WO2019072122A1 - 信号传输方法、相应设备及存储介质 - Google Patents

信号传输方法、相应设备及存储介质 Download PDF

Info

Publication number
WO2019072122A1
WO2019072122A1 PCT/CN2018/108901 CN2018108901W WO2019072122A1 WO 2019072122 A1 WO2019072122 A1 WO 2019072122A1 CN 2018108901 W CN2018108901 W CN 2018108901W WO 2019072122 A1 WO2019072122 A1 WO 2019072122A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
site
target site
signal
target
Prior art date
Application number
PCT/CN2018/108901
Other languages
English (en)
French (fr)
Inventor
韩志强
吕开颖
孙波
李楠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18866599.6A priority Critical patent/EP3697164B1/en
Priority to US16/754,281 priority patent/US11310832B2/en
Publication of WO2019072122A1 publication Critical patent/WO2019072122A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of communications, but is not limited to the field of communications, and in particular, to a signal transmission method, a corresponding device, and a storage medium.
  • WLAN Wireless Local Area Networks
  • embodiments of the present disclosure provide a signal transmission method, a corresponding device, and a storage medium.
  • a signal transmission method in the present disclosure includes:
  • the first signal is transmitted to the first type of target site.
  • An access point device in the present disclosure includes a memory and a processor that stores a signal transfer computer program that executes the computer program to implement the steps of the method as described above.
  • a computer readable storage medium in the present disclosure stores a signal transmission computer program that, when executed by at least one processor, implements the steps of the method as described above.
  • the method, device and storage medium provided in the embodiments of the present disclosure acquire a channel of a second type that matches a target site of a first type, and then make a channel reservation with the target site of the second type, and after the reservation is completed,
  • the first type of target station transmits the first signal, so that the problem that the data transmission in the same frequency band is interfered between the multiple types of devices and the access point can be effectively solved; or the conflict is large; the mutual frequency is reduced. Interference and frequency usage conflicts.
  • FIG. 1 is a flow chart of a signal transmission method in an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a basic service set in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a scenario in which a Normal STA and an NB STA are mixed in a home scenario according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of protecting downlink transmission by RTS/CTS in a home scenario according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of protecting a downlink transmission by RTS/CTS and PHY Preamble of a Normal Band in a home scenario according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a scenario in which a Normal STA and an NB STA are mixed in an intelligent building scenario according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of protecting a downlink transmission by RTS/CTS of a Normal Band in an intelligent building scenario according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of protecting a downlink transmission by RTS/CTS and PHY Preamble of a Normal Band in an intelligent building scenario according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of protecting a downlink transmission by a MU-RTS/CTS of a Normal Band in an intelligent building scenario according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of protecting a downlink transmission by a MU-RTS/CTS and a PHY Preamble of a Normal Band in an intelligent building scenario according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of an access point device according to an embodiment of the present disclosure.
  • the present disclosure provides a signal transmission method, a corresponding device, and a storage medium.
  • the present disclosure will be further described in detail below in conjunction with the accompanying drawings and embodiments. It is to be understood that the specific embodiments described herein are merely illustrative of the disclosure,
  • an embodiment of the present disclosure provides a signal transmission method, where the method includes:
  • the method in the disclosed embodiments is performed in an access point.
  • the embodiment of the present disclosure acquires a second type of target site that matches the first type of target site, then performs channel reservation with the second type of target site, and transmits the first to the first type of target site after the reservation is completed.
  • the signal can effectively solve the problem of interference between data transmission between multiple types of devices and access points in the same frequency band.
  • the first type of site is an IoT device site
  • the first type of target site is a target site of the first type of site
  • the second type of site is a wireless local area network device site (hereinafter referred to as "Normal STA")
  • the second type of target site is A target site in a second type of site.
  • the power consumption of communication is different.
  • the working bandwidth of the first type of target site is smaller than the working bandwidth of the second type of target site.
  • an access point (AP) device (abbreviated as an access point) and a plurality of stations (Stations, STAs) associated with the AP form a basic service set (Basic Service). Set, BSS).
  • the site is referred to as a wireless local area network device site, such as a smart phone, a tablet computer, a notebook, etc., and the communication between the AP and the wireless local area network device site is based on 20 MHz.
  • an access point may be associated with various types of devices.
  • One type of device is a device for entertainment, learning, or work, such as a smartphone, a tablet, or a notebook. Such devices have high throughput requirements for throughput, and such devices tend to operate at a relatively large bandwidth, such as 20 MHz. Such devices are referred to as Normal STAs in embodiments of the present disclosure.
  • One type of device is an Internet of Things (IoT) device that requires higher power, cost, coverage, and capacity.
  • IoT Internet of Things
  • the IoT signal (referred to as the first signal in the embodiment of the present disclosure) is transmitted at the above narrow bandwidth.
  • the IoT device added to the above basic service set in the embodiment of the present disclosure is referred to as an Internet of Things device site or Narrow Band STA (NB STA); for example, an IoT device such as a sensor, a home appliance, a smart light, or the like.
  • NB STA Narrow Band STA
  • the working bandwidth of the second type of target site is a normal bandwidth (Normal Band); the working bandwidth of the first type of target site is a narrowband bandwidth (Narrow Band).
  • the working channels of the WLAN device site and the IoT device site overlap each other, resulting in interference during transmission.
  • a first type of target site in an embodiment of the present disclosure refers to a first type of site with which an access point is about to transmit signals (ie, data).
  • the searching for the second type of target site that matches the first type of target site includes:
  • the embodiment of the present disclosure performs matching of the second type of target site by using the acquired parameter information, so that the second type of target site can be effectively found.
  • the parameter information is any one or two of the following combinations: location information and power information.
  • the matching strategy includes any one of the following:
  • the access point learns location information and/or power information of each site in the basic service set, and each site includes a Normal STA (a second type of site, such as a working bandwidth of 20 MHz) and an NB STA (a first type of target site, such as a working bandwidth). Is 2MHz, or other small bandwidth).
  • a Normal STA a second type of site, such as a working bandwidth of 20 MHz
  • NB STA a first type of target site, such as a working bandwidth. Is 2MHz, or other small bandwidth).
  • a second type of site that is closest to the first type of target site is found, wherein the discovered second type of site is The second type of target site.
  • a second type of station with the strongest power is found, wherein the found second type of station is a corresponding second type of target station.
  • the second type of site is found by comprehensive judgment, wherein the discovered second type of site is the corresponding second type of target site.
  • the AP Before transmitting the data to the NB STA, the AP obtains the location of the Normal STA around the NB STA, and then selects a Normal STA that matches the target NB STA (the first type of target site) from the candidate second type site according to the location information.
  • the second type of target site transmits an RTS frame to the Normal STA, the Normal STA responding to the CTS frame.
  • the performing channel reservation with the second type target site includes:
  • Channel reservation is performed with the second type target site on a working bandwidth corresponding to the second type target site.
  • channel protection is performed on the large bandwidth first and the second type of target site, and then, on the small bandwidth, to the first type of target site.
  • the data is transmitted, so that the working channels of the IoT device and the wireless local area network (WLAN) device overlap each other, and there is a problem of interference when transmitting.
  • WLAN wireless local area network
  • the channel reservation with the second type target site on the working bandwidth corresponding to the second type target site includes:
  • the transmitting the first signal to the first type of target station includes:
  • the transmitting before the transmitting the first signal to the first type target station, on the working bandwidth corresponding to the first type of target site, includes:
  • Transmitting a second signal comprising at least: an L-STF (non-high throughput short training field), an L-LTF (non-high throughput long training field), and an L-SIG (non-high throughput signaling field).
  • L-STF non-high throughput short training field
  • L-LTF non-high throughput long training field
  • L-SIG non-high throughput signaling field
  • the embodiment of the present disclosure can enhance the robustness by using the second signal to continue the channel reservation with the second type of target site, so that the normal STAs can be effectively prevented from receiving the NVS (Network Allocation Vector) after receiving the RTS.
  • the subsequent Normal Band signal is received for NAV reset.
  • the interval between the second signal and the first signal is zero or short interframe space (SIFS), or other predefined interval.
  • SIFS short interframe space
  • the AP sends a signal that the Normal STA can receive in the Normal Band, which is a PHY Preamble type target station (physical layer preamble) of the Normal Band, which includes at least L-STF (non-HT). Short Training field), L-LTF (non-HT Long Training field) and L-SIG (non-HT SIGNAL field), can enhance the robustness and prevent Normal STAs from receiving follow-up after receiving RTS.
  • the Normal Band signal is used for NAV reset.
  • the first signal is an Internet of Things signal
  • the second signal is a wireless local area network signal
  • the first type of target site is an Internet of Things device site
  • the second type of target site is a wireless local area network device site.
  • IoT devices such as sensors, home appliances, smart lights, etc.
  • entertainment or work equipment such as smart phones, tablets, and notebooks
  • devices such as smartphones and tablets as Normal STAs. These devices are based on 20MHz, and the bandwidth they work on is called Normal band. Sensors, home appliances, smart lights, etc.
  • NB STAs these devices are based on small bandwidth (less than 20MHz), and the bandwidth they work on is called Narrow Band. The working channels of these two types of devices overlap each other, and there is interference when transmitting.
  • the recorded location information is searched, and according to the location information, the Normal STA that best matches the NB STA is found.
  • the recorded location information and power information it is also possible to find the recorded location information and power information, and find the Normal STA that best matches the NB STA according to the location information and the power information.
  • the AP first sends a Request to Send (RTS) frame to the Normal STA in the Normal Band, and then the Normal STA responds to the Clear To Send (CTS) frame in the Normal Band.
  • RTS Request to Send
  • CTS Clear To Send
  • the AP transmits data to the NB STA, and the NB STA confirms at the Narrow Band.
  • the AP may also transmit a short data frame, or a QoS null data frame, or an empty data frame to the Normal STA in the Normal Band, and then the Normal STA returns an ACK frame in the Normal Band.
  • the AP then transmits data to the NB STA, and the NB STA confirms at the Narrow Band.
  • the AP searches for the Normal STA that matches the NB STA, and is not limited to the parameters listed here, and may also find the matching Normal STA according to whether the capability is supported, the current state (such as whether it is in the power save mode, or the like).
  • STA1, STA3, and STA5 are NB STAs
  • STA2 and STA4 are Normal STAs.
  • the AP records the locations of all the Normal STAs and NB STAs associated with itself.
  • the AP wants to transmit data to STA1 (NB STA).
  • the AP finds which Normal STA location and STA1 location match the most, for example, the closest match means the closest distance.
  • the best match can also be determined based on the location information and the power information.
  • the AP finds that STA4 is the best match.
  • the AP first transmits the RTS to the STA4 in the Normal Band, and then the STA4 replies to the CTS in the Normal Band. Finally, after receiving the CTS, the AP transmits the first signal data (DATA) to the Narrow Band to the STA1.
  • DATA first signal data
  • a process as shown in FIG. 5 can also be employed.
  • the AP After the AP completes the RTS and CTS interaction between the Normal Band and the STA4, the AP sends a signal that the Normal STA can receive in the Normal Band before transmitting the data to the STA1.
  • the signal is the PHY Preamble of the Normal Band, including at least the L-STF (non- HT Short Training field), L-LTF (non-HT Long Training field) and L-SIG (non-HT SIGNAL field). Therefore, it is possible to prevent the Normal STAs from receiving the NAB reset after receiving the NAV after receiving the RTS.
  • IoT devices such as various sensors, smart lights, etc. can be connected through the WLAN network, and devices such as video surveillance can also be connected.
  • devices such as video surveillance as Normal STA.
  • the transmission and reception of such devices are based on 20MHz, and the bandwidth they work on is called Normal band.
  • the devices such as sensors and smart lights are called NB STAs.
  • Transceivers are based on small bandwidth (less than 20MHz), and the bandwidth they work on is called Narrow Band.
  • the working channels of these two types of devices overlap each other, and there is interference when transmitting.
  • the AP may transmit to multiple NB STAs.
  • the location information of the record is searched, and the NB STAs are found according to the location information.
  • the AP first sends a Multi-user request to send (MU-RTS) frame to the one or more Normal STAs in the Normal Band, and then the one or more Normal STAs are cleared in the Normal Band response (Clear to Send, CTS) frame.
  • the AP transmits data to the NB STAs, and the NB STAs confirm.
  • MU-RTS Multi-user request to send
  • CTS Normal Band response
  • STA1, STA3, and STA5 are NB STAs, and STA2 and STA4 are Normal STAs.
  • the AP records the locations of all the Normal STAs and NB STAs associated with itself.
  • the AP wants to transmit data to STA1 and STA3.
  • the AP searches for the Normal STAs that match STA1 and STA3.
  • the same Normal STA may be matched with STA1 and STA3, and the same Normal STA, such as STA4, may exist in the list of Normal STAs matching STA1 and STA3.
  • the AP first transmits the RTS to the STA4 in the Normal Band, and then the STA4 replies to the CTS in the Normal Band. After receiving the CTS, the AP transmits data to the Narrow Band to STA1 and STA3.
  • STA1 and STA3 match STA2 and STA4.
  • the AP first transmits MU-RTS to STA2 and STA4 in the Normal Band, and then STA2 and STA4 reply to the CTS in the Normal Band. After receiving the CTS, the AP transmits data to STA1 and STA3.
  • an embodiment of the present disclosure provides an access point device, where the access point device includes a memory 20 and a processor 22, where the memory 20 stores a data transmission computer program, and the processor 22 executes the A computer program is implemented to implement the steps of the method of any of the preceding embodiments.
  • Embodiments of the present disclosure perform channel reservation by searching for a second type of target site that matches a first type of target site, and then transmitting a first to the first type of target site after the reservation is completed.
  • the signal can effectively solve the problem of interference between data transmission between multiple types of devices and access points in the same frequency band.
  • the processor executes the computer program to implement the following steps:
  • the first signal is transmitted to the first type of target site.
  • the working bandwidth of the first type of target site is smaller than the working bandwidth of the second type of target site.
  • the searching for the second type of target site that matches the first type of target site includes:
  • the parameter information is any one or two of the following combinations: location information and power information.
  • the matching strategy includes:
  • one of the strongest second-type sites is selected, or the distance from the strongest second-type site is selected.
  • the performing channel reservation with the second type target site includes:
  • Channel reservation is performed with the second type target site on a working bandwidth corresponding to the second type target site.
  • the channel reservation with the second type target site on the working bandwidth corresponding to the second type target site includes:
  • the transmitting the first signal to the first type of target station includes:
  • Transmitting a second signal comprising at least: a non-high throughput short training field, a non-high throughput long training field, and a non-high throughput signaling field.
  • the interval between the second signal and the first signal is zero or a short interframe space.
  • the first signal is an Internet of Things signal
  • the second signal is a wireless local area network signal
  • the first type of target site is an Internet of Things device site
  • the second type of target site is a wireless local area network device site.
  • the embodiment of the invention provides a signal transmission device, and the device includes:
  • An obtaining module configured to acquire a second type target site that matches the first type target site
  • a reservation module configured to perform channel reservation with the second type target site
  • a transmission module configured to transmit the first signal to the first type of target station after the reservation is completed.
  • the operational bandwidth of the first type of target site is less than the operational bandwidth of the second type of target site.
  • the acquiring module may be further configured to: obtain parameter information of the first type target site and the second type site; according to the acquired parameter information, according to a preset matching policy, from the The second type of target site is found in the second type of site.
  • the parameter information is any one or two of the following: location information and power information.
  • the matching strategy comprises:
  • one of the strongest second-type sites is selected, or the distance from the strongest second-type site is selected.
  • the reservation module is configured to perform channel reservation with the second type of target site on a working bandwidth corresponding to the second type of target site.
  • the reservation module may be further configured to send a request sending frame to the second type target station and receive a clear sending frame of the second type target station response on a working bandwidth corresponding to the second type target station. Or sending a short data frame or a null data frame or a quality of service null data frame to the second type target station on the working bandwidth corresponding to the second type target station, and receiving the second type target station response Confirm the frame.
  • the transmitting module is configured to transmit the first signal to the first type target station on a working bandwidth corresponding to the first type target station.
  • the transmission module may be further configured to: transmit a second signal, where the second signal includes at least: a non-high throughput short training field, a non-high throughput long training field, and a non-high throughput signaling field.
  • the interval between the second signal and the first signal is zero or a short interframe space.
  • the first signal is an Internet of Things signal
  • the second signal is a wireless local area network signal
  • the first type of target site is an Internet of Things device site
  • the second type of target site is a wireless local area network device site.
  • An embodiment of the present disclosure provides a computer readable storage medium storing a data transfer computer program, the computer program being executed by at least one processor to implement the method of any of the first embodiment step.
  • the computer readable storage medium in embodiments of the present disclosure may be RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard drive, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium may be located in an application specific integrated circuit.

Abstract

本公开公开了一种信号传输方法及相应设备,用以至少解决多种类型的设备与接入点之间,在相同频段进行传输存在干扰的问题。为解决上述技术问题,本公开中的一种信号传输方法包括:获取与第一类型目标站点匹配的第二类型目标站点;与所述第二类型目标站点进行信道预约;在预约完成后,向所述第一类型目标站点传输第一信号。

Description

信号传输方法、相应设备及存储介质
相关申请的交叉引用
本申请基于申请号为201710929604.8、申请日为2017年10月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及通讯领域但不限于通讯领域,特别是涉及一种信号传输方法、相应设备及存储介质。
背景技术
随着物联网的需求越来越多,目前WLAN(Wireless Local Area Networks,无线局域网)有关于在WLAN频段上研究IoT技术的讨论。由于IoT(Internet of Things,物联网)设备低成本低功耗等限制,以及实际通信的需求,IoT设备无法对现有WLAN信号进行正确判断,而WLAN设备也无法对IoT设备进行正确判断,因此两类设备在相同频段进行传输时,存在传输干扰的问题。
发明内容
为了克服上述缺陷,本公开实施例提供一种信号传输方法、相应设备及存储介质。
本公开中的一种信号传输方法,包括:
获取与第一类型目标站点匹配的第二类型目标站点;
与所述第二类型目标站点进行信道预约;
在预约完成后,向所述第一类型目标站点传输第一信号。
本公开中的一种接入点设备,包括存储器和处理器,所述存储器存储有信号传输计算机程序,所述处理器执行所述计算机程序,以实现如上所述方法的步骤。
本公开中的一种计算机可读存储介质,存储有信号传输计算机程序,所述计算机程序被至少一个处理器执行时,以实现如上所述方法的步骤。
本公开实施例中提供的方法、设备及存储介质,通过获取与第一类型目标站点匹配的第二类型目标站点,然后与所述第二类型目标站点进行信道预约,并在预约完成后,向所述第一类型目标站点传输第一信号,从而可以有效解决多种类型的设备与接入点之间,在相同频段进行数据传输存在干扰的问题;或者冲突大的问题;降低了相互同频干扰及频率使用冲突。
附图说明
图1是本公开实施例中一种信号传输方法的流程图;
图2是本公开实施例中基本服务集示意图;
图3是本公开实施例家庭场景中,Normal STA和NB STA混合的场景示意图;
图4是本公开实施例家庭场景中,通过RTS/CTS保护下行传输的示意图;
图5是本公开实施例家庭场景中,通过Normal Band的RTS/CTS和PHY Preamble保护下行传输的示意图;
图6是本公开实施例智能楼宇场景中,Normal STA和NB STA混合的场景示意图;
图7是本公开实施例智能楼宇场景中,通过Normal Band的RTS/CTS保护下行传输的示意图;
图8是本公开实施例智能楼宇场景中,通过Normal Band的RTS/CTS 和PHY Preamble保护下行传输的示意图;
图9是本公开实施例智能楼宇场景中,通过Normal Band的MU-RTS/CTS保护下行传输的示意图;
图10是本公开实施例智能楼宇场景中,通过Normal Band的MU-RTS/CTS和PHY Preamble保护下行传输的示意图;
图11是本公开实施例中一种接入点设备的结构示意图。
具体实施方式
为了解决现有技术的问题,本公开提供了一种信号传输方法、相应设备及存储介质,以下结合附图以及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不限定本公开。
在后续的描述中,使用用于区分元件的诸如“第一”、“第二”等前缀仅为了有利于本公开的说明,其本身没有特定的意义。
如图1所示,本公开实施例提供一种信号传输方法,所述方法包括:
S101,获取与第一类型目标站点匹配的第二类型目标站点;
S102,与所述第二类型目标站点进行信道预约;
S103,在预约完成后,向所述第一类型目标站点传输第一信号。
本公开实施例中方法在接入点中执行。
本公开实施例通过获取与第一类型目标站点匹配的第二类型目标站点,然后与所述第二类型目标站点进行信道预约,并在预约完成后,向所述第一类型目标站点传输第一信号,从而可以有效解决多种类型的设备与接入点之间,在相同频段进行数据传输存在干扰的问题。
第一类型站点为物联网设备站点,第一类型目标站点为第一类型站点中的一个目标站点,第二类型站点为无线局域网设备站点(即下文说的Normal STA),第二类型目标站点为第二类型站点中的一个目标站点。
所述第一类型站点和所述第二类型站点之间具有如下区别之一:
遵守的通信协议不同;
采用的不同通信制式;
通信的功耗不同。
在本公开实施例中,所述第一类型目标站点的工作带宽小于所述第二类型目标站点的工作带宽。
以下详细描述本公开实施例。
如图2所示,无线局域网中,一个接入点(Access Point,AP)设备(简称接入点)以及与AP相关联的多个站点(Station,STA)组成了一个基本服务集(Basic Service Set,BSS)。本公开实施例中将该站点称之为无线局域网设备站点,例如智能手机、平板电脑、笔记本等娱乐或工作设备;AP和无线局域网设备站点之间的通信是以20MHz为基本单位的。
在未来无线局域网中,一个接入点可能关联各种类型的设备。一类设备是智能手机、平板电脑、笔记本等用于娱乐、学习或工作的设备。这类设备对吞吐,速率要求高,这类设备工作的带宽往往比较大,比如以20MHz为基本单位。本公开实施例中将这类设备称为Normal STA。;一类设备是物联网(IoT)设备,这类设备对功耗,成本,覆盖,容量等要求较高。
由于IoT设备低成本低功耗等限制,以及实际通信的需求,IoT需要的带宽往往比较小,例如1MHz、2Mhz、4Mhz等等。IoT信号(本公开实施例中称之为第一信号)是在上述窄带宽进行传输。本公开实施例中将加入上述基本服务集中的IoT设备称之为物联网设备站点或者称为Narrow Band STA(NB STA);例如,传感器、家电、智能灯等IoT设备。
在一些实施例中,第二类型目标站点的工作带宽为常规带宽(Normal Band);第一类型目标站点的工作带宽为窄带带宽(Narrow Band)。
因此,无线局域网设备站点和物联网设备站点的工作信道相互重叠, 从而导致传输时会存在干扰。
本公开实施例中第一类型目标站点指代接入点即将要与之传输信号(即数据)的第一类型站点。
在本公开实施例中,所述查找与第一类型目标站点匹配的第二类型目标站点,包括:
获取所述第一类型目标站点和第二类型站点的预设参数信息;
根据获取的参数信息,按照预设的匹配策略,从所述第二类型站点中查找出所述第二类型目标站点。
本公开实施例通过获取的参数信息,进行第二类型目标站点的匹配,从而可以有效的查找出第二类型目标站点。
其中,所述参数信息为以下任一种或二种组合:位置信息和功率信息。
其中,所述匹配策略包括以下任一种:
1.选择距离所述第一类型目标站点最近的第二类型站点;
2.若距离所述第一类型目标站点最近的第二类型站点有至少2个,从所述最近的第二类型站点中任选一个第二类型站点,或从所述最近的第二类型站点中选择功率最强的第二类型站点;
3.选择功率最强的第二类型站点;
4.若功率最强的第二类型站点有至少2个,从所述最强的第二类型站点中任选一个第二类型站点,或从所述最强的第二类型站点中选择距离所述第一类型目标站点最近的第二类型站点。
例如,接入点获知基本服务集中各个站点的位置信息和/或功率信息,各个站点包括Normal STA(第二类型站点,例如工作带宽是20MHz)和NB STA(第一类型目标站点,例如工作带宽是2MHz,或其他小带宽)。
在一些实施例中,根据第一类型目标站点的位置信息和各个第二类型站点的位置信息,查找出与第一类型目标站点距离最近的第二类型站点, 其中查找出的第二类型站点为第二类型目标站点。
在一些实施例中,根据各个第二类型站点的功率信息,查找出功率(例如发射功率)最强的第二类型站点,其中查找出的第二类型站点为对应的第二类型目标站点。
在一些实施例中,根据各个站点的位置信息和功率信息,综合判断查找出第二类型站点,其中查找出的第二类型站点为对应的第二类型目标站点。
AP向NB STA传输数据之前,先获取NB STA周围Normal STA的位置,然后根据位置信息从候选第二类型站点中选择出一个和目标NB STA(第一类型目标站点)最匹配的Normal STA(对应的第二类型目标站点),向该Normal STA传输RTS帧,该Normal STA响应CTS帧。
在本公开实施例中,所述与所述第二类型目标站点进行信道预约,包括:
在所述第二类型目标站点对应的工作带宽上,与所述第二类型目标站点进行信道预约。
本公开实施例中,通过找出和第一类型目标站点匹配的第二类型目标站点,先和第二类型目标站点在大带宽上进行信道保护,然后,在小带宽上向第一类型目标站点传输数据,从而可以有效解决IoT设备和无线局域网(WLAN)设备工作信道相互重叠,传输时会存在干扰的问题。
其中,所述在所述第二类型目标站点对应的工作带宽上,与所述第二类型目标站点进行信道预约,包括:
在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站点发送请求发送帧,并接收所述第二类型目标站点响应的清除发送帧;或者
在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站 点发送短数据帧或空数据帧或服务质量QoS空数据帧,并接收所述第二类型目标站点响应的确认帧。
在本公开实施例中,所述向所述第一类型目标站点传输第一信号,包括:
在所述第一类型目标站点对应的工作带宽上,向所述第一类型目标站点传输所述第一信号。
其中,所述在所述第一类型目标站点对应的工作带宽上,向所述第一类型目标站点传输所述第一信号之前,包括:
传输第二信号,所述第二信号至少包括:L-STF(非高吞吐短训练字段)、L-LTF(非高吞吐长训练字段)和L-SIG(非高吞吐信令字段)。
本公开实施例通过第二信号可以增强鲁棒性,以继续与第二类型目标站点进行信道预约,从而可以有效防止Normal STAs在收到RTS设置NAV(Network Allocation Vector,网络分配矢量)后,没有收到后续的Normal Band信号进行NAV重设。
其中,所述第二信号和所述第一信号之间的间隔为零或者短帧间间隔(short interframe space,SIFS),或者其他预定义的间隔。
例如,AP在向STA1传输数据之前,先在Normal Band发送Normal STA可以接收的信号,该信号为Normal Band的PHY Preamble类型目标站点(物理层前导码),其至少包括L-STF(non-HT Short Training field),L-LTF(non-HT Long Training field)和L-SIG(non-HT SIGNAL field),而可以增强鲁棒性,防止Normal STAs在收到RTS设置NAV后,没有收到后续的Normal Band信号进行NAV重设。
其中,所述第一信号为物联网信号,所述第二信号为无线局域网信号;
所述第一类型目标站点为物联网设备站点,所述第二类型目标站点为无线局域网设备站点。
以下以两个应用场景,描述本公开实施例中方法。
应用场景一
在未来的智能家庭中,通过WLAN网络,可以连接传感器,家电,智能灯等等IoT设备,同时也可以连接智能手机,平板电脑,笔记本等娱乐或工作设备。在这里,我们将智能手机,平板电脑等设备称为Normal STA,这类设备的收发都是以20MHz为基础的,将它们工作的带宽称为Normal band;而传感器,家电、智能灯等设备称为NB STA,这类设备的收发都是以小带宽(小于20MHz)为基础的,将它们工作的带宽称为Narrow Band。这两类设备工作信道相互重叠,传输时会存在干扰。
在本场景中,AP向NB STA传输数据之前,为了保证避免Normal STA的干扰问题,查找记录的位置信息,根据位置信息,找到和NB STA最匹配的Normal STA。当然,也可以查找记录的位置信息和功率信息,根据位置信息和功率信息,找到和NB STA最匹配的Normal STA。
AP先在Normal Band向该Normal STA发送请求发送(Request to Send,RTS)帧,然后,该Normal STA在Normal Band响应清除发送(Clear to Send,CTS)帧。AP再向NB STA传输数据,以及NB STA在Narrow Band进行确认。
AP也可以在Normal Band向该Normal STA传输短数据帧,或QoS空数据帧,或空数据帧,然后,该Normal STA在Normal Band回复ACK帧。AP再向NB STA传输数据,以及NB STA在Narrow Band进行确认。
此外,AP寻找和NB STA匹配的Normal STA,不局限于这里列举的参数,还可以根据是否支持该能力,当前的状态(比如是否处于power save模式等)还查找匹配的Normal STA。
例如,如图3所示的家庭场景中,STA1、STA3和STA5是NB STA,而STA2和STA4是Normal STA。
AP记录所有和自己关联的Normal STA和NB STA的位置。AP想向STA1(NB STA)传输数据,为了保护向STA1传输的数据,AP查找哪个Normal STA的位置和STA1的位置最匹配,例如最匹配是指距离最近。当然,也可以根据位置信息和功率信息联合确定最匹配。
如图4所示,AP发现STA4最匹配,AP先在Normal Band向STA4传输RTS,然后STA4在Normal Band回复CTS。最后,AP收到CTS后,向STA1在Narrow Band传输第一信号数据(DATA)。
为了增强方案的鲁棒性,还可以采用如图5所示的过程。AP在Normal Band和STA4完成RTS和CTS交互后,AP在向STA1传输数据之前,先在Normal Band发送Normal STA可以接收的信号,该信号为Normal Band的PHY Preamble,至少包括L-STF(non-HT Short Training field),L-LTF(non-HT Long Training field)和L-SIG(non-HT SIGNAL field)。从而可以防止Normal STAs在收到RTS设置NAV后,没有收到后续的Normal Band信号进行NAV重设。
应用场景二
在未来的智能楼宇中,通过WLAN网络,可以连接各种传感器,智能电灯等IoT设备,还可以连接视频监控等设备。我们将视频监控等设备称为Normal STA,这类设备的收发都是以20MHz为基础的,将它们工作的带宽称为Normal band;而传感器,智能灯等设备称为NB STA,这类设备的收发都是以小带宽(小于20MHz)为基础的,将它们工作的带宽称为Narrow Band。这两类设备工作信道相互重叠,传输时会存在干扰。
在本场景中,AP可以向多个NB STAs进行传输,在向多个NB STAs传输数据之前,为了保证避免Normal STAs的干扰问题,查找记录的位置信息,根据位置信息,找到和这些NB STAs最匹配的一个或多个Normal STAs。AP先在Normal Band向这一个或多个Normal STA发送多用户请求 发送(Multi-user request to send,MU-RTS)帧,然后,该一个或多个Normal STA在Normal Band响应清除发送(Clear to Send,CTS)帧。AP再向NB STAs传输数据,以及NB STAs进行确认。
例如,如图6所示的场景中,STA1、STA3和STA5是NB STA,而STA2和STA4是Normal STA。
AP记录所有和自己关联的Normal STAs和NB STAs的位置。AP想向STA1和STA3传输数据,为了保护STA1和STA3的传输,AP查找和STA1和STA3匹配的Normal STAs。
如图7或图8所示,在查找时,可能和STA1和STA3匹配的是同一个Normal STA,也可能STA1和STA3匹配的Normal STAs列表中存在同一个Normal STA,比如STA4。AP先在Normal Band向STA4传输RTS,然后STA4在Normal Band回复CTS。AP收到CTS后,向STA1和STA3在Narrow Band传输数据。
如图9或图10所示,在查找时,STA1和STA3匹配的是STA2和STA4。AP先在Normal Band向STA2和STA4传输MU-RTS,然后STA2和STA4在Normal Band回复CTS。AP收到CTS后,向STA1和STA3在传输数据。
如图11所示,本公开实施例提供一种接入点设备,所述接入点设备包括存储器20和处理器22,所述存储器20存储有数据传输计算机程序,所述处理器22执行所述计算机程序,以实现如前述实施例中任意一项所述方法的步骤。
本公开实施例通过查找与第一类型目标站点匹配的第二类型目标站点,然后与所述第二类型目标站点进行信道预约,并在预约完成后,向所述第一类型目标站点传输第一信号,从而可以有效解决多种类型的设备与接入点之间,在相同频段进行数据传输存在干扰的问题。
详细说,所述处理器执行所述计算机程序,以实现如下步骤:
获取与第一类型目标站点匹配的第二类型目标站点;
与所述第二类型目标站点进行信道预约;
在预约完成后,向所述第一类型目标站点传输第一信号。
在本公开实施例中,所述第一类型目标站点的工作带宽小于所述第二类型目标站点的工作带宽。
在本公开实施例中,所述查找与第一类型目标站点匹配的第二类型目标站点,包括:
获取所述第一类型目标站点和第二类型站点的预设参数信息;
根据获取的参数信息,按照预设的匹配策略,从所述第二类型站点中查找出所述第二类型目标站点。
其中,所述参数信息为以下任一种或二种组合:位置信息和功率信息。
其中,所述匹配策略包括:
选择距离所述第一类型目标站点最近的第二类型站点;或者,
若距离所述第一类型目标站点最近的第二类型站点有至少2个,从所述最近的第二类型站点中任选一个第二类型站点,或从所述最近的第二类型站点中选择功率最强的第二类型站点;或者,
选择功率最强的第二类型站点;或者,
若功率最强的第二类型站点有至少2个,从所述最强的第二类型站点中任选一个第二类型站点,或从所述最强的第二类型站点中选择距离所述第一类型目标站点最近的第二类型站点。
在本公开实施例中,所述与所述第二类型目标站点进行信道预约,包括:
在所述第二类型目标站点对应的工作带宽上,与所述第二类型目标站点进行信道预约。
在本公开实施例中,所述在所述第二类型目标站点对应的工作带宽上, 与所述第二类型目标站点进行信道预约,包括:
在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站点发送请求发送帧,并接收所述第二类型目标站点响应的清除发送帧;或者
在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站点发送短数据帧或空数据帧或服务质量空数据帧,并接收所述第二类型目标站点响应的确认帧。
在本公开实施例中,所述向所述第一类型目标站点传输第一信号,包括:
在所述第一类型目标站点对应的工作带宽上,向所述第一类型目标站点传输所述第一信号。
在本公开实施例中,所述在所述第一类型目标站点对应的工作带宽上,向所述第一类型目标站点传输所述第一信号之前,包括:
传输第二信号,所述第二信号至少包括:非高吞吐短训练字段、非高吞吐长训练字段和非高吞吐信令字段。
其中,所述第二信号和所述第一信号之间的间隔为零或者短帧间间隔。
其中,所述第一信号为物联网信号,所述第二信号为无线局域网信号;
所述第一类型目标站点为物联网设备站点,所述第二类型目标站点为无线局域网设备站点。
本发明实施例提供一种信号传输装置,所述装置包括:
获取模块,用于获取与第一类型目标站点匹配的第二类型目标站点;
预约模块,用于与所述第二类型目标站点进行信道预约;
传输模块,用于在预约完成后,向所述第一类型目标站点传输第一信号。
在一些实施例中,所述第一类型目标站点的工作带宽小于所述第二类 型目标站点的工作带宽。
在一些实施例中,所述获取模块,还可配置为:获取所述第一类型目标站点和第二类型站点的参数信息;根据获取的参数信息,按照预设的匹配策略,从所述第二类型站点中查找出所述第二类型目标站点。
在一些实施例中,所述参数信息为以下任一种或二种组合:位置信息和功率信息。
在一些实施例中,所述匹配策略包括:
选择距离所述第一类型目标站点最近的第二类型站点;或者,
若距离所述第一类型目标站点最近的第二类型站点有至少2个,从所述最近的第二类型站点中任选一个第二类型站点,或从所述最近的第二类型站点中选择功率最强的第二类型站点;或者,
选择功率最强的第二类型站点;或者,
若功率最强的第二类型站点有至少2个,从所述最强的第二类型站点中任选一个第二类型站点,或从所述最强的第二类型站点中选择距离所述第一类型目标站点最近的第二类型站点。
在一些实施例中,所述预约模块,配置为在所述第二类型目标站点对应的工作带宽上,与所述第二类型目标站点进行信道预约。
所述预约模块,还可配置为在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站点发送请求发送帧,并接收所述第二类型目标站点响应的清除发送帧;或者在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站点发送短数据帧或空数据帧或服务质量空数据帧,并接收所述第二类型目标站点响应的确认帧。
所述传输模块,配置为在所述第一类型目标站点对应的工作带宽上,向所述第一类型目标站点传输所述第一信号。
所述传输模块,还可配置为:传输第二信号,所述第二信号至少包括: 非高吞吐短训练字段、非高吞吐长训练字段和非高吞吐信令字段。
所述第二信号和所述第一信号之间的间隔为零或者短帧间间隔。
所述第一信号为物联网信号,所述第二信号为无线局域网信号;
所述第一类型目标站点为物联网设备站点,所述第二类型目标站点为无线局域网设备站点。本公开实施例提供一种计算机可读存储介质,所述存储介质存储有数据传输计算机程序,所述计算机程序被至少一个处理器执行时,以实现如实施例一中任意一项所述方法的步骤。
本公开实施例中计算机可读存储介质可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域已知的任何其他形式的存储介质。可以将一种存储介质藕接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路中。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种信号传输方法,所述方法包括:
    获取与第一类型目标站点匹配的第二类型目标站点;
    与所述第二类型目标站点进行信道预约;
    在预约完成后,向所述第一类型目标站点传输第一信号。
  2. 如权利要求1所述的方法,其中,所述第一类型目标站点的工作带宽小于所述第二类型目标站点的工作带宽。
  3. 如权利要求1所述的方法,其中,所述获取与第一类型目标站点匹配的第二类型目标站点,包括:
    获取所述第一类型目标站点和第二类型站点的参数信息;
    根据获取的参数信息,按照预设的匹配策略,从所述第二类型站点中查找出所述第二类型目标站点。
  4. 如权利要求3所述的方法,其中,所述参数信息为以下任一种或二种组合:位置信息和功率信息。
  5. 如权利要求4所述的方法,其中,所述匹配策略包括:
    选择距离所述第一类型目标站点最近的第二类型站点;或者,
    若距离所述第一类型目标站点最近的第二类型站点有至少2个,从所述最近的第二类型站点中任选一个第二类型站点,或从所述最近的第二类型站点中选择功率最强的第二类型站点;或者,
    选择功率最强的第二类型站点;或者,
    若功率最强的第二类型站点有至少2个,从所述最强的第二类型站点中任选一个第二类型站点,或从所述最强的第二类型站点中选择距离所述第一类型目标站点最近的第二类型站点。
  6. 如权利要求1所述的方法,其中,所述与所述第二类型目标站点进 行信道预约,包括:
    在所述第二类型目标站点对应的工作带宽上,与所述第二类型目标站点进行信道预约。
  7. 如权利要求6所述的方法,其中,所述在所述第二类型目标站点对应的工作带宽上,与所述第二类型目标站点进行信道预约,包括:
    在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站点发送请求发送帧,并接收所述第二类型目标站点响应的清除发送帧;或者
    在所述第二类型目标站点对应的工作带宽上,向所述第二类型目标站点发送短数据帧或空数据帧或服务质量空数据帧,并接收所述第二类型目标站点响应的确认帧。
  8. 如权利要求1所述的方法,其中,所述向所述第一类型目标站点传输第一信号,包括:
    在所述第一类型目标站点对应的工作带宽上,向所述第一类型目标站点传输所述第一信号。
  9. 如权利要求8所述的方法,其中,所述在所述第一类型目标站点对应的工作带宽上,向所述第一类型目标站点传输所述第一信号之前,包括:
    传输第二信号,所述第二信号至少包括:非高吞吐短训练字段、非高吞吐长训练字段和非高吞吐信令字段。
  10. 如权利要求9所述的方法,其中,所述第二信号和所述第一信号之间的间隔为零或者短帧间间隔。
  11. 如权利要求9所述的方法,其中,所述第一信号为物联网信号,所述第二信号为无线局域网信号;
    所述第一类型目标站点为物联网设备站点,所述第二类型目标站点为无线局域网设备站点。
  12. 一种接入点设备,所述接入点设备包括存储器和处理器,所述存储器存储有信号传输计算机程序,所述处理器执行所述计算机程序,以实现如权利要求1至11中任意一项所述方法的步骤。
  13. 一种计算机可读存储介质,所述存储介质存储有信号传输计算机程序,所述计算机程序被至少一个处理器执行时,以实现如权利要求1至11中任意一项所述方法的步骤。
PCT/CN2018/108901 2017-10-09 2018-09-29 信号传输方法、相应设备及存储介质 WO2019072122A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18866599.6A EP3697164B1 (en) 2017-10-09 2018-09-29 Signal transmission method, corresponding equipment and storage medium
US16/754,281 US11310832B2 (en) 2017-10-09 2018-09-29 Signal transmission method, corresponding equipment and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710929604.8 2017-10-09
CN201710929604.8A CN109640396B (zh) 2017-10-09 2017-10-09 信号传输方法、相应设备及存储介质

Publications (1)

Publication Number Publication Date
WO2019072122A1 true WO2019072122A1 (zh) 2019-04-18

Family

ID=66051119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108901 WO2019072122A1 (zh) 2017-10-09 2018-09-29 信号传输方法、相应设备及存储介质

Country Status (4)

Country Link
US (1) US11310832B2 (zh)
EP (1) EP3697164B1 (zh)
CN (1) CN109640396B (zh)
WO (1) WO2019072122A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068054A (zh) * 2011-10-21 2013-04-24 上海无线通信研究中心 基于时延可控的超高速无线局域网信道接入方法
CN103067985A (zh) * 2011-10-21 2013-04-24 上海无线通信研究中心 基于信道质量的超高速无线局域网信道绑定与分配方法
CN103856959A (zh) * 2012-11-30 2014-06-11 华为技术有限公司 无线局域网络质量监控方法、设备和系统
CN105519185A (zh) * 2013-09-04 2016-04-20 高通股份有限公司 无执照频谱中稳健的无线电接入技术间操作

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989066B2 (en) * 2010-03-31 2015-03-24 Qualcomm, Incorporated Protection mechanisms for multi-user MIMO transmissions
CN102387549B (zh) * 2010-08-31 2017-03-15 中兴通讯股份有限公司 信道预约方法及系统
JP5959883B2 (ja) * 2012-03-06 2016-08-02 株式会社日立国際電気 異種システム共存方法及び無線ゲートウェイ装置
KR20130103182A (ko) 2012-03-09 2013-09-23 한국전자통신연구원 무선 멀티 인터페이스를 활용한 에너지 절감형 이동 노드 제어 방법
EP2757850B1 (en) * 2013-01-16 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Radio communication in unlicensed band
US9712231B2 (en) * 2013-04-15 2017-07-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiple narrow bandwidth channel access and MAC operation within wireless communications
CN105474736B (zh) * 2013-12-02 2020-02-14 华为技术有限公司 传输数据的方法及装置
KR102094190B1 (ko) * 2014-05-09 2020-03-31 삼성전자주식회사 기기간 통신의 자원할당을 위한 분산 스케줄링 방법 및 장치
CN105992387B (zh) * 2015-02-13 2019-04-05 工业和信息化部电信研究院 一种无线信道接入方法和装置
US10652921B2 (en) * 2015-05-27 2020-05-12 Qualcomm Incorporated Techniques for handling feedback for downlink transmissions in a shared radio frequency spectrum band
US10638516B2 (en) 2015-08-19 2020-04-28 Zte Corporation Controlling transmissions from multiple user devices via a request-clear technique
CN111132362A (zh) * 2015-09-02 2020-05-08 华为技术有限公司 一种物联网通信方法、网络侧设备及物联网终端
CN106788622B (zh) * 2017-01-13 2020-06-16 西安电子科技大学 无线局域网以用户为中心的下行多点协作传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068054A (zh) * 2011-10-21 2013-04-24 上海无线通信研究中心 基于时延可控的超高速无线局域网信道接入方法
CN103067985A (zh) * 2011-10-21 2013-04-24 上海无线通信研究中心 基于信道质量的超高速无线局域网信道绑定与分配方法
CN103856959A (zh) * 2012-11-30 2014-06-11 华为技术有限公司 无线局域网络质量监控方法、设备和系统
CN105519185A (zh) * 2013-09-04 2016-04-20 高通股份有限公司 无执照频谱中稳健的无线电接入技术间操作

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, IL-GU: "Interference-aware self-optimizing Wi-Fi for efficiency internet of things in dense networks", COMPUTER COMMUNICATIONS, vol. 89, 31 December 2016 (2016-12-31), pages 60 - 74, XP029621660 *
See also references of EP3697164A4 *

Also Published As

Publication number Publication date
CN109640396A (zh) 2019-04-16
CN109640396B (zh) 2022-07-15
EP3697164B1 (en) 2023-07-19
US11310832B2 (en) 2022-04-19
EP3697164A4 (en) 2021-07-14
EP3697164A1 (en) 2020-08-19
US20200329499A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US20230370853A1 (en) Wireless communication method and wireless communication terminal for spatial reuse of overlapped basic service set
US9860874B2 (en) Method and apparatus for operating resource in wireless communication system
US20200359417A1 (en) Wireless communication method and wireless communication terminal in high density environment including overlapped basic service sets
RU2426273C2 (ru) Передачи множеству станций в системах беспроводной связи
US20190230524A1 (en) System and Method for Coordinated Beamforming for Overlapping Basic Service Set in WLAN
US20160081120A1 (en) Communications method and device for single-frequency wireless local area network
JP2009171506A (ja) 無線通信装置、無線通信装置の制御プログラム、および無線通信システム
JP6255397B2 (ja) 無線通信システムにおける重複チャンネルによって引き起こされる干渉を減少させる方法
US20230247599A1 (en) Wireless communication method and terminal for multi-user uplink transmission
JP2015508263A (ja) データ伝送方法、アクセス・ポイントおよび局
WO2011099791A2 (en) Channel access method and apparatus in wireless local area network system
US11564131B2 (en) Method for sending resource reservation message and apparatus
US10333737B2 (en) Method of aligning interference in wireless local area network
US20230075441A1 (en) Wireless communication method and wireless communication terminal, which use network allocation vector
US20220038226A1 (en) Data transmission method and apparatus
KR102609318B1 (ko) 무선랜 품질 관리 방법 및 장치
US11477780B2 (en) Radio frame processing method and apparatus in a multiple BSS scenario
WO2020029277A1 (zh) Fbe的数据传输方法、装置及存储介质
WO2017118297A1 (zh) 数据传输的方法、装置及计算机存储介质
WO2019072122A1 (zh) 信号传输方法、相应设备及存储介质
WO2013037320A1 (zh) 传输信息的方法和装置
US10367608B2 (en) Wireless communication channel scan
JP7047719B2 (ja) 無線lanシステムおよび干渉制御方法
WO2019157913A1 (zh) 一种发送资源预留消息的方法及装置
WO2018137230A1 (zh) 非授权频谱上drs传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018866599

Country of ref document: EP

Effective date: 20200511