WO2019073880A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2019073880A1
WO2019073880A1 PCT/JP2018/037044 JP2018037044W WO2019073880A1 WO 2019073880 A1 WO2019073880 A1 WO 2019073880A1 JP 2018037044 W JP2018037044 W JP 2018037044W WO 2019073880 A1 WO2019073880 A1 WO 2019073880A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heating
cooling
outlet
Prior art date
Application number
PCT/JP2018/037044
Other languages
French (fr)
Japanese (ja)
Inventor
遼平 杉村
川久保 昌章
加藤 大輝
伊藤 哲也
三枝 弘
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018004493.9T priority Critical patent/DE112018004493T5/en
Priority to CN201880066577.9A priority patent/CN111213020B/en
Publication of WO2019073880A1 publication Critical patent/WO2019073880A1/en
Priority to US16/841,260 priority patent/US20200232726A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present disclosure relates to a heat exchanger used in a heat pump system that performs cooling operation and heating operation.
  • a low pressure gas-liquid two-phase refrigerant flows into the heat exchange part for condensation, performs heat exchange and evaporates, and becomes a gas phase refrigerant and flows into the liquid receiving part.
  • the gas-phase refrigerant that has flowed into the liquid receiving portion returns to the compressor without flowing through the supercooling heat exchange portion.
  • Patent Document 1 has the following problems to be solved at the time of heating.
  • the first problem in heating only the heat exchange unit for condensation is used during heating operation, and the heat exchange unit for supercooling is not used, so the entire core unit of the heat exchanger can not be utilized, and heating is performed compared to physique There is a problem that the performance is lowered.
  • a gas phase refrigerant having a large specific volume flows around the heat exchange portion for supercooling and flows, so there is a problem that the refrigerant pressure loss increases and the heating performance decreases.
  • Patent Document 1 has the following problem to be solved at the time of cooling.
  • a refrigerant adjustment unit when a refrigerant adjustment unit is provided that is joined integrally with a liquid storage unit that stores liquid refrigerant and switches the flow of the refrigerant during cooling operation and heating operation, the refrigerant flows into the refrigerant adjustment unit
  • the degree of subcooling is insufficient, and the cooling performance is lowered.
  • a second problem at the time of cooling there is a problem that a gas phase refrigerant is mixed in the refrigerant flowing into the expansion valve and a noise is generated due to the insufficient degree of supercooling.
  • An object of the present disclosure is to provide a heat exchanger capable of suppressing the generation of noise during cooling while improving the heating performance and the cooling performance.
  • the present disclosure is a heat exchanger used in a heat pump system for performing a cooling operation and a heating operation, the heat exchange unit performing heat exchange between the refrigerant and the outside air during the cooling operation and the heating operation; And a refrigerant adjustment unit that is joined integrally with the liquid storage container and switches the flow of the refrigerant during the cooling operation and the heating operation.
  • the heat exchanger is provided with an inlet through which the refrigerant flows, a cooling outlet through which the refrigerant flows out during the cooling operation, and a heating outlet through which the refrigerant flows out during the heating operation, and the inlet and the heating outlet Are arranged to be shorter than the distance between the inlet and the cooling outlet.
  • the heat transfer between the inlet and the heating outlet is facilitated because the distance between the inlet and the heating outlet is reduced compared to the distance between the inlet and the cooling outlet. Therefore, at the time of heating, since the difference between the enthalpy of the refrigerant before entering the heat exchanger and the enthalpy of the refrigerant after leaving the heat exchanger is increased, the heating performance is improved. In addition, since the dryness of the gas-liquid two-phase refrigerant introduced from the inlet decreases, the density of the refrigerant increases and the pressure loss of the refrigerant decreases, so the heating performance is improved. Furthermore, by lowering the dryness of the gas-liquid two-phase refrigerant introduced from the inflow port, the liquid phase component of the gas-liquid two-phase refrigerant increases, the distribution of the refrigerant improves, and the heating performance improves.
  • the distance between the inlet and the cooling outlet is longer than the distance between the inlet and the heating outlet, heat transfer between the inlet and the cooling outlet can be suppressed. .
  • the heat transfer between the inlet and the cooling outlet is promoted, there is a concern that the compressor power may be deteriorated due to the reduction of the enthalpy difference, or the failure due to the reduction of the degree of supercooling.
  • By suppressing the heat transfer between the inlet and the cooling outlet it is possible to suppress the deterioration of the compressor power due to the reduction of the enthalpy difference.
  • FIG. 1 is a view showing a heat exchanger as an embodiment.
  • FIG. 2 is a view showing an example of a refrigeration cycle using the heat exchanger shown in FIG.
  • FIG. 3 is a view showing a heat exchanger as a modification.
  • FIG. 4 is a view showing a heat exchanger as a modification.
  • FIG. 5 is a view showing a heat exchanger as a modification.
  • FIG. 6 is a view for explaining the connector component shown in FIG.
  • FIG. 7 is a view for explaining the connector part shown in FIG.
  • FIG. 8 is a view for explaining the connector part shown in FIG.
  • FIG. 9 is a view for explaining the connector part shown in FIG.
  • the heat exchanger 2 includes an upstream heat exchange unit 20, a downstream heat exchange unit 21, and a reservoir 22.
  • the upstream heat exchange unit 20 includes two upstream cores 201 and 202 and header tanks 203, 204 and 205. In the present embodiment, one having two upstream cores 201 and 202 is shown as an example, but the number of cores may be one or three or more.
  • the upstream cores 201 and 202 are portions that exchange heat between the refrigerant flowing inside and the air flowing outside, and have tubes through which the refrigerant passes and fins provided between the tubes.
  • a header tank 203 is attached to the upstream end of the upstream core 201.
  • a header tank 205 is attached to the downstream end of the upstream core 202.
  • a header tank 204 disposed so as to straddle both is attached.
  • a connection channel 221 is connected to the header tank 203.
  • a connection channel 222 is connected to the header tank 205.
  • the refrigerant flowing from the connection flow channel 221 flows from the header tank 203 into the upstream core 201.
  • the refrigerant having flowed through the upstream core 201 flows into the header tank 204.
  • the refrigerant flowing in the header tank 204 flows into the upstream core 202.
  • the refrigerant having flowed through the upstream core 202 flows into the header tank 205.
  • the refrigerant flowing into the header tank 205 flows out into the connection flow path 222.
  • connection flow path 222 is a flow path provided in the reservoir 22.
  • the connection flow path 222 is connected to the liquid storage space 224 of the liquid reservoir 22.
  • the refrigerant flowing out to the connection flow path 222 flows into the liquid storage space 224.
  • the reservoir 22 is a substantially cylindrical one in which a reservoir space 224 is formed.
  • the liquid storage space 224 is a portion that separates the gas-liquid two-phase refrigerant flowing from the connection flow path 222 into a liquid-phase refrigerant and a gas-phase refrigerant, and stores the liquid-phase refrigerant.
  • the liquid storage device 22 is provided with an inflow passage 225, a connection passage 221, a connection passage 222, a heating and outflow passage 226, and a connection passage 223. At the end of the inflow channel 225, an inflow port 225a is formed.
  • a heating outlet 226 a is formed at an end of the heating outlet channel 226.
  • connection flow path 222, the connection flow path 223, and the outflow flow path 112 are connected to the liquid storage space 224.
  • the connection flow path 222 is a flow path connecting the upstream side heat exchange unit 20 and the liquid storage device 22.
  • connection flow path 223 is a flow path connecting the reservoir 22 and the downstream side heat exchange unit 21.
  • the liquid-phase refrigerant that has flowed out of the connection flow path 223 flows into the downstream heat exchange unit 21.
  • the outflow channel 112 is a channel through which the gas phase refrigerant flows out of the reservoir 22.
  • the downstream heat exchange unit 21 includes a header tank 211, a downstream core 212, and a header tank 213.
  • a cooling outlet channel 227 is connected to the header tank 213.
  • a cooling outlet 227 a is formed at an end of the cooling outlet channel 227.
  • the header tank 213 is provided at the downstream end of the downstream core 212.
  • a header tank 211 is provided at the upstream end of the downstream core 212.
  • a connection channel 223 is connected to the header tank 211.
  • the liquid phase refrigerant flows from the connection flow path 223 into the header tank 211, and the liquid phase refrigerant flows from the header tank 211 into the downstream core 212.
  • the downstream core 212 is a portion that exchanges heat between the refrigerant flowing inside and the air flowing outside, and has a tube through which the refrigerant passes, and a fin provided between the tubes. Therefore, the liquid phase refrigerant flowing into the downstream core 212 travels to the header tank 213 while being subcooled.
  • the cooling outlet channel 227 is connected to a channel connected to an expansion valve constituting the refrigeration cycle apparatus at the cooling outlet 227a, and an evaporator is connected earlier than the expansion valve.
  • the refrigerant adjustment unit 10 is provided above the liquid storage device 22.
  • the refrigerant adjustment unit 10 is provided with an inflow passage 110, an outflow passage 111, an outflow passage 112, and a connection passage 113.
  • the inflow passage 110 is disposed to be connected to the inflow passage 225.
  • the outflow passage 111 is disposed to be connected to the heating outflow passage 226.
  • the connection flow channel 113 is provided to face the liquid storage space 224, and is connected to the outflow flow channel 111 inside the refrigerant adjustment unit 10.
  • the connection flow channel 113 is disposed to be connected to the connection flow channel 221.
  • the inflow path 225 and the inflow path 110 are flow paths into which the high pressure refrigerant flowing from the compressor flows.
  • the connection flow channel 221 and the connection flow channel 113 are flow channels that allow the inflowing refrigerant to flow at the high pressure or low pressure as it is to flow toward the upstream heat exchange unit 20.
  • the outflow flow channel 112 is a flow channel into which the gas phase refrigerant flowing out of the liquid storage space 224 flows.
  • the outflow flow passage 111 is a flow passage for delivering the refrigerant flowing into the outflow flow passage 112 to the compressor.
  • the refrigerant adjustment unit 10 is provided with a throttle 101, an on-off valve 102, and a flow rate adjustment valve 103.
  • the throttle 101, the on-off valve 102, and the flow rate adjustment valve 103 will be described later together with an example of a refrigeration cycle to which the heat exchanger 2 is applied.
  • the refrigeration cycle apparatus 71 is applied to a vehicle air conditioner 7.
  • the vehicle air conditioner 7 is a device that adjusts the temperature of the vehicle interior by adjusting the temperature of the blowing air that is blown into the vehicle interior that is the air conditioning target space.
  • the vehicle air conditioner 7 includes a refrigeration cycle apparatus 71, a cooling water circulation circuit 72, and an air conditioning unit 73.
  • the refrigeration cycle apparatus 71 can be selectively switched between a cooling mode for cooling the passenger compartment by cooling the blowing air and a heating mode for heating the passenger compartment by heating the blowing air.
  • the refrigeration cycle apparatus 71 is a vapor compression type refrigeration cycle apparatus including a heat pump circuit in which a refrigerant circulates.
  • the refrigeration cycle apparatus 71 includes a pressure reducer 30, an evaporator 31, an accumulator 32, a compressor 33, a water-cooled condenser 34, and a heat exchanger 2.
  • an HFC refrigerant or an HFO refrigerant can be used as the refrigerant circulating through the refrigeration cycle apparatus 71.
  • the refrigerant is mixed with oil for lubricating the compressor 33, that is, refrigerator oil. Therefore, a part of the refrigeration oil circulates through the refrigeration cycle apparatus 71 together with the refrigerant.
  • the compressor 33 sucks and compresses the refrigerant from the suction port in the refrigeration cycle apparatus 71, and discharges the refrigerant, which has been superheated by being compressed, from the discharge port.
  • the compressor 33 is an electric compressor.
  • the refrigerant discharged from the discharge port flows to the water cooling condenser 34.
  • the water cooled condenser 34 is a known water refrigerant heat exchanger.
  • the water-cooled condenser 34 has a first heat exchange unit 341 and a second heat exchange unit 342.
  • the first heat exchange unit 341 is provided between the discharge port of the compressor 33 and the heat exchanger 2. That is, the refrigerant discharged from the compressor 33 is flowing in the first heat exchange unit 341.
  • the second heat exchange unit 342 is provided in the middle of the cooling water circulation circuit 72 through which the engine cooling water flows.
  • the cooling water is circulated by the cooling pump 37.
  • the cooling water circulates in the order of the second heat exchange unit 342, the heater core 35, the cooling pump 37, and the engine 36.
  • heat exchange is performed between the refrigerant flowing in the first heat exchange unit 341 and the cooling water flowing in the second heat exchange unit 342, thereby heating the cooling water with the heat of the refrigerant and Cool down.
  • the refrigerant flowing out of the first heat exchange unit 341 flows to the refrigerant adjustment unit 10 of the heat exchanger 2.
  • the refrigerant heated in the engine 36 and the second heat exchange unit 342 flows through the heater core 35, whereby the heater core 35 is heated.
  • the heater core 35 is disposed in the casing 39 of the air conditioning unit 73.
  • the heater core 35 heats the blowing air by performing heat exchange between the cooling water flowing inside and the blowing air flowing inside the casing 39.
  • the water-cooled condenser 34 functions as a radiator that indirectly radiates the heat of the refrigerant discharged from the compressor 33 and flowing into the first heat exchange unit 341 to the blast air through the cooling water and the heater core 35.
  • the throttle 101 and the on-off valve 102 of the refrigerant adjustment unit 10 function as a pressure adjustment unit.
  • the throttling 101 and the on-off valve 102 are configured to be able to switch between the heating mode in which the refrigerant absorbs heat from the outside air in the upstream heat exchange unit 20 of the heat exchanger 2 and the cooling mode in which the refrigerant dissipates heat to the outside air. It corresponds to a pressure adjustment unit that adjusts the pressure of the refrigerant flowing into the exchange unit 20.
  • the throttle 101 depressurizes and discharges the refrigerant flowing out of the first heat exchange unit 341 of the water-cooled condenser 34.
  • a nozzle or an orifice having a fixed opening degree can be used as the throttle 101, but a nozzle having a fluctuation in the opening degree can also be used.
  • the refrigerant discharged from the throttle 101 flows to the upstream heat exchange unit 20 through the connection channel 221.
  • the bypass flow passage 114 is a refrigerant flow passage that guides the refrigerant flowing out of the first heat exchange unit 341 to the upstream heat exchange unit 20 by bypassing the throttle 601.
  • the on-off valve 102 is an electromagnetic valve that opens and closes the bypass channel 114.
  • the on-off valve 102 is closed.
  • the refrigerant flowing out of the first heat exchange unit 341 of the water-cooled condenser 34 is decompressed by flowing through the throttle 101 and flows to the upstream heat exchange unit 20.
  • the on-off valve 102 is fully open.
  • the refrigerant flowing out of the first heat exchange portion 341 of the water cooling condenser 34 bypasses the throttle 101 and flows in the bypass flow path 114.
  • the refrigerant flowing out of the first heat exchange unit 341 flows to the upstream heat exchange unit 20 without being decompressed.
  • the heat exchanger 2 is an outdoor heat exchanger disposed on the front side of the vehicle in the engine room.
  • the heat exchanger 2 has an upstream side heat exchange unit 20, a liquid storage unit 22, a downstream side heat exchange unit 21, and a refrigerant adjustment unit 10.
  • the upstream heat exchange unit 20 is a portion that performs heat exchange between the inflowing refrigerant and the outside air that is the air outside the vehicle that is blown by a blowing fan (not shown).
  • the upstream heat exchange unit 20 functions as an evaporator that evaporates the refrigerant by performing heat exchange between the inflowing refrigerant and the outside air in the heating mode. Further, in the cooling mode, the upstream heat exchange unit 20 functions as a condenser that cools the refrigerant by performing heat exchange between the inflowing refrigerant and the outside air.
  • the liquid storage device 22 separates the refrigerant flowing out from the upstream side heat exchange unit 20 into a gas phase refrigerant and a liquid phase refrigerant, and causes the gas phase refrigerant and the liquid phase refrigerant to flow separately, and stores the liquid phase refrigerant. It is possible.
  • the liquid storage device 22 discharges the separated gas phase refrigerant toward the heating outflow channel 226, and discharges the separated liquid phase refrigerant toward the cooling outflow channel 227.
  • the heating outlet channel 226 is connected to the refrigerant channel 712 at the heating outlet 226a.
  • the refrigerant flow passage 712 is connected to an intermediate portion of the refrigerant flow passage 711.
  • the refrigerant channel 711 is a channel that leads the refrigerant flowing out of the pressure reducer 30 to the suction port of the compressor 33.
  • the heating outflow channel 226 is a channel that leads the gas phase refrigerant discharged from the liquid storage 22 to the compressor 33.
  • the liquid-phase refrigerant flows from the liquid storage device 22 into the downstream side heat exchange unit 21.
  • the downstream side heat exchange unit 21 is a part that further enhances the heat exchange efficiency of the refrigerant in the heat exchanger 2 by performing heat exchange between the inflowing liquid phase refrigerant and the outside air. Specifically, in the heating mode, the downstream side heat exchange unit 21 exchanges heat between the inflowing liquid phase refrigerant and the outside air to evaporate the liquid phase refrigerant. As a result, since the liquid phase refrigerant remaining without being completely evaporated in the upstream side heat exchange unit 20 can be evaporated, the function as the evaporator in the heat exchanger 2 is enhanced.
  • downstream heat exchange section 21 has a small number of tubes and a small refrigerant flow area due to the mounting space, the refrigerant may not be allowed to flow in order to avoid an increase in refrigerant pressure loss.
  • the downstream side heat exchange unit 21 functions as a subcooler that further cools the liquid phase refrigerant by performing heat exchange between the inflowing liquid phase refrigerant and the outside air.
  • the function of the heat exchanger 2 as a condenser is enhanced.
  • the refrigerant that has flowed out of the downstream side heat exchange unit 21 flows into the pressure reducing device 30 via the refrigerant flow path 713 connected to the cooling outflow flow path 227 and the cooling outflow flow path 227.
  • the pressure reducer 30 decompresses and discharges the inflowing refrigerant.
  • the refrigerant reduced in pressure by the pressure reducer 30 flows into the evaporator 31. Further, the refrigerant discharged from the evaporator 31 flows into the decompressor 30.
  • the pressure reducing device 30 is a temperature sensitive mechanical expansion that reduces the pressure of refrigerant flowing into the evaporator 31 by a mechanical mechanism so that the degree of superheat of the refrigerant discharged from the evaporator 31 falls within a predetermined range. It is a valve.
  • the refrigerant discharged from the pressure reducing device 30 flows into the evaporator 31.
  • the evaporator 31 is a heat exchanger that cools the blowing air by performing heat exchange between the refrigerant flowing inside and the blowing air flowing inside the casing 39 of the air conditioning unit 73 in the cooling mode.
  • the refrigerant is evaporated by heat exchange between the blown air and the refrigerant.
  • the evaporated refrigerant is discharged from the evaporator 31 and flows into the suction port of the compressor 33 via the pressure reducer 30 and the refrigerant channel 711.
  • the flow rate adjustment valve 103 is provided on the way from the outflow passage 112 to the heating outflow passage 226.
  • the flow rate adjustment valve 103 is composed of a solenoid valve that can change the flow passage cross-sectional area of the heating outflow passage 226 by adjusting the opening degree thereof. By adjusting the opening degree of the flow rate adjustment valve 103, the flow rate of the refrigerant flowing through the heating outflow passage 226 can be adjusted.
  • the air conditioning unit 73 includes a casing 39 and an air passage switching door 38.
  • blowing air is flowing.
  • the evaporator 31 and the heater core 35 are disposed in order from the upstream side to the downstream side in the flow direction of the blown air.
  • the evaporator 31 cools the blowing air by performing heat exchange between the refrigerant flowing inside and the blowing air.
  • a hot air passage in which the heater core 35 is disposed and a cold air passage in which the heater core 35 is not disposed are provided on the downstream side of the evaporator 31 in the casing 39.
  • the air passage switching door 38 closes the cold air passage and opens the hot air passage.
  • the first door position shown by a solid line in the figure and the hot air passage closes and opens the cold air passage.
  • the second door position is configured to be displaceable.
  • a plurality of openings (not shown) opening into the vehicle interior are formed on the downstream side in the air flow direction of the hot air passage and the cold air passage in the casing 39.
  • the air passage switching door 38 In the air conditioning unit 73, in the heating mode, the air passage switching door 38 is positioned at the first door position indicated by the solid line. As a result, since the blown air having passed through the evaporator 31 passes through the hot air passage, the blown air is heated by the heater core 35 and flows to the downstream side. On the other hand, in the cooling mode, the air passage switching door 38 is located at the second door position indicated by the broken line. Thereby, since the blast air which has passed the evaporator 31 passes through the cold air passage, the blast air cooled by the evaporator 31 flows downstream as it is.
  • the heat exchanger 2 of the present embodiment is a heat exchanger used in a heat pump system that performs a cooling operation and a heating operation, and performs heat exchange between the refrigerant and the outside air during the cooling operation and the heating operation.
  • Control unit that is integrally joined with the upstream heat exchange unit 20 and the downstream heat exchange unit 21 that are the unit and the liquid storage device 22 that stores liquid refrigerant, and switches the flow of refrigerant during cooling operation and heating operation And a unit 10.
  • the heat exchanger 2 is provided with an inlet 225a through which the refrigerant flows, a cooling outlet 227a through which the refrigerant flows out during the cooling operation, and a heating outlet 226a through which the refrigerant flows out during the heating operation.
  • the distance between 225a and the heating outlet 226a is shorter than the distance between the inlet 225a and the cooling outlet 227a.
  • the inlet 225a and the heating outlet 226a since the distance between the inlet 225a and the heating outlet 226a is shorter than the distance between the inlet 225a and the cooling outlet 227a, the inlet 225a and the heating outlet 226a Heat transfer is promoted. Therefore, at the time of heating, since the difference between the enthalpy of the refrigerant before entering the heat exchanger 2 and the enthalpy of the refrigerant after leaving the heat exchanger 2 increases, the heating performance is improved. In addition, since the dryness of the gas-liquid two-phase refrigerant introduced from the inflow port 225a decreases, the density of the refrigerant increases and the pressure loss of the refrigerant decreases, so the heating performance is improved.
  • the liquid phase component of the gas-liquid two-phase refrigerant is increased, the distribution of the refrigerant is improved, and the heating performance is improved.
  • the inlet 225a and the cooling outlet 227a Heat transfer can be suppressed.
  • the heat transfer between the inflow port 225a and the cooling outflow port 227a is promoted, there is a concern that the compressor power deterioration due to the reduction of the enthalpy difference or the failure due to the reduction of the degree of supercooling.
  • By suppressing the heat transfer between the inflow port 225a and the cooling outflow port 227a it is possible to suppress the deterioration of the compressor power due to the reduction of the enthalpy difference.
  • the heat transfer member 27 is provided between the inlet 225a and the heating outlet 226a.
  • the heat transfer member 27 is a partial side wall of the liquid storage device 22 between the inflow passage 225 and the heating and outflow passage 226.
  • FIGS. 1, 6 and 7 the inlet 225a and the heating outlet 226a are constituted by a single connector part 25.
  • FIG. 6 is a view more specifically showing the connector part 25 in FIG.
  • FIG. 7 is a view showing the connector part 25 from the direction of looking through the inlet 225a and the heating outlet 226a in FIG.
  • the inlet 225Aa, the heating outlet 226Aa, and the heat transfer member 27A can be configured by a single connector part 25A.
  • FIG. 8 is a view more specifically showing the connector part 25A in FIG. FIG.
  • FIG. 9 is a view showing the connector part 25A from the direction of looking through the inlet 225Aa and the heating outlet 226Aa in FIG.
  • the connector part 25A is connected such that the heat transfer member 27A fills the space between the inlet 225Aa and the heating outlet 226Aa. Since the heat transfer member 27A is connected between the inlet 225Aa and the heating outlet 226Aa, a sufficient heat transfer path can be secured, which further promotes the heat transfer between the inlet 225Aa and the heating outlet 226Aa. can do.
  • the cooling outlet 227a is provided in a component different from the connector components 25 and 25A. More specifically, the cooling outlet 227 a is provided at the end of the cooling outlet channel 227 connected to the header tank 213 that constitutes the downstream side heat exchange unit 21.
  • the cooling outlet 227Ba can be provided in the reservoir 22B.
  • the cooling outlet 227Ba is provided at an end of the cooling outlet channel 227B connected to the liquid storage 22B.
  • the inflow ports 225a, 225Aa so that the flow direction of the refrigerant at the inflow ports 225a, 225Aa and the flow direction of the refrigerant at the heating outflow ports 226a, 226Aa are counterflows.
  • 225Aa and heating outlets 226a, 226Aa are counterflows.
  • the heat transfer between the inflow ports 225a and 225Aa and the heating outflow ports 226a and 226Aa can be further enhanced by arranging the refrigerants in the inflow ports 225a and 225Aa and the heating outflow ports 226a and 226Aa to have opposite flow directions. Promoted.
  • the inlets 225a, 225Aa, the heating outlets 226a, 226Aa, and the cooling outlets 227a, 227Ba are arranged in the longitudinal direction of the reservoirs 22, 22B. ing.
  • cooling outlets 227a and 227Ba are not disposed between the inlets 225a and 225Aa and the heating outlets 226a and 226Aa, heat transfer between the inlets 225a and 225Aa and the heating outlets 226a and 226Aa is promoted. be able to. Since the heating outlets 226a and 226Aa are disposed between the inlets 225a and 225Aa and the cooling outlets 227a and 227Ba, the heating outlets 226a and 226Aa and the flow path connected thereto function as a heat insulating layer during cooling. The heat transfer between the inflow ports 225a and 225Aa and the cooling outflow ports 227a and 227Ba can be suppressed, and heat damage can be avoided.
  • the refrigerant flowing from the connection flow path 222 may be directly introduced into the refrigerant adjustment unit 10C.
  • the refrigerant flowing in from the connection flow path 222 flows into the inside of the refrigerant adjustment unit 10C from the refrigerant inlet 115C.
  • the outflow passage 112C is opened, and the refrigerant flows in the liquid storage space 224.
  • the outflow passage 112C is closed, and the refrigerant flows toward the heating outlet 226a.

Abstract

This heat exchanger is provided with: an inflow port (225a), through which a refrigerant flows in; a cooling flow outlet port (227a), through which the refrigerant flows out when cooling operations are performed; and a warming flow outlet port (226a), through which the refrigerant flows out when warming operations are performed. The ports are disposed such that the distance between the inflow port (225a) and the warming flow outlet port (226a) is shorter than the distance between the inflow port (225a) and the cooling flow outlet port (227a).

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年10月11日に出願された日本国特許出願2017-197822号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-197822 filed on October 11, 2017, and claims the benefit of its priority, and the entire contents of the patent application are as follows: Incorporated herein by reference.
 本開示は、冷房作動及び暖房作動をするヒートポンプシステムに用いられる熱交換器に関する。 The present disclosure relates to a heat exchanger used in a heat pump system that performs cooling operation and heating operation.
 冷房作動及び暖房作動をするヒートポンプシステムに用いられる熱交換器として、下記特許文献1に記載のものが知られている。下記特許文献1に記載の熱交換器は、冷房時においては、高温高圧の気相冷媒が凝縮用熱交換部に流れ込み、冷却されて気液二相の冷媒となって受液部に流れ込む。受液部に流れ込んだ気液二相冷媒が飽和した液相冷媒は、過冷却用熱交換部に流れ込み、過冷却されて利用側熱交換器に流れる。一方、暖房時においては、低圧の気液二相冷媒が凝縮用熱交換部に流れ込み、熱交換を行って蒸発し、気相冷媒となって受液部に流れ込む。受液部に流れ込んだ気相冷媒は、過冷却用熱交換部を流れずに圧縮機に還流する。 As a heat exchanger used for a heat pump system which performs cooling operation and heating operation, a thing given in the following patent documents 1 is known. In the heat exchanger described in Patent Document 1 below, during cooling, a high-temperature high-pressure gas-phase refrigerant flows into the condensation heat exchange unit, is cooled, and flows into the liquid-receiving unit as a gas-liquid two-phase refrigerant. The liquid-phase refrigerant in which the gas-liquid two-phase refrigerant that has flowed into the liquid receiving portion is saturated flows into the subcooling heat exchange portion, is subcooled, and flows to the use side heat exchanger. On the other hand, at the time of heating, a low pressure gas-liquid two-phase refrigerant flows into the heat exchange part for condensation, performs heat exchange and evaporates, and becomes a gas phase refrigerant and flows into the liquid receiving part. The gas-phase refrigerant that has flowed into the liquid receiving portion returns to the compressor without flowing through the supercooling heat exchange portion.
特開2009-236404号公報JP, 2009-236404, A
 特許文献1では、暖房時において次のような解決すべき課題がある。暖房時の第1課題として、暖房運転時には凝縮用熱交換部のみが使用され、過冷却用熱交換部は使用されないため、熱交換器のコア部全体を活用できず、体格に比較して暖房性能が低くなるという課題がある。暖房時の第2課題として、比容積の大きい気相冷媒が、過冷却用熱交換部を迂回して流れるため、冷媒圧損が大きくなり、暖房性能が低下するという課題がある。暖房時の第3課題として、熱交換器のコア部に対して気液二相冷媒を上方から導入する構成となっているため、凝縮用熱交換部を流れる冷媒の分配性が悪化し、暖房性能が低下するという課題がある。 Patent Document 1 has the following problems to be solved at the time of heating. As the first problem in heating, only the heat exchange unit for condensation is used during heating operation, and the heat exchange unit for supercooling is not used, so the entire core unit of the heat exchanger can not be utilized, and heating is performed compared to physique There is a problem that the performance is lowered. As a second problem at the time of heating, a gas phase refrigerant having a large specific volume flows around the heat exchange portion for supercooling and flows, so there is a problem that the refrigerant pressure loss increases and the heating performance decreases. As the third problem at the time of heating, since the gas-liquid two-phase refrigerant is introduced from above to the core portion of the heat exchanger, the distribution of the refrigerant flowing through the condensing heat exchange portion is deteriorated, and the heating There is a problem that the performance is reduced.
 特許文献1では、冷房時において次のような解決すべき課題がある。冷房時の第1課題として、液冷媒を貯液する貯液器と一体的に接合され、冷房作動時及び暖房作動時において冷媒の流れを切り替える冷媒調整部を設けた場合、冷媒調整部に流入するのが高温高圧の気相冷媒となるため、熱交換器内を流れる冷媒が加熱されて過冷却度が不足し、冷房性能が低下するという課題がある。冷房時の第2課題として、過冷却度が不足することで、膨張弁に流入する冷媒に気相冷媒が混入し、異音が発生するという課題がある。 Patent Document 1 has the following problem to be solved at the time of cooling. As a first problem at the time of cooling, when a refrigerant adjustment unit is provided that is joined integrally with a liquid storage unit that stores liquid refrigerant and switches the flow of the refrigerant during cooling operation and heating operation, the refrigerant flows into the refrigerant adjustment unit However, since the refrigerant flowing in the heat exchanger is heated, the degree of subcooling is insufficient, and the cooling performance is lowered. As a second problem at the time of cooling, there is a problem that a gas phase refrigerant is mixed in the refrigerant flowing into the expansion valve and a noise is generated due to the insufficient degree of supercooling.
 本開示は、暖房性能及び冷房性能の向上を図るとともに、冷房時の異音発生を抑制することが可能な熱交換器を提供することを目的とする。 An object of the present disclosure is to provide a heat exchanger capable of suppressing the generation of noise during cooling while improving the heating performance and the cooling performance.
 本開示は、冷房作動及び暖房作動をするヒートポンプシステムに用いられる熱交換器であって、冷房作動時及び暖房作動時において冷媒と外気との間で熱交換を行う熱交換部と、液冷媒を貯液する貯液器と一体的に接合され、冷房作動時及び暖房作動時において冷媒の流れを切り替える冷媒調整部と、を備えている。熱交換器には、冷媒が流入する流入口と、冷房作動時に冷媒が流出する冷房流出口と、暖房作動時に冷媒が流出する暖房流出口と、が設けられており、流入口と暖房流出口との間の距離が、流入口と冷房流出口との間の距離よりも短くなるように配置されている。 The present disclosure is a heat exchanger used in a heat pump system for performing a cooling operation and a heating operation, the heat exchange unit performing heat exchange between the refrigerant and the outside air during the cooling operation and the heating operation; And a refrigerant adjustment unit that is joined integrally with the liquid storage container and switches the flow of the refrigerant during the cooling operation and the heating operation. The heat exchanger is provided with an inlet through which the refrigerant flows, a cooling outlet through which the refrigerant flows out during the cooling operation, and a heating outlet through which the refrigerant flows out during the heating operation, and the inlet and the heating outlet Are arranged to be shorter than the distance between the inlet and the cooling outlet.
 流入口と冷房流出口との間の距離に比較して、流入口と暖房流出口との間の距離が短くなるので、流入口と暖房流出口との間の伝熱が促進される。そのため暖房時においては、熱交換器に入る前の冷媒のエンタルピと熱交換器を出た後の冷媒のエンタルピとの差が増大するため、暖房性能が向上する。また、流入口から導入される気液二相冷媒の乾き度が下がるため、冷媒の密度が増加し冷媒の圧損が低下するので、暖房性能が向上する。更に、流入口から導入される気液二相冷媒の乾き度が下がることによって、気液二相冷媒の液相成分が多くなり、冷媒の分配性が向上し、暖房性能が向上する。 The heat transfer between the inlet and the heating outlet is facilitated because the distance between the inlet and the heating outlet is reduced compared to the distance between the inlet and the cooling outlet. Therefore, at the time of heating, since the difference between the enthalpy of the refrigerant before entering the heat exchanger and the enthalpy of the refrigerant after leaving the heat exchanger is increased, the heating performance is improved. In addition, since the dryness of the gas-liquid two-phase refrigerant introduced from the inlet decreases, the density of the refrigerant increases and the pressure loss of the refrigerant decreases, so the heating performance is improved. Furthermore, by lowering the dryness of the gas-liquid two-phase refrigerant introduced from the inflow port, the liquid phase component of the gas-liquid two-phase refrigerant increases, the distribution of the refrigerant improves, and the heating performance improves.
 流入口と暖房流出口との間の距離に比較して、流入口と冷房流出口との間の距離が長くなるので、流入口と冷房流出口との間の伝熱を抑制することができる。流入口と冷房流出口との間の伝熱が促進されると、エンタルピ差の減少によるコンプレッサ動力悪化や、過冷却度低下による不具合が懸念される。流入口と冷房流出口との間の伝熱を抑制することで、エンタルピ差の減少によるコンプレッサ動力悪化を抑制することができる。また、過冷却度の低下を抑制することで、蒸発器への流入冷媒の乾き度増加による蒸発器の冷媒圧損増加や分配悪化に起因する冷房性能低下を回避することができる。更に、減圧器への流入冷媒に気相冷媒が混入することに起因する異音発生も抑制することができる。 Since the distance between the inlet and the cooling outlet is longer than the distance between the inlet and the heating outlet, heat transfer between the inlet and the cooling outlet can be suppressed. . When the heat transfer between the inlet and the cooling outlet is promoted, there is a concern that the compressor power may be deteriorated due to the reduction of the enthalpy difference, or the failure due to the reduction of the degree of supercooling. By suppressing the heat transfer between the inlet and the cooling outlet, it is possible to suppress the deterioration of the compressor power due to the reduction of the enthalpy difference. Further, by suppressing the decrease in the degree of supercooling, it is possible to avoid the decrease in cooling performance due to the increase in refrigerant pressure loss in the evaporator and the deterioration in distribution due to the increase in dryness of the refrigerant flowing into the evaporator. Furthermore, it is possible to suppress the generation of abnormal noise caused by the mixture of the gas phase refrigerant into the refrigerant flowing into the pressure reducer.
図1は、実施形態としての熱交換器を示す図である。FIG. 1 is a view showing a heat exchanger as an embodiment. 図2は、図1に示される熱交換器を用いた冷凍サイクルの一例を示す図である。FIG. 2 is a view showing an example of a refrigeration cycle using the heat exchanger shown in FIG. 図3は、変形例としての熱交換器を示す図である。FIG. 3 is a view showing a heat exchanger as a modification. 図4は、変形例としての熱交換器を示す図である。FIG. 4 is a view showing a heat exchanger as a modification. 図5は、変形例としての熱交換器を示す図である。FIG. 5 is a view showing a heat exchanger as a modification. 図6は、図1に示されるコネクタ部品を説明するための図である。FIG. 6 is a view for explaining the connector component shown in FIG. 図7は、図1に示されるコネクタ部品を説明するための図である。FIG. 7 is a view for explaining the connector part shown in FIG. 図8は、図3に示されるコネクタ部品を説明するための図である。FIG. 8 is a view for explaining the connector part shown in FIG. 図9は、図3に示されるコネクタ部品を説明するための図である。FIG. 9 is a view for explaining the connector part shown in FIG.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1に示されるように、本実施形態に係る熱交換器2は、上流側熱交換部20と、下流側熱交換部21と、貯液器22と、を備えている。上流側熱交換部20は、2つの上流側コア201,202と、ヘッダタンク203,204,205と、を有している。本実施形態では一例として2つの上流側コア201,202を有するものを示したが、コアは単一でも3つ以上でも構わない。上流側コア201,202は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。 As shown in FIG. 1, the heat exchanger 2 according to the present embodiment includes an upstream heat exchange unit 20, a downstream heat exchange unit 21, and a reservoir 22. The upstream heat exchange unit 20 includes two upstream cores 201 and 202 and header tanks 203, 204 and 205. In the present embodiment, one having two upstream cores 201 and 202 is shown as an example, but the number of cores may be one or three or more. The upstream cores 201 and 202 are portions that exchange heat between the refrigerant flowing inside and the air flowing outside, and have tubes through which the refrigerant passes and fins provided between the tubes.
 上流側コア201の上流側端には、ヘッダタンク203が取り付けられている。上流側コア202の下流側端には、ヘッダタンク205が取り付けられている。上流側コア201の下流側端及び上流側コア202の上流側端には、双方に跨って配置されるヘッダタンク204が取り付けられている。 A header tank 203 is attached to the upstream end of the upstream core 201. A header tank 205 is attached to the downstream end of the upstream core 202. At the downstream end of the upstream core 201 and the upstream end of the upstream core 202, a header tank 204 disposed so as to straddle both is attached.
 ヘッダタンク203には接続流路221が繋がれている。ヘッダタンク205には接続流路222が繋がれている。接続流路221から流入した冷媒は、ヘッダタンク203から上流側コア201に流入する。上流側コア201を流れた冷媒は、ヘッダタンク204に流入する。ヘッダタンク204内を流れた冷媒は、上流側コア202に流入する。上流側コア202を流れた冷媒は、ヘッダタンク205に流入する。ヘッダタンク205に流入した冷媒は、接続流路222に流出する。 A connection channel 221 is connected to the header tank 203. A connection channel 222 is connected to the header tank 205. The refrigerant flowing from the connection flow channel 221 flows from the header tank 203 into the upstream core 201. The refrigerant having flowed through the upstream core 201 flows into the header tank 204. The refrigerant flowing in the header tank 204 flows into the upstream core 202. The refrigerant having flowed through the upstream core 202 flows into the header tank 205. The refrigerant flowing into the header tank 205 flows out into the connection flow path 222.
 接続流路222は、貯液器22に設けられている流路である。接続流路222は、貯液器22の貯液空間224に繋がれている。接続流路222に流出した冷媒は、貯液空間224内部に流入する。 The connection flow path 222 is a flow path provided in the reservoir 22. The connection flow path 222 is connected to the liquid storage space 224 of the liquid reservoir 22. The refrigerant flowing out to the connection flow path 222 flows into the liquid storage space 224.
 貯液器22は、貯液空間224が形成された略円筒状のものである。貯液空間224は、接続流路222から流入する気液二相冷媒を液相冷媒と気相冷媒とに分離し、液相冷媒を貯める部分である。貯液器22には、流入流路225と、接続流路221と、接続流路222と、暖房流出流路226と、接続流路223と、が設けられている。流入流路225の端部には、流入口225aが形成されている。暖房流出流路226の端部には、暖房流出口226aが形成されている。 The reservoir 22 is a substantially cylindrical one in which a reservoir space 224 is formed. The liquid storage space 224 is a portion that separates the gas-liquid two-phase refrigerant flowing from the connection flow path 222 into a liquid-phase refrigerant and a gas-phase refrigerant, and stores the liquid-phase refrigerant. The liquid storage device 22 is provided with an inflow passage 225, a connection passage 221, a connection passage 222, a heating and outflow passage 226, and a connection passage 223. At the end of the inflow channel 225, an inflow port 225a is formed. A heating outlet 226 a is formed at an end of the heating outlet channel 226.
 貯液空間224には、接続流路222と、接続流路223と、流出流路112と、が繋がれている。接続流路222は、上流側熱交換部20と貯液器22とを繋ぐ流路である。接続流路223は、貯液器22と下流側熱交換部21とを繋ぐ流路である。接続流路223から流出した液相冷媒は、下流側熱交換部21に流入する。流出流路112は、貯液器22から気相冷媒を流出させる流路である。 The connection flow path 222, the connection flow path 223, and the outflow flow path 112 are connected to the liquid storage space 224. The connection flow path 222 is a flow path connecting the upstream side heat exchange unit 20 and the liquid storage device 22. The connection flow path 223 is a flow path connecting the reservoir 22 and the downstream side heat exchange unit 21. The liquid-phase refrigerant that has flowed out of the connection flow path 223 flows into the downstream heat exchange unit 21. The outflow channel 112 is a channel through which the gas phase refrigerant flows out of the reservoir 22.
 下流側熱交換部21は、ヘッダタンク211と、下流側コア212と、ヘッダタンク213と、を有している。ヘッダタンク213には、冷房流出流路227が繋がれている。冷房流出流路227の端部には、冷房流出口227aが形成されている。ヘッダタンク213は、下流側コア212の下流側端に設けられている。下流側コア212の上流側端には、ヘッダタンク211が設けられている。ヘッダタンク211には、接続流路223が繋がれている。 The downstream heat exchange unit 21 includes a header tank 211, a downstream core 212, and a header tank 213. A cooling outlet channel 227 is connected to the header tank 213. A cooling outlet 227 a is formed at an end of the cooling outlet channel 227. The header tank 213 is provided at the downstream end of the downstream core 212. A header tank 211 is provided at the upstream end of the downstream core 212. A connection channel 223 is connected to the header tank 211.
 接続流路223からヘッダタンク211に液相冷媒が流入し、ヘッダタンク211から下流側コア212に液相冷媒が流入する。下流側コア212は、内部を流れる冷媒と外部を流れる空気との間で熱交換をする部分であって、冷媒が通るチューブと、チューブ間に設けられたフィンとを有する。従って、下流側コア212に流れこんだ液相冷媒は、過冷却されながらヘッダタンク213に向かう。 The liquid phase refrigerant flows from the connection flow path 223 into the header tank 211, and the liquid phase refrigerant flows from the header tank 211 into the downstream core 212. The downstream core 212 is a portion that exchanges heat between the refrigerant flowing inside and the air flowing outside, and has a tube through which the refrigerant passes, and a fin provided between the tubes. Therefore, the liquid phase refrigerant flowing into the downstream core 212 travels to the header tank 213 while being subcooled.
 下流側コア212からヘッダタンク213に流れ込んだ液相冷媒は、冷房流出流路227に流出する。冷房流出流路227は、冷房流出口227aにおいて冷凍サイクル装置を構成する膨張弁に繋がる流路に繋がっており、膨張弁より先にはエバポレータが繋がれている。 The liquid-phase refrigerant flowing from the downstream core 212 into the header tank 213 flows out to the cooling outflow channel 227. The cooling outlet channel 227 is connected to a channel connected to an expansion valve constituting the refrigeration cycle apparatus at the cooling outlet 227a, and an evaporator is connected earlier than the expansion valve.
 貯液器22の上方には、冷媒調整部10が設けられている。冷媒調整部10には、流入流路110と、流出流路111と、流出流路112と、接続流路113とが設けられている。流入流路110は、流入流路225に繋がるように配置されている。流出流路111は、暖房流出流路226に繋がるように配置されている。接続流路113は、貯液空間224に臨むように設けられ、冷媒調整部10の内部において流出流路111に繋がっている。接続流路113は、接続流路221に繋がるように配置されている。 The refrigerant adjustment unit 10 is provided above the liquid storage device 22. The refrigerant adjustment unit 10 is provided with an inflow passage 110, an outflow passage 111, an outflow passage 112, and a connection passage 113. The inflow passage 110 is disposed to be connected to the inflow passage 225. The outflow passage 111 is disposed to be connected to the heating outflow passage 226. The connection flow channel 113 is provided to face the liquid storage space 224, and is connected to the outflow flow channel 111 inside the refrigerant adjustment unit 10. The connection flow channel 113 is disposed to be connected to the connection flow channel 221.
 流入流路225及び流入流路110は、コンプレッサから流れ込む高圧冷媒が流入する流路である。接続流路221及び接続流路113は、流入した冷媒をそのまま高圧で若しくは低圧にして、上流側熱交換部20に向けて流出させる流路である。 The inflow path 225 and the inflow path 110 are flow paths into which the high pressure refrigerant flowing from the compressor flows. The connection flow channel 221 and the connection flow channel 113 are flow channels that allow the inflowing refrigerant to flow at the high pressure or low pressure as it is to flow toward the upstream heat exchange unit 20.
 流出流路112は、貯液空間224から流出する気相冷媒が流入する流路である。流出流路111は、流出流路112に流入した冷媒をコンプレッサに送り出す流路である。 The outflow flow channel 112 is a flow channel into which the gas phase refrigerant flowing out of the liquid storage space 224 flows. The outflow flow passage 111 is a flow passage for delivering the refrigerant flowing into the outflow flow passage 112 to the compressor.
 冷媒調整部10には、絞り101と、開閉弁102と、流量調整弁103と、が設けられている。絞り101、開閉弁102、及び流量調整弁103については、熱交換器2が適用される冷凍サイクルの一例とともに後述する。 The refrigerant adjustment unit 10 is provided with a throttle 101, an on-off valve 102, and a flow rate adjustment valve 103. The throttle 101, the on-off valve 102, and the flow rate adjustment valve 103 will be described later together with an example of a refrigeration cycle to which the heat exchanger 2 is applied.
 続いて、図2を参照しながら、本実施形態の熱交換器2が適用される冷凍サイクルの一例について説明する。図2に示されるように、冷凍サイクル装置71は、車両用空調装置7に適用されている。車両用空調装置7は、空調対象空間である車室内に送風される送風空気の温度を調整することにより、車室内の温度を調整する装置である。車両用空調装置7は、冷凍サイクル装置71と、冷却水循環回路72と、空調ユニット73とを備えている。 Subsequently, an example of a refrigeration cycle to which the heat exchanger 2 of the present embodiment is applied will be described with reference to FIG. As shown in FIG. 2, the refrigeration cycle apparatus 71 is applied to a vehicle air conditioner 7. The vehicle air conditioner 7 is a device that adjusts the temperature of the vehicle interior by adjusting the temperature of the blowing air that is blown into the vehicle interior that is the air conditioning target space. The vehicle air conditioner 7 includes a refrigeration cycle apparatus 71, a cooling water circulation circuit 72, and an air conditioning unit 73.
 冷凍サイクル装置71は、送風空気を冷却することにより車室内を冷房する冷房モードと、送風空気を加熱することにより車室内を暖房する暖房モードとに選択的に切り替え可能となっている。冷凍サイクル装置71は、冷媒の循環するヒートポンプ回路からなる蒸気圧縮式の冷凍サイクル装置である。 The refrigeration cycle apparatus 71 can be selectively switched between a cooling mode for cooling the passenger compartment by cooling the blowing air and a heating mode for heating the passenger compartment by heating the blowing air. The refrigeration cycle apparatus 71 is a vapor compression type refrigeration cycle apparatus including a heat pump circuit in which a refrigerant circulates.
 冷凍サイクル装置71は、減圧器30、蒸発器31、アキュムレータ32、圧縮機33、水冷コンデンサ34、熱交換器2を備えている。冷凍サイクル装置71を循環する冷媒としては、例えばHFC系冷媒やHFO系冷媒を用いることができる。冷媒には圧縮機33を潤滑するためのオイル、すなわち冷凍機油が混入されている。よって、冷凍機油の一部は冷媒とともに冷凍サイクル装置71を循環する。 The refrigeration cycle apparatus 71 includes a pressure reducer 30, an evaporator 31, an accumulator 32, a compressor 33, a water-cooled condenser 34, and a heat exchanger 2. For example, an HFC refrigerant or an HFO refrigerant can be used as the refrigerant circulating through the refrigeration cycle apparatus 71. The refrigerant is mixed with oil for lubricating the compressor 33, that is, refrigerator oil. Therefore, a part of the refrigeration oil circulates through the refrigeration cycle apparatus 71 together with the refrigerant.
 圧縮機33は、冷凍サイクル装置71において吸入口から冷媒を吸入して圧縮するとともに、圧縮されることにより過熱状態となった冷媒を吐出口から吐出する。圧縮機33は電動式圧縮機である。吐出口から吐出された冷媒は、水冷コンデンサ34へと流れる。 The compressor 33 sucks and compresses the refrigerant from the suction port in the refrigeration cycle apparatus 71, and discharges the refrigerant, which has been superheated by being compressed, from the discharge port. The compressor 33 is an electric compressor. The refrigerant discharged from the discharge port flows to the water cooling condenser 34.
 水冷コンデンサ34は、周知の水冷媒熱交換器である。水冷コンデンサ34は、第1熱交換部341と、第2熱交換部342とを有している。 The water cooled condenser 34 is a known water refrigerant heat exchanger. The water-cooled condenser 34 has a first heat exchange unit 341 and a second heat exchange unit 342.
 第1熱交換部341は、圧縮機33の吐出口と熱交換器2との間に設けられている。すなわち、第1熱交換部341には、圧縮機33から吐出される冷媒が流れている。 The first heat exchange unit 341 is provided between the discharge port of the compressor 33 and the heat exchanger 2. That is, the refrigerant discharged from the compressor 33 is flowing in the first heat exchange unit 341.
 第2熱交換部342は、エンジン冷却水が流れる冷却水循環回路72の途中に設けられている。冷却水循環回路72では、冷却ポンプ37により冷却水が循環している。冷却水は、第2熱交換部342、ヒータコア35、冷却ポンプ37、エンジン36の順で循環する。 The second heat exchange unit 342 is provided in the middle of the cooling water circulation circuit 72 through which the engine cooling water flows. In the cooling water circulation circuit 72, the cooling water is circulated by the cooling pump 37. The cooling water circulates in the order of the second heat exchange unit 342, the heater core 35, the cooling pump 37, and the engine 36.
 水冷コンデンサ34では、第1熱交換部341内を流れる冷媒と、第2熱交換部342を流れる冷却水との間で熱交換を行うことにより、冷媒の熱で冷却水を加熱するとともに、冷媒を冷却する。第1熱交換部341から流出した冷媒は、熱交換器2の冷媒調整部10へと流れる。 In the water-cooled condenser 34, heat exchange is performed between the refrigerant flowing in the first heat exchange unit 341 and the cooling water flowing in the second heat exchange unit 342, thereby heating the cooling water with the heat of the refrigerant and Cool down. The refrigerant flowing out of the first heat exchange unit 341 flows to the refrigerant adjustment unit 10 of the heat exchanger 2.
 冷却水循環回路72では、エンジン36及び第2熱交換部342において加熱された冷媒がヒータコア35を流れることにより、ヒータコア35が加熱される。ヒータコア35は、空調ユニット73のケーシング39内に配置されている。ヒータコア35は、その内部を流れる冷却水と、ケーシング39内を流れる送風空気との間で熱交換を行うことにより、送風空気を加熱する。水冷コンデンサ34は、圧縮機33から吐出されて第1熱交換部341に流入する冷媒が有する熱を冷却水とヒータコア35を介して間接的に送風空気に放熱させる放熱器として機能している。 In the cooling water circulation circuit 72, the refrigerant heated in the engine 36 and the second heat exchange unit 342 flows through the heater core 35, whereby the heater core 35 is heated. The heater core 35 is disposed in the casing 39 of the air conditioning unit 73. The heater core 35 heats the blowing air by performing heat exchange between the cooling water flowing inside and the blowing air flowing inside the casing 39. The water-cooled condenser 34 functions as a radiator that indirectly radiates the heat of the refrigerant discharged from the compressor 33 and flowing into the first heat exchange unit 341 to the blast air through the cooling water and the heater core 35.
 冷媒調整部10の、絞り101及び開閉弁102は、圧力調整部として機能している。絞り101及び開閉弁102は、熱交換器2の上流側熱交換部20において冷媒が外気から吸熱する暖房モードと、冷媒が外気へと放熱する冷房モードとを切替可能にすべく、上流側熱交換部20に流入する冷媒の圧力を調整する圧力調整部に相当する。 The throttle 101 and the on-off valve 102 of the refrigerant adjustment unit 10 function as a pressure adjustment unit. The throttling 101 and the on-off valve 102 are configured to be able to switch between the heating mode in which the refrigerant absorbs heat from the outside air in the upstream heat exchange unit 20 of the heat exchanger 2 and the cooling mode in which the refrigerant dissipates heat to the outside air. It corresponds to a pressure adjustment unit that adjusts the pressure of the refrigerant flowing into the exchange unit 20.
 水冷コンデンサ34の第1熱交換部341から流出した冷媒は、流入流路225を通って絞り101に流れる。絞り101は、水冷コンデンサ34の第1熱交換部341から流出した冷媒を減圧して吐出する。絞り101としては、例えば絞り開度が固定されたノズルやオリフィス等を用いることができるが、絞り開度が変動するものも用いることができる。絞り101から吐出される冷媒は、接続流路221を通って上流側熱交換部20へと流れる。 The refrigerant that has flowed out of the first heat exchange portion 341 of the water-cooled condenser 34 flows to the throttle 101 through the inflow passage 225. The throttle 101 depressurizes and discharges the refrigerant flowing out of the first heat exchange unit 341 of the water-cooled condenser 34. For example, a nozzle or an orifice having a fixed opening degree can be used as the throttle 101, but a nozzle having a fluctuation in the opening degree can also be used. The refrigerant discharged from the throttle 101 flows to the upstream heat exchange unit 20 through the connection channel 221.
 バイパス流路114は、第1熱交換部341から流出した冷媒を絞り601を迂回させて上流側熱交換部20に導く冷媒流路である。開閉弁102は、バイパス流路114を開閉する電磁弁である。 The bypass flow passage 114 is a refrigerant flow passage that guides the refrigerant flowing out of the first heat exchange unit 341 to the upstream heat exchange unit 20 by bypassing the throttle 601. The on-off valve 102 is an electromagnetic valve that opens and closes the bypass channel 114.
 暖房モード時に開閉弁102が閉状態になる。これにより、暖房モード時には、水冷コンデンサ34の第1熱交換部341から流出した冷媒が絞り101を流れることで減圧され、上流側熱交換部20へと流れる。 In the heating mode, the on-off valve 102 is closed. Thus, in the heating mode, the refrigerant flowing out of the first heat exchange unit 341 of the water-cooled condenser 34 is decompressed by flowing through the throttle 101 and flows to the upstream heat exchange unit 20.
 一方、冷房モード時には開閉弁102が全開状態になる。これにより、冷房モード時には、水冷コンデンサ34の第1熱交換部341から流出した冷媒が絞り101を迂回してバイパス流路114を流れる。第1熱交換部341から流出した冷媒は、減圧されることなく、上流側熱交換部20へと流れる。 On the other hand, in the cooling mode, the on-off valve 102 is fully open. Thus, in the cooling mode, the refrigerant flowing out of the first heat exchange portion 341 of the water cooling condenser 34 bypasses the throttle 101 and flows in the bypass flow path 114. The refrigerant flowing out of the first heat exchange unit 341 flows to the upstream heat exchange unit 20 without being decompressed.
 熱交換器2は、エンジンルーム内の車両前方側に配置されている室外熱交換器である。熱交換器2は、上流側熱交換部20と、貯液器22と、下流側熱交換部21と、冷媒調整部10と、を有している。 The heat exchanger 2 is an outdoor heat exchanger disposed on the front side of the vehicle in the engine room. The heat exchanger 2 has an upstream side heat exchange unit 20, a liquid storage unit 22, a downstream side heat exchange unit 21, and a refrigerant adjustment unit 10.
 上流側熱交換部20には、圧力調整部としての絞り101及び開閉弁102から流出した冷媒が流入する。上流側熱交換部20は、流入する冷媒と、図示しない送風ファンにより送風される車室外の空気である外気との間で熱交換を行う部分である。上流側熱交換部20は、暖房モード時には、流入する冷媒と外気との間で熱交換を行うことにより、冷媒を蒸発させる蒸発器として機能する。また、上流側熱交換部20は、冷房モード時には、流入する冷媒と外気との間で熱交換を行うことにより、冷媒を冷却する凝縮器として機能する。 The refrigerant that has flowed out from the throttle 101 and the on-off valve 102 as a pressure adjustment unit flows into the upstream side heat exchange unit 20. The upstream heat exchange unit 20 is a portion that performs heat exchange between the inflowing refrigerant and the outside air that is the air outside the vehicle that is blown by a blowing fan (not shown). The upstream heat exchange unit 20 functions as an evaporator that evaporates the refrigerant by performing heat exchange between the inflowing refrigerant and the outside air in the heating mode. Further, in the cooling mode, the upstream heat exchange unit 20 functions as a condenser that cools the refrigerant by performing heat exchange between the inflowing refrigerant and the outside air.
 貯液器22は、上流側熱交換部20から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒と液相冷媒とを別々に流出させること及び液相冷媒を貯留することが可能である。貯液器22は、分離された気相冷媒を暖房流出流路226に向けて吐出するとともに、分離された液相冷媒を冷房流出流路227に向けて吐出する。 The liquid storage device 22 separates the refrigerant flowing out from the upstream side heat exchange unit 20 into a gas phase refrigerant and a liquid phase refrigerant, and causes the gas phase refrigerant and the liquid phase refrigerant to flow separately, and stores the liquid phase refrigerant. It is possible. The liquid storage device 22 discharges the separated gas phase refrigerant toward the heating outflow channel 226, and discharges the separated liquid phase refrigerant toward the cooling outflow channel 227.
 暖房流出流路226は、暖房流出口226aにおいて冷媒流路712に繋がっている。冷媒流路712は、冷媒流路711の途中部分に接続されている。冷媒流路711は、減圧器30から流出した冷媒を圧縮機33の吸入口へと導く流路である。暖房流出流路226は、貯液器22から吐出される気相冷媒を、圧縮機33に導く流路である。 The heating outlet channel 226 is connected to the refrigerant channel 712 at the heating outlet 226a. The refrigerant flow passage 712 is connected to an intermediate portion of the refrigerant flow passage 711. The refrigerant channel 711 is a channel that leads the refrigerant flowing out of the pressure reducer 30 to the suction port of the compressor 33. The heating outflow channel 226 is a channel that leads the gas phase refrigerant discharged from the liquid storage 22 to the compressor 33.
 下流側熱交換部21には、貯液器22から液相冷媒が流入する。下流側熱交換部21は、流入する液相冷媒と外気との間で熱交換を行うことにより、熱交換器2における冷媒の熱交換効率を更に高める部分である。具体的には、下流側熱交換部21は、暖房モード時には、流入する液相冷媒と外気との間で熱交換を行うことにより、液相冷媒を蒸発させる。これにより、上流側熱交換部20において蒸発しきれずに残った液相冷媒を蒸発させることができるため、熱交換器2における蒸発器としての機能が高められている。但し、この下流側熱交換部21は搭載スペースの関係でチューブ本数が少なく冷媒流路面積が少ないことから冷媒圧損増加を避ける為に、冷媒を流さない作動にしてもよい。また、下流側熱交換部21は、冷房モード時には、流入する液相冷媒と外気との間で熱交換を行うことにより、液相冷媒を更に冷却する過冷却器として機能する。これにより、熱交換器2における凝縮器としての機能が高められている。 The liquid-phase refrigerant flows from the liquid storage device 22 into the downstream side heat exchange unit 21. The downstream side heat exchange unit 21 is a part that further enhances the heat exchange efficiency of the refrigerant in the heat exchanger 2 by performing heat exchange between the inflowing liquid phase refrigerant and the outside air. Specifically, in the heating mode, the downstream side heat exchange unit 21 exchanges heat between the inflowing liquid phase refrigerant and the outside air to evaporate the liquid phase refrigerant. As a result, since the liquid phase refrigerant remaining without being completely evaporated in the upstream side heat exchange unit 20 can be evaporated, the function as the evaporator in the heat exchanger 2 is enhanced. However, since the downstream heat exchange section 21 has a small number of tubes and a small refrigerant flow area due to the mounting space, the refrigerant may not be allowed to flow in order to avoid an increase in refrigerant pressure loss. Further, in the cooling mode, the downstream side heat exchange unit 21 functions as a subcooler that further cools the liquid phase refrigerant by performing heat exchange between the inflowing liquid phase refrigerant and the outside air. Thus, the function of the heat exchanger 2 as a condenser is enhanced.
 減圧器30には、下流側熱交換部21から流出した冷媒が冷房流出流路227及び冷房流出流路227に繋がっている冷媒流路713を介して流入する。減圧器30は、流入した冷媒を減圧して吐出する。減圧器30により減圧された冷媒は、蒸発器31に流入する。また、減圧器30には、蒸発器31から吐出された冷媒が流入する。減圧器30は、蒸発器31から吐出される冷媒の過熱度が予め定められた所定範囲となるように、蒸発器31に流入する冷媒を機械的機構により減圧膨張させる温度感応型の機械式膨張弁である。 The refrigerant that has flowed out of the downstream side heat exchange unit 21 flows into the pressure reducing device 30 via the refrigerant flow path 713 connected to the cooling outflow flow path 227 and the cooling outflow flow path 227. The pressure reducer 30 decompresses and discharges the inflowing refrigerant. The refrigerant reduced in pressure by the pressure reducer 30 flows into the evaporator 31. Further, the refrigerant discharged from the evaporator 31 flows into the decompressor 30. The pressure reducing device 30 is a temperature sensitive mechanical expansion that reduces the pressure of refrigerant flowing into the evaporator 31 by a mechanical mechanism so that the degree of superheat of the refrigerant discharged from the evaporator 31 falls within a predetermined range. It is a valve.
 蒸発器31には、減圧器30から吐出される冷媒が流入する。蒸発器31は、冷房モード時に、内部を流れる冷媒と、空調ユニット73のケーシング39内を流れる送風空気との間で熱交換を行うことにより送風空気を冷却する熱交換器である。蒸発器31では、送風空気と冷媒との間で熱交換が行われることにより冷媒が蒸発する。蒸発した冷媒は、蒸発器31から吐出され、減圧器30及び冷媒流路711を介して圧縮機33の吸入口に流入する。 The refrigerant discharged from the pressure reducing device 30 flows into the evaporator 31. The evaporator 31 is a heat exchanger that cools the blowing air by performing heat exchange between the refrigerant flowing inside and the blowing air flowing inside the casing 39 of the air conditioning unit 73 in the cooling mode. In the evaporator 31, the refrigerant is evaporated by heat exchange between the blown air and the refrigerant. The evaporated refrigerant is discharged from the evaporator 31 and flows into the suction port of the compressor 33 via the pressure reducer 30 and the refrigerant channel 711.
 流量調整弁103は、流出流路112から暖房流出流路226に至る途中部分に設けられている。流量調整弁103は、その開度の調整により、暖房流出流路226の流路断面積を変更可能な電磁弁からなる。流量調整弁103の開度の調整により、暖房流出流路226を流れる冷媒の流量を調整することができる。 The flow rate adjustment valve 103 is provided on the way from the outflow passage 112 to the heating outflow passage 226. The flow rate adjustment valve 103 is composed of a solenoid valve that can change the flow passage cross-sectional area of the heating outflow passage 226 by adjusting the opening degree thereof. By adjusting the opening degree of the flow rate adjustment valve 103, the flow rate of the refrigerant flowing through the heating outflow passage 226 can be adjusted.
 空調ユニット73は、ケーシング39と、送風通路切替ドア38とを備えている。ケーシング39内には、送風空気が流れている。ケーシング39内には、送風空気の流れ方向の上流側から下流側に向かって、蒸発器31と、ヒータコア35とが順に配置されている。蒸発器31は、内部を流れる冷媒と、送風空気との間で熱交換を行うことにより、送風空気を冷却する。ケーシング39における蒸発器31の下流側には、ヒータコア35が配置される温風通路と、ヒータコア35が配置されていない冷風通路とが設けられている。 The air conditioning unit 73 includes a casing 39 and an air passage switching door 38. In the casing 39, blowing air is flowing. In the casing 39, the evaporator 31 and the heater core 35 are disposed in order from the upstream side to the downstream side in the flow direction of the blown air. The evaporator 31 cools the blowing air by performing heat exchange between the refrigerant flowing inside and the blowing air. On the downstream side of the evaporator 31 in the casing 39, a hot air passage in which the heater core 35 is disposed and a cold air passage in which the heater core 35 is not disposed are provided.
 送風通路切替ドア38は、冷風通路を塞ぐ一方で温風通路を開放する図中に実線で示される第1ドア位置と、温風通路を塞ぐ一方で冷風通路を開放する図中に破線で示される第2ドア位置とに変位可能に構成されている。ケーシング39における温風通路及び冷風通路の空気流れ方向の下流側には、車室内に開口する図示しない複数の開口部が形成されている。 The air passage switching door 38 closes the cold air passage and opens the hot air passage. The first door position shown by a solid line in the figure and the hot air passage closes and opens the cold air passage. The second door position is configured to be displaceable. On the downstream side in the air flow direction of the hot air passage and the cold air passage in the casing 39, a plurality of openings (not shown) opening into the vehicle interior are formed.
 空調ユニット73では、暖房モード時に、送風通路切替ドア38が実線の第1ドア位置に位置する。これにより、蒸発器31を通過した送風空気が温風通路を通過するため、ヒータコア35により送風空気が加熱されて下流側に流れる。一方、冷房モード時には、送風通路切替ドア38が破線の第2ドア位置に位置する。これにより、蒸発器31を通過した送風空気が冷風通路を通過するため、蒸発器31で冷却された送風空気がそのまま下流側に流れる。 In the air conditioning unit 73, in the heating mode, the air passage switching door 38 is positioned at the first door position indicated by the solid line. As a result, since the blown air having passed through the evaporator 31 passes through the hot air passage, the blown air is heated by the heater core 35 and flows to the downstream side. On the other hand, in the cooling mode, the air passage switching door 38 is located at the second door position indicated by the broken line. Thereby, since the blast air which has passed the evaporator 31 passes through the cold air passage, the blast air cooled by the evaporator 31 flows downstream as it is.
 本実施形態の熱交換器2は、冷房作動及び暖房作動をするヒートポンプシステムに用いられる熱交換器であって、冷房作動時及び暖房作動時において冷媒と外気との間で熱交換を行う熱交換部である上流側熱交換部20及び下流側熱交換部21と、液冷媒を貯液する貯液器22と一体的に接合され、冷房作動時及び暖房作動時において冷媒の流れを切り替える冷媒調整部10と、を備えている。熱交換器2には、冷媒が流入する流入口225aと、冷房作動時に冷媒が流出する冷房流出口227aと、暖房作動時に冷媒が流出する暖房流出口226aと、が設けられており、流入口225aと暖房流出口226aとの間の距離が、流入口225aと冷房流出口227aとの間の距離よりも短くなるように配置されている。 The heat exchanger 2 of the present embodiment is a heat exchanger used in a heat pump system that performs a cooling operation and a heating operation, and performs heat exchange between the refrigerant and the outside air during the cooling operation and the heating operation. Control unit that is integrally joined with the upstream heat exchange unit 20 and the downstream heat exchange unit 21 that are the unit and the liquid storage device 22 that stores liquid refrigerant, and switches the flow of refrigerant during cooling operation and heating operation And a unit 10. The heat exchanger 2 is provided with an inlet 225a through which the refrigerant flows, a cooling outlet 227a through which the refrigerant flows out during the cooling operation, and a heating outlet 226a through which the refrigerant flows out during the heating operation. The distance between 225a and the heating outlet 226a is shorter than the distance between the inlet 225a and the cooling outlet 227a.
 本実施形態では、流入口225aと冷房流出口227aとの間の距離に比較して、流入口225aと暖房流出口226aとの間の距離が短くなるので、流入口225aと暖房流出口226aとの間の伝熱が促進される。そのため暖房時においては、熱交換器2に入る前の冷媒のエンタルピと熱交換器2を出た後の冷媒のエンタルピとの差が増大するため、暖房性能が向上する。また、流入口225aから導入される気液二相冷媒の乾き度が下がるため、冷媒の密度が増加し冷媒の圧損が低下するので、暖房性能が向上する。更に、流入口225aから導入される気液二相冷媒の乾き度が下がることによって、気液二相冷媒の液相成分が多くなり、冷媒の分配性が向上し、暖房性能が向上する。 In this embodiment, since the distance between the inlet 225a and the heating outlet 226a is shorter than the distance between the inlet 225a and the cooling outlet 227a, the inlet 225a and the heating outlet 226a Heat transfer is promoted. Therefore, at the time of heating, since the difference between the enthalpy of the refrigerant before entering the heat exchanger 2 and the enthalpy of the refrigerant after leaving the heat exchanger 2 increases, the heating performance is improved. In addition, since the dryness of the gas-liquid two-phase refrigerant introduced from the inflow port 225a decreases, the density of the refrigerant increases and the pressure loss of the refrigerant decreases, so the heating performance is improved. Furthermore, by lowering the dryness of the gas-liquid two-phase refrigerant introduced from the inflow port 225a, the liquid phase component of the gas-liquid two-phase refrigerant is increased, the distribution of the refrigerant is improved, and the heating performance is improved.
 本実施形態では、流入口225aと暖房流出口226aとの間の距離に比較して、流入口225aと冷房流出口227aとの間の距離が長くなるので、流入口225aと冷房流出口227aとの間の伝熱を抑制することができる。流入口225aと冷房流出口227aとの間の伝熱が促進されると、エンタルピ差の減少によるコンプレッサ動力悪化や、過冷却度低下による不具合が懸念される。流入口225aと冷房流出口227aとの間の伝熱を抑制することで、エンタルピ差の減少によるコンプレッサ動力悪化を抑制することができる。また、過冷却度の低下を抑制することで、蒸発器31への流入冷媒の乾き度増加による蒸発器31の冷媒圧損増加や分配悪化に起因する冷房性能低下を回避することができる。更に、減圧器30への流入冷媒に気相冷媒が混入することに起因する異音発生も抑制することができる。 In this embodiment, since the distance between the inlet 225a and the cooling outlet 227a is longer than the distance between the inlet 225a and the heating outlet 226a, the inlet 225a and the cooling outlet 227a Heat transfer can be suppressed. When the heat transfer between the inflow port 225a and the cooling outflow port 227a is promoted, there is a concern that the compressor power deterioration due to the reduction of the enthalpy difference or the failure due to the reduction of the degree of supercooling. By suppressing the heat transfer between the inflow port 225a and the cooling outflow port 227a, it is possible to suppress the deterioration of the compressor power due to the reduction of the enthalpy difference. Further, by suppressing the decrease in the degree of supercooling, it is possible to avoid the decrease in cooling performance due to the increase in refrigerant pressure loss in the evaporator 31 and the deterioration in distribution due to the increase in dryness of the refrigerant flowing into the evaporator 31. Furthermore, it is possible to suppress the generation of abnormal noise caused by the mixture of the gas phase refrigerant into the refrigerant flowing into the pressure reducer 30.
 また本実施形態の熱交換器2においては、流入口225aと暖房流出口226aとの間には、熱伝達部材27が設けられている。本実施形態では、流入流路225と暖房流出流路226との間における貯液器22の一部側壁をもって熱伝達部材27としている。流入口225aと暖房流出口226aとの間に熱伝達部材27を設けることで、流入口225aと暖房流出口226aとの間の伝熱を更に促進することができる。 Moreover, in the heat exchanger 2 of this embodiment, the heat transfer member 27 is provided between the inlet 225a and the heating outlet 226a. In the present embodiment, the heat transfer member 27 is a partial side wall of the liquid storage device 22 between the inflow passage 225 and the heating and outflow passage 226. By providing the heat transfer member 27 between the inlet 225a and the heating outlet 226a, the heat transfer between the inlet 225a and the heating outlet 226a can be further promoted.
 また本実施形態の熱交換器2においては、図1,6,7に示されるように、流入口225aと暖房流出口226aとが単一のコネクタ部品25で構成されている。図6は、図1におけるコネクタ部品25を更に具体的に示した図である。図7は、図6において、流入口225a及び暖房流出口226aを見通す方向からコネクタ部品25を表した図である。更に、図3,8,9に示される熱交換器2Aのように、流入口225Aaと暖房流出口226Aaと熱伝達部材27Aとを、単一のコネクタ部品25Aで構成することもできる。図8は、図3におけるコネクタ部品25Aを更に具体的に示した図である。図9は、図8において、流入口225Aa及び暖房流出口226Aaを見通す方向からコネクタ部品25Aを表した図である。流入口225Aaと暖房流出口226Aaと熱伝達部材27Aとを単一のコネクタ部品25Aで構成することで、流入口225Aaと暖房流出口226Aaとの間の伝熱性を促進させる構成を簡便に実現することができる。 Further, in the heat exchanger 2 of the present embodiment, as shown in FIGS. 1, 6 and 7, the inlet 225a and the heating outlet 226a are constituted by a single connector part 25. FIG. 6 is a view more specifically showing the connector part 25 in FIG. FIG. 7 is a view showing the connector part 25 from the direction of looking through the inlet 225a and the heating outlet 226a in FIG. Furthermore, as in the heat exchanger 2A shown in FIGS. 3, 8 and 9, the inlet 225Aa, the heating outlet 226Aa, and the heat transfer member 27A can be configured by a single connector part 25A. FIG. 8 is a view more specifically showing the connector part 25A in FIG. FIG. 9 is a view showing the connector part 25A from the direction of looking through the inlet 225Aa and the heating outlet 226Aa in FIG. By configuring the inlet 225Aa, the heating outlet 226Aa, and the heat transfer member 27A with a single connector part 25A, the configuration for facilitating the heat transfer between the inlet 225Aa and the heating outlet 226Aa can be easily realized. be able to.
 更に、コネクタ部品25Aは、流入口225Aaと暖房流出口226Aaとの間が熱伝達部材27Aによって埋められるように繋がれている。流入口225Aaと暖房流出口226Aaとの間が熱伝達部材27Aによって繋がれるので、伝熱経路を十分に確保することができ、流入口225Aaと暖房流出口226Aaとの間の伝熱を更に促進することができる。 Further, the connector part 25A is connected such that the heat transfer member 27A fills the space between the inlet 225Aa and the heating outlet 226Aa. Since the heat transfer member 27A is connected between the inlet 225Aa and the heating outlet 226Aa, a sufficient heat transfer path can be secured, which further promotes the heat transfer between the inlet 225Aa and the heating outlet 226Aa. can do.
 また本実施形態の熱交換器2及び熱交換器2Aにおいては、冷房流出口227aは、コネクタ部品25,25Aとは異なる部品に設けられている。より具体的には、冷房流出口227aは、下流側熱交換部21を構成するヘッダタンク213に繋がれた冷房流出流路227の端部に設けられている。流入口225a,225Aa及び暖房流出口226a,226Aaが設けられているコネクタ部品25,25Aとは異なる部品に冷房流出口227aを設けることで、流入口225a,225Aaと冷房流出口227aとの間の伝熱を抑制することができる。 Moreover, in the heat exchanger 2 and the heat exchanger 2A of the present embodiment, the cooling outlet 227a is provided in a component different from the connector components 25 and 25A. More specifically, the cooling outlet 227 a is provided at the end of the cooling outlet channel 227 connected to the header tank 213 that constitutes the downstream side heat exchange unit 21. By providing the cooling outlet 227a in a component different from the inlet port 225a, 225Aa and the connector component 25, 25A provided with the heating outlet 226a, 226Aa, the space between the inlet 225a, 225Aa and the cooling outlet 227a Heat transfer can be suppressed.
 更に、図4に示される熱交換器2Bのように、冷房流出口227Baを貯液器22Bに設けることもできる。熱交換器2Bでは、上流側熱交換部20Bのみが設けられ、下流側熱交換部21に相当する熱交換部は設けられていない。冷房流出口227Baは、貯液器22Bに繋がれた冷房流出流路227Bの端部に設けられている。 Furthermore, as in the heat exchanger 2B shown in FIG. 4, the cooling outlet 227Ba can be provided in the reservoir 22B. In the heat exchanger 2B, only the upstream side heat exchange unit 20B is provided, and no heat exchange unit corresponding to the downstream side heat exchange unit 21 is provided. The cooling outlet 227Ba is provided at an end of the cooling outlet channel 227B connected to the liquid storage 22B.
 また本実施形態の熱交換器2,2A,2Bにおいては、流入口225a,225Aaにおける冷媒の流れ方向と暖房流出口226a,226Aaにおける冷媒の流れ方向とが対向流となるように、流入口225a,225Aa及び暖房流出口226a,226Aaが配置されている。流入口225a,225Aa及び暖房流出口226a,226Aaそれぞれにおける冷媒の流れ方向が対向流となるように配置することで、流入口225a,225Aaと暖房流出口226a,226Aaとの間の伝熱がより促進される。 Further, in the heat exchangers 2, 2A, 2B of the present embodiment, the inflow ports 225a, 225Aa so that the flow direction of the refrigerant at the inflow ports 225a, 225Aa and the flow direction of the refrigerant at the heating outflow ports 226a, 226Aa are counterflows. , 225Aa and heating outlets 226a, 226Aa. The heat transfer between the inflow ports 225a and 225Aa and the heating outflow ports 226a and 226Aa can be further enhanced by arranging the refrigerants in the inflow ports 225a and 225Aa and the heating outflow ports 226a and 226Aa to have opposite flow directions. Promoted.
 また本実施形態の熱交換器2,2A,2Bにおいては、貯液器22,22Bの長手方向において、流入口225a,225Aa、暖房流出口226a,226Aa、冷房流出口227a,227Baの順に配置されている。 In the heat exchangers 2, 2A, 2B of the present embodiment, the inlets 225a, 225Aa, the heating outlets 226a, 226Aa, and the cooling outlets 227a, 227Ba are arranged in the longitudinal direction of the reservoirs 22, 22B. ing.
 流入口225a,225Aaと暖房流出口226a,226Aaとの間に冷房流出口227a,227Baが配置されていないので、流入口225a,225Aaと暖房流出口226a,226Aaとの間の伝熱を促進することができる。流入口225a,225Aaと冷房流出口227a,227Baとの間に暖房流出口226a,226Aaが配置されているので、冷房時においては、暖房流出口226a,226Aa及びそれに繋がる流路が断熱層の役割を担い、流入口225a,225Aaと冷房流出口227a,227Baとの間の伝熱を抑制し、熱害を回避することができる。 Since the cooling outlets 227a and 227Ba are not disposed between the inlets 225a and 225Aa and the heating outlets 226a and 226Aa, heat transfer between the inlets 225a and 225Aa and the heating outlets 226a and 226Aa is promoted. be able to. Since the heating outlets 226a and 226Aa are disposed between the inlets 225a and 225Aa and the cooling outlets 227a and 227Ba, the heating outlets 226a and 226Aa and the flow path connected thereto function as a heat insulating layer during cooling. The heat transfer between the inflow ports 225a and 225Aa and the cooling outflow ports 227a and 227Ba can be suppressed, and heat damage can be avoided.
 更に、図5に示される熱交換器2Cのように、接続流路222から流れ込む冷媒を、冷媒調整部10C内部に直接導入するようにしてもよい。接続流路222から流れ込む冷媒は、冷媒導入口115Cから冷媒調整部10C内部に流れ込む。図5に示されるように、流量調整弁103Cが最も上方に位置していると、流出流路112Cが開放され、貯液空間224に冷媒が流れる。一方、流量調整弁103Cが最も下方に位置していると、流出流路112Cが閉塞され、暖房流出口226aに向かって冷媒が流れる。 Furthermore, as in the heat exchanger 2C shown in FIG. 5, the refrigerant flowing from the connection flow path 222 may be directly introduced into the refrigerant adjustment unit 10C. The refrigerant flowing in from the connection flow path 222 flows into the inside of the refrigerant adjustment unit 10C from the refrigerant inlet 115C. As shown in FIG. 5, when the flow rate adjustment valve 103C is located at the uppermost position, the outflow passage 112C is opened, and the refrigerant flows in the liquid storage space 224. On the other hand, when the flow rate adjustment valve 103C is located at the lowermost position, the outflow passage 112C is closed, and the refrigerant flows toward the heating outlet 226a.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to the specific example. However, the present disclosure is not limited to these specific examples. Those appropriately modified in design by those skilled in the art are also included in the scope of the present disclosure as long as the features of the present disclosure are included. The elements included in the above-described specific examples, and the arrangement, conditions, and shapes thereof are not limited to those illustrated, but can be appropriately modified. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (7)

  1.  冷房作動及び暖房作動をするヒートポンプシステムに用いられる熱交換器であって、
     冷房作動時及び暖房作動時において冷媒と外気との間で熱交換を行う熱交換部(20,21)と、
     液冷媒を貯液する貯液器と一体的に接合され、冷房作動時及び暖房作動時において冷媒の流れを切り替える冷媒調整部(10)と、を備え、
     冷媒が流入する流入口(225a,225Aa)と、冷房作動時に冷媒が流出する冷房流出口(227a,227Ba)と、暖房作動時に冷媒が流出する暖房流出口(226a,226Aa)と、が設けられており、
     前記流入口と前記暖房流出口との間の距離が、前記流入口と前記冷房流出口との間の距離よりも短くなるように配置されている、熱交換器。
    A heat exchanger used in a heat pump system for performing a cooling operation and a heating operation, comprising:
    A heat exchange unit (20, 21) that exchanges heat between the refrigerant and the outside air at the time of cooling operation and heating operation;
    And a refrigerant adjustment unit (10) joined integrally with a liquid storage unit for storing liquid refrigerant and switching the flow of the refrigerant during the cooling operation and the heating operation,
    An inlet (225a, 225Aa) through which the refrigerant flows in, a cooling outlet (227a, 227Ba) through which the refrigerant flows out during the cooling operation, and a heating outlet (226a, 226Aa) through which the refrigerant flows out during the heating operation are provided. Yes,
    Heat exchanger, wherein the distance between the inlet and the heating outlet is arranged to be shorter than the distance between the inlet and the cooling outlet.
  2.  請求項1に記載の熱交換器であって、
     前記流入口と前記暖房流出口との間には、熱伝達部材(27,27A)が設けられている、熱交換器。
    The heat exchanger according to claim 1, wherein
    A heat exchanger, wherein a heat transfer member (27, 27A) is provided between the inlet and the heating outlet.
  3.  請求項2に記載の熱交換器であって、
     前記流入口(225Aa)と前記暖房流出口(226Aa)と前記熱伝達部材(27A)とは、単一のコネクタ部品(25A)で構成されている、熱交換器。
    The heat exchanger according to claim 2, wherein
    A heat exchanger, wherein the inlet (225Aa), the heating outlet (226Aa) and the heat transfer member (27A) are constituted by a single connector part (25A).
  4.  請求項3に記載の熱交換器であって、
     前記コネクタ部品は、前記流入口と前記暖房流出口との間が前記熱伝達部材によって埋められるように繋がれている、熱交換器。
    The heat exchanger according to claim 3, wherein
    The heat exchanger according to claim 1, wherein the connector component is connected between the inlet and the heating outlet by the heat transfer member.
  5.  請求項3又は4に記載の熱交換器であって、
     前記冷房流出口は、前記コネクタ部品とは異なる部品に設けられている、熱交換器。
    The heat exchanger according to claim 3 or 4, wherein
    The heat exchanger according to claim 1, wherein the cooling outlet is provided in a component different from the connector component.
  6.  請求項1から5のいずれか1項に記載の熱交換器であって、
     前記流入口における冷媒の流れ方向と前記暖房流出口における冷媒の流れ方向とが対向流となるように、前記流入口及び前記暖房流出口が配置されている、熱交換器。
    The heat exchanger according to any one of claims 1 to 5, wherein
    The heat exchanger according to claim 1, wherein the inlet and the heating outlet are disposed such that the flow direction of the refrigerant at the inlet and the flow direction of the refrigerant at the heating outlet are opposite to each other.
  7.  請求項1から6のいずれか1項に記載の熱交換器であって、
     前記貯液器の長手方向において、前記流入口、前記暖房流出口、前記冷房流出口の順に配置されている、熱交換器。
    The heat exchanger according to any one of claims 1 to 6, wherein
    A heat exchanger, which is disposed in the order of the inlet, the heating outlet, and the cooling outlet in the longitudinal direction of the reservoir.
PCT/JP2018/037044 2017-10-11 2018-10-03 Heat exchanger WO2019073880A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018004493.9T DE112018004493T5 (en) 2017-10-11 2018-10-03 Heat exchanger
CN201880066577.9A CN111213020B (en) 2017-10-11 2018-10-03 Heat exchanger
US16/841,260 US20200232726A1 (en) 2017-10-11 2020-04-06 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017197822A JP6897478B2 (en) 2017-10-11 2017-10-11 Heat exchanger
JP2017-197822 2017-10-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/841,260 Continuation US20200232726A1 (en) 2017-10-11 2020-04-06 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2019073880A1 true WO2019073880A1 (en) 2019-04-18

Family

ID=66100861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037044 WO2019073880A1 (en) 2017-10-11 2018-10-03 Heat exchanger

Country Status (5)

Country Link
US (1) US20200232726A1 (en)
JP (1) JP6897478B2 (en)
CN (1) CN111213020B (en)
DE (1) DE112018004493T5 (en)
WO (1) WO2019073880A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053060A (en) * 2002-07-17 2004-02-19 Fuji Koki Corp Expansion valve
JP2004245473A (en) * 2003-02-13 2004-09-02 Tgk Co Ltd Evaporator
JP2009236404A (en) * 2008-03-27 2009-10-15 Denso Corp Refrigeration cycle device
JP2016121858A (en) * 2014-12-25 2016-07-07 株式会社デンソー Refrigeration cycle device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078812B2 (en) * 2000-04-26 2008-04-23 株式会社デンソー Refrigeration cycle equipment
JP5746872B2 (en) * 2011-02-01 2015-07-08 株式会社ケーヒン・サーマル・テクノロジー Capacitor
JP5073849B1 (en) * 2011-07-05 2012-11-14 シャープ株式会社 Heat exchanger and air conditioner equipped with the same
US9488395B2 (en) * 2011-09-02 2016-11-08 Sanden Holdings Corporation Heat exchanger and heat pump system using the same
CN104422201B (en) * 2013-08-27 2018-05-08 浙江盾安热工科技有限公司 A kind of gas-liquid separated evaporator
CN204063696U (en) * 2014-09-16 2014-12-31 重庆长安汽车股份有限公司 A kind of air conditioning condenser for vehicle
JP6562025B2 (en) * 2016-04-08 2019-08-21 株式会社デンソー Heat exchanger
JP6543213B2 (en) 2016-04-28 2019-07-10 株式会社日本テクノ Surface hardening method and surface hardening apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053060A (en) * 2002-07-17 2004-02-19 Fuji Koki Corp Expansion valve
JP2004245473A (en) * 2003-02-13 2004-09-02 Tgk Co Ltd Evaporator
JP2009236404A (en) * 2008-03-27 2009-10-15 Denso Corp Refrigeration cycle device
JP2016121858A (en) * 2014-12-25 2016-07-07 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2019070504A (en) 2019-05-09
CN111213020A (en) 2020-05-29
DE112018004493T5 (en) 2020-07-30
CN111213020B (en) 2021-09-21
US20200232726A1 (en) 2020-07-23
JP6897478B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
US10040334B2 (en) R744 based heat pump system with a water cooled gas cooler for cooling, heating and dehumidification of an EV/HEV
JP6218953B2 (en) Heat pump system for vehicles
JP4803199B2 (en) Refrigeration cycle equipment
JP7251229B2 (en) In-vehicle temperature controller
JP6562025B2 (en) Heat exchanger
CN111688434A (en) Vehicle-mounted temperature adjusting device
KR102644743B1 (en) Automotive air conditioning system
US10611212B2 (en) Air conditioner for vehicle
KR101714459B1 (en) Heat pump system for vehicle
JP4952830B2 (en) Ejector refrigeration cycle
JP6614184B2 (en) Refrigeration cycle apparatus and heat exchanger
KR102250000B1 (en) Heat pump system for vehicle
US11235262B2 (en) Gas-liquid separator
WO2017175726A1 (en) Heat exchanger
JP6537928B2 (en) Heat exchanger and heat pump system
US20200232726A1 (en) Heat exchanger
JP2019014471A (en) Vehicular air conditioner
JP2005201500A (en) Refrigerating cycle device
WO2017175723A1 (en) Refrigeration cycle device and heat exchanger
KR101445550B1 (en) Heat pump system for vehicle
US11597258B2 (en) Air conditioning device
JP6819374B2 (en) Heat pump cycle system
JP2006132804A (en) Refrigerating cycle and heat exchanger
KR20230039208A (en) Automotive air conditioning system
JP2008281254A (en) Refrigerating cycle device and air conditioning device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865530

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18865530

Country of ref document: EP

Kind code of ref document: A1