WO2019075986A1 - 用于无线电能传输的包含选择/侦测(ping)两阶段的多线圈系统和方法 - Google Patents

用于无线电能传输的包含选择/侦测(ping)两阶段的多线圈系统和方法 Download PDF

Info

Publication number
WO2019075986A1
WO2019075986A1 PCT/CN2018/078921 CN2018078921W WO2019075986A1 WO 2019075986 A1 WO2019075986 A1 WO 2019075986A1 CN 2018078921 W CN2018078921 W CN 2018078921W WO 2019075986 A1 WO2019075986 A1 WO 2019075986A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
coil
coils
transmit
transmit coils
Prior art date
Application number
PCT/CN2018/078921
Other languages
English (en)
French (fr)
Inventor
王志林
李暾
潘思铭
贺大玮
Original Assignee
成都市易冲无线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都市易冲无线科技有限公司 filed Critical 成都市易冲无线科技有限公司
Priority to CN201880001408.7A priority Critical patent/CN109937514A/zh
Publication of WO2019075986A1 publication Critical patent/WO2019075986A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • This invention relates to radio energy transmission methods and systems, and more particularly to multi-coil systems and methods for radio energy transmission.
  • Radio Power Transfer (WPT) technology facilitates the wireless transfer of electrical energy to electronic devices (eg, wireless charging of electronic devices).
  • electrical energy/energy can be transferred from one or more power transmitting coils to one or more power receiving coils by electromagnetic coupling.
  • the wireless power transmission system can include a first set of transmit coils and a second set of transmit coils. Each group can include one or more transmit coils.
  • the first set of transmit coils may be arranged in a first plane and the second set of transmit coils may be arranged in a second plane.
  • the wireless power transfer system can further include a controller unit.
  • the controller unit is configured to provide the first power to the first group, one or more transmit coils at a time; compare the first coupling strength of the powered first transmit coil with a first threshold; in response to determining the first The coupling strength exceeds a first threshold, determining the transmitting coil as a selected transmitting coil; providing a second power to the second group, one or more transmitting coils at a time; comparing a coupling strength of the powered second transmitting coil with a second threshold And in response to determining that the second coupling strength exceeds the second threshold, determining the transmitting coil as another selected transmitting coil.
  • the controller is further configured to determine a third power for providing to the selected transmit coil from the first set and for providing to the selected transmit coil from the second set a fourth power; determining a number of stages; determining, based on the determined number of stages, a plurality of stages for providing each of the third powers selected from the first set of selected transmit coils and providing each of the selected from the second set a plurality of stages of the fourth power of the transmitting coil, the plurality of stages of the third power being incremented from the first stage to a final stage equal to the third power, and the plurality of stages of the fourth power increasing from the first stage to being equal to the fourth stage a final stage of power; at a predetermined time, a first stage of providing a third power is given to each of the selected transmit coils from the first set, and a first stage of providing a fourth power is given to each selected one of the selected sets a coil; in response to not receiving a preset response from the wireless power receiver, providing a next phase of the third power and
  • the radio energy transmission method may include a selection phase and a ping phase.
  • the selecting phase may include providing the first power to the first set of transmit coils, one or more transmit coils at a time; comparing the first coupled strength of the powered first transmit coil to a first threshold; in response to determining that the first coupled strength exceeds the first a threshold, determining the transmit coil as a selected transmit coil; providing a second power to the second set of transmit coils, one or more transmit coils at a time; comparing a coupled strength of the powered second transmit coil to a second threshold; After determining that the second coupling strength exceeds the second threshold, the transmitting coil is determined to be another selected transmitting coil.
  • Each group may include one or more transmit coils.
  • the first set of transmit coils may be arranged in a first plane and the second set of transmit coils may be arranged in a second plane.
  • the ping phase can include determining a third power for providing to the selected transmit coil from the first set, and for providing a fourth power to the selected transmit coil from the second set; determining a number a stage; determining, based on the determined number of stages, a plurality of stages for providing a third power to each of the selected sets of transmit coils and a fourth stage for each of the selected sets of transmit coils from the second set a plurality of phases of power, the plurality of phases of the third power increasing from the first phase to a final phase equal to the third power, and the plurality of phases of the fourth power are incremented from the first phase to a final phase equal to the fourth power; a predetermined time, providing a first phase of third power to each of the selected transmit coils from the first set, and providing a first phase of fourth power to each of
  • the wireless power transmitter can include a first set of transmit coils and a second set of transmit coils, each set can include one or more transmit coils.
  • the wireless power transmitter can further include a wireless charging surface configured to provide wireless power transfer to one or more power receivers disposed on one side of the surface.
  • the first and second sets of transmit coils may be disposed on the other side of the surface, and the first set of transmit coils may be closer to the wireless charging surface than the second set of transmit coils.
  • the wireless power transmitter can further include a controller unit.
  • the controller unit is configured to: provide a first power to the first set of transmit coils, one or more transmit coils at a time; compare the first coupled strength of the powered first transmit coil to a first threshold; Determining that the first coupling strength exceeds a first threshold, determining the transmitting coil as a selected transmitting coil; providing a second power to the second group of transmitting coils, one or more transmitting coils at a time; comparing the coupling of the powered second transmitting coil The intensity is coupled to the second threshold; and in response to determining that the second coupling strength exceeds the second threshold, the transmit coil is determined to be another selected transmit coil.
  • the controller is further configured to: determine a third power for providing to the selected transmit coil from the first set, and for providing to the selected transmit coil from the second set a fourth power; determining a number of stages; determining, based on the determined number of stages, a plurality of stages for providing each of the third powers selected from the first set of selected transmit coils and providing each of the selected from the second set a plurality of stages of the fourth power of the transmitting coil, the plurality of stages of the third power being incremented from the first stage to a final stage equal to the third power, and the plurality of stages of the fourth power are incremented from the first stage to equal to the first stage a final stage of four power; at a predetermined time, a first phase providing a third power is given to each of the selected transmit coils from the first set, and a first phase providing a fourth power is given to each selected from the second set Transmitting coil; providing the next phase of the third power and the next phase of the fourth power in response to not receiving the prese
  • FIG. 1 is a block diagram showing an example power transmitter-receiver system consistent with an exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example power transmitter system consistent with an exemplary embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing radio energy transmission between a power transmitter system and two power receiver systems, consistent with an example of an exemplary embodiment of the present invention.
  • FIG. 4 is a flow chart showing an example method for wireless power transfer consistent with an exemplary embodiment of the present invention.
  • FIG. 5 is a flow chart showing another example method for wireless power transfer consistent with an exemplary embodiment of the present invention.
  • FIG. 6 is a flow chart showing another example method for wireless power transfer consistent with an exemplary embodiment of the present invention.
  • the WPT system can periodically use single-phase selection and ping to determine whether to begin transmitting power.
  • the WPT In order to enter the power transmission state when the electromagnetic coupling is weak, for example, due to the large distance between the coils or the weak coupling position of the coil, the WPT will have to provide a very large selection power and ping power, which reduces The energy efficiency of the system.
  • the disclosed systems and methods can at least alleviate such problems.
  • a two-stage selection and ping method is described to reduce power consumption and increase system efficiency.
  • FIG. 1 illustrates an example power transmitter-receiver system consistent with an exemplary embodiment of the present invention.
  • the power transmitter-receiver system includes a power transmitter (TX) system 110 and a power receiver (RX) system 120 that are wirelessly coupled to each other.
  • the power TX system 110 can include a power adapter 112, a power amplifier 113, a TX matching network 114 (including one or more capacitors), a TX coil circuit 115, and a TX controller unit (eg, a TX microcontroller unit) 116, some of which ( For example, power amplifier 113) may be optional.
  • One or more components of power TX system 110 may be directly and/or indirectly connected to other components of power transmitter (TX) system 110.
  • power adapter 112 can be directly or indirectly connected to power amplifier 113 and/or TX controller unit 116.
  • Power amplifier 113 may be directly or indirectly connected to TX matching network 114 and/or TX controller unit 116.
  • the TX matching network 114 can be directly or indirectly connected to the TX coil circuit 115.
  • TX controller unit 116 may be coupled to TX coil circuit 115 either directly or indirectly.
  • the power TX system 110 can be connected to and/or can include a power source (P IN 111) capable of providing input power.
  • P IN 111 a power source
  • power TX system 110 can be connected to the power output of another device, and/or can include an internal power source (eg, battery, solar panel) that provides input power (P IN 111).
  • the power adapter 112 can be configured to receive input power (P IN 111) and pass the input power (modified or unmodified) to the power amplifier 113.
  • the power TX system 110 can be implemented in a powering device (eg, a charger device).
  • the power TX system 110 can be connected to a power supply device (eg, a charger device).
  • power amplifier 113 can be configured to receive input power (eg, through power adapter 112).
  • a power transmitter circuit e.g., TX coil circuit 115
  • TX coil circuit 115 may include one or more transmit side inductors (eg, one or more TX coils) and/or other components (eg, switches). More details of the TX coil circuit 115 are described below with reference to FIGS. 2 and 3.
  • the TX coil of TX coil circuit 115 can be configured to be wirelessly coupled to one or more RX side inductors/coils in one or more power RX systems.
  • the power RX system can be implemented in a device that wirelessly receives power from a power transmitter through coupling of the coil to the coil.
  • the TX coil of TX system 110 can be configured to be wirelessly coupled to one or more RX coils of RX system 120.
  • the TX coil can wirelessly transfer power to the RX coil when the TX coil and the RX coil are close to each other.
  • the resonant frequency can be, for example, around 0.1 MHz or higher.
  • power receiver (RX) system 120 can include RX coil circuit 125 (including one or more RX coils), RX matching network 124 (including one or more capacitors), rectifier 123 and power adapter 122.
  • the output of power adapter 122 (P OUT 121) can be connected to a load.
  • Power adapter 122 can be coupled to rectifier 123, which can be coupled to RX matching network 124.
  • the RX matching network 124 can be connected to the RX coil circuit 125.
  • An RX controller unit (eg, RX microcontroller unit) 126 can be coupled to RX coil circuit 125, rectifier 123, and power adapter 122.
  • the power receiver (RX) system 120 can be implemented in an electronic device that can receive power wirelessly, such as a cell phone, a headset, a watch, a tablet device, a notebook computer, an electronic brush, a car, or any other electronic device that can receive power wirelessly. .
  • a power receiver (RX) system 120 can be implemented in a separate charging device to which an electronic device can be attached to receive electrical energy.
  • TX controller unit 116 and RX controller unit 126 may each include one or more circuits and memories.
  • TX controller unit 116 may include one or more circuits 117 (eg, processing circuitry, detection circuitry, modulation circuitry, demodulation circuitry, encryption circuitry, decryption circuitry, etc.) and memory 118, one or more circuitry 117 and memory 118 connection.
  • One or more circuits 117 may be integrated into several of the TX controller units 116 or may be externally coupled to the TX controller unit 116.
  • TX controller unit 116 may be coupled to power adapter 112 and TX coil circuit 115 (eg, a TX coil) to monitor respective current, voltage, and/or power levels.
  • One or more circuits 117 may be configured to perform one or more of the methods described herein, or to control one or more components of TX system 110 to perform one or more of the methods described herein.
  • Memory 118 can be configured to store information, data, instructions, and the like. In some embodiments, memory 118 can be implemented as a non-transitory computer readable storage medium to store instructions that, when executed by one or more circuits 117, perform one or more of the methods described herein. .
  • RX controller unit 126 can include one or more circuits 127 (eg, processing circuitry, detection circuitry, modulation circuitry, demodulation circuitry, encryption circuitry, decryption circuitry, etc.) and memory 128, one or more circuitry 127 and memory 128 are connected to each other.
  • One or more circuits 127 may be integrated into several of the RX controller units 126 or may be externally located and connected to the RX controller unit 126.
  • the RX controller unit 126 can be coupled to the power adapter 122 and the RX coil circuit 125 (eg, an RX coil) to monitor respective current, voltage, and/or power levels.
  • TX controller unit 116 and RX controller unit 126 may communicate with each other directly or indirectly to exchange data or information, such as individual coil power states, encryption keys, packets, required power levels, and the like.
  • Direct communication can be achieved directly between controller units, such as WiFi, Bluetooth, radio, and the like.
  • the TX controller unit and the RX controller unit can each include a communication circuit and an antenna to achieve direct communication.
  • Indirect communication can be achieved by electromagnetic coupling between the TX coil and the RX coil.
  • the TX controller unit and the RX controller unit may be configured to control the TX coil and the RX coil, respectively, to perform communication.
  • the frequency of indirect communication may be a few kHz.
  • Indirect communication can be performed in both directions (RX-to-TX and TX-to-RX), or only in one direction at a time.
  • indirect communication can be implemented as load modulation of the load modulation circuit and load demodulation circuit of TX controller unit 116 and RX controller unit 126.
  • the load modulation circuit of TX controller unit 116 can modulate signals containing certain information.
  • RX controller unit 126 can control its demodulation circuitry to demodulate the signal to obtain the contained information.
  • RX controller unit 126 can communicate information to the TX controller unit.
  • TX controller unit 116 can be configured to set the voltage and frequency of power transmitter (TX) system 110.
  • TX controller unit 116 may set the voltage and frequency (operating frequency) of power transmitter (TX) system 110 based on the output power of power receiver (RX) system 120.
  • the output power information can be received via direct communication or indirect communication.
  • FIG. 2 illustrates an example power transmitter system 110 consistent with an exemplary embodiment of the present invention.
  • System 110 can include several of the components described above, such as power input 111, power adapter 112, TX matching network 114, TX controller unit 116, and TX coil circuit 115. The figure further illustrates an exemplary sub-component of the TX coil circuit 115.
  • system 110 can include more components than those shown in FIG. In order to disclose illustrative embodiments, not all of these components are shown.
  • the TX coil circuit can include a switching circuit 211 and one or more TX coils 212 (eg, coil sets 212A, 212B, and 212C). Details of the group structure of the coils are described below with reference to FIG.
  • Switching circuit 211 can include one or more switches (eg, switches 211A, 211B, and 211C).
  • TX controller unit 116 may use control signals to control switching circuit 211, such as turning one or more switches on or off to enable/disable one or more TX coils 212.
  • Figure 2 shows several layers of coils, each connected to a switch, there are more ways to connect the switch to the TX coil. Each switch can be configured to turn on/off one or more TX coils in the same group or in different groups. Therefore, the TX coils of the TX coil circuit 115 can be individually controlled or group controlled.
  • the power transmitter system 110 can be implemented in a power transmitter (TX) device (eg, a charging pad, a charging dock, etc.) configured to wirelessly transmit power to a power receiver (RX) system 120A and a power receiver ( RX) system 120B, implemented in a respective power receiver device (eg, a mobile device (eg, a cell phone), a wearable device (eg, a watch), a tablet device, a computer, a car, or any device that includes a rechargeable battery) in.
  • TX power transmitter
  • RX power receiver
  • RX power receiver
  • the wireless power TX device can include a wireless charging surface 310, a wireless power transmitter system 110 (including a TX coil) can be disposed under the wireless charging surface 310, and a wireless power RX device (including an RX coil) can be placed in the wireless charging Above the surface 310 is received electrical energy for transmission by electromagnetic coupling.
  • the wireless power TX system 110 can include one or more TX coils 212 arranged in groups. Each group can contain one or more TX coils.
  • a single coil included in the TX coil set can enable the controller unit to control the activation of a single coil using a single switch. Multiple coils included in the TX coil set enable the controller to control the activation of multiple coils using a single switch.
  • the TX coil 212 may include a coil group 1 and a coil group 2.
  • the coil set 1 may include TX coils A, C, E, G, and the like.
  • the coil set 2 may include TX coils B, D, F, H, and the like. All coils can be the same.
  • Each coil can be flat and each coil can be circular, rectangular or other shape.
  • Figure 3 shows a side view of the coil with the plane of the coil perpendicular to the plane of the paper.
  • the group 1 TX coils may be arranged in a plane substantially parallel to the wireless charging surface 310, the group 2TX coils may be arranged in another plane substantially parallel to the wireless charging surface 310, and the group 1 coils may be compared Group 2 coils are closer to wireless charging surface 310.
  • the set 1 coils may overlap with one or more of the set 2 coils in a direction perpendicular to the wireless charging surface 310, and vice versa.
  • the overlapping arrangement may be more advantageous than arranging all of the coils in the same plane as shown in the dashed circle of FIG.
  • the effective charging area of a single TX coil refers to a charging area, and if the center of the RX coil is located within the area, the coupling efficiency of the coil to the coil should be not less than a desired value (e.g., a desired or predetermined value by the user).
  • the efficiency of the coil to the coil is one of the factors that affect the charging efficiency.
  • the efficiency of the coil to the coil is defined as the efficiency between the TX coil and the RX coil, and the output power (eg, alternating current (AC) power) through the RX coil and the input power of the TX coil (eg, input alternating current (AC) power)
  • the ratio is calculated.
  • Losses affecting coil-to-coil efficiency include coil-to-coil losses, TX matching capacitors, and parasitic resistance losses of RX matching capacitors.
  • the effective charging area of each coil may be smaller than the physical size of the coil, arranging all the coils in one plane creates a "dead zone" between the coils with insufficient magnetic field strength.
  • arranging the coils in an overlapping arrangement or arrangement in more layers may eliminate "dead zones" and the effective charging regions of the coils may be connected in a horizontal plane to form a large, complete area for electromagnetic coupling and wireless energy transfer.
  • the TX coil 212 can be configured to be wirelessly coupled to one or more RX coils of one or more power receivers by electromagnetic coupling.
  • TX coil C can be coupled to RX coil J; and TX coils E, F, and G can be coupled to RX coil K.
  • the TX coil 212 can be placed substantially parallel to the wireless charging surface 310 and adjacent to the wireless charging surface 310. Accordingly, when the wireless power receiver is placed beside the wireless charging surface 310, the RX coils in the wireless power receiver can be arranged substantially parallel to the wireless charging surface 310 and aligned adjacent to the wireless charging surface 310.
  • the wireless charging surface 310 can be used as a reference plane.
  • the wireless charging surface 310 can be implemented as a physical surface of the power transmitter device or as a reference surface (eg, a non-tangible surface) that is parallel to the RX coil and the TX coil.
  • the wireless power receiver device can be placed in direct contact with or separate from the wireless charging surface 310 since the wireless coupling effect can cover a few centimeters.
  • the power receiver can be placed on the wave face 310 or the concave surface 310 as long as the RX coil and the TX coil can be effectively coupled to each other (substantially parallel to each other and substantially overlapping in a direction perpendicular to the plane of the coil). In this configuration, the radio energy transmission efficiency can be optimized.
  • the interaction between the TX coil and the RX coil can be characterized by the strength of the coupling between the coils.
  • One way to determine the coupling strength is to determine the coupling coefficient.
  • the coupling coefficient can be a dimensionless value defined as the fraction of the magnetic flux produced by the current in a coil connected to other coils.
  • the coupling coefficient can be used to detect a power receiver near the power transmitter.
  • TX controller unit 116 may alternately turn on one or more TX coils 212 to search for any RX coils near the TX coil.
  • the input voltage and input current of each powered TX coil can be monitored and used to evaluate the coupling coefficient between one or more TX coils and one or more RX coils.
  • the coupling coefficient denoted k
  • M is the mutual inductance of the TX coil and the RX coil
  • L tx is the inductance of the TX coil
  • L rx is the inductance of the RX coil.
  • the value of the coupling coefficient k can reflect the relative position between the TX coil and the RX coil. A closer distance between the TX coil and the RX coil can result in a larger k, while a larger distance between the TX coil and the RX coil can result in a smaller k.
  • the coupling coefficient can be maximized, for example, by aligning the center of the TX coil with the center of the RX coil.
  • the coupling coefficient k can be estimated by the ratio of the input voltage to the current on the TX side or the rectifier voltage on the RX side. Therefore, the coupling strength between the RX coil and the TX coil can be determined based on the input voltage and current reaching the TX coil or based on the voltage reaching the rectifier 123.
  • one or more TX coils can be powered up for a predetermined period of time.
  • controller unit 116 may power TX coil A for 5 ms, TX coil C for 5 ms, TX coil E and TX coil G for 6 ms, TX coil B for 6 ms, and so on. Since the group 2 coils are farther away from the wireless charging surface 310 than the group 1 coils, in order to achieve at least similar electromagnetic coupling effects at the same distance above the wireless charging surface 310, each of the group 2 coils can receive a higher power than the group 1 coils, As long as the group 1 coil and the group 2 coil are the same.
  • This phase of sequential power supply can be referred to as the selection phase of the receiver device near the search transmit coil while consuming as little power as possible.
  • the selected coil can be activated for radio energy transmission, while the unselected coil can remain inactive.
  • the TX controller unit 116 can monitor and compare the coupling strength between the powered TX coil and the RX coil (eg, based on the corresponding coupling coefficient, the input voltage and current to the TX coil, to the RX rectifier) The voltage is determined etc.) with a predetermined threshold. Any TX coil whose coupling strength exceeds a predetermined threshold may be determined by TX controller unit 116 as the selected TX coil.
  • the coupling strength between the TX coil C and the RX coil can exceed its threshold and is determined to be Selected coil.
  • the RX coil J of the RX system 120A and the TX coil C significantly overlap in a direction perpendicular to the wireless charging surface 310, facilitating effective coupling between the coil J and the coil C.
  • the wireless power RX system 120B can be placed on the wireless charging surface 310, partially overlapping the TX coil E and the TX coil G in Group 1, and significantly overlapping the TX coil F in Group 2. If only one of the set 1 coils including the TX coil E and the TX coil G is energized at a time, the single coupling strength is insufficient to reach a predetermined threshold, causing the TX coil E not to be selected and the TX coil G to be unselected. If both TX coil E and TX coil G are energized at the same time, the combined coupling strength may exceed a predetermined threshold, causing both TX coil E and TX coil G to be selected. Alternatively, if the TX coil F is energized and the coupling strength exceeds a predetermined threshold, the TX coil F can be selected.
  • the TX coil can be powered according to the respective groups.
  • the controller unit 116 may sequentially power the TX coil A for 5 ms, the TX coil C for 5 ms, the TX coil E and the TX coil G for 6 ms, and the TX coil B for 6 ms to add the TX coil D.
  • the controller unit 116 may sequentially power the TX coil A for 5 ms, the TX coil C for 5 ms, the TX coil E and the TX coil G for 6 ms, and the TX coil B for 6 ms to add the TX coil D.
  • the repetition may be stopped when a predetermined number of coils are selected or a predetermined number of cycles are reached.
  • a predetermined number of coils may mean a predetermined number of receiver devices in the vicinity (eg, the selected TX coil C may correspond to one receiver device, and the selected TX coil E and TX coil G may correspond to another receiver device) . If the wireless power TX system is configured to transmit power to up to two receiver devices, the selection cycle may stop after the TX coils C, E, and G are selected. Alternatively, if the predetermined number of coils is 1, then after the TX coil C is selected, the selection cycle can be stopped. As another example, if the predetermined number of cycles is 1, the TX coils C, E, G, and F can be selected, some or all of which can be used to wirelessly transfer power in the following steps.
  • TX coils A, B, C, and D can be powered up for 5 ms, and then the TX coils E, F, G, and H are powered up for 5 ms.
  • FIG. 4 illustrates an exemplary method 400 for wireless power transfer consistent with an exemplary embodiment of the present invention.
  • Method 400 can be performed by one or more components (e.g., TX controller unit 116) of power transmitter system 100 (e.g., a wireless power transmitter) described above.
  • Method 400 can include step 500, step 600, and step 700, one or more of which can be optional.
  • the wireless power transmitter may include a number of transmit coils in addition to the transmit coils used to implement the grouping of the method.
  • Step 500 can be referred to as a selection phase of radio energy transmission.
  • the power of the selection phase can be provided to one or more TX coils to obtain a selected TX coil.
  • this step can determine the presence of the receive coil of the wireless power receiver near the TX coil. Therefore, detecting the wireless power receiver consumes less power. More details of this step are described below with reference to FIG.
  • Step 600 can be referred to as a ping phase of radio energy transmission.
  • the power of the ping phase can be provided to one or more selected TX coils.
  • the power of the ping phase may include multiple incremental power phases until a response is received from the power receiver. Therefore, the connection to the wireless power receiver can be established at a lower energy cost.
  • This step confirms that the receiver is ready for radio transmission. More details of this step are described below with reference to FIG.
  • Step 700 can be referred to as a power transfer phase.
  • one or more TX coils may be provided with wireless transmission of electrical energy.
  • the wireless power receiver can receive power from the TX coil by wireless power transmission.
  • FIG. 5 illustrates an example method 500 for wireless power transfer consistent with an exemplary embodiment of the present invention.
  • Method 500 can be performed by one or more components (e.g., TX controller unit 116) of power transmitter system 110 (e.g., a wireless power transmitter) as described above.
  • One or more steps of method 500 may be rearranged in another order.
  • One or more steps of method 500 may be optional.
  • Method 500 can be referred to as a selection phase of radio energy transmission.
  • the power transmitter system can include multiple sets of TX coils, each set including one or more TX coils.
  • the power transmitter system can include a wireless charging surface, a first set (Group 1), and a second set (Group 2) transmit coils as described above with respect to FIG.
  • the power transmitter system may include more sets of transmit coils, more or fewer transmit coils than shown in FIG.
  • the first set of transmit coils may be arranged in a first plane and the second set of transmit coils may be arranged in a second plane.
  • the first plane and the second plane may be substantially parallel to the wireless charging surface, and the first plane may be closer to the wireless charging surface than the second plane.
  • a first power can be provided to the first set of transmit coils, one or more transmit coils at a time.
  • one TX coil of the first group two TX coils (eg, two adjacent TX coils), or even more TX coils can be powered up for a predetermined period of time (eg, 5 ms).
  • the first coupling strength of the powered first transmit coil can be compared to a first threshold.
  • the coupling strength can be determined and compared as described above with reference to FIG.
  • the respective transmit coil may be determined to be the selected transmit coil.
  • a second power can be provided to the second group, one or more transmit coils at a time.
  • one TX coil of the second group, two TX coils (eg, two adjacent TX coils), or even more TX coils can be powered up for a predetermined period of time (eg, 5 ms).
  • the first power can be less than the second power.
  • the second coupling strength of the powered second transmit coil can be compared to a second threshold.
  • the second threshold may be the same as or different from the first threshold.
  • the transmit coil in response to determining that the second coupling strength exceeds a second threshold, can be determined to be the selected transmit coil.
  • the first power and the second power may be alternately provided until a predetermined period of time is reached, or the number of selected transmit coils reaches a predetermined number as described above with reference to FIG. 3, or an input to the TX system is reached.
  • the power (for example, P IN 111) is turned off and the like.
  • FIG. 6 illustrates an example method 600 for wireless power transfer consistent with an exemplary embodiment of the present invention.
  • Method 600 can be performed by one or more components (e.g., TX controller unit 116) of power transmitter system 110 (e.g., a wireless power transmitter) as described above.
  • One or more steps of method 600 may be rearranged in another order.
  • One or more steps of method 600 may be optional.
  • method 600 can be implemented after method 500.
  • Method 600 can be referred to as a ping phase of radio energy transmission.
  • step 601 the provision of the first power and the second power of method 500 can be stopped.
  • the power supply of the selection phase of method 500 can be stopped prior to method 600 or stopped at this step.
  • a third power may be provided to each of the selected transmit coils from the first set, and a fourth power may be provided to each of the selected transmit coils from the second set.
  • the first and second sets of transmit coils can be the coils described in method 500.
  • the first group can be closer to the wireless charging surface than the second group and requires less power to achieve a similar electromagnetic coupling effect. Therefore, the third power can be lower than the fourth power.
  • Step 602 can include sub-steps 603-607, some of which may be optional or rearranged in another order.
  • a third power supplied to each of the selected transmit coils from the first set and a fourth power supplied to each of the selected selected transmit coils can be determined.
  • stages of the ping phase can be determined.
  • the number of stages can be 1, 2, 3, and so on.
  • the first group and the second group may have the same or different number of stages.
  • a plurality of stages for providing each of the third powers from the first set of selected transmit coils and each of the selected sets of transmit coils from the second set are separately determined.
  • a plurality of stages of the fourth power the plurality of stages of the third power being incremented from the first stage to a final stage equal to the third power, and the plurality of stages of the fourth power are incremented from the first stage to a final stage equal to the fourth power .
  • a first phase of the third power is provided to each of the selected transmit coils from the first set, and a first phase of the fourth power is provided to each of the second Group selected transmit coils.
  • the next phase of the third power and the next phase of the fourth power may be provided.
  • a preset response eg, a preset electromagnetic coupling signal
  • the third power is 2mW and the fourth power is 2.4mW
  • the number of stages is 4, the selected group 1 coil will be powered up at 0.5mW, 1mW, 1.5mW and 2mW, and the selected group 2 The coil will power up at 0.6mW, 1.2mW, 1.8mW and 2.4mW, and each power up for 5ms.
  • the selected group 1 coil will be powered up at 0.5 mW
  • the selected group 2 coil will be powered up at 0.6 mW
  • the selected group 1 coil will be added in 1 mW.
  • the selected group 2 coil will be powered up at 1.2mW; and so on.
  • the power supply for the ping phase will increase according to the determined power phase.
  • Various power supply stages can be achieved by adjusting the frequency provided by the power.
  • the various stages of the third power and the fourth power provided to the respective transmit coils can be configured to wirelessly power one or more microcontroller units of the wireless power receiver. When power is applied at any stage of the third power or the fourth power, one or more of the microcontroller units of the wireless power receiver can transmit a preset response to the power transmitter (eg, by direct or indirect communication as described above) ).
  • a respective phase of the third power or the fourth power may be increased to a wireless transmission power level.
  • a preset response is received at a second phase of the third power of 1 mW, by adding the second phase power to a predetermined wireless transmission power level (eg, by adjusting to provide for the selected The frequency of the power of the TX coil), the ping phase can enter the power transfer phase.
  • the fourth power can continue to detect the power increase during the ping phase until a corresponding preset response is obtained.
  • the wireless power transmission system can monitor one or more parameters (eg, current in TX coil circuit 115 or current in power adapter 112) to determine dangerous foreign objects (eg, a metal key), which can Trigger power overload and damage the radio energy transmission system.
  • controller unit 116 can be configured to compare one or more parameters to respective one or more thresholds, in response to determining that one or more parameters exceed a respective one or more thresholds, stopping corresponding Any power of one or more transmit coils is provided.
  • other TX coils that are not determined to be coupled to dangerous foreign objects may continue the radio energy transmission step.
  • the disclosed system can maximize area usage to reduce the cost of the TX coil and can be easily extended to larger charging areas based on demand.
  • the switching circuitry and communication circuitry By configuring the switching circuitry and communication circuitry to detect the location of the RX device, the system provides flexibility and provides the best performance and user experience for wireless energy transfer applications.
  • the illustrated steps are set forth to explain the exemplary embodiments shown, and it should be appreciated that continued technological developments will be performed in a manner that changes the particular functionality. Accordingly, the examples are presented for purposes of illustration and not limitation. For example, the steps or processes disclosed herein are not limited to being performed in the order described, but may be performed in any order consistent with the disclosed embodiments, and some steps may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种无线电能传输系统。该无线电能传输系统可以包括布置在第一平面中的第一组发射线圈,布置在第二平面中第二组发射线圈,以及控制器单元,控制器单元被配置为:提供第一功率给第一组,一次一个或多个发射线圈;比较加电的第一发射线圈的第一耦合强度与第一阈值;响应于确定第一耦合强度超过第一阈值,确定该发射线圈作为选定的发射线圈;提供第二功率给第二组,一次一个或多个发射线圈;比较加电的第二发射线圈的耦合强度与第二阈值;响应于确定第二耦合强度超过第二阈值,确定该发射线圈作为另一个选定的发射线圈。

Description

用于无线电能传输的包含选择/侦测(PING)两阶段的多线圈系统和方法 技术领域
本发明涉及无线电能传输方法和系统,尤其涉及用于无线电能传输的多线圈系统和方法。
背景技术
无线电能传输(WPT)技术为无线传输电能至电子设备(例如,对电子设备进行无线充电)提供了便利。在WPT系统中,电能/能量可以通过电磁耦合从一个或多个功率发射线圈传送到一个或多个功率接收线圈。为了提高总体能量效率,希望能够最大限度地减少功率发射器的能量消耗。
发明内容
本发明的一个方面涉及无线电能传输系统。无线电能传输系统可以包括第一组发射线圈和第二组发射线圈。每组都可以包括一个或多个发射线圈。第一组发射线圈可以布置在第一平面中,而第二组发射线圈可以布置在第二平面中。无线电能传输系统可以进一步包括控制器单元。在选择阶段,控制器单元被配置为提供第一功率给第一组,一次一个或多个发射线圈;比较加电的第一发射线圈的第一耦合强度与第一阈值;响应于确定第一耦合强度超过第一阈值,确定该发射线圈作为选定的发射线圈;提供第二功率给第二组,一次一个或多个发射线圈;比较加电的第二发射线圈的耦合强度与第二阈值;响应于确定第二耦合强度超过第二阈值,确定该发射线圈作为另一个选定的发射线圈。在侦测(ping)阶段,控制器进一步被配置为确定用于提供给从第一组中选定的发射线圈的第三功率,以及用于提供给从第二组中选定的发射线圈的第四功率;确定若干阶段;基于确定的阶段数,分别确定用于提供给每一个从第一组选定的发射线圈的第三功率的多个阶段和提供给每一个从第二组选定的发射线圈的第四功率的多个阶段,第三功率的多个阶段从第一阶段递增到等于第三功率的最后阶段,而第四功率的多个阶段从第一阶段递增到等于第四功率的最后阶段; 在预定时间,提供第三功率的第一阶段给每一个从第一组选定的发射线圈,而提供第四功率的第一阶段给每一个从第二组选定的发射线圈;响应于没有接收到来自无线功率接收器的预设响应,提供第三功率的下一阶段和第四功率的下一阶段。
本发明的另一方面涉及无线电能传输方法。无线电能传输方法可以包括选择阶段和侦测(ping)阶段。选择阶段可以包括提供第一功率给第一组发射线圈,一次一个或多个发射线圈;比较加电的第一发射线圈的第一耦合强度与第一阈值;响应于确定第一耦合强度超过第一阈值,确定该发射线圈作为选定的发射线圈;提供第二功率给第二组发射线圈,一次一个或多个发射线圈;比较加电的第二发射线圈的耦合强度与第二阈值;响应于确定第二耦合强度超过第二阈值,确定该发射线圈作为另一个选定的发射线圈。每组可以包括一个或多个发射线圈。第一组发射线圈可以布置在第一平面中,而第二组发射线圈可以布置在第二平面中。侦测(ping)阶段可以包括确定用于提供给从第一组中选定的发射线圈的第三功率,以及用于提供给从第二组中选定的发射线圈的第四功率;确定若干阶段;基于确定的阶段数,分别确定用于提供给每一个从第一组选定的发射线圈的第三功率的多个阶段和提供给每一个从第二组选定的发射线圈的第四功率的多个阶段,第三功率的多个阶段从第一阶段递增到等于第三功率的最后阶段,而第四功率的多个阶段从第一阶段递增到等于第四功率的最后阶段;在预定时间,提供第三功率的第一阶段给每一个从第一组选定的发射线圈,而提供第四功率的第一阶段给每一个从第二组选定的发射线圈;响应于没有接收到来自无线功率接收器的预设响应,提供第三功率的下一阶段和第四功率的下一阶段。
本发明的另一方面涉及无线功率发射器。无线功率发射器可以包括第一组发射线圈和第二组发射线圈,每组可以包括一个或多个发射线圈。无线功率发射器可以进一步包括无线充电表面,其被配置为向布置在该表面的一侧的一个或多个功率接收器提供无线电能传输。第一组和第二组发射线圈可以布置在该 表面的另一侧,第一组发射线圈可以比第二组发射线圈更接近于无线充电表面。无线功率发射器可以进一步包括控制器单元。在选择阶段,控制器单元被配置为:提供第一功率给第一组发射线圈,一次一个或多个发射线圈;比较加电的第一发射线圈的第一耦合强度与第一阈值;响应于确定第一耦合强度超过第一阈值,确定该发射线圈作为选定的发射线圈;提供第二功率给第二组发射线圈,一次一个或多个发射线圈;比较加电的第二发射线圈的耦合强度与第二阈值;响应于确定第二耦合强度超过第二阈值,确定该发射线圈作为另一个选定的发射线圈。在侦测(ping)阶段,控制器进一步被配置为:确定用于提供给从第一组中选定的发射线圈的第三功率,以及用于提供给从第二组中选定的发射线圈的第四功率;确定若干阶段;基于确定的阶段数,分别确定用于提供给每一个从第一组选定的发射线圈的第三功率的多个阶段和提供给每一个从第二组选定的发射线圈的第四功率的多个阶段,第三功率的多个阶段从第一阶段递增到等于第三功率的最后阶段,而第四功率的多个阶段从第一阶段递增到等于第四功率的最后阶段;在预定时间,提供第三功率的第一阶段给每一个从第一组选定的发射线圈,而提供第四功率的第一阶段给每一个从第二组选定的发射线圈;响应于没有接收到来自无线功率接收器的预设响应,提供第三功率的下一阶段和第四功率的下一阶段。
应当理解的是,前面的一般性描述和下面的详细描述仅仅是示例性和解释性的,并不是要求保护的本发明的限制。
附图说明
构成本发明的一部分的附图示出了几个非限制性实施例,并且与说明书一起用于解释所公开的原理。
图1是示出与本发明的示例性实施例一致的示例功率发射器-接收器系统的框图。
图2是示出与本发明的示例性实施例一致的示例功率发射器系统的框图。
图3是示出与本发明的示例性实施例一致的示例在一个功率发射器系统和两个功率接收器系统之间进行无线电能传输的示意图。
图4是示出与本发明的示例性实施例一致的用于无线电能传输的示例方法的流程图。
图5是示出与本发明的示例性实施例一致的用于无线电能传输的另一个示例方法的流程图。
图6是示出与本发明的示例性实施例一致的用于无线电能传输的另一个示例方法的流程图。
具体实施方式
现在将详细参考示例性实施例,其示例在附图中示出。以下描述参考附图,除非另有说明,不同附图中相同的附图标记表示相同或相似的元件。在与本发明一致的示例性实施例的以下描述中阐述的实施方式不表示与本发明一致的所有实现。相反,它们仅仅是与本发明相关的方面一致的系统和方法的示例。
在目前的技术中,WPT系统可以周期性地使用单阶段选择和侦测(ping)来确定是否开始传输电能。为了当电磁耦合较弱时进入电能传输状态,例如,由于线圈之间较大的距离或线圈的弱耦合位置,WPT将不得不提供非常大的选择功率和侦测(ping)功率,这降低了系统的能量效率。公开的系统和方法可以至少减轻这样的问题。在不同的实施例中,描述了一种两阶段选择和侦测(ping)方法,可以降低能耗,提高系统效率。
图1示出了与本发明的示例性实施例一致的示例功率发射器-接收器系统。如图1所示,功率发射器-接收器系统包括彼此无线耦合的功率发射器(TX)系统110和功率接收器(RX)系统120。功率TX系统110可以包括功率适配 器112,功率放大器113,TX匹配网络114(包括一个或多个电容器),TX线圈电路115和TX控制器单元(例如,TX微控制器单元)116,其中一些(例如,功率放大器113)可以是可选的。功率TX系统110的一个或多个组件可以直接和/或间接连接到功率发射器(TX)系统110的其他组件。例如,功率适配器112可以直接或间接连接到功率放大器113和/或TX控制器单元116。功率放大器113可以是直接或间接连接到TX匹配网络114和/或TX控制器单元116。TX匹配网络114可以直接或间接连接到TX线圈电路115。TX控制器单元116可以直接或间接连接到TX线圈电路115。
在一些实施例中,功率TX系统110可以连接到和/或可以包含能够提供输入功率的电源(P IN 111)。例如,功率TX系统110可以连接到另一个设备的电力输出,和/或可以包括提供输入功率(P IN 111)的内部电源(例如,电池、太阳能电池板)。电源适配器112可以被配置为接收输入功率(P IN 111),并且将输入功率(修改的或未修改的)传递给功率放大器113。在一些实施例中,功率TX系统110可以在供电设备(例如,充电器设备)中实施。在一些实施例中,功率TX系统110可以连接到供电设备(例如,充电器设备)。
在一些实施例中,功率放大器113可以被配置为接收输入功率(例如,通过功率适配器112)。功率发射器电路(例如,TX线圈电路115)可以连接到功率放大器113(例如,通过TX匹配网络114)。TX线圈电路115可以包括一个或多个发射侧电感器(例如,一个或多个TX线圈)和/或其他部件(例如,开关)。以下参考图2和图3描述TX线圈电路115的更多细节。
在一些实施例中,TX线圈电路115的TX线圈可以被配置为无线耦合到一个或多个功率RX系统中的一个或多个RX侧电感器/线圈。功率RX系统可以在通过线圈到线圈的耦合从功率发射器无线接收电能的设备中实施。在一些实 施例中,TX系统110的TX线圈可以被配置为无线耦合到RX系统120的一个或多个RX线圈。例如,接近谐振,当TX线圈和RX线圈彼此靠近时,TX线圈可以无线地将电能传送给RX线圈。谐振频率可以,例如,在0.1MHz附近或者更高。
如图1所示,功率接收器(RX)系统120可以包括RX线圈电路125(包括一个或多个RX线圈),RX匹配网络124(包括一个或多个电容器),整流器123和功率适配器122。功率适配器122的输出(P OUT 121)可以连接到负载。功率适配器122可以连接到整流器123,其可以连接到RX匹配网络124。RX匹配网络124可以连接到RX线圈电路125。RX控制器单元(例如,RX微控制器单元)126可以连接到RX线圈电路125、整流器123和功率适配器122。功率接收器(RX)系统120可以在可以无线接收电能的电子设备,诸如手机、头戴式耳机、手表、平板设备、笔记本电脑、电子刷、汽车或任何其他可以无线接收电能的电子设备中实施。功率接收器(RX)系统120可以在电子设备可以附加到其上以接收电能的独立的充电设备中实施。
在一些实施例中,TX控制器单元116和RX控制器单元126可以各自包括一个或多个电路和存储器。TX控制器单元116可以包括一个或多个电路117(例如,处理电路、检测电路、调制电路、解调电路、加密电路、解密电路等)和存储器118,一个或多个电路117和存储器118彼此连接。一个或多个电路117可以集成到TX控制器单元116中的几个电路中,或者可以布置在外部并连接到TX控制器单元116。TX控制器单元116可以连接到功率适配器112和TX线圈电路115(例如,TX线圈)以监视相应的电流、电压和/或功率水平。一个或多个电路117可以被配置为执行在此描述的一个或多个方法,或者控制TX系统110的一个或多个组件以执行在此描述的一个或多个方法。存储器118 可以被配置为存储信息、数据和指令等。在一些实施例中,存储器118可以被实现为非暂时性计算机可读存储介质来存储指令,当由一个或多个电路117运行该指令时,TX系统110执行在此描述的一个或多个方法。此外,RX控制器单元126可以包括一个或多个电路127(例如,处理电路、检测电路、调制电路、解调电路、加密电路、解密电路等)和存储器128,一个或多个电路127和存储器128彼此连接。一个或多个电路127可以集成到RX控制器单元126中的几个电路中,或者可以布置在外部并连接到RX控制器单元126。RX控制器单元126可以连接到功率适配器122和RX线圈电路125(例如,RX线圈)以监视相应的电流、电压和/或功率水平。
在一些实施例中,TX控制器单元116和RX控制器单元126可以直接或间接地彼此通信以交换数据或信息,诸如个体线圈功率状态、加密密钥、信息包、所需的功率电平等。直接通信可以直接在控制器单元之间通过,例如,WiFi、蓝牙、无线电等实现。TX控制器单元和RX控制器单元可以各自包括通信电路和天线来实现直接沟通。间接通信可以通过TX线圈和RX线圈之间的电磁耦合实现。TX控制器单元和RX控制器单元可以被配置为分别控制TX线圈和RX线圈来执行通信。间接通信的频率可能是几kHz。间接通信可以同时在两个方向上(RX-to-TX和TX-to-RX)执行,或者一次只在一个方向上。在一个例子中,间接通信可以被实现为TX控制器单元116和RX控制器单元126的负载调制电路和负载解调电路的负载调制。TX控制器单元116的负载调制电路可以调制包含某些信息的信号。一旦接收到信号,RX控制器单元126可以控制其解调电路来解调信号以获得所包含的信息。类似地,RX控制器单元126可以向TX控制器单元传送信息。
在一些实施例中,TX控制器单元116可以被配置为设置功率发射器(TX) 系统110的电压和频率。TX控制器单元116可以基于功率接收器(RX)系统120的输出功率设置功率发射器(TX)系统110的电压和频率(工作频率)。输出功率信息可以经由直接通信或间接通信来接收。
图2示出了与本发明的示例性实施例一致的示例功率发射器系统110。系统110可以包括若干以上描述的组件,如功率输入111、功率适配器112、TX匹配网络114、TX控制器单元116和TX线圈电路115。该图进一步示出了TX线圈电路115的示例性子部件。在一些实施例中,系统110可以包括比图2中示出的多的组件。为了公开说明性的实施例,不必示出所有这些组件。
在一些实施例中,TX线圈电路可以包括开关电路211和一个或多个TX线圈212(例如,线圈组212A、212B和212C)。以下参考图3来描述线圈的组结构的细节。开关电路211可以包括一个或多个开关(例如,开关211A、211B和211C)。TX控制器单元116可以使用控制信号来控制开关电路211,如打开或关闭一个或多个开关以启用/禁用一个或多个TX线圈212。尽管图2示出了几层线圈,每层都连接到一个开关,但是可以有更多的方法将开关连接到TX线圈。每个开关可以被配置为开启/关闭同一组或不同组中的一个或多个TX线圈。因此,TX线圈电路115的TX线圈可以被单独控制或者被成组控制。
图3示出了与本发明的示例性实施例一致的一个功率发射器系统和两个功率接收器系统之间的无线电能传输的例子。功率发射器系统110可以在功率发射器(TX)设备(例如,充电垫、充电底座等)中实施,其被配置为无线地将电能传输到功率接收器(RX)系统120A和功率接收器(RX)系统120B,其被实施在相应的功率接收器设备(例如,移动设备(例如,手机)、可穿戴设备(例如,手表)、平板设备、计算机、汽车或任何包含可充电电池的设备)中。无线功率TX设备可以包括无线充电表面310,无线功率发射器系统110 (包括TX线圈)可以布置在所述无线充电表面310之下,无线功率RX设备(包括RX线圈)可以放置在所述无线充电表面310之上以通过电磁耦合接收电能传输。
在一些实施例中,在TX侧,无线功率TX系统110可以包括成组布置的一个或多个TX线圈212。每个组可以包含一个或多个TX线圈。包括在TX线圈组中的单个线圈可以使控制器单元能够使用单个开关来控制单个线圈的激活。包括在TX线圈组中的多个线圈可以使控制器能够使用一个单一的开关来控制多个线圈的激活。如图3所示,TX线圈212可以包括线圈组1和线圈组2。线圈组1可以包括TX线圈A、C、E、G等。线圈组2可以包括TX线圈B、D、F、H等。所有线圈可以是相同的。每个线圈可以是平坦的,且每个线圈可以是圆形的、矩形的或其他的形状。图3示出了线圈的侧视图,其中线圈的平面垂直于纸面。
在一些实施例中,组1TX线圈可以布置在与无线充电表面310基本上平行的平面中,组2TX线圈可以布置在与无线充电表面310基本上平行的另一个平面中,且组1线圈可以比组2线圈更靠近无线充电表面310。如图3所示,组1线圈可以在垂直于无线充电表面310的方向上与一个或多个组2线圈重叠,反之亦然。重叠布置可以比将所有线圈布置在如图3的虚线圈中所示的同一平面中更为有利。单个TX线圈的有效充电区域指的是一个充电区域,如果RX线圈的中心位于该区域内,则线圈到线圈的耦合效率应该不小于期望值(例如,期望的或由用户预先确定的值)。线圈到线圈的效率是影响充电效率的因素之一。线圈到线圈的效率被定义为TX线圈和RX线圈之间的效率,且通过RX线圈的输出功率(例如,交流电(AC)功率)与TX线圈的输入功率(例如,输入交流电(AC)功率)的比值来计算。影响线圈到线圈效率的损耗包括线 圈到线圈的损耗、TX匹配电容和RX匹配电容的寄生电阻损耗等。通过设计磁线圈结构,可以提高无线充电效率,特别是线圈到线圈的效率。
在重叠布置中,TX线圈B的一端与TX线圈A重叠,而TX线圈B的另一端与TX线圈C重叠。由于每个线圈的有效充电区域可能比线圈的物理尺寸小,将所有线圈布置在一个平面内会在线圈之间产生磁场强度不足的“死区”。因此,将线圈布置成重叠布置或布置成更多层可以消除“死区”,且线圈的有效充电区域可以在水平面上连接,以形成用于电磁耦合和无线电能传输的大的完整区域。
TX线圈212可以被配置为通过电磁耦合无线地耦合到一个或多个功率接收器的一个或多个RX线圈。例如,在图3中,TX线圈C可以耦合到RX线圈J;而TX线圈E、F和G可以耦合到RX线圈K。为了最大化无线充电表面310上方空间中的磁场强度,可以将TX线圈212布置为与无线充电表面310基本平行并靠近无线充电表面310。相应地,当无线功率接收器被放置在无线充电表面310旁边时,无线功率接收器中的RX线圈可以与无线充电表面310基本平行地排列并靠近无线充电表面310排列。
为了便于TX线圈和RX线圈的对齐,可以将无线充电表面310用作参考平面。无线充电表面310可以实现为功率发射器设备的物理表面,或者作为与RX线圈和TX线圈平行的参考表面(例如,非有形表面)。由于无线耦合效应可以覆盖几厘米,可以将无线功率接收器设备布置成与无线充电表面310直接接触或与无线充电表面310分开。例如,只要RX线圈和TX线圈可以有效地彼此耦合(彼此基本平行且在与线圈平面垂直的方向上基本重叠),功率接收器就可以放置在波形面310或凹面310上。在这种配置中,可以优化无线电能传输效率。
在一些实施例中,TX线圈和RX线圈之间的相互作用可以通过线圈之间的耦合强度来表征。确定耦合强度的方法之一是确定耦合系数。耦合系数可以是一个无量纲值,其被定义为由一个与其他线圈相连的线圈中的电流产生的磁通量的分数。耦合系数可用于检测功率发射器附近的功率接收器。例如,TX控制器单元116可以交替地开启一个或多个TX线圈212来搜索TX线圈附近的任何RX线圈。每个加电的TX线圈的输入电压和输入电流可以被监视并用于评估一个或多个TX线圈和一个或多个RX线圈之间的耦合系数。如果将RX线圈放置在TX线圈的有效充电区域内,耦合系数,表示为k,可以定义为:
Figure PCTCN2018078921-appb-000001
其中M是TX线圈和RX线圈的互感,L tx是TX线圈的电感,L rx是RX线圈的电感。耦合系数k的值可以反映TX线圈和RX线圈之间的相对位置。TX线圈和RX线圈之间更近的距离可以导致更大的k,而TX线圈和RX线圈之间更大的距离可以导致更小的k。如果TX线圈和RX线圈彼此良好的对齐,则可以最大化耦合系数,例如,将TX线圈的中心和RX线圈的中心对齐。耦合系数k可以通过输入电压与TX侧的电流或RX侧的整流器电压的比值来估计。因此,RX线圈和TX线圈之间的耦合强度可以基于到达TX线圈的输入电压和电流或者基于到达整流器123的电压来确定。
在一些实施例中,可以在预定的时间段给一个或多个TX线圈加电。例如,控制器单元116可以依次给TX线圈A加电5ms,给TX线圈C加电5ms,给TX线圈E和TX线圈G加电6ms,给TX线圈B加电6ms等等。由于组2线圈比组1线圈远离无线充电表面310,为了在无线充电表面310上方的相同距离处实现至少类似的电磁耦合效应,组2线圈的每一个可以接收比组1线圈更高的功率,只要组1线圈和组2线圈是相同的。可以将顺序供电的这个阶段称 为搜索发射线圈附近的接收器设备的选择阶段,同时消耗尽可能少的电能。可以激活选定的线圈用于无线电能传输,而未选定的线圈可以保持不激活。当TX线圈加电时,TX控制器单元116可以监视并比较加电的TX线圈和RX线圈之间的耦合强度(例如,基于相应的耦合系数、到达TX线圈的输入电压和电流、到达RX整流器的电压等确定)与预定的阈值。耦合强度超过预定阈值的任何TX线圈都可以由TX控制器单元116确定为选定的TX线圈。在一些实施例中,当将无线功率RX系统120A放置在无线充电表面310上时,当TX线圈C被加电时,TX线圈C和RX线圈之间的耦合强度可以超过其阈值且被确定为选定的线圈。如图3所示,RX系统120A的RX线圈J与TX线圈C在垂直于无线充电表面310的方向上显著地重叠,有助于线圈J和线圈C之间的有效耦合。
可以同时给一个或多个TX线圈加电。在一些实施例中,无线功率RX系统120B可以放置在无线充电表面310上,与组1中的TX线圈E和TX线圈G部分地重叠,而与组2中的TX线圈F显著地重叠。如果一次只给包括TX线圈E和TX线圈G的组1线圈中的一个加电,单个的耦合强度不足以达到预定阈值,导致TX线圈E没有被选中,TX线圈G也没有被选中。如果同时给TX线圈E和TX线圈G加电,组合的耦合强度可以超过预定阈值,导致TX线圈E和TX线圈G都被选中。或者,如果给TX线圈F加电,耦合强度超过预定阈值,TX线圈F可以被选中。
参考图3,可以根据相应的组给TX线圈加电。例如,控制器单元116可以依次给TX线圈A加电5ms,给TX线圈C加电5ms,给TX线圈E和TX线圈G一起加电6ms,给TX线圈B加电6ms,给TX线圈D加电6ms,给TX线圈F加电5ms,给TX线圈H加电6ms,并从TX线圈A重复上述循环。 当选定了预定数量的线圈或者达到了预定数量的循环数时,重复可以停止。预定数量的线圈可以意味着附近预定数量的接收器设备(例如,选定的TX线圈C可以对应于一个接收器设备,选定的TX线圈E和TX线圈G可以对应于另一个接收器设备)。如果无线功率TX系统被配置为将电能传输给多达两个的接收器设备,则选择循环可以在选择了TX线圈C、E和G之后停止。或者,如果线圈的预定数量是1,则在选择了TX线圈C之后,选择循环即可停止。再比如,如果循环的预定数量是1,则TX线圈C、E、G和F可以被选中,其中的一部分或全部可以在以下步骤中用于无线传输电能。在选择阶段,可以有许多其他配置来给TX线圈加电。可以给不同组的线圈同时加电。例如,可以给TX线圈A、B、C和D加电5ms,然后给TX线圈E、F、G和H加电5ms。
图4示出了与本发明的示例性实施例一致的用于无线电能传输的示例性方法400。方法400可以由以上描述的功率发射器系统100(例如,无线功率发射器)的一个或多个组件(例如,TX控制器单元116)执行。方法400可以包括步骤500、步骤600和步骤700,其中的一个或多个可以是可选的。尽管将参考两组发射线圈来描述方法400,但是它可以类似地应用于更多组发射器线圈。此外,无线功率发射器除了用于实现该方法的分组的发射线圈之外,还可以包括许多发射线圈。
步骤500可以被称为无线电能传输的选择阶段。在步骤500,可以将选择阶段的功率提供给一个或多个TX线圈以获得选定的TX线圈。通过交替地给一个或多个TX线圈短时间加电,这一步可以确定TX线圈附近的无线功率接收器的接收线圈的存在。因此,检测无线功率接收器消耗了更少的电能。下面参考图5描述该步骤的更多细节。
步骤600可以被称为无线电能传输的侦测(ping)阶段。在步骤600,可以 将侦测(ping)阶段的功率提供给一个或多个选定的TX线圈。侦测(ping)阶段的功率可以包括多个递增的功率阶段,直到从功率接收器接收到响应。因此,与无线功率接收器的连接可以以较低的能量成本建立。这一步可以确认接收器准备好进行无线电能传输。下面参考图6描述该步骤的更多细节。
步骤700可以被称为电能传输阶段。在步骤700,可以给一个或多个TX线圈提供无线传输电能。通过无线电能传输,无线功率接收器可以从TX线圈接收电能。
图5示出了与本发明的示例性实施例一致的用于无线电能传输的示例方法500。方法500可以由以上描述的功率发射器系统110(例如,无线功率发射器)的一个或多个组件(例如,TX控制器单元116)执行。方法500的一个或多个步骤可以以另一顺序重新排列。方法500的一个或多个步骤可以是可选的。方法500可以被称为无线电能传输的选择阶段。
功率发射器系统可以包括多组TX线圈,每个组包括一个或多个TX线圈。例如,功率发射器系统可以包括如以上参考图3描述的无线充电表面、第一组(组1)和第二组(组2)发射线圈。功率发射器系统可以包括更多组发射线圈,比图3中示出的更多或更少的发射线圈。第一组发射线圈可以布置在第一平面中,而第二组发射线圈可以布置在第二平面中。第一平面和第二平面可以与无线充电表面基本平行,且第一平面可以比第二平面更靠近无线充电表面。
在步骤501,可以将第一功率提供给第一组发射线圈,一次一个或多个发射线圈。例如,可以同时给第一组的一个TX线圈、两个TX线圈(例如,两个相邻的TX线圈)、或者甚至更多的TX线圈加电预定的时间段(例如5ms)。
在步骤502,加电的第一发射线圈的第一耦合强度可以与第一阈值进行比较。可以如以上参考图3描述的确定并比较耦合强度。
在步骤503,响应于确定第一耦合强度超过第一阈值,相应的发射线圈可以被确定为选定的发射线圈。
在步骤504,可以将第二功率提供给第二组,一次一个或多个发射线圈。例如,可以同时给第二组的一个TX线圈、两个TX线圈(例如,两个相邻的TX线圈)、或者甚至更多的TX线圈加电预定的时间段(例如5ms)。如以上参考图3讨论的,第一功率可以比第二功率小。
在步骤505,加电的第二发射线圈的第二耦合强度可以与第二阈值进行比较。第二阈值可以与第一阈值相同或者不同。
在步骤506,响应于确定第二耦合强度超过第二阈值,该发射线圈可以被确定为选定的发射线圈。
在一些实施例中,可以交替地提供第一功率和第二功率,直到达到预定的时间段,或者选定的发射线圈的数量达到如以上参考图3描述的预定数量,或者到达TX系统的输入功率(例如,P IN 111)被关闭等等。
图6示出了与本发明的示例性实施例一致的用于无线电能传输的示例方法600。方法600可以由以上描述的功率发射器系统110(例如,无线功率发射器)的一个或多个组件(例如,TX控制器单元116)执行。方法600的一个或多个步骤可以以另一顺序重新排列。方法600的一个或多个步骤可以是可选的。在一些实施例中,方法600可以在方法500之后实施。方法600可以被称为无线电能传输的侦测(ping)阶段。
在步骤601:可以停止方法500的第一功率和第二功率的提供。方法500的选择阶段的功率提供可以在方法600之前停止,或者在该步骤停止。
在步骤602:可以将第三功率提供给每个从第一组选定的发射线圈,而可以将第四功率提供给每个从第二组选定的发射线圈。第一组和第二组发射线圈可 以是在方法500中描述的线圈。如上所述,第一组可以比第二组更靠近无线充电表面,且需要较少的电能来实现类似的电磁耦合效应。因此,第三功率可以低于第四功率。步骤602可以包括子步骤603-607,其中的一些可以是可选的或者以另一顺序重新排列。
在步骤603,可以确定提供给每个从第一组选定的发射线圈的第三功率和提供给每个从第二组选定的发射线圈的第四功率。
在步骤604,可以确定侦测(ping)阶段的若干阶段。阶段的数量可以是1、2、3等。第一组和第二组可以具有相同或不同的阶段数。
在步骤605,基于确定的阶段数,分别确定用于提供给每个从第一组选定的发射线圈的第三功率的多个阶段和提供给每个从第二组选定的发射线圈的第四功率的多个阶段,第三功率的多个阶段从第一阶段递增到等于第三功率的最后阶段,而第四功率的多个阶段从第一阶段递增到等于第四功率的最后阶段。
在步骤606,在预定时间(例如,几毫秒),提供第三功率的第一阶段给每个从第一组选定的发射线圈,而提供第四功率的第一阶段给每个从第二组选定的发射线圈。
在步骤607,响应于没有接收到来自无线功率接收器的预设响应(例如,预设的电磁耦合信号),可以提供第三功率的下一阶段和第四功率的下一阶段。例如,如果第三个功率是2mW,而第四个功率是2.4mW,阶段数是4,选定的组1线圈将以0.5mW、1mW、1.5mW和2mW加电,而选定的组2线圈将以0.6mW、1.2mW、1.8mW和2.4mW加电,且每个加电5ms。即,在阶段1持续5ms,选定的组1线圈将以0.5mW加电,选定的组2线圈将以0.6mW加电;在阶段2持续5ms,选定的组1线圈将以1mW加电,选定的组2线圈将以1.2mW加电;等等。除非如在步骤607所述的从无线功率接收器接收到 一个或多个预设响应,否则侦测(ping)阶段的功率提供将根据确定的功率阶段增加。可以通过调整功率提供的频率来实现各种功率提供的阶段。给相应的发射线圈提供的第三功率和第四功率的各个阶段可以被配置为无线地为无线功率接收器的一个或多个微控制器单元供电。当在第三功率或第四功率的任何阶段加电时,无线功率接收器的一个或多个微控制器单元可以将预设响应发送给功率发射器(例如,通过上述的直接或间接的通信)。
在一些实施例中,响应于从无线功率接收器接收到预设响应,第三功率或者第四功率的相应阶段可以增加到无线传输功率水平。继续步骤607中的示例,如果在1mW的第三功率的第二阶段处接收到预设响应,则通过将第二阶段功率增加到预定的无线传输功率水平(例如,通过调整提供给选定的TX线圈的功率的频率),侦测(ping)阶段可以进入到功率传输阶段。第四功率可以继续侦测(ping)阶段的功率增加,直到获得相应的预设响应。
在无线电能传输的任何阶段,无线电能传输系统可以监视一个或多个参数(例如,TX线圈电路115中的电流或功率适配器112的电流)以确定危险异物(例如,一个金属钥匙),其可以触发功率超载并损害无线电能传输系统。在一些实施例中,控制器单元116可以被配置为将一个或多个参数与相应的一个或多个阈值进行比较,响应于确定一个或多个参数超过相应的一个或多个阈值,停止相应的一个或多个发射线圈的任何功率提供。同时,未被确定为耦合到危险异物的其他TX线圈可以继续无线电能传输步骤。
本说明书描述了用于无线电能传输的方法、装置和系统。公开的系统可以最大化面积使用率以降低TX线圈的成本,并且可以基于需求容易地扩展到更大的充电区域。通过配置开关电路和通信电路来检测RX设备的位置,系统可以提供灵活性并提供无线电能传输应用的最佳性能和用户体验。阐述所示的步 骤以解释示出的示例性实施例,应该预料到持续的技术发展将改变特定功能的方式执行。因此,这里出于举例说明的目的呈现这些例子,而不是限制。例如,这里公开的步骤或过程不限于以所描述的顺序执行,而是与公开的实施例一致的可以按照任何顺序执行,且一些步骤可以省略。此外,为了描述的方便,这里任意定义了功能构件块的界限。只要指定的功能及其关系适当地执行,就可以定义其他的界限。基于这里包含的教导,替代方案(包括在此描述的等效、扩展、变化、偏差等)对于本领域的技术人员而言将是显而易见的。这些替代方案落入公开的实施例的范围和精神内。
尽管在此描述了公开的原理的示例和特征,但是修改、改变和其他实现是可能的,而不会脱离本发明的精神和范围。而且,“由…组成”、“具有”、“包含”和“包括”以及其他类似形式的这些词在意义上是等同的并且是开放性的,因为在这些词之后的一个或多个项目不是旨在作为这个项目或这些项目的详尽列表,或者意味着仅限于列出的项目。还必须注意的是,除非上下文另外指出,否则如本说明书和所附权利要求中所使用的单数形式“一”,“一个”和“该”包括复数形式。
可以理解的是,本发明不限于上面已经描述并在附图中示出的确切结构,并且在不脱离本发明的范围的情况下可以进行各种修改和变化。本发明的范围应该仅由所附权利要求来限定。

Claims (27)

  1. 一种无线电能传输系统,包括:第一组发射线圈和第二组发射线圈,其特征在于:
    每一组发射线圈包括一个或多个发射线圈,
    第一组发射线圈布置在第一平面中,而第二组发射线圈布置在第二平面中;
    还包括控制器单元,所述控制器单元被配置为:
    提供第一功率给第一组,一次一个或多个发射线圈;比较加电的第一发射线圈的第一耦合强度与第一阈值;响应于确定第一耦合强度超过第一阈值,确定该发射线圈作为选定的发射线圈;提供第二功率给第二组,一次一个或多个发射线圈;比较加电的第二发射线圈的耦合强度与第二阈值;响应于确定第二耦合强度超过第二阈值,确定该发射线圈作为另一个选定的发射线圈。
  2. 根据权利要求1所述的无线电能传输系统,所述无线电能传输系统还包括:
    无线充电表面,被配置为提供无线电能传输给布置在所述表面的一侧的一个或多个无线功率接收器,其特征在于:
    第一组发射线圈和第二组发射线圈布置在所述表面的另一侧,且第一组发射线圈比第二组发射线圈更接近于所述无线充电表面。
  3. 根据权利要求2所述的无线电能传输系统,其特征在于:第一组发射线圈的至少一个在垂直于无线充电表面的方向上与第二组发射线圈的至少一个重叠。
  4. 根据权利要求2所述的无线电能传输系统,其特征在于:第一平面与无线充电表面基本平行;第二平面与无线充电表面基本平行;且第一平面比第二平面更接近于无线充电表面。
  5. 根据权利要求1所述的无线电能传输系统,其特征在于:所有的发射线圈是相同的;且第一功率比第二功率小。
  6. 根据权利要求1所述的无线电能传输系统,其特征在于:控制器单元被配置为:
    一次提供第一功率给一个发射线圈或者两个相邻的发射线圈;
    一次提供第二功率给一个发射线圈或者两个相邻的发射线圈。
  7. 根据权利要求1所述的无线电能传输系统,其特征在于,控制器单元被配置为:
    分别提供第一功率和第二功率给相应的发射线圈一段预定的时间;
    交替地提供第一功率和第二功率;
    且响应于选定的发射线圈达到预定数量,停止第一功率和第二功率的提供。
  8. 根据权利要求1所述的无线电能传输系统,其特征在于,控制器单元进一步被配置为:
    停止第一功率和第二功率的提供;
    而提供第三功率给每一个从第一组选定的发射线圈,提供第四功率给每一个从第二组选定的发射线圈;
    且第三功率比第四功率低。
  9. 根据权利要求1所述的无线电能传输系统,其特征在于,控制器单元进一步被配置为:
    确定用于提供给从第一组中选定的发射线圈的第三功率,以及用于提供给从第二组中选定的发射线圈的第四功率;
    确定若干阶段;
    基于确定的阶段数,分别确定用于提供给每一个从第一组选定的发射线圈的第三功率的多个阶段和提供给每一个从第二组选定的发射线圈的第四功率的多个阶段,第三功率的多个阶段从第一阶段递增到等于第三功率的最后阶段,而第四功率的多个阶段从第一阶段递增到等于第四功率的最后阶段;
    在预定时间,提供第三功率的第一阶段给每一个从第一组选定的发射线圈,而提供第四功率的第一阶段给每一个从第二组选定的发射线圈;
    响应于没有接收到来自无线功率接收器的预设响应,提供第三功率的下一阶段和第四功率的下一阶段。
  10. 根据权利要求9所述的无线电能传输系统,其特征在于,阶段的数量为2或者3。
  11. 根据权利要求9所述的无线电能传输系统,其特征在于,提供的第三功率和第四功率被配置为通过相应的发射线圈无线传输电能给无线功率接收器的一个或多个控制器单元;
    响应于通过第三功率或第四功率的任何阶段给一个或多个控制器单元加电,预设的响应从无线功率接收器的一个或多个控制器单元接收。
  12. 根据权利要求9所述的无线电能传输系统,其特征在于,控制器单元进一步被配置为:
    响应于从无线功率接收器接收到预设响应,增加第三功率或者第四功率的相应阶段到用于无线功率接收器的无线传输功率水平。
  13. 根据权利要求12所述的无线电能传输系统,其特征在于,控制器单元进一步被配置为:
    将一个或多个参数与相应的一个或多个阈值进行比较,其中所述一个或多个参数包括发射线圈中的至少一个电流或连接到发射线圈的功率适配器的电流;
    响应于确定一个或多个参数超过相应的一个或多个阈值,停止相应的一个或多个发射线圈的任何功率提供。
  14. 由无线电能传输系统执行的无线电能传输方法,包括:
    提供第一功率给第一组发射线圈,一次一个或多个发射线圈;
    比较加电的第一发射线圈的第一耦合强度与第一阈值;
    响应于确定第一耦合强度超过第一阈值,确定该发射线圈作为选定的发射线圈;
    提供第二功率给第二组发射线圈,一次一个或多个发射线圈;
    比较加电的第二发射线圈的耦合强度与第二阈值;
    响应于确定第二耦合强度超过第二阈值,确定该发射线圈作为另一个选定的发射线圈,其特征在于:
    每组包括一个或多个发射线圈,第一组发射线圈布置在第一平面中,而第二组发射线圈布置在第二平面中。
  15. 根据权利要求14所述的无线电能传输方法,其特征在于:
    第一组发射线圈比第二组发射线圈更接近于无线充电表面;
    所述无线充电表面被配置为提供无线电能传输给布置在所述表面的一侧的一个或多个无线功率接收器;
    而第一组发射线圈和第二组发射线圈布置在所述表面的另一侧。
  16. 根据权利要求15所述的无线电能传输方法,其特征在于:
    第一组发射线圈的至少一个在垂直于无线充电表面的方向上与第二组发射线圈的至少一个重叠。
  17. 根据权利要求15所述的无线电能传输方法,其特征在于:
    第一平面与无线充电表面基本平行;第二平面与无线充电表面基本平行;且第一平面比第二平面更接近于无线充电表面。
  18. 根据权利要求14所述的无线电能传输方法,其特征在于:所有的发射线圈是相同的;且第一功率比第二功率小。
  19. 根据权利要求14所述的无线电能传输方法,其特征在于:
    提供第一功率给第一组发射线圈包括一次提供第一功率给一个发射线圈或者两个相邻的发射线圈;
    提供第二功率给第二组发射线圈包括一次提供第二功率给一个发射线圈或者两个相邻的发射线圈。
  20. 根据权利要求14所述的无线电能传输方法,其特征在于:
    分别提供第一功率和第二功率给相应的发射线圈一段预定的时间;
    交替地提供第一功率和第二功率;
    且响应于选定的发射线圈达到预定数量,停止第一功率和第二功率的提供。
  21. 根据权利要求14所述的无线电能传输方法,进一步包括:
    停止第一功率和第二功率的提供;
    而提供第三功率给每一个从第一组选定的发射线圈,提供第四功率给每一个从第二组选定的发射线圈,且第三功率比第四功率低。
  22. 据权利要求14所述的无线电能传输方法,进一步包括:
    确定用于提供给从第一组中选定的发射线圈的第三功率,以及用于提供给从第二组中选定的发射线圈的第四功率;
    确定若干阶段;
    基于确定的阶段数,分别确定用于提供给每一个从第一组选定的发射线圈的第三功率的多个阶段和提供给每一个从第二组选定的发射线圈的第四功率的多个阶段,第三功率的多个阶段从第一阶段递增到等于第三功率的最后阶段,而第四功率的多个阶段从第一阶段递增到等于第四功率的最后阶段;
    在预定时间,提供第三功率的第一阶段给每一个从第一组选定的发射线圈,而提供第四功率的第一阶段给每一个从第二组选定的发射线圈;
    响应于没有接收到来自无线功率接收器的预设响应,提供第三功率的下一阶段和第四功率的下一阶段。
  23. 根据权利要求22所述的无线电能传输方法,其特征在于,阶段的数量为2或者3。
  24. 根据权利要求22所述的无线电能传输方法,其特征在于:
    提供的第三功率和第四功率被配置为通过相应的发射线圈无线传输电能给无线功率接收器的一个或多个控制器单元;
    响应于通过第三功率或第四功率的任何阶段给一个或多个控制器单元加电,预设的响应从无线功率接收器的一个或多个控制器单元接收。
  25. 根据权利要求22所述的无线电能传输方法,其特征在于,进一步包括:
    响应于从无线功率接收器接收到预设响应,增加第三功率或者第四功率的相应阶段到用于无线功率接收器的无线传输功率水平。
  26. 根据权利要求25所述的无线电能传输方法,其特征在于,进一步包括:
    将一个或多个参数与相应的一个或多个阈值进行比较,其中所述一个或多个参数包括发射线圈中的至少一个电流或连接到发射线圈的功率适配器的电流;
    响应于确定一个或多个参数超过相应的一个或多个阈值,停止相应的一个或多个发射线圈的任何功率提供。
  27. 一种无线功率发射器,包括:
    第一组发射线圈和第二组发射线圈,每组包括一个或多个发射线圈;
    无线充电表面,其被配置为向布置在所述表面的一侧的一个或多个功率接收器提供无线电能传输,其特征在于,第一组和第二组发射线圈布置在所述表面的另一侧,第一组发射线圈比第二组发射线圈更接近于无线充电表面;
    以及控制器单元,该控制器单元被配置为:
    提供第一功率给第一组发射线圈,一次一个或多个发射线圈;
    比较加电的第一发射线圈的第一耦合强度与第一阈值;
    响应于确定第一耦合强度超过第一阈值,确定该发射线圈作为选定的发射线圈;
    提供第二功率给第二组发射线圈,一次一个或多个发射线圈;
    比较加电的第二发射线圈的耦合强度与第二阈值;
    响应于确定第二耦合强度超过第二阈值,确定该发射线圈作为另一个选定的发射线圈。
PCT/CN2018/078921 2017-10-19 2018-03-14 用于无线电能传输的包含选择/侦测(ping)两阶段的多线圈系统和方法 WO2019075986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880001408.7A CN109937514A (zh) 2017-10-19 2018-03-14 用于无线电能传输的包含选择/侦测(ping)两阶段的多线圈系统和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/788,005 2017-10-19
US15/788,005 US10547207B2 (en) 2017-10-19 2017-10-19 Multi-coil system and method with two-stage selection/ping for wireless power transfer

Publications (1)

Publication Number Publication Date
WO2019075986A1 true WO2019075986A1 (zh) 2019-04-25

Family

ID=66169492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078921 WO2019075986A1 (zh) 2017-10-19 2018-03-14 用于无线电能传输的包含选择/侦测(ping)两阶段的多线圈系统和方法

Country Status (3)

Country Link
US (1) US10547207B2 (zh)
CN (1) CN109937514A (zh)
WO (1) WO2019075986A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177694B2 (en) * 2019-03-07 2021-11-16 Hubbell Incorporated Inductive power transfer
EP4073905A4 (en) * 2019-12-13 2024-01-03 Energous Corporation CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE
EP4016798A1 (en) 2020-12-17 2022-06-22 Stichting IMEC Nederland A powering apparatus for wireless powering and a method for controlling a powering apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375483A (zh) * 2006-01-31 2009-02-25 Ls电线有限公司 非接触电源、非接触充电系统以及对可充电电池进行充电的方法
CN104901402A (zh) * 2015-06-03 2015-09-09 北京有感科技有限责任公司 无线充电系统及无线充电方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
CN102804541B (zh) * 2009-04-08 2015-09-30 捷通国际有限公司 可选择线圈阵列
WO2013055962A1 (en) * 2011-10-11 2013-04-18 Senseonics, Incorporated Electrodynamic field strength triggering system
JP5889250B2 (ja) * 2013-07-12 2016-03-22 東芝テック株式会社 電力伝送装置、電力伝送装置用の送電装置及び受電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375483A (zh) * 2006-01-31 2009-02-25 Ls电线有限公司 非接触电源、非接触充电系统以及对可充电电池进行充电的方法
CN104901402A (zh) * 2015-06-03 2015-09-09 北京有感科技有限责任公司 无线充电系统及无线充电方法

Also Published As

Publication number Publication date
US20190123581A1 (en) 2019-04-25
CN109937514A (zh) 2019-06-25
US10547207B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
US10181756B2 (en) Wireless power transmitter and power transmission method thereof
EP3078119B1 (en) Wireless power orthogonal polarization antenna array
US11894712B2 (en) Wireless power transmitting and charging system
CN108156829B (zh) 无线电力发送器及其控制方法
US9899878B2 (en) Systems and methods for induction charging with a closed magnetic loop
US10050479B2 (en) Wireless power transmission system based on cell division
US10020683B2 (en) Systems, apparatus, and method for a dual mode wireless power receiver
KR101253670B1 (ko) 다중 안테나를 이용한 무선 전력 전송 장치 및 그 제어 방법
US9306634B2 (en) Waking up a wireless power transmitter from beacon mode
US9166439B2 (en) Systems and methods for forward link communication in wireless power systems
KR102106476B1 (ko) 무선 전력 수신기
KR20130102218A (ko) 멀티 코일을 구비하는 무선 전력 수신 장치 및 무선 전력 수신 방법
US20180205268A1 (en) Method for operating wireless power transmission device
WO2019075986A1 (zh) 用于无线电能传输的包含选择/侦测(ping)两阶段的多线圈系统和方法
CN107710555A (zh) 无线电力传输设备及其控制方法
Pu et al. A new definition of power transmission efficiency for wireless charging systems by using coil arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867531

Country of ref document: EP

Kind code of ref document: A1