  • FIG. 65 shows a state where a failure occurs in the digital circuit 871 described above and the drive signal output to the driver 870a of each of the switching elements 700H and 701L among the driver 870a which is the analog circuit 870 is fixed on. If such a failure occurs, as indicated by a broken line arrow in FIG. 65, there is a possibility that a through current may be generated across different phases via the rotating electrical machine unit 10 side, specifically the stator winding 121 etc. is there.
  • the analog circuit 870 r includes a driver 870 ar and a comparator which is a voltage detection circuit 82 r.
  • the digital circuit 871 r includes a drive circuit 85 r, an AND gate 871 ar, and a NOT gate 871 br.
  • r is added to the end of the reference numerals of the relevant elements of this embodiment.
  • the NOT gate 871br is provided between one input of the AND gate 871ar and the voltage detection circuit 82r.
  • the drive signal generated by the drive circuit 85r and the inverted value of the voltage Vds detected by the voltage detection circuit 82r are input to the AND gate 871ar.
  • the output of the AND gate 871ar is input to the driver 870ar.
  • FIG. 66 shows the time of power generation of the rotary electric machine 1 as indicated by solid arrows. Since the voltage Vds indicates zero (0) in which the current direction is normal, the drive signal output from the AND gate 871ar is maintained at 1. As a result, the switching element 70r is kept on.
  • the digital circuit 871 r may not execute a desired operation.
  • the NOT gate 871 br is broken and the inverting function is lost.
  • the drive signal output from the AND gate 871ar is 1 because the voltage Vds is not inverted before the input even though 1 is output indicating an abnormality. It becomes. As a result, the switching element 70 continues to be turned on.
  • FIG. 68 shows a second modification of the drive unit 80.
  • the processing circuit 87 includes a digital circuit 872 different from the digital circuit 871 including the driving circuit 85.
  • the digital circuit 872 is activated by being supplied with a power supply VCC3 different from the power supply VCC2 supplied from the power supply circuit 89 to the digital circuit 871, specifically, a voltage lower than the power supply VCC2.
  • the power supply VCC3 is set to a voltage lower than the power supply VCC2, for example, via a voltage drop resistance.
  • the digital circuit 872 includes an AND gate 872a and a NOT gate 872b.
  • the NOT gate 872 b is provided between one input of the AND gate 872 a and the voltage detection circuit 82.
  • the drive signal output from the AND gate 871a and the inverted value of the voltage Vds are input to the AND gate 872a.
  • the output of the AND gate 872a is input to the driver 870a.
  • the switching element 70 is operated if the direction of the current flowing through the switching element 70 is abnormal. You can switch from on to off. Also, even if a fault occurs in, for example, the NOT gate 872b of the digital circuit 872 and the inversion function is lost, the switching element 70 can be switched from on to off if the direction of the current flowing through the switching element 70 is abnormal. it can. Therefore, redundancy can be improved.
  • the configuration of the semiconductor module 40 shown in the first embodiment can be applied to the rotary electric machine 1 shown in the second embodiment.
  • the configuration of the semiconductor module 40 shown in the second embodiment can be applied to the rotary electric machine 1 shown in the first embodiment.
  • Part of the configuration of the semiconductor module 40 shown in the first embodiment can be combined with the semiconductor module 40 shown in the second embodiment.
  • the configuration of the sealing resin body 50 shown in the first embodiment can be combined with the second embodiment.
  • the lead frame 60 shown in the first embodiment can be combined with the second embodiment.
  • the shunt resistor 901 shown in the first embodiment can be combined with the second embodiment.
  • a part of the configuration of the semiconductor module 40 shown in the second embodiment can be combined with the semiconductor module 40 shown in the first embodiment.
  • the arrangement of the island 61, the wiring portion 62, and the main terminal 63 shown in the second embodiment can be combined with the first embodiment.
  • the drive unit 80 shown in the second embodiment can be combined with the first embodiment.
  • the application target of the configuration in which the extending direction of the tie bar 66 and the extending direction of the bridging member 90, that is, the arranging direction of the placement portions 60a and 60b are substantially parallel is not limited to the above example. If a plurality of islands 61 and wiring connected to the switching element 70 via the bridging member 90 and having a wire different from the island 61 on which the switching element 70 is disposed are provided, variation in the height direction is likely to occur. In particular, when the plurality of islands 61 are arranged in the extending direction of the tie bar 66, the tie bar 66 becomes long.
  • two switching elements 70 constituting upper and lower arms for one phase are disposed in the semiconductor module 40, and islands 61 in which the switching elements 70 are individually disposed are aligned in the X direction which is the extension direction of the tie bar 66.
  • the wiring different from the island 61 in which the switching element 70 is disposed is, for example, another island 61 or a wiring portion 62.
  • the plurality of switching elements 70 are not limited to those constituting the upper and lower arms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

High-side switching elements (700H, 701H) and low-side switching elements (700L, 701L) used as switching elements (70) constituting the upper/lower arms of a plurality of phases constitute a semiconductor module (40). This control device for controlling the drive of the switching elements is provided with: a voltage detection unit (82) for detecting the voltage between the main electrodes of each of the switching elements or the phase voltage of each phase; a determination unit (84) for determining, on the basis of the detected voltage value, whether a short-circuit failure occurs in the switching elements or not; and a drive unit (85) for, when a failure has occurred, turning off the switching element in which the failure has occurred and turning on the switching element having a phase different from that of the switching element in which the failure has occurred and on the same side as the switching element in which the failure has occurred.

Description

制御装置Control device 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年10月19日に出願された日本特許出願番号2017-202738号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-202738 filed on October 19, 2017, the contents of which are incorporated herein by reference.
 本開示は、上下アームを構成するスイッチング素子の駆動を制御する制御装置に関するものである。 The present disclosure relates to a control device that controls driving of switching elements that constitute upper and lower arms.
 特許文献1には、一相分の上下アームを構成するスイッチング素子と、スイッチング素子の駆動を制御する制御装置(制御回路)とが一体化され半導体モジュールが開示されている。 Patent Document 1 discloses a semiconductor module in which switching elements constituting upper and lower arms for one phase and a control device (control circuit) for controlling driving of the switching elements are integrated.
 上記構成の場合、回転電機の固定子巻線の相数と同じ数の半導体モジュールが必要となる。したがって、上アーム及び下アームの一方がショート故障、又は、温度異常の故障を発生した場合に、故障した半導体モジュールの制御装置から他の半導体モジュールの制御装置への通信期間において、故障したスイッチング素子に電流が集中する。よって、スイッチング素子を適切に保護することができない。 In the case of the above configuration, the same number of semiconductor modules as the number of phases of the stator winding of the rotating electrical machine are required. Therefore, when one of the upper arm and the lower arm generates a short circuit failure or a temperature abnormal failure, the switching element failed in the communication period from the control device of the failed semiconductor module to the control device of the other semiconductor module. Current concentrates on the Therefore, the switching element can not be properly protected.
 制御装置は、通常、上下アームの出力電圧である相電圧をトリガとして、スリープ状態から起動される。しかしながら、上記した構成では、下アームがショート故障した場合に、制御装置を起動できない。このため、制御装置が、スイッチング素子の故障を検知してスイッチング素子を適切に保護することができない。 The control device is normally activated from the sleep state using a phase voltage which is an output voltage of the upper and lower arms as a trigger. However, in the configuration described above, the control device can not be activated when the lower arm fails in a short circuit. Therefore, the control device can not detect the failure of the switching element and appropriately protect the switching element.
特開2011-166847号公報JP 2011-166847 A
 本開示は、故障時にスイッチング素子を適切に保護できる制御装置を提供することを目的とする。 An object of the present disclosure is to provide a control device capable of appropriately protecting a switching element in the event of a failure.
 本開示の第一の態様にしたがって、複数相の上下アームを構成するスイッチング素子としてのハイサイドのスイッチング素子及びローサイドのスイッチング素子とともに半導体モジュールを構成し、前記スイッチング素子の駆動を制御する制御装置は、各アームを構成する前記スイッチング素子の主電極間の電圧、又は、各相上下アームの相電圧を検出する電圧検出部と、前記電圧検出部により検出された電圧値に基づいて、前記スイッチング素子にショート故障が生じているか否かを判定する判定部と、前記判定部により故障が生じたと判定されると、故障が生じた前記スイッチング素子をオフさせるとともに、故障した前記スイッチング素子とは別の相であって同じサイドの前記スイッチング素子をオンさせる駆動部とを備える。 According to a first aspect of the present disclosure, there is provided a control device that configures a semiconductor module with a high-side switching element and a low-side switching element as switching elements configuring upper and lower arms of multiple phases and controls driving of the switching elements. A voltage detection unit that detects a voltage between main electrodes of the switching element that configures each arm, or a phase voltage of each phase upper and lower arm, and the switching element based on a voltage value detected by the voltage detection unit And a determination unit for determining whether or not a short circuit failure has occurred, and turning off the switching element in which the failure has occurred if it is determined by the determination unit that a failure has occurred, and And a driver for turning on the switching elements on the same side.
 この制御装置によれば、ショート故障が発生すると、故障したスイッチング素子をオフさせる。また、同一の半導体モジュール内における別の相であって同じサイドのスイッチング素子をオンさせる。このように、同一半導体モジュール内において、故障していない正常な相が直ちに保護動作に移行する。 According to this control device, when a short circuit failure occurs, the failed switching element is turned off. In addition, the switching element of another phase in the same semiconductor module and on the same side is turned on. Thus, in the same semiconductor module, a normal phase which has not failed is immediately transferred to the protection operation.
 したがって、故障したスイッチング素子に電流が集中するのを抑制することができる。以上により、ショート故障時において、スイッチング素子を適切に保護することができる。 Therefore, it is possible to suppress current concentration on the failed switching element. As described above, the switching element can be appropriately protected at the time of the short failure.
 本開示の第二の態様にしたがって、複数相の上下アームを構成するスイッチング素子としてのハイサイドのスイッチング素子及びローサイドのスイッチング素子とともに半導体モジュールを構成し、前記スイッチング素子の駆動を制御する制御装置は、各アームを構成する前記スイッチング素子の温度を検出する温度検出部と、前記温度検出部により検出された温度に基づいて、前記スイッチング素子に温度異常の故障が生じているか否かを判定する判定部と、前記判定部により故障が生じたと判定されると、故障が生じた前記スイッチング素子をオフさせるとともに、故障した前記スイッチング素子とは別の相であって同じサイドの前記スイッチング素子をオンさせる駆動部とを備える。 According to a second aspect of the present disclosure, there is provided a control device that configures a semiconductor module together with a high-side switching element and a low-side switching element as switching elements configuring upper and lower arms of multiple phases and controls driving of the switching elements. Determining whether or not a temperature abnormality failure has occurred in the switching element based on a temperature detection unit that detects the temperature of the switching element that configures each arm, and the temperature detected by the temperature detection unit And, when it is determined by the determination unit that a failure has occurred, the switching device that has a failure is turned off, and the switching device on the same side that is a phase different from the switching device that has a failure is turned on. And a drive unit.
 この制御装置によれば、温度異常による故障が発生すると、故障したスイッチング素子をオフさせる。また、同一の半導体モジュール内における別の相であって同じサイドのスイッチング素子をオンさせる。このように、同一半導体モジュール内において、故障していない正常な相が直ちに保護動作に移行する。 According to this control device, when a failure due to a temperature abnormality occurs, the failed switching element is turned off. In addition, the switching element of another phase in the same semiconductor module and on the same side is turned on. Thus, in the same semiconductor module, a normal phase which has not failed is immediately transferred to the protection operation.
 したがって、故障したスイッチング素子に電流が集中するのを抑制することができる。以上により、温度異常による故障時において、スイッチング素子を適切に保護することができる。 Therefore, it is possible to suppress current concentration on the failed switching element. Thus, the switching element can be appropriately protected at the time of failure due to temperature abnormality.
 本開示の第三の態様にしたがって、複数相の上下アームを構成するスイッチング素子の駆動を制御する制御装置は、所定の処理を実行する処理部と、前記複数相の上下アームの相電圧をそれぞれ取得し、前記相電圧の少なくとも1つが閾値電圧を超えると、前記処理部をスリープ状態から起動させる起動部とを備える。 According to a third aspect of the present disclosure, a control device that controls driving of switching elements forming upper and lower arms of a plurality of phases includes a processing unit that executes a predetermined process and phase voltages of the upper and lower arms of the plurality of phases. And an activation unit configured to activate the processing unit from a sleep state when at least one of the phase voltages exceeds a threshold voltage.
 この制御装置によれば、前記相電圧の少なくとも1つが閾値電圧を超えると、前記処理部をスリープ状態から起動させる起動部とを備える。したがって、スイッチング素子を適切に保護することができる。 According to this control device, the control unit includes: an activation unit that activates the processing unit from a sleep state when at least one of the phase voltages exceeds a threshold voltage. Therefore, the switching element can be properly protected.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態の制御装置一体型回転電機を示す断面図であり、 制御装置部を示す拡大断面図であり、 等価回路図であり、 半導体モジュール及びバスバーの配置を示す平面図であり、 主端子とバスバーの接続構造を示す平面図であり、 半導体モジュールを示す斜視図であり、 半導体モジュールを示す正面図であり、 半導体モジュールを示す背面図であり、 半導体モジュールを示す上面図であり、 半導体モジュールを示す下面図であり、 図7に示すX1方向から見た側面図であり、 図7のXII-XII線に沿う断面図であり、 図7のXIII-XIII線に沿う断面図であり、 封止樹脂体を省略した斜視図であり、 分解斜視図であり、 封止樹脂体を省略した正面図であり、 封止樹脂体を省略した背面図であり、 封止樹脂体を省略した上面図であり、 封止樹脂体を省略した下面図であり、 図16に示すX1方向から見た側面図であり、 タイバーカット前のリードフレームを示す平面図であり、 出力端子及び信号端子の配置を示す模式図であり、 スイッチング素子の温度を示す模式図であり、 シャント抵抗器を示す平面図であり、 図24のXXV-XXV線に沿う断面図であり、 変形例を示す平面図であり、 変形例を示す平面図であり、 シャント抵抗器の配置の効果を示す図であり、 電流ループ及び渦電流による磁界相殺を示す図であり、 シャント抵抗器とタイバーの延設方向を示す図であり、 平行配置による効果を示す図であり、 変形例を示す平面図であり、 変形例を示す図であり、 第2実施形態の制御装置一体型回転電機を示す断面図であり、 等価回路図であり、 制御装置部側から見た平面図であり、 カバーを外した状態において、制御装置部側から見た平面図であり、 パワーアセンブリを示す分解図であり、 半導体モジュールを示す斜視図であり、 半導体モジュールを示す正面図であり、 半導体モジュールを示す背面図であり、 半導体モジュールを示す上面図であり、 半導体モジュールを示す下面図であり、 図40に示すX1方向から見た側面図であり、 図40のXLV-XLV線に沿う断面図であり、 封止樹脂体を省略した斜視図であり、 分解斜視図であり、 封止樹脂体を省略した正面図であり、 封止樹脂体を省略した背面図であり、 封止樹脂体を省略した上面図であり、 封止樹脂体を省略した下面図であり、 図48に示すX1方向から見た側面図であり、 タイバーカット前のリードフレームを示す平面図であり、 駆動部を示す図であり、 複数の半導体モジュール間での接続構造を示す図であり、 故障を通知する信号を示す図であり、 ショート故障が生じた場合の制御を示す図であり、 参考例において、ショート故障が生じた場合のタイミングチャートであり、 ショート故障が生じた場合のタイミングチャートであり、 温度異常が生じた場合の制御を示す図であり、 オープン故障が生じた場合の制御を示す図であり、 駆動部の第1変形例を示す図であり、 駆動部の回路構成を示す図であり、 起動時のタイミングチャートであり、 デジタル回路故障時における相を跨いだ貫通電流を示す図であり、 貫通電流からスイッチング素子を保護する回路の参考例を示す図であり、 図66に示す参考例において、デジタル回路が故障した場合の問題点を示す図であり、 駆動部の第2変形例を示す図である。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
FIG. 2 is a cross-sectional view showing a controller-integrated electric rotating machine according to a first embodiment; It is an expanded sectional view showing a control device part, Is an equivalent circuit diagram, FIG. 10 is a plan view showing the arrangement of semiconductor modules and bus bars; It is a plan view showing a connection structure of a main terminal and a bus bar, It is a perspective view showing a semiconductor module, It is a front view showing a semiconductor module, It is a rear view showing a semiconductor module, It is a top view which shows a semiconductor module, It is a bottom view showing a semiconductor module, FIG. 8 is a side view seen from the X1 direction shown in FIG. 7; 8 is a cross-sectional view taken along the line XII-XII in FIG. 7; FIG. 8 is a cross-sectional view taken along the line XIII-XIII of FIG. 7; It is the perspective view which abbreviate | omitted the sealing resin body, It is an exploded perspective view, It is the front view which omitted the sealing resin body, It is the rear view which omitted the sealing resin body, It is the top view which omitted the sealing resin body, It is the bottom view which omitted the sealing resin body, 17 is a side view seen from the X1 direction shown in FIG. 16; It is a plan view showing a lead frame before tie bar cut, It is a schematic diagram which shows arrangement | positioning of an output terminal and a signal terminal, It is a schematic diagram which shows the temperature of a switching element, It is a top view which shows a shunt resistor, 24 is a cross-sectional view taken along the line XXV-XXV of FIG. 24; It is a top view which shows a modification, It is a top view which shows a modification, FIG. 6 illustrates the effect of the placement of shunt resistors, FIG. 5 illustrates magnetic field cancellation by current loops and eddy currents; FIG. 5 is a diagram showing the extending direction of the shunt resistor and the tie bar, It is a figure which shows the effect by parallel arrangement, It is a top view which shows a modification, It is a figure showing a modification, FIG. 7 is a cross-sectional view showing a controller-integrated electric rotating machine of a second embodiment; Is an equivalent circuit diagram, It is a plan view seen from the controller side, In the state which removed the cover, it is the top view seen from the control apparatus part side, Fig. 6 is an exploded view of the power assembly; It is a perspective view showing a semiconductor module, It is a front view showing a semiconductor module, It is a rear view showing a semiconductor module, It is a top view which shows a semiconductor module, It is a bottom view showing a semiconductor module, 40 is a side view seen from the X1 direction shown in FIG. 40; 40 is a cross-sectional view along the line XLV-XLV in FIG. It is the perspective view which abbreviate | omitted the sealing resin body, It is an exploded perspective view, It is the front view which omitted the sealing resin body, It is the rear view which omitted the sealing resin body, It is the top view which omitted the sealing resin body, It is the bottom view which omitted the sealing resin body, FIG. 51 is a side view seen from the X1 direction shown in FIG. 48, It is a plan view showing a lead frame before tie bar cut, It is a figure showing a drive part, FIG. 7 is a diagram showing a connection structure between a plurality of semiconductor modules, It is a figure which shows the signal which notifies a failure, FIG. 17 is a diagram showing control when a short failure occurs, In the reference example, it is a timing chart when a short failure occurs, It is a timing chart when a short failure occurs, It is a figure showing control when temperature abnormality arises, FIG. 10 is a diagram showing control when an open failure occurs, It is a figure which shows the 1st modification of a drive part, It is a figure showing the circuit composition of a drive part, It is a timing chart at startup, FIG. 7 is a diagram showing a through current across phases at the time of digital circuit failure; FIG. 10 is a diagram showing a reference example of a circuit that protects a switching element from a through current, FIG. 73 is a diagram showing a problem when a digital circuit fails in the reference example shown in FIG. 66, It is a figure which shows the 2nd modification of a drive part.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的に及び/又は構造的に対応する部分には、同一の参照符号を付与する。 Several embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding parts are provided with the same reference signs.
 (第1実施形態)
 (回転電機の概略構成)
 図1~図5に基づき、制御装置一体型回転電機の概略構成について説明する。図5では、主端子のうちの正極端子及び負極端子と、バスバーとの接続構造を示している。図4及び図5では、便宜上、信号端子及びダミー端子を省略している。
First Embodiment
(Schematic configuration of rotating electric machine)
The schematic configuration of the controller-integrated electric rotating machine will be described with reference to FIGS. 1 to 5. FIG. 5 shows a connection structure between the positive electrode terminal and the negative electrode terminal of the main terminals and the bus bar. In FIG.4 and FIG.5, the signal terminal and the dummy terminal are abbreviate | omitted for convenience.
 図1に示すように、制御装置一体型の回転電機1は、回転電機部10と、回転電機部10を制御する制御装置部20を備えており、制御装置部20が、制御対象である回転電機部10と一体化されている。なお、回転電機1の説明において、回転軸に沿う方向を軸方向と示す。また、軸方向のうち、制御装置部20側から回転電機部10側に向かう方向を前方、回転電機部10側から制御装置部20側に向かう方向を後方と示す。軸方向に直交する方向を径方向と示す。 As shown in FIG. 1, the controller integrated electric rotating machine 1 includes a rotating electric machine unit 10 and a control unit 20 for controlling the rotating electric machine unit 10, and the control unit 20 controls rotation. It is integrated with the electric unit 10. In the description of the rotary electric machine 1, a direction along the rotation axis is referred to as an axial direction. Further, in the axial direction, the direction from the control device unit 20 side to the rotating electrical machine unit 10 side is referred to as the front, and the direction from the rotating electrical machine unit 10 side to the control device unit 20 is as the rear. The direction orthogonal to the axial direction is referred to as the radial direction.
 (回転電機部) 
 回転電機部10は、車両に搭載され、バッテリから電力が供給されることで、車両を駆動するための駆動力を発生する。回転電機部10は、たとえばエンジンを始動させる電動機(スタータモータ)として機能する。回転電機部10は、エンジンから駆動力が供給されることで、バッテリを充電するための電力を発生する発電機(オルタネータ)として機能する。回転電機部10は、ISG(Integrated Starter Generator)とも称される。図1及び図2に示すように、回転電機部10は、ハウジング11と、固定子12と、回転子13と、プーリ14と、スリップリング15と、ブラシ16と、回転角度検出用の磁石17を備えている。
(Rotary electric machine part)
The rotating electrical machine unit 10 is mounted on a vehicle and generates power for driving the vehicle by being supplied with electric power from a battery. The rotating electrical machine unit 10 functions as, for example, a motor (starter motor) for starting an engine. The rotating electrical machine unit 10 functions as a generator (alternator) that generates electric power for charging the battery by being supplied with driving force from the engine. The rotating electrical machine unit 10 is also referred to as an ISG (Integrated Starter Generator). As shown in FIGS. 1 and 2, the rotating electrical machine unit 10 includes a housing 11, a stator 12, a rotor 13, a pulley 14, a slip ring 15, a brush 16, and a magnet 17 for detecting a rotation angle. Is equipped.
 ハウジング11は、固定子12及び回転子13を収容している。ハウジング11は、回転子13を回転可能に支持している。ハウジング11の軸方向後側には、制御装置部20が固定されている。ハウジング11は、軸方向前側に配置されたフロントハウジング110と、軸方向後側に配置されたリアハウジング111を有している。 The housing 11 accommodates the stator 12 and the rotor 13. The housing 11 rotatably supports the rotor 13. A control device unit 20 is fixed to the rear side in the axial direction of the housing 11. The housing 11 has a front housing 110 disposed on the front side in the axial direction and a rear housing 111 disposed on the rear side in the axial direction.
 固定子12は、磁路の一部を構成するとともに、電力、具体的には交流が供給されることで回転磁界を発生する。また、回転子13の発生する磁束と鎖交することで、交流を発生する。固定子12は、固定子コア120と、固定子巻線121を有している。 The stator 12 forms a part of a magnetic path and generates a rotating magnetic field by being supplied with electric power, specifically, alternating current. Further, by interlinking with the magnetic flux generated by the rotor 13, an alternating current is generated. The stator 12 has a stator core 120 and a stator winding 121.
 固定子コア120は、略円環状をなしている。固定子コア120には、図示しない複数のスロットが設けられている。固定子巻線121は、固定子コア120のスロットに収容され、固定子コア120に保持されている。固定子巻線121は、固定子コア120に巻回されている。固定子巻線121として、Y結線された三相巻線を用いている。図3に示すように、固定子巻線121は、U相、V相、W相の三相巻線からなる固定子巻線121aと、X相、Y相、Z相の三相巻線からなる固定子巻線121bを有している。固定子巻線121a,121bは、互いに所定電気角(たとえば30°)ずれて配置されている。 The stator core 120 has a substantially annular shape. The stator core 120 is provided with a plurality of slots (not shown). The stator winding 121 is accommodated in the slot of the stator core 120 and held by the stator core 120. The stator winding 121 is wound around the stator core 120. As the stator winding 121, a Y-connected three-phase winding is used. As shown in FIG. 3, the stator winding 121 includes a stator winding 121a consisting of U-phase, V-phase, and W-phase three-phase windings, and X-phase, Y-phase, and Z-phase three-phase windings. And a stator winding 121b. The stator windings 121a and 121b are arranged offset from each other by a predetermined electrical angle (for example, 30 °).
 回転子13は、磁路の一部を構成するとともに、電力、具体的には直流が供給されることで磁極を形成する。回転子13は、固定子巻線121の発生する磁束と鎖交することで、回転力を生じる。また、エンジンから供給される駆動力によって回転子13が回転し、発生した磁束が固定子巻線121と鎖交することで、固定子巻線121が交流を生じる。回転子13は、回転子コア130と、回転子巻線131と、ファン132と、回転軸133を有している。 The rotor 13 constitutes a part of a magnetic path and forms a magnetic pole by being supplied with electric power, specifically, direct current. The rotor 13 generates a rotational force by interlinking with the magnetic flux generated by the stator winding 121. Further, the rotor 13 is rotated by the driving force supplied from the engine, and the generated magnetic flux is interlinked with the stator winding 121, whereby the stator winding 121 generates an alternating current. The rotor 13 has a rotor core 130, a rotor winding 131, a fan 132, and a rotating shaft 133.
 回転子コア130は、回転子巻線131を収容する円環状の中空部130aを有している。回転子コア130は、回転軸133が挿通状態で固定される貫通孔130bを有している。回転子13は、回転子コア130の外周面が、固定子コア120の内周面と所定間隔を隔てて対向するように、配置されている。 The rotor core 130 has an annular hollow portion 130 a that accommodates the rotor winding 131. The rotor core 130 has a through hole 130 b to which the rotating shaft 133 is fixed in a state of being inserted. The rotor 13 is disposed such that the outer peripheral surface of the rotor core 130 faces the inner peripheral surface of the stator core 120 at a predetermined distance.
 回転子巻線131は、直流が供給されることで磁束を発生し、回転子コア130の外周面に磁極を形成する。回転子巻線131は、回転子コア130の中空部130aに収容され、回転子コア130に保持されている。回転子巻線131は、界磁巻線とも称される。 The rotor winding 131 generates a magnetic flux by being supplied with direct current, and forms a magnetic pole on the outer peripheral surface of the rotor core 130. The rotor winding 131 is accommodated in the hollow portion 130 a of the rotor core 130 and held by the rotor core 130. The rotor winding 131 is also referred to as a field winding.
 ファン132は、回転子コア130と一体に設けられている。ファン132は、回転子コア130とともに回転し、回転電機1の外部の空気を、ハウジング11に形成された貫通孔を通じて、回転電機部10の内部及び制御装置部20の内部に流通させる。ファン132は、回転軸133の延伸方向である軸方向において、回転子コア130の両端面にそれぞれ設けられている。 The fan 132 is provided integrally with the rotor core 130. The fan 132 rotates with the rotor core 130 and distributes the air outside the rotating electrical machine 1 to the inside of the rotating electrical machine unit 10 and the inside of the control device unit 20 through a through hole formed in the housing 11. The fans 132 are respectively provided on both end surfaces of the rotor core 130 in the axial direction which is the extending direction of the rotating shaft 133.
 回転軸133は、回転子コア130に固定されるとともに、ハウジング11に回転可能に支持されている。回転軸133は、回転子コア130とともに回転する。回転軸133は、略円柱状をなしており、貫通孔130bに挿通された状態で、軸方向中央部が回転子コア130に固定されている。回転軸133は、シャフトとも称される。 The rotating shaft 133 is fixed to the rotor core 130 and rotatably supported by the housing 11. The rotating shaft 133 rotates with the rotor core 130. The rotation shaft 133 has a substantially cylindrical shape, and the axial center portion is fixed to the rotor core 130 in a state of being inserted into the through hole 130 b. The rotation shaft 133 is also referred to as a shaft.
 回転軸133の一部分は、フロントハウジング110の底壁に設けられた貫通孔を通じてフロントハウジング110の前方に突出している。回転軸133は、フロントハウジング110に回転可能に支持されている。回転軸133の一部分は、リアハウジング111の底壁に設けられた貫通孔を通じてリアハウジング111の後方に突出している。回転軸133は、リアハウジング111に回転可能に支持されている。 A portion of the rotation shaft 133 protrudes forward of the front housing 110 through a through hole provided in the bottom wall of the front housing 110. The rotation shaft 133 is rotatably supported by the front housing 110. A part of the rotation shaft 133 protrudes to the rear of the rear housing 111 through a through hole provided in the bottom wall of the rear housing 111. The rotating shaft 133 is rotatably supported by the rear housing 111.
 プーリ14は、回転軸133のうち、フロントハウジング110から前方に突出した部分に連結されている。プーリ14は、回転軸133とともに回転する。プーリ14には、図示しないベルトが係合される。このベルトを介して、エンジンのクランクシャフトに回転軸133の回転運動が伝達される。 The pulley 14 is connected to a portion of the rotation shaft 133 that protrudes forward from the front housing 110. The pulley 14 rotates with the rotation shaft 133. A belt (not shown) is engaged with the pulley 14. The rotational movement of the rotating shaft 133 is transmitted to the crankshaft of the engine via the belt.
 スリップリング15は、回転軸133のうち、リアハウジング111から後方に突出した部分の外周面に、絶縁部材18を介して固定されている。スリップリング15は、金属からなる円筒状の部材であり、配線を介して回転子巻線131に接続されている。 The slip ring 15 is fixed to an outer peripheral surface of a portion of the rotation shaft 133 which protrudes rearward from the rear housing 111 via an insulating member 18. The slip ring 15 is a cylindrical member made of metal and is connected to the rotor winding 131 via a wire.
 ブラシ16は、たとえばバネにより、径方向において回転軸133側に押圧され、スリップリング15の外周面に接触している。ブラシ16は、ブラシホルダ160に保持されている。ブラシ16及びスリップリング15を介して、回転子巻線131に直流が供給される。 The brush 16 is, for example, pressed by a spring toward the rotating shaft 133 in the radial direction, and is in contact with the outer peripheral surface of the slip ring 15. The brush 16 is held by a brush holder 160. Direct current is supplied to the rotor winding 131 via the brush 16 and the slip ring 15.
 磁石17は、回転子13の回転角度を検出するための磁界を発生する。磁石17は、回転軸133の軸方向後端部に固定されている。 The magnet 17 generates a magnetic field for detecting the rotation angle of the rotor 13. The magnet 17 is fixed to an axial rear end portion of the rotating shaft 133.
 (制御装置部)
 制御装置部20は、回転電機部10をオルタネータとして機能させる場合には、回転電機部10の発生した電力を直流に変換し、バッテリへ電力の供給を行う。一方、回転電機部10を電動機として機能させる場合には、バッテリから供給される電力を交流へと変換し、回転電機部10へ電力の供給を行う。
(Control unit)
When the rotating electrical machine unit 10 functions as an alternator, the control device unit 20 converts the power generated by the rotating electrical machine unit 10 into direct current, and supplies the power to the battery. On the other hand, when the rotating electrical machine unit 10 is made to function as a motor, the power supplied from the battery is converted into an alternating current, and the power is supplied to the rotating electrical machine unit 10.
 図1及び図2に示すように、制御装置部20は、ケース21と、配線基板22と、インバータ回路部23と、ヒートシンク24と、界磁回路部25と、制御回路部26と、バスバー27を備えている。さらに制御装置部20は、磁石17とともに回転角度検出部を構成する図示しない回転角度検出素子などを備えている。制御装置部20は、平滑用のコンデンサや、スナバ用のコンデンサを備えてもよい。 As shown in FIGS. 1 and 2, the controller unit 20 includes a case 21, a wiring board 22, an inverter circuit unit 23, a heat sink 24, a field circuit unit 25, a control circuit unit 26, and a bus bar 27. Is equipped. Furthermore, the control device unit 20 is provided with a rotation angle detection element (not shown) that constitutes a rotation angle detection unit together with the magnet 17. The controller unit 20 may include a smoothing capacitor and a snubber capacitor.
 ケース21は、リアハウジング111の軸方向後端部に設けられている。ケース21は、樹脂材料を用いて箱状に形成されている。ケース21には、配線基板22、インバータ回路部23、ヒートシンク24、界磁回路部25、制御回路部26、及び上記したブラシ16などが収容されている。ケース21は、本体部210と、蓋部211を有している。 The case 21 is provided at an axial rear end of the rear housing 111. The case 21 is formed in a box shape using a resin material. In the case 21, the wiring board 22, the inverter circuit unit 23, the heat sink 24, the field circuit unit 25, the control circuit unit 26, the above-described brush 16 and the like are accommodated. The case 21 has a main body portion 210 and a lid portion 211.
 本体部210には、配線基板22、インバータ回路部23、界磁回路部25、及び制御回路部26が固定されている。樹脂部材である本体部210には、バスバー27及びその他の配線用のバスバーが固定されている。本体部210は、中央部に貫通孔210aを有している。本体部210は、リアハウジング111の軸方向後端部に固定されている。蓋部211は、本体部210の後側を覆っている。 The wiring board 22, the inverter circuit unit 23, the field circuit unit 25, and the control circuit unit 26 are fixed to the main body unit 210. The bus bar 27 and other bus bars for wiring are fixed to the main body portion 210 which is a resin member. The main body portion 210 has a through hole 210 a at the central portion. The main body portion 210 is fixed to an axial rear end portion of the rear housing 111. The lid portion 211 covers the rear side of the main body portion 210.
 配線基板22は、所謂プリント基板である。配線基板22には、界磁回路部25及び制御回路部26が実装されている。図示を省略するが、配線基板22には、電源回路なども実装されている。配線基板22は、板厚方向が軸方向と略一致するように配置されている。配線基板22は、回転軸133の周方向の一部に切り欠きを備えた略U字状をなしている。 The wiring board 22 is a so-called printed board. The field circuit unit 25 and the control circuit unit 26 are mounted on the wiring board 22. Although not shown, a power supply circuit and the like are also mounted on the wiring board 22. The wiring substrate 22 is disposed such that the thickness direction thereof substantially coincides with the axial direction. The wiring board 22 is substantially U-shaped with a notch at a part in the circumferential direction of the rotating shaft 133.
 配線基板22は、インバータ回路部23より軸方向前側に、リアハウジング111及びインバータ回路部23と距離を隔てて配置されている。配線基板22、インバータ回路部23、界磁回路部25、及び制御回路部26は、ケース21内において樹脂28で封止されている。 The wiring board 22 is disposed on the front side in the axial direction with respect to the inverter circuit portion 23 at a distance from the rear housing 111 and the inverter circuit portion 23. The wiring substrate 22, the inverter circuit unit 23, the field circuit unit 25, and the control circuit unit 26 are sealed with a resin 28 in the case 21.
 インバータ回路部23は、固定子巻線121に交流を供給する。インバータ回路部23は、固定子巻線121から供給される交流を整流して、直流に変換する。インバータ回路部23は、3つの半導体モジュール40により構成されている。半導体モジュール40の詳細については後述し、ここでは簡単な説明にとどめる。 The inverter circuit unit 23 supplies alternating current to the stator winding 121. The inverter circuit unit 23 rectifies alternating current supplied from the stator winding 121 and converts it into direct current. The inverter circuit unit 23 is configured by three semiconductor modules 40. Details of the semiconductor module 40 will be described later, and only a brief description will be given here.
 図3に示すように、半導体モジュール40のそれぞれは、二相分の上下アームを構成する複数のスイッチング素子70を有している。スイッチング素子70としては、MOSFETやIGBTを採用することができる。本実施形態では、nチャネル型のMOSFETを採用している。スイッチング素子70は、寄生ダイオードを有している。3つの半導体モジュール40のうち、第1の半導体モジュール40がU相及びV相の上下アームを構成し、第2の半導体モジュール40がW相及びX相の上下アームを構成し、第3の半導体モジュール40がY相及びZ相の上下アームを構成している。 As shown in FIG. 3, each of the semiconductor modules 40 has a plurality of switching elements 70 constituting upper and lower arms for two phases. As the switching element 70, a MOSFET or an IGBT can be employed. In the present embodiment, an n-channel MOSFET is employed. The switching element 70 has a parasitic diode. Of the three semiconductor modules 40, the first semiconductor module 40 constitutes upper and lower arms of U phase and V phase, the second semiconductor module 40 constitutes upper and lower arms of W phase and X phase, and the third semiconductor A module 40 constitutes upper and lower arms of Y phase and Z phase.
 本実施形態では、各アームが1つのスイッチング素子70により構成されている。すなわち、半導体モジュール40が、それぞれ4つのスイッチング素子70を有している。半導体モジュール40のそれぞれは、スイッチング素子70として、第1の上下アームを構成する上アーム側のスイッチング素子700H及び下アーム側のスイッチング素子700Lと、第2の上下アームを構成する上アーム側のスイッチング素子701H及び下アーム側のスイッチング素子701Lを有している。スイッチング素子700H,700Lが直列接続され、スイッチング素子701H,701Lが直列接続されている。 In the present embodiment, each arm is configured by one switching element 70. That is, the semiconductor module 40 has four switching elements 70 each. In each of the semiconductor modules 40, as the switching element 70, the switching element 700H on the upper arm side and the switching element 700L on the lower arm side constituting the first upper and lower arms, and the switching on the upper arm side constituting the second upper and lower arm It has the element 701H and the switching element 701L on the lower arm side. Switching elements 700H and 700L are connected in series, and switching elements 701H and 701L are connected in series.
 上アーム側のスイッチング素子700H,701Hの高電位側の電極、すなわちドレイン電極は、バッテリの正極側に接続され、下アーム側のスイッチング素子700L,701Lの低電位側の電極、すなわちソース電極は、バッテリの負極側に接続されている。上アーム側のスイッチング素子700H,701Hのソース電極と、対応する下アーム側のスイッチング素子700L,701Lのドレイン電極が、互いに接続されている。 The high potential side electrode of the upper arm side switching elements 700H and 701H, ie, the drain electrode, is connected to the positive electrode side of the battery, and the low potential side electrode of the lower arm side switching elements 700L and 701L, ie, the source electrode is It is connected to the negative side of the battery. The source electrodes of the upper arm side switching elements 700H and 701H and the corresponding drain electrodes of the lower arm side switching elements 700L and 701L are connected to each other.
 第1の半導体モジュール40において、第1の上下アームがU相上下アームを構成し、第2の上下アームがV相上下アームを構成している。スイッチング素子700Hとスイッチング素子700Lの接続点は、固定子巻線121aのU相に接続されている。スイッチング素子701Hとスイッチング素子701Lの接続点は、固定子巻線121aのV相に接続されている。 In the first semiconductor module 40, the first upper and lower arms constitute U-phase upper and lower arms, and the second upper and lower arms constitute V-phase upper and lower arms. The connection point between the switching element 700H and the switching element 700L is connected to the U phase of the stator winding 121a. The connection point between the switching element 701H and the switching element 701L is connected to the V phase of the stator winding 121a.
 第2の半導体モジュール40において、第1の上下アームがW相上下アームを構成し、第2の上下アームがX相上下アームを構成している。スイッチング素子700Hとスイッチング素子700Lの接続点は、固定子巻線121aのW相に接続されている。スイッチング素子701Hとスイッチング素子701Lの接続点は、固定子巻線121bのX相に接続されている。 In the second semiconductor module 40, the first upper and lower arms constitute a W-phase upper and lower arm, and the second upper and lower arms constitute an X-phase upper and lower arm. The connection point between the switching element 700H and the switching element 700L is connected to the W phase of the stator winding 121a. The connection point between the switching element 701H and the switching element 701L is connected to the X phase of the stator winding 121b.
 第3の半導体モジュール40において、第1の上下アームがY相上下アームを構成し、第2の上下アームがZ相上下アームを構成している。スイッチング素子700Hとスイッチング素子700Lの接続点は、固定子巻線121bのY相に接続されている。スイッチング素子701Hとスイッチング素子701Lの接続点は、固定子巻線121bのZ相に接続されている。 In the third semiconductor module 40, the first upper and lower arms constitute Y phase upper and lower arms, and the second upper and lower arms constitute Z phase upper and lower arms. The connection point between the switching element 700H and the switching element 700L is connected to the Y phase of the stator winding 121b. The connection point between the switching element 701H and the switching element 701L is connected to the Z phase of the stator winding 121b.
 半導体モジュール40は、図4及び図5に示すように、外部接続用端子として、主端子63を有している。また、主端子63として、正極端子63B1,63B2と、負極端子63E1,63E2と、出力端子63P1,63P2を有している。半導体モジュール40のそれぞれは、配線基板22の軸方向後側に配置されている。 The semiconductor module 40 has a main terminal 63 as an external connection terminal as shown in FIGS. 4 and 5. Also, as the main terminals 63, positive electrode terminals 63B1 and 63B2, negative electrode terminals 63E1 and 63E2, and output terminals 63P1 and 63P2 are provided. Each of the semiconductor modules 40 is disposed on the rear side in the axial direction of the wiring board 22.
 ヒートシンク24は、半導体モジュール40の生じた熱を放熱する金属部材である。ヒートシンク24は、本体部240と、複数のフィン241を有している。本体部240は、略直方体状をなしており、フィン241は、本体部240における半導体モジュール40とは反対の面から突出している。 The heat sink 24 is a metal member that radiates the heat generated by the semiconductor module 40. The heat sink 24 has a main body 240 and a plurality of fins 241. The main body portion 240 has a substantially rectangular parallelepiped shape, and the fins 241 project from the surface of the main body portion 240 opposite to the semiconductor module 40.
 ヒートシンク24は、ケース21の本体部210にインサート成形されている。本体部210に一体化された状態で、本体部240の一面が本体部210内に露出し、フィン241が反対側の面から突出している。そして、本体部240の一面に、半導体モジュール40が接触している。ヒートシンク24は、半導体モジュール40と熱的に接続されている。ヒートシンク24と半導体モジュール40との間には、たとえば熱伝導性接着材が介在している。 The heat sink 24 is insert-molded on the main body portion 210 of the case 21. In the state of being integrated with the main body portion 210, one surface of the main body portion 240 is exposed in the main body portion 210, and the fin 241 protrudes from the opposite surface. The semiconductor module 40 is in contact with one surface of the main body 240. The heat sink 24 is thermally connected to the semiconductor module 40. For example, a thermally conductive adhesive is interposed between the heat sink 24 and the semiconductor module 40.
 界磁回路部25は、回転子巻線131に直流を供給する回路である。界磁回路部25は、スイッチング素子を有している。たとえばスイッチング素子によりHブリッジ回路が構成されている。スイッチング素子は、配線基板22に実装されている。 The field circuit unit 25 is a circuit that supplies DC to the rotor winding 131. The field circuit unit 25 has a switching element. For example, an H bridge circuit is configured by switching elements. The switching element is mounted on the wiring board 22.
 制御回路部26は、インバータ回路部23及び界磁回路部25を制御する回路である。制御回路部26は、たとえばマイクロコンピュータ(マイコン)を有している。制御回路部26は、たとえば、スイッチング素子70それぞれの駆動信号を生成する駆動回路を有している。駆動回路は、たとえばスイッチング素子70を120度通電方式でPWM制御する。駆動回路は、生成した駆動信号を後述する駆動部80に出力する。 The control circuit unit 26 is a circuit that controls the inverter circuit unit 23 and the field circuit unit 25. Control circuit unit 26 includes, for example, a microcomputer (microcomputer). The control circuit unit 26 includes, for example, a drive circuit that generates a drive signal of each of the switching elements 70. The drive circuit performs, for example, PWM control of the switching element 70 by a 120-degree conduction method. The drive circuit outputs the generated drive signal to a drive unit 80 described later.
 制御回路部26は、シャント抵抗器901により検出された各相に流れる電流に比例する電圧値に基づいて、各相に流れる電流を検出する電流検出回路を有している。電流検出回路は、駆動部80を介することなく、信号端子64を介して各相の電流を検出する。制御回路部26は、駆動部80から送信される通知信号に基づいて、スイッチング素子70の異常を検出する異常検出回路を有している。制御回路部26は、スイッチング素子70と一体に形成された感温ダイオードの順方向電圧Vfを取得して、スイッチング素子70の温度を検出する温度検出回路を有している。温度検出回路は、駆動部80を介して、順方向電圧Vfを取得する。 The control circuit unit 26 has a current detection circuit that detects the current flowing in each phase based on the voltage value proportional to the current flowing in each phase detected by the shunt resistor 901. The current detection circuit detects the current of each phase via the signal terminal 64 without passing through the drive unit 80. The control circuit unit 26 includes an abnormality detection circuit that detects an abnormality of the switching element 70 based on a notification signal transmitted from the drive unit 80. The control circuit unit 26 has a temperature detection circuit that acquires the forward voltage Vf of the temperature sensing diode integrally formed with the switching element 70 and detects the temperature of the switching element 70. The temperature detection circuit obtains the forward voltage Vf via the drive unit 80.
 バスバー27は、インバータ回路部23に接続される配線部材である。バスバー27は、インバータ回路部23との接続部270を露出させた状態で、ケース21の本体部210にインサート成形されている。バスバー27は、軸方向前側に延びた状態で、本体部210にインサート成形されている。接続部270は、半導体モジュール40の対応する主端子63に隣接した状態で、主端子63と同じ方向に延びている。そして、隣接する接続部270と主端子63とが接合されている。具体的には、アーク溶接により、主端子63とバスバー27が接合されている。 The bus bar 27 is a wiring member connected to the inverter circuit unit 23. The bus bar 27 is insert-molded in the main body portion 210 of the case 21 in a state where the connection portion 270 with the inverter circuit portion 23 is exposed. The bus bar 27 is insert-molded in the main body portion 210 in a state of extending axially forward. The connection portion 270 extends in the same direction as the main terminal 63 in a state adjacent to the corresponding main terminal 63 of the semiconductor module 40. And the adjacent connection part 270 and the main terminal 63 are joined. Specifically, the main terminal 63 and the bus bar 27 are joined by arc welding.
 図4及び図5に示すように、バスバー27は、正極バスバー27Bと、負極バスバー27Eと、出力バスバー27P1,27P2を有している。図4に示すように、半導体モジュール40に対して回転軸133側、すなわち径方向内側に正極バスバー27B及び負極バスバー27Eが配置され、回転軸133とは反対側、すなわち径方向外側に出力バスバー27P1,27P2が配置されている。図4では、正極バスバー27B及び負極バスバー27Eと、正極端子63B1,63B2及び負極端子63E1,63E2との接続を分かりやすくするために、便宜上、負極バスバー27Eの内側に正極バスバー27Bを示している。 As shown in FIGS. 4 and 5, the bus bar 27 includes a positive electrode bus bar 27B, a negative electrode bus bar 27E, and output bus bars 27P1 and 27P2. As shown in FIG. 4, the positive electrode bus bar 27B and the negative electrode bus bar 27E are disposed on the rotary shaft 133 side, ie, the radial inner side with respect to the semiconductor module 40, and the output bus bar 27P1 on the opposite side to the rotary shaft 133, ie, the radial outer side. , 27P2 are arranged. In FIG. 4, the positive electrode bus bar 27B is shown inside the negative electrode bus bar 27E for the sake of simplicity in order to clearly show the connection between the positive electrode bus bar 27B and the negative electrode bus bar 27E and the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2.
 正極バスバー27Bは、配線基板22の電源接続部及び半導体モジュール40の正極端子63B1,63B2を、バッテリの正極端子に接続させるバスバー27である。負極バスバー27Eは、配線基板22の電源接続部及び半導体モジュール40の負極端子63E1,63E2を、バッテリの負極端子に直接又は車体を介して接続させるバスバー27である。出力バスバー27P1は、半導体モジュール40の出力端子63P1を、固定子巻線121に接続させるバスバー27である。出力バスバー27P2は、出力端子63P2を、固定子巻線121に接続させるバスバー27である。 The positive electrode bus bar 27B is a bus bar 27 that connects the power supply connection portion of the wiring board 22 and the positive electrode terminals 63B1 and 63B2 of the semiconductor module 40 to the positive electrode terminal of the battery. The negative bus bar 27E is a bus bar 27 that connects the power supply connection portion of the wiring board 22 and the negative terminals 63E1 and 63E2 of the semiconductor module 40 directly to the negative terminal of the battery or via the vehicle body. The output bus bar 27P1 is a bus bar 27 that connects the output terminal 63P1 of the semiconductor module 40 to the stator winding 121. The output bus bar 27P2 is a bus bar 27 that connects the output terminal 63P2 to the stator winding 121.
 正極バスバー27B及び負極バスバー27Eは、たとえば銅板を打ち抜き、曲げ加工して形成されている。正極バスバー27B及び負極バスバー27Eは、ケース21によって互いに絶縁されている。 The positive electrode bus bar 27B and the negative electrode bus bar 27E are formed, for example, by punching and bending a copper plate. The positive bus bar 27 </ b> B and the negative bus bar 27 </ b> E are mutually insulated by the case 21.
 正極バスバー27Bは、配線基板22に接続される接続部及び各半導体モジュール40の正極端子63B1,63B2との接続部270を、ケース21の内部に露出させるとともに、バッテリ側の接続部271をケース21の外部に露出させた状態で、ケース21にインサート成形されている。負極バスバー27Eは、配線基板22に接続される接続部及び各半導体モジュール40の負極端子63E1,63E2との接続部270を、ケース21の内部に露出させるとともに、バッテリ側の接続部272をケース21の外部に露出させた状態で、ケース21にインサート成形されている。 The positive electrode bus bar 27B exposes the connection portion connected to the wiring board 22 and the connection portion 270 with the positive electrode terminals 63B1 and 63B2 of each semiconductor module 40 to the inside of the case 21 and the connection portion 271 on the battery side It is insert-molded in the case 21 in the state which exposed to the exterior of. The negative bus bar 27E exposes the connecting portion connected to the wiring board 22 and the connecting portion 270 with the negative terminals 63E1 and 63E2 of each semiconductor module 40 to the inside of the case 21, and the connecting portion 272 on the battery side It is insert-molded in the case 21 in the state which exposed to the exterior of.
 正極バスバー27Bのバッテリ側の接続部271及び負極バスバー27Eのバッテリ側の接続部272は、配線基板22の切り欠き側に配置されている。正極バスバー27Bの接続部271は2つ設けられている。2つの接続部271は、互いに接続されている。負極バスバー27Eの接続部272は1つ設けられている。接続部272は、2つの接続部271から等距離だけ径方向外側に離れて設けられている。 The connection portion 271 on the battery side of the positive electrode bus bar 27B and the connection portion 272 on the battery side of the negative electrode bus bar 27E are disposed on the cutout side of the wiring board 22. Two connection portions 271 of the positive electrode bus bar 27B are provided. The two connection parts 271 are connected to each other. One connection portion 272 of the negative electrode bus bar 27E is provided. The connection portion 272 is provided radially outward at an equal distance from the two connection portions 271.
 正極バスバー27Bは、2つの接続部271のそれぞれから延びている。正極バスバー27Bは、回転軸133に直交する面に平行に延びている。正極バスバー27Bは、2つの接続部271の中点と回転軸133の中心とを通る仮想線に対して、線対称配置とされている。図4において、正極バスバー27Bの1つは、回転軸133周りを時計方向に延びており、別の正極バスバー27Bは、回転軸133周りを反時計方向に延びている。 The positive electrode bus bar 27 B extends from each of the two connection portions 271. The positive electrode bus bar 27 B extends in parallel to a plane orthogonal to the rotation axis 133. The positive electrode bus bars 27B are arranged in line symmetry with respect to an imaginary line passing through the midpoints of the two connection portions 271 and the center of the rotation shaft 133. In FIG. 4, one of the positive electrode bus bars 27B extends in the clockwise direction around the rotation axis 133, and the other positive electrode bus bar 27B extends in the counterclockwise direction around the rotation axis 133.
 正極バスバー27Bは、2つの接続部271の中点とは回転軸133を挟んで反対側に開口部を有している。一対の正極バスバー27Bは、2つの接続部271の中点とは回転軸133を挟んで反対側の位置において、互いに接続することなく、開口部を介して離間している。 The positive electrode bus bar 27B has an opening on the opposite side to the middle point of the two connection portions 271 with the rotary shaft 133 interposed therebetween. The pair of positive electrode bus bars 27B are separated from each other through the opening without being connected to each other at positions opposite to each other with respect to the middle point of the two connection portions 271 with respect to the rotation shaft 133.
 負極バスバー27Eも、回転軸133に直交する面に平行に延びている。負極バスバー27Eは、バッテリ側の接続部272から回転軸133に向けて延びた先で2つに分岐し、一方が回転軸133周りを時計方向に延び、他方が回転軸133周りを反時計方向に延びている。負極バスバー27Eは、接続部272と回転軸133の中心とを通る仮想線に対して、線対称配置とされている。 The negative bus bar 27 </ b> E also extends parallel to the plane orthogonal to the rotation axis 133. The negative bus bar 27E is branched into two at the end extending from the connection portion 272 on the battery side toward the rotation shaft 133, one extending clockwise around the rotation shaft 133, and the other counterclockwise around the rotation shaft 133 It extends to The negative bus bar 27 </ b> E is arranged in line symmetry with respect to an imaginary line passing through the connection portion 272 and the center of the rotating shaft 133.
 負極バスバー27Eは、接続部272とは回転軸133を挟んで反対側に開口部を有している。分岐した負極バスバー27Eは、接続部272とは回転軸133を挟んで反対側の位置において、互いに接続することなく、開口部を介して離間している。 The negative electrode bus bar 27 </ b> E has an opening on the opposite side to the connecting portion 272 with the rotating shaft 133 interposed therebetween. The branched negative electrode bus bar 27E is separated from the connecting portion 272 via the opening without being connected to each other at the opposite side of the rotary shaft 133.
 正極バスバー27B及び負極バスバー27Eとは、互いに沿うように配置されている。正極バスバー27B及び負極バスバー27Eとは、互いに沿って延在する部分の略全域にわたって、径方向に所定間隔が維持された状態で離間している。この所定間隔離間した正極バスバー27B及び負極バスバー27Eとにおいて、互いに逆向きに電流が流れる。したがって、インダクタンスを低減することができる。 The positive electrode bus bar 27B and the negative electrode bus bar 27E are arranged along each other. The positive electrode bus bar 27B and the negative electrode bus bar 27E are separated in a state in which a predetermined distance is maintained in the radial direction over substantially the entire area of the portions extending along each other. In the positive electrode bus bar 27B and the negative electrode bus bar 27E separated by a predetermined distance, currents flow in opposite directions to each other. Therefore, the inductance can be reduced.
 なお、図4及び図5に示すように、反時計回りに延設された正極バスバー27Bには、U相及びV相の上下アームを構成する半導体モジュール40の正極端子63B1,63B2と、W相及びX相の上下アームを構成する半導体モジュール40のうち、W相の上下アームに対応する正極端子63B1が接続されている。反時計回りに延設された負極バスバー27Eには、U相及びV相の上下アームを構成する半導体モジュール40の負極端子63E1,63E2と、W相及びX相の上下アームを構成する半導体モジュール40のうち、W相の上下アームに対応する負極端子63E1が接続されている。 As shown in FIGS. 4 and 5, the positive electrode bus bar 27B extended in the counterclockwise direction includes positive electrode terminals 63B1 and 63B2 of the semiconductor module 40 constituting upper and lower arms of U phase and V phase, and W phase The positive electrode terminal 63B1 corresponding to the upper and lower arms of the W phase among the semiconductor modules 40 constituting the upper and lower arms of the X phase is connected. In the negative electrode bus bar 27E extended counterclockwise, the negative terminals 63E1 and 63E2 of the semiconductor module 40 constituting the U-phase and V-phase upper and lower arms and the semiconductor module 40 constituting the W-phase and X-phase upper and lower arms Among them, the negative electrode terminal 63E1 corresponding to the W-phase upper and lower arms is connected.
 一方、時計回りに延設された正極バスバー27Bには、W相及びX相の上下アームを構成する半導体モジュール40のうち、X相の上下アームに対応する正極端子63B2と、Y相及びZ相の上下アームを構成する半導体モジュール40の正極端子63B1,63B2が接続されている。時計回りに延設された負極バスバー27Eには、W相及びX相の上下アームを構成する半導体モジュール40のうち、X相の上下アームに対応する負極端子63E2と、Y相及びZ相の上下アームを構成する半導体モジュール40の負極端子63E1,63E2が接続されている。 On the other hand, in positive electrode bus bar 27B extended clockwise, positive electrode terminal 63B2 corresponding to upper and lower arms of X phase among semiconductor modules 40 constituting upper and lower arms of W phase and X phase, Y phase and Z phase The positive terminals 63B1 and 63B2 of the semiconductor module 40 constituting the upper and lower arms are connected. In the negative electrode bus bar 27E extended clockwise, the negative electrode terminal 63E2 corresponding to the upper and lower arms of the X phase among the semiconductor modules 40 constituting the upper and lower arms of the W phase and the X phase, and the upper and lower sides of the Y phase and the Z phase. The negative terminals 63E1 and 63E2 of the semiconductor module 40 constituting the arm are connected.
 このように、3つの半導体モジュール40は、U相及びV相の上下アームを構成する半導体モジュール40、W相及びX相の上下アームを構成する半導体モジュール40、Y相及びZ相の上下アームを構成する半導体モジュール40の順に、回転軸133周りに配置されている。 As described above, the three semiconductor modules 40 include the semiconductor module 40 configuring the U-phase and V-phase upper and lower arms, the semiconductor module 40 configuring the W-phase and X-phase upper and lower arms, and the Y-phase and Z-phase upper and lower arms The semiconductor modules 40 to be configured are arranged around the rotation axis 133 in the order.
 (回転電機の動作)
 まず、車両を駆動するための駆動力を発生する際の動作について説明する。
(Operation of the rotating electrical machine)
First, an operation at the time of generating a driving force for driving a vehicle will be described.
 車両のイグニッションスイッチがオン状態になると、正極バスバー27B及び負極バスバー27E等を介してインバータ回路部23に直流が供給される。また、その他の配線用のバスバー及び配線基板22を介して、界磁回路部25及び制御回路部26に直流が供給される。 When the ignition switch of the vehicle is turned on, direct current is supplied to the inverter circuit unit 23 through the positive electrode bus bar 27B, the negative electrode bus bar 27E, and the like. Further, direct current is supplied to the field circuit unit 25 and the control circuit unit 26 through the other bus bars for wiring and the wiring board 22.
 直流が供給されることで、界磁回路部25及び制御回路部26が動作を開始する。制御回路部26は、外部、たとえばエンジンECUなどから入力される信号に基づいて、インバータ回路部23及び界磁回路部25を制御する。界磁回路部25は、制御回路部26によって制御され、ブラシ16及びスリップリング15を介して回転子巻線131に直流を供給する。 The supply of direct current causes the field circuit unit 25 and the control circuit unit 26 to start operation. Control circuit unit 26 controls inverter circuit unit 23 and field circuit unit 25 based on a signal input from the outside, for example, an engine ECU. The field circuit unit 25 is controlled by the control circuit unit 26 and supplies direct current to the rotor winding 131 via the brush 16 and the slip ring 15.
 インバータ回路部23は、制御回路部26によって制御され、正極バスバー27B及び負極バスバー27Eなどを介して供給された直流を交流に変換する。制御回路部26により、スイッチング素子70のオンオフが制御され、電流の流れる方向が順次切り替えられて、直流が交流に変換される。インバータ回路部23により変換された交流は、出力バスバー27P1,27P2などを介して固定子巻線121に供給される。これにより、回転電機部10は、車両を駆動するため駆動力を発生する。 The inverter circuit unit 23 is controlled by the control circuit unit 26, and converts direct current supplied via the positive electrode bus bar 27B and the negative electrode bus bar 27E into alternating current. The control circuit unit 26 controls the on / off of the switching element 70 to sequentially switch the flowing direction of the current, thereby converting direct current into alternating current. The alternating current converted by the inverter circuit unit 23 is supplied to the stator winding 121 via the output bus bars 27P1 and 27P2. Thus, the rotating electrical machine unit 10 generates a driving force to drive the vehicle.
 このとき、回転角度検出素子により、回転子13の回転状態が検出される。また、半導体モジュール40が備えるシャント抵抗器901により、固定子巻線121の各相を流れる電流が検出される。制御回路部26は、これら検出値を利用して、回転電機1の回転を制御する。 At this time, the rotational state of the rotor 13 is detected by the rotational angle detection element. Further, the shunt resistor 901 provided in the semiconductor module 40 detects the current flowing in each phase of the stator winding 121. The control circuit unit 26 controls the rotation of the rotary electric machine 1 using these detected values.
 次に、バッテリを充電するための電力を発生する際の動作について説明する。 Next, the operation at the time of generating the power for charging the battery will be described.
 スリップリング15及びブラシ16を介して回転子巻線131に直流が供給されて磁極が形成された状態で、エンジンから駆動力が供給されると、固定子巻線121a,121bがそれぞれ交流(三相交流)を発生する。インバータ回路部23は、制御回路部26によって制御され、固定子巻線121から出力バスバー27P1,27P2などを介して供給される交流を直流に変換する。制御回路部26により、スイッチング素子70のオンオフが制御され、電流の流れる方向が順次切り替えられて、交流が整流される。スイッチング素子70のデッドタイムにおいては、寄生ダイオードにより、交流が整流される。インバータ回路部23により変換された直流は、バッテリに供給される。これにより、バッテリは、回転電機部10の発生した電力によって充電される。 In the state where a direct current is supplied to the rotor winding 131 via the slip ring 15 and the brush 16 to form a magnetic pole, when the driving force is supplied from the engine, the stator windings 121a and 121b are alternating current (3 Phase exchange). The inverter circuit unit 23 is controlled by the control circuit unit 26, and converts alternating current supplied from the stator winding 121 via the output bus bars 27P1 and 27P2 into direct current. The control circuit unit 26 controls the on / off of the switching element 70 to sequentially switch the flowing direction of the current to rectify the alternating current. During the dead time of the switching element 70, alternating current is rectified by the parasitic diode. The direct current converted by the inverter circuit unit 23 is supplied to the battery. Thereby, the battery is charged by the power generated by the rotating electrical machine unit 10.
 (半導体モジュール詳細)
 半導体モジュール40の説明において、スイッチング素子70の厚み方向をZ方向、Z方向に直交し、複数の信号端子64の並び方向をX方向と示す。また、Z方向及びX方向の両方向に直交する方向をY方向と示す。特に断わりのない限り、XY面視したときの形状(XY平面に沿う形状)を平面形状とする。XY面視は、Z方向の投影視とも言える。Z方向は、軸方向に略一致している。また、リードフレーム60におけるX方向の中心に近い位置を内側、遠い位置を外側と示す。また、Z方向において、封止樹脂体50の裏面50bから一面50aに向かう方向を上方、一面50aから裏面50bに向かう方向を下方と示す。
(Details of semiconductor module)
In the description of the semiconductor module 40, the thickness direction of the switching element 70 is orthogonal to the Z direction and the Z direction, and the arrangement direction of the plurality of signal terminals 64 is referred to as the X direction. Further, a direction orthogonal to both the Z direction and the X direction is referred to as a Y direction. Unless otherwise specified, the shape when viewed in the XY plane (shape along the XY plane) is a plane shape. XY plane view can be said to be projection view in the Z direction. The Z direction substantially coincides with the axial direction. Further, a position near the center of the lead frame 60 in the X direction is indicated as inside, and a position far from the center is indicated as outside. Further, in the Z direction, the direction from the back surface 50b to the one surface 50a of the sealing resin body 50 is referred to as upper, and the direction from the one surface 50a to the back 50b is as lower.
 図6~図21に示すように、半導体モジュール40は、封止樹脂体50と、リードフレーム60と、スイッチング素子70と、駆動部80と、架橋部材90を備えている。なお、図14~図20では、封止樹脂体50を省略している。図21では、スイッチング素子70、駆動部80、及び架橋部材90が実装されており、封止樹脂体50を成形する前の状態、すなわちタイバーカット前のリードフレーム60を示している。図14~図20では、便宜上、ボンディングワイヤ41を省略している。半導体モジュール40は、半導体パッケージ、スイッチングモジュール、半導体装置とも称される。 As shown in FIGS. 6 to 21, the semiconductor module 40 includes a sealing resin body 50, a lead frame 60, a switching element 70, a drive unit 80, and a bridge member 90. In FIGS. 14 to 20, the sealing resin body 50 is omitted. In FIG. 21, the switching element 70, the drive unit 80, and the cross-linking member 90 are mounted, and the lead frame 60 before the molding of the sealing resin body 50, that is, before the tie bar cut is shown. In FIGS. 14 to 20, the bonding wires 41 are omitted for the sake of convenience. The semiconductor module 40 is also referred to as a semiconductor package, a switching module, or a semiconductor device.
 (封止樹脂体)
 封止樹脂体50は、リードフレーム60の一部、スイッチング素子70、駆動部80、及び架橋部材90を一体的に封止している。封止樹脂体50は、たとえばエポキシ系の樹脂を用いて形成されている。
(Sealing resin body)
The sealing resin body 50 integrally seals a part of the lead frame 60, the switching element 70, the driving unit 80, and the bridging member 90. Sealing resin body 50 is formed using, for example, an epoxy resin.
 図6~図13に示すように、封止樹脂体50は、Z方向の面である一面50aと、一面50aと反対の裏面50bと、一面50a及び裏面50bを繋ぐ側面を有している。半導体モジュール40は、封止樹脂体50の裏面50b側がヒートシンク24に接触するように配置される。本実施形態では、封止樹脂体50が略直方体とされており、4つの側面を有している。Y方向の第1側面である側面50cと、側面50cと反対の第2側面である側面50dから、主端子63及び信号端子64が突出している。 As shown in FIGS. 6 to 13, the sealing resin body 50 has a surface 50a which is a surface in the Z direction, a back surface 50b opposite to the surface 50a, and a side surface connecting the surface 50a and the back surface 50b. The semiconductor module 40 is disposed such that the back surface 50 b side of the sealing resin body 50 is in contact with the heat sink 24. In the present embodiment, the sealing resin body 50 is a substantially rectangular parallelepiped, and has four side surfaces. A main terminal 63 and a signal terminal 64 protrude from a side surface 50c which is a first side surface in the Y direction and a side surface 50d which is a second side surface opposite to the side surface 50c.
 本実施形態では、トランスファモールド法によって、封止樹脂体50が成形されている。図6及び図7などに示すように、封止樹脂体50は、凹部51を有している。凹部51は、一面50a及び側面50cに開口している。凹部51の底面は、略平坦とされている。凹部51は、正極端子63B1,63B2に対応して2つ設けられている。凹部51は、Z方向からの投影視において、対応する正極端子63B1,63B2と重なる位置に設けられている。凹部51は、正極端子63B1,63B2と正極バスバー27Bを溶接する際に、治具の一部が挿入可能に設けられている。 In the present embodiment, the sealing resin body 50 is formed by transfer molding. As shown in FIGS. 6 and 7 etc., the sealing resin body 50 has a recess 51. The recess 51 is open to the one surface 50 a and the side surface 50 c. The bottom surface of the recess 51 is substantially flat. The two concave portions 51 are provided corresponding to the positive electrode terminals 63B1 and 63B2. The concave portion 51 is provided at a position overlapping the corresponding positive electrode terminals 63B1 and 63B2 in the projection view from the Z direction. When welding the positive electrode terminals 63B1 and 63B2 and the positive electrode bus bar 27B, the recess 51 is provided such that a part of the jig can be inserted.
 図7及び図8に示すように、封止樹脂体50は、図示しない成形型に設けられたエアベント由来の凸部52を有している。凸部52は、側面50c,50dから突出している。エアベントは、成形時のエア巻き込みによるボイドやウエルドラインを低減するために、成形型を構成する上型及び下型それぞれに設けられている。エアベントは、上型及び下型の側面50c,50dを形成する部分において、Z方向からの投影視で主端子63のそれぞれと重なる位置に設けられている。このため、Z方向において、凸部52の間に主端子63が配置されている。 As shown in FIG. 7 and FIG. 8, the sealing resin body 50 has a convex portion 52 derived from an air vent provided in a molding die not shown. The convex portion 52 protrudes from the side surfaces 50c and 50d. The air vents are provided on the upper and lower molds constituting the mold in order to reduce voids and weld lines caused by air entrainment at the time of molding. The air vents are provided at positions overlapping with the main terminals 63 in the projection view from the Z direction at the portions forming the side surfaces 50 c and 50 d of the upper and lower dies. Therefore, the main terminal 63 is disposed between the protrusions 52 in the Z direction.
 なお、図6~図8に示す符号53は、エジェクタピン由来のピン痕である。図6及び図7に示す符号54は、成形型のゲート痕である。 Reference numeral 53 shown in FIGS. 6 to 8 denotes pin marks derived from ejector pins. Reference numeral 54 shown in FIGS. 6 and 7 denotes a gate mark of a mold.
 (リードフレーム)
 リードフレーム60は、金属製の板材である。リードフレーム60は、金属板を打ち抜き、曲げ加工して形成されている。リードフレーム60は、アイランド61と、配線部62と、外部接続用端子である主端子63及び信号端子64と、ダミー端子65を備えている。リードフレーム60は、X方向の中心に対してほぼ線対称とされている。図21では、リードフレーム60のX方向の中心を一点鎖線で示している。
(Lead frame)
The lead frame 60 is a plate made of metal. The lead frame 60 is formed by punching and bending a metal plate. The lead frame 60 includes an island 61, a wiring portion 62, a main terminal 63 and a signal terminal 64 which are terminals for external connection, and a dummy terminal 65. The lead frame 60 is substantially line symmetrical with respect to the center in the X direction. In FIG. 21, the center of the lead frame 60 in the X direction is indicated by an alternate long and short dash line.
 図14~図16及び図21に示すように、アイランド61には、スイッチング素子70及び駆動部80が配置されている。リードフレーム60は、スイッチング素子70及び駆動部80が個別に配置される5つのアイランド610~614を有している。アイランド610~614は、互いに略同じ厚みとされ、Z方向において同一面内に配置されている。アイランド610~614は、X方向の中心に対して線対称配置とされている。 As shown in FIGS. 14 to 16 and 21, the switching element 70 and the drive unit 80 are disposed on the island 61. The lead frame 60 has five islands 610 to 614 in which the switching element 70 and the driving unit 80 are individually disposed. The islands 610 to 614 have substantially the same thickness and are arranged in the same plane in the Z direction. The islands 610 to 614 are arranged in line symmetry with respect to the center in the X direction.
 アイランド610は、駆動部80が配置される部分である。アイランド611~614は、スイッチング素子70が配置され、配置されたスイッチング素子70のドレイン電極が接続される部分である。アイランド611にはスイッチング素子700Hが配置され、アイランド612にはスイッチング素子700Lが配置される。アイランド613にはスイッチング素子701Hが配置され、アイランド614にはスイッチング素子701Lが配置される。アイランド611~614のXY面に沿う面積は、互いに略等しくされている。 The island 610 is a portion where the drive unit 80 is disposed. The islands 611 to 614 are portions where the switching element 70 is disposed and to which the drain electrode of the disposed switching element 70 is connected. The switching element 700 H is disposed on the island 611, and the switching element 700 L is disposed on the island 612. The switching element 701 H is disposed on the island 613, and the switching element 701 L is disposed on the island 614. The areas of the islands 611 to 614 along the XY plane are substantially equal to one another.
 図8に示すように、アイランド610において、駆動部80の配置面と反対の放熱面610aは、封止樹脂体50の裏面50bから露出されている。同じく、アイランド611~614において、スイッチング素子70の配置面と反対の放熱面611a~614aは、裏面50bから露出されている。これにより、放熱面610a~614aから効率よく放熱することができる。アイランド61のうち、放熱面610a~614aを除く部分は、封止樹脂体50によって封止されている。図12などに示すように、アイランド61それぞれの側面には、封止樹脂体50の剥離を抑制するために、凸部が設けられている。 As shown in FIG. 8, in the island 610, the heat release surface 610 a opposite to the arrangement surface of the drive unit 80 is exposed from the back surface 50 b of the sealing resin body 50. Similarly, in the islands 611 to 614, the heat radiation surfaces 611a to 614a opposite to the arrangement surface of the switching element 70 are exposed from the back surface 50b. Thus, the heat can be dissipated efficiently from the heat dissipation surfaces 610a to 614a. The portion of the island 61 excluding the heat radiation surfaces 610a to 614a is sealed by a sealing resin body 50. As shown in FIG. 12 etc., in order to suppress peeling of the sealing resin body 50, the convex part is provided in the side of each island 61. As shown in FIG.
 アイランド610は、平面略矩形状をなしている。アイランド610は、X方向においてリードフレーム60の中心に配置されている。アイランド610は、図16及び図21などに示すように、信号端子64とは反対側の端部中央からY方向に突出する凸部610bを有している。 The island 610 has a substantially rectangular planar shape. The island 610 is disposed at the center of the lead frame 60 in the X direction. The island 610, as shown in FIG. 16 and FIG. 21, etc., has a convex portion 610b that protrudes in the Y direction from the center of the end opposite to the signal terminal 64.
 図21に示すように、スイッチング素子700H,701Hのパッド71及びアイランド611,613と、駆動部80とを、ボンディングワイヤ41により接続する際に、図示しないクランプ治具にて凸部610bを押さえることができる。これにより、アイランド610が安定し、ボンディング性を向上することができる。凸部610bは、ボンディングワイヤ41の邪魔にならない位置に設ければよい。たとえば、スイッチング素子700H,701Hのパッド71間の距離が本実施形態よりも短い場合には、中央ではなく両端に凸部610bを設けてもよい。 As shown in FIG. 21, when connecting the pads 71 and the islands 611 and 613 of the switching elements 700H and 701H and the drive unit 80 with the bonding wire 41, pressing the convex portion 610b with a clamp jig (not shown) Can. As a result, the island 610 can be stabilized, and the bondability can be improved. The convex portion 610 b may be provided at a position not interfering with the bonding wire 41. For example, when the distance between the pads 71 of the switching elements 700H and 701H is shorter than that of the present embodiment, the convex portions 610b may be provided at both ends instead of the center.
 アイランド611~614は、アイランド610の周りに配置されている。下アーム側のスイッチング素子700L,701Lが配置されたアイランド612,614は、X方向において、間にアイランド610を挟むように設けられている。アイランド612,614は、X方向において互いに線対称配置とされている。アイランド612,614は、ともに平面略矩形状をなしている。アイランド612,614は、X方向において、アイランド610との間にそれぞれ所定の間隙を有している。 The islands 611 to 614 are disposed around the island 610. The islands 612 and 614 in which the lower arm side switching elements 700L and 701L are disposed are provided so as to sandwich the island 610 in the X direction. The islands 612 and 614 are arranged in line symmetry with each other in the X direction. The islands 612 and 614 both have a substantially rectangular planar shape. The islands 612 and 614 each have a predetermined gap with the island 610 in the X direction.
 上アーム側のスイッチング素子700H,701Hが配置されたアイランド611,613は、アイランド610に対し、Y方向において信号端子64とは反対側に設けられている。アイランド611,613は、所定の間隙を有しつつX方向に並んで配置されている。アイランド611,613は、X方向において互いに線対称配置とされている。アイランド611,613は、ともに平面略矩形状をなしている。アイランド611は、Y方向においてアイランド610,612と対向している。アイランド613は、Y方向においてアイランド610,614と対向している。 The islands 611 and 613 in which the switching elements 700H and 701H on the upper arm side are disposed are provided on the side opposite to the signal terminal 64 in the Y direction with respect to the island 610. The islands 611 and 613 are arranged side by side in the X direction with a predetermined gap. The islands 611 and 613 are arranged in line symmetry with each other in the X direction. The islands 611 and 613 both have a substantially rectangular planar shape. The island 611 faces the islands 610 and 612 in the Y direction. The island 613 faces the islands 610 and 614 in the Y direction.
 アイランド611,613は、図16及び図21などに示すように、信号端子64側の端部からY方向に突出する凸部611b,613bをそれぞれ有している。凸部611b,613bは、Y方向においてアイランド610と対向するように設けられている。凸部611bは、X方向においてアイランド613側の端に設けられている。凸部611bにおいて、アイランド613から離れた位置にボンディングワイヤ41が接続されている。このボンディングワイヤ41は、スイッチング素子700Hのドレイン電位を検出するために接続されている。 The islands 611 and 613 have convex portions 611 b and 613 b protruding in the Y direction from the end on the signal terminal 64 side, as shown in FIGS. The convex portions 611 b and 613 b are provided to face the island 610 in the Y direction. The convex portion 611 b is provided at the end on the island 613 side in the X direction. The bonding wire 41 is connected to a position away from the island 613 in the convex portion 611 b. The bonding wire 41 is connected to detect the drain potential of the switching element 700H.
 凸部613bは、X方向においてアイランド611側の端に設けられている。凸部613bにおいて、アイランド611から離れた位置にボンディングワイヤ41が接続されている。このボンディングワイヤ41は、スイッチング素子701Hのドレイン電位を検出するために接続されている。 The convex portion 613 b is provided at the end on the island 611 side in the X direction. The bonding wire 41 is connected to a position away from the island 611 in the convex portion 613 b. The bonding wire 41 is connected to detect the drain potential of the switching element 701H.
 配線部62は、アイランド611,612を接続する配線部620と、アイランド612と負極端子63E1を接続する配線部621と、アイランド613,614を接続する配線部622と、アイランド614と負極端子63E2を接続する配線部623を有している。 The wiring portion 62 includes a wiring portion 620 connecting the islands 611 and 612, a wiring portion 621 connecting the island 612 and the negative electrode terminal 63E1, a wiring portion 622 connecting the islands 613 and 614, an island 614 and the negative electrode terminal 63E2. A wiring portion 623 to be connected is provided.
 配線部620は、アイランド612における信号端子64とは反対の端部に連なっている。配線部620は、アイランド612においてアイランド610側とは反対の端に連なっている。配線部620はY方向に延設され、その先端部分がX方向においてアイランド611との間に所定の間隙を有しつつ、アイランド611と並んで配置されている。配線部620は、アイランド611に対してX方向外側に配置されている。配線部621は、負極端子63E1に連なっている。配線部621は負極端子63E1からY方向に延びて、その先端部がX方向においてアイランド612との間に所定の間隙を有しつつ、アイランド612と並んで配置されている。配線部621は、アイランド612に対してX方向外側に配置されている。 The wiring portion 620 is connected to the end of the island 612 opposite to the signal terminal 64. The wiring portion 620 is connected to the end of the island 612 opposite to the island 610 side. The wiring portion 620 is extended in the Y direction, and its tip portion is arranged in parallel with the island 611 while having a predetermined gap with the island 611 in the X direction. The wiring portion 620 is disposed outside the island 611 in the X direction. The wiring portion 621 is connected to the negative electrode terminal 63E1. The wiring portion 621 extends from the negative electrode terminal 63E1 in the Y direction, and its tip end portion is disposed side by side with the island 612 while having a predetermined gap with the island 612 in the X direction. The wiring portion 621 is disposed outside the island 612 in the X direction.
 配線部622は、アイランド614における信号端子64とは反対の端部に連なっている。配線部622は、アイランド614においてアイランド610側とは反対の端に連なっている。配線部622はY方向に延設され、その先端部分がX方向においてアイランド613との間に所定の間隙を有しつつ、アイランド613と並んで配置されている。配線部622は、アイランド613に対してX方向外側に配置されている。配線部623は、負極端子63E2に連なっている。配線部623は負極端子63E2からY方向に延びて、その先端部がX方向においてアイランド614との間に所定の間隙を有しつつ、アイランド614と並んで配置されている。配線部623は、アイランド614に対してX方向外側に配置されている。 The wiring portion 622 is connected to the end of the island 614 opposite to the signal terminal 64. The wiring portion 622 is connected to the end of the island 614 opposite to the island 610 side. The wiring portion 622 is extended in the Y direction, and the tip portion thereof is disposed in parallel with the island 613 while having a predetermined gap with the island 613 in the X direction. The wiring portion 622 is disposed outside the island 613 in the X direction. The wiring portion 623 is connected to the negative electrode terminal 63E2. The wiring portion 623 extends from the negative electrode terminal 63E2 in the Y direction, and its tip end portion is disposed side by side with the island 614 while having a predetermined gap with the island 614 in the X direction. The wiring portion 623 is disposed outside the island 614 in the X direction.
 Y方向におけるアイランド610の位置では、X方向に配線部621、アイランド612、アイランド610、アイランド614、配線部623の順に並んで配置されている。また、Y方向におけるアイランド611,613の位置では、X方向に配線部621、配線部620、アイランド611、アイランド613、配線部622、配線部623の順に並んで配置されている。上アーム側の配線部620,621と下アーム側の配線部622,623は、X方向において線対称配置とされている。 At the position of the island 610 in the Y direction, the wiring portion 621, the island 612, the island 610, the island 614, and the wiring portion 623 are arranged in this order in the X direction. Further, at the positions of the islands 611 and 613 in the Y direction, the wiring portion 621, the wiring portion 620, the island 611, the island 613, the wiring portion 622, and the wiring portion 623 are sequentially arranged in the X direction. The wiring portions 620 and 621 on the upper arm side and the wiring portions 622 and 623 on the lower arm side are arranged in line symmetry in the X direction.
 図8に示すように、配線部620~623において、架橋部材90の配置面とは反対の放熱面620a~623aは、封止樹脂体50の裏面50bから露出されている。放熱面620a~623aは、スイッチング素子70側の面とは反対の面である。これにより、放熱面620a~623aからも放熱することができる。裏面配線部620~623のうち、放熱面620a~623aを除く部分は、封止樹脂体50によって封止されている。放熱面610a~614a,620a~623aは、成形型に放熱面610a~614a,620a~623aを成形型に接触させることで、裏面50bから露出されている。図12などに示すように、配線部62それぞれの側面には、封止樹脂体50の剥離を抑制するために、凸部が設けられている。 As shown in FIG. 8, in the wiring portions 620 to 623, the heat radiation surfaces 620a to 623a opposite to the arrangement surface of the cross-linking member 90 are exposed from the back surface 50b of the sealing resin body 50. The heat radiation surfaces 620a to 623a are surfaces opposite to the surface on the switching element 70 side. Thus, heat can be dissipated from the heat dissipation surfaces 620a to 623a. Of the back surface wiring portions 620 to 623, the portions excluding the heat dissipation surfaces 620 a to 623 a are sealed by the sealing resin body 50. The heat radiation surfaces 610a to 614a and 620a to 623a are exposed from the back surface 50b by bringing the heat radiation surfaces 610a to 614a and 620a to 623a into contact with the molding die. As shown in FIG. 12 etc., in order to suppress peeling of the sealing resin body 50, the convex part is provided in the side of each wiring part 62. As shown in FIG.
 図14及び図20などに示すように、リードフレーム60において、アイランド61及び配線部62の部分が、主端子63、信号端子64、及びダミー端子65の部分よりも厚肉とされている。Y方向において、リードフレーム60の中央部分が、中央部分よりも外側の部分に対して厚肉とされている。図21に示す破線間が、厚肉部分である。このように、異形条のリードフレーム60を採用すると、スイッチング素子70及び駆動部80の熱を効率よく放熱させることができる。また、アイランド61及び配線部62が厚肉とされているため、封止樹脂体50の硬化収縮にともなうリードフレーム60の反りを抑制することができる。一方、外部接続用端子である主端子63及び信号端子64が薄肉とされているため、打ち抜きや曲げ加工性を向上することができる。また、信号端子64を狭ピッチ化することもできる。 As shown in FIG. 14 and FIG. 20 etc., in the lead frame 60, the portions of the island 61 and the wiring portion 62 are thicker than the portions of the main terminal 63, the signal terminal 64 and the dummy terminal 65. In the Y direction, the central portion of the lead frame 60 is thicker than the central portion. Between the broken lines shown in FIG. 21 are thick portions. As described above, when the lead frame 60 having a different shape is adopted, the heat of the switching element 70 and the drive unit 80 can be dissipated efficiently. In addition, since the island 61 and the wiring portion 62 are thick, it is possible to suppress the warpage of the lead frame 60 due to the cure shrinkage of the sealing resin body 50. On the other hand, since the main terminal 63 and the signal terminal 64 which are terminals for external connection are made thin, punching and bending workability can be improved. In addition, the signal terminals 64 can be narrowed in pitch.
 主端子63は、上記したように、正極端子63B1,63B2と、負極端子63E1,63E2と、出力端子63P1,63P2を有している。正極端子63B1,63B2は、バッテリの正極側に接続される電源端子である。正極端子63B1,63B2は、高電位側の直流端子とも称される。正極端子63B1は、スイッチング素子700Hのアイランド611に連なっている。正極端子63B1は、アイランド611においてアイランド613側とは反対の端に連なっている。正極端子63B1は、アイランド611における信号端子64とは反対の端部からY方向に延設されて封止樹脂体50の側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。 As described above, the main terminal 63 has the positive electrode terminals 63B1 and 63B2, the negative electrode terminals 63E1 and 63E2, and the output terminals 63P1 and 63P2. The positive electrode terminals 63B1 and 63B2 are power supply terminals connected to the positive electrode side of the battery. The positive electrode terminals 63B1 and 63B2 are also referred to as high potential side DC terminals. The positive electrode terminal 63B1 is continuous with the island 611 of the switching element 700H. The positive electrode terminal 63B1 is continued to the end of the island 611 opposite to the island 613 side. The positive electrode terminal 63B1 extends from the end of the island 611 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c of the sealing resin body 50, is bent outside the sealing resin body 50, and extends in the Z direction. It extends upward.
 正極端子63B2は、スイッチング素子701Hのアイランド613に連なっている。正極端子63B2は、アイランド613においてアイランド611側とは反対の端に連なっている。正極端子63B2は、アイランド613における信号端子64とは反対の端部からY方向に延設されて側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。正極端子63B1,63B2は、X方向において互いに線対称配置とされている。 The positive electrode terminal 63B2 is connected to the island 613 of the switching element 701H. The positive electrode terminal 63B2 is connected to the end of the island 613 opposite to the island 611 side. The positive electrode terminal 63B2 extends from the end of the island 613 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction. The positive terminals 63B1 and 63B2 are arranged in line symmetry with each other in the X direction.
 負極端子63E1,63E2は、バッテリの負極側に接続される電源端子である。負極端子E1,E2は、低電位側の直流端子とも称される。負極端子63E1は、正極端子63B1に対してX方向外側に配置されている。負極端子63E1は、Y方向に延設されて側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。負極端子63E2は、正極端子63B2に対してX方向外側に配置されている。負極端子63E2は、Y方向に延設されて側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。負極端子63E1,63E2は、X方向において互いに線対称配置とされている。 Negative electrode terminals 63E1 and 63E2 are power supply terminals connected to the negative electrode side of the battery. The negative electrode terminals E1 and E2 are also referred to as low potential side DC terminals. The negative electrode terminal 63E1 is disposed outside the positive electrode terminal 63B1 in the X direction. The negative electrode terminal 63E1 extends in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction. The negative electrode terminal 63E2 is disposed outside the positive electrode terminal 63B2 in the X direction. The negative electrode terminal 63E2 is extended in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction. The negative terminals 63E1 and 63E2 are arranged in line symmetry with each other in the X direction.
 正極端子63B1,63B2及び負極端子63E1,63E2は、X方向において、負極端子63E1、正極端子63B1、正極端子63B2、負極端子63E2の順に並んで配置されている。X方向において、負極端子63E1と正極端子63B1との距離、及び、負極端子63E2と正極端子63B2との距離は、正極端子63B1,63B2間の距離よりも短くされている。正極端子63B1,63B2及び負極端子63E1,63E2は、YZ面において略L字状をなしている。 The positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are arranged in the order of the negative electrode terminal 63E1, the positive electrode terminal 63B1, the positive electrode terminal 63B2 and the negative electrode terminal 63E2 in the X direction. In the X direction, the distance between the negative electrode terminal 63E1 and the positive electrode terminal 63B1 and the distance between the negative electrode terminal 63E2 and the positive electrode terminal 63B2 are shorter than the distance between the positive electrode terminals 63B1 and 63B2. The positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are substantially L-shaped in the YZ plane.
 正極端子63B1,63B2及び負極端子63E1,63E2は、図7、図9、図14、及び図16などに示すように、タイバー痕66a,66bをそれぞれ有している。タイバー痕66a,66bはタイバー66の切断痕であり、X方向にわずかに突出している。タイバー痕66aは、Y方向においてアイランド61に近い1段目のタイバー660aの切断痕であり、タイバー痕66bは、タイバー660aよりもアイランド61から離れた2段目のタイバー660bの切断痕である。正極端子63B1,63B2及び負極端子63E1,63E2は、それぞれの延設方向において、タイバー痕66a,66bの間に屈曲部を有している。 The positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 respectively have tie bar marks 66a and 66b as shown in FIG. 7, FIG. 9, FIG. 14 and FIG. The tie bar marks 66a and 66b are cut marks of the tie bar 66 and slightly protrude in the X direction. The tie bar mark 66a is a cut mark of a first tie bar 660a closer to the island 61 in the Y direction, and the tie bar mark 66b is a cut mark of a second tie bar 660b farther from the island 61 than the tie bar 660a. The positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 have bent portions between the tie bar marks 66a and 66b in the extending direction.
 出力端子63P1,63P2は、交流端子とも称される。出力端子63P1は、アイランド612に連なっている。出力端子63P1は、アイランド612においてアイランド610側とは反対の端に連なり、途中まで、X方向においてアイランド612から遠ざかるように斜めに延設されている。具体的には、X方向においてスイッチング素子700Lとは重ならない位置まで、斜めに延設されている。そして、その先でY方向に延設されて正極端子63B1とは反対の側面50dから突出し、封止樹脂体50の外部で屈曲されて、さらにZ方向上方に延びている。 The output terminals 63P1 and 63P2 are also referred to as AC terminals. The output terminal 63P1 is connected to the island 612. The output terminal 63P1 is continuous with the end of the island 612 opposite to the island 610, and is extended obliquely to be apart from the island 612 in the X direction. Specifically, it is obliquely extended to a position not overlapping the switching element 700L in the X direction. Then, the tip is extended in the Y direction, protrudes from the side surface 50d opposite to the positive electrode terminal 63B1, is bent outside the sealing resin body 50, and extends further in the Z direction.
 出力端子63P2は、アイランド614に連なっている。出力端子63P2は、アイランド614においてアイランド610側とは反対の端に連なり、途中まで、X方向においてアイランド614から遠ざかるように斜めに延設されている。具体的には、X方向においてスイッチング素子701Lとは重ならない位置まで、斜めに延設されている。そして、その先でY方向に延設されて側面50dから突出し、封止樹脂体50の外部で屈曲されて、さらにZ方向上方に延びている。出力端子63P1,63P2も、YZ面において略L字状をなしている。出力端子63P1,63P2は、X方向において互いに線対称配置とされている。 The output terminal 63P2 is connected to the island 614. The output terminal 63P2 is continuous with the end of the island 614 opposite to the island 610, and is extended diagonally so as to be apart from the island 614 in the X direction. Specifically, it is obliquely extended to a position not overlapping the switching element 701L in the X direction. Then, it is extended in the Y direction at the tip thereof, protrudes from the side surface 50d, is bent outside the sealing resin body 50, and further extends upward in the Z direction. The output terminals 63P1 and 63P2 are also substantially L-shaped in the YZ plane. The output terminals 63P1 and 63P2 are arranged in line symmetry with each other in the X direction.
 出力端子63P1,63P2も、タイバー痕66a,66bをそれぞれ有している。タイバー痕66aは、Y方向においてアイランド61に近い1段目のタイバー661aの切断痕であり、タイバー痕66bは、タイバー661aよりもアイランド61から離れた2段目のタイバー661bの切断痕である。出力端子63P1,63P2は、それぞれの延設方向において、タイバー痕66a,66bの間に屈曲部を有している。 The output terminals 63P1 and 63P2 also have tie bar marks 66a and 66b, respectively. The tie bar mark 66a is a cut mark of the first tie bar 661a closer to the island 61 in the Y direction, and the tie bar mark 66b is a cut mark of the second tie bar 661b farther from the island 61 than the tie bar 661a. The output terminals 63P1 and 63P2 have bending portions between the tie bar marks 66a and 66b in the extending directions.
 図6及び図14などに示すように、主端子63のそれぞれにおいて、屈曲部の幅が狭くされている。主端子63では、屈曲部を含むように幅狭部63aが設けられ、延設方向において幅狭部63aを挟むように幅広部が設けられている。具体的には、タイバー痕66a,66bを有する部分がそれぞれ幅広部とされ、その間に屈曲部を含む幅狭部63aが設けられている。このように、主電流が流れる主端子63において、屈曲部を形成する部分の幅を狭くして剛性を低くしたため、屈曲部を形成する際の曲げ荷重を小さくすることができる。また、曲げ精度を向上することもできる。 As shown in FIG. 6 and FIG. 14 etc., in each of the main terminals 63, the width of the bent portion is narrowed. In the main terminal 63, a narrow portion 63a is provided so as to include the bent portion, and a wide portion is provided so as to sandwich the narrow portion 63a in the extending direction. Specifically, the portions having the tie bar marks 66a and 66b are wide portions, and a narrow portion 63a including a bent portion is provided therebetween. As described above, in the main terminal 63 through which the main current flows, the width of the portion forming the bent portion is narrowed to reduce the rigidity, so that the bending load at the time of forming the bent portion can be reduced. Also, the bending accuracy can be improved.
 図6及び図9などに示すように、主端子63のそれぞれにおいて、突出先端の角部が面取りされている。換言すれば、テーパ形状とされている。これにより、バスバー27とのアーク溶接時において、角部への電界集中を抑制することができる。本実施形態では、回転電機1を回転させるために、主端子63に比較的大きな電流(数十アンペア)が流れるため、主端子63の幅が広い。これに対し、面取り構造を採用することで、幅方向中央で安定して溶接を行うことができる。 As shown in FIG. 6 and FIG. 9 etc., in each of the main terminals 63, the corner portion of the projecting tip is chamfered. In other words, it has a tapered shape. Thereby, at the time of arc welding with the bus bar 27, it is possible to suppress the concentration of the electric field to the corner. In the present embodiment, a relatively large current (tens of amps) flows to the main terminal 63 in order to rotate the rotating electrical machine 1, so the width of the main terminal 63 is wide. On the other hand, by adopting a chamfering structure, welding can be stably performed at the center in the width direction.
 信号端子64は、外部に信号を出力、又は、外部から信号を入力するための端子である。複数の信号端子64は、X方向に並んで配置されている。各信号端子64は、Y方向に延設されて側面50dから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。信号端子64も、YZ面において略L字状をなしている。本実施形態では、信号端子64が、配線基板22に挿入実装される。 The signal terminal 64 is a terminal for outputting a signal to the outside or inputting a signal from the outside. The plurality of signal terminals 64 are arranged side by side in the X direction. Each signal terminal 64 is extended in the Y direction, protrudes from the side surface 50d, is bent outside the sealing resin body 50, and extends upward in the Z direction. The signal terminal 64 is also substantially L-shaped in the YZ plane. In the present embodiment, the signal terminals 64 are inserted into and mounted on the wiring board 22.
 図16、図19、及び図21などに示すように、信号端子64は、配線基板22に接続されて、グランド電位(GND)とされる信号端子640を含んでいる。信号端子640は、複数の信号端子64の真ん中に配置されている。信号端子640は、アイランド610における信号端子64側の端部中央に連なっている。信号端子640は、リードフレーム60におけるX方向の中心に配置されている。 As shown in FIGS. 16, 19, 21 and the like, the signal terminal 64 includes a signal terminal 640 connected to the wiring board 22 and set to the ground potential (GND). The signal terminal 640 is disposed in the middle of the plurality of signal terminals 64. The signal terminal 640 is continuous with the center of the end of the island 610 on the signal terminal 64 side. The signal terminal 640 is disposed at the center of the lead frame 60 in the X direction.
 図21に示すように、信号端子640は、ボンディングワイヤ41によって、駆動部80のパッド81と接続されている。このように、グランド電位の信号端子640を設けたので、負極端子63E1,63E2や負極端子63E1,63E2に連なる配線部621,623にボンディングワイヤ41を接続して、グランド電位を確保しなくてもよい。すなわち、アイランド612,614や配線部620,622など、他の電位の部分を跨いでボンディングワイヤ41を接続しなくてもよい。したがって、ボンディングワイヤ41が他の電位の部分に接触し、ショートが発生するのを抑制することができる。 As shown in FIG. 21, the signal terminal 640 is connected to the pad 81 of the drive unit 80 by the bonding wire 41. As described above, since the signal terminal 640 of the ground potential is provided, the bonding wire 41 is connected to the wiring portions 621 and 623 connected to the negative terminals 63E1 and 63E2 and the negative terminals 63E1 and 63E2 without securing the ground potential. Good. That is, the bonding wires 41 may not be connected across the other potential parts such as the islands 612 and 614 and the wiring parts 620 and 622. Therefore, the bonding wire 41 can be prevented from coming into contact with other potential parts to cause a short circuit.
 図16及び図21などに示すように、信号端子64は、2つの信号端子641を含んでいる。信号端子641の1つは、アイランド612における信号端子64側の端部に連なっており、別の信号端子641は、アイランド614における信号端子64側の端部に連なっている。アイランド612は、配線部620及びクリップ900を介して、スイッチング素子700Hのソース電極72に接続されている。アイランド614は、配線部622及びクリップ900を介して、スイッチング素子701Hのソース電極72に接続されている。 As shown in FIGS. 16 and 21, the signal terminal 64 includes two signal terminals 641. One of the signal terminals 641 is continuous with the end of the island 612 on the signal terminal 64 side, and the other signal terminal 641 is continuous with the end of the island 614 on the signal terminal 64 side. The island 612 is connected to the source electrode 72 of the switching element 700H via the wiring portion 620 and the clip 900. The island 614 is connected to the source electrode 72 of the switching element 701H via the wiring portion 622 and the clip 900.
 配線部620及びアイランド612は、スイッチング素子700Hのソース電極72と出力端子63P1とを繋ぐ配線である。配線部622及びアイランド614は、スイッチング素子701Hのソース電極72と出力端子63P2とを繋ぐ配線である。信号端子641には、制御回路部26の駆動回路から、上アーム側の駆動信号の基準となる駆動用のソース電位が供給される。したがって、出力端子63P1,63P2からソース電位が供給される構成に較べて、配線のインダクタンスを低減することができる。これにより、制御回路部26によるスイッチング素子70の制御性を向上し、スイッチングの遅延などを抑制することができる。なお、シャント抵抗器901の高電位側とボンディングワイヤ41を介して接続される信号端子64に、制御回路部26の駆動回路から、下アーム側の駆動信号の基準となる駆動用のソース電位が供給される。 The wiring portion 620 and the island 612 are wires that connect the source electrode 72 of the switching element 700H and the output terminal 63P1. The wiring portion 622 and the island 614 are wires that connect the source electrode 72 of the switching element 701H and the output terminal 63P2. To the signal terminal 641, a drive source potential for driving which is a reference of the drive signal on the upper arm side is supplied from the drive circuit of the control circuit unit 26. Therefore, the inductance of the wiring can be reduced compared to the configuration in which the source potential is supplied from the output terminals 63P1 and 63P2. Thereby, the controllability of the switching element 70 by the control circuit unit 26 can be improved, and the delay of switching can be suppressed. Note that the drive source potential serving as the reference of the lower arm side drive signal from the drive circuit of the control circuit unit 26 is connected to the signal terminal 64 connected to the high potential side of the shunt resistor 901 via the bonding wire 41. Supplied.
 本実施形態では、半導体モジュール40が、15本の信号端子64を有している。上記したように、1本がグランド電位用の信号端子640であり、2本が上アーム側のソース電位用の信号端子641である。残りの12本のうち、4本がスイッチング素子70それぞれの駆動信号用であり、4本が2つのシャント抵抗器901用である。1本が配線基板22側からの電源VCC(たとえば5V)取得用であり、1本が感温ダイオードのいずれか1つの順方向電圧Vfの出力用である。1本が異常などの通知用であり、1本がボンディングワイヤ41が接続されていない予備である。 In the present embodiment, the semiconductor module 40 has fifteen signal terminals 64. As described above, one is a signal terminal 640 for the ground potential, and two are signal terminals 641 for the source potential on the upper arm side. Of the remaining twelve, four are for drive signals of the switching elements 70, and four are for two shunt resistors 901. One is for acquiring the power supply VCC (for example, 5 V) from the wiring substrate 22 side, and one is for output of any one forward voltage Vf of the temperature sensitive diodes. One is for notification of abnormality or the like, and one is a spare to which the bonding wire 41 is not connected.
 図19及び図21に示すように、信号端子640を除く信号端子64は、クランク形状の部分であるクランク部64aを少なくとも1つ有している。クランク部64aを有することで、X方向において、複数の信号端子64の占める幅が、アイランド61側の端部、すなわち、ボンディングワイヤ41の接続側よりも、配線基板22との接続側で狭くされている。 As shown in FIGS. 19 and 21, the signal terminal 64 excluding the signal terminal 640 has at least one crank portion 64a which is a crank-shaped portion. By having the crank portion 64a, the width occupied by the plurality of signal terminals 64 in the X direction is narrowed on the connection side with the wiring substrate 22 than the end on the island 61 side, that is, the connection side of the bonding wire 41 ing.
 本実施形態では、クランク部64aを2つ有する信号端子64において、クランク部64a間の直線部分の長さが2mm以上となるように、クランク部64aの位置が設定されている。クランク部64aの1つはタイバー661aの近傍に設けられ、別のクランク部64aはタイバー661bの近傍に設けられている。これにより、型(ダイ)を用いて信号端子64を曲げ加工する際に、信号端子64の擦れによる型の摩耗を低減することができる。また、曲げ精度を向上することもできる。 In the present embodiment, in the signal terminal 64 having two cranks 64a, the position of the cranks 64a is set such that the length of the straight portion between the cranks 64a is 2 mm or more. One of the crank portions 64a is provided in the vicinity of the tie bar 661a, and the other crank portion 64a is provided in the vicinity of the tie bar 661b. As a result, when the signal terminal 64 is bent using a die (die), the wear of the die due to the rubbing of the signal terminal 64 can be reduced. Also, the bending accuracy can be improved.
 図6及び図7に示すように、信号端子64における配線基板22への実装部分は、XY面において千鳥配置とされている。すなわち、X方向において隣り合う信号端子64が、Y方向にずれて配置されている。信号端子64は、2段配置とされている。これにより、X方向において信号端子64の占めるスペースを低減し、ひいては半導体モジュール40を小型化することができる。また、配線基板22も小型化することができる。さらには、隣り合う信号端子64がY方向において離れた位置となるため、端子間でのノイズや干渉を低減することができる。 As shown in FIGS. 6 and 7, the mounting portions of the signal terminals 64 on the wiring board 22 are arranged in a zigzag in the XY plane. That is, the signal terminals 64 adjacent to each other in the X direction are shifted in the Y direction. The signal terminals 64 are arranged in two stages. Thus, the space occupied by the signal terminals 64 in the X direction can be reduced, and the semiconductor module 40 can be miniaturized. In addition, the wiring substrate 22 can also be miniaturized. Furthermore, since the adjacent signal terminals 64 are spaced apart in the Y direction, noise and interference between the terminals can be reduced.
 信号端子64は、X方向において、出力端子63P1,63P2の間に配置されている。図22は、出力端子63P1,63P2と信号端子64の配置イメージを示す模式図である。図22の上段が本実施形態を示し、真ん中の段と下段の2つは参考例を示している。参考例においては、本実施形態の関連する要素の符号に対し、末尾にrを付与している。本実施形態では、出力端子63P1,63P2の間に信号端子64が集約されている。信号端子64のX方向両端に、出力端子63P1,63P2が配置されている。このため、出力端子63P1と一端側の信号端子64との間に、破線で示す空きのスペース64bが生じ、出力端子63P2と他端側の信号端子64との間にも同様にスペース64bが生じる。 The signal terminal 64 is disposed between the output terminals 63P1 and 63P2 in the X direction. FIG. 22 is a schematic view showing an arrangement image of the output terminals 63P1 and 63P2 and the signal terminal 64. As shown in FIG. The upper part of FIG. 22 shows the present embodiment, and the middle part and the lower part show reference examples. In the reference example, r is added to the end of the reference numerals of the relevant elements of this embodiment. In the present embodiment, the signal terminals 64 are integrated between the output terminals 63P1 and 63P2. Output terminals 63P1 and 63P2 are disposed at both ends of the signal terminal 64 in the X direction. Therefore, a vacant space 64b indicated by a broken line is generated between the output terminal 63P1 and the signal terminal 64 at one end, and a space 64b is similarly generated between the output terminal 63P2 and the signal terminal 64 at the other end. .
 これに対し、真ん中の段の参考例では、出力端子63P1rが本実施形態同様の配置とされ、出力端子63P2rが信号端子64rの間に配置されて、複数の信号端子64rが二分されている。これによれば、出力端子63P2rの両側にスペース64brが生じる。また、下段の参考例では、出力端子63P1r,63P2rが隣り合って配置されるとともに、出力端子63P1r,63P2rによって複数の信号端子64rが二分されている。これによれば、出力端子63P1r,63P2rそれぞれの両側にスペース64brが生じる。したがって、本実施形態のように、出力端子63P1,63P2の間に信号端子64を集約することで、X方向において外部接続用端子の配置スペースを小さくすることができる。すなわち、無駄なスペースを減らし、半導体モジュール40の体格を小型化することができる。 On the other hand, in the reference example in the middle stage, the output terminal 63P1r is disposed in the same manner as in the present embodiment, the output terminal 63P2r is disposed between the signal terminals 64r, and the plurality of signal terminals 64r are divided into two. According to this, spaces 64br are generated on both sides of the output terminal 63P2r. Further, in the lower reference example, the output terminals 63P1r and 63P2r are disposed adjacent to each other, and the plurality of signal terminals 64r are divided into two by the output terminals 63P1r and 63P2r. According to this, spaces 64br are generated on both sides of each of the output terminals 63P1r and 63P2r. Therefore, as in the present embodiment, by arranging the signal terminals 64 between the output terminals 63P1 and 63P2, the arrangement space for the external connection terminals can be reduced in the X direction. That is, waste space can be reduced and the size of the semiconductor module 40 can be miniaturized.
 図16及び図21に示すように、信号端子64におけるアイランド61側の端部、すなわち、ボンディングワイヤ41の接続部分は、信号端子64の他の部分よりも、X方向の幅が広くされている。このように、信号端子64におけるアイランド61側の端部の幅が広いため、ボンディングワイヤ41を安定的に接続することができる。一方、ボンディングワイヤ41との接続部分を除く部分の幅は狭いため、上記したクランク部64aとも相俟って、信号端子64の配置スペースを小さくすることができる。また、幅の広いアイランド61側の端部が封止樹脂体50に引っかかるため、ロックホール効果により、配置スペースを小さくしつつも信号端子64の抜けを抑制することができる。 As shown in FIGS. 16 and 21, the end of the signal terminal 64 on the island 61 side, that is, the connection portion of the bonding wire 41 is wider in the X direction than the other portions of the signal terminal 64. . As described above, since the width of the end of the signal terminal 64 on the side of the island 61 is wide, the bonding wire 41 can be stably connected. On the other hand, since the width of the part excluding the connection part with the bonding wire 41 is narrow, the arrangement space of the signal terminal 64 can be made small in combination with the above-mentioned crank part 64a. In addition, since the end on the side of the wide island 61 is caught by the sealing resin body 50, it is possible to suppress the removal of the signal terminal 64 while reducing the arrangement space by the lock hole effect.
 リードフレーム60において、ボンディングワイヤ41の接続部分は、平坦とされている。ボンディングワイヤ41は、信号端子64と、上記した凸部611b,613bにそれぞれ接続されている。凸部611b,613bにおける接続部分及び信号端子64における接続部分は、いずれも平坦とされている。具体的には、叩くことで接続部分の平坦度が確保されている。これにより、ボンディングワイヤ41の接続信頼性を向上することができる。また、打ち抜き加工することでリードフレーム60を形成する際に生じる図示しないバリを叩いて潰し、ボンディング時の異物噛み込みを抑制することもできる。 In the lead frame 60, the connection portion of the bonding wire 41 is flat. The bonding wires 41 are respectively connected to the signal terminals 64 and the above-described convex portions 611 b and 613 b. The connection portions of the convex portions 611 b and 613 b and the connection portions of the signal terminals 64 are both flat. Specifically, the flatness of the connection portion is secured by tapping. Thereby, the connection reliability of the bonding wire 41 can be improved. Further, by punching, burrs (not shown) generated when forming the lead frame 60 can be struck and crushed to suppress foreign matter biting at the time of bonding.
 ダミー端子65は、電気的な接続機能を提供せず、タイバーカット前の状態で、タイバー66に連結される部分である。図7及び図16などに示すように、ダミー端子65の一部は、Y方向に延設されて封止樹脂体50の側面50cから突出している。ダミー端子65の残りは、Y方向に延設されて側面50dから突出している。それぞれ4つのダミー端子65が配置されている。 The dummy terminal 65 does not provide an electrical connection function, and is a portion connected to the tie bar 66 before the tie bar is cut. As shown in FIGS. 7 and 16, a part of the dummy terminal 65 is extended in the Y direction and protrudes from the side surface 50c of the sealing resin body 50. The remainder of the dummy terminal 65 is extended in the Y direction and protrudes from the side surface 50 d. Four dummy terminals 65 are arranged respectively.
 正極端子63B1,63B2及び負極端子63E1,63E2側において、アイランド611,613及び配線部620,622のそれぞれにダミー端子65が連なっている。図16などに示すように、ダミー端子65の1つは、アイランド611における信号端子64とは反対の端部であって、正極端子63B1側とは反対の端からY方向に延設されている。別のダミー端子65は、アイランド613における信号端子64とは反対の端部であって、正極端子63B2側とは反対の端からY方向に延設されている。別のダミー端子65は、配線部620の先端、すなわちアイランド612とは反対の端部からY方向に延設されている。別のダミー端子65は、配線部622の先端、すなわちアイランド614とは反対の端部からY方向に延設されている。 On the side of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2, the dummy terminals 65 are connected to the islands 611 and 613 and the wiring parts 620 and 622, respectively. As shown in FIG. 16 etc., one of the dummy terminals 65 is an end opposite to the signal terminal 64 in the island 611 and extends in the Y direction from the end opposite to the positive electrode terminal 63B1 side. . Another dummy terminal 65 is an end of the island 613 opposite to the signal terminal 64 and extends in the Y direction from the end opposite to the positive electrode terminal 63B2 side. Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 620, that is, the end opposite to the island 612. Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 622, that is, the end opposite to the island 614.
 X方向において、負極端子63E1と正極端子63B1の間、負極端子63E2と正極端子63B2の間に、ダミー端子65がそれぞれ1つ配置されている。また、正極端子63B1,63B2の間に2つのダミー端子65が配置されている。図21に示すように、正極端子63B1,63B2及び負極端子63E1,63E2側のダミー端子65は、1段目のタイバー660aまでそれぞれ延設されている。このため、タイバーカット後の状態では、図7及び図16などに示すように、正極端子63B1,63B2及び負極端子63E1,63E2が有するタイバー痕66aとY方向においてほぼ同じ位置まで延設されている。 In the X direction, one dummy terminal 65 is disposed between the negative electrode terminal 63E1 and the positive electrode terminal 63B1, and between the negative electrode terminal 63E2 and the positive electrode terminal 63B2. Further, two dummy terminals 65 are disposed between the positive electrode terminals 63B1 and 63B2. As shown in FIG. 21, the dummy terminals 65 on the side of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are extended to the first stage tie bar 660a. Therefore, in the state after tie bar cutting, as shown in FIG. 7 and FIG. 16 etc., the tie bar mark 66a of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 is extended to almost the same position in the Y direction. .
 出力端子63P1,63P2及び信号端子64側において、ダミー端子65の1つは、配線部621の先端、すなわち負極端子63E1とは反対の端部からY方向に延設されている。別のダミー端子65は、配線部623の先端、すなわち負極端子63E2とは反対の端部からY方向に延設されている。残りの2つのダミー端子65は、ボンディングワイヤ41を介してシャント抵抗器901と接続される信号端子64の一部に連なり、該信号端子64の外側にそれぞれ配置されている。 On the side of the output terminals 63P1 and 63P2 and the signal terminal 64, one of the dummy terminals 65 is extended in the Y direction from the end of the wiring portion 621, that is, the end opposite to the negative electrode terminal 63E1. Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 623, that is, the end opposite to the negative electrode terminal 63E2. The remaining two dummy terminals 65 are connected to a part of the signal terminal 64 connected to the shunt resistor 901 via the bonding wire 41 and are respectively arranged outside the signal terminal 64.
 X方向において、出力端子63P1,63P2の外側にダミー端子65がそれぞれ1つ配置されている。また、出力端子63P1,63P2と信号端子64との間にダミー端子65がそれぞれ1つ配置されている。図21に示すように、出力端子63P1,63P2及び信号端子64側のダミー端子65は、1段目のタイバー661aまで延設されている。このため、タイバーカット後の状態では、図7及び図16などに示すように、出力端子63P1,63P2及び信号端子64が有するタイバー痕66aとY方向においてほぼ同じ位置まで延設されている。 One dummy terminal 65 is disposed outside the output terminals 63P1 and 63P2 in the X direction. In addition, one dummy terminal 65 is disposed between the output terminals 63P1 and 63P2 and the signal terminal 64, respectively. As shown in FIG. 21, the output terminals 63P1 and 63P2 and the dummy terminal 65 on the signal terminal 64 side are extended to the tie bar 661a of the first stage. Therefore, in the state after tie bar cutting, as shown in FIG. 7 and FIG. 16 etc., the tie bar mark 66a of the output terminals 63P1 and 63P2 and the signal terminal 64 is extended to almost the same position in the Y direction.
 このように、ダミー端子65は、タイバー痕66aとほぼ同じ位置まで延設されている。すなわち、主端子63及び信号端子64の屈曲部よりも手前の位置までしか延設されていない。このため、ダミー端子65は、主端子63及び信号端子64とは異なり、屈曲部を有していない。ダミー端子65の幅は、主端子63の幅よりも狭くされている。 Thus, the dummy terminal 65 is extended to substantially the same position as the tie bar mark 66 a. That is, it extends only to a position before the bent portions of the main terminal 63 and the signal terminal 64. Therefore, unlike the main terminal 63 and the signal terminal 64, the dummy terminal 65 does not have a bent portion. The width of the dummy terminal 65 is smaller than the width of the main terminal 63.
 (スイッチング素子)
 スイッチング素子70は縦型構造をなしており、チップの厚み方向であるZ方向の両面に主電極を有している。また、一方の面に、第1パッドである上記したパッド71を有している。本実施形態では、アイランド61との対向面に図示しないドレイン電極が形成され、ドレイン電極形成面と反対の面にソース電極72が形成されている。パッド71は、ソース電極72と同じ主面において、ソース電極72とは異なる位置に形成されている。スイッチング素子70には、感温ダイオードが一体的に形成されている。
(Switching element)
The switching element 70 has a vertical structure, and has main electrodes on both sides in the Z direction which is the thickness direction of the chip. In addition, the pad 71 described above, which is a first pad, is provided on one side. In the present embodiment, the drain electrode (not shown) is formed on the surface facing the island 61, and the source electrode 72 is formed on the surface opposite to the drain electrode formation surface. The pad 71 is formed on the same main surface as the source electrode 72 at a position different from that of the source electrode 72. In the switching element 70, a temperature sensitive diode is integrally formed.
 スイッチング素子70は、平面矩形状をなしている。図21に示すように、パッド71は、スイッチング素子70の1つの辺、具体的には駆動部80との対向辺に沿って配置されている。本実施形態では、スイッチング素子70が4つのパッド71を有しており、ソース電位検出用、ゲート電極用、感温ダイオードのアノード用、カソード用の順に並んで配置されている。 The switching element 70 has a planar rectangular shape. As shown in FIG. 21, the pad 71 is arranged along one side of the switching element 70, specifically, the side opposite to the drive unit 80. In the present embodiment, the switching element 70 has four pads 71, which are arranged in order of source potential detection, gate electrode, anode of temperature sensitive diode, and cathode.
 スイッチング素子70は、上記したように、第1の上下アームを構成する上アーム側のスイッチング素子700Hと、第1の上下アームを構成する下アーム側のスイッチング素子700Lを有している。また、第2の上下アームを構成する上アーム側のスイッチング素子701Hと、第2の上下アームを構成する下アーム側のスイッチング素子701Lを有している。 As described above, the switching element 70 includes the switching element 700H on the upper arm side constituting the first upper and lower arms and the switching element 700L on the lower arm side constituting the first upper and lower arms. In addition, it has a switching element 701H on the upper arm side constituting the second upper and lower arms, and a switching element 701L on the lower arm side constituting the second upper and lower arms.
 スイッチング素子700Hはアイランド611に配置され、スイッチング素子700Lはアイランド612に配置されている。スイッチング素子701Hはアイランド613に配置され、スイッチング素子701Lはアイランド614に配置されている。上アーム側のスイッチング素子700H,701Hは、対応するアイランド611,613同様、X方向において線対称配置とされている。下アーム側のスイッチング素子700L,701Lは、対応するアイランド612,614同様、X方向において線対称配置とされている。 The switching element 700H is disposed on the island 611, and the switching element 700L is disposed on the island 612. The switching element 701 H is disposed on the island 613, and the switching element 701 L is disposed on the island 614. Similar to the corresponding islands 611 and 613, the switching elements 700H and 701H on the upper arm side are arranged in line symmetry in the X direction. The lower arm side switching elements 700L and 701L are arranged in line symmetry in the X direction as in the corresponding islands 612 and 614.
 上アーム側のスイッチング素子700H,701Hは、パッド71とソース電極72の並び方向がY方向となるように配置されている。すなわち、パッド71の並び方向がX方向となるように配置されている。一方、下アーム側のスイッチング素子700L,701Lは、パッド71とソース電極72の並び方向がX方向となるように配置されている。すなわち、パッド71の並び方向がY方向となるように配置されている。 The switching elements 700H and 701H on the upper arm side are arranged such that the alignment direction of the pad 71 and the source electrode 72 is the Y direction. That is, the pads 71 are arranged in the X direction. On the other hand, the switching elements 700L and 701L on the lower arm side are arranged such that the alignment direction of the pad 71 and the source electrode 72 is the X direction. That is, the arrangement direction of the pads 71 is arranged in the Y direction.
 図16及び図21などに示すように、スイッチング素子70は、対応するアイランド61に対して、お互いの中心が略一致するように位置決め配置されている。下アーム側のスイッチング素子700L,701Lは、同じ相の上アーム側のスイッチング素子700H,701Hに対して、X方向外側に配置されている。X方向において、スイッチング素子700L、スイッチング素子700H、スイッチング素子701H、スイッチング素子701Lの順に並んでいる。 As shown in FIG. 16 and FIG. 21 etc., the switching elements 70 are positioned and arranged with respect to the corresponding islands 61 so that their centers substantially coincide with each other. The lower arm side switching elements 700L and 701L are disposed outside in the X direction with respect to the upper arm side switching elements 700H and 701H of the same phase. In the X direction, the switching element 700L, the switching element 700H, the switching element 701H, and the switching element 701L are arranged in this order.
 各スイッチング素子70のドレイン電極に接続される正極端子63B1,63B2及び出力端子63P1,63P2は、スイッチング素子70と同じ側から見ると、出力端子63P1、正極端子63B1、正極端子63B2、出力端子63P2の順に並んでいる。このように、スイッチング素子70の並び順と、正極端子63B1,63B2及び出力端子63P1,63P2の並び順が一致している。また、主端子63及び信号端子64は、相対する側面50c,50dのみから突出している。以上の配置を採用することにより、リードフレーム60のレイアウトがシンプルとなり、配線密度を上げて半導体モジュール40の体格を小型化することができる。また、封止樹脂体50の2面のみから主端子63及び信号端子64が突出しているため、制御装置部20を構成する際にも、バスバー27との接続構造を簡素化することができる。 When viewed from the same side as the switching element 70, the positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 connected to the drain electrode of each switching element 70 are of the output terminal 63P1, the positive terminal 63B1, the positive terminal 63B2 and the output terminal 63P2. They are arranged in order. As described above, the arrangement order of the switching elements 70 and the arrangement order of the positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 coincide with each other. Further, the main terminal 63 and the signal terminal 64 protrude only from the opposite side surfaces 50c and 50d. By adopting the above arrangement, the layout of the lead frame 60 is simplified, and the physical size of the semiconductor module 40 can be miniaturized by increasing the wiring density. Further, since the main terminals 63 and the signal terminals 64 protrude from only the two surfaces of the sealing resin body 50, the connection structure with the bus bar 27 can be simplified also when configuring the control unit 20.
 図12、図13、及び図15に示すように、スイッチング素子70のドレイン電極は、はんだ42を介して対応するアイランド61と接続されている。ソース電極72は、はんだ42を介して、対応する架橋部材90と接続されている。スイッチング素子700Hのドレイン電極がアイランド611と接続され、スイッチング素子700Lのドレイン電極がアイランド612と接続されている。スイッチング素子701Hのドレイン電極がアイランド613と接続され、スイッチング素子701Lのドレイン電極がアイランド614と接続されている。 As shown in FIGS. 12, 13 and 15, the drain electrode of the switching element 70 is connected to the corresponding island 61 through the solder 42. Source electrode 72 is connected to corresponding bridge member 90 via solder 42. The drain electrode of the switching element 700H is connected to the island 611, and the drain electrode of the switching element 700L is connected to the island 612. The drain electrode of the switching element 701H is connected to the island 613, and the drain electrode of the switching element 701L is connected to the island 614.
 (駆動部)
 駆動部80は、スイッチング素子70を駆動させる。本実施形態では、制御回路部26の駆動回路にて生成された駆動信号が、駆動部80を介して、スイッチング素子70それぞれのゲート電極に入力される。すなわち、駆動部80から出力された駆動信号により、スイッチング素子70が駆動される。駆動部80は、ASICなどのICチップとして構成されている。図15に示すように、駆動部80は、Agペーストなどの導電性接着材43を介してアイランド610に固定されている。駆動部80におけるアイランド610への固定面と反対の面には、第2パッドである複数のパッド81が形成されている。
(Drive part)
The drive unit 80 drives the switching element 70. In the present embodiment, the drive signal generated by the drive circuit of the control circuit unit 26 is input to the gate electrode of each of the switching elements 70 via the drive unit 80. That is, the switching element 70 is driven by the drive signal output from the drive unit 80. The drive unit 80 is configured as an IC chip such as an ASIC. As shown in FIG. 15, the driving unit 80 is fixed to the island 610 via a conductive adhesive 43 such as Ag paste. On the surface opposite to the surface fixed to the island 610 in the drive unit 80, a plurality of pads 81, which are second pads, are formed.
 図21に示すように、パッド81の一部は、ボンディングワイヤ41を介して、スイッチング素子70のパッド71に接続されている。別のパッド81は、ボンディングワイヤ41を介して、アイランド611,613に接続されている。パッド81の残りは、ボンディングワイヤ41を介して、信号端子64に接続されている。 As shown in FIG. 21, a part of the pad 81 is connected to the pad 71 of the switching element 70 via the bonding wire 41. Another pad 81 is connected to the islands 611 and 613 via bonding wires 41. The rest of the pad 81 is connected to the signal terminal 64 through the bonding wire 41.
 駆動部80は、スイッチング素子70の保護するための回路を有している。たとえば、スイッチング素子70それぞれのゲート-ソース間電圧Vgsを検出する回路と、ドレイン-ソース間電圧Vdsを検出する回路を有している。駆動部80は、パッド71から、ボンディングワイヤ41を介してソース電位を取得する。また、アイランド611,613から、ボンディングワイヤ41を介してドレイン電位を取得する。駆動部80は、それぞれの感温ダイオードの順方向電圧Vfを検出する回路を有している。駆動部80は、パッド71からボンディングワイヤ41を介して、アノード電位及びカソード電位を取得する。 The drive unit 80 has a circuit for protecting the switching element 70. For example, it has a circuit for detecting the gate-source voltage Vgs of each of the switching elements 70 and a circuit for detecting the drain-source voltage Vds. The drive unit 80 acquires the source potential from the pad 71 via the bonding wire 41. In addition, the drain potential is acquired from the islands 611 and 613 through the bonding wire 41. The drive unit 80 has a circuit for detecting the forward voltage Vf of each temperature sensitive diode. The drive unit 80 acquires the anode potential and the cathode potential from the pad 71 via the bonding wire 41.
 さらに駆動部80は、ゲート-ソース間電圧Vgs、ドレイン-ソース間電圧Vds、及び順方向電圧Vfに基づいて、スイッチング素子70の異常を判定する判定回路を有している。判定回路は、具体的には、スイッチング素子70の過熱、過電流、上下アーム同時オンなどが生じているか否かを判定する。駆動部80は、判定結果を、信号端子64を通じて制御回路部26に通知する通知回路を有している。 The drive unit 80 further includes a determination circuit that determines an abnormality of the switching element 70 based on the gate-source voltage Vgs, the drain-source voltage Vds, and the forward voltage Vf. Specifically, the determination circuit determines whether overheating of the switching element 70, overcurrent, simultaneous turning on of the upper and lower arms, and the like have occurred. The drive unit 80 has a notification circuit that notifies the control circuit unit 26 of the determination result through the signal terminal 64.
 駆動部80は、平面略矩形状をなしている。駆動部80は、X方向においてリードフレーム60の中心線に対し、線対称配置とされている。X方向において、駆動部80の中心がリードフレーム60の中心線と略一致している。また、X方向において、駆動部80の中心がアイランド610の中心と略一致している。したがって、下アーム側のスイッチング素子700L,701Lは、駆動部80に対して線対称配置とされている。 The drive unit 80 has a substantially rectangular planar shape. The drive units 80 are arranged in line symmetry with respect to the center line of the lead frame 60 in the X direction. The center of the drive unit 80 substantially coincides with the center line of the lead frame 60 in the X direction. Further, in the X direction, the center of the drive unit 80 substantially coincides with the center of the island 610. Accordingly, the switching elements 700L and 701L on the lower arm side are arranged in line symmetry with respect to the drive unit 80.
 駆動部80は、下アーム側のスイッチング素子700L,701Hの間に配置されている。上アーム側のスイッチング素子700Hは、Y方向においてスイッチング素子700L及び駆動部80と対向している。スイッチング素子700Hのパッド71は、アイランド610よりもX方向外側に配置されている。上アーム側のスイッチング素子701Hは、Y方向においてスイッチング素子701L及び駆動部80と対向している。スイッチング素子701Hのパッド71は、アイランド610よりもX方向外側に配置されている。 The driving unit 80 is disposed between the lower arm side switching elements 700L and 701H. The switching element 700H on the upper arm side faces the switching element 700L and the drive unit 80 in the Y direction. The pad 71 of the switching element 700H is disposed outside the island 610 in the X direction. The switching element 701H on the upper arm side faces the switching element 701L and the drive unit 80 in the Y direction. The pad 71 of the switching element 701H is disposed outside the island 610 in the X direction.
 (ボンディングワイヤを考慮した配置)
 図21などに示すように、Z方向からの平面視において、4つのスイッチング素子70が、駆動部80の周りに配置されている。これにより、スイッチング素子70のパッド71と駆動部80とを接続するボンディングワイヤ41の長さを短くすることができる。中継用の配線基板が不要であるので、部品点数を削減し、ひいては半導体モジュール40の体格を小型化することができる。また、封止樹脂体50を成形する際に、ボンディングワイヤ41に断線や接続不良などが生じるのを抑制することができる。長さが短いため、ボンディングワイヤ41が他の部分に接触するのを抑制することもできる。すなわち、ボンディングワイヤ41の不良を抑制することができる。また、ボンディングワイヤ41の配線密度を向上して無駄なスペースを低減し、半導体モジュール40の体格を小型化することもできる。
(Arrangement considering bonding wire)
As shown in FIG. 21 and the like, the four switching elements 70 are disposed around the drive unit 80 in plan view from the Z direction. Thereby, the length of the bonding wire 41 connecting the pad 71 of the switching element 70 and the drive unit 80 can be shortened. Since the relay wiring board is unnecessary, the number of parts can be reduced, and the physical size of the semiconductor module 40 can be miniaturized. In addition, when molding the sealing resin body 50, it is possible to suppress the occurrence of disconnection, connection failure or the like in the bonding wire 41. Since the length is short, the bonding wire 41 can also be inhibited from contacting other parts. That is, defects in the bonding wire 41 can be suppressed. In addition, the wiring density of the bonding wires 41 can be improved to reduce unnecessary space, and the physical size of the semiconductor module 40 can be miniaturized.
 上記したように駆動部80が平面略矩形状をなしており、図21に示すように、駆動部80のパッド81がスイッチング素子70のそれぞれとの対向辺に設けられている。本実施形態では、駆動部80の連続する3辺に、スイッチング素子70と接続されるパッド81が集約されている。これにより、ボンディングワイヤ41の長さを短くすることができる。したがって、成形時におけるボンディングワイヤ41の不良を低減できる。また、半導体モジュール40の体格を小型化することもできる。なお、駆動部80のうち、残りの1辺には、信号端子64と接続されるパッド81のみが配置されている。 As described above, the drive unit 80 has a substantially rectangular planar shape, and as shown in FIG. 21, the pads 81 of the drive unit 80 are provided on the sides facing the switching elements 70 respectively. In the present embodiment, pads 81 connected to the switching element 70 are concentrated on three consecutive sides of the drive unit 80. Thereby, the length of the bonding wire 41 can be shortened. Therefore, defects in the bonding wire 41 at the time of molding can be reduced. In addition, the size of the semiconductor module 40 can be miniaturized. Note that only the pad 81 connected to the signal terminal 64 is disposed on the remaining one side of the drive unit 80.
 スイッチング素子70は、詳しくは略正方形をなしている。図21に示すように、パッド71は、スイッチング素子70の1つの辺の中央付近に、該辺に沿って並んで配置されている。このように、パッド71を1つの辺の中央に配置したため、スイッチング素子70を1種類のチップとして共通化することができる。また、共通化しながらも、90度配置が異なる上アーム側と下アーム側とで、パッド71,81に対してボンディングワイヤ41を接続することができる。また、ボンディングワイヤ41の長さを短くすることができる。 The switching element 70 has a substantially square shape in detail. As shown in FIG. 21, the pads 71 are arranged in the vicinity of the center of one side of the switching element 70 along the side. As described above, since the pad 71 is disposed at the center of one side, the switching element 70 can be made common as one type of chip. In addition, the bonding wires 41 can be connected to the pads 71 and 81 on the upper arm side and the lower arm side, which are different in the arrangement by 90 degrees, though being made common. Moreover, the length of the bonding wire 41 can be shortened.
 図21などに示すように、信号端子64は、Y方向において、駆動部80の1辺側にまとめて配置されている。すべての信号端子64は、駆動部80に対して、上アーム側のスイッチング素子700H,701Hとは反対側に配置されている。スイッチング素子70は、駆動部80の残りの3辺と対向している。これによれば、信号端子64も含めて、駆動部80との接続構造を簡素化することができる。よって、ボンディングワイヤ41の長さを短くし、半導体モジュール40の体格を小型化することができる。 As shown in FIG. 21 and the like, the signal terminals 64 are collectively arranged on one side of the drive unit 80 in the Y direction. All the signal terminals 64 are arranged on the opposite side of the drive unit 80 to the switching elements 700H and 701H on the upper arm side. The switching element 70 is opposed to the remaining three sides of the drive unit 80. According to this, the connection structure with the drive part 80 can be simplified including the signal terminal 64. Therefore, the length of the bonding wire 41 can be shortened, and the size of the semiconductor module 40 can be reduced.
 (熱を考慮した配置)
 出力端子63P1,63P2は、出力バスバー27P1,27P2を介して、回転電機部10の固定子巻線121と接続されるため、回転電機部10側から熱が伝わる。このため、下アーム側のスイッチング素子が熱の影響を受けやすい。これに対し、本実施形態では、下アーム側のスイッチング素子700L,701Lの間に駆動部80が配置されている。また、X方向において、スイッチング素子700H,701Hが線対称配置とされ、スイッチング素子700L,701Lが線対称配置とされている。すなわち、4つのスイッチング素子70が、XY面内において均等配置されている。そして、図16に示すように、上アーム側のスイッチング素子700H,701H間の距離をL1、下アーム側のスイッチング素子700L,701L間の距離をL2とすると、距離L2のほうが距離L1よりも長くされている。
(Placement considering heat)
The output terminals 63P1 and 63P2 are connected to the stator winding 121 of the rotary electric machine unit 10 via the output bus bars 27P1 and 27P2, so heat is transmitted from the rotary electric machine unit 10 side. Therefore, the switching element on the lower arm side is susceptible to heat. On the other hand, in the present embodiment, the drive unit 80 is disposed between the switching elements 700L and 701L on the lower arm side. Further, in the X direction, the switching elements 700H and 701H are arranged in line symmetry, and the switching elements 700L and 701L are arranged in line symmetry. That is, the four switching elements 70 are equally arranged in the XY plane. Then, as shown in FIG. 16, assuming that the distance between the switching elements 700H and 701H on the upper arm side is L1 and the distance between the switching elements 700L and 701L on the lower arm side is L2, the distance L2 is longer than the distance L1. It is done.
 このような配置により、図23に示すように、回転電機部10からのもらい熱によって高温となるスイッチング素子700L,701L同士を遠ざけている。これにより、スイッチング素子700L,701L間の熱干渉を、スイッチング素子700H,701H間の熱干渉よりも低減することができる。したがって、XY面において局所的な過熱を抑制し、すべてのスイッチング素子70について熱による性能低下を抑制することができる。図23では、封止樹脂体50及びボンディングワイヤ41の図示を省略している。 With such an arrangement, as shown in FIG. 23, the switching elements 700L and 701L which are heated by heat received from the rotary electric machine 10 are separated from each other. Thereby, the thermal interference between the switching elements 700L and 701L can be reduced more than the thermal interference between the switching elements 700H and 701H. Therefore, local overheating in the XY plane can be suppressed, and performance degradation due to heat can be suppressed for all the switching elements 70. In FIG. 23, the sealing resin body 50 and the bonding wire 41 are not shown.
 上記したように、アイランド611~614のそれぞれにおいて、スイッチング素子70の配置面とは反対の放熱面611a~614aが、封止樹脂体50から露出されている。したがって、スイッチング素子70の熱を効果的に放熱することができる。 As described above, in each of the islands 611 to 614, the heat release surfaces 611a to 614a opposite to the arrangement surface of the switching element 70 are exposed from the sealing resin body 50. Therefore, the heat of switching element 70 can be dissipated effectively.
 上記したように、アイランド610において、駆動部80の配置面とは反対の放熱面610aが、封止樹脂体50から露出されている。これにより、駆動部80の発生した熱及び駆動部80の周りに配置されたスイッチング素子70からのもらい熱を、効果的に放熱することができる。また、放熱性の向上により、駆動部80を小型化することもできる。 As described above, in the island 610, the heat release surface 610a opposite to the arrangement surface of the drive unit 80 is exposed from the sealing resin body 50. Accordingly, the heat generated by the drive unit 80 and the heat received from the switching element 70 disposed around the drive unit 80 can be effectively dissipated. Moreover, the drive part 80 can also be miniaturized by the improvement of heat dissipation.
 上記したように、スイッチング素子700L,701Lが配置されたアイランド612,614に連なる配線部620,622において、スイッチング素子700L,701L側の面とは反対の放熱面620a,622aが、封止樹脂体50から露出されている。これにより、スイッチング素子700L,701Lの熱を、放熱面620a,622aから逃がすことができる。すなわち、回転電機部10からのもらい熱を効果的に放熱することができる。また、スイッチング素子700H,701Hの熱を、クリップ900を介して放熱面620a,622aからも逃がすことができる。 As described above, in the wiring portions 620 and 622 connected to the islands 612 and 614 in which the switching elements 700L and 701L are disposed, the heat release surfaces 620a and 622a opposite to the surfaces on the switching elements 700L and 701L side are sealing resin bodies Exposed from 50. Thus, the heat of the switching elements 700L and 701L can be dissipated from the heat radiation surfaces 620a and 622a. That is, it is possible to effectively dissipate heat received from the rotating electrical machine unit 10. In addition, the heat of the switching elements 700H and 701H can be dissipated from the heat dissipation surfaces 620a and 622a via the clip 900.
 (架橋部材)
 架橋部材90は、2つの配線を架橋する。具体的には、スイッチング素子70のソース電極72と、対応する配線部62とを架橋する。架橋部材90は、ブリッジとも称される。架橋部材90は、ソース電極72と配線部62を電気的に中継するため、中継部材とも称される。
(Crosslinking member)
The bridging member 90 bridges the two wires. Specifically, the source electrode 72 of the switching element 70 and the corresponding wiring portion 62 are bridged. The bridging member 90 is also referred to as a bridge. The bridge member 90 is also referred to as a relay member because it electrically relays the source electrode 72 and the wiring portion 62.
 架橋部材90は、ソース電極72及び配線部62との接続のために、図12及び図13に示すように一対の接続部91を有している。架橋部材90は、一方向に延設されている。架橋部材90は、接続部91の板厚方向に対して直交する方向に延設されている。接続部91は、架橋部材90の延設方向両端に設けられている。接続部91は、はんだ42を介して、ソース電極72及び配線部62のそれぞれと接続される。 The bridge member 90 has a pair of connection parts 91 as shown in FIGS. 12 and 13 for connection with the source electrode 72 and the wiring part 62. The bridging member 90 is extended in one direction. The bridging member 90 is extended in a direction perpendicular to the thickness direction of the connecting portion 91. The connecting portions 91 are provided at both ends in the extending direction of the bridging member 90. The connection portion 91 is connected to each of the source electrode 72 and the wiring portion 62 through the solder 42.
 架橋部材90としては、平板状のものを採用することもできるが、本実施形態では凸形状の架橋部材90を採用している。架橋部材90は、いずれも一対の接続部91に加えて、上底部92と、連結部93を有している。接続部91及び上底部92は板厚方向をZ方向としており、Z方向において異なる位置に配置されている。連結部93は接続部91と上底部92を連結している。連結部93は、傾斜部分と傾斜部分の両端に設けられた屈曲部分を有している。上底部92と、上底部92の両端に連なる連結部93とに規定される形状が、ZX面において略台形状をなしている。接続部91に対して上底部92が凸とされている。架橋部材90は、はんだ42との接続面と反対の面側に凸とされている。 Although a flat-plate-like thing can also be employ | adopted as the bridge | crosslinking member 90, the convex-shaped bridge | crosslinking member 90 is employ | adopted in this embodiment. The bridge member 90 has an upper bottom portion 92 and a connecting portion 93 in addition to the pair of connecting portions 91. The connection portion 91 and the upper bottom portion 92 have a thickness direction as a Z direction, and are disposed at different positions in the Z direction. The connecting portion 93 connects the connecting portion 91 and the upper bottom portion 92. The connecting portion 93 has an inclined portion and bent portions provided at both ends of the inclined portion. The shape defined by the upper bottom portion 92 and the connecting portions 93 connected to both ends of the upper bottom portion 92 has a substantially trapezoidal shape in the ZX plane. The upper bottom portion 92 is convex with respect to the connection portion 91. The bridging member 90 is convex on the side opposite to the connecting surface with the solder 42.
 図12、図13、及び図16などに示すように、架橋部材90は、電気的に中継するクリップ900と、電気的な中継に加えて、電流検出にも用いられるシャント抵抗器901を有している。架橋部材90は、4つのスイッチング素子70に対応して、2つのクリップ900と2つのシャント抵抗器901を有している。 As shown in FIG. 12, FIG. 13, FIG. 16, etc., the bridge member 90 has a clip 900 for relaying electrically and a shunt resistor 901 used for current detection in addition to the relay for electric ing. The bridging member 90 has two clips 900 and two shunt resistors 901 corresponding to the four switching elements 70.
 クリップ900は、上アーム側のスイッチング素子700H,701Hと対応する配線部620,622とをそれぞれ接続している。クリップ900の構成材料としては、たとえばCuを用いることができる。本実施形態では、Cuの表面にNiめっきが施されている。 The clip 900 connects the switching elements 700H and 701H on the upper arm side and the corresponding wiring parts 620 and 622, respectively. As a constituent material of the clip 900, for example, Cu can be used. In the present embodiment, the surface of Cu is plated with Ni.
 シャント抵抗器901において、はんだ42の接続面とは反対の面に、一対のボンディングワイヤ41が接続される。このボンディングワイヤ41により、電圧降下が検出されて、2つの配線間に流れる電流の電流値が検出される。シャント抵抗器901は、下アーム側のスイッチング素子700L,701Lと対応する配線部621,623とをそれぞれ接続している。シャント抵抗器901の検出値は、ボンディングワイヤ41及び信号端子64を介して、制御回路部26に出力される。 In the shunt resistor 901, a pair of bonding wires 41 is connected to the surface opposite to the connection surface of the solder 42. The voltage drop is detected by the bonding wire 41, and the current value of the current flowing between the two wires is detected. The shunt resistor 901 connects the switching elements 700L and 701L on the lower arm side to the corresponding wiring parts 621 and 623, respectively. The detected value of the shunt resistor 901 is output to the control circuit unit 26 via the bonding wire 41 and the signal terminal 64.
 図16及び図21などに示すように、クリップ900及びシャント抵抗器901は、いずれも、延設方向がX方向、幅方向がY方向となるように、それぞれ配置されている。 As shown in FIG. 16 and FIG. 21 etc., the clip 900 and the shunt resistor 901 are each arranged such that the extending direction is the X direction and the width direction is the Y direction.
 (シャント抵抗器詳細)
 図24及び図25に示すように、シャント抵抗器901は、抵抗体901aと、一対の電極901bと、接合部901cと、目印901dを備えている。シャント抵抗器901は、電流検出用のボンディングワイヤ41が接続される上面901eと、はんだ42が接続される下面901fを有している。
(Shunt resistor details)
As shown in FIGS. 24 and 25, the shunt resistor 901 includes a resistor 901a, a pair of electrodes 901b, a joint 901c, and a mark 901d. The shunt resistor 901 has an upper surface 901 e to which the bonding wire 41 for current detection is connected, and a lower surface 901 f to which the solder 42 is connected.
 抵抗体901aは、電流を検出するために、予め抵抗率が設定されている。抵抗体901aとして、たとえばCuMnNiを用いることができる。本実施形態では、抵抗体901aが平板状をなしている。抵抗体901aは、平面略矩形状をなしている。 The resistor 901a has a resistivity set in advance to detect a current. For example, CuMnNi can be used as the resistor 901 a. In the present embodiment, the resistor 901a has a flat plate shape. The resistor 901a has a substantially rectangular planar shape.
 一対の電極901bは、抵抗体901aを挟むように配置されている。一対の電極901bの間に、抵抗体901aが配置されている。電極901bは、抵抗体901aの板厚方向に直交する一方向において、抵抗体901aの両端にそれぞれ配置されている。電極901bとして、抵抗体901aよりも抵抗率の小さい金属、たとえばCuを用いることができる。本実施形態では、Cuの表面にNiめっきが施されている。 The pair of electrodes 901b is disposed to sandwich the resistor 901a. A resistor 901a is disposed between the pair of electrodes 901b. The electrodes 901b are respectively disposed at both ends of the resistor 901a in one direction orthogonal to the thickness direction of the resistor 901a. As the electrode 901b, a metal having a resistivity smaller than that of the resistor 901a, for example, Cu can be used. In the present embodiment, the surface of Cu is plated with Ni.
 電極901bは、ZX面において略クランク形状をなしている。電極901bは、2つの屈曲部をそれぞれ有している。電極901bが、上記した接続部91のすべて、連結部93のすべて、及び上底部92の一部をなしている。抵抗体901aは、クランク形状の電極901bにより、Z方向において接続部91から離れた位置に支持されている。一対の電極901bは、抵抗体901aを支持する一対の脚部である。 The electrode 901 b has a substantially crank shape in the ZX plane. The electrode 901 b has two bends respectively. The electrode 901 b forms all of the connection portion 91 described above, all of the connection portion 93, and a part of the upper bottom portion 92. The resistor 901a is supported at a position away from the connection portion 91 in the Z direction by the crank-shaped electrode 901b. The pair of electrodes 901 b is a pair of legs supporting the resistor 901 a.
 接合部901cは、抵抗体901aと電極901bのそれぞれとの接合領域である。接合部901cは、抵抗体901aと電極901bとの界面に形成されている。接合部901cは、抵抗体901aと電極901bとを溶接することで形成されている。このため、接合部901cは、溶接ビード領域とも称される。 The bonding portion 901 c is a bonding region between the resistor 901 a and the electrode 901 b. The bonding portion 901c is formed at the interface between the resistor 901a and the electrode 901b. The joint portion 901c is formed by welding the resistor 901a and the electrode 901b. For this reason, the joint portion 901c is also referred to as a weld bead area.
 ここで、接合部901cにおいて、抵抗体901aと電極901bとの並び方向における長さを幅とすると、図25に示すように、上面901e側の幅W1のほうが、下面901f側の幅W2よりも狭くされている。幅W1は、たとえば0.6mm以下とされている。接合部901cの幅は、下面901fで最大とされ、上面901eで最小とされ、且つ、下面901fから上面901eに向けて徐々に狭くされている。 Here, assuming that the length in the alignment direction of the resistor 901a and the electrode 901b in the bonding portion 901c is a width, the width W1 on the upper surface 901e is greater than the width W2 on the lower surface 901f, as shown in FIG. It is narrowed. The width W1 is, for example, 0.6 mm or less. The width of the joint portion 901c is maximized at the lower surface 901f, minimized at the upper surface 901e, and gradually narrowed from the lower surface 901f toward the upper surface 901e.
 目印901dは、電流検出用の一対のボンディングワイヤ41の接続位置の基準となる。本実施形態では、図25に示すように、電極901bそれぞれの接合部811の近傍に形成されている。目印901dは、プレス加工、印刷、レーザ照射などにより形成することができる。本実施形態では、一対の目印901dが、幅方向の中心を跨ぐように、中心から等距離の位置に設けられている。これにより、一対の目印901dを基準にし、目印のない幅方向中心にボンディングワイヤ41を接続することができる。これにより、ボンディング性を向上することができる。 The mark 901 d is a reference of the connection position of the pair of bonding wires 41 for current detection. In the present embodiment, as shown in FIG. 25, the electrodes 901 b are formed in the vicinity of the bonding portions 811. The mark 901 d can be formed by press processing, printing, laser irradiation, or the like. In the present embodiment, a pair of marks 901 d are provided at equal distances from the center so as to straddle the center in the width direction. Thereby, the bonding wire 41 can be connected to the center in the width direction without a mark based on the pair of marks 901d. Thereby, the bondability can be improved.
 次に、上記したシャント抵抗器901の製造方法について説明する。 Next, a method of manufacturing the above-described shunt resistor 901 will be described.
 先ず、抵抗体901aのロール材と、電極901bのロール材を2つ準備し、一対の電極901bの間に抵抗体901aを配置する。そして、電極901bのそれぞれと抵抗体901aとを接触させた状態で、下面901f側からビーム、たとえば電子ビームを照射し、電極901bのそれぞれと抵抗体901aとを溶接する。これにより、一方の電極901bと抵抗体901aとの界面、他方の電極901bと抵抗体901aとの界面に、接合部901cがそれぞれ形成される。 First, two roll materials of the resistor 901a and the electrode 901b are prepared, and the resistor 901a is disposed between the pair of electrodes 901b. Then, in a state where each of the electrodes 901b is in contact with the resistor 901a, a beam such as an electron beam is irradiated from the lower surface 901f side to weld each of the electrodes 901b with the resistor 901a. Thus, the bonding portion 901c is formed at the interface between the one electrode 901b and the resistor 901a and at the interface between the other electrode 901b and the resistor 901a.
 下面901f側からビームを照射するため、接合部901cの幅は、下面901fで最大となり、下面901fから上面901eに向けて徐々に狭くなる。溶接により、抵抗体901aと電極901bが一体化する。 In order to irradiate a beam from the lower surface 901f side, the width of the bonding portion 901c becomes maximum at the lower surface 901f and gradually narrows from the lower surface 901f to the upper surface 901e. By welding, the resistor 901a and the electrode 901b are integrated.
 次いで、ロール材からの打ち抜き、電極901bのNiめっき、電極901bの曲げ加工などを経て、シャント抵抗器901を得ることができる。 Then, the shunt resistor 901 can be obtained through punching from a roll material, Ni plating of the electrode 901b, bending of the electrode 901b, and the like.
 ところで、電極901bは、抵抗体901aよりも抵抗率の小さい金属、たとえばCuを用いて形成されている。また、接合部901cにも、このCuが含まれている。Cuは、抵抗体901aを構成する金属に較べてTCR(抵抗温度係数)が高い。このため、電流検出精度を向上するためには、抵抗体901aの端部近傍にボンディングワイヤ41を接続し、ボンディングワイヤ41間のCuをできるだけ少なくするのが好ましい。すなわち、ボンディングワイヤ41の間に存在する電極901b及び接合部901cをできるだけ小さくするのが好ましい。 The electrode 901 b is formed of a metal having a resistivity smaller than that of the resistor 901 a, for example, Cu. The Cu is also contained in the bonding portion 901c. Cu has a high TCR (temperature coefficient of resistance) compared to the metal constituting the resistor 901 a. Therefore, in order to improve the current detection accuracy, it is preferable to connect the bonding wire 41 in the vicinity of the end of the resistor 901 a and to reduce Cu between the bonding wires 41 as much as possible. That is, it is preferable to make the electrode 901 b and the bonding portion 901 c existing between the bonding wires 41 as small as possible.
 しかしながら、ビーム溶接される構成において、接合部の表面及びその周囲は、スパッタやヒュームなどによって汚染されている。また、接合部の表面及びその周囲は、荒れている。このため、ボンダビリティ性を確保するためには、接合部に対して所定のギャップを設け、ボンディングワイヤを接続しなければならない。 However, in the beam-welded configuration, the surface of the joint and its periphery are contaminated by spatter, fumes and the like. Also, the surface of the joint and its surroundings are rough. For this reason, in order to ensure bondability, it is necessary to provide a predetermined gap to the joint and connect the bonding wire.
 特に、接合部901cの幅は、ビーム照射面においてビームの非照射面よりも広くなる。ビームの照射面のほうが、接合部901cの表面及びその周囲において、スパッタやヒュームなどの影響が大きい。また、ビームの照射面のほうが、接合部901c及びその周囲において荒れた部分が大きくなる。すなわち、面粗度の大きい部分が広くなる。このため、ビーム照射面とボンディング面が一致する場合、ギャップを大きくしなければならない。 In particular, the width of the bonding portion 901c is wider at the beam irradiation surface than at the non-irradiation surface of the beam. The beam irradiation surface has a greater effect of sputtering, fumes, etc. on the surface of the bonding portion 901c and its periphery. In addition, the irradiated surface of the beam is larger in the rough portion in the bonding portion 901c and the periphery thereof. That is, the portion with a large surface roughness becomes wide. Therefore, when the beam irradiation surface and the bonding surface coincide with each other, the gap must be increased.
 これに対し、本実施形態では、接合部901cにおいて、上面901e側の幅W1のほうが下面901f側の幅W2よりも狭くされている。したがって、接合部901cに対して所定のギャップを設けたとしても、抵抗体901aの端部の近くに、ボンディングワイヤ41を接続することができる。 On the other hand, in the present embodiment, in the bonding portion 901c, the width W1 on the upper surface 901e side is smaller than the width W2 on the lower surface 901f side. Therefore, even if a predetermined gap is provided for the bonding portion 901c, the bonding wire 41 can be connected near the end of the resistor 901a.
 また、下面901f側からビームを照射することで、W1<W2の構成が実現されている。上面901eは、ビームの照射面ではないため、下面901fに較べてスパッタやヒュームの影響を低減できる。また、面粗度の大きい部分を小さくすることができる。これにより、接合部901cに対するギャップを小さくすることができる。 In addition, the configuration of W1 <W2 is realized by irradiating the beam from the lower surface 901f side. The upper surface 901 e is not a beam irradiation surface, and therefore the influence of sputtering and fumes can be reduced as compared to the lower surface 901 f. In addition, the portion with large surface roughness can be made smaller. Thereby, the gap with respect to the bonding portion 901c can be reduced.
 以上により、抵抗体901aの端部により近づけて、ボンディングワイヤ41を接続することができる。すなわち、電流の検出精度を向上することができる。シャント抵抗器901とボンディングワイヤ41を備える電流検出装置において、電流の検出精度を向上することができる。また、搬送時の吸着面である上面901eにおいて、接合部901cを含む面粗度の大きい部分が小さいため、シャント抵抗器901を吸着搬送しやすい。 As described above, the bonding wire 41 can be connected closer to the end of the resistor 901 a. That is, the detection accuracy of the current can be improved. In the current detection device including the shunt resistor 901 and the bonding wire 41, the detection accuracy of the current can be improved. Further, in the upper surface 901e, which is the suction surface at the time of transportation, the portion having a large surface roughness including the bonding portion 901c is small, so the shunt resistor 901 can be easily suctioned and transported.
 特に本実施形態では、上面901eに目印901dが形成されている。したがって、目印901dを位置基準として、ボンディングワイヤ41を所定位置に精度良く接続することができる。これにより、ボンディング位置のばらつきを低減し、電流検出精度をさらに高めることができる。なお、目印901dを有さない構成を採用することもできる。 Particularly in the present embodiment, the mark 901 d is formed on the upper surface 901 e. Therefore, the bonding wire 41 can be accurately connected to the predetermined position using the mark 901 d as a position reference. Thereby, the variation in bonding position can be reduced, and the current detection accuracy can be further enhanced. In addition, the structure which does not have the mark 901d is also employable.
 本実施形態では、一対のボンディングワイヤ41を、電極901bに接続する例を示したが、これに限定されない。図26に示す変形例のように、抵抗体901aに、一対のボンディングワイヤ41のそれぞれを接続してもよい。上記したように、ビームの非照射面である上面901eは、下面901fに較べてスパッタやヒュームの影響を低減できる。したがって、ボンディングワイヤ41を抵抗体901aにおける端部付近、詳しくは、接合部901cの近くに接続することができる。これにより、ボンディングワイヤ41を抵抗体901aに接続しつつ、検出電圧域(ダイナミックレンジ)の減少を抑制することができる。また、TCRの影響を無くし、これにより電流検出精度を向上することができる。 Although the example which connects a pair of bonding wires 41 to electrode 901b was shown in this embodiment, it is not limited to this. As in the modification shown in FIG. 26, each of the pair of bonding wires 41 may be connected to the resistor 901a. As described above, the upper surface 901e, which is the non-irradiated surface of the beam, can reduce the effects of sputtering and fumes as compared to the lower surface 901f. Therefore, the bonding wire 41 can be connected near the end of the resistor 901a, more specifically, near the bonding portion 901c. As a result, while the bonding wire 41 is connected to the resistor 901a, it is possible to suppress a decrease in the detection voltage range (dynamic range). In addition, the influence of the TCR can be eliminated, whereby the current detection accuracy can be improved.
 図27に示す変形例のように、一方のボンディングワイヤ41を電極901bに接続し、他方のボンディングワイヤ41を抵抗体901aに接続してもよい。 As in the modification shown in FIG. 27, one bonding wire 41 may be connected to the electrode 901b, and the other bonding wire 41 may be connected to the resistor 901a.
 図16に示すように、シャント抵抗器901の接続部91の幅は、スイッチング素子70のソース電極72の幅よりも短くされている。ソース電極72の幅を、シャント抵抗器901の接続部91の幅以上となるようにすると、スイッチング素子70のチップサイズが変わっても、シャント抵抗器901において接続部91の幅の変更で対応することができる。すなわち、抵抗体901a、接合部901c、及び電極901bの一部を含む上底部92については変更しなくてよい。したがって、シャント抵抗器901の設計を共通化することができる。 As shown in FIG. 16, the width of the connection portion 91 of the shunt resistor 901 is shorter than the width of the source electrode 72 of the switching element 70. If the width of the source electrode 72 is equal to or larger than the width of the connection portion 91 of the shunt resistor 901, the change in the width of the connection portion 91 in the shunt resistor 901 can be taken even if the chip size of the switching element 70 changes. be able to. That is, the upper bottom 92 including the resistor 901a, the joint 901c, and part of the electrode 901b may not be changed. Therefore, the design of shunt resistor 901 can be made common.
 上記したように、抵抗体901aと電極901bが接合された低抵抗のシャント抵抗器901では、一般的に検出電圧が小さいため、ボンディングワイヤ41間のESL(等価直列インダクタンス)の影響により、検出精度が低下する虞がある。ESLは、自己インダクタンスと相互インダクタンスの和で示され、自己インダクタンスはシャント抵抗器901の形状で決定される。図28は、たとえば出力端子63P1から、スイッチング素子700L、シャント抵抗器901、及び配線部621を介して負極端子63E1に電流が流れる場合を示している。破線矢印は、スイッチング素子700Lのドレイン電極に向けて流れる電流、実線矢印は、スイッチング素子700Lのソース電極72から負極端子63E1に向けて流れる電流を示している。 As described above, in the low resistance shunt resistor 901 in which the resistor 901a and the electrode 901b are joined, the detection accuracy is generally small, and therefore, the detection accuracy is affected by the ESL (equivalent series inductance) between the bonding wires 41. May be reduced. ESL is indicated by the sum of the self inductance and the mutual inductance, and the self inductance is determined by the shape of the shunt resistor 901. FIG. 28 shows, for example, a case where a current flows from the output terminal 63P1 to the negative electrode terminal 63E1 via the switching element 700L, the shunt resistor 901, and the wiring portion 621. The broken line arrow indicates the current flowing toward the drain electrode of the switching element 700L, and the solid line arrow indicates the current flowing from the source electrode 72 of the switching element 700L toward the negative electrode terminal 63E1.
 上記したように、シャント抵抗器901の延設方向がX方向となるように、シャント抵抗器901が配置されている。また、出力端子63P1は、アイランド612に対して、斜め方向に外側へ引き出され、その先でY方向に延設されている。この配置により、図28に示すように、シャント抵抗器901に流れる電流が、出力端子63P1の斜め延設部分に流れる電流に対して、逆向きの成分を有することとなる。したがって、シャント抵抗器901の相互インダクタンス、ひいてはESLを低減し、これにより検出精度を高めることができる。本実施形態では、配線構造の複雑化、すなわち半導体モジュール40の大型化を抑制しつつ、ESLを低減することができる。 As described above, the shunt resistor 901 is disposed such that the extending direction of the shunt resistor 901 is the X direction. Further, the output terminal 63P1 is drawn outward with respect to the island 612 in an oblique direction, and is extended in the Y direction at the end of the output terminal 63P1. By this arrangement, as shown in FIG. 28, the current flowing through the shunt resistor 901 has a component in the opposite direction to the current flowing through the obliquely extended portion of the output terminal 63P1. Therefore, the mutual inductance of the shunt resistors 901 and hence the ESL can be reduced, thereby enhancing the detection accuracy. In the present embodiment, the ESL can be reduced while suppressing the complication of the wiring structure, that is, the increase in size of the semiconductor module 40.
 (放射ノイズを考慮した配置)
 任意の上下アームにおける上アーム側のスイッチング素子70と、別の上下アームにおける下アーム側のスイッチング素子70が同時にオンされることで、バスバー27や回転電機部10(固定子巻線121)を含めた電流ループが形成される。本実施形態では、半導体モジュール40内に二相分の上下アームを集約しているため、半導体モジュール内に一相分の上下アームを備える構成に較べて、電流ループを小さくすることができる。これにより、放射ノイズを低減することができる。
(Arrangement considering radiation noise)
By simultaneously turning on the switching element 70 on the upper arm side in any upper and lower arms and the switching element 70 on the lower arm side in other upper and lower arms, the bus bar 27 and the rotating electrical machine unit 10 (the stator winding 121) are included. A current loop is formed. In the present embodiment, since the upper and lower arms for two phases are integrated in the semiconductor module 40, the current loop can be made smaller compared to the configuration having the upper and lower arms for one phase in the semiconductor module. This can reduce the radiation noise.
 図29では、封止樹脂体50及びボンディングワイヤ41を省略している。図29に示す破線矢印は、スイッチング素子700H,701Lがオンされるとともに、スイッチング素子700L,701Hがオフされたタイミングにおける電流経路を示している。 In FIG. 29, the sealing resin body 50 and the bonding wire 41 are omitted. The broken line arrows shown in FIG. 29 indicate the current paths at the timing when the switching elements 700H and 701L are turned on and the switching elements 700L and 701H are turned off.
 このタイミングでは、正極端子63B1から、アイランド611、スイッチング素子700H、クリップ900、配線部620、アイランド612、及び出力端子63P1を介して、回転電機部10、たとえばX相の固定子巻線121aに電流が流れる。そして、回転電機部10のY相の固定子巻線121aから、出力端子63P2、アイランド614、スイッチング素子701L、シャント抵抗器901、及び配線部623を介して、負極端子63E2に電流が流れる。 At this timing, current flows from the positive electrode terminal 63B1 to the rotating electrical machine unit 10, for example, the X-phase stator winding 121a through the island 611, the switching element 700H, the clip 900, the wiring portion 620, the island 612, and the output terminal 63P1. Flows. Then, current flows from the Y-phase stator winding 121a of the rotating electrical machine unit 10 to the negative electrode terminal 63E2 through the output terminal 63P2, the island 614, the switching element 701L, the shunt resistor 901, and the wiring portion 623.
 第1の上下アームを構成するスイッチング素子700H,700L、正極端子63B1、負極端子63E1、及び出力端子63P1は、アイランド611,612と、配線部620,621と、クリップ900と、シャント抵抗器901により構成される配線S1によって、相互に接続されている。配線S1により、スイッチング素子700H,700Lはバッテリ間において直列に接続される。第2の上下アームを構成するスイッチング素子701H,701L、正極端子63B2、負極端子63E2、及び出力端子63P2は、アイランド613,614と、配線部622,623と、クリップ900と、シャント抵抗器901により構成される配線S2によって、相互に接続されている。配線S2により、バッテリ間においてスイッチング素子701H,701Lが直列に接続される。 The switching elements 700H and 700L constituting the first upper and lower arms, the positive electrode terminal 63B1, the negative electrode terminal 63E1, and the output terminal 63P1 are formed by the islands 611 and 612, the wiring portions 620 and 621, the clip 900, and the shunt resistor 901 The lines S1 are connected to each other. The switching elements 700H and 700L are connected in series between the batteries by the wiring S1. The switching elements 701H and 701L constituting the second upper and lower arms, the positive electrode terminal 63B2, the negative electrode terminal 63E2, and the output terminal 63P2 are formed by the islands 613 and 614, the wiring portions 622 and 623, the clip 900, and the shunt resistor 901. The interconnections S2 are connected to each other. The switching elements 701H and 701L are connected in series between the batteries by the wiring S2.
 本実施形態では、図29に示すように、配線S1,S2により挟まれる領域に、配線S1,S2とは異なり、封止樹脂体50よりも透磁率の高い導電部材が配置されている。具体的には、導電部材として、駆動部80のアイランド610が配置されている。導電部材には、電流ループによって渦電流が生じる。渦電流により生じる磁界は、バスバー27や回転電機部10も含めた電流ループにより生じる磁界を妨げる向きに生じる。これにより、放射ノイズを効果的に低減することができる。図29において、アイランド611,613上に示す磁界の向きが電流ループによるものであり、導電部材(アイランド610)上に示す磁界の向きが渦電流によるものである。 In the present embodiment, as shown in FIG. 29, a conductive member having a permeability higher than that of the sealing resin body 50 is disposed in a region sandwiched by the wires S1 and S2, unlike the wires S1 and S2. Specifically, the island 610 of the drive unit 80 is disposed as a conductive member. An eddy current is generated in the conductive member by the current loop. The magnetic field generated by the eddy current is generated in the direction that prevents the magnetic field generated by the current loop including the bus bar 27 and the rotating electrical machine unit 10. Thereby, radiation noise can be effectively reduced. In FIG. 29, the direction of the magnetic field shown on the islands 611 and 613 is due to the current loop, and the direction of the magnetic field shown on the conductive member (island 610) is due to the eddy current.
 なお、配線S1,S2により挟まれる領域にアイランド610を配置可能であれば、主端子63の配置は特に限定されない。本実施形態では、封止樹脂体50の側面50cから正極端子63B1,63B2及び負極端子63E1,63E2が突出し、反対の側面50dから出力端子63P1,63P2が突出している。これにより、X方向において、配線S1,S2の間にアイランド610が配置されている。したがって、渦電流により電流ループの磁界を打ち消す効果を高めることができる。また、バスバー27との接続構造を簡素化することができる。 Note that the arrangement of the main terminals 63 is not particularly limited as long as the island 610 can be arranged in the region sandwiched by the wirings S1 and S2. In the present embodiment, the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 protrude from the side surface 50c of the sealing resin body 50, and the output terminals 63P1 and 63P2 protrude from the opposite side surface 50d. Thereby, the island 610 is disposed between the wirings S1 and S2 in the X direction. Therefore, the effect of canceling the magnetic field of the current loop can be enhanced by the eddy current. Further, the connection structure with the bus bar 27 can be simplified.
 また、導電部材として、駆動部80が配置されるアイランド610を用いている。これにより、アイランド610とは他の導電部材を用いる構成に較べて、構成を簡素化し、半導体モジュール40の体格を小型化することができる。 Moreover, the island 610 in which the drive part 80 is arrange | positioned is used as a conductive member. Thus, the configuration can be simplified and the size of the semiconductor module 40 can be reduced as compared with the configuration using another conductive member with the island 610.
 アイランド610には、上記したようにグランド電位の信号端子640が連なっており、導電部材であるアイランド610が接地されている。これにより、アイランド610の電位変動を抑制することができる。そして、電界成分を抑制し、放射ノイズをさらに低減することができる。 As described above, the signal terminal 640 of the ground potential is connected to the island 610, and the island 610, which is a conductive member, is grounded. Thereby, the potential fluctuation of the island 610 can be suppressed. And an electric field component can be suppressed and radiation noise can be reduced further.
 導電部材としてアイランド610の例を示したが、これに限定されない。封止樹脂体50よりも透磁率の高い導電部材であれば採用できる。 Although the example of the island 610 is shown as a conductive member, it is not limited to this. Any conductive member having higher permeability than the sealing resin body 50 can be employed.
 (タイバーカット前のリードフレーム)
 図21に示すように、タイバーカット前のリードフレーム60は、上記したアイランド61、配線部62、主端子63、信号端子64、及びダミー端子65に加えて、タイバー66と、外枠67と、連結部68を有している。外枠67は、XY面において、略矩形環状をなしており、リードフレーム60を位置決めするための貫通孔が複数設けられている。
(Lead frame before tie bar cut)
As shown in FIG. 21, the lead frame 60 before the tie bar cut includes the tie bar 66, the outer frame 67, in addition to the island 61, the wiring portion 62, the main terminal 63, the signal terminal 64, and the dummy terminal 65 described above. A connecting portion 68 is provided. The outer frame 67 has a substantially rectangular ring shape in the XY plane, and a plurality of through holes for positioning the lead frame 60 are provided.
 タイバー66は、Y方向における正極端子63B1,63B2及び負極端子63E1,63E2側において、アイランド61に近い1段目のタイバー660aと、タイバー660aよりもアイランド61から離れた位置に設けられた2段目のタイバー660bを有している。タイバー66は、出力端子63P1,63P2及び信号端子64側において、アイランド61に近い1段目のタイバー661aと、タイバー661aよりもアイランド61から離れた位置に設けられた2段目のタイバー661bを有している。タイバー66のそれぞれは、X方向両端で外枠67に連結されている。 The tie bar 66 is provided on the side of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 in the Y direction, the first stage tie bar 660a near the island 61 and the second stage provided at a position farther from the island 61 than the tie bar 660a. Tie bar 660b. The tie bar 66 has a first stage tie bar 661a near the island 61 and a second stage tie bar 661b provided at a position farther from the island 61 than the tie bar 661 on the output terminals 63P1 and 63P2 and the signal terminal 64 side. doing. Each of the tie bars 66 is connected to the outer frame 67 at both ends in the X direction.
 タイバー660aは、正極端子63B1,63B2及び負極端子63E1,63E2を外枠67に連結している。タイバー660aは、正極端子63B1,63B2及び負極端子63E1,63E2のそれぞれに対し、幅狭部63aよりもアイランド61に近い位置で連結されている。タイバー660aは、X方向に沿って一直線状に延設されている。架橋部材90であるクリップ900が配置されるアイランド611,613及び配線部620,622のうち、アイランド611,613は、対応する正極端子63B1,63B2及びダミー端子65によってタイバー660aに連結されている。配線部620,622は、ダミー端子65によってタイバー660aに連結されている。 The tie bar 660a connects the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 to the outer frame 67. The tie bar 660a is connected to each of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 at a position closer to the island 61 than the narrow portion 63a. The tie bars 660 a extend in a straight line along the X direction. Of the islands 611 and 613 and the wiring portions 620 and 622 in which the clip 900 which is the bridging member 90 is disposed, the islands 611 and 613 are connected to the tie bar 660a by corresponding positive terminals 63B1 and 63B2 and dummy terminals 65. The wiring portions 620 and 622 are connected to the tie bar 660 a by the dummy terminals 65.
 タイバー660bは、正極端子63B1,63B2及び負極端子63E1,63E2のそれぞれに対し、幅狭部63aよりもアイランド61から離れた位置であって、バスバー27との接続部よりも近い位置で連結されている。タイバー660bは、幅狭部63aに隣接する幅広部の端部に連結されている。正極端子63B1,63B2及び負極端子63E1,63E2は、アイランド611,613及び配線部621,623からの延設の始点が互いに同じ位置とされている。一方、延設の終点、すなわち先端位置は正極端子63B1,63B2と負極端子63E1,63E2とで異なっており、正極端子63B1,63B2のほうが負極端子63E1,63E2よりも延設長さが短くされている。このため、タイバー660aは、X方向に延設された部分と、Y方向に延設された部分を有している。正極端子63B1,63B2に連結された部分は、負極端子63E1,63E2に連結された部分よりも、Y方向においてアイランド61に近い位置とされている。正極端子63B1と負極端子63E1との間、正極端子63B2と負極端子63E2との間に、Y方向の延設部分がそれぞれ配置されている。 The tie bar 660b is connected to each of the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 at a position farther from the island 61 than the narrow portion 63a and closer to the connection portion with the bus bar 27 There is. The tie bar 660b is connected to the end of the wide portion adjacent to the narrow portion 63a. The positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2 are located at the same positions as the start points of extension from the islands 611 and 613 and the wiring portions 621 and 623, respectively. On the other hand, the end point of the extension, that is, the tip position is different between the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2, and the positive electrode terminals 63B1 and 63B2 have a shorter extension length than the negative electrodes 63E1 and 63E2. There is. For this reason, the tie bar 660a has a portion extending in the X direction and a portion extending in the Y direction. The portions connected to the positive electrode terminals 63B1 and 63B2 are closer to the island 61 in the Y direction than the portions connected to the negative electrode terminals 63E1 and 63E2. An extending portion in the Y direction is disposed between the positive electrode terminal 63B1 and the negative electrode terminal 63E1, and between the positive electrode terminal 63B2 and the negative electrode terminal 63E2.
 タイバー660a,660bは、連結部68により、Y方向においても外枠67に連結されている。連結部68は、タイバー660a及びタイバー660bに対して、アイランド611に連結された正極端子63B1及びダミー端子65の間の位置で連結されている。別の連結部68は、アイランド613に連結された正極端子63B2及びダミー端子65の間の位置で連結されている。正極端子63B1,63B2の間に2本の連結部68が配置されている。 The tie bars 660a and 660b are connected to the outer frame 67 also in the Y direction by the connecting portion 68. The connecting portion 68 is connected to the tie bar 660 a and the tie bar 660 b at a position between the positive electrode terminal 63 B 1 and the dummy terminal 65 connected to the island 611. Another connecting portion 68 is connected at a position between the positive electrode terminal 63B2 connected to the island 613 and the dummy terminal 65. Two connecting portions 68 are disposed between the positive electrode terminals 63B1 and 63B2.
 別の連結部68は、タイバー660a及びタイバー660bに対して、正極端子63B1と配線部620に連なるダミー端子65との間の位置で連結されている。別の連結部68は、タイバー660a及びタイバー660bに対して、正極端子63B2と配線部622に連なるダミー端子65との間の位置で連結されている。これら連結部68は、いずれもY方向に延設されており、一端がタイバー660aに連結され、他端が外枠67に連結されている。 Another connecting portion 68 is connected to the tie bar 660 a and the tie bar 660 b at a position between the positive electrode terminal 63 B 1 and the dummy terminal 65 connected to the wiring portion 620. Another connecting portion 68 is connected to the tie bar 660 a and the tie bar 660 b at a position between the positive electrode terminal 63 B 2 and the dummy terminal 65 connected to the wiring portion 622. Each of the connecting portions 68 extends in the Y direction, one end thereof is connected to the tie bar 660 a, and the other end is connected to the outer frame 67.
 タイバー661aは、出力端子63P1,63P2及び信号端子64を外枠67に連結している。タイバー661aは、X方向に沿って一直線状に延設されている。タイバー661aは、出力端子63P1,63P2の幅狭部63a及び信号端子64のクランク部64aよりもアイランド61に近い位置に連結されている。架橋部材90であるシャント抵抗器901が配置されるアイランド612,614及び配線部621,623のうち、アイランド612,614は、対応する出力端子63P1,63P2及び信号端子641によってタイバー661aに連結されている。配線部622,623は、ダミー端子65によってタイバー661aに連結されている。 The tie bar 661a connects the output terminals 63P1 and 63P2 and the signal terminal 64 to the outer frame 67. The tie bars 661a extend in a straight line along the X direction. The tie bar 661a is connected to a position closer to the island 61 than the narrow portion 63a of the output terminals 63P1 and 63P2 and the crank portion 64a of the signal terminal 64. Of the islands 612 and 614 and the wiring portions 621 and 623 in which the shunt resistor 901 which is the bridging member 90 is disposed, the islands 612 and 614 are connected to the tie bar 661a by the corresponding output terminals 63P1 and 63P2 and the signal terminal 641. There is. The wiring portions 622 and 623 are connected to the tie bar 661 a by the dummy terminal 65.
 タイバー661bは、出力端子63P1,63P2の幅狭部63a及び信号端子64のクランク部64aよりもアイランド61から離れた位置であって、バスバー27及び配線基板22との接続部よりも近い位置に連結されている。タイバー661bは、X方向に沿って一直線状に延設されている。 The tie bar 661b is connected to a position farther from the island 61 than the narrow portions 63a of the output terminals 63P1 and 63P2 and the crank portion 64a of the signal terminal 64 and closer to a connection portion with the bus bar 27 and the wiring board 22 It is done. The tie bars 661b extend in a straight line along the X direction.
 図21に示すように、2段目のタイバー660b,661bは、1段目のタイバー660a,661aよりも幅が広くされている。タイバー660a,661aの幅は狭いため、主端子63及び信号端子64の曲げ加工などの際に邪魔にならず、且つ、半導体モジュール40の体格を小型化することができる。また、タイバーカット時の寸法ずれを小さくすることができる。一方、タイバー660b,661bの幅は広いため、これにより剛性を向上し、封止樹脂体50の成形時においてタイバー66の変形を抑制することができる。したがって、主端子63及び信号端子64の位置精度を向上することができる。特に信号端子64の位置精度を向上することができる。 As shown in FIG. 21, the second tier tie bars 660b and 661b are wider than the first tier tie bars 660a and 661a. Since the width of the tie bars 660a and 661a is narrow, the tie bars 660a and 661a do not obstruct the bending of the main terminals 63 and the signal terminals 64, and the size of the semiconductor module 40 can be miniaturized. In addition, dimensional deviation at the time of tie bar cutting can be reduced. On the other hand, since the width of the tie bars 660 b and 661 b is wide, the rigidity can be improved thereby, and the deformation of the tie bars 66 can be suppressed at the time of molding the sealing resin body 50. Therefore, the positional accuracy of the main terminal 63 and the signal terminal 64 can be improved. In particular, the positional accuracy of the signal terminal 64 can be improved.
 主端子63及び信号端子64における外部との接続部は、外枠67に対して連結されておらず、フリーとなっている。主端子63及び信号端子64は、金属板からリードフレーム60を打ち抜きする際に、外枠67から切り離されている。 The connection parts with the outside in the main terminal 63 and the signal terminal 64 are not connected with the outer frame 67, and are free. The main terminals 63 and the signal terminals 64 are separated from the outer frame 67 when the lead frame 60 is punched out of a metal plate.
 信号端子64の先端は、図6、図14、及び図21などに示すように、スエージ加工が施されている。信号端子64の先端は、スエージ加工により潰されて傾斜を有し、四角錐状となっている。これにより、信号端子64を配線基板22に対して効率よく挿入実装することができる。スエージ加工により、バリを潰すこともできる。 The tip of the signal terminal 64 is swaged as shown in FIG. 6, FIG. 14, and FIG. The tip of the signal terminal 64 is crushed by swaging to have a slope, and has a quadrangular pyramid shape. As a result, the signal terminals 64 can be efficiently inserted into and mounted on the wiring board 22. It is possible to crush the burrs by swaging.
 信号端子64の隣りに配置されたダミー端子65は、図21に示すように、Y方向に延設されて、外枠67にそれぞれ連結されている。これにより、外枠67との吊り箇所が増えるため、成形時においてタイバー661a,661bの変形を抑制することができる。したがって、出力端子63P1,63P2及び信号端子64の位置精度を向上することができる。特に信号端子64の位置精度を向上することができる。 The dummy terminals 65 disposed adjacent to the signal terminals 64 are extended in the Y direction and connected to the outer frame 67, as shown in FIG. As a result, the number of hanging points with the outer frame 67 increases, so that deformation of the tie bars 661a and 661b can be suppressed at the time of molding. Therefore, the positional accuracy of the output terminals 63P1 and 63P2 and the signal terminal 64 can be improved. In particular, the positional accuracy of the signal terminal 64 can be improved.
 上記したように、架橋部材90は、スイッチング素子70を介してアイランド61と配線部62とを接続する。クリップ900の1つは、アイランド611及び配線部620上に配置される。別のクリップ900は、アイランド613及び配線部622上に配置される。シャント抵抗器901の1つは、アイランド612及び配線部621上に配置される。別のシャント抵抗器901は、アイランド614及び配線部623上に配置される。 As described above, the bridging member 90 connects the island 61 and the wiring portion 62 via the switching element 70. One of the clips 900 is disposed on the island 611 and the wiring portion 620. Another clip 900 is disposed on the island 613 and the wiring portion 622. One of the shunt resistors 901 is disposed on the island 612 and the wiring portion 621. Another shunt resistor 901 is disposed on the island 614 and the wiring portion 623.
 図30では、アイランド61及び配線部62において、架橋部材90の配置される部分、換言すればZ方向からの投影部分を破線で示している。アイランド61における架橋部材90の配置部60aと、同じ架橋部材90が配置される配線部62における架橋部材90の配置部60bとが、X方向に並んで配置されている。すなわち、同じ架橋部材90に対する配置部60a,60bの並び方向が、アイランド61及び配線部62が連結された1段目のタイバー660a,661aの延設方向と同じ方向とされている。これにより、半導体モジュール40において、アイランド61に対して同じ側に配置された1段目のタイバー痕66aの並び方向と、架橋部材90それぞれの延設方向とが同じ方向(X方向)とされている。 In FIG. 30, in the island 61 and the wiring portion 62, a portion where the bridging member 90 is disposed, in other words, a projected portion from the Z direction is indicated by a broken line. An arrangement portion 60a of the bridge member 90 in the island 61 and an arrangement portion 60b of the bridge member 90 in the wiring portion 62 in which the same bridge member 90 is arranged are arranged side by side in the X direction. That is, the arranging direction of the placement parts 60a and 60b with respect to the same bridging member 90 is the same as the extending direction of the first stage tie bars 660a and 661a to which the island 61 and the wiring part 62 are connected. Thereby, in the semiconductor module 40, the arranging direction of the first stage tie bar marks 66a arranged on the same side with respect to the island 61 and the extending direction of the bridging members 90 are made the same direction (X direction). There is.
 図31では、本実施形態と参考例を比較している。参考例においては、本実施形態の関連する要素の符号に対し、末尾にrを付与している。本実施形態では、タイバー660a,661aの延設方向と、架橋部材90の延設方向が略一致している。参考例では、タイバー660ar,661arの延設方向と、架橋部材90rの延設方向が略直交している。図31に示すように、平行配置とした方が、直交配置とする構成に較べて、タイバー66の延設方向と直交する方向において、タイバー66から架橋部材90までの最大長さを長くすることができる。これにより、封止樹脂体50の成形時に、成形型に接触したアイランド61や配線部62が撓みやすい。特に本実施形態では、複数相に対応する数のアイランド611~614及び配線部62を有するため、Z方向においてアイランド611~614及び配線部62に高さばらつきが生じやすい。しかしながら、上記した平行配置とすることで、裏面50bから放熱面611a~614a,620a~623aなどを露出させるべく、成形型にアイランド611~614及び配線部62を接触させる際、高さばらつきが生じていても、アイランド61や配線部62が応力を緩和できる。したがって、アイランド611~614と対応するスイッチング素子70との接合部に作用する応力を低減することができる。 FIG. 31 compares this embodiment with a reference example. In the reference example, r is added to the end of the reference numerals of the relevant elements of this embodiment. In the present embodiment, the extending direction of the tie bars 660a and 661a and the extending direction of the bridging member 90 substantially coincide with each other. In the reference example, the extending direction of the tie bars 660ar and 661ar and the extending direction of the bridging member 90r are substantially orthogonal to each other. As shown in FIG. 31, in the parallel arrangement, the maximum length from the tie bar 66 to the bridging member 90 is made longer in the direction orthogonal to the extending direction of the tie bar 66 as compared to the arrangement in which the arrangement is orthogonal. Can. Thus, when molding the sealing resin body 50, the island 61 and the wiring portion 62 in contact with the molding die are easily bent. In particular, in the present embodiment, since the islands 611 to 614 and the wiring portions 62 corresponding to a plurality of phases are provided, height variations easily occur in the islands 611 to 614 and the wiring portions 62 in the Z direction. However, with the parallel arrangement described above, when the islands 611 to 614 and the wiring portion 62 are brought into contact with the molding die in order to expose the heat radiating surfaces 611a to 614a and 620a to 623a from the back surface 50b, height variations occur. Even if it does, the island 61 and the wiring part 62 can relieve stress. Therefore, the stress acting on the junctions between the islands 611 to 614 and the corresponding switching elements 70 can be reduced.
 複数相に対応する数のアイランド611~614及び配線部62を有するため、X方向においてタイバー66の長さも長くなっている。これに対し、架橋部材90の配置対象であるアイランド611~614及び配線部62の少なくとも1つは、複数箇所で同じタイバー66に連結されている。具体的には、アイランド611~614が、それぞれ2箇所で同じタイバー66に連結されている。これによれば、封止樹脂体50の成形時において、タイバー66が変形するのを抑制することができる。タイバー変形の抑制により、アイランド611~614と対応するスイッチング素子70との接合部に作用する応力を低減することができる。 Since the islands 611 to 614 and the wiring portions 62 correspond in number to the multiple phases, the length of the tie bar 66 is also longer in the X direction. On the other hand, at least one of the islands 611 to 614 and the wiring portion 62, which is the arrangement target of the bridging member 90, is connected to the same tie bar 66 at a plurality of places. Specifically, the islands 611 to 614 are connected to the same tie bar 66 at two places respectively. According to this, it is possible to suppress the deformation of the tie bar 66 at the time of molding the sealing resin body 50. By suppressing the tie bar deformation, it is possible to reduce the stress acting on the junction between the islands 611 to 614 and the corresponding switching element 70.
 アイランド611,613は、対応する正極端子63B1,63B2によってタイバー660aに連結されるとともに、ダミー端子65によってタイバー660aに連結されている。このように、主端子63よりも幅の狭いダミー端子65を採用することで、タイバー660aの変形を抑制しつつ、リードフレーム60の体格増大を抑制することができる。 The islands 611 and 613 are connected to the tie bar 660 a by the corresponding positive electrode terminals 63 B 1 and 63 B 2 and to the tie bar 660 a by the dummy terminal 65. Thus, by adopting the dummy terminal 65 narrower than the main terminal 63, it is possible to suppress an increase in physical size of the lead frame 60 while suppressing the deformation of the tie bar 660a.
 アイランド611,613に連結されたダミー端子65は、連結部68により、Y方向において外枠67に連結されている。これによっても、剛性を向上し、タイバー660a,660bの変形を抑制することができる。また、連結部68は、電気的な接続機能を提供しないので、タイバーカット時に外枠67から切り離しても、バスバー27との溶接に影響しない。 The dummy terminals 65 connected to the islands 611 and 613 are connected to the outer frame 67 in the Y direction by the connecting portion 68. Also by this, the rigidity can be improved and the deformation of the tie bars 660a and 660b can be suppressed. In addition, since the connecting portion 68 does not provide an electrical connection function, welding to the bus bar 27 is not affected even if it is separated from the outer frame 67 at the time of tie bar cutting.
 アイランド612,614は、対応する出力端子63P1,63P2及び信号端子641によって、タイバー661a,661bに連結されている。このように、主端子63よりも幅の狭い信号端子641を用いることで、タイバー661a,661bの変形を抑制しつつ、リードフレーム60の体格増大を抑制することができる。 The islands 612 and 614 are connected to the tie bars 661a and 661b by the corresponding output terminals 63P1 and 63P2 and the signal terminal 641. Thus, by using the signal terminal 641 narrower than the main terminal 63, it is possible to suppress an increase in physical size of the lead frame 60 while suppressing the deformation of the tie bars 661a and 661b.
 同じ架橋部材90が配置されるアイランド61及び配線部62は、互いに異なるタイバー660a,661aに連結されている。これによれば、アイランド61及び配線部62が、タイバー66に対して両吊りとなる。したがって、成形時においてタイバー66の変形を抑制することができる。なお、架橋部材の延設方向がY方向の場合、両吊り構造では、タイバー変形によりスイッチング素子70の接合部に対して、X方向のせん断応力が作用する。これに対し、本実施形態では、架橋部材90の延設方向がタイバー66と同じX方向となるため、せん断応力を抑制することもできる。 The island 61 and the wiring portion 62 in which the same bridging member 90 is disposed are connected to different tie bars 660a and 661a. According to this, the island 61 and the wiring portion 62 are both suspended with respect to the tie bar 66. Therefore, deformation of the tie bar 66 can be suppressed at the time of molding. When the extending direction of the bridging member is the Y direction, shear stress in the X direction acts on the joint portion of the switching element 70 due to tie bar deformation in the both suspension structure. On the other hand, in the present embodiment, since the extending direction of the bridging member 90 is the same X direction as the tie bar 66, shear stress can be suppressed.
 シャント抵抗器901が配置されるアイランド612,614は、対応する出力端子63P1,63P2及び信号端子640によってタイバー661aに連結され、アイランド612,614に連なる配線部620,622及びダミー端子65を介してタイバー660aに連結されている。また、シャント抵抗器901が配置される配線部621,623は、対応する負極端子63E1,63E2を介してタイバー660a,660bに連結され、ダミー端子65を介してタイバー661aに連結されている。このように、シャント抵抗器901が配置されるアイランド612,614及び配線部621,623は両吊りとされている。これにより、シャント抵抗器901にボンディングワイヤ41を超音波接合する際のアイランド612,614及び配線部621,623の振動を抑制し、ボンディング性を向上することができる。 The islands 612 and 614 in which the shunt resistor 901 is disposed are connected to the tie bar 661 a by the corresponding output terminals 63P1 and 63P2 and the signal terminal 640, and via the wiring portions 620 and 622 and the dummy terminals 65 connected to the islands 612 and 614. It is connected to a tie bar 660a. The wiring portions 621 and 623 in which the shunt resistor 901 is disposed are connected to the tie bars 660a and 660b via the corresponding negative terminals 63E1 and 63E2, and are connected to the tie bar 661a via the dummy terminals 65. Thus, the islands 612 and 614 and the wiring portions 621 and 623 in which the shunt resistor 901 is disposed are both suspended. As a result, it is possible to suppress the vibration of the islands 612 and 614 and the wiring parts 621 and 623 when the bonding wire 41 is ultrasonically bonded to the shunt resistor 901, and to improve the bonding property.
 (その他) 
 本実施形態では、架橋部材90として、2つのクリップ900と2つのシャント抵抗器901を用いる例を示したが、これに限定されない。たとえばすべての架橋部材90をシャント抵抗器901としてもよい。これにより、4つの架橋部材90を1種類に共通化し、部品点数を削減することができる。
(Others)
In the present embodiment, an example in which two clips 900 and two shunt resistors 901 are used as the cross-linking member 90 is shown, but the present invention is not limited to this. For example, all bridge members 90 may be shunt resistors 901. Thereby, four bridge members 90 can be made common to one type, and the number of parts can be reduced.
 図32は、半導体モジュール40の変形例を示している。図32では、便宜上、信号端子64を省略するとともに、封止樹脂体50や主端子63を簡素化して図示している。図32では、同じ側面50cから突出する正極端子63B1と負極端子63E1、正極端子63B2と負極端子63E2を、それぞれX方向において近づけて配置している。 FIG. 32 shows a modification of the semiconductor module 40. In FIG. 32, for convenience, the signal terminal 64 is omitted, and the sealing resin body 50 and the main terminal 63 are illustrated in a simplified manner. In FIG. 32, the positive electrode terminal 63B1 and the negative electrode terminal 63E1, and the positive electrode terminal 63B2 and the negative electrode terminal 63E2 protruding from the same side surface 50c are arranged in proximity to each other in the X direction.
 さらに、封止樹脂体50の一面50a及び裏面50bの一方にコンデンサ44を配置し、コンデンサ44と正極端子63B1,63B2及び負極端子63E1,63E2とを接続している。ここでは、スナバ回路用のコンデンサ44を採用しており、2つのコンデンサ44が一面50aに配置されている。一面50aには、側面50cにも開口する凹部55が2箇所形成されており、凹部55のそれぞれにコンデンサ44が個別に配置されている。コンデンサ44のリード44aは、正極端子63B1及び負極端子63E1にそれぞれ接続されている。別のコンデンサ44のリード44aは、正極端子63B2及び負極端子63E2にそれぞれ接続されている。これによれば、XY面において体格を増大することなく、コンデンサ44を一体化することができる。なお、スナバ回路用のコンデンサ44に代えて、平滑用のコンデンサを配置してもよい。 Furthermore, the capacitor 44 is disposed on one of the surface 50a and the back surface 50b of the sealing resin body 50, and the capacitor 44 is connected to the positive electrode terminals 63B1 and 63B2 and the negative electrode terminals 63E1 and 63E2. Here, a capacitor 44 for the snubber circuit is employed, and two capacitors 44 are disposed on the one surface 50a. Recesses 55 which are also open to the side surface 50c are formed in two places on the one surface 50a, and the capacitors 44 are individually disposed in each of the recesses 55. The leads 44a of the capacitor 44 are connected to the positive electrode terminal 63B1 and the negative electrode terminal 63E1, respectively. The leads 44a of another capacitor 44 are connected to the positive electrode terminal 63B2 and the negative electrode terminal 63E2, respectively. According to this, the capacitor 44 can be integrated without increasing the physique in the XY plane. A smoothing capacitor may be disposed instead of the capacitor 44 for the snubber circuit.
 図33は、半導体モジュール40の変形例を示している。図33では、便宜上、半導体モジュール40の一部のみを図示している。この変形例では、駆動部80が、各相の電流を検出する電流検出回路を有している。図33に示すように、シャント抵抗器901の低電位が、ボンディングワイヤ41、信号端子64、ボンディングワイヤ41を介して、駆動部80のパッド81に入力される。なお、スイッチング素子701L側も同じ構成とされている。以上によれば、シャント抵抗器901に接続されるボンディングワイヤ41の長さを短くすることができる。たとえば、成形時にボンディングワイヤ41に不良が生じるのを抑制することができる。なお、シャント抵抗器901の低電位側に対応する信号端子64は、X方向に延びる連結部によって2本の信号端子64が連結されてなる。駆動部80に入力されるシャント抵抗器901の高電位は、スイッチング素子700Lのソース電位によって代用されている。 FIG. 33 shows a modification of the semiconductor module 40. In FIG. 33, only a part of the semiconductor module 40 is illustrated for the sake of convenience. In this modification, the drive unit 80 has a current detection circuit that detects the current of each phase. As shown in FIG. 33, the low potential of the shunt resistor 901 is input to the pad 81 of the drive unit 80 through the bonding wire 41, the signal terminal 64, and the bonding wire 41. The switching element 701 L side is also configured the same. According to the above, the length of the bonding wire 41 connected to the shunt resistor 901 can be shortened. For example, generation of defects in bonding wire 41 can be suppressed during molding. The signal terminal 64 corresponding to the low potential side of the shunt resistor 901 is formed by connecting two signal terminals 64 by a connecting portion extending in the X direction. The high potential of the shunt resistor 901 input to the drive unit 80 is substituted by the source potential of the switching element 700L.
 (第2実施形態)
 本実施形態は、先行実施形態を参照できる。このため、先行実施形態に示した回転電機1及び半導体モジュール40と共通する部分についての説明は、簡略化又は省略する。
Second Embodiment
This embodiment can refer to the preceding embodiments. Therefore, the description of the portions common to the rotating electrical machine 1 and the semiconductor module 40 shown in the preceding embodiment is simplified or omitted.
 (回転電機の概略構成)
 図34~図38に基づき、本実施形態に係る制御装置一体型の回転電機1の構成について説明する。なお、回転電機1の概略構成については、特開2007-112807号公報を援用することができる。図34に示すように、本実施形態の回転電機1も、回転電機部10と、回転電機部10を制御する制御装置部20を備えており、制御装置部20が制御対象である回転電機部10と一体化されている。
(Schematic configuration of rotating electric machine)
The configuration of the controller-integrated electric rotating machine 1 according to the present embodiment will be described based on FIGS. 34 to 38. In addition, about schematic structure of the rotary electric machine 1, Unexamined-Japanese-Patent No. 2007-112807 can be used. As shown in FIG. 34, the rotating electrical machine 1 of the present embodiment also includes the rotating electrical machine unit 10 and the control device unit 20 for controlling the rotating electrical machine unit 10, and the control device unit 20 is a controlled object. Integrated with 10
 (回転電機部)
 回転電機部10は、エンジンから駆動力が供給されることで、バッテリを充電するための電力を発生する発電機(オルタネータ)として機能する。回転電機部10は、第1実施形態同様、ハウジング11と、固定子12と、回転子13と、プーリ14と、スリップリング15と、ブラシ16を備えている。
(Rotary electric machine part)
The rotating electrical machine unit 10 functions as a generator (alternator) that generates electric power for charging the battery by being supplied with driving force from the engine. The rotating electrical machine unit 10 includes a housing 11, a stator 12, a rotor 13, a pulley 14, a slip ring 15, and a brush 16 as in the first embodiment.
 ハウジング11は、固定子12及び回転子13を収容するとともに、回転子13を回転可能に支持している。ハウジング11の軸方向後側には、制御装置部20が固定されている。固定子12は、固定子コア120と、固定子巻線121を有している。図35に示すように、固定子巻線121は、第1実施形態同様、U相、V相、W相の三相巻線からなる固定子巻線121aと、X相、Y相、Z相の三相巻線からなる固定子巻線121bを有している。固定子巻線121a,121bは、互いに所定電気角(たとえば30度)ずれて配置されている。 The housing 11 accommodates the stator 12 and the rotor 13 and rotatably supports the rotor 13. A control device unit 20 is fixed to the rear side in the axial direction of the housing 11. The stator 12 has a stator core 120 and a stator winding 121. As shown in FIG. 35, as in the first embodiment, the stator winding 121 has a stator winding 121a consisting of three-phase windings of U-phase, V-phase and W-phase, and X-phase, Y-phase and Z-phase. And a stator winding 121b consisting of three-phase windings. The stator windings 121a and 121b are arranged offset from each other by a predetermined electrical angle (for example, 30 degrees).
 エンジンから供給される駆動力によって回転子13が回転し、発生した磁束が固定子巻線121と鎖交することで、固定子巻線121が交流を生じる。回転子13は、第1実施形態同様、回転子コア130と、回転子巻線131と、ファン132と、回転軸133を有している。プーリ14は、回転軸133のうち、ハウジング11から前方に突出した部分に連結されており、回転軸133とともに回転する。 The rotor 13 is rotated by the driving force supplied from the engine, and the generated magnetic flux is interlinked with the stator winding 121, whereby the stator winding 121 generates an alternating current. The rotor 13 has a rotor core 130, a rotor winding 131, a fan 132, and a rotating shaft 133, as in the first embodiment. The pulley 14 is connected to a portion of the rotating shaft 133 that protrudes forward from the housing 11 and rotates with the rotating shaft 133.
 スリップリング15は、回転軸133のうち、ハウジング11から後方に突出した部分の外周面に、絶縁部材を介して固定されている。スリップリング15は、配線を介して回転子巻線131に接続されている。ブラシ16は、たとえばバネによって径方向において回転軸133側に押圧され、スリップリング15の外周面に接触している。ブラシ16は、ブラシホルダ160に保持されている。ブラシ16及びスリップリング15を介して、回転子巻線131に直流が供給される。 The slip ring 15 is fixed to an outer peripheral surface of a portion of the rotation shaft 133 which protrudes rearward from the housing 11 via an insulating member. The slip ring 15 is connected to the rotor winding 131 via a wire. The brush 16 is pressed to the rotary shaft 133 side in the radial direction, for example, by a spring, and is in contact with the outer peripheral surface of the slip ring 15. The brush 16 is held by a brush holder 160. Direct current is supplied to the rotor winding 131 via the brush 16 and the slip ring 15.
 (制御装置部)
 制御装置部20は、バッテリを充電するために、回転電機部10の発生した電力を直流に変換し、バッテリへ電力の供給を行う。制御装置部20は、図示しないレギュレータと、図35に示す整流回路部30を備えている。レギュレータは、回転子巻線131に供給する直流を制御することで、電圧をバッテリへの充電に適した所定電圧に維持する。整流回路部30は、回転電機部10から供給される交流を、スイッチング素子70により整流して直流に変換する。整流回路部30の構成は、第1実施形態に示したインバータ回路部23と同じ構成となっている。
(Control unit)
In order to charge the battery, control unit 20 converts the power generated by rotating electrical machine 10 into direct current, and supplies the power to the battery. The control device unit 20 includes a regulator (not shown) and a rectifier circuit unit 30 shown in FIG. The regulator controls the direct current supplied to the rotor winding 131 to maintain the voltage at a predetermined voltage suitable for charging the battery. The rectifying circuit unit 30 rectifies the alternating current supplied from the rotating electrical machine unit 10 by the switching element 70 and converts it into direct current. The configuration of the rectifier circuit unit 30 is the same as that of the inverter circuit unit 23 shown in the first embodiment.
 整流回路部30は、3つの半導体モジュール40により構成されている。各半導体モジュール40は、二相分の上下アームを構成する複数のスイッチング素子70を有している。本実施形態でも、スイッチング素子70としてnチャネル型のMOSFETを採用している。3つの半導体モジュール40のうち、第1の半導体モジュール40がU相及びV相の上下アームを構成し、第2の半導体モジュール40がW相及びX相の上下アームを構成し、第3の半導体モジュール40がY相及びZ相の上下アームを構成している。 The rectifier circuit unit 30 is configured of three semiconductor modules 40. Each semiconductor module 40 has a plurality of switching elements 70 constituting upper and lower arms for two phases. Also in the present embodiment, an n-channel MOSFET is employed as the switching element 70. Of the three semiconductor modules 40, the first semiconductor module 40 constitutes upper and lower arms of U phase and V phase, the second semiconductor module 40 constitutes upper and lower arms of W phase and X phase, and the third semiconductor A module 40 constitutes upper and lower arms of Y phase and Z phase.
 各アームは1つのスイッチング素子70により構成されており、半導体モジュール40のそれぞれは、4つのスイッチング素子70を有している。半導体モジュール40は、第1の上下アームを構成する上アーム側のスイッチング素子700H及び下アーム側のスイッチング素子700Lと、第2の上下アームを構成する上アーム側のスイッチング素子701H及び下アーム側のスイッチング素子701Lをそれぞれ有している。スイッチング素子700H,700Lが直列接続され、スイッチング素子701H,701Lが直列接続されている。 Each arm is constituted by one switching element 70, and each of the semiconductor modules 40 has four switching elements 70. The semiconductor module 40 includes the switching element 700H on the upper arm side and the switching element 700L on the lower arm side constituting the first upper and lower arms, and the switching element 701H on the upper arm side and the lower arm side constituting the second upper and lower arm. Each has a switching element 701L. Switching elements 700H and 700L are connected in series, and switching elements 701H and 701L are connected in series.
 図36及び図37に示すように、制御装置部20は、整流回路部30を構成するパワーアセンブリPA1,PA2,PA3と、カバー31を備えている。パワーアセンブリPA1は、半導体モジュール40と、ヒートシンク24と、バスバー27を含むバスバーアセンブリBA1を有している。パワーアセンブリPA2は、半導体モジュール40と、ヒートシンク24と、バスバー27を含むバスバーアセンブリBA2を有している。パワーアセンブリPA3は、半導体モジュール40と、ヒートシンク24と、バスバー27を含むバスバーアセンブリBA3を有している。パワーアセンブリPA1,PA2,PA3それぞれのヒートシンク24は、対応する半導体モジュール40の発生した熱を放熱する。 As shown in FIGS. 36 and 37, the control device unit 20 includes power assemblies PA1, PA2 and PA3 constituting the rectifier circuit unit 30, and a cover 31. The power assembly PA1 includes a semiconductor module 40, a heat sink 24, and a bus bar assembly BA1 including a bus bar 27. The power assembly PA2 includes a semiconductor module 40, a heat sink 24, and a bus bar assembly BA2 including a bus bar 27. The power assembly PA3 includes a semiconductor module 40, a heat sink 24, and a bus bar assembly BA3 including a bus bar 27. The heat sink 24 of each of the power assemblies PA1, PA2, PA3 dissipates the heat generated by the corresponding semiconductor module 40.
 パワーアセンブリPA1の半導体モジュール40において、スイッチング素子700H,700LによりU相上下アームが構成され、スイッチング素子701H,701LによりV相上下アームが構成されている。パワーアセンブリPA2の半導体モジュール40において、スイッチング素子700H,700LによりW相上下アームが構成され、スイッチング素子701H,701LによりX相上下アームが構成されている。パワーアセンブリPA3の半導体モジュール40において、スイッチング素子700H,700LによりY相上下アームが構成され、スイッチング素子701H,701LによりZ相上下アームが構成されている。 In semiconductor module 40 of power assembly PA1, switching elements 700H and 700L constitute U-phase upper and lower arms, and switching elements 701H and 701L constitute V-phase upper and lower arms. In the semiconductor module 40 of the power assembly PA2, the switching elements 700H and 700L constitute W-phase upper and lower arms, and the switching elements 701H and 701L constitute X-phase upper and lower arms. In the semiconductor module 40 of the power assembly PA3, the switching elements 700H and 700L constitute Y-phase upper and lower arms, and the switching elements 701H and 701L constitute Z-phase upper and lower arms.
 バスバーアセンブリBA1,BA2,BA3は、対応する半導体モジュール40を配線するためのバスバー27の集合体である。具体的には、図35に示すように、半導体モジュール40を配線するための正極バスバー27B、負極バスバー27E、及び出力バスバー27P1,27P2が、インサート成形などによって同じ樹脂部材に固定されてなる。正極バスバー27B、負極バスバー27E、及び出力バスバー27P1,27P2は、所定の間隔をあけた状態で、樹脂により一体化されている。正極バスバー27B及び負極バスバー27Eは、樹脂を介して積層配置されている。 The bus bar assemblies BA1, BA2, BA3 are a collection of bus bars 27 for wiring the corresponding semiconductor modules 40. Specifically, as shown in FIG. 35, positive electrode bus bar 27B, negative electrode bus bar 27E, and output bus bars 27P1 and 27P2 for wiring semiconductor module 40 are fixed to the same resin member by insert molding or the like. The positive electrode bus bar 27B, the negative electrode bus bar 27E, and the output bus bars 27P1 and 27P2 are integrated by resin in a state where a predetermined distance is left. The positive electrode bus bar 27B and the negative electrode bus bar 27E are stacked and arranged via a resin.
 バスバーアセンブリBA1,BA2,BA3のそれぞれにおいて、正極バスバー27Bは、図35に示すように、上アーム側のスイッチング素子700H,701Hのドレイン電極に接続されている。負極バスバー27Eは、下アーム側のスイッチング素子700L,701Lのソース電極に接続されている。出力バスバー27P1は、スイッチング素子700H,700Lの接続点に接続されている。出力バスバー27P2は、スイッチング素子701H,701Lの接続点に接続されている。 In each of the bus bar assemblies BA1, BA2, and BA3, as shown in FIG. 35, the positive electrode bus bar 27B is connected to the drain electrodes of the switching elements 700H and 701H on the upper arm side. The negative bus bar 27E is connected to the source electrodes of the switching elements 700L and 701L on the lower arm side. The output bus bar 27P1 is connected to the connection point of the switching elements 700H and 700L. The output bus bar 27P2 is connected to the connection point of the switching elements 701H and 701L.
 図38に示すように、パワーアセンブリPA1,PA2,PA3のそれぞれにおいて、半導体モジュール40はバスバー27に接続された状態で、対応するバスバーアセンブリBA1,BA2,BA3に固定されている。また、ヒートシンク24は、半導体モジュール40の放熱面側に固定されている。 As shown in FIG. 38, in each of power assemblies PA1, PA2 and PA3, semiconductor module 40 is fixed to corresponding bus bar assemblies BA1, BA2 and BA3 in a state of being connected to bus bar 27. Further, the heat sink 24 is fixed to the heat dissipation surface side of the semiconductor module 40.
 パワーアセンブリPA1のみ、電源端子32が一体化されている。図37及び図38に示すように、パワーアセンブリPA1は、半導体モジュール40と、ヒートシンク24と、バスバーアセンブリBA1に加えて、電源端子32と、固定部材33を有している。 The power supply terminal 32 is integrated only in the power assembly PA1. As shown in FIGS. 37 and 38, the power assembly PA1 includes a power supply terminal 32 and a fixing member 33 in addition to the semiconductor module 40, the heat sink 24, and the bus bar assembly BA1.
 電源端子32には、バッテリの正極からの配線が接続される。電源端子32は、固定部材33によってバスバーアセンブリBA1に固定されている。電源端子32は、ナット34によって固定部材33に固定されている。固定部材33は、正極バスバー27Bに接触した状態で、正極バスバー27B、負極バスバー27E、及び出力バスバー27P1,27P2とともに樹脂で一体化されている。 A wire from the positive electrode of the battery is connected to the power supply terminal 32. The power supply terminal 32 is fixed to the bus bar assembly BA1 by a fixing member 33. The power supply terminal 32 is fixed to the fixing member 33 by a nut 34. The fixing member 33 is integrated with the positive electrode bus bar 27B, the negative electrode bus bar 27E, and the output bus bars 27P1 and 27P2 with resin in a state of being in contact with the positive electrode bus bar 27B.
 パワーアセンブリPA1,PA2,PA3は、回転電機部10のハウジング11の軸方向後端において、回転軸133を取り囲むように略U字状に配置されている。具体的には、回転軸133周りにおいて、パワーアセンブリPA1、パワーアセンブリPA2、パワーアセンブリPA3の順に配置されている。そして、図37に示すように、ボルト35によってハウジング11に固定されている。 The power assemblies PA1, PA2, PA3 are arranged in a substantially U-shape at the axial rear end of the housing 11 of the rotary electric machine 10 so as to surround the rotary shaft 133. Specifically, around the rotation axis 133, the power assembly PA1, the power assembly PA2, and the power assembly PA3 are arranged in this order. And as shown in FIG. 37, it is fixing to the housing 11 by the volt | bolt 35. As shown in FIG.
 隣り合うパワーアセンブリPA1,PA2において、正極バスバー27B同士が接続され、隣り合うパワーアセンブリPA2,PA3において、正極バスバー27B同士が接続されている。同様に、隣り合うパワーアセンブリPA1,PA2において、負極バスバー27E同士が接続され、隣り合うパワーアセンブリPA2,PA3において、負極バスバー27E同士が接続されている。パワーアセンブリPA1の負極バスバー27Eは、車体に固定されたハウジング11に接続され、車体を介してバッテリの負極に接続されている。 The positive electrode bus bars 27B are connected to each other in the adjacent power assemblies PA1 and PA2, and the positive electrode bus bars 27B are connected to each other in the adjacent power assemblies PA2 and PA3. Similarly, in adjacent power assemblies PA1 and PA2, the negative bus bars 27E are connected to each other, and in the adjacent power assemblies PA2 and PA3, the negative bus bars 27E are connected to each other. The negative bus bar 27E of the power assembly PA1 is connected to the housing 11 fixed to the vehicle body, and is connected to the negative electrode of the battery via the vehicle body.
 パワーアセンブリPA1において、出力バスバー27P1は、固定子巻線121aのU相に接続され、出力バスバー27P2は、固定子巻線121aのV相に接続されている。パワーアセンブリPA2において、出力バスバー27P1は、固定子巻線121aのW相に接続され、出力バスバー27P2は、固定子巻線121bのX相に接続されている。パワーアセンブリPA3において、出力バスバー27P1は、固定子巻線121bのY相に接続され、出力バスバー27P2は、固定子巻線121bのZ相に接続されている。 In power assembly PA1, output bus bar 27P1 is connected to the U phase of stator winding 121a, and output bus bar 27P2 is connected to the V phase of stator winding 121a. In power assembly PA2, output bus bar 27P1 is connected to the W phase of stator winding 121a, and output bus bar 27P2 is connected to the X phase of stator winding 121b. In power assembly PA3, output bus bar 27P1 is connected to the Y phase of stator winding 121b, and output bus bar 27P2 is connected to the Z phase of stator winding 121b.
 カバー31は、パワーアセンブリPA1,PA2,PA3を覆う樹脂部材である。カバー31は、電源端子32の一部を外部に露出させた状態で、パワーアセンブリPA1,PA2,PA3を覆うようにハウジング11に固定されている。 The cover 31 is a resin member that covers the power assemblies PA1, PA2, and PA3. The cover 31 is fixed to the housing 11 so as to cover the power assemblies PA1, PA2, and PA3 in a state in which a part of the power supply terminal 32 is exposed to the outside.
 (回転電機の動作)
 スリップリング15及びブラシ16を介して回転子巻線131に直流が供給されて磁極が形成された状態で、エンジンから駆動力が供給されると、固定子巻線121a,121bがそれぞれ交流(三相交流)を発生する。整流回路部30は、駆動部80によって制御され、固定子巻線121から出力バスバー27P1,27P2などを介して供給される交流を整流する。駆動部80により、スイッチング素子70のオンオフが制御され、電流の流れる方向が順次切り替えられて、交流が整流される。スイッチング素子70のデッドタイムにおいては、寄生ダイオードにより、交流が整流される。整流回路部30により変換された直流は、バッテリに供給される。これにより、バッテリは、回転電機部10の発生した電力によって充電される。
(Operation of the rotating electrical machine)
In the state where a direct current is supplied to the rotor winding 131 via the slip ring 15 and the brush 16 to form a magnetic pole, when the driving force is supplied from the engine, the stator windings 121a and 121b are alternating current (3 Phase exchange). The rectifier circuit unit 30 is controlled by the drive unit 80 and rectifies alternating current supplied from the stator winding 121 via the output bus bars 27P1 and 27P2. The drive unit 80 controls the on / off of the switching element 70 to sequentially switch the current flow direction to rectify alternating current. During the dead time of the switching element 70, alternating current is rectified by the parasitic diode. The direct current converted by the rectifier circuit unit 30 is supplied to the battery. Thereby, the battery is charged by the power generated by the rotating electrical machine unit 10.
 (半導体モジュール詳細)
 図39~図53に示すように、本実施形態の半導体モジュール40も、封止樹脂体50と、リードフレーム60と、スイッチング素子70と、駆動部80と、架橋部材90を備えている。図46~図52では、封止樹脂体50の図示を省略している。図53では、図21同様、タイバーカット前のリードフレーム60を示している。図46~図52では、便宜上、ボンディングワイヤ41の図示を省略している。
(Details of semiconductor module)
As shown in FIGS. 39 to 53, the semiconductor module 40 according to the present embodiment also includes the sealing resin body 50, the lead frame 60, the switching element 70, the driving unit 80, and the bridging member 90. In FIGS. 46 to 52, the sealing resin body 50 is not shown. In FIG. 53, as in FIG. 21, the lead frame 60 before tie bar cutting is shown. In FIG. 46 to FIG. 52, the bonding wire 41 is omitted for the sake of convenience.
 (封止樹脂体)
 封止樹脂体50は、第1実施形態とほぼ同じ構成とされている。この封止樹脂体50も、たとえばエポキシ系の樹脂を用いてトランスファモールド法により成形されている。
(Sealing resin body)
The sealing resin body 50 has substantially the same configuration as that of the first embodiment. This sealing resin body 50 is also molded by a transfer molding method using, for example, an epoxy resin.
 図39~図44に示すように、封止樹脂体50は、Z方向の面である一面50a及び裏面50bと、側面を有している。一面50a側に対応するバスバーアセンブリBA1,BA2,BA3が配置され、裏面50b側にヒートシンク24が配置される。また、主端子63及び信号端子64が突出する側面50c,50dを有している。図40に示すように、一面50aには、エジェクタピン由来のピン痕53と、成形型のゲート痕54が設けられている。図41に示すように、裏面50bには、ピン痕53が設けられている。 As shown in FIGS. 39 to 44, the sealing resin body 50 has one surface 50a and a back surface 50b, which are surfaces in the Z direction, and a side surface. The bus bar assemblies BA1, BA2, and BA3 corresponding to the one surface 50a side are disposed, and the heat sink 24 is disposed on the back surface 50b side. In addition, side surfaces 50c and 50d from which the main terminal 63 and the signal terminal 64 protrude are provided. As shown in FIG. 40, a pin mark 53 derived from an ejector pin and a gate mark 54 of a mold are provided on the one surface 50a. As shown in FIG. 41, a pin mark 53 is provided on the back surface 50b.
 後述するように、本実施形態ではアイランド611,613が連結部615によって一体化されている。そして、連結部615に切り欠き615bを設け、切り欠き615bの部分にエジェクタピンを配置できるようにしている。このため、図41に示すように、切り欠き615bにピン痕53が設けられている。切り欠き615bは、Y方向において連結部615の両側にそれぞれ設けられている。これにより、XY面内においてエジェクタピンがバランスよく配置され、特にアイランド611,613周辺の離型性を向上することができる。 As described later, in the present embodiment, the islands 611 and 613 are integrated by the connecting portion 615. And the notch 615b is provided in the connection part 615, and it enables it to arrange | position an ejector pin in the part of the notch 615b. Therefore, as shown in FIG. 41, a pin mark 53 is provided in the notch 615b. The notches 615 b are respectively provided on both sides of the connecting portion 615 in the Y direction. As a result, the ejector pins are disposed in a well-balanced manner in the XY plane, and in particular, the releasability around the islands 611 and 613 can be improved.
 (リードフレーム)
 リードフレーム60も、第1実施形態同様、アイランド61と、配線部62と、外部接続用端子である主端子63及び信号端子64と、ダミー端子65を備えている。リードフレーム60は、信号端子64の配置を除けば、X方向の中心に対してほぼ線対称とされている。図53では、リードフレーム60のX方向の中心を一点鎖線で示している。
(Lead frame)
Similarly to the first embodiment, the lead frame 60 also includes an island 61, a wiring portion 62, a main terminal 63 and a signal terminal 64 which are terminals for external connection, and a dummy terminal 65. The lead frame 60 is substantially line symmetrical with respect to the center in the X direction except for the arrangement of the signal terminals 64. In FIG. 53, the center of the lead frame 60 in the X direction is indicated by an alternate long and short dash line.
 図46~図48及び図53に示すように、アイランド61は、アイランド610~614を有している。第1実施形態同様、アイランド610には駆動部80が配置され、アイランド611,612,613,614には、スイッチング素子700H,700L,701H,701Lが個別に配置される。5つのアイランド610~614は、互いに略同じ厚みとされ、Z方向において同一面内に配置されている。アイランド611~614のXY面に沿う面積は、互いに略等しくされている。 As shown in FIGS. 46 to 48 and 53, the island 61 has islands 610 to 614. As in the first embodiment, the drive unit 80 is disposed on the island 610, and the switching elements 700H, 700L, 701H, and 701L are individually disposed on the islands 611, 612, 613, and 614. The five islands 610 to 614 have substantially the same thickness and are arranged in the same plane in the Z direction. The areas of the islands 611 to 614 along the XY plane are substantially equal to one another.
 また、アイランド610~614の放熱面610a~614aが、封止樹脂体50の裏面50bから露出されている。これにより、放熱面610a~614aから効率よく放熱することができる。アイランド61のうち、放熱面610a~614aを除く部分は、封止樹脂体50によって封止されている。図45などに示すように、アイランド61それぞれの側面には、封止樹脂体50の剥離を抑制するために、凸部が設けられている。 Further, the heat radiation surfaces 610 a to 614 a of the islands 610 to 614 are exposed from the back surface 50 b of the sealing resin body 50. Thus, the heat can be dissipated efficiently from the heat dissipation surfaces 610a to 614a. The portion of the island 61 excluding the heat radiation surfaces 610a to 614a is sealed by a sealing resin body 50. As shown in FIG. 45 and the like, convex portions are provided on the side surfaces of each of the islands 61 in order to suppress peeling of the sealing resin body 50.
 アイランド610は、平面略矩形状をなしている。駆動部80は、アイランド610に対し、Y方向において信号端子64寄りに配置されている。図48及び図53などに示すように、アイランド610は、信号端子64とは反対側、すなわちアイランド611,613側に、駆動部80が配置されていない部分である非配置部610cを有している。 The island 610 has a substantially rectangular planar shape. The drive unit 80 is disposed closer to the signal terminal 64 in the Y direction with respect to the island 610. As shown in FIG. 48 and FIG. 53 etc., the island 610 has a non-arranged portion 610 c which is a portion where the drive portion 80 is not arranged on the opposite side to the signal terminal 64, ie, the islands 611 and 613 side. There is.
 したがって、ボンディングワイヤ41を駆動部80のパッド81に接続する際、図示しないクランプ治具にて非配置部610cを押さえることができる。これにより、アイランド610が安定し、ボンディング性を向上することができる。特に本実施形態では、図53に示すように、パッド81を平面略矩形状をなす駆動部80の3辺に集中して設け、信号端子64とは反対側の辺のパッド81を少なくしている。特に辺の中央のパッド81を少なくしている。このため、ボンディングワイヤ41を邪魔することなく、アイランド610をクランプすることができる。 Therefore, when connecting the bonding wire 41 to the pad 81 of the drive unit 80, the non-arranged portion 610c can be pressed by a clamp jig (not shown). As a result, the island 610 can be stabilized, and the bondability can be improved. Particularly in the present embodiment, as shown in FIG. 53, the pads 81 are concentrated on three sides of the drive unit 80 having a substantially rectangular planar shape, and the pads 81 on the side opposite to the signal terminal 64 are reduced. There is. In particular, the central pads 81 on the sides are reduced. Therefore, the island 610 can be clamped without disturbing the bonding wire 41.
 アイランド611~614は、アイランド610の周りに配置されている。アイランド612,614は、X方向において、間にアイランド610を挟むように設けられている。アイランド612,614は、ともに平面略矩形状をなしている。アイランド612,614は、X方向において、アイランド610との間にそれぞれ所定の間隙を有している。アイランド612,614には、2本のボンディングワイヤ41がそれぞれ接続されている。ボンディングワイヤ41は、アイランド612,614におけるアイランド610側の端部であって、信号端子64側とは反対の端に接続されている。 The islands 611 to 614 are disposed around the island 610. The islands 612 and 614 are provided to sandwich the island 610 in the X direction. The islands 612 and 614 both have a substantially rectangular planar shape. The islands 612 and 614 each have a predetermined gap with the island 610 in the X direction. Two bonding wires 41 are connected to the islands 612 and 614, respectively. The bonding wire 41 is connected to the end on the side of the island 610 in the islands 612 and 614, which is opposite to the end on the side of the signal terminal 64.
 アイランド611,613は、アイランド610に対し、Y方向において信号端子64とは反対側に設けられている。アイランド611,613は、所定の間隙を有しつつX方向に並んで配置されている。アイランド611,613は、ともに平面略矩形状をなしている。アイランド611は、Y方向においてアイランド610,612と対向している。アイランド613は、Y方向においてアイランド610,614と対向している。 The islands 611 and 613 are provided on the side opposite to the signal terminal 64 in the Y direction with respect to the island 610. The islands 611 and 613 are arranged side by side in the X direction with a predetermined gap. The islands 611 and 613 both have a substantially rectangular planar shape. The island 611 faces the islands 610 and 612 in the Y direction. The island 613 faces the islands 610 and 614 in the Y direction.
 アイランド611,613は、連結部615により、上アーム側のアイランド61として一体化されている。連結部615は、X方向に延設されており、アイランド611,613の間に配置されている。連結部615の一方の端部は、アイランド611におけるアイランド613側の端部に連なり、他方の端部は、アイランド613におけるアイランド611側の端部に連なっている。連結部615は、アイランド611,163と略同じ厚みとされ、Z方向において同一面内に配置されている。連結部615において、スイッチング素子700H,701Hと反対の放熱面615aが、封止樹脂体50の裏面50bから露出されている。これにより、放熱面615aからスイッチング素子700H,701Hの熱を逃がすこともできる。 The islands 611 and 613 are integrated by the connecting portion 615 as an island 61 on the upper arm side. The connecting portion 615 extends in the X direction, and is disposed between the islands 611 and 613. One end of the connecting portion 615 is continuous with the end of the island 611 on the island 613 side, and the other end is continuous with the end of the island 613 on the island 611 side. The connecting portion 615 has substantially the same thickness as the islands 611 and 163, and is disposed in the same plane in the Z direction. In the connecting portion 615, the heat release surface 615a opposite to the switching elements 700H and 701H is exposed from the back surface 50b of the sealing resin body 50. Thus, the heat of the switching elements 700H and 701H can be dissipated from the heat dissipation surface 615a.
 連結部615には、Y方向の両端に切り欠き615bが設けられ、これにより、連結部615は、アイランド611,613それぞれの端部中央に連なっている。切り欠き615bは両側でほぼ同じ深さとされ、連結部615を含むアイランド611,613は、略H字形状をなしている。すなわち、一体化されたアイランド611,613及び連結部615において、真ん中の連結部615が幅狭部とされ、連結部615を挟むアイランド611,613が幅広部とされている。連結部615には、2本のボンディングワイヤ41が接続されている。アイランド61は、X方向において線対称配置とされている。 In the connecting portion 615, notches 615b are provided at both ends in the Y direction, whereby the connecting portion 615 is continuous with the centers of the end portions of the islands 611 and 613. The notches 615 b have substantially the same depth on both sides, and the islands 611 and 613 including the connecting portion 615 have a substantially H shape. That is, in the integrated islands 611 and 613 and the connecting portion 615, the middle connecting portion 615 is a narrow portion, and the islands 611 and 613 sandwiching the connecting portion 615 are a wide portion. Two bonding wires 41 are connected to the connecting portion 615. The islands 61 are arranged in line symmetry in the X direction.
 配線部62は、第1実施形態同様、アイランド611,612を接続する配線部620と、アイランド612と負極端子63E1を接続する配線部621と、アイランド613,614を接続する配線部622と、アイランド614と負極端子63E2を接続する配線部623を有している。 As in the first embodiment, the wiring unit 62 has a wiring unit 620 for connecting the islands 611 and 612, a wiring unit 621 for connecting the island 612 and the negative terminal 63E1, a wiring unit 622 for connecting the islands 613 and 614, and an island. A wiring portion 623 for connecting the 614 and the negative electrode terminal 63E2 is provided.
 配線部620は、アイランド612における信号端子64とは反対の端部に連なっている。配線部620は、アイランド612においてアイランド610側とは反対の端に連なっている。配線部620はY方向に延設され、その先端部分がX方向においてアイランド611との間に所定の間隙を有しつつ、アイランド611と並んで配置されている。配線部620は、アイランド611に対してX方向外側に配置されている。配線部620の先端には、出力端子63P1が連なっている。すなわち、本実施形態では、Y方向において、配線部620の一端にアイランド612が連なり、他端に出力端子63P1が連なっている。配線部620において、アイランド612側は幅狭部とされ、出力端子63P1側は幅広部とされている。 The wiring portion 620 is connected to the end of the island 612 opposite to the signal terminal 64. The wiring portion 620 is connected to the end of the island 612 opposite to the island 610 side. The wiring portion 620 is extended in the Y direction, and its tip portion is arranged in parallel with the island 611 while having a predetermined gap with the island 611 in the X direction. The wiring portion 620 is disposed outside the island 611 in the X direction. At the tip of the wiring portion 620, an output terminal 63P1 is connected. That is, in the present embodiment, in the Y direction, the island 612 is connected to one end of the wiring portion 620, and the output terminal 63P1 is connected to the other end. In the wiring portion 620, the island 612 side is a narrow portion, and the output terminal 63P1 side is a wide portion.
 配線部621は、負極端子63E1に連なっている。配線部621は負極端子63E1からY方向に延びて、その先端部がX方向においてアイランド612との間に所定の間隙を有しつつ、アイランド612と並んで配置されている。配線部621は、アイランド612に対してX方向外側に配置されている。配線部621は、Y方向において配線部620の幅広部と対向している。 The wiring portion 621 is connected to the negative electrode terminal 63E1. The wiring portion 621 extends from the negative electrode terminal 63E1 in the Y direction, and its tip end portion is disposed side by side with the island 612 while having a predetermined gap with the island 612 in the X direction. The wiring portion 621 is disposed outside the island 612 in the X direction. The wiring portion 621 is opposed to the wide portion of the wiring portion 620 in the Y direction.
 配線部622は、アイランド614における信号端子64とは反対の端部に連なっている。配線部622は、アイランド614においてアイランド610側とは反対の端に連なっている。配線部622はY方向に延設され、その先端部分がX方向においてアイランド613との間に所定の間隙を有しつつ、アイランド613と並んで配置されている。配線部622は、アイランド613に対してX方向外側に配置されている。配線部622の先端には、出力端子63P2が連なっている。すなわち、本実施形態では、Y方向において、配線部622の一端にアイランド614が連なり、他端に出力端子63P2が連なっている。配線部622において、アイランド614側は幅狭部とされ、出力端子63P2側は幅広部とされている。 The wiring portion 622 is connected to the end of the island 614 opposite to the signal terminal 64. The wiring portion 622 is connected to the end of the island 614 opposite to the island 610 side. The wiring portion 622 is extended in the Y direction, and the tip portion thereof is disposed in parallel with the island 613 while having a predetermined gap with the island 613 in the X direction. The wiring portion 622 is disposed outside the island 613 in the X direction. At the tip of the wiring portion 622, an output terminal 63P2 is connected. That is, in the present embodiment, the island 614 is connected to one end of the wiring portion 622 in the Y direction, and the output terminal 63P2 is connected to the other end. In the wiring portion 622, the island 614 side is a narrow portion, and the output terminal 63P2 side is a wide portion.
 配線部623は、負極端子63E2に連なっている。配線部623は負極端子63E2からY方向に延びて、その先端部がX方向においてアイランド614との間に所定の間隙を有しつつ、アイランド614と並んで配置されている。配線部623は、アイランド614に対してX方向外側に配置されている。配線部623は、Y方向において配線部622の幅広部と対向している。 The wiring portion 623 is connected to the negative electrode terminal 63E2. The wiring portion 623 extends from the negative electrode terminal 63E2 in the Y direction, and its tip end portion is disposed side by side with the island 614 while having a predetermined gap with the island 614 in the X direction. The wiring portion 623 is disposed outside the island 614 in the X direction. The wiring portion 623 is opposed to the wide portion of the wiring portion 622 in the Y direction.
 以上により、Y方向におけるアイランド610の位置では、X方向において、配線部621、アイランド612、アイランド610、アイランド614、配線部623の順に並んで配置されている。また、Y方向におけるアイランド611,613の位置では、X方向において、配線部620、アイランド611、アイランド613、配線部622の順に並んで配置されている。配線部62は、X方向において線対称配置とされている。 As described above, at the position of the island 610 in the Y direction, the wiring portion 621, the island 612, the island 610, the island 614, and the wiring portion 623 are sequentially arranged in the X direction. Further, at the positions of the islands 611 and 613 in the Y direction, the wiring portion 620, the island 611, the island 613, and the wiring portion 622 are arranged in this order in the X direction. The wiring portions 62 are arranged in line symmetry in the X direction.
 図41に示すように、配線部620~623の放熱面620a~623aが、封止樹脂体50の裏面50bから露出されている。これにより、放熱面620a~623aからも放熱することができる。配線部620~623のうち、放熱面620a~623aを除く部分は、封止樹脂体50によって封止されている。図45などに示すように、配線部62それぞれの側面には、封止樹脂体50の剥離を抑制するために、凸部が設けられている。 As shown in FIG. 41, the heat radiation surfaces 620 a to 623 a of the wiring portions 620 to 623 are exposed from the back surface 50 b of the sealing resin body 50. Thus, heat can be dissipated from the heat dissipation surfaces 620a to 623a. The portions of the wiring portions 620 to 623 excluding the heat radiation surfaces 620 a to 623 a are sealed by the sealing resin body 50. As shown in FIG. 45 and the like, convex portions are provided on the side surfaces of the wiring portions 62 in order to suppress peeling of the sealing resin body 50.
 図46及び図52などに示すように、第1実施形態同様、アイランド61及び配線部62の部分が、主端子63、信号端子64、及びダミー端子65の部分よりも厚肉とされている。図53に示す破線間が、厚肉部分である。これにより、スイッチング素子70及び駆動部80の熱を効率よく放熱させることができる。また、封止樹脂体50の硬化収縮にともなうリードフレーム60の反りを抑制することができる。主端子63及び信号端子64が薄肉とされているため、打ち抜きや曲げ加工性を向上することができる。また、信号端子64を狭ピッチ化することもできる。 As shown in FIGS. 46 and 52, as in the first embodiment, the portions of the island 61 and the wiring portion 62 are thicker than the portions of the main terminal 63, the signal terminal 64, and the dummy terminal 65. Between the broken lines shown in FIG. 53 are thick portions. Thus, the heat of the switching element 70 and the drive unit 80 can be dissipated efficiently. In addition, warpage of the lead frame 60 caused by curing and shrinkage of the sealing resin body 50 can be suppressed. Since the main terminals 63 and the signal terminals 64 are thin, punching and bending workability can be improved. In addition, the signal terminals 64 can be narrowed in pitch.
 主端子63は、第1実施形態同様、正極端子63B1,63B2と、負極端子63E1,63E2と、出力端子63P1,63P2を有している。正極端子63B1は、スイッチング素子700Hのアイランド611に連なっている。正極端子63B1は、アイランド611における信号端子64とは反対の端部からY方向に延設されて封止樹脂体50の側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。 The main terminal 63 has positive electrode terminals 63B1 and 63B2, negative electrode terminals 63E1 and 63E2, and output terminals 63P1 and 63P2, as in the first embodiment. The positive electrode terminal 63B1 is continuous with the island 611 of the switching element 700H. The positive electrode terminal 63B1 extends from the end of the island 611 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c of the sealing resin body 50, is bent outside the sealing resin body 50, and extends in the Z direction. It extends upward.
 正極端子63B2は、スイッチング素子701Hのアイランド613に連なっている。正極端子63B2は、アイランド613における信号端子64とは反対の端部からY方向に延設されて側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。 The positive electrode terminal 63B2 is connected to the island 613 of the switching element 701H. The positive electrode terminal 63B2 extends from the end of the island 613 opposite to the signal terminal 64 in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction.
 本実施形態では、アイランド611,613同様、正極端子63B1,63B2も一体化されている。図39及び図53などに示すように、正極端子63B1,63B2は、基部63Baと、接続部63Bbと、連結部63Bcをそれぞれ有している。そして、連結部63Bdにより、正極端子63B1,63B2が一体化されている。 In the present embodiment, as with the islands 611 and 613, the positive electrode terminals 63B1 and 63B2 are also integrated. As shown in FIGS. 39 and 53, the positive electrode terminals 63B1 and 63B2 each have a base 63Ba, a connection portion 63Bb, and a connection portion 63Bc. The positive electrode terminals 63B1 and 63B2 are integrated by the connecting portion 63Bd.
 正極端子63B1,B2それぞれにおいて、基部63Baは、対応するアイランド611,613に連なる部分である。基部63Baは、対応するアイランド611,613のX方向中心よりも連結部615寄りの位置で、アイランド611,613に連なっている。図46などに示すように、正極端子63B1,B2は、それぞれの基部63Baの途中に屈曲部を有している。基部63Baは、タイバーカット前の状態でY方向に延設されており、タイバーカット及びフォーミング後の状態で、YZ面において略L字状をなしている。 In each of the positive electrode terminals 63B1 and B2, the base 63Ba is a portion connected to the corresponding island 611 or 613. The base 63 </ b> Ba is continuous with the islands 611 and 613 at a position closer to the connecting portion 615 than the center in the X direction of the corresponding islands 611 and 613. As shown in FIG. 46 etc., positive electrode terminal 63B1, B2 has a bending part in the middle of each base 63Ba. The base portion 63Ba is extended in the Y direction before the tie bar cut, and in the state after the tie bar cut and forming, has a substantially L shape in the YZ plane.
 接続部63Bbは、正極バスバー27Bとの接続部分である。アイランド611,613を一体化しながらも、接続部63Bbを2つに分けている。X方向において、接続部63Bb間の距離は、基部63Ba間の距離及びスイッチング素子700H,701H間の距離のいずれよりも長くされている。連結部63Bcは、基部63Baと接続部63Bbを連結している。連結部63Bcによって、接続部63Bbが対応する基部63BaよりもX方向外側に引き出されている。 The connection portion 63Bb is a connection portion with the positive electrode bus bar 27B. While integrating the islands 611 and 613, the connecting portion 63Bb is divided into two. In the X direction, the distance between the connection portions 63Bb is longer than any of the distance between the base portions 63Ba and the distance between the switching elements 700H and 701H. The connecting portion 63Bc connects the base portion 63Ba and the connecting portion 63Bb. The connecting portion 63Bb is drawn outward in the X direction from the corresponding base portion 63Ba by the connecting portion 63Bc.
 連結部63Bdは、X方向において隣り合う基部63Ba同士を連結している。連結部63BdはX方向に延設されている。連結部63Bdの一端は正極端子63B1側の基部63Baに連なり、他端は正極端子63B2側の基部63Baに連なっている。 The connecting portion 63Bd connects the base portions 63Ba adjacent to each other in the X direction. The connecting portion 63Bd extends in the X direction. One end of the connecting portion 63Bd is connected to the base 63Ba on the positive electrode terminal 63B1 side, and the other end is connected to the base 63Ba on the positive electrode terminal 63B2 side.
 出力端子63P1は、正極端子63B1に対してX方向外側に配置されている。出力端子63P1は、上記したように、配線部620の一端に連なっている。出力端子63P1は、Y方向に延設されて正極端子63B1と同じ側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。出力端子63P2は、上記したように、配線部622の一端に連なっている。出力端子63P2は、正極端子63B2に対してX方向外側に配置されている。出力端子63P2は、Y方向に延設されて側面50cから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。 The output terminal 63P1 is disposed on the outer side in the X direction with respect to the positive electrode terminal 63B1. The output terminal 63P1 is connected to one end of the wiring portion 620 as described above. The output terminal 63P1 extends in the Y direction, protrudes from the same side surface 50c as the positive electrode terminal 63B1, is bent outside the sealing resin body 50, and extends upward in the Z direction. The output terminal 63P2 is connected to one end of the wiring portion 622 as described above. The output terminal 63P2 is disposed on the outer side in the X direction with respect to the positive electrode terminal 63B2. The output terminal 63P2 extends in the Y direction, protrudes from the side surface 50c, is bent outside the sealing resin body 50, and extends upward in the Z direction.
 正極端子63B1,63B2及び出力端子63P1,63P2は、X方向において、出力端子63P1、正極端子63B1、正極端子63B2、出力端子63P2の順に並んで配置されている。X方向において、出力端子63P1と正極端子63B1との距離、及び、出力端子63P2と正極端子63B2との距離は、正極端子63B1,63B2間の距離よりも短くされている。ここでの距離とは、対応するバスバー27との接続部分での距離である。正極端子63B1,63B2及び出力端子63P1,63P2は、YZ面において略L字状をなしている。 The positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 are arranged in the order of the output terminal 63P1, the positive electrode terminal 63B1, the positive electrode terminal 63B2 and the output terminal 63P2 in the X direction. In the X direction, the distance between the output terminal 63P1 and the positive electrode terminal 63B1 and the distance between the output terminal 63P2 and the positive electrode terminal 63B2 are shorter than the distance between the positive electrode terminals 63B1 and 63B2. The distance here is the distance at the connection portion with the corresponding bus bar 27. The positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 are substantially L-shaped in the YZ plane.
 正極端子63B1,63B2及び出力端子63P1,63P2は、第1実施形態同様、タイバー痕66a,66bをそれぞれ有している。タイバー痕66aは、1段目のタイバー660aの切断痕であり、タイバー痕66bは、2段目のタイバー660bの切断痕である。正極端子63B1,63B2及び出力端子63P1,63P2は、タイバー痕66a,66bの間に屈曲部を有している。 The positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 respectively have tie bar marks 66a and 66b as in the first embodiment. The tie bar mark 66 a is a cut mark of the tie bar 660 a of the first stage, and the tie bar mark 66 b is a cut mark of the tie bar 660 b of the second stage. The positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 have bent portions between tie bar marks 66a and 66b.
 負極端子63E1,63E2は、アイランド61及び配線部62を挟んで、正極端子63B1,63B2及び出力端子63P1,63P2と反対側に配置されている。負極端子63E1は、Y方向に延設されて正極端子63B1と反対の側面50dから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。負極端子63E2は、Y方向に延設されて側面50dから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。負極端子63E1,63E2も、YZ面において略L字状をなしている。 The negative electrode terminals 63E1 and 63E2 are disposed on the opposite side of the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 with the island 61 and the wiring portion 62 interposed therebetween. The negative electrode terminal 63E1 extends in the Y direction, protrudes from the side surface 50d opposite to the positive electrode terminal 63B1, is bent outside the sealing resin body 50, and extends upward in the Z direction. The negative electrode terminal 63E2 extends in the Y direction, protrudes from the side surface 50d, is bent outside the sealing resin body 50, and extends upward in the Z direction. The negative electrode terminals 63E1 and 63E2 are also substantially L-shaped in the YZ plane.
 負極端子63E1は、配線部621における信号端子64側の端部に連なっている。負極端子63E2は、配線部623における信号端子64側の端部に連なっている。負極端子63E1,63E2は、連結部69によってアイランド610に連結されている。連結部69は、X方向に延設されている。連結部69におけるX方向の中央にアイランド610が連なっている。連結部69は、アイランド610における信号端子64側の端部に連なっている。連結部69の一端に負極端子63E1が連なり、他端に負極端子63E2が連なっている。連結部69は、主端子63及び信号端子64同様、薄肉とされている。連結部69の幅は、信号端子64の幅よりも狭くされている。負極端子63E1,63E2のアイランド61側の端部において、X方向内側に連結部69が連なり、X方向外側に対応する配線部621,623が連なっている。 The negative electrode terminal 63E1 is continued to the end of the wiring portion 621 on the signal terminal 64 side. The negative electrode terminal 63E2 is continued to the end of the wiring portion 623 on the signal terminal 64 side. The negative electrode terminals 63E1 and 63E2 are connected to the island 610 by the connecting portion 69. The connecting portion 69 is extended in the X direction. An island 610 is continuous at the center of the connecting portion 69 in the X direction. The connecting portion 69 is continuous with the end of the island 610 on the signal terminal 64 side. The negative electrode terminal 63E1 is connected to one end of the connecting portion 69, and the negative electrode terminal 63E2 is connected to the other end. The connecting portion 69 is thin like the main terminal 63 and the signal terminal 64. The width of the connecting portion 69 is narrower than the width of the signal terminal 64. At the end of the negative electrode terminals 63E1 and 63E2 on the side of the island 61, the connecting portion 69 is continuous on the inner side in the X direction and the wiring portions 621 and 623 corresponding to the outer side in the X direction are continuous.
 このように、負極端子63E1,63E2が信号端子64側に配置され、連結部69により、アイランド610がX方向両側で負極端子63E1,63E2に吊られている。この配置により、アイランド610の保持強度を向上することができる。また、連結部69により保持強度を確保できるため、ダミー端子によって補強する構造に較べて、信号端子64の本数を増やすこともできる。 As described above, the negative electrode terminals 63E1 and 63E2 are disposed on the signal terminal 64 side, and the connection portion 69 suspends the island 610 from the negative electrode terminals 63E1 and 63E2 on both sides in the X direction. This arrangement can improve the retention strength of the island 610. Further, since the holding strength can be secured by the connecting portion 69, the number of the signal terminals 64 can be increased as compared with the structure reinforced by the dummy terminals.
 負極端子63E1,63E2も、タイバー痕66a,66bをそれぞれ有している。タイバー痕66aは、1段目のタイバー661aの切断痕であり、タイバー痕66bは、2段目のタイバー661bの切断痕である。負極端子63E1,63E2は、タイバー痕66a,66bの間に屈曲部を有している。 The negative electrode terminals 63E1 and 63E2 also have tie bar marks 66a and 66b, respectively. The tie bar mark 66a is a cut mark of the tie bar 661a of the first stage, and the tie bar mark 66b is a cut mark of the tie bar 661 b of the second stage. Negative electrode terminal 63E1, 63E2 has a bending part between tie bar mark 66a, 66b.
 上記したように、上アーム側において、アイランド611,613が連結部615を介して同電位とされている。また、下アーム側において、配線部621,623が連結部69を介して同電位とされている。しかしながら、半導体モジュール40は、2つの正極端子63B1,63B2と、2つの負極端子63E1,63E2を有している。このため、たとえば正極端子63B1,63B2の一方に溶接外れが生じても、他方により電気的な接続を維持することができる。正極端子や負極端子を1本のみ有する構成に較べて、溶接外れによってスイッチング素子70などが故障するのを抑制することができる。 As described above, on the upper arm side, the islands 611 and 613 are set to the same potential through the connecting portion 615. Further, on the lower arm side, the wiring portions 621 and 623 are set to the same potential via the connecting portion 69. However, the semiconductor module 40 has two positive electrode terminals 63B1 and 63B2 and two negative electrode terminals 63E1 and 63E2. Therefore, even if welding failure occurs at one of the positive electrode terminals 63B1 and 63B2, for example, the other can maintain the electrical connection. Compared with the structure which has only one positive electrode terminal and one negative electrode terminal, it can suppress that switching element 70 etc. fail by welding detachment.
 複数の信号端子64は、X方向に並んで配置されている。本実施形態では、信号端子64として、異常通知用の信号端子642,643と、テスト端子644を有している。信号端子642は、整流回路部30を構成する他の半導体モジュール40に対して、スイッチング素子70の異常を通知するための端子である。信号端子643は、レギュレータに対して、スイッチング素子70の異常を通知するための端子である。信号端子642,643は、Y方向に延設されて側面50dから突出し、封止樹脂体50の外部で屈曲されて、Z方向上方に延びている。信号端子642,643は、YZ面において略L字状をなしている。 The plurality of signal terminals 64 are arranged side by side in the X direction. In the present embodiment, signal terminals 642 and 643 for error notification and a test terminal 644 are provided as the signal terminals 64. The signal terminal 642 is a terminal for notifying the other semiconductor modules 40 constituting the rectifier circuit unit 30 that the switching element 70 is abnormal. The signal terminal 643 is a terminal for notifying the regulator of an abnormality of the switching element 70. The signal terminals 642 and 643 extend in the Y direction, project from the side surface 50 d, are bent outside the sealing resin body 50, and extend upward in the Z direction. The signal terminals 642 and 643 are substantially L-shaped in the YZ plane.
 テスト端子644は、整流回路部30のテスト、たとえば製品出荷前の電気特性検査に用いられる。テスト端子644は、Y方向に延設されて側面50dから突出している。テスト端子644は、Y方向において1段目のタイバー痕66aとほぼ同じ位置まで延設されている。このため、テスト端子644は、屈曲部を有していない。16本の信号端子64のうち、2本が異常通知用の信号端子642,643であり、残りの14本がテスト端子644である。両端から2本目が信号端子642,643とされている。 The test terminal 644 is used to test the rectifier circuit unit 30, for example, to inspect the electrical characteristics before shipping the product. The test terminal 644 extends in the Y direction and protrudes from the side surface 50 d. The test terminal 644 is extended to substantially the same position as the first stage tie bar mark 66 a in the Y direction. Therefore, the test terminal 644 does not have a bend. Of the sixteen signal terminals 64, two are signal terminals 642 and 643 for error notification, and the remaining 14 are test terminals 644. The second terminal from both ends is used as signal terminals 642 and 643.
 図47及び図48などに示すように、隣り合うテスト端子644間には、ノイズ吸収用のコンデンサ45が配置されている。コンデンサ45は、セラミック製のチップコンデンサである。コンデンサ45の電極は、はんだ42によって、テスト端子644に接続されている。本実施形態では、4つのコンデンサ45が配置されている。 As shown in FIGS. 47 and 48, etc., a capacitor 45 for noise absorption is arranged between the adjacent test terminals 644. The capacitor 45 is a ceramic chip capacitor. The electrode of the capacitor 45 is connected to the test terminal 644 by the solder 42. In the present embodiment, four capacitors 45 are arranged.
 図42などに示すように、ZX面において、側面50dから突出する信号端子642,643の突出先端である接続部は、側面50cから突出する正極端子63B1,63B2のバスバー27Bとの接続部63Bb及び出力端子63P1,63P2のバスバー27P1,27P2との接続部と重ならない位置とされている。これにより、側面50d側が下側、側面50cが上側となるように半導体モジュール40を置いた状態で、側面50c側から溶接電極を用いて信号端子642,643を溶接することができる。したがって、組み付け性を向上することができる。 As shown in FIG. 42 and the like, in the ZX plane, connection portions which are projecting tips of the signal terminals 642 and 643 protruding from the side surface 50d are connection portions 63Bb of the positive electrode terminals 63B1 and 63B2 protruding from the side surface 50c to the bus bar 27B and The positions where the output terminals 63P1 and 63P2 do not overlap with the connection portions with the bus bars 27P1 and 27P2 are set. Thereby, the signal terminals 642 and 643 can be welded from the side surface 50c using the welding electrode in a state where the semiconductor module 40 is placed so that the side surface 50d side is the lower side and the side surface 50c is the upper side. Therefore, the assemblability can be improved.
 テスト端子644の1つは、連結部69を介してアイランド610に連なる端子644aである。このテスト端子644aは、テスト時にグランド電位(GND)とされる。テスト端子644aは、ボンディングワイヤ41によって、駆動部80のパッド81と接続されている。ボンディングワイヤ41が他の電位の部分を跨がなくてもよいため、ショートが発生するのを抑制することができる。 One of the test terminals 644 is a terminal 644 a connected to the island 610 via the connecting portion 69. The test terminal 644a is set to the ground potential (GND) at the time of test. The test terminal 644 a is connected to the pad 81 of the drive unit 80 by the bonding wire 41. Since the bonding wire 41 does not have to straddle other potential portions, the occurrence of short circuit can be suppressed.
 また、グランド電位を確保するために、X方向に延設されて撓みやすい連結部69ではなく、テスト端子644aにボンディングしている。テスト端子644aは、タイバー661a,661bに連結されている。テスト端子644aは、連結部69よりも幅が広くされるとともに、他の信号端子64よりも幅が広くされている。したがって、グランド電位を確保しつつ、ボンディング性を向上することができる。 Further, in order to secure the ground potential, bonding is performed to the test terminal 644a, not to the connection portion 69 which is extended in the X direction and is flexible. The test terminal 644a is connected to the tie bars 661a and 661b. The test terminal 644 a is wider than the connecting portion 69 and wider than the other signal terminals 64. Therefore, the bondability can be improved while securing the ground potential.
 図48及び図53などに示すように、アイランド610とテスト端子644aとの間の連結部69に、貫通孔69aが設けられている。貫通孔69aは、X方向においてテスト端子644aを跨ぐように設けられている。封止樹脂体50は、貫通孔69aを貫通し、薄肉とされた連結部69の両側に配置されている。テスト端子644aに接続されたボンディングワイヤ41は、貫通孔69a上を通過して、パッド81に接続されている。これによれば、ロックホール効果により、駆動部80側の剥離が、テスト端子644aにおけるボンディングワイヤ41の接続部まで進展するのを抑制することができる。したがって、ボンディングワイヤ41の接続信頼性を向上することができる。 As shown in FIGS. 48 and 53, a through hole 69a is provided in the connecting portion 69 between the island 610 and the test terminal 644a. The through hole 69a is provided to straddle the test terminal 644a in the X direction. The sealing resin body 50 passes through the through holes 69 a and is disposed on both sides of the thin-walled connecting portion 69. The bonding wire 41 connected to the test terminal 644 a passes over the through hole 69 a and is connected to the pad 81. According to this, due to the lock hole effect, it is possible to suppress the exfoliation on the drive unit 80 side from progressing to the connection portion of the bonding wire 41 in the test terminal 644a. Therefore, the connection reliability of the bonding wire 41 can be improved.
 図48及び図53などに示すように、一部の信号端子64、具体的には両端から数本の信号端子64については、ボンディングワイヤ41が接続される側の端部が、XY面内において駆動部80側に傾いている。これにより、駆動部80から離れた位置の信号端子64について、ボンディングワイヤ41の長さを短くすることができる。したがって、封止樹脂体50の成形時において、ボンディングワイヤ41に不良が生じるのを抑制することができる。また、ワイヤ長を短くすることで、ボンディングワイヤ41の接続強度を向上することができる。また、超音波接合時に、共振が生じるのを抑制することができる。 As shown in FIG. 48 and FIG. 53 etc., with regard to some signal terminals 64, specifically, several signal terminals 64 from both ends, the end on the side to which the bonding wire 41 is connected is in the XY plane It inclines to the drive part 80 side. Thereby, the length of the bonding wire 41 can be shortened for the signal terminal 64 at a position away from the drive unit 80. Therefore, at the time of molding of the sealing resin body 50, generation of defects in the bonding wire 41 can be suppressed. Further, by shortening the wire length, the connection strength of the bonding wire 41 can be improved. In addition, generation of resonance can be suppressed at the time of ultrasonic bonding.
 第1実施形態同様、主端子63である負極端子63E1,63E2の間にすべての信号端子64が集約されている。したがって、X方向において外部接続用端子の配置スペースを小さくすることができる。すなわち、無駄なスペースを減らし、半導体モジュール40の体格を小型化することができる。 As in the first embodiment, all the signal terminals 64 are integrated between the negative terminals 63E1 and 63E2 which are the main terminals 63. Therefore, the arrangement space of the external connection terminal can be reduced in the X direction. That is, waste space can be reduced and the size of the semiconductor module 40 can be miniaturized.
 第1実施形態同様、リードフレーム60において、ボンディングワイヤ41の接続部が平坦とされている。アイランド612,614、連結部615、及び信号端子64におけるボンディングワイヤ41の接続部は、いずれも叩くことで平坦とされている。これにより、ボンディングワイヤ41の接続信頼性を向上することができる。また、バリを叩いて潰し、ボンディング時の異物噛み込みを抑制することもできる。 As in the first embodiment, in the lead frame 60, the connection portion of the bonding wire 41 is flat. The connection portions of the bonding wires 41 at the islands 612 and 614, the connection portion 615, and the signal terminal 64 are all flattened by tapping. Thereby, the connection reliability of the bonding wire 41 can be improved. In addition, burrs can be hit and crushed to suppress foreign matter biting during bonding.
 ダミー端子65は、図40などに示すように、Y方向に延設されて封止樹脂体50の側面50cから2本突出している。ダミー端子65の1つは、配線部620におけるアイランド612とは反対の端部からY方向に延設されている。ダミー端子65のX方向外側に、同じ配線部620に連なる出力端子63P1が配置されている。別のダミー端子65は、配線部622におけるアイランド614とは反対の端部からY方向に延設されている。ダミー端子65のX方向外側に、同じ配線部622に連なる出力端子63P2が配置されている。 As shown in FIG. 40 and the like, the dummy terminals 65 are extended in the Y direction and project two from the side surface 50 c of the sealing resin body 50. One of the dummy terminals 65 is extended in the Y direction from the end of the wiring portion 620 opposite to the island 612. An output terminal 63P1 connected to the same wiring portion 620 is disposed outside the dummy terminal 65 in the X direction. Another dummy terminal 65 is extended in the Y direction from the end of the wiring portion 622 opposite to the island 614. An output terminal 63P2 connected to the same wiring portion 622 is disposed outside the dummy terminal 65 in the X direction.
 ダミー端子65は、タイバーカット後の状態で、正極端子63B1,63B2及び出力端子63P1,63P2のタイバー痕66aとY方向においてほぼ同じ位置まで延設されている。このため、ダミー端子65は屈曲部を有していない。ダミー端子65の幅は、主端子63の幅よりも狭くされている。 The dummy terminal 65 is extended to substantially the same position in the Y direction as the tie bar mark 66a of the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 in the state after the tie bar cut. Therefore, the dummy terminal 65 does not have a bend. The width of the dummy terminal 65 is smaller than the width of the main terminal 63.
 (スイッチング素子)
 スイッチング素子70は縦型構造をなしており、第1実施形態同様、アイランド61とは反対の面にパッド71及びソース電極72が形成されている。また、感温ダイオードが一体的に形成されている。図45及び図47に示すように、スイッチング素子70のドレイン電極は、はんだ42を介して対応するアイランド61と接続されている。ソース電極72は、はんだ42を介して、対応する架橋部材90と接続されている。
(Switching element)
The switching element 70 has a vertical structure, and the pad 71 and the source electrode 72 are formed on the surface opposite to the island 61 as in the first embodiment. In addition, a temperature sensitive diode is integrally formed. As shown in FIGS. 45 and 47, the drain electrode of the switching element 70 is connected to the corresponding island 61 via the solder 42. Source electrode 72 is connected to corresponding bridge member 90 via solder 42.
 スイッチング素子70は、平面矩形状をなしている。図48及び図53に示すように、パッド71は、スイッチング素子70の1つの辺、具体的には駆動部80との対向辺に沿って配置されている。スイッチング素子70は3つのパッド71を有しており、ゲート電極用、感温ダイオードのアノード用、カソード用の順に並んで配置されている。 The switching element 70 has a planar rectangular shape. As shown in FIGS. 48 and 53, the pad 71 is disposed along one side of the switching element 70, specifically, the side opposite to the drive unit 80. The switching element 70 has three pads 71, which are arranged in order of a gate electrode, an anode of a temperature sensitive diode, and a cathode.
 上アーム側のスイッチング素子700H,701Hは、対応するアイランド611,613同様、X方向において線対称配置とされている。スイッチング素子700H,701Hは、パッド71の並び方向がX方向となるように配置されている。下アーム側のスイッチング素子700L,701Lは、対応するアイランド612,614同様、X方向において線対称配置とされている。スイッチング素子700L,701Lは、パッド71の並び方向がY方向となるように配置されている。X方向において、スイッチング素子700L、スイッチング素子700H、スイッチング素子701H、スイッチング素子701Lの順に並んでいる。 Similar to the corresponding islands 611 and 613, the switching elements 700H and 701H on the upper arm side are arranged in line symmetry in the X direction. The switching elements 700H and 701H are arranged such that the arrangement direction of the pads 71 is the X direction. The lower arm side switching elements 700L and 701L are arranged in line symmetry in the X direction as in the corresponding islands 612 and 614. The switching elements 700L and 701L are arranged such that the arrangement direction of the pads 71 is the Y direction. In the X direction, the switching element 700L, the switching element 700H, the switching element 701H, and the switching element 701L are arranged in this order.
 第1実施形態同様、スイッチング素子70の並び順と、スイッチング素子70のドレイン電極に接続される正極端子63B1,63B2及び出力端子63P1,63P2の並び順が一致している。また、主端子63及び信号端子64は、相対する側面50c,50dのみから突出している。これにより、リードフレーム60のレイアウトを簡素化し、半導体モジュール40の体格を小型化することができる。また、バスバー27との接続構造を簡素化することができる。 As in the first embodiment, the arrangement order of the switching element 70 and the arrangement order of the positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 connected to the drain electrode of the switching element 70 coincide with each other. Further, the main terminal 63 and the signal terminal 64 protrude only from the opposite side surfaces 50c and 50d. Thereby, the layout of the lead frame 60 can be simplified, and the size of the semiconductor module 40 can be miniaturized. Further, the connection structure with the bus bar 27 can be simplified.
 (駆動部)
 本実施形態の駆動部80は、駆動信号を生成する駆動回路を有している。駆動部80は、ASICなどのICチップとして構成されている。駆動部80は、スイッチング素子70を駆動させるだけでなく、オンオフを制御するため、制御ICとも称される。図47に示すように、駆動部80は、導電性接着材43を介してアイランド610に固定されている。駆動部80におけるアイランド610への固定面と反対の面には、複数のパッド81が形成されている。
(Drive part)
The drive unit 80 of the present embodiment has a drive circuit that generates a drive signal. The drive unit 80 is configured as an IC chip such as an ASIC. The driving unit 80 is also referred to as a control IC in order to control ON / OFF as well as driving the switching element 70. As shown in FIG. 47, the drive unit 80 is fixed to the island 610 via the conductive adhesive 43. A plurality of pads 81 are formed on the surface of the drive unit 80 opposite to the surface fixed to the island 610.
 図53に示すように、パッド81の一部は、ボンディングワイヤ41を介して、スイッチング素子70のパッド71に接続されている。別のパッド81は、ボンディングワイヤ41を介して、連結部615、すなわちスイッチング素子700H,701Hのドレインに接続されている。別のパッド81は、ボンディングワイヤ41を介して、アイランド612,614に接続されている。パッド81の残りは、ボンディングワイヤ41を介して、信号端子64に接続されている。 As shown in FIG. 53, a part of the pad 81 is connected to the pad 71 of the switching element 70 via the bonding wire 41. Another pad 81 is connected to the connection portion 615, that is, the drains of the switching elements 700H and 701H via the bonding wire 41. Another pad 81 is connected to the islands 612 and 614 via bonding wires 41. The rest of the pad 81 is connected to the signal terminal 64 through the bonding wire 41.
 駆動部80の駆動回路は、アイランド612,614の電位、すなわち回転電機部10への出力電圧である相電圧P1,P2に基づいて、スイッチング素子70のオンオフを制御する。駆動部80は、第1実施形態同様、スイッチング素子70の保護するための回路と、スイッチング素子70の異常を判定する判定回路と、判定結果を、信号端子642,643を通じて制御回路部26に外部に通知する通知回路を有している。駆動部80の詳細については後述する。 The drive circuit of the drive unit 80 controls the on / off of the switching element 70 based on the potentials of the islands 612 and 614, that is, phase voltages P1 and P2 that are output voltages to the rotating electrical machine unit 10. As in the first embodiment, the drive unit 80 is externally connected to the control circuit unit 26 through the signal terminals 642 and 643, with a circuit for protecting the switching element 70, a determination circuit for determining an abnormality of the switching element 70, and the determination result. Has a notification circuit to notify to. The details of the drive unit 80 will be described later.
 駆動部80は、平面略矩形状をなしている。駆動部80は、X方向においてリードフレーム60の中心線に対し、線対称配置とされている。下アーム側のスイッチング素子700L,701Lは、駆動部80に対して線対称配置とされている。駆動部80は、下アーム側のスイッチング素子700L,701Hの間に配置されている。スイッチング素子700H,701Hのパッド71は、アイランド610よりもX方向外側に配置されている。 The drive unit 80 has a substantially rectangular planar shape. The drive units 80 are arranged in line symmetry with respect to the center line of the lead frame 60 in the X direction. The switching elements 700 L and 701 L on the lower arm side are arranged in line symmetry with respect to the drive unit 80. The driving unit 80 is disposed between the lower arm side switching elements 700L and 701H. The pads 71 of the switching elements 700H and 701H are disposed outside the island 610 in the X direction.
 (ボンディングワイヤを考慮した配置)
 第1実施形態同様、4つのスイッチング素子70が、駆動部80の周りに配置されている。これにより、パッド71,81を接続するボンディングワイヤ41の長さを短くすることができる。したがって、封止樹脂体50を成形する際に、ボンディングワイヤ41に不良が生じるのを抑制することができる。また、無駄なスペースを低減し、半導体モジュール40の体格を小型化することもできる。
(Arrangement considering bonding wire)
As in the first embodiment, four switching elements 70 are disposed around the drive unit 80. Thereby, the length of the bonding wire 41 connecting the pads 71 and 81 can be shortened. Therefore, when molding the sealing resin body 50, generation of defects in the bonding wire 41 can be suppressed. In addition, waste space can be reduced, and the size of the semiconductor module 40 can be reduced.
 駆動部80は平面略矩形状をなしており、パッド81がスイッチング素子70それぞれとの対向辺に設けられている。スイッチング素子70と接続されるパッド81は、駆動部80の連続する3辺に集約されている。これにより、ボンディングワイヤ41の長さを短くすることができる。駆動部80の残りの1辺には、信号端子64と接続されるパッド81のみが配置されている。 The driving unit 80 has a substantially rectangular planar shape, and the pads 81 are provided on the sides facing the switching elements 70 respectively. The pads 81 connected to the switching element 70 are integrated on three consecutive sides of the drive unit 80. Thereby, the length of the bonding wire 41 can be shortened. Only the pad 81 connected to the signal terminal 64 is disposed on the other side of the drive unit 80.
 スイッチング素子70は、略正方形をなしている。パッド71は、スイッチング素子70の1つの辺の中央付近に、該辺に沿って並んで配置されている。このように、パッド71を1つの辺の中央に配置したため、スイッチング素子70を1種類のチップに共通化することができる。また、共通化しながらも、90度配置が異なる上アーム側と下アーム側とで、パッド71,81に対してボンディングワイヤ41を接続することができる。また、ボンディングワイヤ41の長さを短くすることができる。 The switching element 70 has a substantially square shape. The pads 71 are arranged in the vicinity of the center of one side of the switching element 70 along the side. Thus, since the pad 71 is arranged at the center of one side, the switching element 70 can be made common to one type of chip. In addition, the bonding wires 41 can be connected to the pads 71 and 81 on the upper arm side and the lower arm side, which are different in the arrangement by 90 degrees, though being made common. Moreover, the length of the bonding wire 41 can be shortened.
 信号端子64は、Y方向において、駆動部80の一辺側にまとめて配置されている。すべての信号端子64は、駆動部80に対して、上アーム側のスイッチング素子700H,701Hとは反対側に配置されている。これによれば、信号端子64も含めて、駆動部80との接続構造を簡素化することができる。よって、ボンディングワイヤ41の長さを短くし、半導体モジュール40の体格を小型化することができる。 The signal terminals 64 are collectively arranged on one side of the drive unit 80 in the Y direction. All the signal terminals 64 are arranged on the opposite side of the drive unit 80 to the switching elements 700H and 701H on the upper arm side. According to this, the connection structure with the drive part 80 can be simplified including the signal terminal 64. Therefore, the length of the bonding wire 41 can be shortened, and the size of the semiconductor module 40 can be reduced.
 (熱を考慮した配置)
 第1実施形態同様、下アーム側のスイッチング素子700L,701Lの間に駆動部80が配置されている。また、X方向において、スイッチング素子700H,701Hが線対称配置とされ、スイッチング素子700L,701Lが線対称配置とされている。すなわち、4つのスイッチング素子70が、XY面内において均等配置されている。そして、図48に示すように、上アーム側のスイッチング素子700H,701H間の距離をL1、下アーム側のスイッチング素子700L,701L間の距離をL2とすると、距離L2のほうが距離L1よりも長くされている。
(Placement considering heat)
As in the first embodiment, the drive unit 80 is disposed between the lower arm side switching elements 700L and 701L. Further, in the X direction, the switching elements 700H and 701H are arranged in line symmetry, and the switching elements 700L and 701L are arranged in line symmetry. That is, the four switching elements 70 are equally arranged in the XY plane. Then, as shown in FIG. 48, assuming that the distance between the switching elements 700H and 701H on the upper arm side is L1 and the distance between the switching elements 700L and 701L on the lower arm side is L2, the distance L2 is longer than the distance L1. It is done.
 上記配置により、回転電機部10(固定子巻線121)からのもらい熱によって高温となるスイッチング素子700L,701L同士を遠ざけているため、スイッチング素子700L,701L間の熱干渉を、スイッチング素子700H,701H間の熱干渉よりも低減することができる。これにより、XY面において局所的な過熱を抑制し、すべてのスイッチング素子70について、熱による性能低下を抑制することができる。 With the above arrangement, the switching elements 700L and 701L which are heated by heat received from the rotating electrical machine 10 (the stator winding 121) are kept away from each other, so that thermal interference between the switching elements 700L and 701L It can reduce than the thermal interference between 701H. Thereby, local overheating in the XY plane can be suppressed, and performance deterioration due to heat can be suppressed for all the switching elements 70.
 アイランド611~614の放熱面611a~614aが、封止樹脂体50から露出されている。したがって、スイッチング素子70の熱を効果的に放熱することができる。また、アイランド610の放熱面610aが、封止樹脂体50から露出されている。これにより、駆動部80の発生した熱及び駆動部80の周りに配置されたスイッチング素子70からのもらい熱を、効果的に放熱することができる。また、放熱性の向上により、駆動部80を小型化することもできる。 The heat radiation surfaces 611 a to 614 a of the islands 611 to 614 are exposed from the sealing resin body 50. Therefore, the heat of switching element 70 can be dissipated effectively. In addition, the heat dissipation surface 610 a of the island 610 is exposed from the sealing resin body 50. Accordingly, the heat generated by the drive unit 80 and the heat received from the switching element 70 disposed around the drive unit 80 can be effectively dissipated. Moreover, the drive part 80 can also be miniaturized by the improvement of heat dissipation.
 配線部620,622の放熱面620a,622aが、封止樹脂体50から露出されている。これにより、スイッチング素子700L,701Lの熱を、放熱面620a,622aから逃がすことができる。特に本実施形態では、配線部620,622が出力端子63P1,63P2に連なっているため、回転電機部10からのもらい熱を効果的に放熱することができる。これにより、スイッチング素子700L,701Lに伝わる熱を低減することができる。 The heat radiation surfaces 620 a and 622 a of the wiring portions 620 and 622 are exposed from the sealing resin body 50. Thus, the heat of the switching elements 700L and 701L can be dissipated from the heat radiation surfaces 620a and 622a. In particular, in the present embodiment, since the wiring portions 620 and 622 are connected to the output terminals 63P1 and 63P2, the heat from the rotary electric machine portion 10 can be effectively dissipated. Thus, the heat transmitted to the switching elements 700L and 701L can be reduced.
 (架橋部材)
 本実施形態では、架橋部材90として、クリップ900を採用している。半導体モジュール40は、4つのクリップ900を有している。上記した線対称配置により、スイッチング素子70のソース電極72と配線部62との接続距離が、互いに略等しくされている。このため、4つのクリップ900を1種類に共通化し、部品点数を削減することができる(A173)。
(Crosslinking member)
In the present embodiment, the clip 900 is employed as the bridging member 90. The semiconductor module 40 has four clips 900. The connection distance between the source electrode 72 of the switching element 70 and the wiring portion 62 is made substantially equal to each other by the above-described line symmetrical arrangement. Therefore, the four clips 900 can be made common to one type, and the number of parts can be reduced (A173).
 図48及び図53などに示すように、クリップ900のそれぞれは、延設方向がX方向、幅方向がY方向となるように配置されている。 As shown in FIGS. 48 and 53 etc., each of the clips 900 is arranged so that the extending direction is the X direction and the width direction is the Y direction.
 (タイバーカット前のリードフレーム)
 図53に示すように、タイバーカット前のリードフレーム60は、アイランド61、配線部62、主端子63、信号端子64、ダミー端子65、及び連結部69に加えて、タイバー66と、外枠67と、連結部68を有している。
(Lead frame before tie bar cut)
As shown in FIG. 53, in addition to the island 61, the wiring portion 62, the main terminal 63, the signal terminal 64, the dummy terminal 65, and the connecting portion 69, the lead frame 60 before the tie bar cut has a tie bar 66 and an outer frame 67. And a connecting portion 68.
 本実施形態のタイバー66も、アイランド61及び配線部62をY方向において挟むように、一方側にタイバー660a,660bを有し、他方側にタイバー661a,661bを有している。各タイバー66は、X方向両端で外枠67に連結されている。 The tie bar 66 of this embodiment also has tie bars 660a and 660b on one side and tie bars 661a and 661b on the other side so as to sandwich the island 61 and the wiring portion 62 in the Y direction. Each tie bar 66 is connected to the outer frame 67 at both ends in the X direction.
 タイバー660aは、正極端子63B1,63B2及び出力端子63P1,63P2を外枠67に連結している。タイバー660a,660bは、いずれも正極端子63B1,63B2及び出力端子63P1,63P2それぞれのY方向への延設部分に連結されている。タイバー660a,660bは、たとえば正極端子63B1,63B2において、基部63Baに連結されている。タイバー660a,660bのそれぞれは、X方向に沿って一直線状に延設されている。正極端子63B1,63B2及び出力端子63P1,63P2は、タイバー660a,660bの間で屈曲される。 The tie bar 660a connects the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 to the outer frame 67. The tie bars 660a and 660b are both connected to the extending portions in the Y direction of the positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2, respectively. The tie bars 660a and 660b are connected to the base 63Ba at, for example, the positive electrode terminals 63B1 and 63B2. Each of the tie bars 660a and 660b extends in a straight line along the X direction. The positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 are bent between the tie bars 660a and 660b.
 アイランド611,613は、対応する正極端子63B1,63B2の基部63Baを介して、タイバー660a,660bに連結されている。アイランド612,614及び配線部620,621は、対応するダミー端子65及び出力端子63P1,63P2を介して、タイバー660a,660bに連結されている。 The islands 611 and 613 are connected to the tie bars 660a and 660b via the bases 63Ba of the corresponding positive electrode terminals 63B1 and 63B2. The islands 612 and 614 and the wiring portions 620 and 621 are connected to the tie bars 660 a and 660 b via the corresponding dummy terminals 65 and output terminals 63 P 1 and 63 P 2.
 正極端子63B1,63B2及び出力端子63P1,63P2は、アイランド611,613及び配線部620,622からの延設の始点がY方向において同じ位置とされ、延設の終点、すなわち先端位置もY方向においてほぼ同じ位置とされている。 The positive terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 have extension points from the islands 611 and 613 and the wiring parts 620 and 622 at the same start position in the Y direction, and the end point of the extension Almost the same position.
 正極端子63B1,63B2は、連結部68により、Y方向においても外枠67に連結されている。連結部68は、基部63Baそれぞれの先端に連なっている。すなわち、正極端子63B1,63B2において、バスバー27Bとの接続部63Bbとは異なる部分に連なっている。連結部68は、Y方向に延設されている。連結部68のX方向外側に接続部63Bbが配置されている。図39などに示すように、半導体モジュール40は、タイバーカット後において、連結部68の切断痕である連結痕68aを有している。 The positive electrode terminals 63B1 and 63B2 are connected to the outer frame 67 also in the Y direction by the connecting portion 68. The connecting portion 68 is connected to the tip of each of the base portions 63Ba. That is, in the positive electrode terminals 63B1 and 63B2, the connection portion 63Bb with the bus bar 27B is continued to a different portion. The connecting portion 68 extends in the Y direction. The connecting portion 63 </ b> Bb is disposed outside the connecting portion 68 in the X direction. As shown in FIG. 39 and the like, the semiconductor module 40 has a connection mark 68 a which is a cut mark of the connection portion 68 after the tie bar cut.
 出力端子63P1,63P2と同じ配線部620,622に連結されたダミー端子65は、対応する出力端子63P1,63P2に沿って延設されている。ダミー端子65は、Y方向において外枠67まで延設されている。 Dummy terminals 65 connected to the same wiring portions 620 and 622 as the output terminals 63P1 and 63P2 are extended along the corresponding output terminals 63P1 and 63P2. The dummy terminal 65 is extended to the outer frame 67 in the Y direction.
 タイバー661aは、負極端子63E1,63E2及び信号端子64を外枠67に連結している。タイバー661a,661bは、いずれも負極端子63E1,63E2及び信号端子64それぞれのY方向への延設部分に連結されている。負極端子63E1,63E2及び信号端子642は、タイバー661a,661bの間で屈曲される。 The tie bar 661a connects the negative electrode terminals 63E1 and 63E2 and the signal terminal 64 to the outer frame 67. The tie bars 661a and 661b are both connected to the extending portions of the negative terminals 63E1 and 63E2 and the signal terminal 64 in the Y direction. The negative terminals 63E1 and 63E2 and the signal terminal 642 are bent between the tie bars 661a and 661b.
 配線部621,623は、負極端子63E1,63E2を介してタイバー661a,661bに連結されている。アイランド610は、連結部69及び負極端子63E1,63E2を介して、タイバー661a,661bに連結されている。アイランド610は、連結部69及びテスト端子644aを介して、タイバー661a,661bに連結されている。テスト端子644aは、上記したように、アイランド610側とは反対で外枠67に連結されている。 The wiring portions 621 and 623 are connected to the tie bars 661 a and 661 b via the negative electrode terminals 63E1 and 63E2. The island 610 is connected to the tie bars 661a and 661b via the connection portion 69 and the negative electrode terminals 63E1 and 63E2. The island 610 is connected to the tie bars 661 a and 661 b through the connecting portion 69 and the test terminal 644 a. The test terminal 644a is connected to the outer frame 67 opposite to the island 610 side as described above.
 主端子63におけるバスバー27との接続部は、外枠67に対して連結されておらず、フリーとなっている。一方、信号端子64は、Y方向において外枠67に連結されている。信号端子64は、タイバーカット時に、外枠67から切り離される。信号端子64が外枠67に連結されているため、成形時においてタイバー661a,661bの変形を抑制することができる。 The connection between the main terminal 63 and the bus bar 27 is not connected to the outer frame 67 and is free. On the other hand, the signal terminal 64 is connected to the outer frame 67 in the Y direction. The signal terminal 64 is disconnected from the outer frame 67 at the time of tie bar cutting. Since the signal terminal 64 is connected to the outer frame 67, deformation of the tie bars 661a and 661b can be suppressed at the time of molding.
 信号端子64と負極端子63E1,63E2の間には、連結部68がそれぞれ配置されている。連結部68は、Y方向に延設されており、一端がタイバー661aに連結され、他端が外枠67に連結されている。連結部68は、タイバー66とともに切り離される。この連結部68により、外枠67との吊り箇所が増えたため、成形時においてタイバー661a,661bの変形を抑制することができる。したがって、負極端子63E1,63E2及び信号端子642,643の位置精度を向上することができる。 Connecting portions 68 are respectively disposed between the signal terminal 64 and the negative electrode terminals 63E1 and 63E2. The connecting portion 68 extends in the Y direction, one end thereof is connected to the tie bar 661 a, and the other end is connected to the outer frame 67. The connecting portion 68 is separated along with the tie bar 66. The connecting portion 68 increases the number of hanging points with the outer frame 67, so that deformation of the tie bars 661a and 661b can be suppressed at the time of molding. Therefore, the positional accuracy of the negative electrode terminals 63E1 and 63E2 and the signal terminals 642 and 643 can be improved.
 本実施形態でも、2段目のタイバー660b,661bは、1段目のタイバー660a,661aよりも幅が広くされている。タイバー660a,661aの幅は狭いため、主端子63及び信号端子64の曲げ加工などの際に邪魔にならず、且つ、半導体モジュール40の体格を小型化することができる。また、タイバーカット時の寸法ずれを小さくすることができる。タイバー660b,661bの幅は広いため、これにより剛性を向上し、封止樹脂体50の成形時においてタイバー66の変形を抑制することができる。 Also in this embodiment, the second tier tie bars 660b and 661b are wider than the first tier tie bars 660a and 661a. Since the width of the tie bars 660a and 661a is narrow, the tie bars 660a and 661a do not obstruct the bending of the main terminals 63 and the signal terminals 64, and the size of the semiconductor module 40 can be miniaturized. In addition, dimensional deviation at the time of tie bar cutting can be reduced. Since the width of the tie bars 660 b and 661 b is wide, the rigidity can be improved thereby, and the deformation of the tie bars 66 can be suppressed at the time of molding the sealing resin body 50.
 図示を省略するが、本実施形態でも、アイランド61におけるクリップ900の配置部60aと、同じクリップ900が配置される配線部62における配置部60bとが、X方向に並んで配置されている。すなわち、同じクリップ900に対する配置部60a,60bの並び方向が、アイランド61及び配線部62が連結された1段目のタイバー660a,661aの延設方向と同じ方向とされている。このように、平行配置とすると、タイバー66からクリップ900までの最大長さを長くすることができるため、アイランド611~614と対応するスイッチング素子70との接合部に作用する応力を低減することができる。なお、タイバーカット後の半導体モジュール40において、アイランド61に対して同じ側に配置された1段目のタイバー痕66aの並び方向と、クリップ900それぞれの延設方向とが同じ方向(X方向)とされている。 Although illustration is omitted, also in this embodiment, the arrangement portion 60a of the clip 900 in the island 61 and the arrangement portion 60b in the wiring portion 62 in which the same clip 900 is arranged are arranged side by side in the X direction. That is, the arranging direction of the placement parts 60a and 60b with respect to the same clip 900 is the same as the extending direction of the first stage tie bars 660a and 661a to which the island 61 and the wiring part 62 are connected. In this manner, since the maximum length from the tie bar 66 to the clip 900 can be increased by parallel arrangement, the stress acting on the junction between the islands 611 to 614 and the corresponding switching element 70 can be reduced. it can. In the semiconductor module 40 after tie bar cutting, the alignment direction of the tie bar marks 66 a of the first stage disposed on the same side with respect to the island 61 and the extension direction of the clips 900 are the same (X direction). It is done.
 アイランド612及び配線部620と、アイランド614及び配線部622は、複数箇所で同じタイバー660a,660bにそれぞれ連結されている。これによれば、成形時においてタイバー660a,660bが変形するのを抑制することができる。タイバー変形の抑制により、アイランド612,614と対応するスイッチング素子700L,701Lとの接合部に作用する応力を低減することができる。また、出力端子63P1,63P2から離れた位置にあるアイランド612,614の垂れを抑制することもできる。 The island 612 and the wiring portion 620, and the island 614 and the wiring portion 622 are respectively connected to the same tie bars 660a and 660b at a plurality of locations. According to this, it is possible to suppress the deformation of the tie bars 660a and 660b at the time of molding. By suppressing the tie bar deformation, it is possible to reduce the stress acting on the junction between the islands 612 and 614 and the corresponding switching elements 700L and 701L. In addition, it is possible to suppress the drooping of the islands 612 and 614 at positions away from the output terminals 63P1 and 63P2.
 アイランド612及び配線部620は、出力端子63P1及びダミー端子65を介して、タイバー660aに連結されている。アイランド614及び配線部622は、出力端子63P2及びダミー端子65を介して、タイバー660aに連結されている。このように、主端子63よりも幅の狭いダミー端子65を採用することで、タイバー660a,660bの変形を抑制しつつ、リードフレーム60の体格増大を抑制することができる。 The island 612 and the wiring portion 620 are connected to the tie bar 660 a via the output terminal 63 P 1 and the dummy terminal 65. The island 614 and the wiring portion 622 are connected to the tie bar 660a via the output terminal 63P2 and the dummy terminal 65. Thus, by adopting the dummy terminal 65 narrower than the main terminal 63, it is possible to suppress an increase in physical size of the lead frame 60 while suppressing the deformation of the tie bars 660a and 660b.
 ダミー端子65は、Y方向において外枠67に連結されている。これによっても、リードフレーム60の剛性を向上し、たとえばタイバー660a,660bの変形を抑制することができる。正極端子63B1,63B2及び出力端子63P1,63P2については外枠67に繋げないため、バスバー27との接続性を確保することができる。 The dummy terminal 65 is connected to the outer frame 67 in the Y direction. Also by this, the rigidity of the lead frame 60 can be improved, and for example, deformation of the tie bars 660a and 660b can be suppressed. The positive electrode terminals 63B1 and 63B2 and the output terminals 63P1 and 63P2 can not be connected to the outer frame 67, so connectivity with the bus bar 27 can be secured.
 同じクリップ900が配置されるアイランド612,614及び配線部621,623が、互いに異なるタイバー660a,661aに連結されている。アイランド612,614及び配線部621,623が、タイバー66に対して両吊りとなるため、成形時においてタイバー66の変形を抑制することができる。また、クリップ900の延設方向がタイバー66と同じX方向となるため、スイッチング素子70の接合部に対するX方向のせん断応力を抑制することもできる。 The islands 612 and 614 and the wiring parts 621 and 623 in which the same clip 900 is disposed are connected to different tie bars 660a and 661a. Since the islands 612 and 614 and the wiring portions 621 and 623 are both suspended with respect to the tie bar 66, deformation of the tie bar 66 can be suppressed at the time of molding. Further, since the extension direction of the clip 900 is the same X direction as the tie bar 66, it is possible to suppress the shear stress in the X direction with respect to the joint portion of the switching element 70.
 アイランド611,613は、正極端子63B1,63B2を介して、タイバー660a,660bに連結されている。正極端子63B1,63B2は、正極バスバー27Bとの接続部63Bbを除く部分で、連結部68により外枠67に連結されている。これにより、リードフレーム60の剛性を向上し、たとえばタイバー660a,660bの変形をより効果的に抑制することができる。また、連結部68は接続部63Bbを除く部分に連結されているため、接続部63Bbと正極バスバー27Bとの溶接に影響しない。 The islands 611 and 613 are connected to the tie bars 660a and 660b via the positive electrode terminals 63B1 and 63B2. The positive electrode terminals 63B1 and 63B2 are connected to the outer frame 67 by the connecting portion 68 except for the connection portion 63Bb with the positive electrode bus bar 27B. Thereby, the rigidity of lead frame 60 can be improved, and deformation of tie bars 660a and 660b can be more effectively suppressed, for example. Further, since the connecting portion 68 is connected to the portion excluding the connecting portion 63Bb, it does not affect the welding between the connecting portion 63Bb and the positive electrode bus bar 27B.
 (駆動部詳細)
 図54に示すように、駆動部80は、電圧検出回路82と、温度検出回路83と、判定回路84と、駆動回路85と、通知回路86を有している。以下においては、上アーム側をハイサイド、下アーム側をローサイドとも称する。
(Details of drive unit)
As shown in FIG. 54, the drive unit 80 includes a voltage detection circuit 82, a temperature detection circuit 83, a determination circuit 84, a drive circuit 85, and a notification circuit 86. In the following, the upper arm side is also referred to as high side, and the lower arm side is also referred to as low side.
 電圧検出回路82は、電圧検出部に相当する。電圧検出回路82は、各アームを構成するスイッチング素子70の主電極間の電圧、すなわちドレインーソース間の電圧Vds、又は、各相上下アームの相電圧P1,P2を検出する。相電圧P1は、スイッチング素子700H,700Lによる第1の上下アームの出力電圧である。相電圧P2は、スイッチング素子701H,701Lによる第2の上下アームの出力電圧である。相電圧P1,P2は、上記したように、アイランド612,614から検出することができる。電圧Vdsは、連結部615及びソース電位用のパッド71から検出することができる。 The voltage detection circuit 82 corresponds to a voltage detection unit. The voltage detection circuit 82 detects the voltage between the main electrodes of the switching element 70 constituting each arm, that is, the voltage Vds between the drain and the source, or the phase voltages P1 and P2 of the upper and lower arms of each phase. The phase voltage P1 is an output voltage of the first upper and lower arms by the switching elements 700H and 700L. The phase voltage P2 is an output voltage of the second upper and lower arms by the switching elements 701H and 701L. The phase voltages P1 and P2 can be detected from the islands 612 and 614 as described above. The voltage Vds can be detected from the connecting portion 615 and the pad 71 for the source potential.
 温度検出回路83は、温度検出部に相当する。温度検出回路83は、感温ダイオードに基づいて、スイッチング素子70の温度を検出する。温度検出回路83は、アノード用及びカソード用のパッド71からアノード電位及びカソード電位を取得して温度を検出する。 The temperature detection circuit 83 corresponds to a temperature detection unit. The temperature detection circuit 83 detects the temperature of the switching element 70 based on a temperature sensitive diode. The temperature detection circuit 83 detects the temperature by obtaining the anode potential and the cathode potential from the pad 71 for the anode and the cathode.
 判定回路84は、判定部に相当する。判定回路84は、電圧検出回路82により検出された電圧値に基づいて、スイッチング素子70にショートが生じているか否かを判定する。たとえばスイッチング素子701Hがショートした場合には相電圧P2が電源電圧VBに固定され、スイッチング素子701Lがショートした場合には相電圧P2がグランド電位に固定される。また、スイッチング素子701Hがショートした場合には電圧Vdsは一定値ゼロで継続し、スイッチング素子701Lがショートした場合にはスイッチング素子701Hのソースがグランドに張り付くため、電圧Vdsはゼロよりも大きい一定値(電源電圧VB)で継続する。以上により、判定回路84は、スイッチング素子70にショートが生じているか否かを判定することができる。判定回路84は、温度検出回路83により検出された温度(順方向電圧Vf)に基づいて、スイッチング素子70に温度異常の故障が生じているか否かを判定する。 The determination circuit 84 corresponds to a determination unit. The determination circuit 84 determines, based on the voltage value detected by the voltage detection circuit 82, whether or not the switching element 70 is shorted. For example, when switching element 701H is shorted, phase voltage P2 is fixed at power supply voltage VB, and when switching element 701L is shorted, phase voltage P2 is fixed at the ground potential. When switching element 701H is shorted, voltage Vds continues at a constant value of zero, and when switching element 701L is shorted, the source of switching element 701H sticks to the ground, so that voltage Vds is a constant value larger than zero. Continue at (power supply voltage VB). From the above, the determination circuit 84 can determine whether or not the switching element 70 is shorted. The determination circuit 84 determines, based on the temperature (forward voltage Vf) detected by the temperature detection circuit 83, whether or not a failure in temperature abnormality occurs in the switching element 70.
 駆動回路85は、駆動部に相当する。駆動回路85は、スイッチング素子70を制御するための駆動信号(ゲート駆動信号)を生成する。駆動回路85は、判定回路84の判定結果に応じて、スイッチング素子70のオンオフを制御する。駆動回路85は、故障が生じたと判定されたスイッチング素子70をオフさせるとともに、故障したスイッチング素子70とは別の相であって同じサイドのスイッチング素子70をオンさせる。たとえば、ハイサイドのスイッチング素子700Hが故障した場合、スイッチング素子700Hをオフさせ、スイッチング素子701Hをオンさせる。ローサイドのスイッチング素子700Lが故障した場合、スイッチング素子700Lをオフさせ、スイッチング素子701Lをオンさせる。 The drive circuit 85 corresponds to a drive unit. The drive circuit 85 generates a drive signal (gate drive signal) for controlling the switching element 70. The drive circuit 85 controls the on / off of the switching element 70 according to the determination result of the determination circuit 84. The drive circuit 85 turns off the switching element 70 determined to have a failure, and turns on the switching element 70 on the same side as the phase different from the failed switching element 70. For example, when the switching element 700H on the high side fails, the switching element 700H is turned off and the switching element 701H is turned on. When the low side switching element 700L fails, the switching element 700L is turned off and the switching element 701L is turned on.
 通知回路86は、通知部に相当する。通知回路86は、故障の発生と、故障したスイッチング素子70のサイドに関する情報を、制御装置部20を構成する別の半導体モジュール40に通知する。上記したように、半導体モジュール40は、異常通知用の信号端子642を有している。半導体モジュール40を区別するために、図55では、符号40a,40b,40cを付与している。半導体モジュール40aがU相及びV相の上下アームを構成し、半導体モジュール40bがW相及びX相の上下アームを構成し、半導体モジュール40cがY相及びZ相の上下アームを構成している。図55に示すように、3つの半導体モジュール40a,40b,40cそれぞれの信号端子642が相互に接続されて、双方向の通信が可能とされている。 The notification circuit 86 corresponds to a notification unit. The notification circuit 86 notifies another semiconductor module 40 constituting the control device unit 20 of the occurrence of the failure and the information on the side of the failed switching element 70. As described above, the semiconductor module 40 has the signal terminal 642 for abnormality notification. In order to distinguish the semiconductor modules 40, reference numerals 40a, 40b and 40c are given in FIG. The semiconductor module 40a constitutes upper and lower arms of U phase and V phase, the semiconductor module 40b constitutes upper and lower arms of W phase and X phase, and the semiconductor module 40c constitutes upper and lower arms of Y phase and Z phase. As shown in FIG. 55, the signal terminals 642 of the three semiconductor modules 40a, 40b, and 40c are connected to each other to enable bi-directional communication.
 図56は、通知信号において、スイッチング素子70の故障通知例を示している。上段及び下段において、時間t1の幅(Hi幅)を有するパルスが、故障発生を示している。上段において、故障発生を示すパルスの後に送信され、時間t1よりも狭い時間t2の幅を有するパルスが、ハイサイド側の故障を示している。下段において、故障発生を示すパルスの後に送信され、時間t1よりも狭く、時間t2よりも広い時間t3の幅を有するパルスが、ローサイド側の故障を示している。なお、時間t2を時間t3よりも広くしてもよい。このようにして、パルス幅(デューティ比)の変更により、ハイサイド故障とローサイド故障を区別することができる。 FIG. 56 shows an example of failure notification of the switching element 70 in the notification signal. In the upper and lower portions, a pulse having a width (Hi width) at time t1 indicates occurrence of a failure. In the upper part, a pulse transmitted after a pulse indicating failure occurrence and having a width of time t2 narrower than time t1 indicates a failure on the high side. In the lower part, a pulse transmitted after a pulse indicating failure occurrence and having a width of time t3 narrower than time t1 and wider than time t2 indicates a low side failure. The time t2 may be wider than the time t3. In this way, high side faults and low side faults can be distinguished by changing the pulse width (duty ratio).
 図57は、半導体モジュール40aのスイッチング素子701Lにショート故障が生じた場合の制御を示している。電圧検出回路82によって検出された電圧値により、判定回路84がスイッチング素子701Lにショート故障が発生したと判定すると、先ず駆動回路85は、スイッチング素子701Lをオフさせるとともに、別の相であって同じサイドのスイッチング素子700Lをオンさせる。なお、それ以外のスイッチング素子70についてはオフさせる。また、通知回路86は、他の半導体モジュール40b,40cに対して、ローサイド側に故障が生じたことを示す通知信号を出力する。 FIG. 57 shows control when a short failure occurs in the switching element 701L of the semiconductor module 40a. If the determination circuit 84 determines that a short failure has occurred in the switching element 701L based on the voltage value detected by the voltage detection circuit 82, the drive circuit 85 first turns off the switching element 701L and is another phase and is the same. The side switching element 700L is turned on. The other switching elements 70 are turned off. Further, the notification circuit 86 outputs, to the other semiconductor modules 40b and 40c, a notification signal indicating that a failure has occurred on the low side.
 半導体モジュール40b,40cの駆動回路85は、故障を示す通知信号を受信すると、すべてのスイッチング素子70をオフさせる。これにより、貫通電流が流れるのを抑制することができる。次いで、駆動回路85は、半導体モジュール40aにおいて故障が生じたローサイド側のスイッチング素子700L,701Lをすべてオンさせる。 The drive circuit 85 of the semiconductor modules 40 b and 40 c turns off all the switching elements 70 when receiving the notification signal indicating the failure. This can suppress the flow of through current. Next, the drive circuit 85 turns on all the low- side switching elements 700L and 701L in which a failure occurs in the semiconductor module 40a.
 図58は参考例、具体的には一相分の上下アームを構成する半導体モジュールを6つ用いて制御装置部を構成する場合のタイミングチャートを示している。この構成では、スイッチング素子の故障が検出されると、他の5つの半導体モジュールに対して故障を示す通知信号が出力される。したがって、所定の通信時間を経てから、他の半導体モジュールにおいて、同じサイドのスイッチング素子がオンされることとなる。このため、通信中は故障したスイッチング素子のみに電流が集中してしまう。発電時においては、故障したスイッチング素子をオフさせても、寄生ダイオードを通して電流が流れるため、遮断できない。 FIG. 58 shows a reference example, specifically, a timing chart in the case where a control device unit is configured by using six semiconductor modules constituting upper and lower arms for one phase. In this configuration, when a failure of the switching element is detected, a notification signal indicating the failure is output to the other five semiconductor modules. Therefore, after passing a predetermined communication time, the switching elements on the same side are turned on in the other semiconductor modules. Therefore, during communication, current concentrates only on the failed switching element. At the time of power generation, even if the faulty switching element is turned off, the current flows through the parasitic diode, so it can not be shut off.
 これに対し、本実施形態では、駆動回路85が上記した制御を実行する。このため、図59に示すように、故障が発生すると、同一の半導体モジュール40内における別の相であって同じサイドのスイッチング素子70がオンされる。このように、故障が発生すると、同一半導体モジュール40内において、故障していない正常相が直ちに保護動作に移行する。これにより、故障したスイッチング素子70以外に電流経路が形成される。したがって、故障したスイッチング素子70に電流が集中するのを抑制することができる。また、通信完了により、他の半導体モジュール40においても、同じサイドのスイッチング素子70がオンされる。これにより、電流経路がさらに増えるため、スイッチング素子70のストレス、電流ストレスや熱ストレスを低減することができる。 On the other hand, in the present embodiment, the drive circuit 85 executes the control described above. For this reason, as shown in FIG. 59, when a failure occurs, the switching element 70 on the same side which is another phase in the same semiconductor module 40 is turned on. As described above, when a failure occurs, the normal phase which has not failed in the same semiconductor module 40 immediately shifts to the protection operation. Thus, a current path is formed in addition to the failed switching element 70. Therefore, it is possible to suppress current concentration on the failed switching element 70. Further, when the communication is completed, the switching element 70 on the same side is turned on also in the other semiconductor modules 40. Thereby, the current path is further increased, so that the stress of the switching element 70, the current stress, and the thermal stress can be reduced.
 図60は、半導体モジュール40aのスイッチング素子701Hに温度異常が生じた場合の制御を示している。温度検出回路83によって検出された温度により、判定回路84がスイッチング素子701Hに温度異常の故障が発生したと判定すると、先ず駆動回路85は、スイッチング素子701Hをオフさせるとともに、別の相であって同じサイドのスイッチング素子700Hをオンさせる。それ以外のスイッチング素子70についてはオフさせる。また、通知回路86は、他の半導体モジュール40b,40cに対して、ハイサイド側に故障が生じたことを示す通知信号を出力する。 FIG. 60 shows control when a temperature abnormality occurs in the switching element 701H of the semiconductor module 40a. If the determination circuit 84 determines that a failure in temperature abnormality has occurred in the switching element 701H based on the temperature detected by the temperature detection circuit 83, the drive circuit 85 first turns off the switching element 701H and is another phase. The switching element 700H on the same side is turned on. The other switching elements 70 are turned off. Further, the notification circuit 86 outputs a notification signal indicating that a failure has occurred on the high side to the other semiconductor modules 40 b and 40 c.
 半導体モジュール40b,40cの駆動回路85は、故障を示す通知信号を受信すると、すべてのスイッチング素子70をオフさせる。これにより、貫通電流が流れるのを抑制することができる。次いで、駆動回路85は、半導体モジュール40aにおいて故障が生じたハイサイド側のスイッチング素子700H,701Hをすべてオンさせる。よって、温度異常が生じた場合にも、ショート故障と同等の効果を奏することができる。 The drive circuit 85 of the semiconductor modules 40 b and 40 c turns off all the switching elements 70 when receiving the notification signal indicating the failure. This can suppress the flow of through current. Next, the drive circuit 85 turns on all of the high- side switching elements 700H and 701H in which a failure occurs in the semiconductor module 40a. Therefore, even when the temperature abnormality occurs, the same effect as the short failure can be obtained.
 なお、オープン故障は電流が流れない故障ではあるが、固定子巻線121などのインダクタンス成分によって、相電圧P1,P2が異常となり、さらなる故障に繋がる虞がある。本実施形態では、図61に示すように、オープン故障が生じると、すべてのスイッチング素子70をオフさせる。これにより、二次的な故障を抑制することができる。図61では、スイッチング素子701Lにオープン故障が生じた場合の例を示している。 Although the open failure is a failure in which no current flows, the phase voltages P1 and P2 may become abnormal due to inductance components of the stator winding 121 and the like, which may lead to a further failure. In the present embodiment, as shown in FIG. 61, when an open failure occurs, all the switching elements 70 are turned off. Thereby, secondary failure can be suppressed. FIG. 61 shows an example where an open failure has occurred in the switching element 701L.
 図62は、駆動部80の第1変形例を示している。この駆動部80は、所定の処理を実行する処理回路87と、相電圧P1,P2をそれぞれ取得し、相電圧P1,P2の少なくとも一方が閾値電圧を超えると、処理回路87をスリープ状態から起動させる起動回路88と、処理回路87に電源を供給する電源回路89を有している。処理回路87は処理部に相当し、起動回路88は起動部に相当し、電源回路89は電源部に相当する。 FIG. 62 shows a first modification of the drive unit 80. As shown in FIG. The drive unit 80 acquires the processing circuit 87 executing predetermined processing and the phase voltages P1 and P2, respectively. When at least one of the phase voltages P1 and P2 exceeds the threshold voltage, the processing circuit 87 is activated from the sleep state. And a power supply circuit 89 for supplying power to the processing circuit 87. The processing circuit 87 corresponds to a processing unit, the start circuit 88 corresponds to a start unit, and the power supply circuit 89 corresponds to a power supply unit.
 図63は、駆動部80のより具体的な構成を示している。処理回路87は、アナログ回路870と、デジタル回路871を有している。処理回路87は、たとえば上記した電圧検出回路82、温度検出回路83、判定回路84、駆動回路85、及び通知回路86などを含んでいる。 FIG. 63 shows a more specific configuration of the drive unit 80. As shown in FIG. The processing circuit 87 includes an analog circuit 870 and a digital circuit 871. The processing circuit 87 includes, for example, the voltage detection circuit 82, the temperature detection circuit 83, the determination circuit 84, the drive circuit 85, and the notification circuit 86 described above.
 起動回路88は、ORゲート880と、ORゲート880の後段に設けられた起動スイッチ881を有している。ORゲート880には、相電圧P1,P2が入力される。ORゲート880は、相電圧P1,P2の少なくとも一方が予め設定された閾値電圧Vthを超えると、Hiレベルの信号を出力する。これにより、起動スイッチ881がオフからオンに切り替わる。 The start-up circuit 88 includes an OR gate 880 and a start switch 881 provided downstream of the OR gate 880. Phase voltages P1 and P2 are input to the OR gate 880. The OR gate 880 outputs a Hi level signal when at least one of the phase voltages P1 and P2 exceeds a preset threshold voltage Vth. Thus, the start switch 881 is switched from off to on.
 電源回路89は、起動スイッチ881がオン状態になると、グランドに接続されて、作動を開始する。そして、アナログ回路870に電源VCC1を供給し、デジタル回路871に電源VCC2を供給する。これにより、アナログ回路870及びデジタル回路871がスリープ状態から起動状態に切り替わる。 When the start switch 881 is turned on, the power supply circuit 89 is connected to the ground to start operation. Then, the power supply VCC1 is supplied to the analog circuit 870, and the power supply VCC2 is supplied to the digital circuit 871. Thereby, the analog circuit 870 and the digital circuit 871 are switched from the sleep state to the awake state.
 図64では、スイッチング素子701Lのショート故障により、相電圧P2がグランド電位に固着した場合を示している。第1変形例の構成によれば、ショート故障とは反対の相電圧P1により電源回路89を作動させ、これにより電源VCC1,VCC2が立ち上がり、処理回路87を起動させることができる。このように、二相分のうち、一方の上下アームのローサイドにショート故障が生じていても、処理回路87をスリープ状態から起動させることができる。したがって、駆動部80が、スイッチング素子70の故障を検知し、故障したスイッチング素子70を保護することができる。なお、図64では、回路遅延を省略している。 FIG. 64 shows a case where the phase voltage P2 is fixed to the ground potential due to a short circuit failure of the switching element 701L. According to the configuration of the first modification, the power supply circuit 89 is operated by the phase voltage P1 opposite to the short failure, whereby the power supplies VCC1 and VCC2 can rise and the processing circuit 87 can be activated. As described above, even if a short failure has occurred on the low side of one of the upper and lower arms of the two phases, the processing circuit 87 can be activated from the sleep state. Therefore, the drive unit 80 can detect a failure of the switching element 70 and protect the failed switching element 70. In FIG. 64, the circuit delay is omitted.
 図65は、上記したデジタル回路871に故障が生じ、アナログ回路870であるドライバ870aのうち、スイッチング素子700H,701Lそれぞれのドライバ870aへ出力する駆動信号がオン固着された状態を示している。このような故障が生じると、図65に破線矢印で示すように、回転電機部10側、具体的には固定子巻線121などを介して、異なる相を跨いだ貫通電流が発生する虞がある。 FIG. 65 shows a state where a failure occurs in the digital circuit 871 described above and the drive signal output to the driver 870a of each of the switching elements 700H and 701L among the driver 870a which is the analog circuit 870 is fixed on. If such a failure occurs, as indicated by a broken line arrow in FIG. 65, there is a possibility that a through current may be generated across different phases via the rotating electrical machine unit 10 side, specifically the stator winding 121 etc. is there.
 貫通電流を抑制するために、図66に示す参考例では、アナログ回路870rが、ドライバ870arと、電圧検出回路82rであるコンパレータを有している。デジタル回路871rが、駆動回路85rと、ANDゲート871arと、NOTゲート871brを有している。参考例においては、本実施形態の関連する要素の符号に対し、末尾にrを付与している。NOTゲート871brは、ANDゲート871arの一方の入力と電圧検出回路82rとの間に設けられている。ANDゲート871arには、駆動回路85rにて生成された駆動信号と、電圧検出回路82rにより検出された電圧Vdsの反転値が入力される。ANDゲート871arの出力が、ドライバ870arに入力される。 In order to suppress the through current, in the reference example shown in FIG. 66, the analog circuit 870 r includes a driver 870 ar and a comparator which is a voltage detection circuit 82 r. The digital circuit 871 r includes a drive circuit 85 r, an AND gate 871 ar, and a NOT gate 871 br. In the reference example, r is added to the end of the reference numerals of the relevant elements of this embodiment. The NOT gate 871br is provided between one input of the AND gate 871ar and the voltage detection circuit 82r. The drive signal generated by the drive circuit 85r and the inverted value of the voltage Vds detected by the voltage detection circuit 82r are input to the AND gate 871ar. The output of the AND gate 871ar is input to the driver 870ar.
 参考例に示す構成では、スイッチング素子70rがオンしている状態で、電流方向と相関がある電圧Vdsを監視する。そして、電流方向が正常な場合にオンを継続し、電流方向が異常な場合にオフに切り替えるようになっている。図66は、実線矢印で示すように、回転電機1の発電時を示している。電圧Vdsは電流方向が正常であるゼロ(0)を示すため、ANDゲート871arから出力される駆動信号は、1が維持される。これにより、スイッチング素子70rのオンが継続される。図示を省略するが、スイッチング素子70rを流れる電流の方向が逆(異常)の場合、電圧Vdsは電流方向が異常である1を示すため、ANDゲート871arから出力される駆動信号は、ゼロ(0)に切り替わる。これにより、スイッチング素子70rもオンからオフに切り替わる。以上により、貫通電流などの発生を抑制することができる。 In the configuration shown in the reference example, while the switching element 70r is on, the voltage Vds having a correlation with the current direction is monitored. Then, when the current direction is normal, the turn-on is continued, and when the current direction is abnormal, the switch is turned off. FIG. 66 shows the time of power generation of the rotary electric machine 1 as indicated by solid arrows. Since the voltage Vds indicates zero (0) in which the current direction is normal, the drive signal output from the AND gate 871ar is maintained at 1. As a result, the switching element 70r is kept on. Although illustration is omitted, when the direction of the current flowing through the switching element 70r is reverse (abnormal), the voltage Vds indicates 1 that the current direction is abnormal, so the drive signal output from the AND gate 871ar is zero (0 Switch to). Thereby, the switching element 70r also switches from on to off. By the above, generation | occurrence | production of a through current etc. can be suppressed.
 しかしながら、参考例に示す構成では、デジタル回路871rに故障が生じた場合、デジタル回路871rが所望の動作を実行しない虞がある。たとえば図67では、NOTゲート871brに故障が生じて反転機能が喪失されている。この場合、スイッチング素子70を流れる電流の方向が異常の場合、電圧Vdsが異常を示す1を出力したにもかかわらず、入力前に反転されないため、ANDゲート871arから出力される駆動信号は、1となる。これにより、スイッチング素子70のオンが継続されてしまう。 However, in the configuration shown in the reference example, when a failure occurs in the digital circuit 871 r, the digital circuit 871 r may not execute a desired operation. For example, in FIG. 67, the NOT gate 871 br is broken and the inverting function is lost. In this case, if the direction of the current flowing through the switching element 70 is abnormal, the drive signal output from the AND gate 871ar is 1 because the voltage Vds is not inverted before the input even though 1 is output indicating an abnormality. It becomes. As a result, the switching element 70 continues to be turned on.
 図68は、駆動部80の第2変形例を示している。第2変形例では、参考例に示す構成に加えて、処理回路87が、駆動回路85を含むデジタル回路871とは別のデジタル回路872を有している。デジタル回路872は、電源回路89からデジタル回路871に供給される電源VCC2とは異なる電源VCC3、具体的には電源VCC2よりも低い電圧が供給されて起動する。電源VCC3は、たとえば電圧降下用の抵抗を介すことで、電源VCC2よりも低い電圧とされる。 FIG. 68 shows a second modification of the drive unit 80. As shown in FIG. In the second modification, in addition to the configuration shown in the reference example, the processing circuit 87 includes a digital circuit 872 different from the digital circuit 871 including the driving circuit 85. The digital circuit 872 is activated by being supplied with a power supply VCC3 different from the power supply VCC2 supplied from the power supply circuit 89 to the digital circuit 871, specifically, a voltage lower than the power supply VCC2. The power supply VCC3 is set to a voltage lower than the power supply VCC2, for example, via a voltage drop resistance.
 デジタル回路872は、デジタル回路871同様、ANDゲート872aと、NOTゲート872bを有している。NOTゲート872bは、ANDゲート872aの一方の入力と電圧検出回路82との間に設けられている。ANDゲート872aには、ANDゲート871aから出力された駆動信号と、電圧Vdsの反転値が入力される。ANDゲート872aの出力が、ドライバ870aに入力される。 Similar to the digital circuit 871, the digital circuit 872 includes an AND gate 872a and a NOT gate 872b. The NOT gate 872 b is provided between one input of the AND gate 872 a and the voltage detection circuit 82. The drive signal output from the AND gate 871a and the inverted value of the voltage Vds are input to the AND gate 872a. The output of the AND gate 872a is input to the driver 870a.
 このような構成を採用することにより、デジタル回路871のたとえばNOTゲート871bに故障が発生し、反転機能が喪失されても、スイッチング素子70を流れる電流の方向が異常の場合には、スイッチング素子70をオンからオフに切り替えることができる。また、デジタル回路872のたとえばNOTゲート872bに故障が発生し、反転機能が喪失されても、スイッチング素子70を流れる電流の方向が異常の場合には、スイッチング素子70をオンからオフに切り替えることができる。したがって、冗長性を向上することができる。 By adopting such a configuration, for example, even if a failure occurs in, for example, the NOT gate 871b of the digital circuit 871 and the inversion function is lost, the switching element 70 is operated if the direction of the current flowing through the switching element 70 is abnormal. You can switch from on to off. Also, even if a fault occurs in, for example, the NOT gate 872b of the digital circuit 872 and the inversion function is lost, the switching element 70 can be switched from on to off if the direction of the current flowing through the switching element 70 is abnormal. it can. Therefore, redundancy can be improved.
 (その他)
 本実施形態では、架橋部材90として、4つのクリップ900を用いる例を示したが、これに限定されない。たとえば各相の電流を検出する場合には、架橋部材90としてシャント抵抗器901を用いることができる。連結部615によりアイランド611,613を一体化する例を示したが、これに限定されない。第1実施形態同様、アイランド611,613を分離してもよい。
(Others)
In the present embodiment, an example in which four clips 900 are used as the cross-linking member 90 is shown, but the present invention is not limited to this. For example, in the case of detecting the current of each phase, a shunt resistor 901 can be used as the bridging member 90. Although the example which integrates the islands 611 and 613 by the connection part 615 was shown, it is not limited to this. As in the first embodiment, the islands 611 and 613 may be separated.
 この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。たとえば、開示は、実施形態において示された要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示される技術的範囲は、実施形態の記載に限定されない。 The disclosure of this specification is not limited to the illustrated embodiments. The disclosure includes the illustrated embodiments and variations based on them by those skilled in the art. For example, the disclosure is not limited to the combination of elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosed technical scope is not limited to the description of the embodiments.
 第1実施形態に示した半導体モジュール40の構成を、第2実施形態に示した回転電機1に適用することができる。第2実施形態に示した半導体モジュール40の構成を、第1実施形態に示した回転電機1に適用することができる。 The configuration of the semiconductor module 40 shown in the first embodiment can be applied to the rotary electric machine 1 shown in the second embodiment. The configuration of the semiconductor module 40 shown in the second embodiment can be applied to the rotary electric machine 1 shown in the first embodiment.
 第1実施形態に示した半導体モジュール40の構成の一部について、第2実施形態に示した半導体モジュール40に組み合わせることもできる。たとえば、第1実施形態に示した封止樹脂体50の構成を第2実施形態に組み合わせることができる。第1実施形態に示したリードフレーム60を第2実施形態に組み合わせることができる。電流を検出する場合には、第1実施形態に示したシャント抵抗器901を第2実施形態に組み合わせることができる。 Part of the configuration of the semiconductor module 40 shown in the first embodiment can be combined with the semiconductor module 40 shown in the second embodiment. For example, the configuration of the sealing resin body 50 shown in the first embodiment can be combined with the second embodiment. The lead frame 60 shown in the first embodiment can be combined with the second embodiment. In the case of detecting a current, the shunt resistor 901 shown in the first embodiment can be combined with the second embodiment.
 第2実施形態に示した半導体モジュール40の構成の一部について、第1実施形態に示した半導体モジュール40に組み合わせることもできる。たとえば、第2実施形態に示したアイランド61、配線部62、及び主端子63の配置を、第1実施形態に組み合わせることができる。第2実施形態に示した駆動部80を第1実施形態に組み合わせることができる。 A part of the configuration of the semiconductor module 40 shown in the second embodiment can be combined with the semiconductor module 40 shown in the first embodiment. For example, the arrangement of the island 61, the wiring portion 62, and the main terminal 63 shown in the second embodiment can be combined with the first embodiment. The drive unit 80 shown in the second embodiment can be combined with the first embodiment.
 タイバー66の延設方向と、架橋部材90の延設方向、すなわち配置部60a,60bの並び方向とが、略平行とされる構成の適用対象は、上記例に限定されない。複数のアイランド61と、架橋部材90を介してスイッチング素子70と接続され、該スイッチング素子70が配置されるアイランド61とは別の配線を有すると、高さ方向のばらつきが生じやすくなる。特にタイバー66の延設方向において複数のアイランド61が配置されると、タイバー66が長くなる。たとえば半導体モジュール40内に一相分の上下アームを構成する2つのスイッチング素子70が配置され、スイッチング素子70が個別に配置されるアイランド61が、タイバー66の延設方向であるX方向に並んで配置される構成において、上記した平行配置を採用すると、アイランド61とスイッチング素子70との接合部に作用する応力を抑制することができる。なお、スイッチング素子70が配置されるアイランド61とは別の配線とは、たとえば別のアイランド61や配線部62である。複数のスイッチング素子70は、上下アームを構成するものに限定されない。 The application target of the configuration in which the extending direction of the tie bar 66 and the extending direction of the bridging member 90, that is, the arranging direction of the placement portions 60a and 60b are substantially parallel is not limited to the above example. If a plurality of islands 61 and wiring connected to the switching element 70 via the bridging member 90 and having a wire different from the island 61 on which the switching element 70 is disposed are provided, variation in the height direction is likely to occur. In particular, when the plurality of islands 61 are arranged in the extending direction of the tie bar 66, the tie bar 66 becomes long. For example, two switching elements 70 constituting upper and lower arms for one phase are disposed in the semiconductor module 40, and islands 61 in which the switching elements 70 are individually disposed are aligned in the X direction which is the extension direction of the tie bar 66. In the arrangement configuration, when the above-described parallel arrangement is adopted, it is possible to suppress the stress acting on the junction between the island 61 and the switching element 70. The wiring different from the island 61 in which the switching element 70 is disposed is, for example, another island 61 or a wiring portion 62. The plurality of switching elements 70 are not limited to those constituting the upper and lower arms.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.

Claims (5)

  1.  複数相の上下アームを構成するスイッチング素子(70)としてのハイサイドのスイッチング素子(700H,701H)及びローサイドのスイッチング素子(700L,701L)とともに半導体モジュール(40)を構成し、前記スイッチング素子の駆動を制御する制御装置であって、
     各アームを構成する前記スイッチング素子の主電極間の電圧、又は、各相上下アームの相電圧を検出する電圧検出部(82)と、
     前記電圧検出部により検出された電圧値に基づいて、前記スイッチング素子にショート故障が生じているか否かを判定する判定部(84)と、
     前記判定部により故障が生じたと判定されると、故障が生じた前記スイッチング素子をオフさせるとともに、故障した前記スイッチング素子とは別の相であって同じサイドの前記スイッチング素子をオンさせる駆動部(85)と、
    を備える制御装置。
    A semiconductor module (40) is configured with high side switching elements (700H, 701H) as switching elements (70) constituting upper and lower arms of multiple phases and low side switching elements (700L, 701L), and driving of the switching elements Controller that controls the
    A voltage detection unit (82) for detecting a voltage between main electrodes of the switching elements constituting each arm or phase voltages of upper and lower arms of each phase;
    A determination unit (84) that determines whether or not a short circuit failure has occurred in the switching element based on the voltage value detected by the voltage detection unit;
    A driving unit that turns off the switching element in which the fault has occurred and turns on the switching element on the same side as a phase different from the switching element in which the fault has occurred if it is determined by the determination section that a fault has occurred 85) and
    Control device comprising:
  2.  複数相の上下アームを構成するスイッチング素子(70)としてのハイサイドのスイッチング素子(700H,701H)及びローサイドのスイッチング素子(700L,701L)とともに半導体モジュール(40)を構成し、前記スイッチング素子の駆動を制御する制御装置であって、
     各アームを構成する前記スイッチング素子の温度を検出する温度検出部(83)と、
     前記温度検出部により検出された温度に基づいて、前記スイッチング素子に温度異常の故障が生じているか否かを判定する判定部(84)と、
     前記判定部により故障が生じたと判定されると、故障が生じた前記スイッチング素子をオフさせるとともに、故障した前記スイッチング素子とは別の相であって同じサイドの前記スイッチング素子をオンさせる駆動部(85)と、
    を備える制御装置。
    A semiconductor module (40) is configured with high side switching elements (700H, 701H) as switching elements (70) constituting upper and lower arms of multiple phases and low side switching elements (700L, 701L), and driving of the switching elements Controller that controls the
    A temperature detection unit (83) for detecting the temperature of the switching element constituting each arm;
    A determination unit (84) that determines whether or not a temperature abnormality failure has occurred in the switching element based on the temperature detected by the temperature detection unit;
    A driving unit that turns off the switching element in which the fault has occurred and turns on the switching element on the same side as a phase different from the switching element in which the fault has occurred if it is determined by the determination section that a fault has occurred 85) and
    Control device comprising:
  3.  複数の前記半導体モジュールにより、回転電機(1)の制御装置部(20)を構成する請求項1又は請求項2に記載の制御装置であって、
     前記判定部により故障が生じたと判定されると、故障発生とともに故障した前記スイッチング素子のサイドに関する情報を、別の前記半導体モジュールに通知する通知部(86)をさらに備え、
     別の前記半導体モジュールから故障通知が入力されると、前記駆動部は、故障した前記スイッチング素子と同じサイドの前記スイッチング素子をオンさせる制御装置。
    The control device according to claim 1 or 2, wherein a control device unit (20) of the rotating electrical machine (1) is configured by the plurality of semiconductor modules.
    The semiconductor device further comprises a notification unit (86) for notifying another semiconductor module of information related to the side of the switching element that has failed upon occurrence of a failure if it is determined by the determination unit that a failure has occurred.
    The control device, when the failure notification is input from another semiconductor module, the driving unit turns on the switching element on the same side as the failed switching element.
  4.  複数相の上下アームを構成するスイッチング素子(70)の駆動を制御する制御装置であって、
     所定の処理を実行する処理部(87)と、
     前記複数相の上下アームの相電圧をそれぞれ取得し、前記相電圧の少なくとも1つが閾値電圧を超えると、前記処理部をスリープ状態から起動させる起動部(88)と、
    を備える制御装置。
    A control device for controlling driving of switching elements (70) constituting upper and lower arms of a plurality of phases,
    A processing unit (87) that executes a predetermined process;
    An activation unit (88) configured to acquire phase voltages of the plurality of upper and lower arms and to start the processing unit from the sleep state when at least one of the phase voltages exceeds a threshold voltage;
    Control device comprising:
  5.  前記処理部に電源を供給する電源部(89)をさらに備え、
     前記起動部は、前記複数相の上下アームの相電圧が入力されるORゲート(880)と、相電圧の少なくとも1つが閾値電圧を超えたときの前記ORゲートからの出力によってオンされる起動スイッチ(881)と、を有し、
     前記起動スイッチがオンされることで、前記電源部が作動して前記処理部に電源が供給され、前記処理部がスリープ状態から起動状態となる請求項4に記載の制御装置。
     
    It further comprises a power supply unit (89) for supplying power to the processing unit,
    The start unit is an OR gate (880) to which phase voltages of upper and lower arms of the plurality of phases are input, and a start switch turned on by an output from the OR gate when at least one of the phase voltages exceeds a threshold voltage And (881), and
    The control device according to claim 4, wherein when the start switch is turned on, the power supply unit is operated to supply power to the processing unit, and the processing unit is switched from the sleep state to the activation state.
PCT/JP2018/031117 2017-10-19 2018-08-23 Control device WO2019077873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017202738A JP2019075959A (en) 2017-10-19 2017-10-19 Control arrangement
JP2017-202738 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019077873A1 true WO2019077873A1 (en) 2019-04-25

Family

ID=66173635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031117 WO2019077873A1 (en) 2017-10-19 2018-08-23 Control device

Country Status (2)

Country Link
JP (1) JP2019075959A (en)
WO (1) WO2019077873A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322653B2 (en) * 2019-10-15 2023-08-08 株式会社デンソー switch drive
JP7331811B2 (en) * 2020-09-21 2023-08-23 株式会社デンソー power converter
CA3198717A1 (en) 2020-10-14 2022-04-21 Junichi Kato Care-needing person assistance system
WO2023210170A1 (en) 2022-04-25 2023-11-02 富士電機株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219225A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Vehicle driving system
JP2012006463A (en) * 2010-06-24 2012-01-12 Jtekt Corp Electric power steering device
JP2013188029A (en) * 2012-03-08 2013-09-19 Jtekt Corp Motor control device
WO2017150641A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219225A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Vehicle driving system
JP2012006463A (en) * 2010-06-24 2012-01-12 Jtekt Corp Electric power steering device
JP2013188029A (en) * 2012-03-08 2013-09-19 Jtekt Corp Motor control device
WO2017150641A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Also Published As

Publication number Publication date
JP2019075959A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2019077873A1 (en) Control device
KR102170022B1 (en) Architecture of interconnected electronic power modules for a rotary electric machine and rotary electric machine comprising such an architecture
US7826231B2 (en) Power conversion apparatus
CN107004647B (en) Electro part carrying heat-radiating substrate
US10319849B2 (en) Semiconductor device, and alternator and power conversion device which use same
JPWO2017068636A1 (en) Integrated electric power steering apparatus and manufacturing method thereof
CN107004648B (en) Electro part carrying heat-radiating substrate
WO2019077869A1 (en) Semiconductor module
JP5300784B2 (en) Semiconductor module and rotating electric machine equipped with semiconductor module
US20100301692A1 (en) Electrical rotating machine
JP2013099213A (en) Inverter device
KR20130136472A (en) Method for interconnecting electronic power modules of a rotary electric machine and assembly of interconnected power modules obtained using said method
JP7006120B2 (en) Lead frame
JP2019195244A (en) Rotary electric machine integrated with controller
WO2008153206A1 (en) Power module
JP6988362B2 (en) Semiconductor module
WO2019077870A1 (en) Semiconductor module
WO2019077872A1 (en) Shunt resistor and production method therefor
JP5561623B2 (en) Terminal block, semiconductor device and rotating electric machine for vehicle
JP5729268B2 (en) Rotating electric machine for vehicles
JP5754646B2 (en) Rotating electric machine for vehicles
JP5754645B2 (en) Rotating electric machine for vehicles
US7439696B2 (en) Rotating electric machine and manufacturing method thereof
JP7395010B2 (en) semiconductor module
US20230096581A1 (en) Semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867772

Country of ref document: EP

Kind code of ref document: A1