WO2019072115A1 - 一种优化散热的服务器系统及安装方法 - Google Patents

一种优化散热的服务器系统及安装方法 Download PDF

Info

Publication number
WO2019072115A1
WO2019072115A1 PCT/CN2018/108560 CN2018108560W WO2019072115A1 WO 2019072115 A1 WO2019072115 A1 WO 2019072115A1 CN 2018108560 W CN2018108560 W CN 2018108560W WO 2019072115 A1 WO2019072115 A1 WO 2019072115A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard disk
server
node
fan
backplane
Prior art date
Application number
PCT/CN2018/108560
Other languages
English (en)
French (fr)
Inventor
罗嗣恒
Original Assignee
郑州云海信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州云海信息技术有限公司 filed Critical 郑州云海信息技术有限公司
Publication of WO2019072115A1 publication Critical patent/WO2019072115A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • G06F1/187Mounting of fixed and removable disk drives
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • G06F1/188Mounting of power supply units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1638Computer housing designed to operate in both desktop and tower orientation

Definitions

  • the invention relates to a server heat dissipation optimization system, in particular to a server system and an installation method for optimizing heat dissipation.
  • the general server structure is based on a 2U chassis and is deployed in the rack of the equipment room.
  • the four-star server came into being. That is, deploying four server nodes in a 2U space can effectively improve the space utilization of the equipment room.
  • the four-child server includes: 4 server nodes, system cooling fan, hard disk module, 2 power modules, and 5 parts in the system board.
  • the power supply of the server node, the system cooling fan, and the hard disk module are all realized by centralized power collection on the system board.
  • the server node directly takes power from the board in the system.
  • the fan and hard disk backplane set by the system take power through the power supply cable on the system board.
  • the current flowing through the board in the system is also getting larger and larger, so the system needs to set a larger ventilation hole on the board to solve the heat dissipation problem of the new generation CPU.
  • the larger venting holes in the system will cause the current carrying capacity of the system to decrease.
  • the invention provides a server system and an installation method for optimizing heat dissipation, which are used for solving the problem that the server heat dissipation system is poor in the prior art, the system removes the system middle board, and integrates the signal of the original system board and the power supply interconnection function.
  • the fan On the backplane of the hard disk, the fan is installed between the node and the backplane of the hard disk.
  • the flow resistance of the fan air duct is greatly reduced, and the heat dissipation is greatly improved.
  • a server system for optimizing heat dissipation includes a server node, a power module, a power distribution board, and a hard disk backplane.
  • a fan is disposed between the server node and the hard disk backplane, and the power module is connected to the power distribution board through a cable.
  • the hard disk backplane is powered, and the hard disk module is installed on the other side of the hard disk backplane.
  • the hard disk module is connected to the hard disk backplane through a cable; the server node is connected to the hard disk backplane through the node side board; the fan passes the cable and the hard disk.
  • the backplane is connected, and the optimized heat dissipation channel formed by the fan, including the cold air, is sequentially sucked from the hard disk module and the hard disk backboard by the fan and then discharged through the server node.
  • the server node and the fan are provided with four sets of four sub-star servers corresponding to each other.
  • the power module is provided with two sets, which are arranged in the middle of four sets of server nodes.
  • the hard disk module is provided with four sets.
  • a method for installing a server system for optimizing heat dissipation comprising the following steps:
  • the fan, the power distribution board, and the hard disk backplane are fixed on the server chassis, and the power module is connected to the power distribution board, and the power distribution board and the hard disk backplane are connected by a power cable.
  • the server system and the fan are provided with four sets corresponding to each other, and the four sets of server nodes are assembled and then inserted into the server chassis one by one to form a four-star server.
  • a method for installing a server system for optimizing heat dissipation is provided with two sets of power modules arranged in an intermediate position of four sets of server nodes.
  • a method for installing a server system for optimizing heat dissipation wherein the hard disk module is provided with four sets.
  • the present invention can not only solve the heat dissipation problem caused by the increase of power consumption in the existing four-child server, but also can adapt to the adverse effects of heat dissipation in other types of servers, and integrate the power supply and signal interconnection functions into the back of the hard disk. Board to improve air duct structure and improve server performance.
  • the invention reduces the flow resistance of the air duct and enhances the stability of the working of the server system, especially for the product configuration with increasing CPU performance and increasing power consumption, the advantage of the system structure in solving the heat dissipation problem of the system The more obvious.
  • FIG. 1 is a schematic structural diagram of a four-star server system in the prior art
  • Figure 2 is a schematic view of the mechanism in the middle of the system of Figure 1;
  • FIG. 3 is a schematic structural diagram of a four-child server system of the present invention.
  • HDD BP English full name Hard disk backplane, Chinese meaning hard disk backplane
  • PDB English full name Power Distribute board, Chinese meaning power distribution board
  • NODE means server node
  • PSU means power module
  • PDB means power distribution board
  • FAN means fan HDD stands for hard disk module.
  • the four-star server system structure adopted in the prior art includes four server nodes 4, one system, one board, four fans, three, 24 hard disk back boards, and two hard disk modules. 5, 2 power modules.
  • the two power modules PSU0 and PSU1 are connected to the system board to supply power to the four server nodes.
  • the fan FAN0 ⁇ FAN1 ⁇ FAN2 ⁇ FAN3 is located between the system board and the HDD BP.
  • the four hard disk modules HDD0-5 ⁇ HDD6-11 ⁇ HDD12-17 ⁇ HDD18-23 are plugged into the 24-port HDD BP.
  • the HDD BP is connected to the system midplane through cables to realize the communication and signal link communication. .
  • the board is a passive board and does not include active components such as chips, MOS, and triodes. It is used to implement power supply and signal interconnection of all functional units of the server system.
  • the system board is provided with four server node interfaces 8, two PSU interfaces 9, four air duct openings 7, four fan interfaces 6, and four HDD BP power supply interfaces 10.
  • the fan draws air from right to left during operation, and the cold air of the air passage flows through the four hard disk modules and the hard disk back plate, and then is sucked through the air passage opening of the system middle plate by the fan. Then, the CPU, memory, PCH, BMC and other components in the server node are cooled, and finally the hot air is discharged from the left side. Due to the adoption of the system board in the existing solution, as the CPU performance on the server node continues to increase, the power consumption of the CPU continues to increase. Under the condition that the rated speed of the system fan cannot be increased, it is necessary to take away more heat, which is bound to reduce the flow resistance of the air duct.
  • a server system for optimizing heat dissipation includes a server node 4, a power module, a power distribution board 12, and a hard disk backplane 2, and a fan 3 is disposed between the server node 4 and the hard disk backplane 2.
  • the power module is connected to the power distribution board 12 to supply power to the hard disk backplane 2, and the other side of the hard disk backplane 2 is mounted with the hard disk module 5, and the hard disk module 5 is connected to the hard disk backplane 2 through a cable;
  • the server node 4 is connected to the hard disk backplane 2 through the node side panel 11;
  • the fan 3 is connected to the hard disk backplane 2 through a cable, and the optimized heat dissipation channel formed by the fan 3 during operation includes cold air sequentially from the hard disk module 5 and the hard disk.
  • the backing plate 2 is sucked by the fan 3 and then discharged through the server node 4.
  • the power module PSU0 ⁇ PSU1 is interconnected with the PDB, and then the PDB is interconnected with the HDD BP through the cable, and the power supply to each functional unit of the system is implemented by the HDD BP.
  • HDD BP includes the function of interconnecting with the hard disk module, and also includes the power supply interconnection and signal interconnection of the server node NODE0 ⁇ 1 ⁇ 2 ⁇ 3 and the fan FAN0 ⁇ 1 ⁇ 2 ⁇ 3.
  • the server node realizes power supply and signal interconnection to the HDD BP through the node side board and the HDD BP.
  • the server node NODE0 and the node side board 0 are plugged in the HDD BP to take power and signal interconnection.
  • the server node NODE1 and the node side board 1 are plugged into the HDD BP to take power and signal interconnection.
  • the server node NODE2 and the node side board 2 are plugged in to take power and signal interconnection on the HDD BP.
  • the server node NODE3 and the node side board 3 are plugged in to take power and signal interconnection on the HDD BP.
  • the system optimizes the air duct working process after the heat is dissipated.
  • the fan draws air from the right to the left.
  • the wind is directly extracted by the system fan to the CPU and memory of the server node. PCH, BMC, etc. are cooled, and finally the hot air flow is discharged from the left side. Therefore, the server system with optimized heat dissipation of the present invention can well solve the heat dissipation problem caused by the board in the system, and thus there is no problem that the current carrying capacity is deteriorated.
  • the method for installing a server system for optimizing heat dissipation comprises the following steps, as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种优化散热的服务器系统及安装方法,包括服务器节点、电源模块、电源分配板和硬盘背板,所述服务器节点和硬盘背板之间设置风扇,所述电源模块通过线缆与电源分配板连接后为硬盘背板供电,硬盘背板另一侧安装硬盘模组,硬盘模组通过线缆与硬盘背板连接;所述服务器节点通过节点侧板与硬盘背板连接;所述风扇通过线缆与硬盘背板连接,风扇工作时形成的优化散热通道,包括冷风依次从硬盘模组、硬盘背板被所述风扇抽吸再经过服务器节点后排出。本发明将供电和信号互联功能集成到硬盘背板上,用以改善风道结构和提高服务器性能,增强服务器系统工作的稳定性。

Description

一种优化散热的服务器系统及安装方法
本申请要求于2017年10月9日提交中国专利局、申请号为201710929574.0、发明名称为“一种优化散热的服务器系统及安装方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及服务器散热优化系统,尤其涉及一种优化散热的服务器系统及安装方法。
背景技术
伴随着互联网、云计算技术不断兴起和发展,对服务器的数据处理能力、存储容量都提出了更高的要求。一般的大型数据中心机房,寸土寸金,不论是机房租用还是自建机房,租金和造价都十分昂贵。
为了节省占地面积,充分利用空间,高密度部署的服务器产品应运而生。这类产品一般具有,集中供电、集中散热、集中管理这三大特点。通常的服务器结构形态均以2U机箱为主,部署在机房机架上。为提高部署在机房机架上2U空间的服务器的数量,四子星服务器应运而生。即:在2U的空间内部署4个服务器节点,能有效地提高机房的空间利用率。
例如,在四子星服务器包含:4个服务器节点、系统散热风扇、硬盘模组、2个电源模块、系统中板5个部分。其中:服务器节点、系统散热风扇、硬盘模组这3部分的供电,都是通过在系统中板上集中取电来实现的。
传统的四子星服务器系统结构中,服务器节点直接在系统中板取电,系统 设置的风扇和硬盘背板通过供电线缆在系统中板上取电。随着新一代CPU的性能越来越好,相应的功耗也越来越大。在系统中板上走的电流也越来越大,因此系统中板上需要设置更大的通风孔,以解决新一代CPU的散热问题。但是,在系统中板开出更大的通风孔,会导致系统中板载流能力下降,当系统满负荷持续工作时,会存在系统中板PCB温度持续升高,引起烧板的风险。
发明内容
本发明提供一种优化散热的服务器系统及安装方法,用于解决现有技术中服务器散热系统不佳的问题,该系统去掉了系统中板,将原有系统中板的信号和供电互联功能集成在硬盘背板上,将风扇安装在节点和硬盘背板之间,在满足供电需求的基础上,将风扇风道流阻大大降低,散热得到大幅度的改善。
本发明通过以下技术方案予以实现:
一种优化散热的服务器系统,包括服务器节点、电源模块、电源分配板和硬盘背板,所述服务器节点和硬盘背板之间设置风扇,所述电源模块通过线缆与电源分配板连接后为硬盘背板供电,硬盘背板另一侧安装硬盘模组,硬盘模组通过线缆与硬盘背板连接;所述服务器节点通过节点侧板与硬盘背板连接;所述风扇通过线缆与硬盘背板连接,风扇工作时形成的优化散热通道,包括冷风依次从硬盘模组、硬盘背板被所述风扇抽吸再经过服务器节点后排出。
如上一种优化散热的服务器系统,所述服务器节点和风扇设置有相互对应的4套组成四子星服务器。
如上所述的一种优化散热的服务器系统,所述电源模块设置有2套,布置在4套服务器节点的中间位置。
如上所述的一种优化散热的服务器系统,所述硬盘模组设置有4套。
一种优化散热的服务器系统安装方法,包括以下步骤:
准备待安装的模块以及配件,包括节点托盘、主板、CPU、内存、硬盘、硬盘背板、节点侧板、电源模块、电源分配板、供电及信号线缆;
然后将主板固定在节点托盘上,再将CPU、内存安装在主板上;
再将节点侧板插接在主板上构成单个的服务器节点;
然后将风扇、电源分配板和硬盘背板固定在服务器机箱上,将电源模块插接在电源分配板上,电源分配板与硬盘背板之间通过供电线缆连接;
将带有硬盘的硬盘模组安装在托盘上并依次与硬盘背板连接;
最后,将组装好的服务器节点插入服务器机箱内。
如上所述的一种优化散热的服务器系统安装方法,所述服务器节点和风扇设置有相互对应的4套,4套服务器节点完成组装后再逐个插入服务器机箱组成四子星服务器。
如上所述的一种优化散热的服务器系统安装方法,所述电源模块设置有2套,布置在4套服务器节点的中间位置。
如上所述的一种优化散热的服务器系统安装方法,所述硬盘模组设置有4套。
与现有技术相比,本发明的优点是:
1、本发明不仅仅可解决现有四子星服务器中由于功耗增大带来的散热难题,对于其它类型服务器中存在散热不良影响的均可以适应,将供电和信号互联功能集成到硬盘背板上,用以改善风道结构和提高服务器性能。
2、本发明降低了风道的流阻,增强服务器系统工作的稳定性,尤其是针 对CPU性能不断增强,功耗越来越大的产品配置下,该系统结构在解决系统散热问题的优势会越明显。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。
图1是现有技术中的四子星服务器系统结构示意图;
图2是图1中所述系统中部的机构示意图;
图3是本发明的四子星服务器系统结构示意图。
附图标记:1-系统中板,2-硬盘背板,3-风扇,4-服务器节点,5-硬盘模组,6-风扇接口,7-风道开孔,8-服务器节点接口,9-电源模块接口,10-硬盘背板供电接口;11-节点侧板,12-电源分配板。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
其中,说明书中涉及的技术术语含义如下:
HDD BP,英文全称Hard disk backplane,中文含义为硬盘背板;PDB,英文全称Power Distribute board,中文含义为电源分配板;NODE表示服务器节点,PSU表示电源模块,PDB表示电源分配板,FAN表示风扇,HDD表示硬盘模组。
如图1-图3所示,以现有技术中的四子星服务器系统和本发明进行对比举 例说明。
如图1所示,现有技术所采用的四子星服务器系统结构,包含4个服务器节点4、1块系统中板1、4颗风扇3、24口硬盘背板2、4个硬盘模组5、2块电源模块。2个电源模块PSU0和PSU1插接在系统中板上为4个服务器节点供电,风扇FAN0\FAN1\FAN2\FAN3位于系统中板和HDD BP之间,通过线缆插接在系统中板上取电,4个硬盘模组HDD0-5\HDD6-11\HDD12-17\HDD18-23插接在24口HDD BP上,HDD BP通过线缆与系统中板互联,实现供电和信号链路的联通。
如图2所示,现有技术中系统中板的结构示意图。该板卡属于无源板,不包含芯片、MOS、三极管等主动元器件,用来实现服务器系统所有功能单元供电和信号的互联转接。系统中板上设置有4个服务器节点接口8、2个PSU接口9、4个风道开孔7、4个风扇接口6、4个HDD BP供电接口10。
因此,整个服务器的散热过程,在工作时风扇从右向左抽风,风道的冷风流经4个硬盘模组、硬盘背板后,再经风扇抽吸经过系统中板的风道开孔,然后经服务器节点中的CPU、内存、PCH、BMC等部件进行降温,最后将热风从左侧排出来。现有方案由于采用系统中板的方案,随着服务器节点上CPU性能不断提高,CPU的功耗不断加大。在系统风扇额定转速不能提高的条件下,要带走更多的热量,势必要求减小风道的流阻。这样一来,就需要将系统中板上的风道开孔变大,如图2所示。若风道开孔变大后,给服务器节点供电电流的载流路径势必会变窄,系统中板的载流能力下降,会带来局部PCB过热的问题。
如图3所示,本实施例一种优化散热的服务器系统,包括服务器节点4、 电源模块、电源分配板12和硬盘背板2,所述服务器节点4和硬盘背板2之间设置风扇3,所述电源模块通过线缆与电源分配板12连接后为硬盘背板2供电,硬盘背板2另一侧安装硬盘模组5,硬盘模组5通过线缆与硬盘背板2连接;所述服务器节点4通过节点侧板11与硬盘背板2连接;所述风扇3通过线缆与硬盘背板2连接,风扇3工作时形成的优化散热通道,包括冷风依次从硬盘模组5、硬盘背板2被所述风扇3抽吸再经过服务器节点4后排出。本实施例中通过电源模块PSU0\PSU1与PDB互联,然后,PDB通过线缆与HDD BP实现互联,通过HDD BP来实现对系统各功能单元的供电。在本系统中HDD BP既包含有与硬盘模组互联的作用,也包含有服务器节点NODE0\1\2\3、风扇FAN0\1\2\3的供电互联及信号互联。
服务器节点通过节点侧板与HDD BP实现向HDD BP取电和信号互联。具体是:服务器节点NODE0与节点侧板0,插接在HDD BP上取电和信号互联。服务器节点NODE1与节点侧板1,插接在HDD BP上取电和信号互联。服务器节点NODE2与节点侧板2,插接在HDD BP上取电和信号互联。服务器节点NODE3与节点侧板3,插接在HDD BP上取电和信号互联。
采用本系统优化散热后的风道工作过程,当服务器工作时风扇从右向左抽风,风道的冷风流经硬盘模组后,再经系统风扇将风流直接抽出给服务器节点的CPU、内存、PCH、BMC等进行降温,最后再将热风流从左侧排出。因此,本发明经过优化散热的服务器系统,就能够很好的解决因系统中板产生的散热问题,进而也不会有载流能力变差的问题。
如图3所示,本发明一种优化散热的服务器系统安装方法,包括以下步骤,具体如下:
①、准备好服务器节点托盘、主板、CPU、内存、硬盘、HDD BP、供电及信号线缆、节点侧板、PDB、电源模块;
②、将主板固定在服务器节点托盘上,待固定好后将CPU、内存安装在主板上;
③、将节点侧板插接在主板上构成单个服务器节点;
④、将HDD BP和PDB固定在四子星机箱上;
⑤、将电源模块PSU0\1插接在PDB上,并将供电线缆连在PDB和HDD BP之间;
⑥、将硬盘安装在托盘上,依次插接在HDD BP端。
⑦、最后,将组装好的服务器节点逐个插入四子星服务器机箱内。
本发明未详尽描述的技术内容均为公知技术。

Claims (8)

  1. 一种优化散热的服务器系统,其特征在于,包括服务器节点、电源模块、电源分配板和硬盘背板,所述服务器节点和硬盘背板之间设置风扇,所述电源模块通过线缆与电源分配板连接后为硬盘背板供电,硬盘背板另一侧安装硬盘模组,硬盘模组通过线缆与硬盘背板连接;所述服务器节点通过节点侧板与硬盘背板连接;所述风扇通过线缆与硬盘背板连接,风扇工作时形成的优化散热通道,包括冷风依次从硬盘模组、硬盘背板被所述风扇抽吸再经过服务器节点后排出。
  2. 根据权利要求1所述的一种优化散热的服务器系统,其特征在于,所述服务器节点和风扇设置有相互对应的4套组成四子星服务器。
  3. 根据权利要求2所述的一种优化散热的服务器系统,其特征在于,所述电源模块设置有2套,布置在4套服务器节点的中间位置。
  4. 根据权利要求2所述的一种优化散热的服务器系统,其特征在于,所述硬盘模组设置有4套。
  5. 如权利要求1-4任一所述的一种优化散热的服务器系统安装方法,其特征在于,包括以下步骤:
    准备待安装的模块以及配件,包括节点托盘、主板、CPU、内存、硬盘、硬盘背板、节点侧板、电源模块、电源分配板、供电及信号线缆;
    然后将主板固定在节点托盘上,再将CPU、内存安装在主板上;
    再将节点侧板插接在主板上构成单个的服务器节点;
    然后将风扇、电源分配板和硬盘背板固定在服务器机箱上,将电源模块插接在电源分配板上,电源分配板与硬盘背板之间通过供电线缆连接;
    将带有硬盘的硬盘模组安装在托盘上并依次与硬盘背板连接;
    最后,将组装好的服务器节点插入服务器机箱内。
  6. 根据权利要求5所述的一种优化散热的服务器系统安装方法,其特征在于,所述服务器节点和风扇设置有相互对应的4套,4套服务器节点完成组装后再逐个插入服务器机箱组成四子星服务器。
  7. 根据权利要求6所述的一种优化散热的服务器系统安装方法,其特征在于,所述电源模块设置有2套,布置在4套服务器节点的中间位置。
  8. 根据权利要求6所述的一种优化散热的服务器系统安装方法,其特征在于,所述硬盘模组设置有4套。
PCT/CN2018/108560 2017-10-09 2018-09-29 一种优化散热的服务器系统及安装方法 WO2019072115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710929574.0A CN107656588B (zh) 2017-10-09 2017-10-09 一种优化散热的服务器系统及安装方法
CN201710929574.0 2017-10-09

Publications (1)

Publication Number Publication Date
WO2019072115A1 true WO2019072115A1 (zh) 2019-04-18

Family

ID=61117007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108560 WO2019072115A1 (zh) 2017-10-09 2018-09-29 一种优化散热的服务器系统及安装方法

Country Status (2)

Country Link
CN (1) CN107656588B (zh)
WO (1) WO2019072115A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656588B (zh) * 2017-10-09 2020-01-03 苏州浪潮智能科技有限公司 一种优化散热的服务器系统及安装方法
CN108919931A (zh) * 2018-05-25 2018-11-30 郑州云海信息技术有限公司 一种服务器供电系统及方法
CN109032299B (zh) * 2018-07-19 2021-07-27 郑州云海信息技术有限公司 一种6u高密度服务器系统供电结构
CN109634399B (zh) * 2018-12-07 2022-08-26 英业达科技有限公司 低功耗存储型服务器
CN111722676B (zh) * 2019-03-20 2024-04-30 可可若器(北京)信息技术有限公司 一种基于微节点的高密度分布式数据库专用装置
CN114253363B (zh) * 2020-09-24 2024-04-09 华为技术有限公司 一种多节点服务器、机柜式服务器以及刀片式服务器
CN113805686B (zh) * 2021-09-27 2023-12-26 深圳市国鑫恒运信息安全有限公司 一种gpu模组和cpu模组分开独立散热的服务器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799225A (zh) * 2012-07-20 2012-11-28 浪潮电子信息产业股份有限公司 一种高密度服务器设计方法
CN103034302A (zh) * 2011-09-29 2013-04-10 英业达股份有限公司 伺服器
CN203786636U (zh) * 2014-03-05 2014-08-20 广州信维电子科技有限公司 云存储服务器结构
CN104035531A (zh) * 2014-06-24 2014-09-10 浪潮电子信息产业股份有限公司 一种高扩展性1u服务器节点系统
US20150181750A1 (en) * 2013-12-23 2015-06-25 Dell, Inc. Modularly-expandable mini-rack server system
CN204679923U (zh) * 2015-05-08 2015-09-30 深圳市国鑫恒宇科技有限公司 一种2u高密度服务器机箱
CN107656588A (zh) * 2017-10-09 2018-02-02 郑州云海信息技术有限公司 一种优化散热的服务器系统及安装方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034302A (zh) * 2011-09-29 2013-04-10 英业达股份有限公司 伺服器
CN102799225A (zh) * 2012-07-20 2012-11-28 浪潮电子信息产业股份有限公司 一种高密度服务器设计方法
US20150181750A1 (en) * 2013-12-23 2015-06-25 Dell, Inc. Modularly-expandable mini-rack server system
CN203786636U (zh) * 2014-03-05 2014-08-20 广州信维电子科技有限公司 云存储服务器结构
CN104035531A (zh) * 2014-06-24 2014-09-10 浪潮电子信息产业股份有限公司 一种高扩展性1u服务器节点系统
CN204679923U (zh) * 2015-05-08 2015-09-30 深圳市国鑫恒宇科技有限公司 一种2u高密度服务器机箱
CN107656588A (zh) * 2017-10-09 2018-02-02 郑州云海信息技术有限公司 一种优化散热的服务器系统及安装方法

Also Published As

Publication number Publication date
CN107656588A (zh) 2018-02-02
CN107656588B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2019072115A1 (zh) 一种优化散热的服务器系统及安装方法
US9606588B2 (en) Closed-loop cooling system for high-density clustered computer system
CN100383702C (zh) 服务器改良结构
EP2535786B1 (en) Server, server assemblies and fan speed control method
US20130063888A1 (en) Server rack system
US20170202111A1 (en) Server system
US20130077223A1 (en) Server
US20110310550A1 (en) Rack server
WO2016000415A1 (zh) 服务器
CN204537038U (zh) 刀片服务器及网络设备机柜
TW201338681A (zh) 伺服器機櫃
CN109976465A (zh) 服务器
CN203786606U (zh) 机柜式服务器装置
CN108304051A (zh) 一种散热装置、包含该散热装置的服务器及散热方法
CN202443354U (zh) 多节点无线缆模块化计算机
CN103605413A (zh) 机架式服务器系统的机柜、机架式服务器系统及其管理方法
WO2022126937A1 (zh) 一种抽屉式高密度fpga云平台机箱
CN220823459U (zh) 一种可扩展的分布式存储服务器
CN204539696U (zh) 刀片服务器及网络设备机柜
CN203241890U (zh) 一种基于atca板卡接口的多单元服务器
CN214896436U (zh) 一种模块化多计算节点gpu服务器结构
CN115904028A (zh) 一种风扇散热的服务器板卡和机箱布局结构及服务器
CN216387952U (zh) 一种2u冷板式液冷服务器
CN113220080A (zh) 一种模块化多计算节点gpu服务器结构
CN204362099U (zh) 一种低成本网络防火墙架构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866363

Country of ref document: EP

Kind code of ref document: A1