WO2019071923A1 - 光纤微加热器及制备方法 - Google Patents

光纤微加热器及制备方法 Download PDF

Info

Publication number
WO2019071923A1
WO2019071923A1 PCT/CN2018/080987 CN2018080987W WO2019071923A1 WO 2019071923 A1 WO2019071923 A1 WO 2019071923A1 CN 2018080987 W CN2018080987 W CN 2018080987W WO 2019071923 A1 WO2019071923 A1 WO 2019071923A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
graphene
metal
end surface
micro
Prior art date
Application number
PCT/CN2018/080987
Other languages
English (en)
French (fr)
Inventor
李程
郑渚
杨彬
徐飞
丁庆
Original Assignee
深圳市太赫兹科技创新研究院有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹科技创新研究院有限公司, 深圳市太赫兹科技创新研究院 filed Critical 深圳市太赫兹科技创新研究院有限公司
Publication of WO2019071923A1 publication Critical patent/WO2019071923A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite

Definitions

  • the present invention relates to the field of optoelectronic technology, and in particular to an optical fiber micro-heater and a method of manufacturing the same.
  • a fiber optic microheater for achieving rapid heat transfer including:
  • An optical fiber having an light-emitting end surface for receiving and conducting an optical signal to the light-emitting end surface
  • a graphene layer is coated on the light-emitting end surface of the optical fiber covered with the metal electrode.
  • the graphene has a number of layers of 3 to 5 layers.
  • the metal electrode comprises at least one of a gold electrode, a zinc electrode, and a silver electrode.
  • the optical fiber has a diameter of from 125 ⁇ m to 140 ⁇ m.
  • the metal electrode has a thickness of 20 to 200 nm.
  • a method for preparing a fiber microheater comprising:
  • the fiber passing through the graphene film is taken out and dried.
  • the step of fabricating a pair of metal electrodes on the optical fiber having the light-emitting end face flattened includes:
  • the metal film on the end face of the optical fiber is picked up along the side scratches to form a pair of metal electrodes.
  • the metal electrodes have a pitch of 15 to 50 ⁇ m.
  • the step of transferring graphene from a metal substrate to deionized water to form a graphene film comprises:
  • 3 to 5 layers of graphene are transferred from the copper substrate to deionized water by a wet transfer technique to form a graphene film.
  • the step of passing the optical fiber fabricated with the metal electrode through the graphene film comprises:
  • the above-mentioned optical fiber micro-heater and the manufacturing method can realize rapid heat transfer and improve heating efficiency by using graphene as a heat conductive material; and, due to the small size and flexibility of the optical fiber, the micro heater can be used for a special scene.
  • the fixed-point heating is realized; since the optical micro-heater is based on the optical fiber, the optical micro-heater can be well matched with the existing optical system, and the optical micro-heater is simple to manufacture, low in cost, and does not require other complicated processes.
  • FIG. 1 is a schematic view of an optical fiber microheater in an embodiment
  • FIG. 2 is a flow chart showing a method of preparing an optical fiber micro-heater in an embodiment
  • FIG. 3 is a flow chart of fabricating a pair of metal electrodes on the optical fiber with the light-emitting end face flattened in FIG. 2;
  • Figure 4 is an image of a fiber micro-heater under a microscope in an embodiment
  • Figure 5 is a graph showing the relationship between the resistance of the fiber micro-heater and the electrode spacing
  • Figure 6 is a graph showing the relationship between temperature and current of the fiber micro-heater
  • Figure 7 is a Raman spectrum of graphene at a current of 0 mA
  • Figure 8 is a Raman spectrum of graphene at a current of 9 mA.
  • FIG 1 is a schematic illustration of a fiber optic microheater in an embodiment.
  • the fiber micro-heater is used to achieve rapid heat transfer and may include an optical fiber 100, a metal electrode 200, and a graphene layer 300.
  • the optical fiber 100 has a light-emitting end surface 400 for receiving and conducting an optical signal to the light-emitting end surface 400.
  • the metal electrode 200 covers the end of the optical fiber 100 with the light-emitting end surface 400.
  • the graphene layer 300 covers the cover. The light-emitting end face 400 of the optical fiber 100 having the metal electrode 200.
  • the optical fiber 100 can be a commercial single mode fiber, a multimode fiber, and the fiber 100 can be a quartz fiber, a multi-component glass fiber, a plastic fiber, a composite fiber (such as a plastic cladding, a liquid core, etc.), an infrared material, or the like.
  • the diameter of the optical fiber 100 may be 125 ⁇ m to 140 ⁇ m, and the length of the protective layer from which the end of the optical fiber 100 is peeled off may be 5 to 10 cm. The length of the optical fiber 100 may be intercepted according to actual needs.
  • the metal electrode 200 may be covered on the side surface of the optical fiber 100 and the light-emitting end surface 400 by a coating machine, and the metal electrode 200 may be a gold electrode, a silver electrode, a zinc electrode or the like.
  • the metal electrode 200 may have a thickness of 20 to 200 nm.
  • the graphene layer 300 may be covered on the light-emitting end face 400 of the optical fiber 100 on which the metal electrode 200 is formed by a wet transfer technique.
  • the number of layers of the graphene layer 300 may be 3 to 8 layers.
  • the diameter of the optical fiber 100 is 125 ⁇ m
  • the optical fiber 100 is a single-mode optical fiber
  • the length of the optical fiber 100 is 0.5 m
  • the length of the end of the optical fiber 100 is 5 cm.
  • the metal electrode 200 is a gold electrode
  • the metal electrode 200 has a thickness of 100 nm.
  • the number of layers of the graphene layer is 3 to 5 layers.
  • the above embodiment realizes fixed-point heating in a small-scale range by forming an electrode pair on the end face of the optical fiber; by using graphene as a heat-conducting material, heat transfer can be realized, heating efficiency is improved, and the micro-heater is improved.
  • the manufacturing method is simple, and does not require too many complicated processes, thereby making the cost relatively low.
  • a flow chart of a method for preparing a fiber micro-heater in an embodiment includes:
  • step S100 a pair of metal electrodes are fabricated on the optical fiber whose end face is flattened.
  • a pair of metal electrodes are fabricated on the fiber that is flattened at the exit end face.
  • a flow chart for fabricating a pair of metal electrodes on the optical fiber tangent to the light exit end face of FIG. 2 includes:
  • step S110 the light-emitting end surface of the optical fiber is cut flat by a cutter.
  • step S120 the optical fiber is cleaned and placed in a coating machine to be coated with a metal film.
  • the optical fiber is cleaned and placed in a coater and plated with a metal film.
  • the optical fiber with the light-emitting end face that has been immersed and cleaned with ethanol is placed in a coating machine and plated with a gold film.
  • the thickness of the metal film is about 100 nm.
  • step S130 the side surface of the optical fiber coated with the metal film is scraped by the abrasive film to divide the metal film into two parts separated from each other.
  • the side surface of the optical fiber coated with the metal film is scraped by the abrasive film to divide the metal film into two portions which are isolated from each other. Specifically, the two sides of the optical fiber coated with the gold film are sandwiched by two diamond abrasive films, and the gold film on the side is divided into two parts separated from each other.
  • step S140 the metal film on the end surface of the optical fiber is picked up along the side scratches to form a pair of metal electrodes.
  • the metal film on the end face of the optical fiber is picked up along the side scratches to form a pair of metal electrodes.
  • the light-emitting end surface of the optical fiber is placed under a microscope, and the metal film is cut through the metal film of the optical fiber core by using a tungsten probe along the side scratching surface to complete the fabrication of the metal electrode. Referring to FIG. 4, a pair is used. Make a good image of the metal electrode under the microscope.
  • the metal electrodes have a pitch of 15 to 50 ⁇ m.
  • the metal electrodes are gold electrodes and the metal electrodes have a pitch of 20 ⁇ m.
  • step S200 a graphene-coated metal substrate is provided, and graphene is transferred from the metal substrate to deionized water to form a graphene film.
  • a graphene-coated copper substrate is provided, and 3 to 5 layers of graphene are transferred from the copper substrate to deionized water by a wet transfer technique. Specifically, take a piece of copper base graphene, cut a regular shape of 1 cm*1 cm size, take 10 ml of copper foil etching solution into the culture dish, and place the cut copper base graphene on the upper surface of the copper foil etching solution. After etching for 30 minutes, the copper foil was etched clean, and the etched graphene layer was transferred to deionized water using a PET substrate.
  • step S300 the light-emitting end surface of the optical fiber on which the metal electrode is formed is passed through the graphene film.
  • the end face of the optical fiber with a pair of gold electrodes is placed downward and fixed on the height translation stage.
  • the end face of the fiber is aligned directly above the floating graphene film, and the height adjustment stage is slowly adjusted to make the metal.
  • the light exit end of the fiber of the electrode passes through the graphene film.
  • step S400 the optical fiber passing through the graphene film is taken out and dried.
  • the fiber passing through the graphene film is taken out and dried. Specifically, the optical fiber passing through the graphene film is slowly taken out from the deionized water, and placed in a blast drying oven or a vacuum drying oven for drying, and the drying temperature is 20 ° C to 80 ° C for 1 h to 10 h. .
  • Fig. 5 it is a graph showing the relationship between the resistance of the fiber micro-heater and the electrode spacing.
  • the metal electrode is used as the gold electrode
  • the diameter of the fiber is 125 ⁇ m
  • the pitch of the gold electrode is 20 ⁇ m.
  • I is the magnitude of the load current and R is the resistance of the microheater
  • the resistance of the fiber micro-heater is composed of two parts: a sheet resistance R G of graphene and a contact resistance R con of the gold electrode and graphene;
  • Rs represents the sheet resistance of graphene
  • Rc is the contact resistivity of graphene and gold electrodes
  • L represents the pitch of the gold electrodes
  • w represents the width of the contact portion.
  • the temperature of the fiber micro-heater is calculated by the comsol software simulation. As shown in Fig. 6, when the current is 9 mA, the temperature of the fiber micro-heater reaches 900K.
  • the heating area is very small, and current temperature measuring means such as an infrared thermometer, a thermocouple, etc. cannot accurately measure the actual temperature.
  • current temperature measuring means such as an infrared thermometer, a thermocouple, etc. cannot accurately measure the actual temperature.
  • the Raman peak of graphene moves with temperature, and the actual temperature of graphene is estimated by observing the movement of the Raman spectrum.
  • ⁇ 0 represents the position of the graphene G peak at a temperature of 0 K
  • is the first-order coefficient of temperature.
  • the G peak of graphene is blue-shifted with increasing temperature.
  • the value of ruthenium is generally -0.02 cm -1 K -1 .
  • Figure 7 shows the Raman spectrum of graphene when the current is 0 mA. It can be seen from the figure that the position of the G peak is 1591.8 cm -1 at this time, and the Raman of graphene is the current at 9 mA. The spectrum, at this time, the position of the G peak is 1579.7 cm -1 .
  • the current required for loading is obtained in a small scale range of 125 ⁇ m by forming an electrode pair on the light-emitting end face of the optical fiber; by using graphene as a heat conductive material, after the current is applied, it can be small.
  • the heating power reaching a high temperature of 900K, the rapid transfer of heat is realized, and the efficiency of electric heating is greatly improved; and because the size of the optical fiber is small and the flexibility is good, the optical micro-heater can realize a fixed point in a small range. Heating; and because it is based on fiber, it can be well matched with existing fiber systems; at the same time, fiber micro-heaters are simple to manufacture, low in cost, and do not require too many complicated processes.

Abstract

本发明涉及一种光纤微加热器,包括:光纤,具有出光端面,用于接收并传导光信号至所述出光端面;金属电极,覆盖于所述光纤设有出光端面的端部;石墨烯层,覆盖于所述覆盖有金属电极的光纤的出光端面上。本发明还涉及光纤微加热器的制备方法,包括:在出光端面切平的光纤上制作一对金属电极;提供覆有石墨烯的金属基底,并将石墨烯从金属基底上转移至去离子水中形成石墨烯薄膜;将所述制作有金属电极的光纤的出光端面穿过所述石墨烯薄膜;将所述穿过石墨烯薄膜的光纤取出并烘干。因为石墨烯的导热性能非常优异,从而可以实现热量的快速传递,提高了加热效率;并且,由于光纤的尺寸小和柔韧性好,使得光纤微型加热器可以实现小范围内的定点加热。

Description

光纤微加热器及制备方法 技术领域
本发明涉及光电子技术领域,特别是涉及一种光纤微加热器及制法。
背景技术
目前,随着光纤在光电子技术领域的广泛应用,光纤的制备以及相关的技术也是日趋成熟,其中,光纤的热调控器件的制备就是一项非要重要的技术。
传统的光纤热调控器件采用金属电极作为热源,但是金属电极对于光的传输有着很大的影响,从而以金属电极作为热源时的加热效率也相对较低。并且对于加热区域非常小的光纤热调控器件,目前已有的测温手段,例如红外测温计、热电偶等,无法精确测量其实际温度。这直接影响着光纤热调控器件的性能和操作效率,从而也使得光纤热调控器件的改进迫在眉睫。
发明内容
基于此,有必要针对加热效率低的问题,提供一种光纤微加热器及制备方法。
一种光纤微加热器,用于实现热量的快速传递,包括:
光纤,具有出光端面,用于接收并传导光信号至所述出光端面;
金属电极,覆盖于所述光纤设有出光端面的端部;
石墨烯层,覆盖于所述覆盖有金属电极的光纤的出光端面上。
在其中一个实施例中,所述石墨烯的层数为3~5层。
在其中一个实施例中,所述金属电极包括金电极、锌电极、银电极中的至少一种。
在其中一个实施例中,所述光纤的直径为125μm~140μm。
在其中一个实施例中,所述金属电极的厚度为20~200nm。
一种光纤微加热器的制备方法,包括:
在出光端面切平的光纤上制作一对金属电极;
提供覆有石墨烯的金属基底,并将石墨烯从金属基底上转移至去离子水中形成石墨烯薄膜;
将所述制作有金属电极的光纤的出光端面穿过所述石墨烯薄膜;
将所述穿过石墨烯薄膜的光纤取出并烘干。
在其中一个实施例中,所述在出光端面切平的光纤上制作一对金属电极的步骤,包括:
利用切割刀将光纤的出光端面切平;
将所述光纤清洗干净后放置于镀膜仪中镀上金属膜;
利用研磨膜刮擦所述镀上金属膜的光纤侧面使金属膜分成相互隔离的两部分;
将所述光纤的端面上的金属膜沿着侧面刮擦的痕迹挑开,制作成一对金属电极。
在其中一个实施例中,所述金属电极的间距为15~50μm。
在其中一个实施例中,所述将石墨烯从金属基底上转移至去离子水中形成石墨烯薄膜的步骤,包括:
利用湿法转移技术将3~5层石墨烯从铜基底上转移至去离子水中形成石墨烯薄膜。
在其中一个实施例中,所述将所述制作有金属电极的光纤穿过所述石墨烯薄膜的步骤,包括:
将所述制作有金属电极的光纤的出光端面朝下放置,并固定在高度平移台上,调节所述高度平移台,使所述制作有金属电极的光纤的出光端面穿过所述石墨烯薄膜。
上述光纤微加热器及制法,通过采用石墨烯作为导热材料,从而可以实现热量的快速传递,提高加热效率;并且,由于光纤的尺寸小和柔韧性好,使得微型加热器可以用于特殊场景,实现定点加热;由于光纤微加热器基于光纤,所以该光纤微加热器可以很好的与现有光线系统匹配,并且光纤微加热器制作简单,成本低廉,无需其他的复杂工艺。
附图说明
图1为一实施例中的光纤微加热器示意图;
图2为一实施例中的光纤微加热器的制备方法流程图;
图3为图2中在出光端面切平的光纤上制作一对金属电极的流程图;
图4为一实施例中的光纤微加热器在显微镜下的图像;
图5为光纤微加热器的电阻随电极间距的关系图;
图6为光纤微加热器的温度随电流的关系图;
图7为石墨烯在电流为0mA时的拉曼谱;
图8为石墨烯在电流为9mA时的拉曼谱。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
如图1所示的为一实施例中的光纤微加热器的示意图。该光纤微加热器用于实现热量的快速传递,可以包括光纤100、金属电极200以及石墨烯层300。其中,光纤100具有出光端面400,用于接收并传导光信号至所述出光端面400;金属电极200,覆盖于光纤100设有出光端面400的端部;石墨烯层300,覆盖于所述覆盖有金属电极200的光纤100的出光端面400上。
光纤100可以为商用单模光纤、多模光纤,光纤100可以是石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤(如塑料包层、液体纤芯等)、红外材料等。光纤100的直径可以为125μm~140μm,光纤100的端部被剥离的保护层的长度可以为5~10cm,光纤100的长度可根据实际需要截取。
金属电极200可以通过镀膜仪覆盖在光纤100的侧面和出光端面400上,金属电极200可以是金电极、银电极、锌电极等。金属电极200的厚度可以为20~200nm。
石墨烯层300可以通过湿法转移技术覆盖在制作有金属电极200的光纤100的出光端面400上。石墨烯层300的层数可以为3~8层。
优选地,光纤100的直径为125μm,光纤100为单模光纤,光纤100的长度为0.5m,光纤100的端部被剥离的长度为5cm。金属电极200为金电极,金属电极200的厚度为100nm。石墨烯层的层数为3~5层。
上述实施例通过在光纤端面上制作电极对的方式,实现了在小尺度范围内的定点加热;通过采用石墨烯作为导热材料,从而可以实现热量的快速传递,提高了加热效率;并且微加热器的制作方法简单,无需过多的复杂工艺,进而可以使得成本较为低廉。
如图2所示,为一实施例中的光纤微加热器的制备方法流程图,包括:
步骤S100,在出光端面切平的光纤上制作一对金属电极。
在出光端面切平的光纤上制作一对金属电极。在一个实施例中,如图3所示,为图2中在出光端面切平的光纤上制作一对金属电极的流程图,包括:
步骤S110,利用切割刀将光纤的出光端面切平。
具体的,取一段0.5m的光纤,剥除光纤一段长度为5cm的保护层,用切割刀将光纤的出光端面切平,将出光端面切平的光纤置于超声清洗器中用清水清洗,然后再用乙醇浸泡清洗。
步骤S120,将所述光纤清洗干净后放置于镀膜仪中镀上金属膜。
将所述光纤清洗干净后放置于镀膜仪中镀上金属膜。具体的,将用乙醇浸泡清洗干净后的出光端面切平的光纤放置于镀膜仪中镀上金膜,通过控制镀膜仪的电流的大小和时间,使得金属膜的厚度为100nm左右。
步骤S130,利用研磨膜刮擦所述镀上金属膜的光纤侧面使金属膜分成相互隔离的两部分。
利用研磨膜刮擦所述镀上金属膜的光纤侧面使金属膜分成相互隔离的两部分。具体的,利用两片金刚石研磨薄膜夹住镀有金膜的光纤侧面,轻轻刮擦,使得侧面的金膜分成相互隔离的两部分。
步骤S140,将所述光纤的端面上的金属膜沿着侧面刮擦的痕迹挑开,制作成一对金属电极。
将所述光纤的端面上的金属膜沿着侧面刮擦的痕迹挑开,制作成一对金属电极。具体的,将光纤的出光端面放置在显微镜下,利用钨探针沿着侧面刮擦的痕迹将穿过光纤纤芯的金属膜挑开,完成金属电极的制作,请参照图4,为一对制作好的金属电极在显微镜下的图像。
在一个实施例中,金属电极的间距为15~50μm,优选地,金属电极为金电极,金属电极的间距为20μm。
步骤S200,提供覆有石墨烯的金属基底,并将石墨烯从金属基底上转移至去离子水中形成石墨烯薄膜。
提供覆有石墨烯的铜基底,利用湿法转移技术将3~5层石墨烯从铜基底上转移至去离子水中。具体的,取铜基底石墨烯一片,裁剪一片1cm*1cm大小的规则形状,取10ml铜箔刻蚀液于培养皿,将裁剪好的铜基底石墨烯放于铜箔刻蚀液的上表面,刻蚀30分钟后,铜箔刻蚀干净,用PET基片将刻蚀完成后的石墨烯层转移至去离子水中。
步骤S300,将所述制作有金属电极的光纤的出光端面穿过所述石墨烯薄膜。
具体的,将制作有一对金电极的光纤端面朝下放置,并固定在高度平移台上,光纤端面对准漂浮的石墨烯薄膜的正上方,缓慢调节下调高度位移台,使制作有金属电极的光纤的出光端面穿过石墨烯薄膜。
步骤S400,将所述穿过石墨烯薄膜的光纤取出并烘干。
将所述穿过石墨烯薄膜的光纤取出并烘干。具体的,将所述穿过石墨烯薄膜的光纤从去离子水中缓慢取出,并放置于鼓风干燥箱或真空干燥箱中进行干燥处理,干燥温度为20℃~80℃,时间为1h~10h。
为了证明本发明能实现快速的热量传递和对光纤微加热器加热部位温度的准确测量,这里通过实验加以论证。
如图5所示,为光纤微加热器的电阻随电极间距的关系图。这里以金属电极为金电极,光纤的直径为125μm,金电极的间距为20μm为例,通过comsol软件加公式模拟计算光纤微加热器的温度。具体的,根据焦耳热效应,该光纤微加热器的加热功率P满足P=I 2R,根据此公式得到P heating=I 2R FG
其中I为加载电流的大小,R为微加热器的电阻;
其中,光纤微加热器的电阻由两部分组成:石墨烯的薄膜电阻R G和金电极与石墨烯的接触电阻R con
R FG=R G+R Con=R sL/w+2R c/w
Rs代表石墨烯的薄膜电阻,Rc是石墨烯和金电极的接触电阻率,L代表金电极的间距,w表示接触部分的宽度。
如图5所示,为了测量光纤微加热器的电阻,制作了不同电极间距的样品,并测得对应的电阻值,并制作了不同w的样品,同时测得了R FG。通过线性拟合得到的结果,同时根据方程R FG=R G+R Con=R sL/w+2R c/w,获得了R S=2000Ω,R C=1000Ω·μm。当电极间距为20μm时,测得光纤微加热器的电阻为300Ω。当加载电流由0mA逐渐增加到9mA时,根据公式P heating=I 2R FG,加热功率由0mW增加到24.3mW。通过comsol软件模拟计算了光纤微加热器的温度随着电流的变化关系,如图6所示,当电流为9mA时,光纤微加热器的温度达到了900K。
更进一步的,由于光纤的直径为125μm,并且金电极的间距为20μm,其加热区域非常的小,目前的测温手段,例如红外测温计、热电偶等,无法准确测量其实际温度。但是石墨烯的拉曼峰会随着温度的变化而发生移动,这里通过观测拉曼谱的移动来估算石墨烯的实际温度。
石墨烯G峰随着温度的关系如下:
ω=ω 0+χT
其中ω 0代表温度为0K时石墨烯G峰的位置,χ则是温度的一阶系数。石墨烯的G峰随着温度的升高是发生蓝移。对于3~5层石墨烯而言,χ的取值一般为-0.02cm -1K -1。图7则是当电流为0mA时,石墨烯的拉曼谱,从图中可以看出,此时G峰的位置为1591.8cm -1,图8则是电流为9mA时,石墨烯的拉曼谱,此时G峰的位置为1579.7cm -1,通过计算可以知道,温度的升高导致G峰的拉曼谱移动了12.1cm-1,由公式ω=ω 0+χT可知,此时石墨烯层的温度升高了605K,因为0mA时为室温取25摄氏度,大致为300K,所以当电流为9mA时,石墨烯层的温度达到900K,所以光纤微加热器的温度达到了900K,与模拟计算的结果相一致。
上述实施例,通过在光纤的出光端面上制作电极对的方法,实现了在125μm的小尺度范围内获得加载所需的电流;通过采用石墨烯作为导热材料,在加载电流后,可以在很小的加热功率下,达到900K的高温,从而实现了热量的快速传递,大大提升了电加热的效率;并且由于光纤的尺寸小和柔韧性好,所以此光纤微加热器可以实现小范围内的定点加热;并且由于基于光纤,所以可以很好的与现有的光纤系统匹配;同时,光纤微加热器制作简单,成本低廉,无需过多的复杂工艺。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光纤微加热器,用于实现热量的快速传递,其特征在于,包括:
    光纤,具有出光端面,用于接收并传导光信号至所述出光端面;
    金属电极,覆盖于所述光纤设有出光端面的端部;
    石墨烯层,覆盖于所述覆盖有金属电极的光纤的出光端面上。
  2. 根据权利要求1所述的光纤微加热器,其特征在于,所述石墨烯层的层数为3~5层。
  3. 根据权利要求1所述的光纤微加热器,其特征在于,所述金属电极包括金电极、锌电极、银电极中的至少一种。
  4. 根据权利要求1所述的光纤微加热器,其特征在于,所述光纤的直径为125μm~140μm。
  5. 根据权利要求1所述的光纤微加热器,其特征在于,所述金属电极的厚度为20~200nm。
  6. 一种光纤微加热器的制备方法,其特征在于,包括步骤:
    在出光端面切平的光纤上制作一对金属电极;
    提供覆有石墨烯的金属基底,并将石墨烯从金属基底上转移至去离子水中形成石墨烯薄膜;
    将所述制作有金属电极的光纤的出光端面穿过所述石墨烯薄膜;
    将所述穿过石墨烯薄膜的光纤取出并烘干。
  7. 根据权利要求6所述的光纤微加热器的制备方法,其特征在于,所述在出光端面切平的光纤上制作一对金属电极的步骤,包括:
    利用切割刀将光纤的出光端面切平;
    将所述光纤清洗干净后放置于镀膜仪中镀上金属膜;
    利用研磨膜刮擦所述镀上金属膜的光纤侧面使金属膜分成相互隔离的两部分;
    将所述光纤的端面上的金属膜沿着侧面刮擦的痕迹挑开,制作成一对金属电极。
  8. 根据权利要求7所述的光纤微加热器的制备方法,其特征在于,所述金 属电极的间距为15~50μm。
  9. 根据权利要求7所述的光纤微加热器的制备方法,其特征在于,所述将石墨烯从金属基底上转移至去离子水中形成石墨烯薄膜的步骤,包括:
    利用湿法转移技术将3~5层石墨烯从铜基底上转移至去离子水中形成石墨烯薄膜。
  10. 根据权利要求7所述的光纤微加热器的制备方法,其特征在于,所述将所述制作有金属电极的光纤穿过所述石墨烯薄膜的步骤,包括:
    将所述制作有金属电极的光纤的出光端面朝下放置,并固定在高度平移台上,调节所述高度平移台,使所述制作有金属电极的光纤的出光端面穿过所述石墨烯薄膜。
PCT/CN2018/080987 2017-10-10 2018-03-29 光纤微加热器及制备方法 WO2019071923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710936131.4 2017-10-10
CN201710936131.4A CN107660005B (zh) 2017-10-10 2017-10-10 光纤微加热器及制备方法

Publications (1)

Publication Number Publication Date
WO2019071923A1 true WO2019071923A1 (zh) 2019-04-18

Family

ID=61117423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080987 WO2019071923A1 (zh) 2017-10-10 2018-03-29 光纤微加热器及制备方法

Country Status (2)

Country Link
CN (1) CN107660005B (zh)
WO (1) WO2019071923A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482699A (zh) * 2023-03-13 2023-07-25 无锡布里渊电子科技有限公司 一种温度型光缆定位识别仪及识别方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107660005B (zh) * 2017-10-10 2019-09-17 深圳市太赫兹科技创新研究院有限公司 光纤微加热器及制备方法
CN112415790B (zh) * 2020-10-27 2021-11-12 南京大学 一种全光纤电光器件及其构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335741A (zh) * 2013-06-19 2013-10-02 暨南大学 一种基于石墨烯的光纤温度传感器及其制作方法
CN106949963A (zh) * 2017-03-14 2017-07-14 南京大学 一种基于复合结构的全光纤光电探测器及其制备方法
CN107660005A (zh) * 2017-10-10 2018-02-02 深圳市太赫兹科技创新研究院有限公司 光纤微加热器及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335741A (zh) * 2013-06-19 2013-10-02 暨南大学 一种基于石墨烯的光纤温度传感器及其制作方法
CN106949963A (zh) * 2017-03-14 2017-07-14 南京大学 一种基于复合结构的全光纤光电探测器及其制备方法
CN107660005A (zh) * 2017-10-10 2018-02-02 深圳市太赫兹科技创新研究院有限公司 光纤微加热器及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482699A (zh) * 2023-03-13 2023-07-25 无锡布里渊电子科技有限公司 一种温度型光缆定位识别仪及识别方法
CN116482699B (zh) * 2023-03-13 2024-01-23 无锡布里渊电子科技有限公司 一种温度型光缆定位识别仪及识别方法

Also Published As

Publication number Publication date
CN107660005B (zh) 2019-09-17
CN107660005A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
WO2019071923A1 (zh) 光纤微加热器及制备方法
JP4814429B2 (ja) 集積回路製造ツール基板上で温度を検出する装置
US5393351A (en) Multilayer film multijunction thermal converters
JP5896160B2 (ja) 温度センサ
US9580305B2 (en) Single silicon wafer micromachined thermal conduction sensor
CN103335741A (zh) 一种基于石墨烯的光纤温度传感器及其制作方法
CN101614522A (zh) 基于离子束技术的电阻应变计制作方法
TWI500800B (zh) 藉由沈積薄層於絕緣基材上來製造加熱元件的方法及所製成之加熱元件
US9702038B2 (en) Pressure sensor and method for manufacturing the same
CN105222920B (zh) Cvd石墨烯温度传感器、传感系统及温度传感器制备方法
US5622586A (en) Method of fabricating device made of thin diamond foil
CN107782767B (zh) 一种气体传感器加热盘及加工方法
KR100988477B1 (ko) 마이크로 히터 및 그 제조방법
CN109959475B (zh) 导电薄膜及薄膜电阻应变式压力传感器
CN106841285B (zh) 一种简易新颖的薄膜热学性能测试结构
KR101573638B1 (ko) 그래핀과 육방정계 질화붕소 이종 적층구조를 이용한 마이크로 히터 및 그 제조방법
CN112229533B (zh) 一种用于温度检测的抗变形柔性温度传感器及其制备方法
TWI841016B (zh) 石墨烯加熱晶片及其製備方法
JP2016138773A5 (zh)
TW202416766A (zh) 石墨烯加熱晶片及其製備方法
Wang et al. Wafer‐level fabrication of low power consumption integrated alcohol microsensor
TW202415963A (zh) 石墨烯加熱晶片溫度的校準方法
JPH10160698A (ja) マイクロセンサ
JP4233731B2 (ja) 基板型光素子
CN107978670A (zh) 一种可控制时间常数的锰钴镍热敏器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866331

Country of ref document: EP

Kind code of ref document: A1