WO2019071905A1 - Aerial suspension display system - Google Patents

Aerial suspension display system Download PDF

Info

Publication number
WO2019071905A1
WO2019071905A1 PCT/CN2018/077596 CN2018077596W WO2019071905A1 WO 2019071905 A1 WO2019071905 A1 WO 2019071905A1 CN 2018077596 W CN2018077596 W CN 2018077596W WO 2019071905 A1 WO2019071905 A1 WO 2019071905A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
optical
lens
light
beam splitter
Prior art date
Application number
PCT/CN2018/077596
Other languages
French (fr)
Chinese (zh)
Inventor
于迅博
高鑫
张婉璐
陈铎
邢树军
王鹏
Original Assignee
北京眸合科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京眸合科技有限公司 filed Critical 北京眸合科技有限公司
Publication of WO2019071905A1 publication Critical patent/WO2019071905A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/16Advertising or display means not otherwise provided for using special optical effects involving the use of mirrors

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)

Abstract

An aerial suspension display system, comprising a display source (M1), an optical module, and an arc surface reflective mirror (R), the optical module comprising lens groups (M2, M'2) and a beam splitting lens (E0), the lens groups comprising at least one lens, the arc surface reflective mirror (R) being a convex reflective mirror, a concave reflective mirror, or a reflective Fresnel mirror equivalent to the arc surface reflective mirror; the emission of the display source (M1) passes through an incident light end of the optical enters the optical modules (M2, M'2) via an incident end of the optical enters the optical modules (M2, M'2), passes through the optical modules (M2, M'2) and the beam splitting lens (E0), and then enters the arc surface reflective mirror (R) via an emergent light end of the optical modules (M2, M'2); light is reflected by the arc surface reflective mirror (R), enters the optical modules (M2, M'2) via the emergent light end of the optical modules (M2, M'2) and, after passing through the beam splitting lens (E0), converges in the air to form a suspended image (M3). The present aerial suspension display system can implement a large viewing angle, large size, high definition, and undistorted aerially suspended image.

Description

一种空中悬浮显示系统Aerial suspension display system
交叉引用cross reference
本申请引用于2017年10月13日提交的专利名称为“一种空中悬浮显示系统”的第2017109535496号中国专利申请,其通过引用被全部并入本申请。The present application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in the the the the the the the the the
技术领域Technical field
本发明实施例涉及光学显示技术领域,更具体地,涉及一种空中悬浮显示系统。Embodiments of the present invention relate to the field of optical display technologies, and in particular, to an air suspension display system.
背景技术Background technique
从黑白显示器到彩色显示器,从CRT显示器到量子点显示器,从平面显示器到裸眼3D显示器;长久以来,人们不断研究新的显示技术,并把这些显示技术成功地应用在了各个领域,例如生活娱乐、展览展示、广告传媒、医疗教育、军事指挥等。在众多的显示技术中,空中悬浮显示技术由于能够将图像呈现在空气之中,为观看者带来强烈的视觉冲击和亦真亦假的感官体验从而受到了许多研究者的关注。From black and white displays to color displays, from CRT displays to quantum dot displays, from flat-panel displays to naked-eye 3D displays; new display technologies have been researched for a long time, and these display technologies have been successfully applied in various fields, such as life entertainment. Exhibitions, advertising media, medical education, military command, etc. Among the many display technologies, the airborne floating display technology has attracted the attention of many researchers because it can present images in the air, bringing viewers a strong visual impact and a true and false sensory experience.
悬浮的图像类别主要分为真实物体的三维空气成像和平面虚拟物体的空气成像。前者主要是将真实物体置于悬浮显示系统中,通过向真实物体照明从而实现观察者能通过该显示系统观看到悬浮在空气中的真实物体。后者主要是将LCD等平面显示器显示的虚拟图像通过显示系统后,实现在空中悬浮的平面内容。悬浮显示系统的实质在于能够成实像的光学系统。这种显示方式有着广阔的应用前景,例如在展览展示中,可以在空气中悬浮显示一个物体,为观看者提供一个科幻、逼真的视觉体验;例如医疗教育中,医生能够不接触实体屏幕来操作以便观察显示屏上的信息,这样在一定程度上就减少了细菌的传播;例如在军事作战中,军官通常需要佩戴手套来进行作战指挥或者操作设备,这时如果触控传统的显示屏幕就必须要脱去手套,而利用悬浮显示设备就能够在空中点击屏幕来完成作战指挥或设备操作。The suspended image categories are mainly divided into three-dimensional air imaging of real objects and air imaging of planar virtual objects. The former mainly places the real object in the floating display system, and by illuminating the real object, the observer can see the real object suspended in the air through the display system. The latter mainly realizes the floating content suspended in the air after passing the virtual image displayed by the flat panel display such as LCD through the display system. The essence of a floating display system is an optical system that can be a real image. This display method has broad application prospects. For example, in an exhibition, an object can be suspended in the air to provide a sci-fi and realistic visual experience for the viewer; for example, in medical education, the doctor can operate without touching the physical screen. In order to observe the information on the display, this will reduce the spread of bacteria to a certain extent; for example, in military operations, officers usually need to wear gloves for combat command or operation equipment, in which case it is necessary to touch the traditional display screen. To remove the gloves, the floating display device can be used to click on the screen in the air to complete the combat command or equipment operation.
传统的悬浮显示设备都是利用单个凹面反射镜加45度倾斜放置的分 光镜来实现。该光学结构是此类显示系统最早提出的方案。其光路为:被照明的真实物体或者LCD显示的内容由分光镜反射进入凹面反射镜,光线经过凹面反射镜的汇聚作用再次通过分光镜之后在其另一侧的空气中成像。此时,观察者可以看到空中悬浮的影像。这种方案的优点是结构简单,在应用树脂材料后,凹面反射镜的成本可以极大地降低。缺点是:悬浮的图像尺寸小、观看视角小且图像变形严重。Conventional floating display devices are implemented using a single concave mirror plus a 45 degree tilted beam splitter. This optical structure is the earliest proposed solution for such display systems. The optical path is: the illuminated real object or the content displayed by the LCD is reflected by the spectroscope into the concave mirror, and the light is again reflected by the converging mirror of the concave mirror and then imaged in the air on the other side. At this point, the observer can see the image of the air suspension. The advantage of this solution is that the structure is simple, and the cost of the concave mirror can be greatly reduced after the application of the resin material. Disadvantages are: the size of the suspended image is small, the viewing angle is small, and the image is severely deformed.
发明内容Summary of the invention
本发明实施例提供了一种克服上述问题或者至少部分地解决上述问题的空中悬浮显示系统。Embodiments of the present invention provide an air suspension display system that overcomes the above problems or at least partially solves the above problems.
本发明实施例提供了一种空中悬浮显示系统,一种空中悬浮显示系统,所述系统包括显示源、光学模组和弧面反射镜,所述光学模组包括透镜组和分光镜,所述透镜组包括至少一个透镜,所述弧面反射镜为凹面反射镜、凸面反射镜或与所述弧面反射镜等效的反射式菲涅尔镜;其中,An embodiment of the present invention provides an air suspension display system, an air suspension display system, the system includes a display source, an optical module, and a curved mirror, the optical module includes a lens group and a beam splitter, The lens group includes at least one lens, and the curved mirror is a concave mirror, a convex mirror or a reflective Fresnel mirror equivalent to the curved mirror; wherein
所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经过所述透镜组和所述分光镜后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜后在空中汇聚形成悬浮像。The light emitted by the display source enters the optical module through the light incident end of the optical module, passes through the lens group and the beam splitter, and then enters the light exit end of the optical module. a curved mirror; the light reflected by the curved mirror re-enters the optical module through the light exit end of the optical module, and passes through the beam splitter to converge in the air to form a suspended image.
进一步地,所述光学模组中的每个透镜为传统透镜或菲涅尔透镜。Further, each lens in the optical module is a conventional lens or a Fresnel lens.
进一步地,所述光学模组中相邻透镜中心之间的距离为d,且500mm≥d≥0mm;所述光学模组中各透镜的厚度为l,且500mm≥l>0mm;所述光学模组中各透镜的外接圆直径为D,且5000mm≥D>0mm。Further, the distance between the centers of adjacent lenses in the optical module is d, and 500 mm ≥ d ≥ 0 mm; the thickness of each lens in the optical module is 1, and 500 mm ≥ l > 0 mm; The diameter of the circumscribed circle of each lens in the module is D, and 5000mm≥D>0mm.
可选地,所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经所述分光镜反射后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜透射后在空中汇聚形成悬浮像。Optionally, the light emitted by the display source enters the optical module through the light incident end of the optical module, is reflected by the beam splitter, and then enters the light exit end of the optical module. a curved mirror; the reflection of the light through the curved mirror re-enters the optical module through the light exit end of the optical module, and is transmitted through the splitter to form a suspended image in the air.
可选地,所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经所述分光镜透射后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出 射端再次进入所述光学模组,并经过所述分光镜反射后在空中汇聚形成悬浮像。Optionally, the light emitted by the display source enters the optical module through the light incident end of the optical module, is transmitted through the beam splitter, and then enters the light exit end of the optical module. a curved mirror; the reflection of the light through the curved mirror re-enters the optical module through the light exit end of the optical module, and is reflected by the beam splitter to converge in the air to form a suspended image.
可选地,所述系统还包括反射元件;Optionally, the system further comprises a reflective element;
所述反射元件设置在所述显示源与所述光学模组的光线入射端之间、所述分光镜与所述系统成像位置之间或所述学模组中任意一个光学元件与所述弧面反射镜之间,所述任意一个光学元件为所述透镜组中任意一个透镜或所述分光镜。The reflective element is disposed between the display source and a light incident end of the optical module, between the beam splitter and the imaging position of the system, or any one of the optical elements and the curved surface of the learning module Between the mirrors, any one of the optical elements is any one of the lens groups or the beam splitter.
其中,所述分光镜的旋转角为θ 0,90°>θ 0>0°;所述反射元件的旋转角为θ 1,且90°>θ 1>0°。 Wherein, the rotation angle of the beam splitter is θ 0 , 90°>θ 0 >0°; the rotation angle of the reflective element is θ 1 , and 90°>θ 1 >0°.
可选地,所述反射元件设置在所述显示源与所述光学模组的光线入射端之间;其中,Optionally, the reflective element is disposed between the display source and a light incident end of the optical module;
所述显示源的发光面与所述光学模组的光线入射端垂直设置,所述显示源发射的光线经所述反射元件发射后进入所述光学模组;The light emitting surface of the display source is perpendicular to the light incident end of the optical module, and the light emitted by the display source is emitted by the reflective component and enters the optical module;
所述显示源的发光面与所述反射元件中心之间的距离为0-5000mm,所述光学模组的光线入射端的透镜中心与所述反射元件中心之间的距离为0-5000mm。The distance between the light emitting surface of the display source and the center of the reflective element is 0-5000 mm, and the distance between the lens center of the light incident end of the optical module and the center of the reflective element is 0-5000 mm.
可选地,所述反射元件设置在所述分光镜与所述系统成像位置之间;其中,Optionally, the reflective element is disposed between the beam splitter and the imaging position of the system; wherein
所述弧面反射镜的反射光线经所述分光镜后,经所述反射元件反射在空中汇聚形成悬浮像;The reflected light of the curved mirror passes through the beam splitter, and is reflected by the reflective element to converge in the air to form a suspended image;
所述系统的成像位置与所述反射元件的中心位置之间的距离为0-5000mm,所述分光镜的中心位置与所述反射元件的中心位置之间的距离为0-5000mm。The distance between the imaging position of the system and the central position of the reflective element is 0-5000 mm, and the distance between the central position of the beam splitter and the center position of the reflective element is 0-5000 mm.
可选地,所述反射元件设置在所述光学模组中任意一个光学元件与所述弧面反射镜之间;其中,Optionally, the reflective element is disposed between any one of the optical modules and the curved mirror; wherein
所述弧面反射镜的反射光线经所述反射元件反射进入所述光学模组,并经所述分光镜后在空中汇聚形成悬浮像;The reflected light of the curved mirror is reflected by the reflective element into the optical module, and is concentrated in the air through the beam splitter to form a suspended image;
所述弧面反射镜与所述反射元件之间的距离为0-5000mm,所述任意一个光学元件的中心与所述反射元件中心之间的距离为0-5000mm。The distance between the curved mirror and the reflective element is 0-5000 mm, and the distance between the center of the arbitrary optical element and the center of the reflective element is 0-5000 mm.
本发明实施例提供了一种空中悬浮显示系统,通过包括透镜组和分光 镜的光学模组对显示源发射的光线进行调制和分光后进入弧面反射镜,弧面反射镜再将光线反射经过分光镜分光在空中汇聚形成悬浮像,该空中悬浮显示系统能够实现一个大视角、大尺寸、高清晰度无畸变的空中悬浮图像。Embodiments of the present invention provide an air suspension display system, which modulates and splits light emitted by a display source through an optical module including a lens group and a beam splitter, and then enters a curved mirror, and the curved mirror reflects the light. The beam splitter splits in the air to form a suspended image, and the aerial floating display system can realize a large angle of view, large size, high definition and undistorted aerial floating image.
附图说明DRAWINGS
图1为本发明实施例提供的一种空中悬浮显示系统的结构示图;1 is a structural diagram of an air suspension display system according to an embodiment of the present invention;
图2为本发明实施例中传统透镜的形状;2 is a shape of a conventional lens in an embodiment of the present invention;
图3为本发明实施例中菲涅尔透镜的形状;Figure 3 is a view showing the shape of a Fresnel lens in an embodiment of the present invention;
图4为本发明实施例提供的另一种空中悬浮显示系统的结构示图;4 is a structural diagram of another air suspension display system according to an embodiment of the present invention;
图5为本发明实施例提供的又一种空中悬浮显示系统的结构示图;FIG. 5 is a structural diagram of still another air suspension display system according to an embodiment of the present invention; FIG.
图6为本发明实施例提供的又一种空中悬浮显示系统的结构示图;6 is a structural diagram of still another air suspension display system according to an embodiment of the present invention;
图7为本发明实施例提供的又一种空中悬浮显示系统的结构示图。FIG. 7 is a structural diagram of still another air suspension display system according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly described in conjunction with the drawings in the embodiments of the present invention. Some embodiments, rather than all of the embodiments, are invented. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
本发明实施例涉及如下技术名词:Embodiments of the present invention relate to the following technical terms:
传统透镜,指球面或非球面的透镜,材料可以是各种玻璃或塑料;A conventional lens refers to a spherical or aspherical lens, and the material may be various glass or plastic;
菲涅尔透镜,是与传统透镜具有等效功能的平面透镜,它的齿纹可以是同心圆,也可是线性螺纹;A Fresnel lens is a planar lens having an equivalent function to a conventional lens, and its ridges may be concentric circles or linear threads;
像差,是指实际光学系统中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,这些与高斯光学(一级近似理论或近轴光线)的理想状况的偏差,叫做像差。像差的一种为畸变,指图像的失真变形;Aberration means that the results obtained by non-paraxial ray tracing in the actual optical system are inconsistent with the results obtained by the paraxial ray tracing. These deviations from the ideal condition of Gaussian optics (first approximation theory or paraxial ray) , called aberration. One kind of aberration is distortion, which refers to the distortion of the image;
分光镜,指能将一束光分为透射光和反射光的平面镜,通常由光学玻璃镀膜而成。A beam splitter is a plane mirror that divides a beam of light into transmitted light and reflected light, usually made of optical glass.
为解决现有技术问题,实现更好的悬浮显示效果,本发明实施例提出了一种基于凹面反射镜或凸面反射镜联合光学透镜模组的空中悬浮显示 系统。In order to solve the prior art problem and achieve a better suspension display effect, an embodiment of the present invention provides an air suspension display system based on a concave mirror or a convex mirror combined with an optical lens module.
图1为本发明实施例提供的一种空中悬浮显示系统的结构示意图,如图1所示,所述系统包括显示源、光学模组和弧面反射镜,所述光学模组包括透镜组和分光镜,所述透镜组包括至少一个透镜,所述弧面反射镜为凹面反射镜、凸面反射镜或与所述弧面反射镜等效的反射式菲涅尔镜。其中,FIG. 1 is a schematic structural diagram of an air suspension display system according to an embodiment of the present invention. As shown in FIG. 1 , the system includes a display source, an optical module, and a curved mirror. The optical module includes a lens group and A beam splitter, the lens group comprising at least one lens, the curved mirror being a concave mirror, a convex mirror or a reflective Fresnel mirror equivalent to the curved mirror. among them,
所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经过所述透镜组和所述分光镜后,再经所述光学模组的光线出射端进入所述弧面反射镜。光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜后在空中汇聚形成悬浮像。The light emitted by the display source enters the optical module through the light incident end of the optical module, passes through the lens group and the beam splitter, and then enters the light exit end of the optical module. Curved mirror. The light reflected through the curved mirror re-enters the optical module through the light exit end of the optical module, and passes through the beam splitter to converge in the air to form a suspended image.
其中,显示源M 1是一种电子设备或者被光照的实际物体,它能够向观看者提供视觉内容信息。它可以是液晶显示器(LCD),激光显示器、投影仪、LED显示器、OLED显示器、量子点显示器、或其他能够显示视觉内容的器件和系统。它用来显示静态的、动态的以及任意能够被显示或者看到的内容。静态的内容指显示的内容不随时间的变化而改变,它包括但不限于图片、静态影像、静态文本及图表数据等。动态内容指随时间的变化而改变的内容,它包括但不限于录制视频、实时视频、变化的图像、动态的文本及图表数据等。 Wherein, the display source M 1 is an electronic device or an actual object illuminated, which can provide visual content information to the viewer. It can be a liquid crystal display (LCD), a laser display, a projector, an LED display, an OLED display, a quantum dot display, or other device and system capable of displaying visual content. It is used to display static, dynamic, and anything that can be displayed or seen. Static content means that the displayed content does not change over time, including but not limited to pictures, still images, static text, and chart data. Dynamic content refers to content that changes over time, including but not limited to recorded video, live video, changed images, dynamic text and chart data, and the like.
光学模组包括M 2、M' 2和分光镜E 0,具体如下: The optical module includes M 2 , M′ 2 and beam splitter E 0 , as follows:
M 2、M' 2,M 2由图1所示的镜片1到镜片K组成,K代表复合透镜组M 2中透镜的数目。M' 2由图1所示镜片1到镜片N组成,N代表复合透镜组M' 2中透镜的数目,其中K和N满足的关系为:当N=0,K≥1当N>0时,K≥0;。根据实际需要可在光学镜片上镀各种光学膜(例如增透减反膜)。复合透镜组的作用是联合凹面反射镜R将显示源发出的光线进行调制(折射和反射),使得出射光线能够按照一定的规律在空气中汇聚,以达到在空气中悬浮成像的目的。 M 2 , M' 2 , M 2 are composed of the lens 1 to the lens K shown in Fig. 1, and K represents the number of lenses in the composite lens group M 2 . M' 2 is composed of the lens 1 to the lens N shown in Fig. 1, and N represents the number of lenses in the composite lens group M' 2 , wherein K and N satisfy the relationship: when N = 0, K ≥ 1 when N > 0 , K≥0; Various optical films (for example, antireflection film) can be plated on the optical lens according to actual needs. The function of the composite lens group is to combine the concave mirror R to modulate (refractive and reflect) the light emitted by the display source, so that the emitted light can be concentrated in the air according to a certain rule to achieve the purpose of floating imaging in the air.
分光镜E 0,具有部分透射及部分反射的平面光学元件,其透射率的范围是:1%~99%,其反射率的范围是:1%~99%。其材料可以是玻璃或者亚克力及其他塑料材料。其厚度可以根据实际需要制定。 The beam splitter E 0 has a partially transmissive and partially reflected planar optical element having a transmittance ranging from 1% to 99% and a reflectance ranging from 1% to 99%. The material can be glass or acrylic and other plastic materials. The thickness can be determined according to actual needs.
弧面反射镜R,它的面型可以是普通球面、也可以是其他非球面面型,它的材料可以是各种玻璃、金属、亚克力及其他塑料材料。其反射面可以在前表面也可以在后表面,反射率的选择范围是:1%~99%(需要申明的是:反射率的控制可以在上述材料中添加一些成分或者镀膜或者在其表面贴膜等方式实现)。它的形状可以是矩形、圆形、正方形、六边形等任意形状,因此D 0指凹面反射镜外接圆直径的尺寸,其变化范围是5000mm≥D 0>0mm。它的厚度可以根据实际需要制定。另外,弧面反射镜R也可以是与其等效的反射式菲涅尔镜。 The curved mirror R can be of ordinary spherical surface or other aspherical surface type, and its material can be various glass, metal, acrylic and other plastic materials. The reflective surface can be on the front surface or on the back surface. The reflectivity can be selected from: 1% to 99%. (It is necessary to declare that the control of the reflectivity can add some components or coatings on the above materials or film on the surface. Other ways to achieve). Its shape may be any shape such as a rectangle, a circle, a square, a hexagon, etc., so D 0 refers to the size of the diameter of the circumcircle of the concave mirror, and the range of variation is 5000 mm ≥ D 0 > 0 mm. Its thickness can be determined according to actual needs. In addition, the curved mirror R may also be a reflective Fresnel mirror equivalent thereto.
系统在空中所成像M 3,代表悬浮在空气中的静态图像或者动态视频,观察者可以真切地看到图像或者视频漂浮在空中,并且可以用手穿过悬浮像。 In the air system of the imaged M 3, suspended in the air of the representative still images or motion video, the observer can actually see an image or video floating in the air, and may be suspended through the hand image.
本发明实施例提供了一种空中悬浮显示系统,通过包括透镜组和分光镜的光学模组对显示源发射的光线进行调制和分光后进入弧面反射镜,弧面反射镜再将光线反射经过分光镜分光在空中汇聚形成悬浮像,该空中悬浮显示系统能够实现一个大视角、大尺寸、高清晰度无畸变的空中悬浮图像。Embodiments of the present invention provide an air suspension display system, which modulates and splits light emitted by a display source through an optical module including a lens group and a beam splitter, and then enters a curved mirror, and the curved mirror reflects the light. The beam splitter splits in the air to form a suspended image, and the aerial floating display system can realize a large angle of view, large size, high definition and undistorted aerial floating image.
基于上述实施例,所述光学模组中的每个透镜为传统透镜或菲涅尔透镜。Based on the above embodiments, each of the lenses in the optical module is a conventional lens or a Fresnel lens.
具体地,在该悬浮显示系统中的光学模组中的光学镜片可以是传统的玻璃透镜、塑料透镜或者菲涅尔透镜或者是它们之间的任意组合。In particular, the optical lens in the optical module in the floating display system can be a conventional glass lens, a plastic lens or a Fresnel lens or any combination therebetween.
如图2所示,上述实施例中的悬浮显示系统中的光学模组中的每个光学镜片可以是图2中任意一种结构或者是它们之间胶合在一起的复合结构。例如图2中的平凸透镜和双凹透镜可以组成双胶合透镜或者再加上双凸透镜组成三胶合结构等。R是光学透镜的曲率半径,其绝对值的取值范围是:R>0。l是光学透镜的中心厚度,其取值范围是:500mm≥l>0mm。l E是光学透镜的边缘厚度,其取值范围是:500mm≥l E>0mm光学透镜的形状可以是矩形、圆形、正方形、六边形等任意形状,因此D指每个光学透镜外接圆直径的尺寸,选择范围是:5000mm≥D>0mm。每个光学透镜所采用的材料可以是各种玻璃材料(如冕牌玻璃、火石玻璃、重冕玻璃、重火石玻璃或者LA系玻璃等);可以是塑料树脂材料(如PMMA、PC、COC、 POLYCARB等);根据实际需要可在光学镜片上镀各种光学膜(例如增透减反膜)。需要声明的是图2只是描述出传统透镜可能存在几种形式,并不是限制专利的保护范围和权限。图2展示了光学镜片是传统透镜的形式,同样光学镜片也可以是菲涅尔透镜的形式。 As shown in FIG. 2, each optical lens in the optical module in the floating display system of the above embodiment may be any one of the structures of FIG. 2 or a composite structure that is glued together. For example, the plano-convex lens and the biconcave lens in FIG. 2 may constitute a double-glued lens or a lenticular lens to form a three-glued structure or the like. R is the radius of curvature of the optical lens, and its absolute value ranges from: R>0. l is the center thickness of the optical lens, and its value range is: 500 mm ≥ l > 0 mm. l E is the edge thickness of the optical lens, and its value range is: 500mm ≥ l E > 0mm The shape of the optical lens can be any shape such as rectangle, circle, square, hexagon, etc., so D refers to the circumcircle of each optical lens. The size of the diameter, the selection range is: 5000mm ≥ D > 0mm. The material used for each optical lens may be various glass materials (such as enamel glass, flint glass, heavy glass, heavy flint glass or LA glass); it may be a plastic resin material (such as PMMA, PC, COC, POLYCARB, etc.; various optical films (such as anti-reflection film) can be plated on optical lenses according to actual needs. It should be noted that Figure 2 only describes the existence of several forms of conventional lenses, and does not limit the scope and authority of patents. Figure 2 shows that the optical lens is in the form of a conventional lens, and the optical lens can also be in the form of a Fresnel lens.
如图3所示,光学模组中的每个光学镜片可以是图3中任意一种结构或者是它们之间胶合在一起的复合结构。每个光学镜片的光焦度可以根据情况取正光焦度、负光焦度或者零光焦度。菲涅尔透镜的厚度取值范围是:500mm≥d>0mm。菲涅尔透镜的形状可以是矩形、圆形、正方形、六边形等任意形状,因此D指每个菲涅尔透镜外接圆直径的尺寸,选择范围是:5000mm≥D>0mm。菲涅尔透镜的环距的取值范围是0.01mm~100mm。根据实际需要可在菲涅尔镜片上镀各种光学膜(例如增透减反膜)。需要声明的是图3只是示意出了几种菲涅尔透镜,并不是限制菲涅尔透镜的结构形式。实际上,菲涅尔透镜的每个齿的齿深、倾斜角、拔模角都可以根据实际生产工艺和要求在保证光焦度不变的情况下做出调整。菲涅尔透镜的每个齿既可以是直线三角锯齿,也可以是与其相应透镜等效的弧线型。这些都在本专利所要保护的范围之内。As shown in FIG. 3, each of the optical lenses in the optical module may be any of the structures of FIG. 3 or a composite structure that is glued together. The power of each optical lens can be taken as positive power, negative power or zero power depending on the situation. The thickness of the Fresnel lens ranges from 500 mm ≥ d > 0 mm. The shape of the Fresnel lens may be any shape such as a rectangle, a circle, a square, a hexagon, etc., so D refers to the size of the diameter of the circumscribed circle of each Fresnel lens, and the selection range is: 5000 mm ≥ D > 0 mm. The pitch of the Fresnel lens ranges from 0.01 mm to 100 mm. Various optical films (for example, antireflection film) can be plated on the Fresnel lens according to actual needs. It should be noted that Figure 3 only illustrates several Fresnel lenses and does not limit the structural form of the Fresnel lens. In fact, the tooth depth, inclination angle, and draft angle of each tooth of the Fresnel lens can be adjusted according to the actual production process and requirements while ensuring the power does not change. Each tooth of the Fresnel lens can be either a linear triangular sawtooth or an arc equivalent to its corresponding lens. These are all within the scope of this patent.
图2-3分别说明了光学模组中的光学镜片是传统透镜和菲涅尔透镜,需要声明的是,这只是其中的两个具体实施例,并不是限制专利的保护范围和权限。实际上,光学模组可以是这两者的组合(即传统透镜和菲涅尔透镜的组合)。Figure 2-3 illustrates that the optical lens in the optical module is a conventional lens and a Fresnel lens. It should be noted that these are only two specific embodiments, and do not limit the scope and authority of the patent. In fact, the optical module can be a combination of the two (ie a combination of a conventional lens and a Fresnel lens).
基于上述实施例,所述光学模组中相邻透镜中心之间的距离为d,且500mm≥d≥0mm;所述光学模组中各透镜的厚度为l,且500mm≥l>0mm;所述光学模组中各透镜的外接圆直径为D,且5000mm≥D>0mm。Based on the above embodiment, the distance between the centers of adjacent lenses in the optical module is d, and 500 mm ≥ d ≥ 0 mm; the thickness of each lens in the optical module is l, and 500 mm ≥ l > 0 mm; The diameter of the circumscribed circle of each lens in the optical module is D, and 5000 mm ≥ D > 0 mm.
基于上述实施例,如图1所示,所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经所述分光镜反射后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜透射后在空中汇聚形成悬浮像。Based on the above embodiment, as shown in FIG. 1 , the light emitted by the display source enters the optical module through the light incident end of the optical module, is reflected by the beam splitter, and then passes through the optical module. The light exit end enters the arc mirror; the light is reflected by the arc mirror and enters the optical module again through the light exit end of the optical module, and is transmitted through the beam splitter in the air. Converging to form a suspended image.
具体地,由显示源M 1发射出的光线进入复合透镜组M 2,经过该光学模组的调制(反射和折射),这些光线会入射在具有部分透射及部分反射 的平面光学元件E 0上,光线被E 0反射后进入复合透镜组M' 2,经过该光学模组的调制(反射和折射),光线入射在凹面反射镜R上。由凹面反射镜R反射的光线将再次经过复合透镜组M' 2并穿过E 0后在其右侧的空气中汇聚成像。图1中L O是显示元M 1的中心与复合透镜组M 2中第一个透镜中心的距离,其范围是:5000mm≥L O≥0mm,d是光学模组M 2、M' 2中相邻光学镜片中心的间距,其变化范围是500mm≥d≥0mm,l是每个光学镜片的厚度,其变化范围是500mm≥l>0mm。 Specifically, the light emitted by the display source M 1 enters the composite lens group M 2 , and through the modulation (reflection and refraction) of the optical module, the light is incident on the planar optical element E 0 having partial transmission and partial reflection. The light is reflected by E 0 and enters the composite lens group M' 2 . After the modulation (reflection and refraction) of the optical module, the light is incident on the concave mirror R. The light reflected by the concave mirror R will again pass through the composite lens group M' 2 and pass through E 0 and then condense and image in the air on the right side thereof. L O in Fig. 1 is the distance between the center of the display element M 1 and the center of the first lens in the composite lens group M 2 , and the range is: 5000 mm ≥ L O0 mm, and d is the optical module M 2 , M' 2 The pitch of the center of the adjacent optical lens has a variation range of 500 mm ≥ d ≥ 0 mm, and l is the thickness of each optical lens, and the variation range is 500 mm ≥ l > 0 mm.
L 1是图1中复合透镜组M 2中第K个透镜的中心到E 0的中心的距离,其变化范围是:5000mm≥L 1≥0mm。L 2是反射镜E 0的中心与图1中复合透镜组M' 2中第N个光学镜片中心的距离,其变化范围是:5000mm≥L 2≥0mm。θ 0是E 0的旋转角,其变化范围是:90°>θ 0>0°。L 3是复合透镜组M' 2中第1个光学镜片中心到凹面反射镜R的中心的距离,其变化范围是:5000mm≥L 3≥0mm。L I是E 0的中心与空气中悬浮像中心的距离,其变化范围是5000mm≥L 3≥0mm,θ是观看视角,其变化范围是:180°≥θ>0°(需要申明的是:其环视视角可以是360度),悬浮图像的尺寸与显示源M 1上显示图像尺寸的比的变化范围是0.1:1到10:1。 L 1 is the distance from the center of the Kth lens in the composite lens group M 2 in Fig. 1 to the center of E 0 , and the range of variation is: 5000 mm ≥ L 10 mm. L 2 is the distance between the center of the mirror E 0 and the center of the Nth optical lens in the composite lens group M' 2 of Fig. 1, and the range of variation is: 5000 mm ≥ L 2 ≥ 0 mm. θ 0 is the rotation angle of E 0 , and the range of variation is: 90° > θ 0 > 0°. L 3 is the distance from the center of the first optical lens of the composite lens group M' 2 to the center of the concave mirror R, and the range of variation is: 5000 mm ≥ L 3 ≥ 0 mm. L I is the distance between the center of E 0 and the center of the suspended image in the air. The range of variation is 5000 mm ≥ L 3 ≥ 0 mm, and θ is the viewing angle. The range of variation is: 180 ° ≥ θ > 0 ° (need to be declared: The viewing angle of the viewing angle may be 360 degrees), and the ratio of the size of the floating image to the size of the displayed image on the display source M 1 varies from 0.1:1 to 10:1.
基于上述实施例,如图4所示,所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经所述分光镜透射后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜反射后在空中汇聚形成悬浮像。Based on the above embodiment, as shown in FIG. 4, the light emitted by the display source enters the optical module through the light incident end of the optical module, and is transmitted through the beam splitter, and then passes through the optical module. The light exit end enters the curved mirror; the light is reflected by the curved mirror and enters the optical module again through the light exit end of the optical module, and is reflected in the air after being reflected by the beam splitter Converging to form a suspended image.
基于上述实施例,所述系统还包括反射元件;Based on the above embodiments, the system further includes a reflective element;
所述反射元件设置在所述显示源与所述光学模组的光线入射端之间、所述分光镜与所述系统成像位置之间或所述光学模组中任意一个光学元件与所述弧面反射镜之间,所述任意一个光学元件为所述透镜组中任意一个透镜或所述分光镜。The reflective element is disposed between the display source and a light incident end of the optical module, between the beam splitter and the imaging position of the system, or any one of the optical components and the curved surface of the optical module Between the mirrors, any one of the optical elements is any one of the lens groups or the beam splitter.
其中,所述分光镜的旋转角为θ 0,90°>θ 0>0°;所述反射元件的旋转角为θ 1,且90°>θ 1>0°。 Wherein, the rotation angle of the beam splitter is θ 0 , 90°>θ 0 >0°; the rotation angle of the reflective element is θ 1 , and 90°>θ 1 >0°.
具体地,通过加入反射元件可以使本系统的光路更加多变,结构调整更加灵活,更加适合市场推广。Specifically, by adding a reflective element, the optical path of the system can be more varied, the structural adjustment is more flexible, and it is more suitable for marketing.
基于上述实施例,如图5所示,所述反射元件设置在所述显示源与所述光学模组的光线入射端之间;其中,Based on the above embodiment, as shown in FIG. 5, the reflective element is disposed between the display source and the light incident end of the optical module;
所述显示源的发光面与所述光学模组的光线入射端垂直设置,所述显示源发射的光线经所述反射元件发射后进入所述光学模组;The light emitting surface of the display source is perpendicular to the light incident end of the optical module, and the light emitted by the display source is emitted by the reflective component and enters the optical module;
所述显示源的发光面与所述反射元件中心之间的距离为0-5000mm,所述光学模组的光线入射端的透镜中心与所述反射元件中心之间的距离为0-5000mm。The distance between the light emitting surface of the display source and the center of the reflective element is 0-5000 mm, and the distance between the lens center of the light incident end of the optical module and the center of the reflective element is 0-5000 mm.
其中,所述反射元件是具有反射能力的平面镜,如玻璃反射镜、树脂反射镜、光滑的金属表面等具有反射能力的平面元件。其尺寸变化范围是:10mm~5000mm。反射率的变化范围是:1%~99%。Wherein, the reflective element is a plane mirror with reflective capability, such as a glass mirror, a resin mirror, a smooth metal surface, and the like having a reflective element. Its size range is: 10mm ~ 5000mm. The range of reflectance varies from 1% to 99%.
具体地,L O是显示源M 1的中心到E 1的中心的距离,其变化范围是:5000mm≥L O≥0mm。L 1是E 1的中心到复合透镜组M 2中第一个光学镜片的中心的距离,其变化范围是:5000mm≥L 1≥0mm。θ 1是E 1的旋转角,其变化范围是:90°>θ 1>0°。L 2是复合透镜组M 2中第K个光学镜片的中心到E 0的中心的距离,其变化范围是:5000mm≥L 2≥0mm。θ 0是E 0的旋转角,其变化范围是:90°>θ 0>0°。L 3是E 0的中心到复合透镜组M' 2中第N个光学镜片的中心的距离,其变化范围是:5000mm≥L 3≥0mm。L 4是复合透镜组M' 2中第1个光学镜片的中心到凹面反射镜的距离,其变化范围是:5000mm≥L 4≥0mm。d是复合透镜组M 2、M‘ 2中相邻光学镜片中心的间距,其变化范围是500mm≥d≥0mm,l是每个光学镜片的厚度,其变化范围是500mm≥l>0mm。L I是E 0的中心到空气中悬浮像M 3的中心的距离,其变化范围是5000mm≥L I≥0mm,θ是观看视角,其变化范围是:180°≥θ>0°(其环视视角可以是360度)。悬浮图像的尺寸与显示源M 1上显示图像尺寸的比的变化范围是0.1:1到10:1。 Specifically, L O is the distance from the center of the display source M 1 to the center of E 1 , and the range of variation is: 5000 mm ≥ L O0 mm. L 1 is the distance from the center of E 1 to the center of the first optical lens in the composite lens group M 2 , and the range of variation is: 5000 mm ≥ L 10 mm. θ 1 is the rotation angle of E 1 , and the range of variation is: 90° > θ 1 > 0°. L 2 is the distance from the center of the Kth optical lens in the composite lens group M 2 to the center of E 0 , and the range of variation is: 5000 mm ≥ L 2 ≥ 0 mm. θ 0 is the rotation angle of E 0 , and the range of variation is: 90° > θ 0 > 0°. L 3 is the distance from the center of E 0 to the center of the Nth optical lens in the composite lens group M' 2 , and the range of variation is: 5000 mm ≥ L 3 ≥ 0 mm. L 4 is the distance from the center of the first optical lens of the composite lens group M' 2 to the concave mirror, and the range of variation is: 5000 mm ≥ L 4 ≥ 0 mm. d is the pitch of the center of the adjacent optical lens in the composite lens group M 2 , M′ 2 , and the variation range is 500 mm ≥ d ≥ 0 mm, and l is the thickness of each optical lens, and the variation range is 500 mm ≥ l > 0 mm. L I is the distance from the center of E 0 to the center of the suspended image M 3 in the air, and its range of variation is 5000 mm ≥ L I ≥ 0 mm, θ is the viewing angle, and the range of variation is: 180 ° ≥ θ > 0 ° (there is a look around The angle of view can be 360 degrees). The ratio of the size of the floating image to the size of the displayed image on the display source M 1 varies from 0.1:1 to 10:1.
需要声明的是:在图5中,显示源M 1和复合透镜组M 2之间加入了具有反射功能的元件E 1,反射元件E 1可以是一个或者多个。图2只是其中一个例子,并不是限制了本专利的保护范围和权限,为了消除环境光和炫光的影响,也可以在上述光路中加入偏振器(线性偏振器或圆偏振器)、四分之一波长延迟器等。 It is to be noted that, in FIG. 5, an element E 1 having a reflection function is added between the display source M 1 and the composite lens group M 2 , and the reflection element E 1 may be one or more. Figure 2 is only one example, and does not limit the scope and authority of this patent. In order to eliminate the influence of ambient light and glare, a polarizer (linear polarizer or circular polarizer) or a quarter can be added to the above optical path. One of the wavelength retarders and the like.
基于上述实施例,如图6所示,所述反射元件设置在所述分光镜与所 述系统成像位置之间;其中,Based on the above embodiment, as shown in FIG. 6, the reflective element is disposed between the beam splitter and an imaging position of the system;
所述弧面反射镜的反射光线经所述分光镜后,经所述反射元件反射在空中汇聚形成悬浮像;The reflected light of the curved mirror passes through the beam splitter, and is reflected by the reflective element to converge in the air to form a suspended image;
所述系统的成像位置与所述反射元件的中心位置之间的距离为0-5000mm,所述分光镜的中心位置与所述反射元件的中心位置之间的距离为0-5000mm。The distance between the imaging position of the system and the central position of the reflective element is 0-5000 mm, and the distance between the central position of the beam splitter and the center position of the reflective element is 0-5000 mm.
具体地,由显示源M 1发射出的光线进入复合透镜组M 2,经过该光学模组的调制(反射和折射),这些光线会入射在具有部分透射及部分反射的平面光学元件E 0上,光线被E 0反射后进入复合透镜组M' 2,经过该光学模组的调制(反射和折射),光线入射在凹面反射镜R上。由凹面反射镜R反射的光线将再次经过复合透镜组M' 2并穿过E 0后入射在反射元件E 1上,被反射的光线在E 1上方的空气中汇聚成像。L O是显示元M 1的中心与复合透镜组M 2中第一个透镜中心的距离,其范围是:5000mm≥L O≥0mm,d是光学模组M 2、M' 2中相邻光学镜片中心的间距,其变化范围是500mm≥d≥0mm,l是每个光学镜片的厚度,其变化范围是500mm≥l>0mm。L 1是图1中复合透镜组M 2中第K个透镜的中心到E 0的中心的距离,其变化范围是:5000mm≥L 1≥0mm。L 2是反射镜E 0的中心与图1中复合透镜组M' 2中第N个光学镜片中心的距离,其变化范围是:5000mm≥L 2≥0mm。θ 0是E 0的旋转角,其变化范围是:90°>θ 0>0°。L 3是复合透镜组M' 2中第1个光学镜片中心到凹面反射镜R的中心的距离,其变化范围是:5000mm≥L 3≥0mm。L 4是E 0的中心到反射元件E 1的中心的距离,其变化范围是:5000mm≥L 4≥0mm。L I是E 1的中心与空气中悬浮像中心的距离,其变化范围是5000mm≥L I≥0mm,θ是观看视角,其变化范围是:180°≥θ>0°(需要申明的是:其环视视角可以是360度),悬浮图像的尺寸与显示源M 1上显示图像尺寸的比的变化范围是0.1:1到10:1。 Specifically, the light emitted by the display source M 1 enters the composite lens group M 2 , and through the modulation (reflection and refraction) of the optical module, the light is incident on the planar optical element E 0 having partial transmission and partial reflection. The light is reflected by E 0 and enters the composite lens group M' 2 . After the modulation (reflection and refraction) of the optical module, the light is incident on the concave mirror R. The light reflected by the concave mirror R will again pass through the composite lens group M' 2 and pass through E 0 and then be incident on the reflective element E 1 , and the reflected light will converge in the air above E 1 . L O is the distance between the center of the display element M 1 and the center of the first lens in the composite lens group M 2 , and the range is: 5000 mm ≥ L O0 mm, and d is the adjacent optical in the optical module M 2 , M′ 2 The pitch of the center of the lens is varied from 500 mm ≥ d ≥ 0 mm, and l is the thickness of each optical lens, and the range of variation is 500 mm ≥ l > 0 mm. L 1 is the distance from the center of the Kth lens in the composite lens group M 2 in Fig. 1 to the center of E 0 , and the range of variation is: 5000 mm ≥ L 10 mm. L 2 is the distance between the center of the mirror E 0 and the center of the Nth optical lens in the composite lens group M' 2 of Fig. 1, and the range of variation is: 5000 mm ≥ L 2 ≥ 0 mm. θ 0 is the rotation angle of E 0 , and the range of variation is: 90° > θ 0 > 0°. L 3 is the distance from the center of the first optical lens of the composite lens group M' 2 to the center of the concave mirror R, and the range of variation is: 5000 mm ≥ L 3 ≥ 0 mm. L 4 is the distance from the center of E 0 to the center of the reflective element E 1 , and the range of variation is: 5000 mm ≥ L 4 ≥ 0 mm. L I is the distance between the center of E 1 and the center of the suspended image in the air. The range of variation is 5000 mm ≥ L I ≥ 0 mm, and θ is the viewing angle. The range of variation is: 180 ° ≥ θ > 0 ° (need to be declared: The viewing angle of the viewing angle may be 360 degrees), and the ratio of the size of the floating image to the size of the displayed image on the display source M 1 varies from 0.1:1 to 10:1.
图6所示只是该显示系统的其中一种结构形式,并不是限制该显示系统的保护范围,实际上可以在E 0与悬浮像M 3之间加入一个或多个具有反射功能的元件,同样可以实现悬浮显示的效果。为了消除环境光和炫光的影响,也可以在上述光路中加入偏振器(线性偏振器或圆偏振器)、四分之一波长延迟器等。 Figure 6 shows only one of the structural forms of the display system, and does not limit the protection range of the display system. In fact, one or more reflective components can be added between E 0 and the suspended image M 3 . The effect of floating display can be achieved. In order to eliminate the influence of ambient light and glare, a polarizer (linear polarizer or circular polarizer), a quarter-wave retarder, or the like may be added to the above optical path.
基于上述实施例,如图7所示,所述反射元件设置在所述光学模组中任意一个光学元件与所述弧面反射镜之间;其中,Based on the above embodiment, as shown in FIG. 7, the reflective element is disposed between any one of the optical modules and the curved mirror;
所述弧面反射镜的反射光线经所述反射元件反射进入所述光学模组,并经所述分光镜后在空中汇聚形成悬浮像;The reflected light of the curved mirror is reflected by the reflective element into the optical module, and is concentrated in the air through the beam splitter to form a suspended image;
所述弧面反射镜与所述反射元件之间的距离为0-5000mm,所述任意一个光学元件的中心与所述反射元件中心之间的距离为0-5000mm。The distance between the curved mirror and the reflective element is 0-5000 mm, and the distance between the center of the arbitrary optical element and the center of the reflective element is 0-5000 mm.
具体地,由显示源M 1发射出的光线进入复合透镜组M 2,经过该光学模组的调制(反射和折射),这些光线会入射在具有部分透射及部分反射的平面光学元件E 0上,光线被E 0反射后进入复合透镜组M' 2,经过该光学模组的调制(反射和折射)及反射元件E 1的反射后入射在凹面反射镜R上。由凹面反射镜R反射的光线再次被反射元件E 1反射后第二次通过复合透镜组M' 2并穿过E 0后在其右侧的空气中汇聚成像。L O是显示源M 1的中心到复合透镜组M 2中第一个光学镜片的中心的距离,其变化范围是:5000mm≥L O≥0mm。L 1是复合透镜组M 2中第K个光学镜片中到E 0的中心的距离,其变化范围是:5000mm≥L 1≥0mm。θ 0是E 0的旋转角,其变化范围是:90°>θ 0>0°。L 2是E 0的中心到复合透镜组M' 2中第N个光学镜片中心的距离,其变化范围是:5000mm≥L 2≥0mm。L 3是复合透镜组M' 2中第1个光学镜片中心到反射元件E 1的中心的距离,其变化范围是:5000mm≥L 3≥0mm。θ 1是E 1的旋转角,其变化范围是:90°>θ 1>0°。L 4是E 1的中心到凹面反射镜R的中心的距离,其变化范围是:5000mm≥L 4≥0mm。d是复合透镜组M 2、M‘ 2中相邻光学镜片中心的间距,其变化范围是500mm≥d≥0mm,l是每个光学镜片的厚度,其变化范围是500mm≥l>0mm。L I是E 0的中心到空气中悬浮像M 3的中心的距离,其变化范围是5000mm≥L I≥0mm,θ是观看视角,其变化范围是:180°≥θ>0°(其环视视角可以是360度)。悬浮图像的尺寸与显示源M 1上显示图像尺寸的比的变化范围是0.1:1到10:1。 Specifically, the light emitted by the display source M 1 enters the composite lens group M 2 , and through the modulation (reflection and refraction) of the optical module, the light is incident on the planar optical element E 0 having partial transmission and partial reflection. The light is reflected by E 0 and enters the composite lens group M' 2 . After being modulated (reflected and refracted) by the optical module and reflected by the reflective element E 1 , it is incident on the concave mirror R. Light reflected by the concave mirror R is again reflected back reflector element E 1 second '0 E 2 and after passing through the converging air as its right by the composite lens group M. L O is the distance from the center of the display source M 1 to the center of the first optical lens in the composite lens group M 2 , and the range of variation is: 5000 mm ≥ L O0 mm. L 1 is the distance from the center of E 0 in the Kth optical lens in the composite lens group M 2 , and the range of variation is: 5000 mm ≥ L 10 mm. θ 0 is the rotation angle of E 0 , and the range of variation is: 90° > θ 0 > 0°. L 2 is the distance from the center of E 0 to the center of the Nth optical lens in the composite lens group M' 2 , and the range of variation is: 5000 mm ≥ L 2 ≥ 0 mm. L 3 is the distance from the center of the first optical lens in the composite lens group M' 2 to the center of the reflective element E 1 , and the range of variation is: 5000 mm ≥ L 3 ≥ 0 mm. θ 1 is the rotation angle of E 1 , and the range of variation is: 90° > θ 1 > 0°. L 4 is the distance from the center of E 1 to the center of the concave mirror R, and the range of variation is: 5000 mm ≥ L 4 ≥ 0 mm. d is the pitch of the center of the adjacent optical lens in the composite lens group M 2 , M′ 2 , and the variation range is 500 mm ≥ d ≥ 0 mm, and l is the thickness of each optical lens, and the variation range is 500 mm ≥ l > 0 mm. L I is the distance from the center of E 0 to the center of the suspended image M 3 in the air, and its range of variation is 5000 mm ≥ L I ≥ 0 mm, θ is the viewing angle, and the range of variation is: 180 ° ≥ θ > 0 ° (there is a look around The angle of view can be 360 degrees). The ratio of the size of the floating image to the size of the displayed image on the display source M 1 varies from 0.1:1 to 10:1.
需要声明的是:在图7中,E 0和凹面反射镜R之间加入了具有反射功能的元件E1,图7只是其中一个例子,并不是限制了本专利的保护范围和权限,实际上可以在E 0和凹面反射镜R之间加入一个或多个具有反射功能的元件,同样可以实现悬浮显示的效果。为了消除环境光和炫光的影响,也可以在上述光路中加入偏振器(线性偏振器或圆偏振器)、四分之 一波长延迟器等。 It should be stated that in Figure 7, the component E1 with reflection function is added between E 0 and the concave mirror R. Figure 7 is only one example, and does not limit the scope and authority of this patent. By adding one or more elements with reflection function between E 0 and the concave mirror R, the effect of floating display can also be achieved. In order to eliminate the influence of ambient light and glare, a polarizer (linear polarizer or circular polarizer), a quarter-wave retarder, or the like may be added to the above optical path.
基于上述实施例,所述光学模组中的每个透镜的面型是根据实际情况利用光学设计软件或算法得到。Based on the above embodiments, the face shape of each lens in the optical module is obtained by using optical design software or an algorithm according to actual conditions.
具体地,以凹面反射镜和传统透镜组及图1所示的结构为例,在优化设计凹面反射镜和每个透镜的面型时,首先需要确定显示源M 1的中心与复合透镜组M 2中第一个透镜中心的距离L O;复合透镜组M 2中第K个透镜中心与元件E 0中心的距离L 1;元件E 0中心到复合透镜组M‘ 2中第N个透镜中心的距离L 2;复合透镜组M‘ 2中第1个透镜中心与凹面反射R中心的距离L 3及元件E 0中心到悬浮图像M 3中的距离L I。其次确定悬浮图像的尺寸及观看视角,最后确定复合透镜组中透镜的数量。 Specifically, taking the concave mirror and the conventional lens group and the structure shown in FIG. 1 as an example, when optimizing the design of the concave mirror and the surface shape of each lens, it is first necessary to determine the center of the display source M 1 and the composite lens group M. 2 from the center of the first lens L O; M 2 from the composite lens group in the center of the K-th lens element E 0 Center L 1; element E 0 to the center of the composite lens group M '2 N-th lens center The distance L 2 ; the distance L 3 between the center of the first lens and the center of the concave reflection R in the composite lens group M' 2 and the distance L I from the center of the element E 0 to the suspended image M 3 . Secondly, the size and viewing angle of the suspended image are determined, and finally the number of lenses in the composite lens group is determined.
以上这些都是整个系统所要优化的目标值,要达到这些目标值,需要在选定优化变量后利用优化算法不断迭代计算,最终得到满足目标值的各个优化变量的值和具体面型参数。该系统的优化变量有:各个光学镜片的厚度、相邻光学镜片的间距、光学镜片选用的材料以及各个光学镜片所遵循的面型公式(包括公式中的各个变量:曲率、非球面系数等)(可以是已有的球面或非球面面型公式,亦或是用户自定义的面型公式)。表1是按照上述方法计算得到的凹面反射镜的参数,表2是按照上述方法计算得到的复合透镜组M 2、M‘ 2其中一个光学镜片的参数如表1所示,是按照上述方法计算得到的其中一个光学镜片的参数。 All of the above are the target values to be optimized by the whole system. To achieve these target values, it is necessary to use the optimization algorithm to iteratively calculate after selecting the optimization variables, and finally obtain the values of the optimization variables and the specific surface parameters that satisfy the target value. The optimization variables of the system are: the thickness of each optical lens, the spacing of adjacent optical lenses, the material selected for the optical lens, and the surface formula followed by each optical lens (including various variables in the formula: curvature, aspheric coefficient, etc.) (It can be an existing spherical or aspherical formula, or a user-defined face formula). Table 1 is the parameters of the concave mirror calculated according to the above method, and Table 2 is the composite lens group M 2 , M' 2 calculated according to the above method. The parameters of one of the optical lenses are as shown in Table 1, and are calculated according to the above method. The parameters of one of the obtained optical lenses.
表1Table 1
Figure PCTCN2018077596-appb-000001
Figure PCTCN2018077596-appb-000001
表2Table 2
Figure PCTCN2018077596-appb-000002
Figure PCTCN2018077596-appb-000002
表1、表2中光学元件遵循的面型公式如下:The surface formulas followed by the optical components in Tables 1 and 2 are as follows:
Figure PCTCN2018077596-appb-000003
Figure PCTCN2018077596-appb-000003
其中,Z是透镜的矢高,c是曲率,r是径向口径,k是圆锥系数,a1~a5是非球面系数。Where Z is the vector height of the lens, c is the curvature, r is the radial aperture, k is the conic coefficient, and a1 to a5 are aspherical coefficients.
以上的实施例只是其中的一种可能性,实际上,系统优化目标值的改变、优化变量选用的改变、优化顺序的改变、面型公式的选择(内部变量的选择)及优化算法选用都能得出不同的变量值和面型参数,因此会有无数个满足要求的面型参数的结果。另外这些面型也可以是与其等效的菲涅尔透镜。这些都属于本行业人员在不付出创造性劳动的情况下在参考上述实施例后可以通过修改而得到不同的面型参数,这些应都属于本专利的保护范围。The above embodiment is only one possibility. In fact, the system optimization target value change, the optimization variable selection change, the optimization order change, the face shape formula selection (internal variable selection) and the optimization algorithm selection can Different variable values and face parameters are obtained, so there will be countless results for the face parameters that meet the requirements. In addition, these face types may also be Fresnel lenses equivalent thereto. These are all people of the industry who can obtain different surface parameters by modification after referring to the above embodiments without any creative labor, and these should all fall within the protection scope of this patent.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, and are not limited thereto; although the present invention has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that The technical solutions described in the foregoing embodiments are modified, or the equivalents of the technical features are replaced. The modifications and substitutions do not depart from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (10)

  1. 一种空中悬浮显示系统,其特征在于,所述系统包括显示源、光学模组和弧面反射镜,所述光学模组包括透镜组和分光镜,所述透镜组包括至少一个透镜,所述弧面反射镜为凹面反射镜、凸面反射镜或与所述弧面反射镜等效的反射式菲涅尔镜。其中,An airborne floating display system, characterized in that the system comprises a display source, an optical module and a curved mirror, the optical module comprises a lens group and a beam splitter, the lens group comprises at least one lens, The curved mirror is a concave mirror, a convex mirror or a reflective Fresnel mirror equivalent to the curved mirror. among them,
    所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经过所述透镜组和所述分光镜后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜后在空中汇聚形成悬浮像。The light emitted by the display source enters the optical module through the light incident end of the optical module, passes through the lens group and the beam splitter, and then enters the light exit end of the optical module. a curved mirror; the light reflected by the curved mirror re-enters the optical module through the light exit end of the optical module, and passes through the beam splitter to converge in the air to form a suspended image.
  2. 根据权利要求1所述系统,其特征在于,所述光学模组中的每个透镜为传统透镜或菲涅尔透镜。The system of claim 1 wherein each of said optical modules is a conventional lens or a Fresnel lens.
  3. 根据权利要求2所述系统,其特征在于,所述光学模组中相邻透镜中心之间的距离为d,且500mm≥d≥0mm;所述光学模组中各透镜的厚度为l,且500mm≥l>0mm;所述光学模组中各透镜的外接圆直径为D,且5000mm≥D>0mm。The system according to claim 2, wherein a distance between adjacent ones of said optical modules is d, and 500 mm ≥ d ≥ 0 mm; each lens of said optical module has a thickness of 1, and 500mm≥l>0mm; the diameter of the circumscribed circle of each lens in the optical module is D, and 5000mm≥D>0mm.
  4. 根据权利要求3所述系统,其特征在于,所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经所述分光镜反射后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜透射后在空中汇聚形成悬浮像。The system according to claim 3, wherein the light emitted by the display source enters the optical module through the light incident end of the optical module, is reflected by the beam splitter, and then passes through the optical mode. The light exit end of the group enters the arc mirror; the light is reflected by the arc mirror and enters the optical module again through the light exit end of the optical module, and is transmitted through the beam splitter The air gathers to form a suspended image.
  5. 根据权利要求3所述系统,其特征在于,所述显示源发射的光线经所述光学模组的光线入射端进入所述光学模组,经所述分光镜透射后,再经所述光学模组的光线出射端进入所述弧面反射镜;光线经所述弧面反射镜的反射经所述光学模组的光线出射端再次进入所述光学模组,并经过所述分光镜反射后在空中汇聚形成悬浮像。The system according to claim 3, wherein the light emitted by the display source enters the optical module through the light incident end of the optical module, is transmitted through the beam splitter, and then passes through the optical mode. The light exit end of the group enters the arc mirror; the light is reflected by the arc mirror and enters the optical module again through the light exit end of the optical module, and is reflected by the beam splitter The air gathers to form a suspended image.
  6. 根据权利要求4或5所述系统,其特征在于,所述系统还包括反射元件;A system according to claim 4 or 5, wherein said system further comprises a reflective element;
    所述反射元件设置在所述显示源与所述光学模组的光线入射端之间、所述分光镜与所述系统成像位置之间或所述光学模组中任意一个光学元 件与所述弧面反射镜之间,所述任意一个光学元件为所述透镜组中任意一个透镜或所述分光镜。The reflective element is disposed between the display source and a light incident end of the optical module, between the beam splitter and the imaging position of the system, or any one of the optical components and the curved surface of the optical module Between the mirrors, any one of the optical elements is any one of the lens groups or the beam splitter.
  7. 根据权利要求6所述系统,其特征在于,所述分光镜的旋转角为θ 0,90°>θ 0>0°;所述反射元件的旋转角为θ 1,且90°>θ 1>0°。 The system according to claim 6, wherein said spectroscope has a rotation angle of θ 0 , 90° > θ 0 >0°; said reflection element has a rotation angle of θ 1 and 90° &gt ; θ 1 > 0°.
  8. 根据权利要求7所述系统,其特征在于,所述反射元件设置在所述显示源与所述光学模组的光线入射端之间;其中,The system according to claim 7, wherein said reflective element is disposed between said display source and said light incident end of said optical module;
    所述显示源的发光面与所述光学模组的光线入射端垂直设置,所述显示源发射的光线经所述反射元件发射后进入所述光学模组;The light emitting surface of the display source is perpendicular to the light incident end of the optical module, and the light emitted by the display source is emitted by the reflective component and enters the optical module;
    所述显示源的发光面与所述反射元件中心之间的距离为0-5000mm,所述光学模组的光线入射端的透镜中心与所述反射元件中心之间的距离为0-5000mm。The distance between the light emitting surface of the display source and the center of the reflective element is 0-5000 mm, and the distance between the lens center of the light incident end of the optical module and the center of the reflective element is 0-5000 mm.
  9. 根据权利要求7所述系统,其特征在于,所述反射元件设置在所述分光镜与所述系统成像位置之间;其中,The system of claim 7 wherein said reflective element is disposed between said beam splitter and said imaging position of said system;
    所述弧面反射镜的反射光线经所述分光镜后,经所述反射元件反射在空中汇聚形成悬浮像;The reflected light of the curved mirror passes through the beam splitter, and is reflected by the reflective element to converge in the air to form a suspended image;
    所述系统的成像位置与所述反射元件的中心位置之间的距离为0-5000mm,所述分光镜的中心位置与所述反射元件的中心位置之间的距离为0-5000mm。The distance between the imaging position of the system and the central position of the reflective element is 0-5000 mm, and the distance between the central position of the beam splitter and the center position of the reflective element is 0-5000 mm.
  10. 根据权利要求7所述系统,其特征在于,所述反射元件设置在所述光学模组中任意一个光学元件与所述弧面反射镜之间;其中,The system of claim 7 wherein said reflective element is disposed between any one of said optical modules and said curved mirror;
    所述弧面反射镜的反射光线经所述反射元件反射进入所述光学模组,并经所述分光镜后在空中汇聚形成悬浮像;The reflected light of the curved mirror is reflected by the reflective element into the optical module, and is concentrated in the air through the beam splitter to form a suspended image;
    所述弧面反射镜与所述反射元件之间的距离为0-5000mm,所述任意一个光学元件的中心与所述反射元件中心之间的距离为0-5000mm。The distance between the curved mirror and the reflective element is 0-5000 mm, and the distance between the center of the arbitrary optical element and the center of the reflective element is 0-5000 mm.
PCT/CN2018/077596 2017-10-13 2018-02-28 Aerial suspension display system WO2019071905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710953549.6 2017-10-13
CN201710953549.6A CN107622741A (en) 2017-10-13 2017-10-13 A kind of air suspension display system

Publications (1)

Publication Number Publication Date
WO2019071905A1 true WO2019071905A1 (en) 2019-04-18

Family

ID=61091920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077596 WO2019071905A1 (en) 2017-10-13 2018-02-28 Aerial suspension display system

Country Status (2)

Country Link
CN (1) CN107622741A (en)
WO (1) WO2019071905A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622741A (en) * 2017-10-13 2018-01-23 北京眸合科技有限公司 A kind of air suspension display system
CN108389531A (en) * 2018-02-28 2018-08-10 北京眸合科技有限公司 A kind of air suspension display system
CN108269511A (en) * 2018-02-28 2018-07-10 北京眸合科技有限公司 A kind of air suspension display system
CN110070737A (en) * 2019-05-30 2019-07-30 湖北省安防科技研究中心 A kind of traffic lights and road conditions billboard
CN110221419A (en) * 2019-07-08 2019-09-10 北京邮电大学 A kind of air suspension imaging device
CN112201185A (en) * 2020-11-18 2021-01-08 深圳市传呈科技有限公司 Medium-free aerial imaging
WO2023274255A1 (en) * 2021-06-28 2023-01-05 安徽省东超科技有限公司 Aerial imaging system and aerial imaging-based human-computer interaction system
CN114815010B (en) * 2022-05-15 2024-02-09 佛山科学技术学院 Lens array for 3D suspension imaging and device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201199289Y (en) * 2008-02-03 2009-02-25 李志扬 Three-dimensional display apparatus base on random constructive interference
CN102096194A (en) * 2010-12-24 2011-06-15 北京理工大学 Optical transmission projection type three-dimensional helmet display
US20130258069A1 (en) * 2010-12-08 2013-10-03 Sony Corporation Imaging apparatus and imaging method
CN205750141U (en) * 2016-05-11 2016-11-30 李海龙 A kind of stereo projection display apparatus
CN107622741A (en) * 2017-10-13 2018-01-23 北京眸合科技有限公司 A kind of air suspension display system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9811780D0 (en) * 1998-06-03 1998-07-29 Central Research Lab Ltd Apparatus for displaying a suspended image
CN1432841A (en) * 2002-01-16 2003-07-30 深圳市东方景电子有限公司 Optical system with high image quality for head display
KR20090026876A (en) * 2007-09-11 2009-03-16 케이디씨 정보통신(주) Three dimension solid-image device for floating and magnifying
CN101285702A (en) * 2007-12-21 2008-10-15 西北工业大学 Ultrasound suspending field visualized measurement method and its measuring systems
CN101256285A (en) * 2007-12-28 2008-09-03 安徽华东光电技术研究所 Refraction-diffraction mixed optical system as well as helmet display using the same
CN202948204U (en) * 2012-12-07 2013-05-22 香港应用科技研究院有限公司 Perspective-type head-mounted display optical system
JP2015040943A (en) * 2013-08-21 2015-03-02 株式会社ニコン Optical device
CN106773090B (en) * 2017-01-23 2019-10-18 清华大学 A kind of novel three-dimensional suspension display system and real-time light field rendering method
CN106773061B (en) * 2017-02-10 2023-09-26 北京铅笔视界科技有限公司 Near-eye display optical system
CN207233350U (en) * 2017-10-13 2018-04-13 北京眸合科技有限公司 A kind of air suspension display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201199289Y (en) * 2008-02-03 2009-02-25 李志扬 Three-dimensional display apparatus base on random constructive interference
US20130258069A1 (en) * 2010-12-08 2013-10-03 Sony Corporation Imaging apparatus and imaging method
CN102096194A (en) * 2010-12-24 2011-06-15 北京理工大学 Optical transmission projection type three-dimensional helmet display
CN205750141U (en) * 2016-05-11 2016-11-30 李海龙 A kind of stereo projection display apparatus
CN107622741A (en) * 2017-10-13 2018-01-23 北京眸合科技有限公司 A kind of air suspension display system

Also Published As

Publication number Publication date
CN107622741A (en) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2019071905A1 (en) Aerial suspension display system
WO2019072032A1 (en) Air suspension display system
KR102231367B1 (en) Systems used for airborne imaging
CN108269511A (en) A kind of air suspension display system
CN108802984A (en) A kind of air suspension display system
US9194995B2 (en) Compact illumination module for head mounted display
US20160011342A1 (en) Embedded Diffuser Structure
CN206906704U (en) A kind of light and thin type virtual image forming device and use its near-eye display device
CN103995312A (en) Light guide plate, double-vision backlight module and double-vision display device
TWM504249U (en) Head mounted display and optical lens thereof
TWM585357U (en) Optical system for realizing aerial suspension type display
US10809609B2 (en) Projection apparatus
CN107024773A (en) A kind of light and thin type virtual image forming device
CN108398735B (en) Directional imaging device, method and application
CN106646885A (en) Projection object lens and three dimensional display apparatus
US11640059B2 (en) Head-mounted display optical module
CN110088665A (en) Compact optical structure for big visual field optical perspective type head-mounted display designs
CN110297385A (en) Screen and optical projection system
CN108389531A (en) A kind of air suspension display system
CN207833879U (en) A kind of air suspension display system
CN207233350U (en) A kind of air suspension display system
CN207833880U (en) A kind of air suspension display system
US11644673B2 (en) Near-eye optical system
WO2022257819A1 (en) Transparent projection screen having fresnel structure, and projection system applying same
CN207249264U (en) air suspension display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866203

Country of ref document: EP

Kind code of ref document: A1