WO2019077806A1 - Bone graft material and method for manufacturing bone graft material - Google Patents

Bone graft material and method for manufacturing bone graft material Download PDF

Info

Publication number
WO2019077806A1
WO2019077806A1 PCT/JP2018/024191 JP2018024191W WO2019077806A1 WO 2019077806 A1 WO2019077806 A1 WO 2019077806A1 JP 2018024191 W JP2018024191 W JP 2018024191W WO 2019077806 A1 WO2019077806 A1 WO 2019077806A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
calcium phosphate
tcp
material according
biodegradable polymer
Prior art date
Application number
PCT/JP2018/024191
Other languages
French (fr)
Japanese (ja)
Inventor
怜 本島
山田 真也
Original Assignee
オリンパステルモバイオマテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017203134A external-priority patent/JP7177588B2/en
Application filed by オリンパステルモバイオマテリアル株式会社 filed Critical オリンパステルモバイオマテリアル株式会社
Publication of WO2019077806A1 publication Critical patent/WO2019077806A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a bone graft material and a method of manufacturing the bone graft material.
  • HA hydroxyapatite
  • ⁇ -TCP calcium phosphate based ceramics typified by ⁇ -tricalcium phosphate
  • Patent Document 1 describes a bone graft material produced by mixing hydroxyapatite (HA) and collagen.
  • HA hydroxyapatite
  • Patent Document 2 describes a bone graft material produced by mixing ⁇ -type tricalcium phosphate ( ⁇ -TCP) and collagen, but the particle size of ⁇ -type tricalcium phosphate granules used is As large as 100 ⁇ m to 300 ⁇ m, when dispersed on a porous collagen matrix, as shown in FIG. 12, localized in a non-uniform manner on the collagen matrix, and the scaffolding environment for bone formation worsens. There is a problem that the bone conduction ability is inhibited.
  • ⁇ -TCP ⁇ -type tricalcium phosphate
  • the present invention has been made in view of the above-described circumstances, and it is an object of the present invention to provide a bone grafting material and a method of producing the bone grafting material, which can further enhance bone formation and shape maintenance.
  • One aspect of the present invention comprises calcium phosphate and a biodegradable polymer in a mass ratio of 4: 1 to 10: 1, wherein the calcium phosphate comprises a plurality of particles having different particle sizes, and the mode of the particles It is a porous bone grafting material having a diameter of 20 ⁇ m or less and the biodegradable polymer being crosslinked.
  • the mass ratio of calcium phosphate to the biodegradable polymer is appropriately defined as 4: 1 or more and less than 10: 1, it is sufficient while having sufficient flexibility and shape recovery. Bone grafting material capable of exerting new bone formation ability can be produced. Therefore, the bone defect portion can be filled with the bone filling material without gaps, and a sufficient new bone formation effect can be obtained. Since the mode diameter of calcium phosphate is 20 ⁇ m or less, the calcium phosphate can be uniformly and densely dispersed throughout the biodegradable polymer matrix, and the scaffolding environment for new bone formation can be improved. As a result, the new bone forming ability can be further improved.
  • the “mode diameter” is the maximum value of volume% or number% with respect to the particle diameter in the particle size distribution of particles, and is also called mode diameter.
  • the pore diameter of the bone graft material may be larger than 20 ⁇ m.
  • the porosity of the bone graft material may be 50% or more.
  • the pore diameter of the bone filling material necessary for the invasion of tissues such as cells and blood vessels is secured, and a space capable of circulating blood and body fluid necessary for cell growth and formation of bone tissue. Can be secured. As a result, new bone formation can be further promoted.
  • the calcium phosphate may be ⁇ -tricalcium phosphate ( ⁇ -TCP).
  • ⁇ -TCP ⁇ -tricalcium phosphate
  • the biodegradable polymer may include at least collagen. In this way, a flexible bone substitute can be easily generated.
  • the crosslinking may be chemical crosslinking.
  • the elasticity, flexibility and shape recovery of the bone filling material produced can be improved, and a space for cells and tissues necessary for new bone formation to be invaded can be maintained. it can.
  • the stability of the scaffolding environment for new bone formation can be improved.
  • the chemical crosslinking agent used for the chemical crosslinking may include at least one of epoxide and carbodiimide.
  • Another aspect of the present invention comprises the steps of: calcining a precursor containing calcium phosphate to form a calcium phosphate fine powder; mixing the calcium phosphate fine powder with a biodegradable polymer solution and stirring; and the stirring step A cross-linking step of forming a three-dimensional biodegradable polymer / calcium phosphate composite suspension by adding a cross-linking agent to the resulting product to form a three-dimensional biodegradable polymer / calcium phosphate composite suspension, and the biodegradable material produced by the cross-linking step Lyophilizing polymer / calcium phosphate composite suspension, unreacted crosslinker and reaction by-product from the sponge-like biodegradable polymer / calcium phosphate composite porous body obtained by the lyophilization step And washing the biodegradable polymer / calcium phosphate composite porous material washed and removed.
  • a mass mixing ratio of the calcium phosphate and the biodegradable polymer is 4: 1 or more and less than 10: 1, and the calcium phosphate has a plurality of different particle sizes. And the mode diameter of the particles is 20 ⁇ m or less.
  • the mass ratio of calcium phosphate to the biodegradable polymer is appropriately defined as 4: 1 or more and less than 10: 1, it is sufficient while having sufficient flexibility and shape recovery.
  • Bone grafting material that exerts a new bone forming ability can be produced. Since the mode diameter of the calcium phosphate particles is 20 ⁇ m or less, the calcium phosphate particles can be uniformly and densely dispersed throughout the biodegradable polymer matrix, and the scaffolding environment for new bone formation can be improved. As a result, the new bone forming ability can be further improved.
  • the pore diameter of the bone graft material is preferably larger than 20 ⁇ m.
  • the porosity of the bone graft material is preferably 50% or more. In this way, the pore diameter of the bone filling material necessary for the invasion of tissues such as cells and blood vessels can be secured, and the circulation of blood, body fluid, and oxygen necessary for cell growth and formation of bone tissue is possible. Space can be secured. As a result, new bone formation can be further promoted.
  • the calcium phosphate is preferably ⁇ -tricalcium phosphate ( ⁇ -TCP).
  • ⁇ -TCP ⁇ -tricalcium phosphate
  • the biodegradable polymer preferably contains at least collagen. By doing so, a flexible bone graft material can be easily produced.
  • the crosslinking is preferably chemical crosslinking.
  • the elasticity, flexibility and shape recovery of the bone filling material produced can be improved, and a space for cells and tissues necessary for new bone formation to be invaded can be maintained. it can. Also, the stability of the scaffolding environment for new bone formation can be improved.
  • the chemical crosslinking agent used for the chemical crosslinking contains at least one of an epoxide and a carbodiimide.
  • ADVANTAGE OF THE INVENTION According to this invention, it is effective in the ability to provide the manufacturing method of the bone grafting material which can further improve new bone formation property and shape maintenance property, and a bone grafting material.
  • FIG. 1 It is sectional drawing of the bone grafting material which concerns on one Embodiment of this invention. It is a figure which shows the production
  • FIG. 2 is a flowchart showing a method of producing the bone graft material of FIG. 1, wherein (a) is a ⁇ -TCP fine powder production step, (b) is a heat denatured collagen production step, and (c) is a bone grafting material production step Respectively.
  • It is a graph which shows the experimental result of Example 1, and is a graph which evaluated shape restoration nature of a bone grafting material. It is a photograph of the filling part of the rat in which the bone filling material was filled in the bone defect part of the skull.
  • Example 2 it is a ⁇ CT image which shows an example of a score used for determination of bone conductivity, and it is shown that the transplanted bone graft material has united in the full range.
  • Example 2 a ⁇ CT image showing an example of a score used for determination of bone conductivity, which is shown to be partially fused.
  • Example 2 it is a ⁇ CT image showing an example of a score used for determination of bone conductivity, and it is shown that healing was not confirmed.
  • Example 2 it is a ⁇ CT image which shows an example of a score used for determination of bone approachability, and it is shown that the transplanted bone substitute material has entered into the central part of a bone defect.
  • it is a ⁇ CT image showing an example of a score used for determination of bone approachability, and it is shown that new bone is formed only at the peripheral portion of a bone defect.
  • Example 2 it is a ⁇ CT image showing an example of a score used for determination of bone penetration, and it is shown that bone penetration was not confirmed. It is a ⁇ CT image which is an experimental result of six weeks after transplanting the bone grafting material which concerns on Example 2 to the skull of a rat, and shows the state of the bone regeneration degree of sample AK. 5 is a graph showing experimental results of Example 2. It is a figure which shows the production
  • the bone grafting material 1 includes a collagen matrix 2 mainly composed of collagen which is a biodegradable polymer, and ⁇ -TCP ( ⁇ -type phosphate 3) It is a collagen / ⁇ -TCP composite material obtained by mixing it with a fine powder of calcium 3). After being implanted in a bone defect, ⁇ -TCP3 is designed to be gradually absorbed into the body by the action of surrounding bone tissue and to be replaced with autologous bone.
  • the collagen matrix 2 is crosslinked by the crosslinking agent 5.
  • the collagen molecules are cross-linked to form a three-dimensional structure, whereby the shape can be maintained for a certain period in the living body while having a certain elasticity.
  • the crosslinking treatment is particularly preferably crosslinking by chemical crosslinking.
  • the chemical crosslinking agent crosslinking agents such as epoxides and carbodiimides are particularly preferable in consideration of the easiness of crosslinking reaction and the biocompatibility of the obtained bone filler 1, but the invention is not limited thereto.
  • the fine powder of ⁇ -TCP3 contains a plurality of particles having different particle sizes, and the mode diameter is 20 ⁇ m or less.
  • the mode diameter of the fine powder particles of ⁇ -TCP3 is larger than 20 ⁇ m, the action to promote bone formation may be reduced.
  • the fine powder of ⁇ -TCP3 is complexed in such a manner as to be taken into the pore walls of collagen matrix 2.
  • FIG. 4A and 4B a plurality of pores 4 having an average diameter of 50 ⁇ m or more are formed in the bone graft material 1.
  • the scanning electron microscope (SEM) image of the bone grafting material 1 cross section in the case where porosity is 50% or more and average pore diameter is 50 micrometers or more is shown by FIG. 4A and 4B.
  • FIG. 4A shows an SEM image of the bone grafting material 1 observed at a low magnification of 100 ⁇
  • FIG. 4B shows an SEM image of the bone grafting material 1 observed at a high magnification of 300 ⁇ .
  • the bone grafting material 1 according to the present embodiment is formed such that the mass ratio of ⁇ -TCP 3 to collagen matrix 2 is 4: 1 or more and less than 10: 1. Therefore, it has become possible to exert sufficient bone formation ability while having sufficient flexibility and shape recovery.
  • calcium phosphate one using ⁇ -TCP, which can be stably present in a living body for a long period of time and is particularly excellent as a biomaterial, has been described, but the present invention is not limited thereto. It may be compatible, that is, applicable as a biomaterial.
  • a calcium phosphate compound apatites such as hydroxyapatite, dicalcium phosphate, tetracalcium phosphate, octacalcium phosphate etc. may be mentioned, and one or more of them may be used in combination it can.
  • the bone grafting material 1 according to this embodiment configured as described above is manufactured by the following manufacturing method.
  • a ⁇ -TCP fine powder production process SA for producing a fine powder of ⁇ -TCP 3 and heat denaturation
  • a bone grafting material manufacturing step SC for manufacturing the bone grafting material 1.
  • the ⁇ -TCP fine powder production process SA includes a synthesis step SA1 of synthesizing a precursor of ⁇ -TCP3 and a step of baking the synthesized precursor of ⁇ -TCP3.
  • the synthesis step SA1 is carried out, for example, by drying a slurry containing a precursor of ⁇ -TCP3 synthesized from a calcium supplying material and a phosphoric acid supplying material.
  • a precursor of ⁇ -TCP3 is obtained by this synthesis step SA1.
  • the firing step SA2 is performed by firing the precursor of ⁇ -TCP3 obtained by step SA1.
  • the crushing step SA3 is performed, for example, by crushing the ⁇ -TCP3 aggregate obtained in step SA2 sufficiently finely. Thereby, a fine powder of ⁇ -TCP3 is obtained.
  • the method of grinding is not particularly limited.
  • the heat-denatured collagen production process SB is obtained by step SB1 of dissolving atelocollagen atelolated by pepsin treatment in an acidic solvent to prepare an atelocollagen acidic solution, and step SB1.
  • step SB1 Prepare an acidic solution of atelocollagen by lyophilization, and add an appropriate amount of phosphate buffer solution to the collagen sponge obtained by the drying step SB2, and heat treatment to denature the collagen to obtain heat-denatured collagen And degenerative step SB3.
  • the bone filling material production process SC includes the fine powder of ⁇ -TCP3 obtained by the ⁇ -TCP fine powder production process SA and the atelocollagen obtained by the heat-denatured collagen production process SB.
  • a mixing step SC1 of mixing and stirring with an acidic solution, a collagen / ⁇ -TCP composite gel forming step SC2 of obtaining a collagen / ⁇ -TCP composite gel from the mixed mixture, and a collagen / ⁇ -TCP composite Stir the gel to break up the gel and suspend the collagen / ⁇ -TCP composite gel stirring step SC3 and the product obtained by stirring the collagen / ⁇ -TCP composite gel by adding phosphate buffer Collagen / ⁇ -TCP composite suspension preparation step of preparing collagen / ⁇ -TCP composite suspension step SC4 and heat denaturation to collagen / ⁇ -TCP composite suspension Heat denatured collagen obtained in the heat denaturation step SB3 to obtain lagen Heat addition denatured collagen addition step SC5, and crosslinking step SC6
  • the bone graft material 1 according to this embodiment manufactured in this manner is used for treatment of a bone defect by being implanted in a bone defect in a living body.
  • the transplanted bone filling material 1 serves as a scaffold when osteoblasts form new bone, and new bone is formed in the bone defect part with the passage of time. Thereby, the bone defect can be cured.
  • the mass ratio of the fine powder of ⁇ -TCP 3 to the collagen matrix 2 is 4: 1 to 10: 1, the elasticity is improved compared to the conventionally used bone graft material. Can rapidly and sufficiently form new bone while achieving sufficient flexibility and shape recovery.
  • the fine powder of ⁇ -TCP 3 can be in close contact with the bone defect around the transplanted part.
  • Example 1 Shape recovery evaluation
  • Samples of a total of four bone grafting materials 1 in which the blending mass ratio of ⁇ -TCP and collagen was changed were prepared, and the shape recovery of each of the prepared samples was evaluated by the following procedure.
  • xBTy the following four samples represented by xBTy were prepared, where x is a mass ratio of ⁇ -TCP when collagen is 1, and y is a mode diameter of ⁇ -TCP fine powder particles.
  • the most frequent diameter y of the ⁇ -TCP fine powder particles was all prepared to be less than 10 ⁇ m.
  • Sample 4: 16BT10 ( ⁇ -TCP: collagen 16: 1 (w / w))
  • Samples 1-4 were all processed into 1 cm 3 cubes.
  • FIG. 6 is a graph showing experimental results of Example 1.
  • the horizontal axis indicates the number of times of compression of each sample, and the vertical axis measures the thickness of the sample after pressure reduction and recovery of the shape after compressing each sample and comparing with the thickness of each sample before compression It shows the shape recovery rate (%) in the case of As shown in FIG. 6, it is confirmed that there is a correlation between the blending ratio (mass ratio) of ⁇ -TCP to collagen and the shape recovery rate, and the blending ratio (mass) of ⁇ -TCP to collagen It was found that the smaller the ratio, the higher the shape recovery rate.
  • sample 1 (4BT10), sample 2 (9BT10), and sample 3 (13BT10)
  • a high shape recovery rate of about 80% or more can be secured even when the number of compressions increases.
  • the shape recovery rate of sample 4 (16BT10) after the first time drops to 80% or less, and the shape recovery rate decreases when the compounding ratio (mass ratio) of ⁇ -TCP to collagen increases. It was done.
  • Example 2 (New bone formation ability evaluation) Next, samples of a total of 10 bone grafting materials 1 in which the blending mass ratio of .beta.-TCP and collagen and the mode diameter of .beta.-TCP particles were changed were prepared, and the new bone forming ability of each prepared samples was compared. . Specifically, each of the prepared samples A to J was cut out to a diameter of 3 mm and transplanted to a bone defect of 3 mm in diameter formed on the left and right of the rat skull (see FIG. 7). After implantation, the periosteum of the skull was preserved and sutured. Six weeks after implantation, the ⁇ CT images were taken to observe the regenerating condition of each sample AJ. The photograph is shown in FIG. FIG.
  • FIG. 14 shows SEM images of the cross section of the bone graft material 1 of each of the samples A to J observed at low and high magnifications.
  • samples A to J were removed together with the skull surrounding the transplantation site to evaluate bone conductivity and bone penetration.
  • a case in which the bone defect portion was left as a cavity without implanting the bone filling material 1 was used as a sample K.
  • FIGS. 8A to 8C are ⁇ CT images showing the determination criteria of each point used to determine bone conductivity
  • FIGS. 9A to 9C are ⁇ CT showing the determination criteria of each point used to determine bone penetration. It is an image.
  • the mode diameter of TCP particles is 1 to 10 ⁇ m
  • the mass ratio of ⁇ -TCP to collagen 1 is 10
  • the concentration of the crosslinking agent WSC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • Example 3 Evaluation of component mass ratio
  • Example 4 the results of measuring the porosity and pore diameter of the ⁇ -TCP particles of the bone grafting material 1 are shown below.
  • the porosity was measured by pore distribution measurement by mercury porosimetry.
  • ⁇ -TCP particles were vacuum dried at 120 ° C. for 4 hours.
  • the surface tension of mercury was set to 480 dynes / cm
  • the contact angle between mercury and ⁇ -TCP particles was set to 140 degrees
  • mercury was made to enter the pores of ⁇ -TCP particles.
  • Autopore IV9520 micromeritics Company company
  • Bone filling material 1 Bone filling material 2 Collagen matrix (biodegradable polymer) 3 ⁇ -TCP (calcium phosphate) 4 Pore 5 Crosslinking agent SA ⁇ -TCP fine powder production process SB Collagen matrix production process SC Bone filling material production process

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The purpose of the present invention is to further improve osteogenic properties and shape maintainability. The present invention provides a bone graft material that comprises calcium phosphate and a biodegradable polymer in a mass ratio of 4:1 or more and less than 10:1, wherein the calcium phosphate comprises a plurality of particles that have different particle sizes with the most frequent diameter of the particles being 20 μm or less, and the biodegradable polymer is crosslinked.

Description

骨補填材および骨補填材の製造方法Bone filling material and method for producing bone filling material
 本発明は、骨補填材および骨補填材の製造方法に関するものである。 The present invention relates to a bone graft material and a method of manufacturing the bone graft material.
 従来、高い骨伝導能を有する生体吸収性の骨補填材として、無機材料であるハイドロキシアパタイト(HA)やβ型-リン酸三カルシウム(β-TCP)に代表されるリン酸カルシウム系のセラミックスに、有機材料であるコラーゲンなどを混合して生成した複合材料が広く使用されている(例えば、特許文献1および特許文献2参照。)。 Conventionally, as a bioabsorbable bone filling material having high bone conductivity, organic materials such as hydroxyapatite (HA) which is an inorganic material and calcium phosphate based ceramics typified by β-tricalcium phosphate (β-TCP) are used. Composite materials produced by mixing collagen, which is a material, are widely used (see, for example, Patent Documents 1 and 2).
特開2014-76387号明細書Unexamined-Japanese-Patent No. 2014-76387 specification 米国特許出願第2011/0117166号明細書U.S. Patent Application No. 2011/0017166
 特許文献1には、ハイドロキシアパタイト(HA)とコラーゲンを混合して生成した骨補填材が記載されている。しかし、特許文献1の骨補填材は、ハイドロキシアパタイト(HA)とコラーゲンとの質量比が1:10~5:1(w/w)であるため、コラーゲンに対してハイドロキシアパタイトの質量が少なく、十分な新生骨形成効果が得られないという問題がある。特許文献2には、β型-リン酸三カルシウム(β-TCP)とコラーゲンを混合して生成した骨補填材が記載されているが、用いられるβ型-リン酸三カルシウム顆粒の粒径が100μm~300μmと大きいため、多孔体からなるコラーゲンマトリクス上に分散させると、図12に示されるように、コラーゲンマトリクス上に不均一に局在化してしまい、骨形成の足場環境が悪くなることで、骨伝導能が阻害されてしまうという問題がある。 Patent Document 1 describes a bone graft material produced by mixing hydroxyapatite (HA) and collagen. However, since the bone filling material of Patent Document 1 has a mass ratio of hydroxyapatite (HA) to collagen of 1:10 to 5: 1 (w / w), the mass of hydroxyapatite with respect to collagen is small. There is a problem that a sufficient new bone formation effect can not be obtained. Patent Document 2 describes a bone graft material produced by mixing β-type tricalcium phosphate (β-TCP) and collagen, but the particle size of β-type tricalcium phosphate granules used is As large as 100 μm to 300 μm, when dispersed on a porous collagen matrix, as shown in FIG. 12, localized in a non-uniform manner on the collagen matrix, and the scaffolding environment for bone formation worsens. There is a problem that the bone conduction ability is inhibited.
 本発明は、上述した事情に鑑みてなされたものであって、骨形成性および形状維持性をさらに高めることができる骨補填材および骨補填材の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and it is an object of the present invention to provide a bone grafting material and a method of producing the bone grafting material, which can further enhance bone formation and shape maintenance.
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、リン酸カルシウムと生分解性高分子とを、4:1以上10:1未満の質量比で含み、前記リン酸カルシウムは、粒径が異なる複数の粒子を含み、該粒子の最頻径が20μm以下であり、前記生分解性高分子が架橋されている多孔質の骨補填材である。
In order to achieve the above object, the present invention provides the following means.
One aspect of the present invention comprises calcium phosphate and a biodegradable polymer in a mass ratio of 4: 1 to 10: 1, wherein the calcium phosphate comprises a plurality of particles having different particle sizes, and the mode of the particles It is a porous bone grafting material having a diameter of 20 μm or less and the biodegradable polymer being crosslinked.
  上記態様によれば、リン酸カルシウムと生分解性高分子との質量比が4:1以上10:1未満と適切に規定されているので、十分な柔軟性、および形状回復性を有しながら、十分な新生骨形成能を発揮することができる骨補填材を生成することができる。したがって、骨欠損部に隙間なく骨補填材を充填することができ、十分な新生骨形成効果を得ることができる。リン酸カルシウムの最頻径が20μm以下であるので、生分解性高分子のマトリクスの全域に均一かつ密に分散させることができ、新生骨形成の足場環境を向上させることができる。その結果、新生骨形成能をさらに向上させることができる。
 「最頻径」とは、粒子の粒度分布において、粒子径に対する体積%もしくは個数%の極大値であり、モード径とも呼ばれる。
According to the above aspect, since the mass ratio of calcium phosphate to the biodegradable polymer is appropriately defined as 4: 1 or more and less than 10: 1, it is sufficient while having sufficient flexibility and shape recovery. Bone grafting material capable of exerting new bone formation ability can be produced. Therefore, the bone defect portion can be filled with the bone filling material without gaps, and a sufficient new bone formation effect can be obtained. Since the mode diameter of calcium phosphate is 20 μm or less, the calcium phosphate can be uniformly and densely dispersed throughout the biodegradable polymer matrix, and the scaffolding environment for new bone formation can be improved. As a result, the new bone forming ability can be further improved.
The “mode diameter” is the maximum value of volume% or number% with respect to the particle diameter in the particle size distribution of particles, and is also called mode diameter.
 上記態様においては、前記骨補填材の気孔径を、20μmよりも大きいこととしてもよい。
 前記骨補填材の気孔率を、50%以上であることとしてもよい。
 このようにすることで、細胞や血管等の組織の侵入のために必要な骨補填材の気孔径を確保するとともに、細胞増殖および骨組織の形成に必要な血液や体液の循環が可能な空間を確保することができる。その結果、新生骨形成をさらに促進することができる。
In the above aspect, the pore diameter of the bone graft material may be larger than 20 μm.
The porosity of the bone graft material may be 50% or more.
In this way, the pore diameter of the bone filling material necessary for the invasion of tissues such as cells and blood vessels is secured, and a space capable of circulating blood and body fluid necessary for cell growth and formation of bone tissue. Can be secured. As a result, new bone formation can be further promoted.
 上記態様においては、前記リン酸カルシウムが、β型-リン酸三カルシウム(β-TCP)としてもよい。
 このようにすることで、骨伝導能に優れ、かつ、高い生体吸収性を有する骨補填材を生成することができる。
In the above aspect, the calcium phosphate may be β-tricalcium phosphate (β-TCP).
In this way, a bone graft material having excellent bone conductivity and high bioresorbability can be produced.
 上記態様においては、前記生分解性高分子が、少なくともコラーゲンを含むこととしてもよい。
 このようにすることで、簡易に柔軟性を有する骨補填材を生成することができる。
In the above aspect, the biodegradable polymer may include at least collagen.
In this way, a flexible bone substitute can be easily generated.
 上記態様においては、前記架橋が化学的架橋としてもよい。
 このようにすることで、生成した骨補填材の弾力性、柔軟性および、形状回復性を向上させることができ、新生骨形成に必要な細胞や組織が侵入するための空間を維持することができる。新生骨形成のための足場環境の安定性を向上させることができる。
In the above aspect, the crosslinking may be chemical crosslinking.
In this way, the elasticity, flexibility and shape recovery of the bone filling material produced can be improved, and a space for cells and tissues necessary for new bone formation to be invaded can be maintained. it can. The stability of the scaffolding environment for new bone formation can be improved.
 上記態様においては、前記化学的架橋に用いられる化学架橋剤が、エポキシド、カルボジイミドの少なくともいずれかを含むこととしてもよい。
 このようにすることで、湿潤状態であっても形状回復性が高く、かつ、生体安全性が高い骨補填材を得ることができる。
In the above aspect, the chemical crosslinking agent used for the chemical crosslinking may include at least one of epoxide and carbodiimide.
By doing this, it is possible to obtain a bone graft material having high shape recovery even in a wet state and high biosafety.
 本発明の他の態様は、リン酸カルシウムを含む前駆体を焼成してリン酸カルシウム微粉体を生成するステップと、前記リン酸カルシウム微粉体を、生分解性高分子溶液に混合して攪拌するステップと、該攪拌ステップにより得られた成果物に架橋剤を添加して架橋することにより三次元構造の生分解性高分子/リン酸カルシウム複合材懸濁液を形成させる架橋ステップと、該架橋ステップにより生成した前記生分解性高分子/リン酸カルシウム複合材懸濁液を凍結乾燥するステップと、該凍結乾燥ステップにより得られたスポンジ状の前記生分解性高分子/リン酸カルシウム複合多孔体から未反応の前記架橋剤および反応副生成物を洗浄除去する洗浄ステップと、洗浄された前記生分解性高分子/リン酸カルシウム複合多孔体を凍結及び乾燥して骨補填材を生成するステップと、を含み、前記リン酸カルシウムと前記生分解性高分子との質量混合比が、4:1以上10:1未満であり、前記リン酸カルシウムは、粒径が異なる複数の粒子を含み、該粒子の最頻径が20μm以下である骨補填材の製造方法である。 Another aspect of the present invention comprises the steps of: calcining a precursor containing calcium phosphate to form a calcium phosphate fine powder; mixing the calcium phosphate fine powder with a biodegradable polymer solution and stirring; and the stirring step A cross-linking step of forming a three-dimensional biodegradable polymer / calcium phosphate composite suspension by adding a cross-linking agent to the resulting product to form a three-dimensional biodegradable polymer / calcium phosphate composite suspension, and the biodegradable material produced by the cross-linking step Lyophilizing polymer / calcium phosphate composite suspension, unreacted crosslinker and reaction by-product from the sponge-like biodegradable polymer / calcium phosphate composite porous body obtained by the lyophilization step And washing the biodegradable polymer / calcium phosphate composite porous material washed and removed. And B. producing a bone graft material, wherein a mass mixing ratio of the calcium phosphate and the biodegradable polymer is 4: 1 or more and less than 10: 1, and the calcium phosphate has a plurality of different particle sizes. And the mode diameter of the particles is 20 μm or less.
 上記態様によれば、リン酸カルシウムと生分解性高分子との質量比が4:1以上10:1未満と適切に規定されているので、十分な柔軟性、および形状回復性を有しながら、十分な新生骨形成能を発揮する骨補填材を製造することができる。リン酸カルシウム粒子の最頻径が20μm以下であるので、生分解性高分子のマトリクスの全域に均一かつ密に分散させることができ、新生骨形成の足場環境を向上させることができる。その結果、新生骨形成能をさらに向上させることができる。 According to the above aspect, since the mass ratio of calcium phosphate to the biodegradable polymer is appropriately defined as 4: 1 or more and less than 10: 1, it is sufficient while having sufficient flexibility and shape recovery. Bone grafting material that exerts a new bone forming ability can be produced. Since the mode diameter of the calcium phosphate particles is 20 μm or less, the calcium phosphate particles can be uniformly and densely dispersed throughout the biodegradable polymer matrix, and the scaffolding environment for new bone formation can be improved. As a result, the new bone forming ability can be further improved.
 上記態様においては、前記骨補填材の気孔径が20μmよりも大きいことが好ましい。
 前記骨補填材の気孔率が、50%以上であることが好ましい。
 このようにすることで、細胞や血管等の組織の侵入のために必要な骨補填材の気孔径を確保するとともに、細胞増殖および骨組織の形成に必要な血液や体液、酸素の循環が可能な空間を確保することができる。その結果、新生骨形成をさらに促進することができる。
In the above aspect, the pore diameter of the bone graft material is preferably larger than 20 μm.
The porosity of the bone graft material is preferably 50% or more.
In this way, the pore diameter of the bone filling material necessary for the invasion of tissues such as cells and blood vessels can be secured, and the circulation of blood, body fluid, and oxygen necessary for cell growth and formation of bone tissue is possible. Space can be secured. As a result, new bone formation can be further promoted.
 上記態様においては、前記リン酸カルシウムが、β型-リン酸三カルシウム(β-TCP)であることが好ましい。
 このようにすることで、骨伝導能に優れ、かつ、高い生体吸収性を有する骨補填材を製造することができる。
In the above aspect, the calcium phosphate is preferably β-tricalcium phosphate (β-TCP).
In this way, a bone graft material having excellent bone conductivity and high bioresorbability can be produced.
 上記態様においては、前記生分解性高分子が、少なくともコラーゲンを含むことが好ましい。
 このようにすることで、簡易に柔軟性を有する骨補填材を製造することができる。
In the above aspect, the biodegradable polymer preferably contains at least collagen.
By doing so, a flexible bone graft material can be easily produced.
 上記態様においては、前記架橋が化学的架橋であることが好ましい。
 このようにすることで、生成した骨補填材の弾力性、柔軟性および、形状回復性を向上させることができ、新生骨形成に必要な細胞や組織が侵入するための空間を維持することができる。また、新生骨形成のための足場環境の安定性を向上させることができる。
In the above embodiment, the crosslinking is preferably chemical crosslinking.
In this way, the elasticity, flexibility and shape recovery of the bone filling material produced can be improved, and a space for cells and tissues necessary for new bone formation to be invaded can be maintained. it can. Also, the stability of the scaffolding environment for new bone formation can be improved.
 上記態様においては、前記化学的架橋に用いられる化学架橋剤が、エポキシド、カルボジイミドの少なくともいずれかを含むことが好ましい。
 このようにすることで、湿潤状態であっても形状回復性が高く、かつ、生体安全性が高い骨補填材を得ることができる。
In the above aspect, it is preferable that the chemical crosslinking agent used for the chemical crosslinking contains at least one of an epoxide and a carbodiimide.
By doing this, it is possible to obtain a bone graft material having high shape recovery even in a wet state and high biosafety.
 本発明によれば、新生骨形成性および形状維持性をさらに高めることができる骨補填材および骨補填材の製造方法を提供することができるという効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, it is effective in the ability to provide the manufacturing method of the bone grafting material which can further improve new bone formation property and shape maintenance property, and a bone grafting material.
本発明の一実施形態に係る骨補填材の断面図である。It is sectional drawing of the bone grafting material which concerns on one Embodiment of this invention. 図1の骨補填材の生成過程を示す図である。It is a figure which shows the production | generation process of the bone grafting material of FIG. 図1の骨補填材断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the bone graft material cross section of FIG. 気孔率50%以上、平均気孔径が50μm以上である骨補填材断面の走査電子顕微鏡写真であって、は、100倍の低倍率写真である。It is a scanning electron micrograph of a bone graft material cross section which has a porosity of 50% or more and an average pore diameter of 50 μm or more, and is a low magnification photograph of 100 times. 気孔率50%以上、平均気孔径が50μm以上である骨補填材断面の走査電子顕微鏡写真であって、300倍の高倍率写真である。It is a scanning electron micrograph of a bone graft material cross section having a porosity of 50% or more and an average pore diameter of 50 μm or more, which is a high magnification photograph of 300 times. 図1の骨補填材の製造方法を示すフローチャートであって、(a)は、β-TCP微粉体製造工程、(b)は、熱変性コラーゲン製造工程、(c)は、骨補填材製造工程をそれぞれ示している。FIG. 2 is a flowchart showing a method of producing the bone graft material of FIG. 1, wherein (a) is a β-TCP fine powder production step, (b) is a heat denatured collagen production step, and (c) is a bone grafting material production step Respectively. 実施例1の実験結果を示すグラフであり、骨補填材の形状回復性を評価したグラフである。It is a graph which shows the experimental result of Example 1, and is a graph which evaluated shape restoration nature of a bone grafting material. 頭蓋骨の骨欠損部に骨補填材が充填されたラットの充填部の写真である。It is a photograph of the filling part of the rat in which the bone filling material was filled in the bone defect part of the skull. 実施例2において、骨伝導性の判定に用いられるスコアの一例を示すμCT画像であって、移植された骨補填材が全範囲に癒合していることが示されている。In Example 2, it is a μCT image which shows an example of a score used for determination of bone conductivity, and it is shown that the transplanted bone graft material has united in the full range. 実施例2において、骨伝導性の判定に用いられるスコアの一例を示すμCT画像であって、部分的に癒合していることが示されている。In Example 2, a μCT image showing an example of a score used for determination of bone conductivity, which is shown to be partially fused. 実施例2において、骨伝導性の判定に用いられるスコアの一例を示すμCT画像であって、癒合が確認されなかったことが示されている。In Example 2, it is a μCT image showing an example of a score used for determination of bone conductivity, and it is shown that healing was not confirmed. 実施例2において、骨進入性の判定に用いられるスコアの一例を示すμCT画像であって、移植された骨補填材が骨欠損部の中心部に進入していることが示されている。In Example 2, it is a μCT image which shows an example of a score used for determination of bone approachability, and it is shown that the transplanted bone substitute material has entered into the central part of a bone defect. 実施例2において、骨進入性の判定に用いられるスコアの一例を示すμCT画像であって、骨欠損部の辺縁部のみで新生骨が形成されていることが示されている。In Example 2, it is a μCT image showing an example of a score used for determination of bone approachability, and it is shown that new bone is formed only at the peripheral portion of a bone defect. 実施例2において、骨進入性の判定に用いられるスコアの一例を示すμCT画像であって、骨進入が確認されなかったことが示されている。In Example 2, it is a μCT image showing an example of a score used for determination of bone penetration, and it is shown that bone penetration was not confirmed. 実施例2に係る骨補填材をラットの頭蓋骨に移植してから6週間後の実験結果であって、サンプルA~Kの骨再生度の状態を示すμCT画像である。It is a μCT image which is an experimental result of six weeks after transplanting the bone grafting material which concerns on Example 2 to the skull of a rat, and shows the state of the bone regeneration degree of sample AK. 実施例2の実験結果を示すグラフである。5 is a graph showing experimental results of Example 2. 従来技術に係る骨補填材の生成過程を示す図である。It is a figure which shows the production | generation process of the bone grafting material which concerns on a prior art. 図12で生成した骨補填材の断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the bone graft material produced in FIG. サンプルA~Jの骨補填材断面の低倍率および高倍率写真である。Low and high magnification photographs of bone filler cross sections of Samples AJ.
 以下に、本発明の一実施形態に係る骨補填材について説明する。 Below, the bone grafting material concerning one embodiment of the present invention is explained.
 以下に、本発明の一実施形態に係る骨補填材について図面を参照して説明する。
 本実施形態に係る骨補填材1は、図1および図2に示されるように、生分解性高分子であるコラーゲンを主成分とするコラーゲンマトリクス2と、β-TCP(β型-リン酸三カルシウム)3の微粉体とを混合させてなるコラーゲン/β-TCP複合材である。β-TCP3は、骨欠損部に移植された後、周囲の骨組織からの作用により徐々に生体に吸収されながら自家骨へと置換するようになっている。
Below, the bone grafting material concerning one embodiment of the present invention is explained with reference to drawings.
The bone grafting material 1 according to the present embodiment, as shown in FIGS. 1 and 2, includes a collagen matrix 2 mainly composed of collagen which is a biodegradable polymer, and β-TCP (β-type phosphate 3) It is a collagen / β-TCP composite material obtained by mixing it with a fine powder of calcium 3). After being implanted in a bone defect, β-TCP3 is designed to be gradually absorbed into the body by the action of surrounding bone tissue and to be replaced with autologous bone.
 コラーゲンマトリクス2は、架橋剤5により架橋処理が施されている。これにより、コラーゲン分子同士が架橋してつながれ、三次元的な構造を形成することで、一定の弾性を有しながら、生体内でその形状を一定期間保持できるようになっている。本実施形態においては、架橋処理は、特に、化学的架橋で架橋することが好ましい。
 化学架橋剤としては、架橋反応のしやすさや、得られた骨補填材1の生体適合性等を考慮すると、エポキシド、カルボジイミド等の架橋剤が特に好ましいが、これらに限られるものではない。
The collagen matrix 2 is crosslinked by the crosslinking agent 5. Thereby, the collagen molecules are cross-linked to form a three-dimensional structure, whereby the shape can be maintained for a certain period in the living body while having a certain elasticity. In the present embodiment, the crosslinking treatment is particularly preferably crosslinking by chemical crosslinking.
As the chemical crosslinking agent, crosslinking agents such as epoxides and carbodiimides are particularly preferable in consideration of the easiness of crosslinking reaction and the biocompatibility of the obtained bone filler 1, but the invention is not limited thereto.
 β-TCP3の微粉体は、粒径が異なる複数の粒子を含んでおり、その最頻径は、20μm以下となっている。β-TCP3の微粉体粒子の最頻径が20μmより大きくなると、骨形成を促進する作用が低下する可能性がある。β-TCP3の微粉体は、コラーゲンマトリクス2の気孔壁に取り込まれる形で複合化されている。 The fine powder of β-TCP3 contains a plurality of particles having different particle sizes, and the mode diameter is 20 μm or less. When the mode diameter of the fine powder particles of β-TCP3 is larger than 20 μm, the action to promote bone formation may be reduced. The fine powder of β-TCP3 is complexed in such a manner as to be taken into the pore walls of collagen matrix 2.
 図1、図3および図4Aおよび図4Bに示されるように、骨補填材1には、平均径が50μm以上である気孔4が複数形成されている。図4Aおよび図4Bには、気孔率50%以上、平均気孔径が50μm以上である場合の骨補填材1断面の走査電子顕微鏡(SEM)画像が示されている。図4Aには、骨補填材1を100倍の低倍率で観察したSEM画像が、図4Bには、骨補填材1を300倍の高倍率で観察したSEM画像が、それぞれ示されている。骨補填材1にこのような気孔4を複数形成することで、細胞や血管等の組織の侵入を促進するとともに、血液や体液の循環を可能にし、効率的に骨形成を促進させることができるようになっている。 As shown in FIG. 1, FIG. 3 and FIGS. 4A and 4B, a plurality of pores 4 having an average diameter of 50 μm or more are formed in the bone graft material 1. The scanning electron microscope (SEM) image of the bone grafting material 1 cross section in the case where porosity is 50% or more and average pore diameter is 50 micrometers or more is shown by FIG. 4A and 4B. FIG. 4A shows an SEM image of the bone grafting material 1 observed at a low magnification of 100 ×, and FIG. 4B shows an SEM image of the bone grafting material 1 observed at a high magnification of 300 ×. By forming a plurality of such pores 4 in the bone filling material 1, it is possible to promote the invasion of tissues such as cells and blood vessels, enable circulation of blood and body fluid, and efficiently promote bone formation. It is supposed to be.
 本実施形態に係る骨補填材1は、β-TCP3とコラーゲンマトリクス2との質量比が4:1以上10:1未満となるよう形成されている。したがって、十分な柔軟性、および形状回復性を有しながら、十分な骨形成能を発揮することができるようになっている。 The bone grafting material 1 according to the present embodiment is formed such that the mass ratio of β-TCP 3 to collagen matrix 2 is 4: 1 or more and less than 10: 1. Therefore, it has become possible to exert sufficient bone formation ability while having sufficient flexibility and shape recovery.
 本実施形態では、リン酸カルシウムとして、生体内で長期間安定に存在することができ、生体材料として特に優れているβ-TCPを用いたものについて説明したが、これに限られず、生体安全性および生体適合性を有するもの、すなわち、生体材料として適用可能なものであればよい。例えば、リン酸カルシウム系化合物としては、ハイドロキシアパタイト等のアパタイト類、リン酸二カルシウム、リン酸四カルシウム、リン酸八カルシウム等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 In this embodiment, as calcium phosphate, one using β-TCP, which can be stably present in a living body for a long period of time and is particularly excellent as a biomaterial, has been described, but the present invention is not limited thereto. It may be compatible, that is, applicable as a biomaterial. For example, as a calcium phosphate compound, apatites such as hydroxyapatite, dicalcium phosphate, tetracalcium phosphate, octacalcium phosphate etc. may be mentioned, and one or more of them may be used in combination it can.
 本実施形態では、生分解性高分子としてコラーゲンを用いたものについて説明したが、これに代えて、ペクチン、アルギン酸ナトリウム、ゼラチン等を用いることとしてもよく、これに限られない。 In this embodiment, although what used collagen as biodegradable polymer was explained, it is good also as replacing with this, using pectin, sodium alginate, gelatin, etc., and it is not restricted to this.
 このように構成された本実施形態に係る骨補填材1は以下の製造方法によって製造される。
 本実施形態に係る骨補填材1の製造方法は、図5(a)~(c)に示されるように、β-TCP3の微粉体を製造するβ-TCP微粉体製造工程SAと、熱変性コラーゲンを製造する熱変性コラーゲン製造工程SBと、β-TCP微粉体製造工程SAおよび熱変性コラーゲン製造工程SB1により得られたβ-TCP3の微粉体およびアテロコラーゲン酸性溶液からコラーゲン/β-TCP複合材からなる骨補填材1を製造する骨補填材製造工程SCとを備えている。
The bone grafting material 1 according to this embodiment configured as described above is manufactured by the following manufacturing method.
In the method of producing the bone graft material 1 according to the present embodiment, as shown in FIGS. 5A to 5C, a β-TCP fine powder production process SA for producing a fine powder of β-TCP 3 and heat denaturation The heat-denatured collagen production process SB for producing collagen, the β-TCP fine powder production process SA and the heat-denatured collagen production process SA1 And a bone grafting material manufacturing step SC for manufacturing the bone grafting material 1.
 β-TCP微粉体製造工程SAは、図5(a)に示されるように、β-TCP3の前駆体を合成する合成ステップSA1と、合成されたβ-TCP3の前駆体を焼成することによりβ-TCP凝集体を生成する焼成ステップSA2と、生成されたβ-TCP3の凝集体を粉砕する粉砕ステップSA3と、を備えている。
 合成ステップSA1は、例えば、カルシウム供給物質とリン酸供給物質から合成されたβ-TCP3の前駆物質を含むスラリーを乾燥することにより行われる。この合成ステップSA1によりβ-TCP3の前駆体が得られる。
 焼成ステップSA2は、ステップSA1により得られたβ-TCP3の前駆体を焼成することにより行われる。これにより、β-TCP3の凝集体が得られる。
 粉砕ステップSA3は、例えば、ステップSA2により得られたβ-TCP3の凝集体を十分に細かく粉砕すること等により行われる。これにより、β-TCP3の微粉体が得られる。粉砕の方法は特に限定されない。
As shown in FIG. 5 (a), the β-TCP fine powder production process SA includes a synthesis step SA1 of synthesizing a precursor of β-TCP3 and a step of baking the synthesized precursor of β-TCP3. A baking step SA2 for producing a TCP aggregate, and a grinding step SA3 for grinding the produced β-TCP3 aggregate.
The synthesis step SA1 is carried out, for example, by drying a slurry containing a precursor of β-TCP3 synthesized from a calcium supplying material and a phosphoric acid supplying material. A precursor of β-TCP3 is obtained by this synthesis step SA1.
The firing step SA2 is performed by firing the precursor of β-TCP3 obtained by step SA1. Thereby, an aggregate of β-TCP3 is obtained.
The crushing step SA3 is performed, for example, by crushing the β-TCP3 aggregate obtained in step SA2 sufficiently finely. Thereby, a fine powder of β-TCP3 is obtained. The method of grinding is not particularly limited.
 熱変性コラーゲン製造工程SBは、図5(b)に示されるように、ペプシン処理によりアテロ化されたアテロコラーゲンを、酸性溶媒に溶解してアテロコラーゲン酸性溶液を調製するステップSB1と、ステップSB1により得られたアテロコラーゲン酸性溶液を凍結乾燥させる乾燥ステップSB2と、乾燥ステップSB2により得られたコラーゲンスポンジに適量のリン酸緩衝溶液を加えて調製し、加熱処理を施してコラーゲンを変性させ熱変性コラーゲンを得る熱変性ステップSB3と、を備えている。 As shown in FIG. 5 (b), the heat-denatured collagen production process SB is obtained by step SB1 of dissolving atelocollagen atelolated by pepsin treatment in an acidic solvent to prepare an atelocollagen acidic solution, and step SB1. Prepare an acidic solution of atelocollagen by lyophilization, and add an appropriate amount of phosphate buffer solution to the collagen sponge obtained by the drying step SB2, and heat treatment to denature the collagen to obtain heat-denatured collagen And degenerative step SB3.
 骨補填材製造工程SCは、図5(c)に示されるように、β-TCP微粉体製造工程SAにより得られたβ-TCP3の微粉体と、熱変性コラーゲン製造工程SBで得られたアテロコラーゲン酸性溶液とを混合して攪拌する混合ステップSC1と、混合された混合液からコラーゲン/β-TCP複合材ゲルを得るコラーゲン/β-TCP複合材ゲル生成ステップSC2と、コラーゲン/β-TCP複合材ゲルを攪拌してゲルを崩し、懸濁させるコラーゲン/β-TCP複合材ゲル攪拌ステップSC3と、コラーゲン/β-TCP複合材ゲルを攪拌して得られた成果物にリン酸緩衝液を添加しコラーゲン/β-TCP複合材懸濁液を調製するコラーゲン/β-TCP複合材懸濁液調製ステップSC4と、コラーゲン/β-TCP複合材懸濁液に熱変性コラーゲンを得る熱変性ステップSB3で得られた熱変性コラーゲンを添加する熱変性コラーゲン添加ステップSC5と、コラーゲン/β-TCP複合材懸濁液に架橋剤5を添加して架橋処理を施す架橋ステップSC6と、架橋処理したコラーゲン/β-TCP複合材懸濁液を凍結乾燥するコラーゲン/β-TCP複合材懸濁液凍結乾燥ステップSC7と、コラーゲン/β-TCP複合材懸濁液凍結乾燥ステップSC7により得られたコラーゲン/β-TCP複合材から未反応の架橋剤5を洗浄する洗浄ステップSC8と、洗浄ステップSC8により未反応の架橋剤5が除去された後のコラーゲン/β-TCP複合材を凍結乾燥させる乾燥ステップSC9と、乾燥されたスポンジ状のコラーゲン/β-TCP複合材を加工して、任意形状の弾力性を有する骨補填材1を生成する加工ステップSC10と、を備えている。 As shown in FIG. 5 (c), the bone filling material production process SC includes the fine powder of β-TCP3 obtained by the β-TCP fine powder production process SA and the atelocollagen obtained by the heat-denatured collagen production process SB. A mixing step SC1 of mixing and stirring with an acidic solution, a collagen / β-TCP composite gel forming step SC2 of obtaining a collagen / β-TCP composite gel from the mixed mixture, and a collagen / β-TCP composite Stir the gel to break up the gel and suspend the collagen / β-TCP composite gel stirring step SC3 and the product obtained by stirring the collagen / β-TCP composite gel by adding phosphate buffer Collagen / β-TCP composite suspension preparation step of preparing collagen / β-TCP composite suspension step SC4 and heat denaturation to collagen / β-TCP composite suspension Heat denatured collagen obtained in the heat denaturation step SB3 to obtain lagen Heat addition denatured collagen addition step SC5, and crosslinking step SC6 to carry out the crosslinking treatment by adding the crosslinking agent 5 to the collagen / β-TCP composite material suspension And lyophilization of the cross-linked collagen / β-TCP composite suspension by the lyophilization step of collagen / β-TCP composite suspension lyophilization step SC7 and the collagen / β-TCP composite suspension lyophilization step SC7 Freeze the collagen / β-TCP composite after the unreacted crosslinker 5 is removed by the washing step SC8 for washing the unreacted crosslinking agent 5 from the obtained collagen / β-TCP composite and the washing step SC8 Process the drying step SC9 to dry and the dried sponge-like collagen / β-TCP composite to make it elastic in any shape And processing step SC10 for producing the bone grafting material 1 having.
 このようにして製造された本実施形態に係る骨補填材1は、生体内の骨欠損部に移植されることにより、骨欠損部の治療に用いられる。移植された骨補填材1は骨芽細胞が新生骨を形成する際の足場となり、時間の経過に伴って骨欠損部に新生骨が形成される。これにより、骨欠損部を治癒することができる。 The bone graft material 1 according to this embodiment manufactured in this manner is used for treatment of a bone defect by being implanted in a bone defect in a living body. The transplanted bone filling material 1 serves as a scaffold when osteoblasts form new bone, and new bone is formed in the bone defect part with the passage of time. Thereby, the bone defect can be cured.
 本実施形態によれば、β-TCP3の微粉体と、コラーゲンマトリクス2の質量比を4:1以上10:1未満にすることにより、従来使用されていた骨補填材に比べて弾力性を向上させることができ、十分な柔軟性および形状回復性を実現しながら、迅速かつ十分に新生骨が形成される。骨欠損部に隙間なく移植された骨補填材1の内部へ血液や骨芽細胞が侵入可能な気孔を確保しつつ、リン酸カルシウム粒子の最頻径を20μm以下としたβ-TCP3の微粉体をコラーゲンマトリクス2の全域に均一かつ密に万遍なく分散させることで、β-TCP3の微粉体が移植部周囲の骨欠損部と密に接することができる。この結果、骨欠損部の周辺から新生骨形成に必要な骨芽細胞を骨補填材1に誘導することで、新生骨の形成を促進することができる。 According to the present embodiment, by setting the mass ratio of the fine powder of β-TCP 3 to the collagen matrix 2 to be 4: 1 to 10: 1, the elasticity is improved compared to the conventionally used bone graft material. Can rapidly and sufficiently form new bone while achieving sufficient flexibility and shape recovery. Collagen of β-TCP3 fine powder with calcium phosphate particles having a mode diameter of 20 μm or less while securing pores that allow blood and osteoblasts to penetrate into the bone filling material 1 transplanted without gaps in the bone defect part without gaps By uniformly and densely dispersing all over the matrix 2, the fine powder of β-TCP 3 can be in close contact with the bone defect around the transplanted part. As a result, by inducing osteoblasts necessary for new bone formation from the periphery of the bone defect into the bone filling material 1, it is possible to promote the formation of new bone.
 次に、上述した本発明の実施形態の実施例1~5について、図面を参照して以下に説明する。
〔実施例1〕
(形状回復性評価)
 β-TCPとコラーゲンの配合質量比を変えた合計4つの骨補填材1の試料を作製し、作製した各試料の形状回復性を、以下の手順により評価した。
 まず、xを、コラーゲンを1としたときのβ-TCPの質量比、yを、β-TCP微粉体粒子の最頻径としたとき、xBTyであらわされる以下の4つの試料を調製した。β-TCP微粉体粒子の最頻径yは、全て10μm未満に調製した。
 試料1: 4BT10(β-TCP:コラーゲン=4:1(w/w))
 試料2: 9BT10(β-TCP:コラーゲン=9:1(w/w))
 試料3:13BT10(β-TCP:コラーゲン=13:1(w/w))
 試料4:16BT10(β-TCP:コラーゲン=16:1(w/w))
 試料1~4は全て1cmの立方体に加工された。
Next, Examples 1 to 5 of the embodiment of the present invention described above will be described below with reference to the drawings.
Example 1
(Shape recovery evaluation)
Samples of a total of four bone grafting materials 1 in which the blending mass ratio of β-TCP and collagen was changed were prepared, and the shape recovery of each of the prepared samples was evaluated by the following procedure.
First, the following four samples represented by xBTy were prepared, where x is a mass ratio of β-TCP when collagen is 1, and y is a mode diameter of β-TCP fine powder particles. The most frequent diameter y of the β-TCP fine powder particles was all prepared to be less than 10 μm.
Sample 1: 4BT10 (β-TCP: collagen = 4: 1 (w / w))
Sample 2: 9BT10 (β-TCP: collagen = 9: 1 (w / w))
Sample 3: 13BT 10 (β-TCP: collagen = 13: 1 (w / w))
Sample 4: 16BT10 (β-TCP: collagen = 16: 1 (w / w))
Samples 1-4 were all processed into 1 cm 3 cubes.
 次に、調製した上記試料1~4の形状回復性を、以下の実験により評価した。
 まず、試料1~4のそれぞれに最大吸水可能量を超えて吸水不可となるまでRO水(Reverse Osmosis水)を滴下した。次に、十分吸水させた試料1~4を、オートグラフを用いて荷重をかけ、厚さが2mmになるまで圧縮した。次に、圧縮された試料1~4を除圧して形状を回復させ、回復した試料1~4の厚さを測定した。以上の手順を10回繰り返し、試料1~4の形状回復率を測定した。試料1~4の形状回復率測定結果を図6に示す。
Next, the shape recoverability of the prepared samples 1 to 4 was evaluated by the following experiment.
First, RO water (Reverse Osmosis water) was dropped to each of the samples 1 to 4 until the maximum water absorption capacity was exceeded and water absorption became impossible. Next, samples 1 to 4 which had been sufficiently absorbed water were compressed using an autograph to a thickness of 2 mm. Next, the compressed samples 1 to 4 were depressurized to recover their shape, and the thickness of the recovered samples 1 to 4 was measured. The above procedure was repeated 10 times to measure the shape recovery rate of Samples 1 to 4. The measurement results of the shape recovery rates of Samples 1 to 4 are shown in FIG.
 図6は、実施例1の実験結果を示すグラフである。横軸が各試料の圧縮回数を示しており、縦軸が各試料を圧縮させた後に除圧して形状を回復させた後の試料の厚さを計測し、圧縮前の各試料の厚さと比較した場合の形状回復率(%)を示している。図6に示されるように、コラーゲンに対するβ-TCPの配合率(質量比)と、形状回復率との間には相関関係が存在することが確認され、コラーゲンに対するβ-TCPの配合率(質量比)が小さいほど形状回復率が高くなるという知見が得られた。特に、試料1(4BT10)、試料2(9BT10)、試料3(13BT10)では、圧縮回数が増えた場合であっても約80%以上の高い形状回復率が確保できることが確認された。反面、試料4(16BT10)の1回目以降の形状回復率は80%以下に低下しており、コラーゲンに対するβ-TCPの配合率(質量比)が大きくなると、形状回復率が低下することが確認された。 FIG. 6 is a graph showing experimental results of Example 1. The horizontal axis indicates the number of times of compression of each sample, and the vertical axis measures the thickness of the sample after pressure reduction and recovery of the shape after compressing each sample and comparing with the thickness of each sample before compression It shows the shape recovery rate (%) in the case of As shown in FIG. 6, it is confirmed that there is a correlation between the blending ratio (mass ratio) of β-TCP to collagen and the shape recovery rate, and the blending ratio (mass) of β-TCP to collagen It was found that the smaller the ratio, the higher the shape recovery rate. In particular, it was confirmed that in sample 1 (4BT10), sample 2 (9BT10), and sample 3 (13BT10), a high shape recovery rate of about 80% or more can be secured even when the number of compressions increases. On the other hand, it is confirmed that the shape recovery rate of sample 4 (16BT10) after the first time drops to 80% or less, and the shape recovery rate decreases when the compounding ratio (mass ratio) of β-TCP to collagen increases. It was done.
 以上の結果から、β-TCPと、コラーゲンとの質量比を4:1以上10:1未満とすることにより、骨補填材の形状回復性を向上させることで骨欠損部に隙間なくかつ密に骨補填材を充填させた場合にも、骨補填材内部への血液や骨芽細胞の侵入を促し、新生骨形成を促進することができることが示唆された。 From the above results, by setting the mass ratio of β-TCP to collagen to be 4: 1 or more and less than 10: 1, it is possible to improve the shape recovery of the bone grafting material and tightly close the bone defect. It was also suggested that, even when the bone filling material is filled, it is possible to promote the invasion of blood and osteoblasts into the bone filling material and to promote the new bone formation.
〔実施例2〕
(新生骨形成能評価)
 次に、β-TCPとコラーゲンの配合質量比およびβ-TCP粒子の最頻径を変えた合計10個の骨補填材1のサンプルを作製し、作製した各試料の新生骨形成能を比較した。
 具体的には、作製したサンプルA~Jをそれぞれ直径3mmに切り出して、ラットの頭蓋骨の左右に形成した直径3mmの骨欠損部に移植した(図7参照)。移植後、頭蓋骨の骨膜は保存して縫合した。移植から6週間経過後のμCT画像を撮像して各サンプルA~Jの新生骨再生状態を観察した。その写真を図10に示す。図14には、各サンプルA~Jの骨補填材1断面を低倍率および高倍率で観察したSEM画像が、それぞれ示されている。移植から6週間経過後のサンプルA~Jを移植部周囲の頭蓋骨とともに摘出し、骨伝導性と骨進入性を評価した。比較例として、骨欠損部に骨補填材1を移植せずに空洞のままとした場合をサンプルKとした。
Example 2
(New bone formation ability evaluation)
Next, samples of a total of 10 bone grafting materials 1 in which the blending mass ratio of .beta.-TCP and collagen and the mode diameter of .beta.-TCP particles were changed were prepared, and the new bone forming ability of each prepared samples was compared. .
Specifically, each of the prepared samples A to J was cut out to a diameter of 3 mm and transplanted to a bone defect of 3 mm in diameter formed on the left and right of the rat skull (see FIG. 7). After implantation, the periosteum of the skull was preserved and sutured. Six weeks after implantation, the μCT images were taken to observe the regenerating condition of each sample AJ. The photograph is shown in FIG. FIG. 14 shows SEM images of the cross section of the bone graft material 1 of each of the samples A to J observed at low and high magnifications. Six weeks after transplantation, samples A to J were removed together with the skull surrounding the transplantation site to evaluate bone conductivity and bone penetration. As a comparative example, a case in which the bone defect portion was left as a cavity without implanting the bone filling material 1 was used as a sample K.
 実験条件及び結果を表1にまとめた。比較実験は検体数3もしくは5で行われ、その平均値により評価が行われた。
Figure JPOXMLDOC01-appb-T000001
The experimental conditions and the results are summarized in Table 1. The comparative experiments were conducted with 3 or 5 samples, and the evaluation was made based on the average value.
Figure JPOXMLDOC01-appb-T000001
 新生骨再生状態は、主に骨伝導性と骨進入性を評価することにより確認した。図8A~図8Cは、骨伝導性の判定に用いられる各ポイントの判定基準を示すμCT画像であり、図9A~図9Cは、骨進入性の判定に用いられる各ポイントの判定基準を示すμCT画像である。 New bone regeneration status was mainly confirmed by evaluating bone conductivity and bone penetration. FIGS. 8A to 8C are μCT images showing the determination criteria of each point used to determine bone conductivity, and FIGS. 9A to 9C are μCT showing the determination criteria of each point used to determine bone penetration. It is an image.
 骨伝導性の評価は、移植された骨補填材1が全範囲に癒合していることが確認された場合には2ポイント(図8A参照))、部分的に癒合していることが確認された場合には1ポイント(図8B参照)、癒合が確認されなかった場合には0ポイント(図8C参照)として評価した。
 骨進入性の評価は、移植された骨補填材1が骨欠損部の中心部に進入していることが確認された場合には2ポイント(図9A参照))、骨欠損部の辺縁部のみで新生骨が形成されていることが確認された場合には1ポイント(図9B参照)、骨進入が確認されなかった場合には0ポイント(図9C参照)として評価した。 骨伝導性および骨進入性の判定基準を表2に示す。
Figure JPOXMLDOC01-appb-T000002
As for the evaluation of the bone conductivity, it is confirmed that two points (see FIG. 8A) are partially fused when it is confirmed that the transplanted bone filling material 1 is fused in the entire range. The evaluation was made as 1 point (see FIG. 8B) in the case where it did not occur, and 0 point (see FIG. 8C) when no healing was observed.
For evaluation of bone penetration, two points (see FIG. 9A) are obtained when it is confirmed that the implanted bone graft material 1 is in the center of the bone defect, and the edge of the bone defect It was evaluated as 1 point (see FIG. 9B) when it was confirmed that only new bone was formed, and 0 point (see FIG. 9C) when bone entry was not confirmed. The criteria for bone conductivity and bone penetration are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 サンプルA~Kについて、表2の判定基準に基づいて骨伝導性および骨進入性をカウントし、形成した骨欠損部における新生骨が形成された領域の状態を評価した。その結果を図11に示す。 With respect to samples A to K, osteoconductivity and bone infiltration were counted based on the criteria in Table 2 to evaluate the condition of the area in which the new bone was formed in the formed bone defect. The results are shown in FIG.
 この実験の結果、骨欠損部を空洞のまま6週間経過させた場合、骨伝導性および骨進入性の合計スコアは0.5ポイントと著しく低かった。図10に示される6週間経過後のサンプルKのμCT画像においては、骨欠損部が空洞のまま取り残されており、新生骨の形成はほぼ確認されなかった。
 骨補填材1のβ-TCP粒子の最頻径を100-300μmとしたサンプルC~FおよびJ、および、β-TCP粒子の最頻径を50-100μmとしたサンプルIでは、β-TCPとコラーゲンの質量比の大小にかかわらず、骨伝導性および骨進入性の合計スコアは1~2ポイントと低かった。図10に示される6週間経過後のサンプルC~F、I、およびJのμCT画像では、骨欠損部内に充填された骨補填材1の癒合および骨進入が殆ど進んでいないことが確認された。
As a result of this experiment, when the bone defect was left hollow for 6 weeks, the total score of the bone conductivity and the bone penetration was remarkably low at 0.5 point. In the μCT image of sample K after 6 weeks shown in FIG. 10, the bone defect was left as a cavity, and the formation of new bone was hardly confirmed.
In samples C to F and J, where the mode diameter of β-TCP particles of bone filler 1 was 100 to 300 μm, and for sample I, where the mode diameter of β-TCP particles was 50 to 100 μm, β-TCP and The total score of osteoconductivity and bone infiltration was as low as 1 to 2 points regardless of the mass ratio of collagen. In the μCT images of samples C to F, I, and J after 6 weeks shown in FIG. 10, it was confirmed that the healing and bone penetration of the bone graft material 1 filled in the bone defect hardly progressed. .
 これに対し、骨補填材1のβ-TCP粒子の最頻径が1.0-2.0μm、コラーゲン1に対するβ-TCPの質量比が10であるサンプルAや、骨補填材1のβ-TCP粒子の最頻径が1-10μm、コラーゲン1に対するβ-TCPの質量比が10、架橋剤WSC(1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩)の濃度が5.0wt%であるサンプルGでは、骨伝導性および骨進入性の合計スコアが3.7~4と高かった。図10に示される6週間経過後のサンプルAやサンプルGのμCT画像においても、移植部位において骨補填材1の癒合が進み、移植部位の中心部にまで新生骨が進入して新生骨再生が促進されていることが確認された。骨補填材1のβ-TCP粒子の最頻径が1.0-2.0μm、コラーゲン1に対するβ-TCPの質量比が5であるサンプルBや、骨補填材1のβ-TCP粒子の最頻径が10-50μm、コラーゲン1に対するβ-TCPの質量比が10、架橋剤WSCの濃度が5.0wt%であるサンプルHの骨伝導性および骨進入性の合計スコアは3と比較的高かった。図10に示される6週間経過後のサンプルBやサンプルHのμCT画像では、骨補填材1の癒合が部分的に進み、移植部位の中心部に骨進入していることが確認された。このように、サンプルA、サンプルB、サンプルG、およびサンプルHにおいて、新生骨形成が著しく促進されることが確認された。 On the other hand, Sample A in which the mode diameter of the β-TCP particles of the bone grafting material 1 is 1.0 to 2.0 μm and the mass ratio of β-TCP to collagen 1 is 10, β- of the bone grafting material 1 The mode diameter of TCP particles is 1 to 10 μm, the mass ratio of β-TCP to collagen 1 is 10, and the concentration of the crosslinking agent WSC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride) is 5.0 wt% In the sample G which is the total score of bone conductivity and bone penetration was as high as 3.7 to 4. In the μCT images of sample A and sample G after 6 weeks shown in FIG. 10 as well, healing of bone grafting material 1 proceeds at the implantation site, and new bone enters the center of the implantation site to regenerate new bone It was confirmed that it was promoted. Sample B in which the mode diameter of the β-TCP particles of the bone grafting material 1 is 1.0 to 2.0 μm and the mass ratio of β-TCP to collagen 1 is 5, the maximum of the β-TCP particles of the bone grafting material 1 Sample H with a frequency of 10-50 μm, a mass ratio of β-TCP to collagen 1 of 10, and a concentration of the crosslinker WSC of 5.0 wt% The In the μCT images of sample B and sample H after 6 weeks shown in FIG. 10, it was confirmed that fusion of bone filling material 1 partially progressed and bone was in the center of the graft site. Thus, it was confirmed that in the sample A, the sample B, the sample G, and the sample H, new bone formation is significantly promoted.
〔実施例3〕
(成分質量比評価)
 次に、実施例2のサンプルAおよびBの成分質量比を測定した。成分質量比測定は、焼成により減少したコラーゲン質量を算出することにより行った。
 具体的は、まず、焼成に用いるるつぼの質量を測定した。次に、サンプルA(β-TCP/コラーゲン=10/1(w/w:仕込み時)およびサンプルB(β-TCP/コラーゲン=5/1(w/w:仕込み時)質量を測定した。その後、サンプルAおよびBをるつぼに入れ、マッフル炉により1050℃で10時間焼成した。焼成後、サンプルAおよびBに残存するβ-TCPの質量を測定した。この測定結果から、減少したコラーゲンの重量質量を算出した。最後に、焼成前のサンプルAおよびサンプルBにおけるβ-TCP/コラーゲンの質量比を算出した。
[Example 3]
(Evaluation of component mass ratio)
Next, the component mass ratio of samples A and B of Example 2 was measured. Component mass ratio measurement was performed by calculating the collagen mass which reduced by baking.
Specifically, first, the mass of the crucible used for firing was measured. Next, the mass of sample A (β-TCP / collagen = 10/1 (w / w: at the time of preparation) and sample B (β-TCP / collagen = 5/1 (w / w: at the time of preparation) was measured. Samples A and B were placed in a crucible and fired in a muffle furnace for 10 hours at 1050 ° C. After firing, the weight of β-TCP remaining in samples A and B was measured. Finally, the mass ratio of β-TCP / collagen in sample A and sample B before calcination was calculated.
(サンプルA)
<測定結果>
 るつぼAの質量:152.0460g
 焼成前質量:るつぼA+サンプルA(β-TCP/コラーゲン複合材)の質量=156.1773g
 焼成後質量:るつぼA+サンプルA(β-TCP)の質量=155.7560g
<算出結果>
 β-TCP+コラーゲン複合材の質量:4.1313g
 β-TCP質量:3,710g
 コラーゲン質量:0.4213g
 β-TCP/コラーゲン質量比=8.81/1(w/w)
(サンプルB)
<測定結果>
 るつぼB質量:10.3905g
 焼成前質量:るつぼB+サンプルB(β-TCP/コラーゲン複合材)の質量=10.4572g
 焼成後質量:るつぼB+サンプルB(β-TCP)の質量=10.4444g
<算出結果>
 β-TCP+コラーゲン複合材の質量: 0.0667g
 β-TCP質量:0.0539g
 コラーゲン質量:0.0128g
 β-TCP/コラーゲン質量比=4.21/1(w/w)
 以上より、新生骨形成の促進効果が認められたサンプルAおよびサンプルBのβ-TCP/コラーゲンの質量比が、それぞれ、8.81/1(w/w)、4.21/1(w/w)であることが確認された。
(Sample A)
<Measurement result>
Mass of crucible A: 152.0460 g
Mass before firing: Mass of crucible A + sample A (β-TCP / collagen composite) = 156.1773 g
Mass after firing: mass of crucible A + sample A (β-TCP) = 155.7560 g
<Calculation result>
Mass of β-TCP + collagen composite: 4.1313 g
β-TCP mass: 3,710 g
Collagen weight: 0.4213 g
β-TCP / collagen mass ratio = 8.81 / 1 (w / w)
(Sample B)
<Measurement result>
Crucible B mass: 10.3905 g
Mass before firing: Mass of crucible B + sample B (β-TCP / collagen composite material) = 10.4572 g
Mass after firing: Mass of crucible B + sample B (β-TCP) = 10.4444 g
<Calculation result>
Mass of β-TCP + collagen composite: 0.0667 g
β-TCP mass: 0.0539 g
Collagen weight: 0.0128 g
β-TCP / collagen mass ratio = 4.21 / 1 (w / w)
From the above, the mass ratio of β-TCP / collagen of sample A and sample B, in which the promoting effect on new bone formation was observed, was 8.81 / 1 (w / w) and 4.21 / 1 (w / respectively). w) confirmed.
〔実施例4〕
(気孔率および気孔径測定)
 次に、骨補填材1のβ-TCP粒子の気孔率および気孔径を測定した結果を以下に示す。気孔率の測定は、水銀圧入法による細孔分布測定とした。
まず、前処理として、β-TCP粒子を120℃で4 時間真空乾燥した。次に、水銀の表面張力を480dynes/cm、水銀とβ-TCP粒子との接触角を140degreesに設定して、β-TCP粒子の細孔に水銀を浸入させた。測定装置としては、オートポアIV9520(micromeritics
社製)を使用した。
測定結果を以下に示す。
<測定結果>
β-TCP粒子の気孔率:96%
β-TCP粒子の気孔径(メジアン径):141.1μm
β-TCP粒子の気孔径の許容範囲:20~1000μm
β-TCP粒子の気孔径最適範囲:50~500μm
Example 4
(Porosity and pore size measurement)
Next, the results of measuring the porosity and pore diameter of the β-TCP particles of the bone grafting material 1 are shown below. The porosity was measured by pore distribution measurement by mercury porosimetry.
First, as a pretreatment, β-TCP particles were vacuum dried at 120 ° C. for 4 hours. Next, the surface tension of mercury was set to 480 dynes / cm, the contact angle between mercury and β-TCP particles was set to 140 degrees, and mercury was made to enter the pores of β-TCP particles. As a measuring device, Autopore IV9520 (micromeritics
Company company) was used.
The measurement results are shown below.
<Measurement result>
Porosity of β-TCP particles: 96%
Pore diameter (median diameter) of β-TCP particles: 141.1 μm
Acceptable range of pore size of β-TCP particles: 20 to 1000 μm
Optimal range of pore size of β-TCP particles: 50 to 500 μm
(粒度分布測定)
 最後に、β-TCP粒子の粒度分布を測定した結果を以下に示す。
まず、前処理として、β-TCP粒子を少量取り、精製水を加えて、5分間超音波処理することにより、β-TCP粒子の凝集をキャンセルした。測定条件は、β-TCPの屈折率は1.557-0.000i、水の屈折率を1.333と規定した。測定装置としては、LS 13320(BECKMAN COULTER 社)を使用した。
測定結果を以下に示す。
<測定結果>
β-TCP粒子の最頻径:15.65μm
(Particle size distribution measurement)
Finally, the results of measuring the particle size distribution of β-TCP particles are shown below.
First, as pretreatment, a small amount of β-TCP particles was taken, purified water was added, and the mixture was sonicated for 5 minutes to cancel the aggregation of β-TCP particles. As the measurement conditions, the refractive index of β-TCP was defined as 1.557-0.000i, and the refractive index of water was defined as 1.333. As a measuring device, LS 13320 (BECKMAN COULTER) was used.
The measurement results are shown below.
<Measurement result>
Maximum diameter of β-TCP particles: 15.65 μm
 1 骨補填材
 2 コラーゲンマトリクス(生分解性高分子)
 3 β-TCP(リン酸カルシウム)
 4 気孔
 5 架橋剤
 SA β-TCP微粉体製造工程
 SB コラーゲンマトリクス製造工程
 SC 骨補填材製造工程
 
1 Bone filling material 2 Collagen matrix (biodegradable polymer)
3 β-TCP (calcium phosphate)
4 Pore 5 Crosslinking agent SA β-TCP fine powder production process SB Collagen matrix production process SC Bone filling material production process

Claims (14)

  1.  リン酸カルシウムと生分解性高分子とを、4:1以上10:1未満の質量比で含み、前記リン酸カルシウムは、粒径が異なる複数の粒子を含み、該粒子の最頻径が20μm以下であり、
     前記生分解性高分子が架橋されている多孔質の骨補填材。
    The calcium phosphate and the biodegradable polymer are contained in a mass ratio of 4: 1 to 10: 1, and the calcium phosphate includes a plurality of particles having different particle sizes, and the mode diameter of the particles is 20 μm or less.
    A porous bone grafting material in which the biodegradable polymer is crosslinked.
  2.  前記骨補填材の気孔径は、20μmより大きい請求項1に記載の骨補填材。 The bone grafting material according to claim 1, wherein the pore diameter of the bone grafting material is larger than 20 m.
  3.  前記骨補填材の気孔率は50%以上である請求項1または2に記載の骨補填材。 The bone grafting material according to claim 1 or 2, wherein the porosity of the bone grafting material is 50% or more.
  4.  前記リン酸カルシウムが、β型-リン酸三カルシウム(β-TCP)である請求項1から3のいずれかに記載の骨補填材。 The bone grafting material according to any one of claims 1 to 3, wherein the calcium phosphate is β-tricalcium phosphate (β-TCP).
  5.  前記生分解性高分子が、少なくともコラーゲンを含む請求項1から請求項4のいずれかに記載の骨補填材。 The bone grafting material according to any one of claims 1 to 4, wherein the biodegradable polymer contains at least collagen.
  6.  前記架橋が化学的架橋である請求項1から請求項5のいずれかに記載の骨補填材。 The bone grafting material according to any one of claims 1 to 5, wherein the crosslinking is a chemical crosslinking.
  7.  前記化学的架橋に用いられる化学架橋剤が、エポキシド、カルボジイミドの少なくともいずれかを含む請求項6に記載の骨補填材。 The bone grafting material according to claim 6, wherein the chemical crosslinking agent used for the chemical crosslinking contains at least one of epoxide and carbodiimide.
  8.  リン酸カルシウムを含む前駆体を焼成してリン酸カルシウム微粉体を生成するステップと、
     該リン酸カルシウム微粉体を、生分解性高分子溶液に混合して攪拌するステップと、
     該攪拌ステップにより得られた成果物に架橋剤を添加して架橋することにより三次元構造の生分解性高分子/リン酸カルシウム複合材懸濁液を形成させる架橋ステップと、
     該架橋ステップにより生成した前記生分解性高分子/リン酸カルシウム複合材懸濁液を凍結乾燥するステップと、
     該凍結乾燥ステップにより得られたスポンジ状の前記生分解性高分子/リン酸カルシウム複合材多孔体から未反応の前記架橋剤および反応副生成物を洗浄除去する洗浄ステップと、
     洗浄された前記生分解性高分子/リン酸カルシウム複合材多孔体を凍結及び乾燥して骨補填材を生成するステップと、を含み、
     前記リン酸カルシウムと前記生分解性高分子との質量混合比が、4:1以上10:1未満であり、
     前記リン酸カルシウムは、粒径が異なる複数の粒子を含み、該粒子の最頻径が20μm以下である骨補填材の製造方法。
    Calcining a precursor containing calcium phosphate to form calcium phosphate fine powder;
    Mixing the calcium phosphate fine powder with the biodegradable polymer solution and stirring;
    A cross-linking step of forming a three-dimensional biodegradable polymer / calcium phosphate composite suspension by adding a cross-linking agent to the product obtained by the stirring step and cross-linking;
    Lyophilizing the biodegradable polymer / calcium phosphate composite suspension produced by the crosslinking step;
    A washing step of washing away the unreacted crosslinking agent and reaction by-products from the sponge-like biodegradable polymer / calcium phosphate composite porous body obtained by the lyophilization step;
    Freezing and drying the washed biodegradable polymer / calcium phosphate composite porous body to produce a bone filling material,
    The mass mixing ratio of the calcium phosphate to the biodegradable polymer is 4: 1 to 10: 1,
    The method for producing a bone grafting material according to claim 1, wherein the calcium phosphate contains a plurality of particles having different particle sizes, and the mode diameter of the particles is 20 μm or less.
  9.  前記骨補填材の気孔径は、20μmより大きい請求項8に記載の骨補填材の製造方法。 The method for producing a bone graft material according to claim 8, wherein the pore diameter of the bone graft material is larger than 20 μm.
  10.  前記骨補填材の気孔率は50%以上である請求項8または9に記載の骨補填材の製造方法。 The method for producing a bone graft material according to claim 8 or 9, wherein the porosity of the bone graft material is 50% or more.
  11.  前記リン酸カルシウムが、β型-リン酸三カルシウム(β-TCP)である、請求項8から10のいずれかに記載の骨補填材の製造方法。 The method for producing a bone graft material according to any one of claims 8 to 10, wherein the calcium phosphate is β-tricalcium phosphate (β-TCP).
  12.  前記生分解性高分子が、少なくともコラーゲンを含む請求項8から請求項11のいずれかに記載の骨補填材の製造方法。 The method for producing a bone graft material according to any one of claims 8 to 11, wherein the biodegradable polymer contains at least collagen.
  13.  前記架橋が化学的架橋である請求項8から請求項12のいずれかに記載の骨補填材の製造方法。 The method for producing a bone graft material according to any one of claims 8 to 12, wherein the crosslinking is chemical crosslinking.
  14.  前記化学的架橋に用いられる化学架橋剤が、エポキシド、カルボジイミドの少なくともいずれかを含む請求項13に記載の骨補填材の製造方法。
     
    The method for producing a bone grafting material according to claim 13, wherein the chemical crosslinking agent used for the chemical crosslinking contains at least one of an epoxide and a carbodiimide.
PCT/JP2018/024191 2017-10-20 2018-06-26 Bone graft material and method for manufacturing bone graft material WO2019077806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-203134 2017-10-20
JP2017203134A JP7177588B2 (en) 2016-12-12 2017-10-20 Bone substitute material and method for producing bone substitute material

Publications (1)

Publication Number Publication Date
WO2019077806A1 true WO2019077806A1 (en) 2019-04-25

Family

ID=66174659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024191 WO2019077806A1 (en) 2017-10-20 2018-06-26 Bone graft material and method for manufacturing bone graft material

Country Status (1)

Country Link
WO (1) WO2019077806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116832219A (en) * 2023-08-29 2023-10-03 常州邦莱医疗科技有限公司 Artificial bone repair material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320442A (en) * 2005-05-18 2006-11-30 Toshiba Ceramics Co Ltd Calcium phosphate-based bone filling material
JP2008086676A (en) * 2006-10-05 2008-04-17 Covalent Materials Corp Calcium phosphate bone prosthetic material
JP2010273847A (en) * 2009-05-28 2010-12-09 Tokyo Institute Of Technology High-density porous composite
JP2014076387A (en) * 2007-02-09 2014-05-01 Royal College Of Surgeons In Ireland Collagen/hydroxyapatite composite skeleton and method for forming the same
CN106823008A (en) * 2016-12-30 2017-06-13 北京爱康宜诚医疗器材有限公司 Bone renovating material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320442A (en) * 2005-05-18 2006-11-30 Toshiba Ceramics Co Ltd Calcium phosphate-based bone filling material
JP2008086676A (en) * 2006-10-05 2008-04-17 Covalent Materials Corp Calcium phosphate bone prosthetic material
JP2014076387A (en) * 2007-02-09 2014-05-01 Royal College Of Surgeons In Ireland Collagen/hydroxyapatite composite skeleton and method for forming the same
JP2010273847A (en) * 2009-05-28 2010-12-09 Tokyo Institute Of Technology High-density porous composite
CN106823008A (en) * 2016-12-30 2017-06-13 北京爱康宜诚医疗器材有限公司 Bone renovating material and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MATSUNO, TOMONORI ET AL.: "Development of beta-tricalcium Phosphate/Collagen Sponge Composite for Bone Regeneration", DENTAL MATERIALS JOURNAL, vol. 25, no. 1, March 2006 (2006-03-01), pages 138 - 144, XP055596869 *
PETERS, F. ET AL.: "Functional Materials for Bone Regeneration from Beta-Tricalcium Phosphate", MATERIALS SCIENCE & ENGINEERING TECHNOLOGY, vol. 35, no. 4, April 2004 (2004-04-01), pages 203 - 207, XP055596801 *
SARIKAYA, B. ET AL.: "Collagen/Beta-Tricalcium Phosphate Based Synthetic Bone Grafts via Dehydrothermal Processing", BIOMED RESEARCH INTERNATIONAL, vol. 2015, 2015, pages 1 - 9, XP055596802 *
TAKAHASHI, KEN: "The Effect of Collagen Composed with Biodegradable Calcium Phosphate for Bone Substitute", THE JOURNAL OF THE TOKYO DENTAL COLLEGE SOCIETY, vol. 97, no. 5, 30 May 1997 (1997-05-30), pages 509 - 536, XP009501546 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116832219A (en) * 2023-08-29 2023-10-03 常州邦莱医疗科技有限公司 Artificial bone repair material and preparation method thereof
CN116832219B (en) * 2023-08-29 2023-12-22 常州邦莱医疗科技有限公司 Artificial bone repair material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101599245B1 (en) Bone substitute material
JP5201510B2 (en) Osteoinducible calcium phosphate
JP6663608B2 (en) Bone defect reconstruction treatment kit, medical hard tissue reconstruction material, production method of product inorganic compound, and product inorganic compound
JP6288723B2 (en) Bone regeneration material kit, paste-like bone regeneration material, bone regeneration material and bone cement
Dalmônico et al. An in vivo study on bone formation behavior of microporous granular calcium phosphate
US8999366B2 (en) Porous biomaterial on hydroxyapatite
JP2018523632A (en) Large three-dimensional porous scaffold material made from active hydroxyapatite obtained by transformation resembling the morphology of a natural structure organism and process for obtaining it
CN111465418B (en) Bone substitute material
US10517993B2 (en) Porous composite, bone regeneration material, and method for producing porous composite
US8465582B2 (en) Process for producing inorganic interconnected 3D open cell bone substitutes
KR102636183B1 (en) Collagen matrix or granulated blend of bone substitute materials
JP7177588B2 (en) Bone substitute material and method for producing bone substitute material
WO2019077806A1 (en) Bone graft material and method for manufacturing bone graft material
JP2008295791A (en) Porous body consisting of apatite/collagen composite and its production method
TWI623329B (en) Method fortaking porous composite
JP7412700B2 (en) porous composite
Sopyan et al. Fabrication of porous ceramic scaffolds via polymeric sponge method using sol-gel derived strontium doped hydroxyapatite powder
US10512709B2 (en) Porous composite and bone regeneration material
JP5900691B1 (en) Porous composite and bone regeneration material
JP5900692B1 (en) Porous composite and bone regeneration material
JP5924458B1 (en) Porous composite and bone regeneration material
JP2007054247A (en) Biomaterial and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868716

Country of ref document: EP

Kind code of ref document: A1