WO2019070112A2 - Dual density scaffold - Google Patents

Dual density scaffold Download PDF

Info

Publication number
WO2019070112A2
WO2019070112A2 PCT/MY2018/000030 MY2018000030W WO2019070112A2 WO 2019070112 A2 WO2019070112 A2 WO 2019070112A2 MY 2018000030 W MY2018000030 W MY 2018000030W WO 2019070112 A2 WO2019070112 A2 WO 2019070112A2
Authority
WO
WIPO (PCT)
Prior art keywords
scaffold
inner porous
porous layer
layer
cells
Prior art date
Application number
PCT/MY2018/000030
Other languages
French (fr)
Other versions
WO2019070112A3 (en
Inventor
Mohd Yazid Bin BAJURI
Min Hwei NG
Ahmad Farihan Bin MOHD DON
Original Assignee
Universiti Kebangsaan Malaysia (Ukm)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universiti Kebangsaan Malaysia (Ukm) filed Critical Universiti Kebangsaan Malaysia (Ukm)
Publication of WO2019070112A2 publication Critical patent/WO2019070112A2/en
Publication of WO2019070112A3 publication Critical patent/WO2019070112A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/225Fibrin; Fibrinogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3616Blood, e.g. platelet-rich plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3821Bone-forming cells, e.g. osteoblasts, osteocytes, osteoprogenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2892Tibia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention related to a dual density hydroxyapatite scaffold and a process of preparing thereof. More specifically, the present invention is related to a scaffold to be used to connect ends of broken or damaged long bones in mammals such as humans.
  • Tibia bone diaphysis is the most common site for a bone defect due to poor soft tissue coverage especially at the anteromedial site.
  • the goal standard treatment for a bone defect would be placement of autologous bone graft.
  • this technique causes morbidity in terms of pain and haemorrhage at the operation site. Apart from that, there would be risk of infection as well as non- union. Graft failure due to insufficient graft vasculature would result in decreased mechanical stability.
  • vascularized auto graft can be used, but it is more technically demanding as well as time consuming.
  • the present invention provides a dual density scaffold used to connect ends of broken or damaged long bones in mammals such as humans comprising an inner porous layer, an outer dense layer, at least one bioactive agent, at least one inert agent, or a combination thereof, wherein the outer dense layer having a particle size of ⁇ 200 nM, wherein (a) the inner porous layer is made of a ceramic slurry containing 60% beta-tricalcium phosphate and 40% hydroxyapatite and (b) the outer dense layer is made from 100% hydroxyapatite wherein the scaffold having ends that are configured to act as sleeves and fit to respective end of the broken or damaged long bones.
  • the present invention also provides a method of fabricating the above-mentioned dual density scaffold wherein the method includes the steps of (a) preparing of mould according to a 3 -dimentiona l computerised topography (3-D CT) scan data, (b) preparing ceramic slurry containing 60% of hydroxyapatite and 40% of beta-tricalcium phosphate to produce the inner porous layer and 100% of hydroxyapatite to produce the dense outer layer with a particle size of ⁇ 200 nM, (c) casting of the ceramic slurry in the mould, (d) creating the inner porous layer by adding porogen such as sodium chloride or polymeric sponges soaked in the ceramic slurry containing monomers and cross-linkers, (e) sintering of outer dense layer and the inner porous layer to form the scaffold, (f) sterilizing the scaffold, (g) harvesting blood and cells from a mammal patient, (h) culturing of cells from the patient, (i) isolating platelet-rich plasma from
  • Figure 1 is a photograph of the dual density scaffold having the inner porous layer and outer- dense layer according to the preferred embodiments of the present invention.
  • Figure 2 is a flow chart describing the method of fabricating the dual density scaffold of Figure
  • references to "one embodiment,” “at least one embodiment,” “an embodiment,” “one example,” “an example,” “for example,” and so on indicate that the embodiment(s) or example(s) may include a particular feature, structure, characteristic, property, element, or limitation but that not every embodiment or example necessarily includes that particular feature, structure, characteristic, property, element, or limitation. Further, repeated use of the phrase “in an embodiment” does not necessarily refer to the same embodiment.
  • the scaffold comprises an inner porous layer, an outer dense layer, at least one bioactive agent, at least one inert agent, or a combination thereof, wherein the outer dense layer having a particle size of ⁇ 200 nM, wherein (a) the inner porous layer is made of a ceramic slurry containing 60% beta-trieaicium phosphate and 40% hydroxyapatite and (b) the outer dense layer is made from 100% hydroxyapatite wherein the scaffold having ends that are configured to act as sleeves and fit to respective end of the broken or damaged long bones.
  • the inner porous layer comprising micropores having an average diameter of 250 ⁇ to 500 ⁇ and a percentage porosity of 40% - 60% in order to facilitate cell penetration and vascularization with an optimal percentage porosity of 50%.
  • the outer dense layer comprising micropores of an average diameter of less than 5 ⁇ and a percentage porosity of 5% - 10% in order to achieve a mechanical strength and stability to act as a sleeve bridging ends of the segmental bones.
  • the inner porous layer has a compressive strength of 5-35 MPa while the outer dense layer has a compressive strength of at least 115 MPa.
  • the outer dense layer has a radial thickness ranging from 2 mm - 5 mm.
  • the inner porous layer occupies at least two thirds of the scaffold.
  • the at least one bioactive agent is osteoprogenitor cells or osteodifferentiated stem cells and platelet rich plasma or plasma derived fibrinogen.
  • the at least one inert agent is a polymerizing agent such as calcium
  • a method of fabricating the dual density scaffold wherein the method includes the steps of (a) preparing of mould according to a 3-dimentionai computerised topography (3-D CT) scan data (bj the preparation of ceramic slurry containing 60% of hydroxyapatite and 40% of beta-tricalcium phosphate to produce the inner porous layer and 100% of hydroxyapatite to produce the dense outer layer with a particle size of ⁇ 200 nM, (c) casting of the ceramic slurry in the mould (d) creating the inner porous layer by adding porogen such as sodium chloride or polymeric sponges soaked in the ceramic slurry containing monomers and cross-linkers, (e) sintering of outer dense layer and the inner porous layer to form the scaffold (f) sterilizing the scaffold (g) harvesting blood and cells from a mammal, patient (h) culturing of cells from the patient (i) isolating platelet-rich plasma from the blood of the patient (j)
  • 3-D CT 3-dimention
  • Fresh sheep blood of 20 millilitres was collected through a venous puncture. Blood was collected in sodium citrate tubes followed by rapid inversion of the tube to deter blood clotting and was kept at ambient temperature during transport to the cell culture facility. It was then subjected to centrifugation at 5000 rpm for 5 minutes. The plasma layer was gently transferred to a new tube with a pipette without disturbing the bottom layer. Centrifugation was repeated and the plasma layer was transferred to ensure complete removal red blood cells.
  • Sheep was anesthetized with Ketamine 1mg/kg bodyweight via intravenous injection.
  • Right iliac crest region of the sheep was shaved, scrubbed, cleaned and covered with sterile drape.
  • One-centimetre skin incision was made over the iliac crest.
  • Five-ten millilitres of bone marrow was harvested using a 50ml syringe via a Jamshidi needle from the sheep iliac crests.
  • the bone marrow was kept in EDTA vacutainers and transferred to the cell culture facility within 24 hours at ambient temperature. in vitro cell culture
  • Aspirated bone marrow was first diluted with standard culture medium supplemented with 10% foetal bovine serum. Then, mononuclear cells were isolated from the diluted bone marrow via gradient centrifugation over a Ficoll-Paque layer at 5000rpm for 20 minutes and subsequently washed twice with phosphate-buffered saline. Cells were resuspended in culture medium (F12: DM EM 50:50 supplemented with 10% fetal bovine serum) and plated onto a 25cm 2 culture flask. All cultures were incubated at 37°C in a humidified atmosphere of 5% COz. Fresh medium was added on the third day. Medium was changed upon substantial cell attachment and later, twice a week.
  • TCP/HA cylinders were firstly pre-wetted with medium. Approximately 30-50 million osteoprogenitor cells were seeded on each cylinder. Cells were premixed with plasma at the ratio of 1 x 106 cells to 100 ⁇ L plasma and dropped using a pipette onto the pre-wetted granules. Polymerization of the fibrinogen in the plasma was initiated by the addition of 100 ⁇ l of 0.5M CaCl 2 - The conversion of fibrinogen into fibrin will rrap the cells within the scaffold. The cell-seeded scaffold (bone constructs) will then be immer sed in osteogenic medium for one Vv'eek in a CO 2 incubator to induce osteogenic differentiation. After 1 week, the cell-seeded scaffold will then be transported immersed in the osteogenic medium at 4-18°C in a cold box to the operating theatre for implantation.
  • a venous access line will be installed at the right front Sower limb under aseptic conditions, and Diazepam 0.3-0.5 mg/kg BW and Ketamine 3-5mg/kg BW will be injected to induce general anaesthesia.
  • the respective animal will then be intubated with a 9-10 mm silicon endotracheal tube and connected to an automatic respirator (Campbell anaesthetic ventilator) for assisted ventilation with 2L Oz/min,
  • fV Amoxycillin 15mg / kg BW will be given along with analgesia - IM Meloxicam 2 mg/kg BW daily and 1M tramal 2 mg/kg.
  • the animal's heart rate, oxygen saturation and end-tidal carbon dioxide levels were monitored and recorded continuously.
  • the surgical area was shave and disinfected with 0.5% chlorhexidine red in 70% ethanol, A 5-cm incision was made following the iliac crest the inserting musculature was carefully detached and the cortical bone of the lateral os ileum was fenestrated (2 x 2 cm) using a hammer and osteotome. Care was taken not to fracture the ala ossis ilii.
  • the resulting lid was carefully removed with a raspatory and tricortical hone harvest utilizing a bone curette. The lid will be reinserted, and the musculature reattach with 2-0 Vicryl sutures, and the wound dosed in layers. The closed wound was sprayed with Opsite.

Abstract

The present invention related to a dual density scaffold and method of fabricating thereof. In the present invention, the dual density scaffold is used to connect ends of broken or damaged long bones in mammals such as humans. The scaffold comprises of an inner porous layer, an outer dense layer, at least one bioactive agent, and at least one inert agent, wherein the outer dense layer having a particle size of <200 nM. The inner porous layer is fabricated from ceramic slurry containing 60% beta-tricalcium phosphate and 40% hydroxyapatite while the outer dense layer is made from 100% hydroxyapatite. The inner porous later and outer dense layer are fused by sintering process. Both ends of the scaffold is configured to act as sleeves and fit into respective ends of the broken or damaged long bones.

Description

DUAL DENSITY SCAFFOLD
FIELD OF INVENTION
The present invention related to a dual density hydroxyapatite scaffold and a process of preparing thereof. More specifically, the present invention is related to a scaffold to be used to connect ends of broken or damaged long bones in mammals such as humans.
BACKGROUND OF INVENTION
Tibia bone diaphysis is the most common site for a bone defect due to poor soft tissue coverage especially at the anteromedial site. The goal standard treatment for a bone defect would be placement of autologous bone graft. However, this technique causes morbidity in terms of pain and haemorrhage at the operation site. Apart from that, there would be risk of infection as well as non- union. Graft failure due to insufficient graft vasculature would result in decreased mechanical stability. Alternatively, vascularized auto graft can be used, but it is more technically demanding as well as time consuming.
Allograft and xenograft poses high incidence of graft rejection. In addition, maintenance of bone banks and operating procedure involves considerable expenses. The conventional method, "The Iilizarov technique", based upon the principle of distraction osteogenesis has shown good outcome in addressing bone defects. Nevertheless, it involves long duration of time and risk of pin tract infection, thus stated as inconvenient for patients.
Recent research efforts focus on bone graft substitute involving growth factors with a naturally derived or synthetically manufactured, mechanically supporting scaffold. Holding to this idea in mind, our aim in this study is to provide a suitable scaffold and a bone growth stimulating agent that results in comparable or even better bone healing compared to the gold standard tricortical autograft transplantation. SUMMARY OF INVENTION
Accordingly, the present invention provides a dual density scaffold used to connect ends of broken or damaged long bones in mammals such as humans comprising an inner porous layer, an outer dense layer, at least one bioactive agent, at least one inert agent, or a combination thereof, wherein the outer dense layer having a particle size of <200 nM, wherein (a) the inner porous layer is made of a ceramic slurry containing 60% beta-tricalcium phosphate and 40% hydroxyapatite and (b) the outer dense layer is made from 100% hydroxyapatite wherein the scaffold having ends that are configured to act as sleeves and fit to respective end of the broken or damaged long bones.
Furthermore the present invention also provides a method of fabricating the above-mentioned dual density scaffold wherein the method includes the steps of (a) preparing of mould according to a 3 -dimentiona l computerised topography (3-D CT) scan data, (b) preparing ceramic slurry containing 60% of hydroxyapatite and 40% of beta-tricalcium phosphate to produce the inner porous layer and 100% of hydroxyapatite to produce the dense outer layer with a particle size of <200 nM, (c) casting of the ceramic slurry in the mould, (d) creating the inner porous layer by adding porogen such as sodium chloride or polymeric sponges soaked in the ceramic slurry containing monomers and cross-linkers, (e) sintering of outer dense layer and the inner porous layer to form the scaffold, (f) sterilizing the scaffold, (g) harvesting blood and cells from a mammal patient, (h) culturing of cells from the patient, (i) isolating platelet-rich plasma from the blood of the patient, (j) mixing of the cells and platelet-rich piasma and CaCl2 to create a cell suspension, (k) seeding the cell suspension into the inner porous layer to form a cell-seeded scaffold, (1) immersing the cell-seeded scaffold in a culture media and (m) incubating the cell- seeded scaffold prior to implanting the scaffold into the patient BRIEF DESCRIPTION OF THE DRAWING
Figure 1 is a photograph of the dual density scaffold having the inner porous layer and outer- dense layer according to the preferred embodiments of the present invention.
Figure 2 is a flow chart describing the method of fabricating the dual density scaffold of Figure
DETAILED DESCRIPTION OF THE PREFERED EMBODIMENTS
The present, disclosure may be best understood with reference to the detailed figures and description set forth herein. Various embodiments are discussed below with reference to the figures, However, those skilled in the art will readily appreciate that the detailed descriptions given herein with respect to the figures are simply for explanatory purposes as the methods and systems may extend beyond the described embodiments. For example, the teachings presented and the needs of a particular application may yield multiple alternative and suitable approaches to implement the functionality of any detail described herein, Therefore., any approach may extend beyond the particular implementation choices in the following embodiments described and shown.
References to "one embodiment," "at least one embodiment," "an embodiment," "one example," "an example," "for example," and so on indicate that the embodiment(s) or example(s) may include a particular feature, structure, characteristic, property, element, or limitation but that not every embodiment or example necessarily includes that particular feature, structure, characteristic, property, element, or limitation. Further, repeated use of the phrase "in an embodiment" does not necessarily refer to the same embodiment.
The present invention will now be described in reference to Figure 1. The scaffold comprises an inner porous layer, an outer dense layer, at least one bioactive agent, at least one inert agent, or a combination thereof, wherein the outer dense layer having a particle size of <200 nM, wherein (a) the inner porous layer is made of a ceramic slurry containing 60% beta-trieaicium phosphate and 40% hydroxyapatite and (b) the outer dense layer is made from 100% hydroxyapatite wherein the scaffold having ends that are configured to act as sleeves and fit to respective end of the broken or damaged long bones. The inner porous layer comprising micropores having an average diameter of 250 μΜ to 500 μΜ and a percentage porosity of 40% - 60% in order to facilitate cell penetration and vascularization with an optimal percentage porosity of 50%. The outer dense layer comprising micropores of an average diameter of less than 5 μΜ and a percentage porosity of 5% - 10% in order to achieve a mechanical strength and stability to act as a sleeve bridging ends of the segmental bones. The inner porous layer has a compressive strength of 5-35 MPa while the outer dense layer has a compressive strength of at least 115 MPa. The outer dense layer has a radial thickness ranging from 2 mm - 5 mm. The inner porous layer occupies at least two thirds of the scaffold. The at least one bioactive agent is osteoprogenitor cells or osteodifferentiated stem cells and platelet rich plasma or plasma derived fibrinogen. The at least one inert agent is a polymerizing agent such as calcium chloride (CaCl2).
The present invention will now be described in reference to Figure 2, A method of fabricating the dual density scaffold wherein the method includes the steps of (a) preparing of mould according to a 3-dimentionai computerised topography (3-D CT) scan data (bj the preparation of ceramic slurry containing 60% of hydroxyapatite and 40% of beta-tricalcium phosphate to produce the inner porous layer and 100% of hydroxyapatite to produce the dense outer layer with a particle size of <200 nM, (c) casting of the ceramic slurry in the mould (d) creating the inner porous layer by adding porogen such as sodium chloride or polymeric sponges soaked in the ceramic slurry containing monomers and cross-linkers, (e) sintering of outer dense layer and the inner porous layer to form the scaffold (f) sterilizing the scaffold (g) harvesting blood and cells from a mammal, patient (h) culturing of cells from the patient (i) isolating platelet-rich plasma from the blood of the patient (j) mixing of the cells and platelet- rich plasma and CaCl2 to create a cell suspension (k) seeding the cell suspension into the inner porous layer to form a cell-seeded scaffold (1) immersing the cell-seeded scaffold in a culture media; and (m) incubating the cell-seeded scaffold prior to implanting the scaffold into the patient. The following section describes the experimental procedures which are not in reference to Figure 2, Autologous plasma preparation
Fresh sheep blood of 20 millilitres was collected through a venous puncture. Blood was collected in sodium citrate tubes followed by rapid inversion of the tube to deter blood clotting and was kept at ambient temperature during transport to the cell culture facility. It was then subjected to centrifugation at 5000 rpm for 5 minutes. The plasma layer was gently transferred to a new tube with a pipette without disturbing the bottom layer. Centrifugation was repeated and the plasma layer was transferred to ensure complete removal red blood cells.
Sheep bone marrow harvesting
Sheep was anesthetized with Ketamine 1mg/kg bodyweight via intravenous injection. Right iliac crest region of the sheep was shaved, scrubbed, cleaned and covered with sterile drape. One-centimetre skin incision was made over the iliac crest. Five-ten millilitres of bone marrow was harvested using a 50ml syringe via a Jamshidi needle from the sheep iliac crests. The bone marrow was kept in EDTA vacutainers and transferred to the cell culture facility within 24 hours at ambient temperature. in vitro cell culture
Aspirated bone marrow was first diluted with standard culture medium supplemented with 10% foetal bovine serum. Then, mononuclear cells were isolated from the diluted bone marrow via gradient centrifugation over a Ficoll-Paque layer at 5000rpm for 20 minutes and subsequently washed twice with phosphate-buffered saline. Cells were resuspended in culture medium (F12: DM EM 50:50 supplemented with 10% fetal bovine serum) and plated onto a 25cm2 culture flask. All cultures were incubated at 37°C in a humidified atmosphere of 5% COz. Fresh medium was added on the third day. Medium was changed upon substantial cell attachment and later, twice a week. Upon cell confluence, cells were detached by the addition of 0.05% of trypsin-EDTA solution and counted using trypan blue dye-exclusion-method and a haemocytometer. Cells were subsequently sub-cultured at. a standard density of 5000 cells/cm2. Sub-clituring was performed for 3 to 5 times in order to expand the cells to approximately 30 million. One week before the implantation date, cells were maintained in Osteogenic Medium (culture media supplemented with 10-7 M dexametbasone, 0.05 mg/ml ascorbate-2- phosphate, 10 mM b-glycerophosphate) for one week to induce osteogenic differentiation.
In vitro tissue engineered bone construct preparation
TCP/HA cylinders were firstly pre-wetted with medium. Approximately 30-50 million osteoprogenitor cells were seeded on each cylinder. Cells were premixed with plasma at the ratio of 1 x 106 cells to 100 μL plasma and dropped using a pipette onto the pre-wetted granules. Polymerization of the fibrinogen in the plasma was initiated by the addition of 100 μl of 0.5M CaCl2- The conversion of fibrinogen into fibrin will rrap the cells within the scaffold. The cell-seeded scaffold (bone constructs) will then be immer sed in osteogenic medium for one Vv'eek in a CO2 incubator to induce osteogenic differentiation. After 1 week, the cell-seeded scaffold will then be transported immersed in the osteogenic medium at 4-18°C in a cold box to the operating theatre for implantation.
Animal Surgery
A venous access line will be installed at the right front Sower limb under aseptic conditions, and Diazepam 0.3-0.5 mg/kg BW and Ketamine 3-5mg/kg BW will be injected to induce general anaesthesia. The respective animal will then be intubated with a 9-10 mm silicon endotracheal tube and connected to an automatic respirator (Campbell anaesthetic ventilator) for assisted ventilation with 2L Oz/min, For prophylactic antibiotics, fV Amoxycillin 15mg / kg BW will be given along with analgesia - IM Meloxicam 2 mg/kg BW daily and 1M tramal 2 mg/kg. The animal's heart rate, oxygen saturation and end-tidal carbon dioxide levels were monitored and recorded continuously. Animals (the sheep, average weight: 42.5 kg, age: 6-7 years) positioned right lateral recumbency. The left hindlimb will be shaved and thoroughly disinfected with 0.5% chlorhexidine solution red in 70% ethanol. The animal torso and surroundings were then covered with sterile sheets, the surgical area additionally with Opsite. Autologous, tricortical bone graft harvest from the left iliac crest. The surgical area was shave and disinfected with 0.5% chlorhexidine red in 70% ethanol, A 5-cm incision was made following the iliac crest the inserting musculature was carefully detached and the cortical bone of the lateral os ileum was fenestrated (2 x 2 cm) using a hammer and osteotome. Care was taken not to fracture the ala ossis ilii. The resulting lid was carefully removed with a raspatory and tricortical hone harvest utilizing a bone curette. The lid will be reinserted, and the musculature reattach with 2-0 Vicryl sutures, and the wound dosed in layers. The closed wound was sprayed with Opsite.
4 Dunham pins 5mm will inserted over the tibia (2 proximal and 2 distal). Rods will be inserted and tightened. The right, tibia exposed by a longitudinal incision of approximately 5 cm length on the medial aspect of the limb. Next, the soft tissue inserting to the bone in the designated defect area detach and a wet compress placed between bone and posterolateral soft tissue to avoid damage to proximate nerve and blood vessels during osteotomy. Parallel osteotomies perpendicular to the bone's longitudinal axis perform with an oscillating saw (Stryker) under constant irrigation with saline solution to prevent heat induced osteonecrosis whilst, the bone segment of 3 cm length was excised. Care was taken to completely remove the periosteum within the defect area and 1.5 cm proximally and distally of the osteotomy lines. The iliac bone fragments will be place realign. The wound was closed in layers with a 2-0 Monocryi and a 3-0 Novafil suture for the skin. The closed wound was sprayed with Opsite, covered with pads and bandaged. After recovery from anaesthesia, animals were allowed unrestricted weight bearing.

Claims

1. A dual density scaffold used to connect ends of broken or damaged long bones in mammals such as humans comprising an inner porous layer, an outer dense layer, at least one bioactive agent, at least one inert agent, or a combination thereof, wherein the outer dense layer having a particle size of <2Q0 nM, wherein:
(a) the inner porous layer is made of a ceramic slurry containing 60% beta-tricaickmt phosphate and 40% hydroxyapatite; and
(b) the outer dense layer is made from 100% hydroxyapatite
wherein the scaffold having ends that are configured to act as sleeves and fit to respective end of the broken or damaged long bones.
2. The scaffold of Claim 1, wherein inner porous layer comprising micropores having an average diameter of 250 μΜ to 500 μΜ and a percentage porosity of 40% - 60% in order to facilitate cell penetration and vascularization with an optimal percentage porosity of 50%=
3. The scaffold of Claim 1, wherein the outer dense layer comprising micropores of an average diameter of less than 5 μΜ and a percentage porosity of 5% - 10% in order to achieve a mechanical strength and stability to act as a sleeve bridging ends of the segmental bones.
4. The scaffold of Claim 1, wherein the inner porous layer has a compressive strength of 5
35 M Pa while the outer dense layer has a compressive strength of at least 115 MPa,
5. The scaffold of Claim 1, wherein the outer dense layer has a radial thickness ranging from 2 mm - 5 mm.
6. The scaffold of Claim 1, wherein the inner porous layer occupies at least two thirds of the scaffold.
7. The scaffold of Claim 1, wherein the at least one bioactive agent is osteoprogenitor cells or osteodifferentiated stem cells and platelet rich plasma or plasma derived fibrinogen.
8. The scaffold of Claim 1, wherein the at least one inert agent is a polymerizing agent such as calcium chloride (CaCb).
9. A method of fabricating the dual density scaffold as claimed in Claims 1 to 8, wherein the method includes the steps of
(a) preparing of mould according to a 3 -dimentional computerised topography (3-D CT) scan data;
(b) preparing ceramic slurry containing 60% of hydroxyapatite and 40% of beta-tricalrium phosphate to produce the inner porous layer and 100% of hydroxyapatite to produce the dense outer layer with a particle size of <200 nM;
(c) casting of the ceramic slurry in the mould;
(d) creating the inner porous layer by adding porogen such as sodium chloride or polymeric sponges soaked in the ceramic slurry containing monomers and cross-linkers
(e) sintering of outer dense layer and the inner porous layer to form the scaffold;
(f) sterilizing the scaffold;
(g) harvesting blood and cells from a mammal patient;
(h) culturing of cells from the patient;
0) isolating platelet-rich plasma from the blood of the patient;
(j) mixing of the cells and platelet-rich plasma and CaCl2 to create a cell suspension;
(k) seeding the cell suspension into the inner porous layer to form a cell-seeded scaffold; (1) immersing the cell-seeded scaffold in a culture media; and
(m) incubating the cell-seeded scaffold prior to implanting the scaffold into the patient.
10. The method as claimed in Claim 9, where in Step (f) is conducted by gamma radiation.
PCT/MY2018/000030 2017-10-06 2018-10-05 Dual density scaffold WO2019070112A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI2017001481 2017-10-06
MYPI2017001481 2017-10-06

Publications (2)

Publication Number Publication Date
WO2019070112A2 true WO2019070112A2 (en) 2019-04-11
WO2019070112A3 WO2019070112A3 (en) 2019-06-06

Family

ID=65995409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MY2018/000030 WO2019070112A2 (en) 2017-10-06 2018-10-05 Dual density scaffold

Country Status (1)

Country Link
WO (1) WO2019070112A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083188A2 (en) * 2001-04-16 2002-10-24 Cassidy James J Dense/porous structures for use as bone substitutes
CA2965384C (en) * 2007-08-09 2021-06-22 The Board Of Regents Of The University Of Texas System Bi-layered bone-like scaffolds
CA2750605C (en) * 2009-01-23 2019-01-22 Royal College Of Surgeons In Ireland Layered scaffold suitable for osteochondral repair
US9408636B2 (en) * 2014-01-27 2016-08-09 Luke Lu Bone connection material
KR101635964B1 (en) * 2014-04-30 2016-07-05 포항공과대학교 산학협력단 Method of fabricating scaffold for non-autologous cell encapsulation

Also Published As

Publication number Publication date
WO2019070112A3 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US6884621B2 (en) Method and carrier for culturing multi-layer tissue in vitro
US11179499B2 (en) Bone-like prosthetic implants
KR100905900B1 (en) Double Layered Scaffold for Treatment of Articular Cartilage
TWI316860B (en) Multi-layered matrix, method of tissue repair using the same and multi-layered implant prepared thereof
Zhao et al. Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits
KR100839875B1 (en) Scaffold for articular cartilage regeneration
Hendrich et al. Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients
Wang et al. CaO 2/gelatin oxygen slow-releasing microspheres facilitate tissue engineering efficiency for the osteonecrosis of femoral head by enhancing the angiogenesis and survival of grafted bone marrow mesenchymal stem cells
Masaoka et al. Bone defect regeneration by a combination of a β-tricalcium phosphate scaffold and bone marrow stromal cells in a non-human primate model
Ciocca et al. Mesenchymal stem cells and platelet gel improve bone deposition within CAD-CAM custom-made ceramic HA scaffolds for condyle substitution
JP2012513782A (en) Rapid preparation and use of engineered tissue and scaffolds as individual implants
CN112587729B (en) Bone repair material
US20210038763A1 (en) Collagen Sponge
Endres et al. Angiogenesis and healing with non-shrinking, fast degradeable PLGA/CaP scaffolds in critical-sized defects in the rabbit femur with or without osteogenically induced mesenchymal stem cells
CN108273135A (en) A kind of osteochondral defect repair materials and preparation method thereof
Huang et al. Stromal cell-derived factor 1 promotes cell migration to enhance bone regeneration after hypoxic preconditioning
RU2545993C2 (en) Method for repairing long bone defects of critical size
WO2019070112A2 (en) Dual density scaffold
Kharkova et al. Three-dimensional TCP scaffolds enriched with Erythropoietin for stimulation of vascularization and bone formation.
Xu et al. Repair of large segmental bone defects using bone marrow stromal cells with demineralized bone matrix
RU2757157C1 (en) Restoration of the diaphysis of long bones by cellular technology applying a method for autotransplantation of a vessel
Wang et al. Progress in the research and development of nerve conduits
CN114848914A (en) Cartilage tissue engineering compound and application thereof
RU2777947C1 (en) Liquid in vivo bioreactor for growing bone tissue
CN112618798B (en) Preparation method of bone repair material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865130

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865130

Country of ref document: EP

Kind code of ref document: A2