WO2019071645A1 - 一种畜禽粪污液体生态治理系统及方法 - Google Patents

一种畜禽粪污液体生态治理系统及方法 Download PDF

Info

Publication number
WO2019071645A1
WO2019071645A1 PCT/CN2017/106631 CN2017106631W WO2019071645A1 WO 2019071645 A1 WO2019071645 A1 WO 2019071645A1 CN 2017106631 W CN2017106631 W CN 2017106631W WO 2019071645 A1 WO2019071645 A1 WO 2019071645A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
anaerobic fermentation
temperature
water
tank
Prior art date
Application number
PCT/CN2017/106631
Other languages
English (en)
French (fr)
Inventor
汪深
Original Assignee
汪深
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汪深 filed Critical 汪深
Publication of WO2019071645A1 publication Critical patent/WO2019071645A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • C05F3/06Apparatus for the manufacture
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the invention belongs to the field of environmental protection technology, and particularly relates to a system and method for ecological management of manure and sewage liquid in livestock and poultry farms.
  • the traditional biogas digesters are generally single-structured and constructed of reinforced concrete structures. The construction cost is high and the construction is difficult.
  • the Ministry of Agriculture standard NY/T2374 ⁇ 2013 “Technical Specifications for Biogas Liquid Biogas Residue Post-treatment” it is required that anaerobic fermentation should last for more than 30 days under normal temperature conditions, and in winter, due to low ambient temperature, anaerobic is required.
  • Fermentation lasts longer, which requires that the monomer biogas tank supported by the farm is large enough, and the biogas pool infrastructure cost is high, and under normal temperature conditions, the pathogenic bacteria are difficult to completely kill, and the biogas liquid agricultural standard is not met, and the application will be It has an adverse effect on crop growth.
  • the research results show that within a certain temperature range, the biogas production rate and pathogenic bacteria mortality in the biogas digesters are positively correlated with the temperature. The higher the temperature, the higher the gas production rate and the higher the mortality rate of the pathogenic bacteria. Therefore, the biogas digesters should be properly raised. Temperature plays an important role in increasing the gas production rate and the degree of harmlessness of the biogas slurry.
  • CN101045901 discloses a joint biogas digesters, the purpose of which is to treat sewage, and to keep the sludge in the biogas tank as much as possible, and the accumulation of the fermentation tank is blocked for a long time, and the purpose of the joint is to expand the volume;
  • CN104328035 discloses a The biogas tank system mainly produces biogas fertilizer, and the soft biogas pool is connected by a sludge pump, which has high energy consumption and large equipment investment.
  • the technical problem to be solved by the present invention is to solve the problems existing in the above background art, and to provide an ecological management system and method for the livestock and poultry farms, so that the manure of the livestock and poultry farms can be ecologically controlled and resourced. purpose.
  • the technical scheme adopted by the invention is: an ecological management system for manure and sewage liquid of livestock and poultry farms, including source separation water-saving type bar, pollution control factory, feed factory and supporting planting land; said pollution control factory and feed factory It is a professional team that specializes in the disposal of livestock and poultry manure.
  • the livestock and poultry manure is used at the source to transform the pollution and produce the fertilizer needed to improve the soil.
  • the pollution control plant consists of a solid high-temperature aerobic fermentation system, a liquid medium-temperature anaerobic fermentation system, heating and The heat balance system and the detection control system are composed; the source separation water-saving type bar is used for separating rain and sewage, and the rain water and drinking water are discharged to the outdoor ditch instead of being mixed into the excrement, and the water saving is adopted.
  • the aerobic fermentation system carries out high-temperature aerobic fermentation to produce solid organic fertilizer, and the manure and liquid water and the flushing water are transported to the regulating tank.
  • the manure liquid produced by the blisters and manure is transported to the regulating tank, and the regulating tank is connected to the liquid medium temperature through the transfer pump.
  • the feed port of the anaerobic fermentation system, the biogas generated by the liquid medium temperature anaerobic fermentation system is connected to the heating and heat balance system through the biogas pretreatment device and the connecting pipe, and the heating and heat balance system is connected to the heating of the liquid medium temperature anaerobic fermentation system through the pipeline.
  • the coil; the sensors of the detection control system are arranged in each of the above systems, and each key parameter is set, detected and controlled.
  • the feed factory is specialized in the disposal of livestock and poultry manure by a professional team, the livestock and poultry manure is at the source, the planting land is used to grow grain and pasture, and the plant source feed is produced; the planted grain and pasture are planted.
  • the liquid medium temperature anaerobic fermentation system comprises a regulating tank, N liquid intermediate temperature anaerobic fermentation reactors (N ⁇ 1), an outlet tank, a sludge pump, a liquid storage tank, and a connecting pipe, and the regulating pool is discharged.
  • the liquid ports are sequentially connected to the liquid intermediate temperature anaerobic fermentation reactor in series via a pipe.
  • the liquid medium temperature anaerobic fermentation reactor is replaced by a soft anaerobic fermentation bag, and the outlet port of the regulating tank is connected to the inlet of the first soft anaerobic fermentation bag through a pipeline, and the discharge of the soft anaerobic fermentation bag is arranged.
  • the mouth is connected to the feed port of the second soft anaerobic fermentation bag through a pipe, and so on, until it is connected to the feed port of the Nth soft anaerobic fermentation bag, and the discharge port is connected to the liquid outlet tank through the pipe, and the liquid is discharged.
  • the tank is connected to the reservoir by a sludge pump.
  • the liquid medium temperature anaerobic fermentation reactor is to construct a slope along the length direction in the bottom of the rectangular reaction tank, and the inclination thereof ranges from 0.3 to 1%, and a drainage ditch is built around the inclined surface, and the drainage channel passes through the pipeline. Connected to the catchment with lower ground potential, the water collected at the bottom of the reaction tank is collected by the ditch and discharged into the collecting well.
  • the bottom of the rectangular pool and the slope of the bottom of the pool are provided with insulation layer.
  • the insulation layer is composed of insulation material and is insulated at the bottom of the pool.
  • a heat radiant panel is disposed on the surface of the layer, the heating coil is uniformly fixed on the heat radiant panel, and the soft anaerobic fermentation bag is covered on the heating coil, and the soft anaerobic fermentation bag is provided with a feeding port on a side with a high longitudinal position, which is low. On one side, a discharge opening is arranged.
  • a polarizer is arranged in the middle of the longitudinal direction of the rectangular reactor, and a biogas pipe is arranged at the top of the soft biogas bag, and a pressure sensor and a soft body are arranged on the pipe.
  • the anaerobic fermentation bag is also covered with an insulation layer and a waterproof cover.
  • the liquid medium temperature anaerobic fermentation reactor connected in series with each other, the bottom of the liquid intermediate temperature anaerobic fermentation reactor inlet is lower than the height of the outlet of the liquid intermediate temperature anaerobic fermentation reactor by more than 0.2 meters.
  • the precipitate in the liquid is refluxed to the previous reactor.
  • Each liquid medium temperature anaerobic fermentation reactor has a bottom of the bottom of the feed port higher than the bottom of the discharge port, and the inclination range is 0.3 ⁇ . 1% to reduce the number of times the liquid medium temperature anaerobic fermentation reactor cleans the sludge.
  • the heating and heat balance system comprises a normal pressure hot water boiler, E high temperature insulation water tanks (E ⁇ 1), F low temperature insulation water tanks (F ⁇ 1), circulating water pumps, solenoid valves and connecting pipes, for solar energy
  • the heating and heat balance system also includes a solar heating system; the high temperature insulated water tank is the water source of the atmospheric hot water boiler and the solar heating system, and the outlet pipe of the high temperature insulated water tank is connected to the water pump, respectively, to the atmospheric pressure hot water boiler and the solar energy.
  • the heating system conveys hot water, and the outer layer of the high-temperature insulated water tank is covered with a heat insulating layer, and the heat insulating layer is composed of heat insulating materials; the water heated by the atmospheric hot water boiler and the solar heating system is sent back to the high temperature insulated water tank through the respective pipes.
  • the energy storage is realized; another water outlet pipe of the high temperature heat preservation water tank is connected to the water pump, and the hot water is respectively sent to the heating coil of the liquid medium temperature anaerobic fermentation reactor, and the return water of each reactor is sent back to the high temperature heat preservation water tank through the respective return water pipes.
  • the low temperature insulation water tank is placed above the high temperature insulation water tank, and the low temperature insulation water tank is used as the water source of the high temperature insulation water tank. Under the control of the detection control system, the high-temperature insulated water tank is automatically replenished, and the low-temperature insulated water tank is covered with an insulating layer, and the thermal insulation layer is composed of thermal insulation material.
  • the energy sources of the atmospheric hot water boiler include electricity, biogas, diesel, biomass fuel, coal, and solar energy.
  • the feed factory is one or more of the economic crops, feed crops and food crops in the supporting planting land. If the tree, the seedlings, the vegetables, the corn, etc., the feed ingredients are processed by the feed factory after being harvested. feed.
  • the forage crop comprises one or more of huangzhucao, grassy, valerian, amaranth, ryegrass, pennisetum, corn, soybean.
  • the supporting planting land area is determined by the quantity of integrated livestock and poultry and the ability of crops to absorb.
  • An ecological treatment method for manure sewage liquid of livestock and poultry farm comprises the following steps:
  • the manure cleaned by artificial dry manure is sent to a solid high-temperature aerobic fermentation system for high-temperature aerobic fermentation, producing solid organic fertilizer, excrement and flushing water are transported to the regulating tank, and the manure liquid transported by the blisters is adjusted.
  • Tap water automatically replenishes the low-temperature insulation tank, and the low-temperature insulation tank uses the height difference under the control of the detection control system to automatically replenish the water to the high-temperature insulation tank, start the circulation pump of the atmospheric pressure hot water boiler and the solar heating system, and the circulation pump will be high.
  • the water in the warm insulation tank is heated to the atmospheric pressure hot water boiler and the solar heating system, and then sent to the high temperature insulated water tank for energy storage;
  • the detection control system controls to open the electromagnetic valve at the front end of the heating coil of the first liquid medium temperature anaerobic fermentation reactor, opens the circulating water pump, and the hot water enters the heating coil to circulate, so that the soft body is anaerobic fermentation
  • the temperature of the material in the bag rapidly rises to the set temperature, and the material begins to undergo a medium temperature anaerobic fermentation reaction;
  • the detection and control system respectively controls the opening and closing of the electromagnetic valve before the heating coil of the liquid intermediate temperature anaerobic fermentation reactor, respectively controlling the temperature of the material in each soft anaerobic fermentation bag to make it constant within the set temperature range.
  • the manure liquid flows through the N soft anaerobic fermentation bags in turn, and the fermentation broth in the Nth soft anaerobic fermentation bag naturally flows into the liquid discharge tank along the pipeline due to the height difference, thereby preparing the biogas slurry;
  • the detection control system starts the sludge pump to control the liquid level of the liquid outlet according to the set anaerobic fermentation time T, and ensures that the residence time of the sewage liquid in the anaerobic medium temperature fermentation reactor reaches T, and is tired.
  • the sludge pump is used to pump the biogas in the liquid storage tank into the liquid storage tank, so that the liquid level in the liquid discharge tank is lowered, and when the detection control system detects that the liquid level of the liquid pool reaches the lower limit liquid level After closing the sludge pump;
  • the detection control system detects and controls the water temperature in the high temperature insulation water tank to make it constant in H1 ⁇ H2: 1 When the temperature in the high temperature insulation water tank is lower than H1, start the circulation pump and the atmospheric pressure hot water boiler, and heat the high temperature insulation water tank. Hot water, when the temperature of the hot water in the hot water tank of the solar heating system is greater than H1, the circulating pump of the solar heating system is activated to heat the high temperature insulating water. Box hot water; 2 When the temperature in the high temperature insulated water tank reaches H2, the normal pressure hot water boiler is turned off;
  • the biogas generated by the N soft anaerobic fermentation bags is transported to the biogas pretreatment unit through the pipeline, and then supplied as a combustion fuel to the atmospheric hot water boiler.
  • the atmospheric hot water boiler and steam occur.
  • the supplement uses a supplemental fuel comprising one or more of electricity, diesel, and biomass;
  • NPK fertilizer is added to the biogas slurry to prepare a liquid organic-inorganic compound fertilizer;
  • the microbial agent is added to the biogas slurry in a certain proportion to prepare a liquid microbial fertilizer;
  • the invention manages the pollution of large-scale farm farming according to the principles of sustainable development governance, the principles of ecological recycling economic governance, and the principles of automation and equipment management:
  • the principle of sustainable development governance is an economic growth model that focuses on long-term development. It requires the ability to meet the needs of the present generation without compromising the ability of future generations to meet their needs.
  • the present invention manages the manure and urine of livestock and poultry farms. Contaminants such as rushing water and water, while solving the problem of pollution of aquaculture waste, transforming the aquaculture waste into beneficial resources for human beings and sustainable development of the ecological environment, for building and repairing the environment, so that the large-scale breeding industry will not Endangering the sustainable development of civilization;
  • Eco-circulation economic governance is a management model for the whole process of reducing the quality of materials entering the production process, repeatedly using certain articles and recycling resources in different ways, to meet the needs of ecological cycle and economic development.
  • the principle of waste treatment is mainly reflected in three aspects of reduction, reuse and recycling.
  • the invention separates rain and sewage through the separation of the source of the bar and the water-saving column, and reduces the sewage at the source of the bar. The amount of waste is minimized, which lays a foundation for the utilization of manure resources.
  • the present invention utilizes pollutants such as feces, urine and flushing water produced by livestock and poultry farming to make liquid.
  • the organic fertilizer is returned to the field, and the crops such as fruit trees, vegetables, seedlings, and pasture are planted on the land, and the feed materials such as pasture are processed to be plant-derived feed and then used to raise livestock and poultry to achieve nutrient combination and feces.
  • the biogas generated by sewage anaerobic fermentation is reused as a fuel for treatment, so that all the treatment links form a circular ecological loop, which promotes the breeding industry and ecology. Harmonious development of the territory;
  • the principle of automation and equipment management is to use automation technology, remote monitoring technology, use of automated equipment to complete waste management, avoid projectization and engineering of governance work, reduce the interference and influence of human factors and environmental factors, and make the treatment effect highly
  • the invention treats pollutants such as feces, urine and flushing water through liquid medium temperature anaerobic fermentation reactor and the like, so that the treatment process is equipmentized and standardized, and the degree of human participation is reduced.
  • the invention improves the stability and continuity of the governance process.
  • the invention utilizes the automatic detection control system to realize the remote real-time monitoring of the equipment process, raw materials and products, records the destination of the pollutants, does not require expert management on the site, and the equipment is fully automated, and the equipment is remote. Early warning and diagnosis, in the cloud, you can get the operating status of the field equipment to facilitate early maintenance;
  • the manure liquid is first-in and first-out in the soft anaerobic fermentation bag in series, and there is no anaerobic fermentation bag that is not fermented out of the soft body;
  • the residence time of the fecal liquid in the soft anaerobic fermentation bag can be adjusted by controlling the liquid level of the liquid outlet to ensure the residence time of the anaerobic fermentation of the faecal liquid in the soft anaerobic fermentation bag, which is legal. The time of the request.
  • the invention innovatively designed a new liquid medium temperature anaerobic fermentation reactor, and a plurality of liquid medium temperature anaerobic fermentation reactors were connected in series for medium temperature anaerobic fermentation, and the innovations are as follows: (1) using medium temperature anaerobic fermentation to greatly improve fermentation Benefits, shorten the fermentation time, the residence time of the materials in the biogas tank is short, thereby reducing the capacity of the biogas tank and reducing the cost of the biogas tank.
  • the scheme can greatly reduce the energy consumption; (2) utilization The soft anaerobic fermentation bag is used as an anaerobic fermentation vessel, the construction is simple, the amount of infrastructure construction is greatly reduced, and the capital cost is greatly reduced; (3) the bottom of each liquid medium temperature anaerobic fermentation reactor is provided with a slope along the length direction, and a plurality of The lowest position of the inclined surface of the liquid medium temperature anaerobic fermentation reactor decreases in sequence along the flow direction of the manure liquid, forming a height difference, and the manure liquid is sequentially changed from the height difference.
  • the invention adopts the liquid organic-inorganic compound fertilizer and the liquid micro-fertilizer of the finished product of the pollution control factory, and is used for planting fruit trees, vegetables, seedlings, and pastures planted on the supporting planting land of the irrigation and drip irrigation, and the forage is used as feed for the feed factory.
  • Raw materials reduce the cost for breeding, improve the nutritional level of feed, and promote the harmonious development of aquaculture and ecological environment!
  • FIG. 1 is a schematic diagram of an ecological management system for a manure and sewage liquid of a livestock and poultry farm according to the present invention
  • FIG. 2 is a schematic cross-sectional view showing a connection relationship of a liquid medium temperature anaerobic fermentation system according to the present invention
  • FIG. 3 is a top plan view showing a connection relationship of a liquid medium temperature anaerobic fermentation system according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing the structure of a liquid medium temperature anaerobic fermentation reactor according to the present invention.
  • Figure 5 is a schematic view showing the arrangement of a heating coil of a liquid medium temperature anaerobic fermentation reactor according to the present invention
  • Figure 6 is a schematic view of crop planting according to the present invention.
  • Figure 7 is a schematic view of a heating and heat balance system according to the present invention.
  • 201 ⁇ conditioning tank 202A ⁇ liquid medium temperature anaerobic fermentation reactor, 202B ⁇ liquid medium temperature anaerobic fermentation reactor, 202N ⁇ liquid medium temperature anaerobic fermentation reactor, 203 ⁇ outlet tank, 204 ⁇ sludge pump, 205 ⁇ storage Liquid pool
  • FIG. 1 A schematic diagram of an ecological management system for a manure and sewage liquid of a livestock and poultry farm according to the present invention is shown in Fig. 1.
  • the system includes a source separation water-saving type bar 101, a pollution control factory 102, a feed factory 103, and a supporting planting land 107,
  • the pollution control factory 102 and the feed factory 103 are professionally disposed of by the professional team for the manure and feces, and the livestock and poultry manure is used at the source to convert the pollution and produce the fertilizer needed for improving the soil.
  • the livestock and poultry manure is at the source, the supporting planting land 107 and the feed production workshop are used to convert the pollution and the plant-derived feed into the feed factory 103;
  • the pollution control factory 102 is composed of a solid high-temperature aerobic fermentation system, a liquid
  • the medium temperature anaerobic fermentation system 104, the heating and heat balance system 105 and the detection control system 106 are configured;
  • the source separation water-saving type fence 101 separates the rain and the sewage, and the rainwater and the drinking water are discharged to the outside.
  • Fermentation, production of solid organic fertilizer 403, manure and liquid water and flushing water are transported to the regulating tank 201, and the manure liquid produced by the blisters and manure is transported to the regulating tank 201, and the regulating tank 201 is transported by the pump
  • the biogas produced by the liquid medium temperature anaerobic fermentation system 104 is connected to the heating and heat balance system 105 through the biogas pretreatment device 508 and the steam transfer line 507, and the heating and heat balance system 105 passes.
  • the pipe is connected to the heating coil 304 of the liquid medium temperature anaerobic fermentation system 104.
  • the sensors of the detection control system 106 are disposed in each of the above systems to set, detect and control the key parameters.
  • the schematic diagram of the liquid medium temperature anaerobic fermentation system according to the present invention is shown in Fig. 2 and Fig. 3.
  • the liquid medium temperature anaerobic fermentation system 104 is composed of a regulating tank 201 and a liquid medium temperature anaerobic fermentation reactor (202A, 202B and .... 202N).
  • the liquid outlet tank 203, the sludge pump 204 and the liquid storage tank 205, the liquid outlet of the regulating tank 201 is connected to the first liquid medium temperature anaerobic fermentation reactor 202A feed port through a pipeline, and the discharge port is connected by a pipeline.
  • the second liquid medium temperature anaerobic fermentation reactor 202B feed port, and so on, is connected to the Nth liquid intermediate temperature anaerobic fermentation reactor 202N feed port, and the discharge port is connected to the liquid outlet cell 203 through the pipe.
  • the liquid pool 203 is connected to the liquid storage tank 205 via the sludge pump 204, and the bottom of the liquid medium anaerobic fermentation reactor 202B inlet is lower than the liquid medium anaerobic fermentation reactor 202A inlet 0.2 m, and so on.
  • the bottom of the feed port of the N liquid medium temperature anaerobic fermentation reactor 202N is lower than the outlet of the liquid intermediate temperature anaerobic fermentation reactor by 0.2 m to prevent the sediment in the liquid intermediate temperature anaerobic fermentation reactor from flowing back to the front.
  • Liquid medium temperature anaerobic fermentation reactor goes with each liquid
  • the bottom of the feed inlet side of the medium temperature anaerobic fermentation reactor (202A, 202B and . . . 202N) is higher than the bottom of the discharge port, and the slope is in the range of 0.5% to reduce the liquid medium temperature anaerobic fermentation.
  • the number of times the reactors (202A, 202B, and .... 202N) were cleaned of sludge.
  • FIG. 4 The schematic diagram of the medium temperature anaerobic fermentation reaction tank involved in the present invention is shown in FIG. 4, and the liquid medium temperature anaerobic fermentation reactors (202A, 202B and . . . 202N) are constructed from the bottom of the rectangular reaction tank 301.
  • the inclined surface inclined to the discharge opening has a slope of 0.5%, and a drainage ditch 306 is formed around the inclined surface.
  • the drainage ditch 306 is connected to the collecting well 309 at a lower ground potential through a pipeline, and the water collected by the bottom of the reaction tank 301 is The water sump is collected and discharged into the water collecting well 309.
  • the bottom of the bottom of the bottom of the reaction tank 301 and the slope of the bottom of the pool are provided with a heat insulating layer 302.
  • the heat insulating layer 302 is composed of a heat insulating material, and a heat radiating plate 303 is disposed on the surface of the heat insulating layer 302 at the bottom of the reaction tank 301.
  • the heating coil 304 is uniformly fixed on the heat radiation plate 303, and the soft anaerobic fermentation bag is covered on the heating coil 304.
  • the soft anaerobic fermentation bag 305 is provided with a feeding port 307 on the side where the longitudinal direction is high, and a discharge port 308 is provided on the lower side, in order to prevent the liquid surface of the soft anaerobic fermentation bag 305 from being shelled, in a rectangular reaction In the middle of the longitudinal direction of the device, a polarizer 313 is disposed.
  • the top of the soft anaerobic fermentation bag 305 is provided with a biogas exhaust pipe 310.
  • the biogas exhaust pipe 310 is provided with a pressure sensor 312.
  • the soft anaerobic fermentation bag 305 is also covered with a pressure sensor 312. Insulation layer 302 and waterproof cover.
  • the schematic diagram of the crop planting involved in the present invention is shown in Fig. 6.
  • the appropriate amount of fertilizer 402 and microbial agent 408 are respectively added to the biogas slurry fertilizer 401 to prepare a liquid organic-inorganic compound fertilizer 404 and a liquid microbial fertilizer 405, and the solid organic fertilizer is prepared. 403.
  • the liquid organic-inorganic compound fertilizer 404 and the liquid microbial fertilizer are respectively applied to the supporting planting land 107, and the supporting planting land 107 is planted with economic crops such as fruit trees, seedlings and vegetables, as well as forage grass, corn and other feed food crops, harvesting fruits, seedlings and
  • the vegetables 407 and the like are sold, and the harvested feed materials are sent to the feed factory 103, and the plant-derived feed 406 is processed to feed the livestock and poultry.
  • the schematic diagram of the heating and heat balance system according to the present invention is shown in Fig. 7.
  • the system consists of a normal pressure hot water boiler 501, E high temperature insulation water tanks (E ⁇ 1) 503, F low temperature insulation water tanks (F ⁇ 1) 504, Circulating water pumps (505a-505d), solenoid valves (506a-506m), and connecting pipes, etc.
  • the heating and heat balance system 105 further includes a solar heating system 502; the high temperature insulated water tank 503 is The water source of the atmospheric hot water boiler 501 and the solar heating system 502, the water outlet pipe of the high temperature heat insulating water tank 503 is connected to the water pump 505c, and the hot water is supplied to the atmospheric hot water boiler 501 and the solar heating system 502, respectively, and the outer surface of the high temperature insulated water tank 503 is wrapped.
  • the thermal insulation layer and the thermal insulation layer are composed of thermal insulation materials; and the water heated by the atmospheric pressure hot water boiler 501 and the solar heating system 502 is sent back to the high temperature thermal insulation water tank 503 through respective pipes to realize energy storage; the high temperature thermal insulation water tank 503 Another outlet pipe is connected to the water pump 505d to respectively deliver hot water to the heating coil 304 of the liquid medium temperature anaerobic fermentation reactor (202A, 202B and . . . 202N), and the liquid medium temperature anaerobic fermentation The return water of the reactors (202A, 202B and . . .
  • the low temperature insulated water tank 504 is the water source of the high temperature insulated water tank 503, and the low temperature insulated water tank 504 is placed at a high temperature.
  • the high temperature insulated water tank 503 is automatically replenished under the control of the detection control system 106.
  • the outer layer of the low temperature insulated water tank 504 is covered with a heat insulating layer, and the heat insulating layer is composed of a heat insulating material.
  • An ecological treatment method for a sewage sludge of a pig farm comprises the following steps:
  • the electromagnetic valve 506d is opened, the tap water automatically replenishes the low temperature thermal insulation water tank 504, and the electromagnetic valve 506f is opened.
  • the low temperature thermal insulation water tank 504 automatically replenishes the high temperature thermal insulation water tank 503 with the height difference under the control of the detection control system 106, and opens the electromagnetic valve ( 506b and 506e), the circulating pump 505c is started, and the hot water of the high temperature insulated water tank 503 enters the hot water tank of the atmospheric hot water boiler 501 and the solar heating system 502, respectively, and activates the atmospheric hot water boiler 501 and the solar heating system 502, respectively.
  • the solenoid valves (506a and 506c) are respectively opened, the circulation pumps (505a and 505b) are started, and the hot water heated by the hot water boiler 501 and the solar heating system 502 is sent to the high temperature insulated water tank 503 for energy storage;
  • the heating coil 304 of the first soft anaerobic fermentation bag 202A circulates, so that the temperature of the material in the soft anaerobic fermentation bag 202A rapidly rises to 35 ° C, and the material begins to undergo a medium temperature anaerobic fermentation reaction;
  • the detection control system 106 controls the opening and closing of the solenoid valves (506h, 506i, and 506j) in front of the heating coils 304 of the respective anaerobic fermentation bags (202A, 202B, and 202N) to control the soft anaerobic fermentation bags of the respective software bodies.
  • the temperature of the material in (202A, 202B and 202N) is constant within a constant range of 35-50 °C.
  • the manure liquid flows through N soft anaerobic fermentation bags (202A, 202B and 202N) in sequence, and the Nth soft body is anaerobic.
  • the fermentation broth in the fermentation bag 202N naturally flows into the liquid outlet tank 203 along the pipeline due to the height difference.
  • the detection control system 106 periodically starts the sludge pump 204 to control the liquid level of the liquid outlet 203 according to the set anaerobic fermentation time, and ensures that the waste liquid is in the soft anaerobic fermentation bags (202A, 202B, and 202N).
  • the residence time of the residence time reaches 15 days or more.
  • the sludge pump 204 pumps the biogas slurry fertilizer 401 in the liquid discharge tank 203 into the liquid storage tank 205, so that the liquid liquid level in the liquid discharge tank 203 is lowered.
  • the control system 106 detects that the liquid level of the liquid pool 203 reaches the lower limit liquid level and then closes the sludge pump 204;
  • the detection control system 106 detects and controls the water temperature in the high temperature insulated water tank 503 so as to be constant in the range of 60 to 80 ° C: 1 when the temperature in the high temperature insulated water tank 503 is lower than 60 ° C, the electromagnetic valve 506a is opened to start the circulation pump. 505a, the atmospheric pressure hot water boiler 501 is turned on, and the hot water of the high temperature heat preservation water tank 503 is heated. When the hot water temperature of the hot water tank of the solar heating system 502 is greater than 60 ° C, the electromagnetic valve 506c on the water outlet pipe of the solar heating system 502 is activated. Circulating pump 505b, heating high temperature insulated water tank 503 hot water; 2 when the temperature in the high temperature insulated water tank 503 reaches 80 ° C, the atmospheric hot water boiler 501 is closed;
  • NPK fertilizer 402 is added to the bio-liquid fertilizer 401 to prepare a liquid organic-inorganic compound fertilizer 404; the microbial agent 408 is added to the bio-liquid fertilizer 401 in a certain ratio to prepare a liquid.
  • An ecological management method for a sewage sludge of a pig farm comprising:
  • the separation of the source of the bar water saving: separation of rain and sewage, rainwater, drinking residual water discharged to the ditches outside the house instead of mixing into the excrement, using water-saving flushing and blisters and manure cleaning process, in At the source of the bar, the rainwater and drinking water are not mixed into the excrement, so that the maximum reduction of the excrement is performed.
  • the high-pressure water gun is used in the cleaning bar and even the high-pressure air is used.
  • the manure liquid produced by the blisters and manure is transported to the regulating pool. 201;
  • the electromagnetic valve 506d is opened, the tap water automatically replenishes the low temperature thermal insulation water tank 504, and the electromagnetic valve 506f is opened.
  • the low temperature thermal insulation water tank 504 automatically replenishes the high temperature thermal insulation water tank 503 with the height difference under the control of the detection control system 106, and opens the electromagnetic valve ( 506b and 506e), the circulating pump 505c is started, and the hot water of the high temperature insulated water tank 503 enters the hot water tank of the atmospheric hot water boiler 501 and the solar heating system 502, respectively, and activates the atmospheric hot water boiler 501 and the solar heating system 502, respectively.
  • the solenoid valves (506a and 506c) are respectively opened, the circulation pumps (505a and 505b) are started, and the hot water heated by the hot water boiler 501 and the solar heating system 502 is sent to the high temperature insulated water tank 503 for energy storage;
  • the heating coil 304 of the first soft anaerobic fermentation bag 202A circulates, so that the temperature of the material in the soft anaerobic fermentation bag 202A rapidly rises to 35 ° C, and the material begins to undergo a medium temperature anaerobic fermentation reaction;
  • the detection control system 106 controls the opening and closing of the solenoid valves (506h, 506i, and 506j) in front of the heating coils 304 of the respective anaerobic fermentation bags (202A, 202B, and 202N) to control the soft anaerobic fermentation bags of the respective software bodies.
  • the temperature of the material in (202A, 202B and 202N) is constant within a constant range of 35-50 °C, and the fecal liquid flows through N soft anaerobic fermentation bags (202A, 202B and 202N), the Nth software.
  • the fermentation liquid in the anaerobic fermentation bag 202N naturally flows into the liquid discharge tank 203 along the pipeline due to the height difference, thereby preparing the biogas slurry fertilizer 401;
  • the detection control system 106 periodically starts the sludge pump 204 to control the liquid outlet 203 according to the set anaerobic fermentation time.
  • the liquid level ensures that the residence time of the fecal liquid in the soft anaerobic fermentation bags (202A, 202B and 202N) reaches 15 days or more.
  • the sludge pump 204 takes the biogas slurry in the liquid outlet 203.
  • the liquid level in the outlet tank 203 is lowered, when the detection control system 106 detects that the liquid level of the liquid pool 203 reaches the lower limit liquid level, the sludge pump 204 is closed;
  • the detection control system 106 detects and controls the water temperature in the high temperature insulated water tank 503 so as to be constant in the range of 60 to 80 ° C: 1 when the temperature in the high temperature insulated water tank 503 is lower than 60 ° C, the electromagnetic valve 506a is opened to start the circulation pump. 505a, the atmospheric pressure hot water boiler 501 is turned on, and the hot water of the high temperature heat preservation water tank 503 is heated. When the hot water temperature of the hot water tank of the solar heating system 502 is greater than 60 ° C, the electromagnetic valve 506c on the water outlet pipe of the solar heating system 502 is activated. Circulating pump 505b, heating high temperature insulated water tank 503 hot water; 2 when the temperature in the high temperature insulated water tank 503 reaches 80 ° C, the atmospheric hot water boiler 501 is closed;
  • NPK fertilizer 402 is added to the bio-liquid fertilizer 401 to prepare a liquid organic-inorganic compound fertilizer 404; the microbial agent 408 is added to the bio-liquid fertilizer 401 in a certain ratio to prepare a liquid.
  • Planting land 107 according to the number of pig farms and the pollution capacity of feed food crops, and planting forage grass, corn and other feed food crops on supporting planting land 107.
  • the nutrient requirements of the feed grain crops at different growth stages are respectively applied with appropriate amount of solid organic fertilizer 403, liquid organic-inorganic compound fertilizer 404 and liquid microbial fertilizer 405, and the harvested feed materials are transported to the feed factory 103, and processed to obtain plant-derived feed.
  • 406 add appropriate food, trace elements and other formulas to produce full-price nutrient feed for pigs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Sustainable Development (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Pest Control & Pesticides (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fertilizers (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种畜禽养殖场粪污液体生态治理系统,包括源头分离节水型栏舍(101)、污染治理工厂(102)、饲料工厂(103)以及配套种植土地(107),污染治理工厂(102)包括源头分离节水型栏舍(101)、固体高温好氧发酵系统、液体中温厌氧发酵系统(104)、加热及热量平衡系统(105)和检测控制系统(106);调节池(201)经输送泵连接液体中温厌氧发酵系统(104)的进料口,液体中温厌氧发酵系统(104)产生的沼气输送到加热及热量平衡系统(105),加热及热量平衡系统(105)通过管道连接液体中温厌氧发酵系统(104)的加热盘管(304)。该系统将污染治理工厂(102)的产成品液体有机无机复混肥(404)和液体微生物肥料(405),用于浇灌、滴灌配套种植土地上种植的作物,而牧草作为饲料工厂的饲料原料,为养殖降低了成本,提高了饲料的营养水平,促进养殖业与生态环境的和谐发展。

Description

一种畜禽粪污液体生态治理系统及方法 技术领域
本发明属于环保技术接领域,具体涉及一种畜禽养殖场粪污液体生态治理系统及方法。
背景技术
近年来,养殖业向集约化、规模化快速发展,为市场提供了丰富而优质畜禽产品的同时,也带来粪尿等大量的污染物,若不得到及时、有效处置,将对农村环境造成严重的污染。
传统沼气池一般为单体结构,采用钢筋混凝土结构建造,建造成本高、施工难度大,而且使用过程存在如下问题:(1)沼渣清理困难以致堵塞沼气池,影响沼气池正常使用;(2)液面“结壳”,影响沼气池正常产气,还产生安全隐患。目前,按照农业部标准NY/T2374‐2013《沼气工程沼液沼渣后处理技术规范》规定,要求常温条件下厌氧发酵要持续30天以上,而且在冬季,由于环境温度低,要求厌氧发酵持续时间更长,这就要求养殖场配套的单体沼气池足够大,沼气池基建成本高昂,而且在常温条件下,致病菌难以彻底杀灭,达不到沼液农用标准,施用会对作物生长造成不利影响。研究结果表明,在一定温度范围内,沼气池产沼气率、致病菌死亡率与温度正相关,温度越高,产气率越高,致病菌死亡率越高,因此,适当提高沼气池温度对提高产气率,以及沼液无害化程度都有重要作用。
CN101045901公开了一种联体沼气池,其目的是处理污水,尽可能的把污泥留在沼气池中,长时间堆积造成发酵池堵塞,而联体的目的是扩大容积;CN104328035公开了一以产沼肥为主的沼气池系统,软体沼气池间用污泥泵连接,能耗高、设备投入大。
发明内容
本发明所要解决的技术问题是:解决上述背景技术存在的问题,而提供一种畜禽养殖场粪污液体生态治理系统及方法,使畜禽养殖场粪污得到生态治理,达到资源化利用的目的。
本发明采用的技术方案是:一种畜禽养殖场粪污液体生态治理系统,包括源头分离节水型栏舍、污染治理工厂、饲料工厂以及配套种植土地;所述的污染治理工厂和饲料工厂是由专业的团队对畜禽粪便进行专业化处置,把畜禽粪污在源头利用配套的污染治理车间将污染转化并生产为改良土壤所需的肥料是为污染治理工厂,把畜禽粪污在源头,利用配套的种植土地和饲料生产车间,将污染转化并植物源性饲料,是为饲料工厂;所述的污染治理工厂由固体高温好氧发酵系统、液体中温厌氧发酵系统、加热及热量平衡系统和检测控制系统组成;所述源头分离节水型栏舍用于将雨污、饮污进行分离,雨水、饮用余水排往室外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,或水泡粪清粪工艺,在栏舍源头上使雨水、饮用余水 不混入粪尿中,使粪尿最大程度的减量化,畜禽出栏或转栏时采用高压水枪或采用高压空气进行冲栏,机械刮粪或人工干清粪清理出来的粪便输往固体高温好氧发酵系统进行高温好氧发酵,生产固体有机肥料,粪尿液体和冲栏水输送往调节池,水泡粪清粪产生的粪污液体输送往调节池,调节池经输送泵连接液体中温厌氧发酵系统的进料口,液体中温厌氧发酵系统产生的沼气通过沼气预处理装置及连接管道连接到加热及热量平衡系统,加热及热量平衡系统通过管道连接液体中温厌氧发酵系统的加热盘管;检测控制系统的各传感器设置在上述各系统内,对各关键参数进行设置、检测和控制。
上述技术方案中,饲料工厂是由专业的团队对畜禽粪污进行专业化处置,把畜禽粪污在源头,利用配套的种植土地种植粮食和牧草,生产植物源饲料;种植的粮食和牧草包含且不限定:皇竹草、象草、苜蓿草、苋草、黑麦草、狼尾草、构树、玉米、大豆等在内一种或几种;饲料工厂是将收获的植物源性饲料再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽。
上述技术方案中,液体中温厌氧发酵系统包括调节池、N个液体中温厌氧发酵反应器(N≥1)、出液池、污泥泵、贮液池,以及连接管道,调节池的出液口经管道依次连接到串联的液体中温厌氧发酵反应器。
进一步的,上述液体中温厌氧发酵反应器由软体厌氧发酵袋替代,调节池的出液口经管道连接第一个软体厌氧发酵袋的进料口,其软体厌氧发酵袋的排料口经管道连接第二个软体厌氧发酵袋的进料口,以此类推,直至连接到第N个软体厌氧发酵袋的进料口,其排料口经管道连接出液池,出液池再经污泥泵连接贮液池。
上述技术方案中,液体中温厌氧发酵反应器是在矩形的反应池池底建设沿长度方向的斜面,其倾斜度的范围为0.3~1%,斜面的四周建有排水沟,排水沟通过管道连接地势更低处的集水井,反应池底收集的水份经水沟汇集到集水井排出,矩形池底的四周及池底斜面设置有保温层,保温层由保温材料组成,在池底部保温层表面设置热辐射板,在热辐射板上均匀固定加热盘管,在加热盘管上覆盖软体厌氧发酵袋,软体厌氧发酵袋沿长度方向位置高的一侧设置有进料口,低的一侧设置有排料口,为防止沼气袋内液面结壳,在矩形反应器长度方向的中部设置有偏振器,软体沼气袋的顶部设置有沼气管道,管道上设置有压力传感器,软体厌氧发酵袋上方还覆盖有保温层和防水盖。
上述技术方案中,彼此串联的液体中温厌氧发酵反应器,后面的液体中温厌氧发酵反应器进料口的池底低于前面液体中温厌氧发酵反应器出料口的高度0.2米以上,以防止后面反应器 中的沉淀物,回流到前面的反应器中去,每个液体中温厌氧发酵反应器,其进料口侧的池底都高于出料口的池底,其倾斜度的范围为0.3~1%,以减少液体中温厌氧发酵反应器清理污泥的次数。
上述技术方案中,加热及热量平衡系统包括常压热水锅炉、E个高温保温水箱(E≥1)、F个低温保温水箱(F≥1)、循环水泵、电磁阀以及连接管道,对于太阳能资源充裕的地区,加热及热量平衡系统还包括太阳能加热系统;高温保温水箱是常压热水锅炉和太阳能加热系统的水源,高温保温水箱的出水管连接水泵,分别向常压热水锅炉和太阳能加热系统输送热水,高温保温水箱的外面包裹有保温层,保温层由保温隔热材料组成;被常压热水锅炉、太阳能加热系统加热的水,通过各自的管道,送回到高温保温水箱实现储能;高温保温水箱的另一个出水管连接水泵,分别向液体中温厌氧发酵反应器的加热盘管输送热水,各反应器的回水经各自的回水管道送回到高温保温水箱;低温保温水箱摆放在高温保温水箱的上方,低温保温水箱作为高温保温水箱的水源,在检测控制系统的控制下自动地对高温保温水箱进行补水,低温保温水箱的外面包裹有保温层,保温层由保温隔热材料组成。
上述技术方案中,常压热水锅炉的能量来源包括电、沼气、柴油、生物质燃料、煤,以及太阳能等。
上述技术方案中,饲料工厂是在配套种植土地种经济作物、饲料作物和粮食作物中的一种或多种,如果树、苗木、蔬菜、玉米等,饲料原料收获后经饲料工厂加工制成的饲料。
优选地,饲料作物包括皇竹草、象草、苜蓿草、籽粒苋、黑麦草、狼尾草、玉米、大豆中的一种或多种。
上述技术方案中,配套的种植土地面积是综合养畜禽数量和作物的纳污能力而定。
一种畜禽养殖场粪污液体生态治理方法,包括如下步骤:
一、栏舍源头分离、节水:将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏,机械刮粪或人工干清粪,或水泡粪清粪工艺,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的粪便输往固体高温好氧发酵系统进行高温好氧发酵,生产固体有机肥料,粪尿和冲栏水输送往调节池,而水泡粪产生的粪污液体输送往调节池;
二、粪污液体中温厌氧发酵:
(1)自来水自动对低温保温水箱补水,低温保温水箱利用高度差在检测控制系统的控制下,自动向高温保温水箱补水,启动常压热水锅炉以及太阳能加热系统的循环泵,循环泵将高 温保温水箱的水输往常压热水锅炉和太阳能加热系统进行加热后,输往高温保温水箱进行储能;
(2)将粪尿液体与冲栏水混合液输送至调节池内,使调节池内液体液位不断升高,当高于调节池排液口时,粪污液体因高度差沿连接管道自然流入第一个软体厌氧发酵袋内,检测控制系统控制打开第一个液体中温厌氧发酵反应器加热盘管前端的电磁阀,开启循环水泵,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料开始进行中温厌氧发酵反应;
(3)当第一个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,液体因高度差沿连接管道自然流入第二个软体厌氧发酵袋内,检测控制系统控制打开第二个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
(4)当第二个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,粪污液体通过第N个软体厌氧发酵袋直至流入出液池内,检测控制系统控制打开第N个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使第N个软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
(5)分别定时启动N个液体中温厌氧发酵反应器中的偏振器,防止软体厌氧发酵袋内液体“结壳”,减慢液体沉积物沉淀速度;
(6)检测控制系统分别控制各液体中温厌氧发酵反应器加热盘管前的电磁阀的开启和关闭,分别控制各软体厌氧发酵袋内物料温度,使之恒定在设定温度范围内,粪污液体依次流经N个软体厌氧发酵袋,第N个软体厌氧发酵袋内发酵液因高度差沿管道自然流入出液池中,制得沼液肥;
(7)检测控制系统根据设定的厌氧发酵时间T,定时启动污泥泵以控制出液池的液位,确保粪污液体在厌氧中温发酵反应器内的停留时间达到T,当厌氧发酵的时间达到T后,用污泥泵将出液池中沼液泵入贮液池中,使出液池中液体液位降低,当检测控制系统检测出液池的液位到达下限液位后关闭污泥泵;
(8)检测控制系统检测、控制高温保温水箱中水温,使之恒定在H1~H2内:①当高温保温水箱中温度低于H1时,启动循环泵和常压热水锅炉,加热高温保温水箱的热水,当太阳能加热系统集热水箱的热水温度大于H1时,启动太阳能加热系统的循环泵,加热高温保温水 箱热水;②当高温保温水箱中温度达到H2时,关闭常压热水锅炉;
(9)N个软体厌氧发酵袋产生的沼气经输送管道输送至沼气预处理装置处理后,作为燃烧燃料提供给常压热水锅炉,当冬季气温低时,常压热水锅炉和蒸汽发生器使用补充燃料,所述补充燃料包括电、柴油和生物质中的一种或多种;
三、种植:
(1)根据作物生长需求,在沼液中添加适量的氮磷钾化肥,制得液体有机无机复混肥;将微生物菌剂按一定比例添加到沼液中,制得液体微生物肥料;
(2)根据畜禽养殖场饲养畜禽数量和种植作物的纳污能力配套种植土地,种植果树、苗木如桉树、蔬菜等,以及牧草、玉米等饲料作物和粮食作物,在种植前及种植过程中,根据作物生长需求施用适量固体有机肥料、液体有机无机复混肥和液体微生物肥料,收获水果、苗木、蔬菜等经济作物,以及牧草、玉米等饲料作物和粮食作物,收获的牧草、玉米等饲料原料输送至饲料工厂,经加工制得植物源性饲料,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽。
与现有技术相比,本发明的有益效果如下:
本发明按照可持续发展治理原则、生态循环经济治理原则和自动化、设备化治理原则治理规模化养殖场养殖污染:
(1)可持续发展治理原则是一种注重长远发展的经济增长模式,要求既满足当代人的需求,又不损害后代人满足其需求的能力,本发明通过治理畜禽养殖场粪便、尿液和冲栏水等污染物,在解决养殖废弃物污染问题的同时,将养殖废弃物转化为对人类、对生态可持续发展的有益资源,用于建设和修复环境,使规模化养殖业不会危害人类的可持续发展;
(2)生态循环经济治理是一种以减少进入生产流程的物质量、以不同方式多次反复使用某种物品、废弃物资源化为目的的全过程的管理模式,满足生态循环、经济发展需求的废弃物治理,其原则主要体现在减量化、再使用和再循环三个方面,本发明通过栏舍源头分离和节水冲栏,将雨污、饮污分离,在栏舍源头减少污水量,使粪尿实现了最大程度的减量化,为粪污资源化利用奠定了基础,本发明将畜禽养殖产生的粪便、尿液和冲栏水等污染物资源化利用,制成液体有机肥料进行还田,同时在土地上种植果树、蔬菜、苗木,以及牧草等作物,而且牧草等饲料原料经加工后制成植物源性饲料再用于饲养畜禽,实现养种结合,将粪污厌氧发酵产生的沼气再利用,作为治理所需的燃料,从而使所有的治理环节,都形成了循环的生态闭环,促进了养殖业与生态环境的和谐发展;
(3)自动化、设备化治理原则是运用自动化技术、远程监控技术、使用自动化设备完成废弃物治理,避免治理工作项目化、工程化,减少人为因素、环境因素的干扰和影响,使治理效果高度一致、产成品的质量高度一致的原则,本发明通过液体中温厌氧发酵反应器等设备对粪便、尿液和冲栏水等污染物进行治理,使治理过程设备化、标准化,降低人工参与程度,提高治理过程的稳定性和连续性,同时,本发明利用自动检测控制系统实现设备工艺和原料、产品的远程实时监控,记录污染物去向,现场不需要专家管理,设备全自动化运行,设备远程预警及诊断,在云端即可获取现场设备的运行状况,以利提前维修;
(4)粪污液体在串联的软体厌氧发酵袋中先进先出,不会出现未经发酵流出软体厌氧发酵袋的情况;
(5)粪污液体在软体厌氧发酵袋中停留的时间可以通过控制出液池的液位来调节,以确保粪尿液体在软体厌氧发酵袋中厌氧发酵的停留时间,达到法定的时间的要求。
针对传统厌氧发酵方法时间长、致病菌杀死不彻底、沼液质量不稳定、沼气产气率、沼气池要求容量大、沼气池建设成本高,以及沼气池底部沼渣难以清理等一系列问题,本发明创新设计新型液体中温厌氧发酵反应器,并将多个液体中温厌氧发酵反应器串联进行中温厌氧发酵,其创新如下:(1)采用中温厌氧发酵,大大提高发酵效益,缩短发酵时间,物料在沼气池停留时间短,从而降低沼气池容量要求,降低沼气池成本,同时,与高温厌氧发酵方式相比,本方案能极大地降低能耗;(2)利用软体厌氧发酵袋作为厌氧发酵容器,施工简单,基建工程量大大减小、极大地降低基建成本;(3)每个液体中温厌氧发酵反应器底部设置沿长度方向的斜面,且多个液体中温厌氧发酵反应器斜面最低位置沿粪污液体流向依次降低,形成高度差,粪污液体因高度差依次自然流经多个液体中温厌氧发酵反应器进行多级发酵,避免传统处理方式中因液体在各反应池输送产生的能耗,同时,串联的液体中温厌氧发酵反应器内液体不断流动,液体在单个反应器停留时间相对较短,沼渣沉积慢,沼渣随不断流动的沼液带出,避免传统沼气发酵时,物料在单个沼气池停留时间过长,沼渣大量沉积难以清理的问题;(4)在液体中温厌氧发酵反应器内设置偏振器,避免传统沼气发酵时,沼气池液面结壳的问题,提高产气效率;(5)在各反应池底部设计加热盘管,发酵过程中通过向各液体中温厌氧发酵反应器的加热盘管注入循环热水,控制各液体中温厌氧发酵反应器内物料温度始终稳定在限定范围内,彻底杀死致病菌,使之迅速达到无害化标准,发酵效率大大提高,物料在多级液体中温厌氧发酵反应器内累计停留超过15天,充分腐熟,制得的沼液质量稳定,而且达到沼液农用标准,不会对作物生长产生毒害作用。
本发明将污染治理工厂的产成品液体有机无机复混肥和液体微生物肥料,用于浇灌、滴灌配套种植土地上种植的种植果树、蔬菜、苗木,以及牧草等作物,而牧草作为饲料工厂的饲料原料,为养殖降低了成本,提高了饲料的营养水平,促进了养殖业与生态环境的和谐发展!
附图说明
图1为本发明所涉及的一种畜禽养殖场粪污液体生态治理系统示意图;
图2为本发明所涉及的一种液体中温厌氧发酵系统连接关系截面示意图;
图3为本发明所涉及的一种液体中温厌氧发酵系统连接关系俯视示意图;
图4为本发明所涉及的一种液体中温厌氧发酵反应器结构截面示意图;
图5为本发明所涉及的一种液体中温厌氧发酵反应器加热盘管布置示意图;
图6为本发明所涉及的作物种植示意图;
图7为本发明所涉及的一种加热及热量平衡系统示意图。
图中,101‐源头分离节水型栏舍、102‐污染治理工厂、103‐饲料工厂、104‐液体中温厌氧发酵系统、105‐加热及热量平衡系统、106‐检测控制系统、107‐配套种植土地;
201‐调节池、202A‐液体中温厌氧发酵反应器、202B‐液体中温厌氧发酵反应器、202N‐液体中温厌氧发酵反应器、203‐出液池、204‐污泥泵、205‐贮液池;
301‐反应池、302‐保温层、303‐热反射板、304‐加热盘管、305‐软体厌氧发酵袋、306‐排水沟、307‐进料口、308‐出料口、309‐集水井、310‐沼气排气管、311‐保温层、312‐压力传感器、313‐偏振器;
401‐沼液肥、402‐化肥、403‐固体有机肥料、404‐液体有机无机复混肥、405‐液体微生物肥料、406‐植物源性饲料、407‐水果、苗木和蔬菜等、408‐微生物菌剂;
501‐常压热水锅炉、502‐太阳能加热系统、503‐高温保温水箱、504‐低温保温水箱、505a‐循环水泵、505b‐循环水泵、505c‐循环水泵、505d‐循环水泵、506a‐电磁阀、506b‐电磁阀、506c‐电磁阀、506d‐电磁阀、506e‐电磁阀、506f‐电磁阀、506g‐电磁阀、506h‐电磁阀、506i‐电磁阀、506j‐电磁阀、506k‐电磁阀、506l‐电磁阀、506m‐电磁阀、507‐输汽管道、508‐沼气预处理装置。
具体实施方式
本发明所涉及的一种畜禽养殖场粪污液体生态治理系统示意图如图1所示,系统包括源头分离节水型栏舍101、污染治理工厂102、饲料工厂103以及配套种植土地107等,所述的污染治理工厂102和饲料工厂103是由专业的团队对畜禽粪便进行专业化处置,把畜禽粪污在源头利用配套的污染治理车间将污染转化并生产为改良土壤所需的肥料是为污染治理工厂102, 把畜禽粪污在源头,利用配套的种植土地107和饲料生产车间,将污染转化并植物源性饲料,是为饲料工厂103;所述的污染治理工厂102由固体高温好氧发酵系统、液体中温厌氧发酵系统104、加热及热量平衡系统105和检测控制系统106组成;所述的源头分离节水型栏舍101是将雨污、饮污进行分离,雨水、饮用余水排往室外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,或水泡粪清粪工艺,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,而且畜禽出栏或转栏时采用高压水枪甚至采用高压空气进行冲栏,机械刮粪或人工干清粪清理出来的粪便输往固体高温好氧发酵系统进行高温好氧发酵,生产固体有机肥料403,粪尿液体和冲栏水输送往调节池201,而水泡粪清粪产生的粪污液体输送往调节池201,调节池201经输送泵连接液体中温厌氧发酵系统104的进料口,液体中温厌氧发酵系统104产生的沼气通过沼气预处理装置508及输汽管道507连接到加热及热量平衡系统105,加热及热量平衡系统105通过管道连接液体中温厌氧发酵系统104的加热盘管304,检测控制系统106的各传感器设置在上述各系统内,对各关键参数进行设置、检测和控制。
本发明所涉及的液体中温厌氧发酵系统示意图如图2和图3所示,液体中温厌氧发酵系统104由调节池201、液体中温厌氧发酵反应器(202A、202B和....202N)、出液池203、污泥泵204和贮液池205组成,调节池201的出液口经管道连接第一个液体中温厌氧发酵反应器202A进料口,其排料口经管道连接第二个液体中温厌氧发酵反应器202B进料口,以此类推,直至连接到第N个液体中温厌氧发酵反应器202N进料口,其排料口经管道连接出液池203,出液池203再经污泥泵204连贮液池205,液体中温厌氧发酵反应器202B进料口的池底低于液体中温厌氧发酵反应器202A进料口0.2米,以此类推,第N个液体中温厌氧发酵反应器202N进料口的池底低于前面液体中温厌氧发酵反应器出料口0.2米,以防止后面液体中温厌氧发酵反应器中的沉淀物,回流到前面的液体中温厌氧发酵反应器中去,而每个液体中温厌氧发酵反应器(202A、202B和....202N)进料口侧的池底都高于出料口的池底,其倾斜度的范围为0.5%,以减少液体中温厌氧发酵反应器(202A、202B和....202N)清理污泥的次数。
本发明所涉及的中温厌氧发酵反应池示意图如图4所示,液体中温厌氧发酵反应器(202A、202B和....202N)是在矩形的反应池301池底建设有从进料口向出料口倾斜的斜面,其倾斜度为0.5%,斜面的四周建有排水沟306,排水沟306通过管道连接地势更低处的集水井309,反应池301池底收集的水份经水沟汇集到集水井309排出,反应池301池底的四周及池底斜面设置有保温层302,保温层302由保温材料组成,在反应池301池底部保温层302表面设置热辐射板303,在热辐射板303上均匀固定加热盘管304,在加热盘管304上覆盖软体厌氧发酵袋 305,软体厌氧发酵袋305沿长度方向位置高的一侧设置有进料口307,低的一侧设置有出料口308,为防止软体厌氧发酵袋305内液面接壳,在矩形反应器长度方向的中部,设置有偏振器313,软体厌氧发酵袋305的顶部设置有沼气排气管310,沼气排气管310上设置有压力传感器312,软体厌氧发酵袋305上方还覆盖有保温层302和防水盖。
本发明所涉及的作物种植示意图如图6所示,适量的化肥402和微生物菌剂408分别添加到沼液肥401中,制得液体有机无机复混肥404和液体微生物肥料405,将固体有机肥料403、液体有机无机复混肥404和液体微生物肥料分别施用到配套种植土地107上,配套种植土地107种植果树、苗木、蔬菜等经济作物,以及牧草、玉米等饲料粮食作物,收获水果、苗木和蔬菜407等销售,而收获的饲料原料输送至饲料工厂103,经加工制得植物源性饲料406,用于饲喂畜禽。
本发明所涉及的加热及热量平衡系统示意图如图7所示,系统由常压热水锅炉501、E个高温保温水箱(E≥1)503、F个低温保温水箱(F≥1)504、循环水泵(505a~505d)、电磁阀(506a~506m),以及连接管道等组成,进一步地,对于太阳能资源充裕的地区,加热及热量平衡系统105还包括太阳能加热系统502;高温保温水箱503是常压热水锅炉501和太阳能加热系统502的水源,高温保温水箱503的出水管连接水泵505c,分别向常压热水锅炉501和太阳能加热系统502输送热水,高温保温水箱503的外面包裹有保温层,保温层由保温隔热材料组成;而被常压热水锅炉501、太阳能加热系统502加热的水,通过各自的管道,送回到高温保温水箱503实现储能;高温保温水箱503的另一个出水管连接水泵505d,分别向液体中温厌氧发酵反应器(202A、202B和....202N)的加热盘管304输送热水,液体中温厌氧发酵反应器(202A、202B和....202N)的回水经各自的回水管道送回到高温保温水箱503;低温保温水箱504是高温保温水箱503的水源,低温保温水箱504摆放在高温保温水箱503的上方,在检测控制系统106的控制下自动地对高温保温水箱503进行补水,低温保温水箱504的外面包裹有保温层,保温层由保温隔热材料组成。
实施例一
一种养猪场粪污液体生态治理方法,包括如下步骤:
一、栏舍源头分离、节水:将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏,机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的猪粪便进行高温好氧发酵,生产固体有机肥料403,猪粪尿和冲栏水输 送往调节池201;
二、粪污液体中温厌氧发酵:
(1)打开电磁阀506d,自来水自动对低温保温水箱504补水,打开电磁阀506f,低温保温水箱504利用高度差在检测控制系统106的控制下,自动向高温保温水箱503补水,打开电磁阀(506b和506e),启动循环泵505c,高温保温水箱503热水分别进入常压热水锅炉501以及太阳能加热系统502的集热水箱内,分别启动常压热水锅炉501以及太阳能加热系统502,再分别打开电磁阀(506a和506c),启动循环泵(505a和505b),将经常压热水锅炉501以及太阳能加热系统502加热的热水输往高温保温水箱503进行储能;
(2)将粪尿液体与冲栏水混合液输送至调节池201内,使调节池201内液体液位不断升高,当高于调节池201排液口时,粪污液体因高度差沿连接管道自然流入第一个软体厌氧发酵袋202A内,打开电磁阀506g,打开第一个软体厌氧发酵袋202A加热盘管304前端的电磁阀506h,开启循环水泵505d,热水进入入第一个软体厌氧发酵袋202A的加热盘管304内循环,使软体厌氧发酵袋202A内物料温度迅速升至35℃,物料开始进行中温厌氧发酵反应;
(2)当第一个软体厌氧发酵袋202A内液体液位逐渐升高,高于排液口时,液体因高度差沿连接管道自然流入第二个软体厌氧发酵袋202B内,检测控制系统控106制打开第二个软体厌氧发酵袋202B加热盘管304前端的电磁阀506i,热水进入软体厌氧发酵袋202B加热盘管304内循环,使软体厌氧发酵袋202B内物料温度迅速升至35℃,物料持续进行中温厌氧发酵反应;
(3)当第二个软体厌氧发酵袋202B内液体液位逐渐升高,高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,粪污液体通过第N个软体厌氧发酵袋202N直至流入出液池203内,检测控制系统106控制打开第N个软体厌氧发酵袋202N加热盘管304前端的电磁阀506j,热水进入加热盘管304内循环,使第N个软体厌氧发酵袋202N内物料温度迅速升至35℃,物料持续进行中温厌氧发酵反应;
(4)分别定时启动N个软体厌氧发酵袋(202A、202B和202N)中的偏振器313,防止软体厌氧发酵袋(202A、202B和202N)内液体“结壳”,减慢液体沉积物沉淀速度;
(5)检测控制系统106分别控制各软体厌氧发酵袋(202A、202B和202N)加热盘管304前的电磁阀(506h、506i和506j)的开和闭,分别控制各软体厌氧发酵袋(202A、202B和202N)内物料温度,使之恒定在35~50℃恒定范围内,粪污液体依次流经N个软体厌氧发酵袋(202A、202B和202N),第N个软体厌氧发酵袋202N内发酵液因高度差沿管道自然流入出液池203 中,制得沼液肥401;
(5)检测控制系统106根据设定的厌氧发酵时间,定时启动污泥泵204以控制出液池203的液位,确保粪污液体在软体厌氧发酵袋(202A、202B和202N)内的停留时间达到15天以上,当发酵的时间达到15天后,用污泥泵204将出液池203中沼液肥401泵入贮液池205中,使出液池203中液体液位降低,当检测控制系统106检测出液池203的液位到达下限液位后关闭污泥泵204;
(6)检测控制系统106检测、控制高温保温水箱503中水温,使之恒定在60~80℃范围内:①当高温保温水箱503中温度低于60℃时,打开电磁阀506a,启动循环泵505a,开启常压热水锅炉501,加热高温保温水箱503的热水,当太阳能加热系统502集热水箱的热水温度大于60℃时,启动太阳能加热系统502出水管道上的电磁阀506c和循环泵505b,加热高温保温水箱503热水;②当高温保温水箱503中温度达到80℃时,关闭常压热水锅炉501;
(7)分别打开软体厌氧发酵袋(202A、202B和202N)沼气排气管道上的电磁阀(506k、506l和506m),产生的沼气经输气管道507输送至沼气预处理装置508处理后,作为常压热水锅炉501燃烧燃料,当冬季气温低时,蒸汽发生器501还燃烧包括电、柴油,以及生物质等作为补充燃料;
三、种植:
(1)根据作物生长需求,在沼液肥401中添加适量的氮磷钾化肥402,制得液体有机无机复混肥404;将微生物菌剂408按一定比例添加到沼液肥401中,制得液体微生物肥料405;
(2)根据养猪场存栏数量和经济作物407的纳污能力配套种植土地107,在配套种植土地107上种植果蔬、苗木和蔬菜等经济作物,在种植前及种植过程中,根据果蔬、苗木和蔬菜等经济作物不同生长时期对养分需求,分别施用适量固体有机肥料403、液体有机无机复混肥404和液体微生物肥料405,收获水果、苗木和蔬菜等407后销售。
实施例二
一种养猪场粪污液体生态治理方法,包括:
一、栏舍源头分离、节水:将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏及水泡粪清粪工艺,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,水泡粪清粪产生的粪污液体输送往调节池201;
二、粪污液体中温厌氧发酵:
(1)打开电磁阀506d,自来水自动对低温保温水箱504补水,打开电磁阀506f,低温保温水箱504利用高度差在检测控制系统106的控制下,自动向高温保温水箱503补水,打开电磁阀(506b和506e),启动循环泵505c,高温保温水箱503热水分别进入常压热水锅炉501以及太阳能加热系统502的集热水箱内,分别启动常压热水锅炉501以及太阳能加热系统502,再分别打开电磁阀(506a和506c),启动循环泵(505a和505b),将经常压热水锅炉501以及太阳能加热系统502加热的热水输往高温保温水箱503进行储能;
(2)将粪尿液体与冲栏水混合液输送至调节池201内,使调节池201内液体液位不断升高,当高于调节池201排液口时,粪污液体因高度差沿连接管道自然流入第一个软体厌氧发酵袋202A内,打开电磁阀506g,打开第一个软体厌氧发酵袋202A加热盘管304前端的电磁阀506h,开启循环水泵505d,热水进入入第一个软体厌氧发酵袋202A的加热盘管304内循环,使软体厌氧发酵袋202A内物料温度迅速升至35℃,物料开始进行中温厌氧发酵反应;
(2)当第一个软体厌氧发酵袋202A内液体液位逐渐升高,高于排液口时,液体因高度差沿连接管道自然流入第二个软体厌氧发酵袋202B内,检测控制系统控106制打开第二个软体厌氧发酵袋202B加热盘管304前端的电磁阀506i,热水进入软体厌氧发酵袋202B加热盘管304内循环,使软体厌氧发酵袋202B内物料温度迅速升至35℃,物料持续进行中温厌氧发酵反应;
(3)当第二个软体厌氧发酵袋202B内液体液位逐渐升高,高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,粪污液体通过第N个软体厌氧发酵袋202N直至流入出液池203内,检测控制系统106控制打开第N个软体厌氧发酵袋202N加热盘管304前端的电磁阀506j,热水进入加热盘管304内循环,使第N个软体厌氧发酵袋202N内物料温度迅速升至35℃,物料持续进行中温厌氧发酵反应;
(4)分别定时启动N个软体厌氧发酵袋(202A、202B和202N)中的偏振器313,防止软体厌氧发酵袋(202A、202B和202N)内液体“结壳”,减慢液体沉积物沉淀速度;
(5)检测控制系统106分别控制各软体厌氧发酵袋(202A、202B和202N)加热盘管304前的电磁阀(506h、506i和506j)的开和闭,分别控制各软体厌氧发酵袋(202A、202B和202N)内物料温度,使之恒定在设定35~50℃恒定范围内,粪污液体依次流经N个软体厌氧发酵袋(202A、202B和202N),第N个软体厌氧发酵袋202N内发酵液因高度差沿管道自然流入出液池203中,制得沼液肥401;
(5)检测控制系统106根据设定的厌氧发酵时间,定时启动污泥泵204以控制出液池203 的液位,确保粪污液体在软体厌氧发酵袋(202A、202B和202N)内的停留时间达到15天以上,当发酵的时间达到15天后,用污泥泵204将出液池203中沼液泵入贮液池205中,使出液池203中液体液位降低,当检测控制系统106检测出液池203的液位到达下限液位后关闭污泥泵204;
(6)检测控制系统106检测、控制高温保温水箱503中水温,使之恒定在60~80℃范围内:①当高温保温水箱503中温度低于60℃时,打开电磁阀506a,启动循环泵505a,开启常压热水锅炉501,加热高温保温水箱503的热水,当太阳能加热系统502集热水箱的热水温度大于60℃时,启动太阳能加热系统502出水管道上的电磁阀506c和循环泵505b,加热高温保温水箱503热水;②当高温保温水箱503中温度达到80℃时,关闭常压热水锅炉501;
(7)分别打开软体厌氧发酵袋(202A、202B和202N)沼气排气管道上的电磁阀(506k、506l和506m),产生的沼气经输气管道507输送至沼气预处理装置508处理后,作为常压热水锅炉501燃烧燃料,当冬季气温低时,蒸汽发生器501还燃烧包括电、柴油,以及生物质等作为补充燃料;
三、种植:
(1)根据作物生长需求,在沼液肥401中添加适量的氮磷钾化肥402,制得液体有机无机复混肥404;将微生物菌剂408按一定比例添加到沼液肥401中,制得液体微生物肥料405;
(2)根据养猪场存栏数量和饲料粮食作物的纳污能力配套种植土地107,在配套种植土地107上种植牧草、玉米等饲料粮食作物,在种植前及种植过程中,根据种植牧草、玉米等饲料粮食作物不同生长时期对养分需求,分别施用适量固体有机肥料403、液体有机无机复混肥404和液体微生物肥料405,收获的饲料原料输送至饲料工厂103,经加工制得植物源性饲料406,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养猪只。

Claims (9)

  1. 一种畜禽养殖场粪污液体生态治理系统,其特征在于,包括源头分离节水型栏舍、污染治理工厂、饲料工厂以及配套种植土地;所述的污染治理工厂和饲料工厂是由专业的团队对畜禽粪便进行专业化处置,把畜禽粪污在源头利用配套的污染治理车间将污染转化并生产为改良土壤所需的肥料是为污染治理工厂,把畜禽粪污在源头,利用配套的种植土地和饲料生产车间,将污染转化并植物源性饲料,是为饲料工厂;所述的污染治理工厂由固体高温好氧发酵系统、液体中温厌氧发酵系统、加热及热量平衡系统和检测控制系统组成;所述源头分离节水型栏舍用于将雨污、饮污进行分离,雨水、饮用余水排往室外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,或水泡粪清粪工艺,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,畜禽出栏或转栏时采用高压水枪或采用高压空气进行冲栏,机械刮粪或人工干清粪清理出来的粪便输往固体高温好氧发酵系统进行高温好氧发酵,生产固体有机肥料,粪尿液体和冲栏水输送往调节池,水泡粪清粪产生的粪污液体输送往调节池,调节池经输送泵连接液体中温厌氧发酵系统的进料口,液体中温厌氧发酵系统产生的沼气通过沼气预处理装置及连接管道连接到加热及热量平衡系统,加热及热量平衡系统通过管道连接液体中温厌氧发酵系统的加热盘管;检测控制系统的各传感器设置在上述各系统内,对各关键参数进行设置、检测和控制。
  2. 根据权利要求1所述的畜禽养殖场粪污液体生态治理系统,其特征在于,所述液体中温厌氧发酵系统包括调节池、N个液体中温厌氧发酵反应器(N≥1)、出液池、污泥泵、贮液池,以及连接管道,调节池的出液口经管道依次连接到串联的液体中温厌氧发酵反应器。
  3. 根据权利要求2所述的畜禽养殖场粪污液体生态治理系统,其特征在于,所述液体中温厌氧发酵反应器由软体厌氧发酵袋替代,调节池的出液口经管道连接第一个软体厌氧发酵袋的进料口,其软体厌氧发酵袋的排料口经管道连接第二个软体厌氧发酵袋的进料口,以此类推,直至连接到第N个软体厌氧发酵袋的进料口,其排料口经管道连接出液池,出液池再经污泥泵连接贮液池。
  4. 根据权利要求2所述的畜禽养殖场粪污液体生态治理系统,其特征在于,所述液体中温厌氧发酵反应器是在矩形的反应池池底建设沿长度方向的斜面,其倾斜度的范围为0.3~1%,斜面的四周建有排水沟,排水沟通过管道连接地势更低处的集水井,反应池底收集的水份经水沟汇集到集水井排出,矩形池底的四周及池底斜面设置有保温层,保温层由保温材料组成,在池底部保温层表面设置热辐射板,在热辐射板上均匀固定加热盘管,在加热盘管上覆盖软体厌 氧发酵袋,软体厌氧发酵袋沿长度方向位置高的一侧设置有进料口,低的一侧设置有排料口,为防止沼气袋内液面结壳,在矩形反应器长度方向的中部设置有偏振器,软体沼气袋的顶部设置有沼气管道,管道上设置有压力传感器,软体厌氧发酵袋上方还覆盖有保温层和防水盖。
  5. 根据权利要求2所述的畜禽养殖场粪污液体生态治理系统,其特征在于,彼此串联的液体中温厌氧发酵反应器,后面的液体中温厌氧发酵反应器进料口的池底低于前面液体中温厌氧发酵反应器出料口的高度0.2米以上,每个液体中温厌氧发酵反应器,其进料口侧的池底都高于出料口的池底,其倾斜度的范围为0.3~1%。
  6. 根据权利要求1所述的畜禽养殖场粪污液体生态治理系统,其特征在于,所述加热及热量平衡系统包括常压热水锅炉、E个高温保温水箱(E≥1)、F个低温保温水箱(F≥1)、循环水泵、电磁阀以及连接管道,对于太阳能资源充裕的地区,加热及热量平衡系统还包括太阳能加热系统;高温保温水箱是常压热水锅炉和太阳能加热系统的水源,高温保温水箱的出水管连接水泵,分别向常压热水锅炉和太阳能加热系统输送热水,高温保温水箱的外面包裹有保温层,保温层由保温隔热材料组成;被常压热水锅炉、太阳能加热系统加热的水,通过各自的管道,送回到高温保温水箱实现储能;高温保温水箱的另一个出水管连接水泵,分别向液体中温厌氧发酵反应器的加热盘管输送热水,各反应器的回水经各自的回水管道送回到高温保温水箱;低温保温水箱摆放在高温保温水箱的上方,低温保温水箱作为高温保温水箱的水源,在检测控制系统的控制下自动地对高温保温水箱进行补水,低温保温水箱的外面包裹有保温层,保温层由保温隔热材料组成。
  7. 根据权利要求1所述的畜禽养殖场粪污液体生态治理系统,其特征在于,配套种植土地用作饲料工厂,种植经济作物、饲料作物和粮食作物中的一种或多种,饲料原料收获后经饲料工厂加工制成的饲料。
  8. 根据权利要求7所述的畜禽养殖场粪污液体生态治理系统,其特征在于,饲料作物包括皇竹草、象草、苜蓿草、籽粒苋、黑麦草、狼尾草、玉米、大豆中的一种或多种。
  9. 一种畜禽养殖场粪污液体的生态治理方法,其特征在于,包括如下步骤:
    一、栏舍源头分离、节水:将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠,采用节水冲栏,机械刮粪或人工干清粪,或水泡粪清粪工艺,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的粪便输往固体高温好氧发酵系统进行高温好氧发酵,生产固体有机肥料,粪尿和冲栏水输送往调节池,而水泡粪产生的粪污液体输送往调节池;
    二、粪污液体中温厌氧发酵:
    (1)自来水自动对低温保温水箱补水,低温保温水箱利用高度差在检测控制系统的控制下,自动向高温保温水箱补水,启动常压热水锅炉以及太阳能加热系统的循环泵,循环泵将高温保温水箱的水输往常压热水锅炉和太阳能加热系统进行加热后,输往高温保温水箱进行储能;
    (2)将粪尿液体与冲栏水混合液输送至调节池内,使调节池内液体液位不断升高,当高于调节池排液口时,粪污液体因高度差沿连接管道自然流入第一个软体厌氧发酵袋内,检测控制系统控制打开第一个液体中温厌氧发酵反应器加热盘管前端的电磁阀,开启循环水泵,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料开始进行中温厌氧发酵反应;
    (3)当第一个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,液体因高度差沿连接管道自然流入第二个软体厌氧发酵袋内,检测控制系统控制打开第二个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
    (4)当第二个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,粪污液体通过第N个软体厌氧发酵袋直至流入出液池内,检测控制系统控制打开第N个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使第N个软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
    (5)分别定时启动N个液体中温厌氧发酵反应器中的偏振器,防止软体厌氧发酵袋内液体“结壳”,减慢液体沉积物沉淀速度;
    (6)检测控制系统分别控制各液体中温厌氧发酵反应器加热盘管前的电磁阀的开启和关闭,分别控制各软体厌氧发酵袋内物料温度,使之恒定在设定温度范围内,粪污液体依次流经N个软体厌氧发酵袋,第N个软体厌氧发酵袋内发酵液因高度差沿管道自然流入出液池中,制得沼液肥;
    (7)检测控制系统根据设定的厌氧发酵时间T,定时启动污泥泵以控制出液池的液位,确保粪污液体在厌氧中温发酵反应器内的停留时间达到T,当厌氧发酵的时间达到T后,用污泥泵将出液池中沼液泵入贮液池中,使出液池中液体液位降低,当检测控制系统检测出液池的液位到达下限液位后关闭污泥泵;
    (8)检测控制系统检测、控制高温保温水箱中水温,使之恒定在H1~H2内:①当高温保温水箱中温度低于H1时,启动循环泵和常压热水锅炉,加热高温保温水箱的热水,当太阳能加热系统集热水箱的热水温度大于H1时,启动太阳能加热系统的循环泵,加热高温保温水箱热水;②当高温保温水箱中温度达到H2时,关闭常压热水锅炉;
    (9)N个软体厌氧发酵袋产生的沼气经输送管道输送至沼气预处理装置处理后,作为燃烧燃料提供给常压热水锅炉,当冬季气温低时,常压热水锅炉和蒸汽发生器使用补充燃料;
    三、种植:
    (1)根据作物生长需求,在沼液中添加适量的氮磷钾化肥,制得液体有机无机复混肥;将微生物菌剂按一定比例添加到沼液中,制得液体微生物肥料;
    (2)根据畜禽养殖场饲养畜禽数量和种植作物的纳污能力配套种植土地,种植果树、苗木以及饲料作物和粮食作物,在种植前及种植过程中,根据作物生长需求施用适量固体有机肥料、液体有机无机复混肥和液体微生物肥料,收获经济作物、饲料作物和粮食作物,收获的饲料原料输送至饲料工厂,经加工制得植物源性饲料,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽。
PCT/CN2017/106631 2017-10-12 2017-10-18 一种畜禽粪污液体生态治理系统及方法 WO2019071645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710944214.8 2017-10-12
CN201710944214.8A CN107651822B (zh) 2017-10-12 2017-10-12 一种畜禽粪污液体生态治理系统及方法

Publications (1)

Publication Number Publication Date
WO2019071645A1 true WO2019071645A1 (zh) 2019-04-18

Family

ID=61117760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106631 WO2019071645A1 (zh) 2017-10-12 2017-10-18 一种畜禽粪污液体生态治理系统及方法

Country Status (2)

Country Link
CN (1) CN107651822B (zh)
WO (1) WO2019071645A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498705A (zh) * 2019-09-16 2019-11-26 福建农无忧农业科技有限公司 一种畜禽尿液固化制备保水生物有机肥的方法及其设备
CN111484218A (zh) * 2020-05-19 2020-08-04 黑龙江省农业科学院农村能源与环保研究所 基于经济运行温度的寒区厌氧发酵产沼气方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081433A (zh) * 2018-07-30 2018-12-25 康绍汤 沼气蒸汽循环加热发酵净化粪便污水连环双排窖(池)
CN108821810A (zh) * 2018-09-21 2018-11-16 苏州农业职业技术学院 一种分散畜禽养殖废弃物收集处理方法
RU2700490C1 (ru) * 2018-10-25 2019-09-17 Общество с ограниченной ответственностью "Эволюция Биогазовых Систем" Биореакторная установка для анаэробной обработки органических отходов животного и растительного происхождения с получением органических удобрений и биогаза
CN111018594A (zh) * 2019-12-27 2020-04-17 安徽辉隆集团五禾生态肥业有限公司 一种丰雨期豆科牧草肥料的制备方法
CN112079545A (zh) * 2020-09-11 2020-12-15 嵩县金佛坪农业科技有限公司 养殖场种养一体化排污处理系统及其使用方法
CN112759190A (zh) * 2020-12-30 2021-05-07 广西壮族自治区畜牧研究所 水培蛋白草处理畜禽污水的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203582756U (zh) * 2013-11-29 2014-05-07 山东百德生物科技有限公司 一种废弃有机物无害化处理机
CN103923822A (zh) * 2014-04-30 2014-07-16 郭群然 隐形多级平衡产气沼气池
CA2917087A1 (fr) * 2013-06-28 2014-12-31 Skyworld International Overseas Limited Installation de traitement et de valorisation d'effluents d'elevage comportant une methanisation, des cultures de micro-algues et de macrophytes, et une lombriculture
CN104787999A (zh) * 2015-04-30 2015-07-22 河南民正农牧股份有限公司 一种规模猪场粪污处理装置及方法
CN106747692A (zh) * 2016-11-22 2017-05-31 北京京鹏环宇畜牧科技股份有限公司 基于种养结合的牧场粪肥生产系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329159A (zh) * 2011-10-19 2012-01-25 沈阳师范大学 一种与有机肥生产相结合的沼气生产方法
CN104743755A (zh) * 2015-04-21 2015-07-01 农业部环境保护科研监测所 一种存栏3000头以上牧场型干清粪奶牛场粪污综合处理方法
CN106824972B (zh) * 2016-07-11 2023-04-07 湖南屎壳郎环境科技有限公司 一种规模化养猪场养殖污染综合治理系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2917087A1 (fr) * 2013-06-28 2014-12-31 Skyworld International Overseas Limited Installation de traitement et de valorisation d'effluents d'elevage comportant une methanisation, des cultures de micro-algues et de macrophytes, et une lombriculture
CN203582756U (zh) * 2013-11-29 2014-05-07 山东百德生物科技有限公司 一种废弃有机物无害化处理机
CN103923822A (zh) * 2014-04-30 2014-07-16 郭群然 隐形多级平衡产气沼气池
CN104787999A (zh) * 2015-04-30 2015-07-22 河南民正农牧股份有限公司 一种规模猪场粪污处理装置及方法
CN106747692A (zh) * 2016-11-22 2017-05-31 北京京鹏环宇畜牧科技股份有限公司 基于种养结合的牧场粪肥生产系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110498705A (zh) * 2019-09-16 2019-11-26 福建农无忧农业科技有限公司 一种畜禽尿液固化制备保水生物有机肥的方法及其设备
CN111484218A (zh) * 2020-05-19 2020-08-04 黑龙江省农业科学院农村能源与环保研究所 基于经济运行温度的寒区厌氧发酵产沼气方法
CN111484218B (zh) * 2020-05-19 2022-02-11 黑龙江省农业科学院农村能源与环保研究所 基于经济运行温度的寒区厌氧发酵产沼气方法

Also Published As

Publication number Publication date
CN107651822A (zh) 2018-02-02
CN107651822B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN107759254B (zh) 一种基于种养结合的畜禽养殖场污染生态治理系统及方法
CN107651822B (zh) 一种畜禽粪污液体生态治理系统及方法
CN102174586B (zh) 一种食用菌菌渣资源化利用的处理方法及装置
CN106007815A (zh) 一种畜禽粪便有机肥料的生产设备及其制备方法
CN103195270A (zh) 一种种植、养殖、青储综合循环系统及方法
CN102630515A (zh) 屋顶生物质循环种植系统
TWI656109B (zh) 用於禽畜廢棄物厭氧消化的系統及方法
WO2019071646A1 (zh) 一种病死畜禽治理系统及方法
CN111713412A (zh) 一种生态养猪系统及其生态循环方法
CN105994134A (zh) 一种生态循环养殖生猪的方法
CN103641288B (zh) 用于处理禽畜粪便的资源化综合利用装置
CN209261284U (zh) 农村代谢共生生态农业系统
CN103195271B (zh) 一种种植、养殖综合循环系统及方法
CN109678565A (zh) 养殖粪污中温太阳能好氧发酵罐
CN109370885A (zh) 一种养鸡场用厌氧发酵系统及其使用方法
CN103525693B (zh) 一种高产沼气发酵装置和富硒沼气肥生产方法
CN209383786U (zh) 一种养鸡场用厌氧发酵系统
CN108128894B (zh) 一种奶牛和生猪养殖场粪污低成本高效发酵处理系统
CN202017008U (zh) 一种食用菌菌渣资源化利用的处理装置
CN209481646U (zh) 一种高效升温厌氧发酵系统
CN208166874U (zh) 一种预热式好氧堆肥装置
CN203034851U (zh) 一种种植、养殖、青储综合循环系统
CN108401879B (zh) 可控虹吸交替式鱼菜共生系统
CN108220134B (zh) 一种生态农场秸秆循环利用发酵沼气系统
CN205933570U (zh) 养殖场粪便梯级综合利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928118

Country of ref document: EP

Kind code of ref document: A1