WO2019075671A1 - 高可信配电网故障检测方法、装置及存储介质 - Google Patents

高可信配电网故障检测方法、装置及存储介质 Download PDF

Info

Publication number
WO2019075671A1
WO2019075671A1 PCT/CN2017/106738 CN2017106738W WO2019075671A1 WO 2019075671 A1 WO2019075671 A1 WO 2019075671A1 CN 2017106738 W CN2017106738 W CN 2017106738W WO 2019075671 A1 WO2019075671 A1 WO 2019075671A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
distribution network
fault
result
Prior art date
Application number
PCT/CN2017/106738
Other languages
English (en)
French (fr)
Inventor
盛万兴
宋晓辉
李雅洁
孟晓丽
高菲
李建芳
张瑜
赵珊珊
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Priority to PCT/CN2017/106738 priority Critical patent/WO2019075671A1/zh
Priority to JP2018518631A priority patent/JP6691964B2/ja
Publication of WO2019075671A1 publication Critical patent/WO2019075671A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the invention relates to a fault detection technology in a distribution network, in particular to a high reliability distribution network fault detection method, device and storage medium.
  • the distribution network plays an important role in distributing power in the power grid. Therefore, when a fault occurs in the distribution network, it is particularly important to be able to perform fault detection quickly and accurately.
  • various fault characterizations will be presented. However, at present, the detection of the distribution network fault is usually based on only one kind of fault, or based on the fault information of one information collection point, which is easy to form an error.
  • the fault diagnosis conclusion causes the switch to malfunction or refuse to move.
  • the embodiments of the present invention are expected to provide a high-reliability distribution network fault detection method, device, and storage medium, which can quickly, accurately, and reliably implement distribution network fault detection.
  • an embodiment of the present invention provides a high-confidence distribution network fault detection method, including:
  • the electrical parameters include at least two of zero sequence voltage, zero sequence current, phase current, phase voltage, and line voltage; when the change of the electrical parameter meets a preset fault determination condition At the time, it is determined that a particular type of fault has occurred in the distribution network.
  • an embodiment of the present invention further provides a high-confidence distribution network fault detection apparatus.
  • a high-confidence distribution network fault detection apparatus include:
  • a monitoring unit configured to monitor a change in a power parameter of the distribution network;
  • the electrical parameter includes at least two of a zero sequence voltage, a zero sequence current, a phase current, a phase voltage, and a line voltage;
  • the processing unit is configured to determine that a specific type of fault occurs in the distribution network when the change of the electrical parameter meets a preset fault determination condition.
  • the embodiment of the present invention further provides a high-confidence distribution network fault detection apparatus, including:
  • a memory configured to store an executable program
  • the processor configured to execute the executable program stored in the memory, implements the high trusted distribution network fault detection method described above.
  • an embodiment of the present invention further provides a storage medium, where an executable program is stored, and when the executable program is executed by a processor, the foregoing high-confidence distribution network fault detection method is implemented.
  • FIG. 1 is a schematic flowchart 1 of a method for detecting a fault of a high-confidence distribution network according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an application scenario of a method for detecting a fault of a high-confidence distribution network according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart 2 of a method for detecting a fault of a high-confidence distribution network according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a high-reliability distribution network fault detection apparatus according to an embodiment of the present invention.
  • short-circuit, disconnection and single-phase ground faults are the three most common types of faults in the distribution network. After they occur, they will be characterized by multiple faults, such as after a short-circuit fault occurs. Outside the flow, there will be a large drop in voltage; in addition to the introduction of zero sequence quantities in the grid, single-phase ground faults will also exhibit electromagnetic field anomalies.
  • various types of faults can also represent fault characterizations in different locations. For example, in addition to the impact on the medium voltage distribution network, disconnection faults also exhibit abnormal electrical quantity characteristics in the low voltage distribution network.
  • the existing distribution network fault diagnosis methods rely on a single fault characterization to directly judge, and the credibility is low.
  • an erroneous fault diagnosis conclusion is generated, which causes the switch to malfunction or refuse to affect the power supply reliability.
  • the embodiment of the invention utilizes multiple fault characterizations or mutual verification between multiple location fault information to achieve high reliability fault diagnosis of the distribution network.
  • monitoring changes in electrical parameters in the distribution network include at least two of zero sequence voltage, zero sequence current, phase current, phase voltage, and line voltage; when the electrical parameter changes When a predetermined fault determination condition is met, it is determined that a particular type of fault has occurred in the distribution network.
  • the terms "including”, “comprising”, or any other variations thereof are intended to encompass non-exclusive inclusions, such that a method or apparatus comprising a plurality of elements includes not only the Elements, but also other elements not explicitly listed, or elements that are inherent to the implementation of the method or device.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional related elements in the method or device including the element (eg, a step in the method or a unit in the device)
  • the unit here may be part of a circuit, part of a processor, part of a program or software, etc.; of course, it may be a module).
  • first ⁇ second ⁇ third according to the embodiment of the present invention is merely a similar object, and does not represent a specific ordering for an object. It can be understood that “first ⁇ second ⁇ ” The third "can be interchanged in a specific order or order, where permitted.” It is to be understood that the "first ⁇ second ⁇ third” distinguished objects may be interchanged as appropriate to enable the embodiments of the invention described herein to be carried out in a sequence other than those illustrated or described herein.
  • the embodiment of the invention provides a fault detection method for a high-confidence distribution network.
  • a plurality of distribution network fault detection devices are distributed in a three-phase feeder line in a distribution network, and the distribution network fault detection device is provided.
  • the high-reliability distribution network fault detection method of the embodiment of the present invention can be implemented, and the device can be set on the intelligent terminal, and a layout manner of the high-confidence distribution network fault detection device is set at the head end and the line along the line. .
  • a method for detecting a fault in a high-confidence distribution network includes:
  • Step 101 Monitor changes in electrical parameters of the distribution network; the electrical parameters include at least two of zero sequence voltage, zero sequence current, phase current, phase voltage, and line voltage.
  • Step 102 When a change of the electrical parameter meets a preset fault determination condition, determining that a specific type of fault occurs in the distribution network.
  • a specific type of fault includes at least one of the following: a single phase ground fault, a short circuit fault, and an open circuit fault.
  • the high-reliability detection of the single-phase ground fault can be realized by mutually verifying the zero-sequence voltage and the three-phase electric field.
  • the zero-sequence voltage and the three in the distribution network can be monitored in real time. a change in the phase voltage of the phase feed line;
  • the zero sequence voltage exceeds the preset zero sequence voltage threshold (for example: 0.35 times the bus rated voltage);
  • phase voltage of the first phase feed line is lower than the first phase voltage threshold (for example, the first phase voltage threshold) 0.5 times normal phase voltage: that is, the field strength corresponding to the first feed line is significantly reduced), and the phase voltages of the second feed line and the third feed line are higher than the second phase voltage threshold (for example, the second phase voltage threshold is 1.5 times the normal phase)
  • the first phase voltage threshold is less than the second phase voltage threshold.
  • the zero sequence voltage threshold, the first phase voltage threshold, and the second phase voltage threshold can be set according to actual conditions.
  • the parameter abnormal monitoring result assists in judging whether a single-phase ground fault has occurred in the distribution network.
  • the electrical parameter abnormality judgment result at the adjacent (upstream and/or downstream) electrical parameter monitoring point is obtained, when the electrical parameter is
  • the abnormal judgment result characterizes at least one of the above two situations occurring in the distribution network, it is determined that a single-phase ground fault occurs in the distribution network.
  • the diagnosis of the single-phase ground fault can also be performed by the primary station of the distribution network. Therefore, the current distribution network fault detection device determines that the above two types occur in the distribution network. When one of the abnormal conditions occurs, the abnormal situation reported is reported to the primary station of the distribution network, and the primary station obtains the abnormal condition determination result at the monitoring point of the adjacent electrical parameter based on the abnormal situation, and the abnormal condition determination result at the other monitoring points When at least one of the above two conditions occurs, it is determined that a single-phase ground fault has occurred in the distribution network.
  • the single-phase ground fault can also be located, and correspondingly, in actual implementation, the distribution network is also monitored.
  • Zero-sequence current and phase current changes, then localization of single-phase ground faults based on changes in zero-sequence current and phase current.
  • fault localization based on zero-sequence current and fault current localization based on phase currents Verify the final fault location; as can be achieved by:
  • the first fault location result indicates that the single-phase ground fault occurs downstream of the current electrical parameter monitoring point, or the single-phase ground fault does not occur downstream of the current electrical parameter monitoring point;
  • the second fault localization result indicates that the single-phase ground fault does not occur Downstream of the current electrical parameter monitoring point, or single phase ground fault occurs downstream of the current electrical parameter monitoring point.
  • the fault location result may be coordinated by the fault location result at the monitoring point of the adjacent electrical parameter, and in actual implementation, the adjacent electrical parameter is obtained.
  • the fault location result of the monitoring point (which may be at least one of the adjacent upstream electrical parameter monitoring point and the adjacent downstream electrical parameter monitoring point); comparing the first fault location result, the second fault location result, and the adjacent electrical parameter monitoring The fault location result at the point is based on the comparison result to locate the single phase ground fault.
  • the first fault location result indicates that the single-phase ground fault occurs downstream of the current electrical parameter monitoring point
  • the second fault location result indicates that the single-phase ground fault does not occur downstream of the current electrical parameter monitoring point
  • the adjacent downstream electrical parameter monitoring The fault location result of the point indicates that the single-phase ground fault occurs downstream of its own monitoring point
  • the final fault location result is the first fault location result
  • the first fault location result and the second fault location result are reported to the primary station of the distribution network, so that the primary station is based on the first fault.
  • the positioning result and the second fault positioning result locate the single-phase ground fault.
  • the primary station is based on the received first fault location result, the second fault location result, and the current The fault location result at the adjacent electrical parameter monitoring point of the electrical parameter monitoring point cooperates to locate the single phase ground fault that occurs.
  • the method may include:
  • phase of the zero-sequence current leads the phase of the zero-sequence voltage and the phase difference meets the preset phase difference condition (eg, between 75° and 105°)
  • preset phase difference condition eg, between 75° and 105°
  • phase of the zero sequence current lags the phase of the zero sequence voltage, it is determined that the single phase ground fault has not occurred downstream of the current electrical parameter monitoring point.
  • comparing the phase of each phase current of the distribution network or the magnitude of each phase current, and obtaining a second fault location result based on the comparison result which may include:
  • phase difference between the phase of the phase current and the phase current of the other two phases is in accordance with a preset phase current difference condition (eg, between 135° and 225°), and/or
  • One of the three-phase feeders of the distribution network ie, the fault phase, the fault phase is usually judged based on the second of the abnormal conditions mentioned above, and the phase voltage is lower than the first phase voltage threshold is the fault phase
  • the amplitude of the phase current is smaller than the amplitude of the phase currents of the other two phases, and the difference is in accordance with the preset amplitude difference condition (for example, the amplitude of the phase current of the fault phase is 25% of the sum of the non-fault phase current components)
  • the single-phase ground fault does not occur downstream of the current electrical parameter monitoring point.
  • the high-reliability detection and positioning of the short-circuit fault can be realized by the phase current (or line current) of the three-phase feeder and the mutual verification of the phase voltage.
  • the distribution network is monitored in real time. The phase current and phase voltage of the medium three-phase feeder;
  • phase current overcurrent occurs at two or more electrical parameter monitoring points in the distribution network (ie, the phase current exceeds a preset threshold)
  • the detection of the short circuit fault may include the following:
  • the current abnormality determination result indicates that the phase current exceeds the preset first phase current threshold, it is determined that a short circuit fault has occurred in the distribution network. (Here, when the electrical parameter monitoring points of the adjacent upstream and downstream are acquired, it is determined that at least one of the two current abnormality determination results obtained is indicative of the presence of the phase current exceeding a preset first phase current threshold, and determining A short circuit fault has occurred in the power grid.)
  • the currently monitored phase current abnormality (the phase current of at least one of the three phase currents exceeds the preset first phase current threshold) may be reported to the primary station of the distribution network, and the base station is based on The phase current monitoring results at a plurality of electrical parameter monitoring points are used for fault determination.
  • the short-circuit fault after detecting a short-circuit fault in the distribution network, the short-circuit fault can be fault-positioned next.
  • the short-circuit fault location can be performed by the following operations:
  • the short circuit fault is located based on the phase current and the phase voltage of each phase, and the third fault location result is obtained, including:
  • the phase current of the fault phase exceeds the preset first phase current threshold (ie, an overcurrent phenomenon occurs, and the first phase current threshold can be set according to actual conditions, such as 2000A), it is determined that the short circuit fault occurs at the current electrical parameter. Downstream of the monitoring point;
  • the phase current of each phase is lower than the preset second phase current threshold (ie, no overcurrent phenomenon occurs, and the second phase current threshold can be set according to actual conditions, such as 800A), it is determined that the short circuit fault does not occur at the current Downstream of the electrical parameter monitoring point;
  • the phase voltage of a phase is lower than the preset phase voltage threshold (the phase voltage is significantly decreased, the phase voltage is The threshold can be set according to the actual situation, such as 30% of the rated phase voltage. It is determined that the short circuit fault occurs upstream of the current electrical parameter monitoring point.
  • the third fault location result may also be reported to the primary station of the distribution network, and the primary station locates the short circuit fault based on the third fault location result.
  • the open circuit fault is also one of the common faults in the distribution network.
  • the fault detection of the medium voltage distribution network and the low voltage distribution network is mainly realized.
  • real-time monitoring of the line voltage ie, phase-to-phase voltage
  • phase voltage changes of the medium voltage distribution network in the distribution network ie, phase-to-phase voltage
  • the first line voltage monitoring result is obtained based on monitoring the line voltage of the medium voltage distribution network
  • Obtaining the monitoring result of the line voltage of the medium voltage distribution network at the monitoring point of the adjacent upstream electrical parameter is the second line voltage monitoring result, and the monitoring result of the line voltage of the medium voltage distribution network at the monitoring point of the adjacent downstream electrical parameter For the third line voltage monitoring results;
  • one line voltage representing the medium voltage distribution network is in the first preset line voltage range (the first preset line voltage range may be: 0.9 to the rated phase-to-phase voltage) 1.1 times, that is, the phase-to-phase voltage is normal), and another characterizes the medium-voltage distribution network.
  • phase-to-phase voltages ie, line voltages
  • the second predetermined line voltage range can be: 0.4 to 0.6 times the rated phase-to-phase voltage, that is, the phase-to-phase voltage is abnormal), and the adjacent and adjacent A single-phase disconnection fault occurs between the upstream electrical parameter monitoring points; wherein the second predetermined line voltage range is smaller than the first preset line voltage range;
  • one line voltage representing the medium voltage distribution network is within the first preset line voltage range, and the other characterizing the line voltage appearing in the medium voltage distribution network is second.
  • the preset line voltage range a single-phase disconnection fault occurs between the electrical parameter monitoring points adjacent to the downstream;
  • the third preset line voltage range may be: within 10% of the rated phase-to-phase voltage, that is, the three-phase phase voltage is close to zero
  • the corresponding phase voltage is within a preset phase voltage range
  • the preset phase voltage range may be: 0.9 to 1.1 times the rated phase voltage, that is, the three-phase phase voltage is normal), and a two-phase disconnection fault occurs between the adjacent upstream electrical parameter monitoring points; wherein, the third preset The line voltage range is less than the first preset line voltage range;
  • one line voltage representing the medium voltage distribution network is within the first preset line voltage range, and the other characterizing the line voltage in the medium voltage distribution network is in the third stage.
  • the preset line voltage range and the corresponding phase voltage is within the preset phase voltage range, it is determined that a two-phase disconnection fault occurs between the adjacent downstream electrical parameter monitoring points.
  • the monitoring of electrical parameters also includes the phase voltage of the low voltage distribution network
  • the method further includes:
  • the positive sequence voltage of the current load point is obtained
  • the positive sequence voltage of the current load point and its upstream load point is in the preset positive sequence voltage range (the preset positive sequence voltage range may be: 0.9 to 1.1 times the rated positive sequence voltage, that is, the positive sequence voltage is normal), and the downstream load
  • the positive sequence voltage of the point is lower than the preset positive sequence voltage threshold (the preset positive sequence voltage threshold may be: 50% of the rated positive sequence voltage, that is, the positive sequence voltage is significantly smaller).
  • FIG. 2 is a schematic diagram of an application scenario of a high-confidence distribution network fault detection method according to an embodiment of the present invention.
  • the high-reliability distribution network fault detection device is implemented in the form of a terminal.
  • the distribution in the distribution network is provided with multiple terminals for implementing the fault detection method of the distribution network; the detection of the short-circuit fault by the terminal is taken as an example.
  • 3 is a schematic flowchart of a high-confidence distribution network fault detection method according to an embodiment of the present invention.
  • the high-reliability distribution network fault detection method in the embodiment of the present invention includes:
  • Step 201 The terminal monitors the phase current and phase voltage changes in the distribution network in real time.
  • Step 202 Determine that a phase current of at least one of the three-phase currents corresponding to the three-phase feeder exceeds a preset first phase current threshold or is lower than a preset second phase current threshold.
  • the first phase current threshold and the second phase current threshold may be set according to actual conditions, so that when the phase current exceeds the preset first phase current threshold, the overcurrent phenomenon is considered to occur, when the phase current is lower than the preset
  • the second phase current threshold it is considered that the current is significantly reduced. Therefore, it is necessary to set the second phase current threshold to be smaller than the first phase current threshold.
  • Step 203 Acquire a current abnormality determination result at an adjacent electrical parameter monitoring point.
  • the adjacent electrical parameter monitoring point is the upstream and downstream electrical parameter monitoring adjacent to the terminal. At least one of the points (terminals).
  • the current abnormality determination result includes one of the following conditions:
  • phase current exceeding a preset first phase current threshold, a phase current being lower than a preset second phase current threshold, and no current abnormality.
  • Step 204 Determine, according to the obtained current abnormality determination result, that a short circuit fault occurs in the distribution network when the phase current exceeds the preset first phase current threshold in the current abnormality determination result.
  • phase current exceeds the preset first phase current threshold in the current abnormality determination result, that is, it is determined that at least one of the obtained two current abnormality determination results has a characteristic phase current exceeding a preset first phase current threshold.
  • the currently detected phase current abnormality can be reported to the primary station of the distribution network, and the base station performs fault determination based on the phase current monitoring results at the plurality of electrical parameter monitoring points.
  • Step 205 Acquire a phase current of the fault phase and a magnitude of the phase voltage, and locate the short circuit fault based on the phase current of the fault phase and the magnitude of the phase voltage to obtain a positioning result.
  • the phase that is considered to have an overcurrent phenomenon is a fault phase, and correspondingly,
  • the phase current of the fault phase exceeds the preset first phase current threshold (ie, an overcurrent phenomenon occurs, and the first phase current threshold can be set according to actual conditions, such as 2000A), it is determined that the short circuit fault occurs at the current electrical parameter. Downstream of the monitoring point;
  • the second phase current threshold can be set according to actual conditions, such as 800A
  • phase voltage threshold can be set according to the actual situation, such as 30% of the rated phase voltage
  • Step 206 Acquire short circuit fault location results at adjacent electrical parameter monitoring points.
  • the short-circuit fault location result of adjacent electrical parameter monitoring points includes one of the following:
  • the short circuit fault occurs downstream of the current electrical parameter monitoring point (ie, the adjacent monitoring point of the terminal);
  • the short circuit fault does not occur downstream of the current electrical parameter monitoring point (ie, the adjacent monitoring point of the terminal);
  • the short circuit fault occurs upstream of the current electrical parameter monitoring point (ie, the adjacent monitoring point of the terminal).
  • Step 207 Compare the positioning result of the terminal with the obtained short circuit fault positioning result, and perform short circuit fault location based on the comparison result.
  • the positioning result of the terminal is the same as the obtained short-circuit fault positioning result, determining that the positioning result of the short-circuit fault is the positioning result of the terminal (or the obtained short-circuit fault positioning result); when the terminal When the positioning result is different from the obtained short-circuit fault location result, an alarm indication message may be sent.
  • the fault location result can also be reported to the primary station of the distribution network, and the short-circuit fault is located by the primary station based on the fault location result.
  • FIG. 4 is a schematic structural diagram of a high-reliability distribution network fault detection apparatus according to an embodiment of the present invention, including:
  • the monitoring unit 41 is configured to monitor a change of an electrical parameter in the distribution network;
  • the electrical parameter includes zero At least two of sequence voltage, zero sequence current, phase current, phase voltage, and line voltage;
  • the processing unit 42 is configured to determine that a specific type of fault occurs in the distribution network when the change of the electrical parameter meets a preset fault determination condition.
  • the monitoring unit 41 is further configured to monitor a zero sequence voltage in the distribution network and a change in a phase voltage of the three-phase feeder;
  • the processing unit 42 is further configured to: when the zero sequence voltage exceeds a preset zero sequence voltage threshold, and the phase voltage of the first feed line is lower than the first phase voltage threshold, the phase voltage strength of the second feed line and the third feed line When the second phase voltage threshold is higher, it is determined that a single phase ground fault occurs in the distribution network;
  • the first phase voltage threshold is less than the second phase voltage threshold.
  • the monitoring unit 41 is further configured to monitor a zero sequence voltage in the distribution network and a change in a phase voltage of the three-phase feeder;
  • the processing unit 42 is further configured to determine that a first electrical parameter abnormality or a second electrical parameter abnormality occurs in the distribution network;
  • the first electrical parameter abnormally represents that the zero sequence voltage exceeds a preset zero sequence voltage threshold
  • the second electrical parameter abnormally represents that the phase voltage of the first feeder is lower than the first phase voltage threshold, the phase voltages of the second feeder and the third feeder are higher than the second phase voltage threshold; the first phase voltage threshold is less than the Second phase voltage threshold.
  • the processing unit 42 is further configured to report an abnormality determination result of the first electrical parameter abnormality or the second electrical parameter abnormality to the primary station of the distribution network, so that the primary station is based on The abnormality determination result determines whether a single-phase ground fault has occurred in the distribution network.
  • the electrical parameter further includes a zero sequence current and a phase current
  • the processing unit 42 is further configured to compare a phase of the zero sequence current with the zero sequence voltage Phase, based on the comparison result to obtain the first fault location result;
  • the processing unit 42 is further configured to acquire a fault location result at an adjacent electrical parameter monitoring point when the first fault location result is different from the second fault location result;
  • the processing unit 42 is further configured to report the first fault location result and the second fault location result when the first fault location result is different from the second fault location result.
  • the primary station of the distribution network is configured to cause the primary station to locate the single-phase ground fault based on the first fault location result and the second fault location result.
  • the monitoring unit 41 is further configured to monitor a phase current and a phase voltage change of the three-phase feeder in the distribution network;
  • the processing unit 42 is further configured to determine that a phase current of at least one of the three-phase currents corresponding to the three-phase feeder exceeds a preset first phase current threshold, or is lower than a preset second phase current threshold; The second phase current threshold is less than the first phase current threshold;
  • the current abnormality determination result indicates that the phase current exceeds the preset first phase current threshold, it is determined that a short circuit fault has occurred in the distribution network.
  • the processing unit 42 is further configured to acquire phase currents and phases of the fault phase.
  • the magnitude of the voltage is based on the phase current of the fault phase and the magnitude of the phase voltage to locate the short circuit fault, and obtain a third fault location result;
  • the processing unit 42 is further configured to determine that the short circuit fault occurs downstream of the current electrical parameter monitoring point when the phase current magnitude of the fault phase exceeds a preset first phase current threshold. ;
  • the processing unit 42 is further configured to report the third fault location result to the primary station of the distribution network, so that the primary station is based on the third fault location result. Short circuit fault for positioning.
  • the monitoring unit 41 is further configured to monitor a change of a line voltage and a phase voltage of the medium voltage distribution network in the distribution network;
  • the processing unit 42 is further configured to obtain a first line voltage monitoring result based on monitoring a line voltage of the medium voltage distribution network;
  • Obtaining the monitoring result of the line voltage of the medium voltage distribution network at the monitoring point of the adjacent upstream electrical parameter is the second line voltage monitoring result, and the monitoring result of the line voltage of the medium voltage distribution network at the monitoring point of the adjacent downstream electrical parameter For the third line voltage monitoring results;
  • one line characterizing the medium voltage distribution network is within the first preset line voltage range, and another characterizing the line appearing in the medium voltage distribution network
  • the voltage is in the second preset line voltage range, and determining that a single-phase disconnection fault occurs between the adjacent upstream electrical parameter monitoring points; wherein the second preset line voltage range is smaller than the first preset Line voltage range;
  • one line characterizing the medium voltage distribution network is within the first preset line voltage range, and another characterizing the line appearing in the medium voltage distribution network The voltage is within a second predetermined line voltage range, and determining a single-phase disconnection fault between the adjacent downstream electrical parameter monitoring points;
  • one line characterizing the medium voltage distribution network is within the first preset line voltage range, and another characterizing the line appearing in the medium voltage distribution network
  • the voltage is within a third predetermined line voltage range, and the corresponding phase voltage is within a preset phase voltage range, and a two-phase disconnection fault occurs between the adjacent upstream electrical parameter monitoring points; wherein, the The three preset line voltage ranges are smaller than the first preset line voltage range;
  • one line characterizing the medium voltage distribution network is within the first preset line voltage range, and another characterizing the line appearing in the medium voltage distribution network
  • the voltage is within a third predetermined line voltage range, and the corresponding phase voltage is within a preset phase voltage range, and a two-phase disconnection fault occurs between the adjacent downstream electrical parameter monitoring points.
  • the electrical parameter further includes a phase voltage of the low voltage distribution network
  • the processing unit 42 is further configured to obtain a positive sequence voltage of the current load point based on monitoring the phase voltage of the low voltage distribution network;
  • a disconnection fault occurs between the upstream medium voltage distribution grids connected to the current load point when:
  • the positive sequence voltage of the current load point and its upstream load point is within a preset positive sequence voltage range, and the positive sequence voltage of the downstream load point is lower than the preset positive sequence voltage threshold.
  • the embodiment of the invention further provides a high-confidence distribution network fault detection device, which can be set on the terminal, and includes:
  • a memory configured to store an executable program
  • the processor configured to execute the executable program stored in the memory, implements the high trusted distribution network fault detection method described above.
  • the embodiment of the invention further provides a storage medium, which stores an executable program, and when the executable program is executed by the processor, implements the above-mentioned high-confidence distribution network fault detection method.
  • the embodiment of the invention monitors changes in the electrical parameters of the distribution network; the electrical parameters include at least two of zero sequence voltage, zero sequence current, phase current, phase voltage, and line voltage; when the change of the electrical parameter conforms to the preset When the fault determination condition is met, it is determined that a specific type of fault has occurred in the distribution network. In this way, the fault detection of the distribution network can be realized quickly, accurately and reliably.

Abstract

本发明公开了一种高可信配电网故障检测方法,包括:监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种;当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。本发明还公开了一种高可信配电网故障检测装置、以及存储介质。

Description

高可信配电网故障检测方法、装置及存储介质 技术领域
本发明涉及配电网中的故障检测技术,尤其涉及一种高可信配电网故障检测方法、装置及存储介质。
背景技术
配电网在电力网中起着重要的分配电能的作用,因此,配电网中发生故障时,能够快速、准确的进行故障检测显得尤为重要。配电网故障发生时,会呈现多种故障表征,然而目前,对配电网故障的检测通常仅基于故障的一种表征,或仅基于一个信息采集点的故障信息进行判断,容易形成错误的故障诊断结论,导致开关误动或拒动。
因此,提供一种高可信度的配电网故障检测方法,能够快速、准确、可靠的实现配电网故障检测,已成为亟待解决的问题。
发明内容
有鉴于此,本发明实施例期望提供一种高可信配电网故障检测方法、装置及存储介质,能够快速、准确、可靠的实现配电网故障检测。
为达到上述目的,本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供了一种高可信配电网故障检测方法,包括:
监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种;当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。
第二方面,本发明实施例还提供了一种高可信配电网故障检测装置, 包括:
监测单元,配置为监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种;
处理单元,配置为当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。
第三方面,本发明实施例还提供了一种高可信配电网故障检测装置,包括:
存储器,配置为存储可执行程序;
处理器,配置为执行所述存储器中存储的可执行程序时,实现上述的高可信配电网故障检测方法。
第四方面,本发明实施例还提供了一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述的高可信配电网故障检测方法。
附图说明
图1为本发明实施例提供的高可信配电网故障检测方法的流程示意图一;
图2为本发明实施例提供的高可信配电网故障检测方法的应用场景示意图;
图3为本发明实施例提供的高可信配电网故障检测方法的流程示意图二;
图4为本发明实施例提供的高可信配电网故障检测装置的组成结构示意图。
具体实施方式
发明人在研究中发现,短路、断线与单相接地故障是配电网中最常见的三类故障,其发生之后会呈现多种故障表征,如短路故障发生后,除过 流外,还会发生电压的大幅度下跌;单相接地故障除了会在电网中引入零序量外,还会体现出电磁场异常现象。除多种故障表征外,各类故障还会在不同地点体现出故障表征,如断线故障除了对中压配电网造成影响外,还会在低压配电网中体现出异常电气量特征。
现有配电网故障诊断方法多依靠单一故障表征直接判断,可信性较低。当该故障单一信息错报或漏报情况下,会生成错误的故障诊断结论,导致开关误动或拒动,影响供电可靠性。本发明实施例利用多个故障表征或多个地点故障信息之间的相互校验,实现配电网高可信故障诊断。
在本发明实施例中,监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种;当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所提供的实施例仅仅用以解释本发明,并不用于限定本发明。另外,以下所提供的实施例是用于实施本发明的部分实施例,而非提供实施本发明的全部实施例,在不冲突的情况下,本发明实施例记载的技术方案可以任意组合的方式实施。
需要说明的是,在本发明实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的方法或者装置中还存在另外的相关要素(例如方法中的步骤或者装置中的单元,这里的单元可以是部分电路、部分处理器、部分程序或软件等等;当然也可以是模块)。
需要说明的是,本发明实施例所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。应该理解“第一\第二\第三”区分的对象在适当情况下可以互换,以使这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
实施例一
本发明实施例提供了一种高可信配电网故障检测方法,在实际应用中,配电网中的三相馈线上分布设置有多个配电网故障检测装置,配电网故障检测装置可实现本发明实施例的高可信配电网故障检测方法,该装置可设置于智能终端上,高可信配电网故障检测装置的一种布局方式为在线路首端及线路沿线分布设置。参见图1,本发明实施例中高可信配电网故障检测方法包括:
步骤101:监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种。
步骤102:当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。
这里,在实际实施时,特定类型的故障包括以下至少之一:单相接地故障、短路故障及断路故障。
在一实施例中,可通过零序电压与三相电场相互校验的方式,实现单相接地故障的高可信检测,在实际实施时,可实时监测配电网中的零序电压及三相馈线的相电压的变化;
当监测到配电网中出现以下两种异常情况时,确定配电网中发生了单相接地故障:
1)零序电压超过预设的零序电压阈值(例如:0.35倍的母线额定电压);
2)第一相馈线的相电压低于第一相电压阈值(例如第一相电压阈值为 0.5倍的正常相电压:即第一馈线对应的场强明显降低)、第二馈线及第三馈线的相电压高于第二相电压阈值(例如第二相电压阈值为:1.5倍的正常相电压,即第二馈线及第三馈线的场强明显升高);其中,第一相电压阈值小于第二相电压阈值。
这里的零序电压阈值、第一相电压阈值、第二相电压阈值大小的设定可依据实际情况进行设定。
然而,在实际应用中,有可能通过对零序电压及三相馈线的相电压的监测,发现配电网中仅出现上述两种情况之一,此时,需要通过其它电参数监测点的电参数异常监测结果协助判断配电网中是否发生了单相接地故障,实际实施时,获取相邻(上游和/或下游)的电参数监测点处的电参数异常判断结果,当所述电参数异常判断结果表征所述配电网中出现上述两种情况至少之一时,确定所述配电网中发生了单相接地故障。
基于本发明上述实施例,在实际应用中,对单相接地故障的诊断还可以由配电网的主站来执行,因此,当前的配电网故障检测装置确定配电网中出现上述两种异常情况之一时,上报出现的异常情况给配电网的主站,主站基于该异常情况,获取其相邻电参数监测点处的异常情况判定结果,若其他监测点处的异常情况判定结果出现上述两种情况至少之一时,确定配电网中发生了单相接地故障。
基于本发明上述实施例,在实际应用中,确定配电网中发生了单相接地故障后,还可对单相接地故障进行定位,相应的,在实际实施时,还要监测配电网中零序电流及相电流的变化,然后基于零序电流及相电流的变化对单相接地故障进行定位,在一实施例中,可以基于零序电流的故障定位及基于相电流的故障定位的相互校验进行最终的故障定位;如可通过以下处理实现:
比较零序电流的相位及零序电压的相位,基于比较结果得到第一故障 定位结果;
比较配电网的各相电流的相位或各相电流的幅值,基于比较结果得到第二故障定位结果;
对比第一故障定位结果与第二故障定位结果;
当第一故障定位结果与第二故障定位结果相同时,确定对单相接地故障的定位结果为所述第一故障定位结果。
这里,第一故障定位结果表征单相接地故障发生于当前电参数监测点的下游,或单相接地故障未发生于当前电参数监测点的下游;第二故障定位结果表征单相接地故障未发生于当前电参数监测点的下游,或单相接地故障发生于当前电参数监测点的下游。
在一实施例中,当第一故障定位结果与第二故障定位结果不同时,可通过相邻电参数的监测点处的故障定位结果协同进行故障定位,实际实施时,获取相邻的电参数监测点(可以为相邻上游电参数监测点、相邻下游电参数监测点中至少之一)处的故障定位结果;对比第一故障定位结果、第二故障定位结果及相邻的电参数监测点处的故障定位结果,基于对比结果对单相接地故障进行定位。例如:第一故障定位结果表征单相接地故障发生于当前电参数监测点的下游,第二故障定位结果表征单相接地故障未发生于当前电参数监测点的下游,相邻下游的电参数监测点的故障定位结果表征单相接地故障发生于其自身监测点的下游,则最终的故障定位结果为第一故障定位结果。
在另一实施例中,当第一故障定位结果与第二故障定位结果不同时,上报第一故障定位结果及第二故障定位结果给配电网的主站,以使主站基于第一故障定位结果与第二故障定位结果对单相接地故障进行定位。这里,在实际应用中,将第一故障定位结果及第二故障定位结果给配电网的主站后,主站基于接收的第一故障定位结果、第二故障定位结果,以及与当前 电参数监测点的相邻电参数监测点处的故障定位结果协同对发生的单相接地故障进行定位。
基于本发明上述实施例,在实际应用中,比较零序电流的相位及零序电压的相位,基于比较结果得到第一故障定位结果,可以包括:
当零序电流的相位超前零序电压的相位,且相位差值符合预设的相位差条件(如介于75°到105°之间)时,确定单相接地故障发生于当前的电参数监测点的下游;
当零序电流的相位滞后于零序电压的相位时,确定单相接地故障未发生于当前的电参数监测点的下游。
在实际应用中,比较配电网的各相电流的相位或各相电流的幅值,基于比较结果得到第二故障定位结果,可以包括:
若配电网的三相馈线中某一相(即故障相,故障相的判断通常基于上面提到的异常情况中的第二种,相电压低于第一相电压阈值的相即为故障相)的相电流的相位与另外两相的相电流的相位差符合预设的相电流差值条件(如介于135°到225°之间),和/或,
配电网的三相馈线中某一相(即故障相,故障相的判断通常基于上面提到的异常情况中的第二种,相电压低于第一相电压阈值的相即为故障相)的相电流的幅值小于与另外两相的相电流的幅值,且差值符合预设的幅值差条件(如故障相的相电流的幅值为非故障相相电流分量之和的25%)时,确定单相接地故障未发生于当前的电参数监测点的下游。
在一实施例中,可通过三相馈线的相电流(或线电流)及相电压的相互校验的方式,实现短路故障的高可信检测及定位,在实际实施时,实时监测配电网中三相馈线的相电流及相电压的变化;
在实际实施时,若配电网中两个或两个以上的电参数监测点处出现相电流过流(即相电流大小超出预设阈值)现象,则确定配电网中出现了短 路故障。对于当前的电参数监测点来说,在实际应用中,对短路故障的检测判定可以包括以下:
确定三相馈线对应的三相电流中至少一相的相电流超过预设的第一相电流阈值;
获取相邻的电参数监测点(相邻的上游、下游电参数监测点至少之一)处的电流异常判定结果;
当电流异常判定结果表征存在相电流超过预设的第一相电流阈值时,确定配电网中发生了短路故障。(这里,当获取的是相邻上游及下游的电参数监测点时,则确定获取的两个电流异常判定结果中至少存在一个表征存在相电流超过预设的第一相电流阈值时,确定配电网中发生了短路故障。)
当然,在实际应用中,可以将当前监测到的相电流异常情况(三相电流中至少一相的相电流超过预设的第一相电流阈值)上报给配电网的主站,由基站基于多个电参数监测点处的相电流监测结果进行故障判定。
基于本发明上述实施例,在实际应用中,在检测到配电网中出现短路故障后,接下来可对短路故障进行故障定位。在实际实施时,可通过如下操作进行短路故障定位:
获取三相馈线对应的相电流及相电压的大小,基于获得的相电流及相电压的大小对短路故障进行定位,得到第三故障定位结果;
获取相邻的电参数监测点处的短路故障定位结果;
对比第三故障定位结果及相邻的电参数监测点(相邻上游、下游至少之一)处的短路故障定位结果;
当第三故障定位结果及相邻的电参数监测点处的短路故障定位结果相同时,确定对短路故障的定位结果为第三故障定位结果;而确定第三故障定位结果及相邻的电参数监测点处的短路故障定位结果不同时,可发出告警指示信息。
这里,基于各相的相电流及相电压的大小对短路故障进行定位,得到第三故障定位结果,包括:
当故障相的相电流大小超过预设的第一相电流阈值(即发生过流现象,第一相电流阈值可依据实际情况进行设定,如2000A)时,确定短路故障发生于当前的电参数监测点的下游;
当各相的相电流大小低于预设的第二相电流阈值(即未发生过流现象,第二相电流阈值可依据实际情况进行设定,如800A)时,确定短路故障未发生于当前的电参数监测点的下游;
当各相的相电流大小低于预设的第二相电流阈值、且开关未动作的情况下,存在某一相的相电压低于预设的相电压阈值(相电压发生明显下降,相电压阈值的设定可以依据实际情况,如额定相电压的30%)时,确定短路故障发生于当前的电参数监测点的上游。
在实际实施时,得到第三故障定位结果后,亦可上报第三故障定位结果给配电网的主站,由主站基于第三故障定位结果对短路故障进行定位。
在实际应用中,断路故障亦是配电网中的常见故障之一,在本发明实施例中主要实现对中压配电网及低压配电网中断路故障的检测。
在实际实施时,实时监测配电网中的中压配电网的线电压(即相间电压)、相电压的变化;
基于对中压配电网的线电压的监测得到第一线电压监测结果;
获取相邻上游的电参数监测点处对中压配电网的线电压的监测结果为第二线电压监测结果、相邻下游的电参数监测点处对中压配电网的线电压的监测结果为第三线电压监测结果;
若第一线电压监测结果、第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围(第一预设线电压范围可以为:额定相间电压的0.9~1.1倍,即相间电压正常)内,另一个表征中压配电网中出 现存在两个相间电压(即线电压)处于第二预设线电压范围(第二预设线电压范围可以为:额定相间电压的0.4~0.6倍,即相间电压异常)内,确定与相邻上游的电参数监测点之间出现单相断线故障;其中,第二预设线电压范围小于第一预设线电压范围;
若第一线电压监测结果、第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第二预设线电压范围内,确定与相邻下游的电参数监测点之间出现单相断线故障;
若第一线电压监测结果、第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现三个相间电压处于第三预设线电压范围内(第三预设线电压范围可以为:额定相间电压的10%以内,即三相相间电压接近于零)、且相应的相电压处于预设相电压范围内(预设相电压范围可以为:额定相电压的0.9~1.1倍,即三相相电压正常),确定与相邻上游的电参数监测点之间出现两相断线故障;其中,第三预设线电压范围小于第一预设线电压范围;
若第一线电压监测结果、第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第三预设线电压范围内、且相应的相电压处于预设相电压范围内,确定与相邻下游的电参数监测点之间出现两相断线故障。
在实际应用中,对电参数的监测还包括低压配电网的相电压;
相应的,方法还包括:
基于对低压配电网的相电压的监测,得到当前负荷点的正序电压;
上报当前负荷点的正序电压给配电网的主站,以使主站基于当前负荷点的正序电压及低压配电网中其它负荷点的正序电压判定在出现以下情况时,与当前负荷点相连的下游中压配电网间发生断线故障:
当前负荷点及其上游负荷点的正序电压处于预设正序电压范围(预设正序电压范围可以为:额定正序电压的0.9~1.1倍,即正序电压正常)内,且下游负荷点的正序电压低于预设的正序电压阈值(预设的正序电压阈值可以为:额定正序电压的50%,即正序电压明显变小)。
应用本发明上述实施例,基于配电网中故障的多个故障表征或者多个电参数监测点的故障信息进行故障的检测及定位,实现了对配电网中故障高可信的诊断,有效解决了依靠单一故障表征直接进行故障诊断时导致的保护易误动或拒动现象,保障供电可靠性,改善用户的用电体验。
实施例二
本发明实施例提供了一种高可信配电网故障检测方法,图2所示为本发明实施例提供的高可信配电网故障检测方法的应用场景示意图,在本发明实施例中,高可信配电网故障检测装置以终端的形式来实施,在配电网中的分布设置有多个终端,用于实现配电网故障检测方法;以终端实现短路故障的检测为例,图3所示为本发明实施例提供的高可信配电网故障检测方法的流程示意图,结合图2、图3所示,本发明实施例中高可信配电网故障检测方法包括:
步骤201:终端实时监测配电网中相电流及相电压的变化。
步骤202:确定三相馈线对应的三相电流中至少一相的相电流超过预设的第一相电流阈值,或低于预设的第二相电流阈值。
这里,可依据实际情况设定第一相电流阈值及第二相电流阈值,使得当相电流超过预设的第一相电流阈值时,视为发生过流现象,当相电流低于预设的第二相电流阈值时,视为电流发生明显下降现象,因此,需要设定第二相电流阈值小于第一相电流阈值。
步骤203:获取相邻的电参数监测点处的电流异常判定结果。
这里,相邻的电参数监测点即为与终端相邻的上游、下游电参数监测 点(终端)至少之一。
在实际应用中,电流异常判定结果包括以下情况之一:
存在相电流超过预设的第一相电流阈值、相电流低于预设的第二相电流阈值、不存在电流异常情况。
步骤204:基于获取的电流异常判定结果,确定电流异常判定结果中存在相电流超过预设的第一相电流阈值时,配电网中发生短路故障。
这里,确定电流异常判定结果中存在相电流超过预设的第一相电流阈值,即为:确定获取的两个电流异常判定结果中至少存在一个表征存在相电流超过预设的第一相电流阈值。
在实际应用中,当确定相邻的电参数监测点的电流异常判定结果中存在相电流超过预设的第一相电流阈值时,可知至少两个电参数监测点已发生了过流现象,则确定配电网中发生了短路故障。
当然,在实际应用中,可以将当前监测到的相电流异常情况上报给配电网的主站,由基站基于多个电参数监测点处的相电流监测结果进行故障判定。
步骤205:获取故障相的相电流及相电压的大小,并基于故障相的相电流及相电压的大小对短路故障进行定位,得到定位结果。
这里,在实际实施时,视为发生过流现象的相为故障相,相应的,
当故障相的相电流大小超过预设的第一相电流阈值(即发生过流现象,第一相电流阈值可依据实际情况进行设定,如2000A)时,确定短路故障发生于当前的电参数监测点的下游;
当故障相的相电流大小低于预设的第二相电流阈值(即未发生过流现象,第二相电流阈值可依据实际情况进行设定,如800A)时,确定短路故障未发生于当前的电参数监测点的下游;
当故障相的相电流大小低于预设的第二相电流阈值、且故障相的相电 压低于预设的相电压阈值(相电压发生明显下降,相电压阈值的设定可以依据实际情况,如额定相电压的30%)时,确定短路故障发生于当前的电参数监测点的上游。
步骤206:获取相邻的电参数监测点处的短路故障定位结果。
在实际应用中,相邻的电参数监测点的短路故障定位结果包括以下之一:
短路故障发生于当前的电参数监测点(即所述终端的相邻监测点)的下游;
短路故障未发生于当前的电参数监测点(即所述终端的相邻监测点)的下游;
短路故障发生于当前的电参数监测点(即所述终端的相邻监测点)的上游。
步骤207:对比所述终端的定位结果及获取的所述短路故障定位结果,基于比较结果进行短路故障定位。
在实际实施时,当所述终端的定位结果与获取的短路故障定位结果相同时,确定对短路故障的定位结果为所述终端的定位结果(或获取的短路故障定位结果);当所述终端的定位结果与获取的短路故障定位结果不同时,可发出告警指示信息。
当然,在实际应用中,当终端得到故障定位结果后,亦可上报故障定位结果给配电网的主站,由主站基于故障定位结果对短路故障进行定位。
实施例三
本发明实施例还提供了一种高可信配电网故障检测装置,参见图4,图4为本发明实施例提供的高可信配电网故障检测装置的组成结构示意图,包括:
监测单元41,配置为监测配电网中电参数的变化;所述电参数包括零 序电压、零序电流、相电流、相电压、线电压中至少两种;
处理单元42,配置为当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。
在一实施例中,所述监测单元41,还配置为监测配电网中的零序电压及三相馈线的相电压的变化;
所述处理单元42,还配置为当所述零序电压超过预设的零序电压阈值,且第一馈线的相电压低于第一相电压阈值、第二馈线及第三馈线的相电压强度高于第二相电压阈值时,确定所述配电网中发生了单相接地故障;
其中,所述第一相电压阈值小于所述第二相电压阈值。
在一实施例中,所述监测单元41,还配置为监测配电网中的零序电压及三相馈线的相电压的变化;
所述处理单元42,还配置为确定所述配电网中出现第一电参数异常或第二电参数异常;
获取相邻的电参数监测点处的电参数异常判断结果;
当所述电参数异常判断结果表征所述配电网中出现第一电参数异常、第二电参数异常至少之一时,确定所述配电网中发生了单相接地故障;
其中,所述第一电参数异常表征零序电压超过预设的零序电压阈值;
所述第二电参数异常表征第一馈线的相电压低于第一相电压阈值、第二馈线及第三馈线的相电压高于第二相电压阈值;所述第一相电压阈值小于所述第二相电压阈值。
在一实施例中,所述处理单元42,还配置为上报所述第一电参数异常或第二电参数异常的异常判定结果给所述配电网的主站,以使所述主站基于所述异常判定结果判断所述配电网中是否发生了单相接地故障。
在一实施例中,所述电参数还包括零序电流及相电流;
所述处理单元42,还配置为比较所述零序电流的相位及所述零序电压 的相位,基于比较结果得到第一故障定位结果;
比较所述配电网的各相电流的相位或各相电流的幅值,基于比较结果得到第二故障定位结果;
对比所述第一故障定位结果与所述第二故障定位结果;
当所述第一故障定位结果与所述第二故障定位结果相同时,确定对所述单相接地故障的定位结果为所述第一故障定位结果。
在一实施例中,所述处理单元42,还配置为当所述第一故障定位结果与所述第二故障定位结果不同时,获取相邻的电参数监测点处的故障定位结果;
对比所述第一故障定位结果、所述第二故障定位结果及所述相邻的电参数监测点处的故障定位结果,基于对比结果对所述单相接地故障进行定位。
在一实施例中,所述处理单元42,还配置为当所述第一故障定位结果与所述第二故障定位结果不同时,上报所述第一故障定位结果及所述第二故障定位结果给所述配电网的主站,以使所述主站基于所述第一故障定位结果与所述第二故障定位结果对所述单相接地故障进行定位。
在一实施例中,所述监测单元41,还配置为监测配电网中三相馈线的相电流及相电压的变化;
所述处理单元42,还配置为确定所述三相馈线对应的三相电流中至少一相的相电流超过预设的第一相电流阈值,或低于预设的第二相电流阈值;所述第二相电流阈值小于所述第一相电流阈值;
获取相邻的电参数监测点处的电流异常判定结果;
当所述电流异常判定结果表征存在相电流超过预设的第一相电流阈值时,确定所述配电网中发生了短路故障。
在一实施例中,所述处理单元42,还配置为获取故障相的相电流及相 电压的大小,基于所述故障相的相电流及相电压的大小对所述短路故障进行定位,得到第三故障定位结果;
获取相邻的电参数监测点处的短路故障定位结果;
对比所述第三故障定位结果及所述相邻的电参数监测点处的短路故障定位结果;
当所述第三故障定位结果及所述相邻的电参数监测点处的短路故障定位结果相同时,确定对所述短路故障的定位结果为所述第三故障定位结果。
在一实施例中,所述处理单元42,还配置为当所述故障相的相电流大小超过预设的第一相电流阈值时,确定所述短路故障发生于当前的电参数监测点的下游;
当所述故障相的相电流大小低于预设的第二相电流阈值时,确定所述短路故障未发生于当前的电参数监测点的下游;
当所述故障相的相电流大小低于预设的第二相电流阈值、且所述故障相的相电压低于预设的相电压阈值时,确定所述短路故障发生于当前的电参数监测点的上游。
在一实施例中,所述处理单元42,还配置为上报所述第三故障定位结果给所述配电网的主站,以使所述主站基于所述第三故障定位结果对所述短路故障进行定位。
在一实施例中,所述监测单元41,还配置为监测配电网中的中压配电网的线电压、相电压的变化;
所述处理单元42,还配置为基于对中压配电网的线电压的监测得到第一线电压监测结果;
获取相邻上游的电参数监测点处对中压配电网的线电压的监测结果为第二线电压监测结果、相邻下游的电参数监测点处对中压配电网的线电压的监测结果为第三线电压监测结果;
若所述第一线电压监测结果、所述第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第二预设线电压范围内,确定与所述相邻上游的电参数监测点之间出现单相断线故障;其中,所述第二预设线电压范围小于所述第一预设线电压范围;
若所述第一线电压监测结果、所述第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第二预设线电压范围内,确定与所述相邻下游的电参数监测点之间出现单相断线故障;
若所述第一线电压监测结果、所述第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第三预设线电压范围内、且相应的相电压处于预设相电压范围内,确定与所述相邻上游的电参数监测点之间出现两相断线故障;其中,所述第三预设线电压范围小于所述第一预设线电压范围;
若所述第一线电压监测结果、所述第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第三预设线电压范围内、且相应的相电压处于预设相电压范围内,确定与所述相邻下游的电参数监测点之间出现两相断线故障。
上述方案中,所述电参数还包括低压配电网的相电压;
所述处理单元42,还配置为基于对所述低压配电网的相电压的监测,得到当前负荷点的正序电压;
上报所述当前负荷点的正序电压给所述配电网的主站,以使所述主站基于当前负荷点的正序电压及所述低压配电网中其它负荷点的正序电压判定在出现以下情况时,与当前负荷点相连的上游中压配电网间发生断线故障:
当前负荷点及其上游负荷点的正序电压处于预设正序电压范围内,且下游负荷点的正序电压低于预设的正序电压阈值。
本发明实施例还提供了一种高可信配电网故障检测装置,该装置可设置在终端上,包括:
存储器,配置为存储可执行程序;
处理器,配置为执行所述存储器中存储的可执行程序时,实现上述的高可信配电网故障检测方法。
本发明实施例还提供了一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述的高可信配电网故障检测方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种;当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。如此,能够快速、准确、可靠的实现配电网故障检测。

Claims (28)

  1. 一种高可信配电网故障检测方法,包括:
    监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种;
    当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。
  2. 如权利要求1所述的方法,其中,所述监测配电网中电参数的变化,包括:监测配电网中的零序电压及三相馈线的相电压的变化;
    相应的,所述当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障,包括:
    当所述零序电压超过预设的零序电压阈值,且第一馈线的相电压低于第一相电压阈值、第二馈线及第三馈线的相电压高于第二相电压阈值时,确定所述配电网中发生了单相接地故障;
    其中,所述第一相电压阈值小于所述第二相电压阈值。
  3. 如权利要求1所述的方法,其中,所述监测配电网中电参数的变化,包括:监测配电网中的零序电压及三相馈线的相电压的变化;
    相应的,所述当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障,包括:
    确定所述配电网中出现第一电参数异常或第二电参数异常;
    获取相邻的电参数监测点处的电参数异常判断结果;
    当所述电参数异常判断结果表征所述配电网中出现第一电参数异常、第二电参数异常至少之一时,确定所述配电网中发生了单相接地故障;
    其中,所述第一电参数异常表征零序电压超过预设的零序电压阈值;
    所述第二电参数异常表征第一馈线的相电压低于第一相电压阈值、第二馈线及第三馈线的相电压高于第二相电压阈值;所述第一相电压阈值小 于所述第二相电压阈值。
  4. 如权利要求3所述的方法,其中,所述方法还包括:
    上报所述第一电参数异常或第二电参数异常的异常判定结果给所述配电网的主站,以使所述主站基于所述异常判定结果判断所述配电网中是否发生了单相接地故障。
  5. 如权利要求2或3所述的方法,其中,所述电参数还包括零序电流及相电流;相应的,所述方法还包括:
    比较所述零序电流的相位及所述零序电压的相位,基于比较结果得到第一故障定位结果;
    比较所述配电网的各相电流的相位或各相电流的幅值,基于比较结果得到第二故障定位结果;
    对比所述第一故障定位结果与所述第二故障定位结果;
    当所述第一故障定位结果与所述第二故障定位结果相同时,确定对所述单相接地故障的定位结果为所述第一故障定位结果。
  6. 如权利要求5所述的方法,其中,所述方法还包括:
    当所述第一故障定位结果与所述第二故障定位结果不同时,获取相邻的电参数监测点处的故障定位结果;
    对比所述第一故障定位结果、所述第二故障定位结果及所述相邻的电参数监测点处的故障定位结果,基于对比结果对所述单相接地故障进行定位。
  7. 如权利要求5所述的方法,其中,所述方法还包括:
    当所述第一故障定位结果与所述第二故障定位结果不同时,上报所述第一故障定位结果及所述第二故障定位结果给所述配电网的主站,以使所述主站基于所述第一故障定位结果与所述第二故障定位结果对所述单相接地故障进行定位。
  8. 如权利要求1所述的方法,其中,所述监测配电网中电参数的变化,包括:监测配电网中三相馈线的相电流及相电压的变化;
    相应的,所述当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障,包括:
    确定所述三相馈线对应的三相电流中至少一相的相电流超过预设的第一相电流阈值,或低于预设的第二相电流阈值;所述第二相电流阈值小于所述第一相电流阈值;
    获取相邻的电参数监测点处的电流异常判定结果;
    当所述电流异常判定结果表征存在相电流超过预设的第一相电流阈值时,确定所述配电网中发生了短路故障。
  9. 如权利要求8所述的方法,其中,所述方法还包括:
    获取故障相的相电流及相电压的大小,基于所述故障相的相电流及相电压的大小对所述短路故障进行定位,得到第三故障定位结果;
    获取相邻的电参数监测点处的短路故障定位结果;
    对比所述第三故障定位结果及所述相邻的电参数监测点处的短路故障定位结果;
    当所述第三故障定位结果及所述相邻的电参数监测点处的短路故障定位结果相同时,确定对所述短路故障的定位结果为所述第三故障定位结果。
  10. 如权利要求9所述的方法,其中,所述基于所述故障相的相电流及相电压的大小确定对所述短路故障进行定位,得到第三故障定位结果,包括:
    当所述故障相的相电流大小超过预设的第一相电流阈值时,确定所述短路故障发生于当前的电参数监测点的下游;
    当所述故障相的相电流大小低于预设的第二相电流阈值时,确定所述短路故障未发生于当前的电参数监测点的下游;
    当所述故障相的相电流大小低于预设的第二相电流阈值、且所述故障相的相电压低于预设的相电压阈值时,确定所述短路故障发生于当前的电参数监测点的上游。
  11. 如权利要求9所述的方法,其中,所述方法还包括:
    上报所述第三故障定位结果给所述配电网的主站,以使所述主站基于所述第三故障定位结果对所述短路故障进行定位。
  12. 如权利要求1所述的方法,其中,所述监测配电网中电参数的变化,包括:监测配电网中的中压配电网的线电压、相电压的变化;
    相应的,所述当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障,包括:
    基于对中压配电网的线电压的监测得到第一线电压监测结果;
    获取相邻上游的电参数监测点处对中压配电网的线电压的监测结果为第二线电压监测结果、相邻下游的电参数监测点处对中压配电网的线电压的监测结果为第三线电压监测结果;
    若所述第一线电压监测结果、所述第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第二预设线电压范围内,确定与所述相邻上游的电参数监测点之间出现单相断线故障;其中,所述第二预设线电压范围小于所述第一预设线电压范围;
    若所述第一线电压监测结果、所述第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第二预设线电压范围内,确定与所述相邻下游的电参数监测点之间出现单相断线故障;
    若所述第一线电压监测结果、所述第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网 中出现线电压处于第三预设线电压范围内、且相应的相电压处于预设相电压范围内,确定与所述相邻上游的电参数监测点之间出现两相断线故障;其中,所述第三预设线电压范围小于所述第一预设线电压范围;
    若所述第一线电压监测结果、所述第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第三预设线电压范围内、且相应的相电压处于预设相电压范围内,确定与所述相邻下游的电参数监测点之间出现两相断线故障。
  13. 如权利要求12所述的方法,其中,所述电参数还包括低压配电网的相电压;所述方法还包括:
    基于对所述低压配电网的相电压的监测,得到当前负荷点的正序电压;
    上报所述当前负荷点的正序电压给所述配电网的主站,以使所述主站基于当前负荷点的正序电压及所述低压配电网中其它负荷点的正序电压判定在出现以下情况时,与当前负荷点相连的上游中压配电网间发生断线故障:
    当前负荷点及其上游负荷点的正序电压处于预设正序电压范围内,且下游负荷点的正序电压低于预设的正序电压阈值。
  14. 一种高可信配电网故障检测装置,包括:
    监测单元,配置为监测配电网中电参数的变化;所述电参数包括零序电压、零序电流、相电流、相电压、线电压中至少两种;
    处理单元,配置为当所述电参数的变化符合预设的故障判定条件时,确定所述配电网中发生了特定类型的故障。
  15. 如权利要求14所述的装置,其中,
    所述监测单元,还配置为监测配电网中的零序电压及三相馈线的相电压的变化;
    所述处理单元,还配置为当所述零序电压超过预设的零序电压阈值, 且第一馈线的相电压低于第一相电压阈值、第二馈线及第三馈线的相电压高于第二相电压阈值时,确定所述配电网中发生了单相接地故障;
    其中,所述第一相电压阈值小于所述第二相电压阈值。
  16. 如权利要求14所述的装置,其中,
    所述监测单元,还配置为监测配电网中的零序电压及三相馈线的相电压的变化;
    所述处理单元,还配置为确定所述配电网中出现第一电参数异常或第二电参数异常;
    获取相邻的电参数监测点处的电参数异常判断结果;
    当所述电参数异常判断结果表征所述配电网中出现第一电参数异常、第二电参数异常至少之一时,确定所述配电网中发生了单相接地故障;
    其中,所述第一电参数异常表征零序电压超过预设的零序电压阈值;
    所述第二电参数异常表征第一馈线的相电压低于第一相电压阈值、第二馈线及第三馈线的相电压高于第二相电压阈值;所述第一相电压阈值小于所述第二相电压阈值。
  17. 如权利要求16所述的装置,其中,
    所述处理单元,还配置为上报所述第一电参数异常或第二电参数异常的异常判定结果给所述配电网的主站,以使所述主站基于所述异常判定结果判断所述配电网中是否发生了单相接地故障。
  18. 如权利要求15或16所述的装置,其中,所述电参数还包括零序电流及相电流;
    所述处理单元,还配置为比较所述零序电流的相位及所述零序电压的相位,基于比较结果得到第一故障定位结果;
    比较所述配电网的各相电流的相位或各相电流的幅值,基于比较结果得到第二故障定位结果;
    对比所述第一故障定位结果与所述第二故障定位结果;
    当所述第一故障定位结果与所述第二故障定位结果相同时,确定对所述单相接地故障的定位结果为所述第一故障定位结果。
  19. 如权利要求18所述的装置,其中,
    所述处理单元,还配置为当所述第一故障定位结果与所述第二故障定位结果不同时,获取相邻的电参数监测点处的故障定位结果;
    对比所述第一故障定位结果、所述第二故障定位结果及所述相邻的电参数监测点处的故障定位结果,基于对比结果对所述单相接地故障进行定位。
  20. 如权利要求18所述的装置,其中,
    所述处理单元,还配置为当所述第一故障定位结果与所述第二故障定位结果不同时,上报所述第一故障定位结果及所述第二故障定位结果给所述配电网的主站,以使所述主站基于所述第一故障定位结果与所述第二故障定位结果对所述单相接地故障进行定位。
  21. 如权利要求14所述的装置,其中,
    所述监测单元,还配置为监测配电网中三相馈线的相电流及相电压的变化;
    所述处理单元,还配置为确定所述三相馈线对应的三相电流中至少一相的相电流超过预设的第一相电流阈值,或低于预设的第二相电流阈值;所述第二相电流阈值小于所述第一相电流阈值;
    获取相邻的电参数监测点处的电流异常判定结果;
    当所述电流异常判定结果表征存在相电流超过预设的第一相电流阈值时,确定所述配电网中发生了短路故障。
  22. 如权利要求21所述的装置,其中,
    所述处理单元,还配置为获取故障相的相电流及相电压的大小,基于 所述故障相的相电流及相电压的大小对所述短路故障进行定位,得到第三故障定位结果;
    获取相邻的电参数监测点处的短路故障定位结果;
    对比所述第三故障定位结果及所述相邻的电参数监测点处的短路故障定位结果;
    当所述第三故障定位结果及所述相邻的电参数监测点处的短路故障定位结果相同时,确定对所述短路故障的定位结果为所述第三故障定位结果。
  23. 如权利要求22所述的装置,其中,
    所述处理单元,还配置为当所述故障相的相电流大小超过预设的第一相电流阈值时,确定所述短路故障发生于当前的电参数监测点的下游;
    当所述故障相的相电流大小低于预设的第二相电流阈值时,确定所述短路故障未发生于当前的电参数监测点的下游;
    当所述故障相的相电流大小低于预设的第二相电流阈值、且所述故障相的相电压低于预设的相电压阈值时,确定所述短路故障发生于当前的电参数监测点的上游。
  24. 如权利要求22所述的装置,其中,
    所述处理单元,还配置为上报所述第三故障定位结果给所述配电网的主站,以使所述主站基于所述第三故障定位结果对所述短路故障进行定位。
  25. 如权利要求14所述的装置,其中,
    所述监测单元,还配置为监测配电网中的中压配电网的线电压、相电压的变化;
    所述处理单元,还配置为基于对中压配电网的线电压的监测得到第一线电压监测结果;
    获取相邻上游的电参数监测点处对中压配电网的线电压的监测结果为第二线电压监测结果、相邻下游的电参数监测点处对中压配电网的线电压 的监测结果为第三线电压监测结果;
    若所述第一线电压监测结果、所述第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第二预设线电压范围内,确定与所述相邻上游的电参数监测点之间出现单相断线故障;其中,所述第二预设线电压范围小于所述第一预设线电压范围;
    若所述第一线电压监测结果、所述第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第二预设线电压范围内,确定与所述相邻下游的电参数监测点之间出现单相断线故障;
    若所述第一线电压监测结果、所述第二线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第三预设线电压范围内、且相应的相电压处于预设相电压范围内,确定与所述相邻上游的电参数监测点之间出现两相断线故障;其中,所述第三预设线电压范围小于所述第一预设线电压范围;
    若所述第一线电压监测结果、所述第三线电压监测结果中,一个表征中压配电网的线电压处于第一预设线电压范围内,另一个表征中压配电网中出现线电压处于第三预设线电压范围内、且相应的相电压处于预设相电压范围内,确定与所述相邻下游的电参数监测点之间出现两相断线故障。
  26. 如权利要求25所述的装置,其中,所述电参数还包括低压配电网的相电压;
    所述处理单元,还配置为基于对所述低压配电网的相电压的监测,得到当前负荷点的正序电压;
    上报所述当前负荷点的正序电压给所述配电网的主站,以使所述主站基于当前负荷点的正序电压及所述低压配电网中其它负荷点的正序电压判 定在出现以下情况时,与当前负荷点相连的上游中压配电网间发生断线故障:
    当前负荷点及其上游负荷点的正序电压处于预设正序电压范围内,且下游负荷点的正序电压低于预设的正序电压阈值。
  27. 一种高可信配电网故障检测装置,包括:
    存储器,配置为存储可执行程序;
    处理器,配置为执行所述存储器中存储的可执行程序时,实现如权利要求1至13任一项所述的高可信配电网故障检测方法。
  28. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现如权利要求1至13任一项所述的高可信配电网故障检测方法。
PCT/CN2017/106738 2017-10-18 2017-10-18 高可信配电网故障检测方法、装置及存储介质 WO2019075671A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/106738 WO2019075671A1 (zh) 2017-10-18 2017-10-18 高可信配电网故障检测方法、装置及存储介质
JP2018518631A JP6691964B2 (ja) 2017-10-18 2017-10-18 高信頼性の配電ネットワーク故障の検出方法、装置及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106738 WO2019075671A1 (zh) 2017-10-18 2017-10-18 高可信配电网故障检测方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2019075671A1 true WO2019075671A1 (zh) 2019-04-25

Family

ID=66173030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106738 WO2019075671A1 (zh) 2017-10-18 2017-10-18 高可信配电网故障检测方法、装置及存储介质

Country Status (2)

Country Link
JP (1) JP6691964B2 (zh)
WO (1) WO2019075671A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067884A (zh) * 2020-09-16 2020-12-11 广东电网有限责任公司 一种馈线分支故障的检测方法及系统
CN112798906A (zh) * 2021-03-11 2021-05-14 国网新疆电力有限公司乌鲁木齐供电公司 基于低压配电识别高压线路短路故障并定位的系统
CN112904150A (zh) * 2021-03-11 2021-06-04 国网新疆电力有限公司乌鲁木齐供电公司 基于低压配电识别高压线路断线故障并定位的系统
CN113030634A (zh) * 2021-01-27 2021-06-25 国网浙江杭州市萧山区供电有限公司 基于网络单元主机的接地故障定位方法
CN113239627A (zh) * 2021-05-31 2021-08-10 南京乾鑫电器设备有限公司 一种分布式智能监控方法和装置
CN113484660A (zh) * 2021-05-26 2021-10-08 贵州电网有限责任公司 一种基于母线零序电压信息的10kV配电线路单相断线坠地故障识别方法及系统
CN113721106A (zh) * 2020-05-26 2021-11-30 广东电网有限责任公司电力科学研究院 配电网故障定位方法、装置及设备
CN114740306A (zh) * 2022-04-01 2022-07-12 武汉安闲科技有限公司 一种基于电网信息化的配电网线路故障在线监测预警管理系统
WO2022247637A1 (zh) * 2021-05-26 2022-12-01 佛山市顺德区美的电子科技有限公司 一种故障检测方法、装置、设备、系统及存储介质
CN117148047A (zh) * 2023-10-30 2023-12-01 国网江苏省电力有限公司南通供电分公司 一种基于多维数据的配电故障定位方法及系统
WO2024078344A1 (zh) * 2023-03-03 2024-04-18 北京全路通信信号研究设计院集团有限公司 一种高频外电网质量监测方法、系统及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879711A (zh) * 2012-09-29 2013-01-16 江苏省电力公司徐州供电公司 一种配电网故障快速定位监测方法
CN102944809A (zh) * 2012-12-04 2013-02-27 广东电网公司东莞供电局 一种快速识别电网故障的方法
US20130050882A1 (en) * 2011-08-25 2013-02-28 Joseph R. Rostron High impedance fault isolation system
CN104101812A (zh) * 2013-04-09 2014-10-15 北京映翰通网络技术股份有限公司 一种小电流接地配电网单相接地故障检测定位方法与系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050882A1 (en) * 2011-08-25 2013-02-28 Joseph R. Rostron High impedance fault isolation system
CN102879711A (zh) * 2012-09-29 2013-01-16 江苏省电力公司徐州供电公司 一种配电网故障快速定位监测方法
CN102944809A (zh) * 2012-12-04 2013-02-27 广东电网公司东莞供电局 一种快速识别电网故障的方法
CN104101812A (zh) * 2013-04-09 2014-10-15 北京映翰通网络技术股份有限公司 一种小电流接地配电网单相接地故障检测定位方法与系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721106A (zh) * 2020-05-26 2021-11-30 广东电网有限责任公司电力科学研究院 配电网故障定位方法、装置及设备
CN112067884A (zh) * 2020-09-16 2020-12-11 广东电网有限责任公司 一种馈线分支故障的检测方法及系统
CN113030634A (zh) * 2021-01-27 2021-06-25 国网浙江杭州市萧山区供电有限公司 基于网络单元主机的接地故障定位方法
CN113030634B (zh) * 2021-01-27 2023-12-29 国网浙江杭州市萧山区供电有限公司 基于网络单元主机的接地故障定位方法
CN112904150A (zh) * 2021-03-11 2021-06-04 国网新疆电力有限公司乌鲁木齐供电公司 基于低压配电识别高压线路断线故障并定位的系统
CN112798906A (zh) * 2021-03-11 2021-05-14 国网新疆电力有限公司乌鲁木齐供电公司 基于低压配电识别高压线路短路故障并定位的系统
CN113484660A (zh) * 2021-05-26 2021-10-08 贵州电网有限责任公司 一种基于母线零序电压信息的10kV配电线路单相断线坠地故障识别方法及系统
WO2022247637A1 (zh) * 2021-05-26 2022-12-01 佛山市顺德区美的电子科技有限公司 一种故障检测方法、装置、设备、系统及存储介质
CN113239627A (zh) * 2021-05-31 2021-08-10 南京乾鑫电器设备有限公司 一种分布式智能监控方法和装置
CN113239627B (zh) * 2021-05-31 2022-08-09 南京乾鑫电器设备有限公司 一种分布式智能监控方法和装置
CN114740306A (zh) * 2022-04-01 2022-07-12 武汉安闲科技有限公司 一种基于电网信息化的配电网线路故障在线监测预警管理系统
WO2024078344A1 (zh) * 2023-03-03 2024-04-18 北京全路通信信号研究设计院集团有限公司 一种高频外电网质量监测方法、系统及装置
CN117148047A (zh) * 2023-10-30 2023-12-01 国网江苏省电力有限公司南通供电分公司 一种基于多维数据的配电故障定位方法及系统
CN117148047B (zh) * 2023-10-30 2024-01-12 国网江苏省电力有限公司南通供电分公司 一种基于多维数据的配电故障定位方法及系统

Also Published As

Publication number Publication date
JP2019537701A (ja) 2019-12-26
JP6691964B2 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2019075671A1 (zh) 高可信配电网故障检测方法、装置及存储介质
US10739414B2 (en) Determining status of electric power transmission lines in an electric power transmission system
Kundu et al. Enhanced protection security using the system integrity protection scheme (SIPS)
US20080211511A1 (en) Method of Generating Fault Indication in Feeder Remote Terminal Unit for Power Distribution Automation System
CN107438929B (zh) 用于在混合功率传输线路中保护的方法
US10859639B2 (en) Fault-type identification in an electric power delivery system using composite signals
US9494635B2 (en) Islanding detection in electricity distribution network
US20160020601A1 (en) Power bay protection device and a method for portecting power bays
CN104267311A (zh) 一种同塔双回线路故障选相方法
US10734800B2 (en) Method for preventing a dangerous, higher-frequency earth fault current for an electrical drive system
CN104901284A (zh) 距离保护装置三相pt断线检测方法和防误动方法
Li et al. A method of detecting commutation failure in multi-infeed HVDC systems based on critical failure impedance boundary
CN110073562B (zh) 过电流与短路探测器
CN108008236A (zh) 一种检测电力设备故障的方法
KR20080040940A (ko) 배전선로의 고장을 검출하는 방법
CN110596529B (zh) 柔性直流电网对地绝缘故障检测装置及系统
CN109038513B (zh) 一种用于故障相转移接地装置的断线接地的智能处理方法
CN112014772A (zh) 断零故障检测方法、装置、存储介质和配电网关
Seyedi et al. Design of networked protection systems for smart distribution grids: A data-driven approach
CN110896214B (zh) 一种主动干预型消弧装置选相方法
Lavorin et al. Selecting directional elements for impedance-grounded distribution systems
CN113589024A (zh) 冗余系统单套交流电压测量异常的快速检测方法及装置
CN109031043A (zh) 基于瞬时功率突变量半波长交流输电线路故障选相方法
CN109188191A (zh) 基于功率突变量半波长交流输电线路快速故障选相方法
US20230089477A1 (en) Wire down detection system and method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518631

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928993

Country of ref document: EP

Kind code of ref document: A1