WO2019069994A1 - Airflow measuring device - Google Patents

Airflow measuring device Download PDF

Info

Publication number
WO2019069994A1
WO2019069994A1 PCT/JP2018/037079 JP2018037079W WO2019069994A1 WO 2019069994 A1 WO2019069994 A1 WO 2019069994A1 JP 2018037079 W JP2018037079 W JP 2018037079W WO 2019069994 A1 WO2019069994 A1 WO 2019069994A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
temperature
time
temperature change
vector
Prior art date
Application number
PCT/JP2018/037079
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 憲一
山下 秀一
ヘーガン ネーサン
大谷 幸利
Original Assignee
株式会社デンソー
国立大学法人宇都宮大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立大学法人宇都宮大学 filed Critical 株式会社デンソー
Publication of WO2019069994A1 publication Critical patent/WO2019069994A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement

Definitions

  • the present disclosure relates to an air flow measurement device capable of measuring an air flow on the surface of an object, and is suitably applied to, for example, an air flow visualization device capable of measuring by visualizing an air flow on the surface of an object.
  • the visualization apparatus which can visualize the airflow on the surface of an object is proposed as an airflow measurement apparatus.
  • the air flow is visualized by heating the object whose flow is to be visualized and then measuring the temperature change of the heated object due to the wind.
  • this device measures the temperature distribution of the heated object using a thermoviewer based on the fact that the temperature of the object surface decreases as the wind hits the heated object at a greater place, and the temperature distribution is Visualization of the air flow to the heating object is performed.
  • the visualization device of Patent Document 1 described above can not visualize the air volume to the object without heating the object. For this reason, it is necessary to be an object that can be heated, a place, for example, a human body can not be measured, and an outdoor where a heating device can not be placed can not be measured. It is limited. In addition, it is difficult to measure airflow in real time because of using temperature change over a long time.
  • the present disclosure aims to provide an air flow measurement device that is not limited in measurement object and measurement location, and can also perform air flow measurement in real time.
  • One aspect of the present disclosure is an air flow measurement device that performs measurement on the surface of an object, and a camera that acquires measurement data of the surface at a predetermined frame rate as emission light data of the surface, and measurement acquired by the camera Temperature change calculated by the change amount calculation unit, which calculates the temperature change amount that is the difference between the reference temperature for each pixel or each pixel of each frame and the temperature at the time of temperature change based on the data
  • the measurement data creation unit has a measurement data creation unit that creates time change data of the temperature change amount using difference data between the reference temperature and the temperature at the time of the temperature change according to the magnitude of the amount. Calculate time change data.
  • the amount of temperature change which is the difference between the reference temperature for each pixel or each pixel of each frame and the temperature at the time of temperature change, ie, the minute time on the surface of the object
  • the amount of temperature change is calculated and the amount of temperature change is measured.
  • the measurement object and the measurement place are not limited, and it is possible to obtain an air flow measurement device capable of performing air flow measurement in real time.
  • the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
  • FIG. 5 is a view showing the change of the surface temperature of the object in the process of FIG.
  • FIG. 4A to FIG. 4C It is the figure which showed the mode of the change of the temperature of an object surface, and the difference of the temperature of an object surface instantaneously. It is a figure explaining an estimation method of direction and speed of a field which moves between consecutive frames. It is the figure which showed the relationship between the movement distance in a flame
  • the air flow visualization device of the present embodiment is for visualizing the air flow on the surface of an object, and has, for example, a system configuration shown in FIG.
  • the air flow visualization device is configured to have a camera 1, a computer 2, and a display 3.
  • the camera 1 is configured of, for example, an infrared camera.
  • the camera 1 inputs an image of each pixel with, for example, one pixel as a minimum unit, and transmits the video signal, that is, image data to be measurement data to the computer 2.
  • the specification of the camera 1 is arbitrary, here, for example, an infrared camera of the specification shown in FIG. 2A is used.
  • the detector is InSb
  • the number of pixels is 640 ⁇ 512
  • the pixel pitch is 20 ⁇ m
  • the detection wavelength band is 2.95-4.97 ⁇ m
  • the F value that is, the size of the lens of the camera 1 is f / 2.3.
  • a quantum-type cooled infrared camera with an operating temperature of 77 K and a frame rate of 60 Hz. Then, by performing averaging processing for four frames, display is made at 15 Hz.
  • a so-called uncooled infrared camera such as a thermopile using the Seebeck effect, a bolometer type using resistance change, or a pyroelectric type using pyroelectric effect is used.
  • the relationship between the ambient temperature around the object 10 and the NETD has the relationship shown in FIG. 2B.
  • the computer 2 performs image processing based on image data input from the camera 1 and plays a role of creating data in which the air flow is visualized. Further, the computer 2 performs calculation of an air flow vector corresponding to the air volume and direction of the air flow from the image data after creation, and plays a role of transmitting the calculation result of the image data and air flow vector after creation to the display 3. The specific operation of the computer 2 will be described later.
  • the display 3 constitutes an image display unit, and displays the calculation result of the image data and the air flow vector transmitted from the computer 2 as an image.
  • the amount of temperature change of the object surface in a minute time can be represented as an image, and an airflow vector can be shown in the image.
  • the air flow visualization device As described above, the air flow visualization device according to the present embodiment is configured. Subsequently, the operation of the air flow visualization device configured as described above will be described with reference to the flowchart of the process executed by the computer 2 shown in FIG. 3.
  • the camera 1 captures an image of the surface 10a of the object 10 to acquire image data of the surface 10a, and inputs the data to the computer 2 to cause the computer 2 to perform various processes. An operation of displaying the processing result on the display 3 is performed.
  • the computer 2 When the image data is input, the computer 2 performs image processing based on the image data to create data in which the air flow is visualized.
  • the image data is data of radiation of the surface 10 a of the object 10. Since the radiation of the surface 10a is output according to the temperature of the surface 10a, the air flow of the surface 10a can be visualized by processing the image data, that is, the data of the radiation. Further, the computer 2 performs an optical flow analysis of the image data after creation to calculate an air flow vector. Then, the computer 2 transmits the calculated image data and the calculation result of the airflow vector to the display 3.
  • the computer 2 performs the above operation by executing the process shown in the flowchart of FIG.
  • step S100 of FIG. 3 the computer 2 inputs an infrared image as image data from the camera 1.
  • step S110 to calculate an average temperature in a frame of each input image.
  • an average value of temperatures per pixel in a plurality of frames is calculated.
  • step S120 the temperature change amount ⁇ T with respect to the reference temperature in a minute time is calculated based on the result of the average temperature calculation in step S110 for visualization.
  • step S130 image data for visualization is created based on the calculation result of the temperature change amount ⁇ T with respect to the reference temperature in a minute time, and in step S140, optical flow analysis is performed as calculation of the air flow vector.
  • step S150 the image data obtained in step S130 and the calculation result of the air flow vector in step S140 are transmitted to the display 3 to display the amount of temperature change of the object surface in a minute time or Visualize the airflow vector.
  • step S110 calculation with narrow time and calculation with wide time longer than that are performed as average temperature calculation.
  • a moving average value of the temperature for each pixel in a first predetermined number of frames corresponding to a predetermined short time, for example, four frames is calculated.
  • the temperature after fluctuation in minute time is calculated.
  • the average temperature calculation in the wide time the movement of the temperature for each pixel in the second predetermined number corresponding to the wide time longer than the narrow time, that is, several minutes more than the first predetermined number, for example 80 frames
  • the average value is calculated.
  • the reference temperature is calculated by the average temperature calculation in the wide time.
  • the temperature of the object surface changes by a mechanism as shown in FIGS. 4A to 4C.
  • a laminar flow 11 flows as a gas flow along the surface 10 a of the object 10 in the object 10.
  • a boundary layer 12 which is a stable layer is formed.
  • the boundary layer 12 is, for example, in a state of being spread by the vortices 12 a interspersed innumerably on the surface 10 a of the object 10.
  • the laminar flow 11 flows along the surface 10 a of the object 10, the flow direction is not necessarily constant. For this reason, as shown in FIG. 4A, disturbance 13 from the laminar flow 11 toward the boundary layer 12 may occur. Due to the disturbance of the laminar flow 11 due to the disturbance 13, as shown in FIG. 4B, a part of the vortex 12a of the boundary layer 12 which is a stable layer is peeled off. Then, in the region where the vortex 12a is peeled off, the temperature of the surface 10a is changed, and the temperature is lower than that of the other region of the surface 10a.
  • the boundary layer 12 is stabilized again and returns to the state in which it is spread by the vortex 12a.
  • the temperature change in these states is represented as shown in FIG. That is, when states (1) to (3) are shown in FIGS. 4A to 4C, respectively, as shown in FIG. 5, the temperature is substantially constant in the state (1) and in the state (2). When the temperature is low, the temperature rises again to the state (1).
  • the time when the temperature change occurs at this time is, for example, a minute time of several seconds, and the temperature change amount can be represented by ⁇ T.
  • the change of the air flow is obtained by obtaining the temperature change amount ⁇ T in step S120.
  • the temperature change amount ⁇ T in a minute time is an instantaneous temperature change that occurs in a few seconds. Therefore, the temperature change amount ⁇ T can be calculated by subtracting the temperature at the time of the temperature change from the reference temperature, that is, the temperature before the temperature change.
  • the temperature of the object surface and the time change of the temperature fluctuation are represented as a graph as shown in FIG. 6, it is possible to calculate the difference of the temperature of the object surface instantaneously as shown in FIG. it can.
  • the change in instantaneous time in the difference of the temperature of the object surface becomes the temperature change amount ⁇ T.
  • the temperature of the surface 10 a of the object 10 changes gradually, it is preferable to exclude the influence of the gradual temperature change.
  • step S110 a temperature average value in a wide time is obtained by the average temperature calculation as the reference temperature, in other words, the temperature before the temperature change, so that the influence of the gradual temperature change can be excluded. Further, as a temperature at the time of temperature change, a temperature average value in a narrow time is obtained by the average temperature calculation so as to suppress a decrease in accuracy when a noise-like image change occurs.
  • moving average value MovingAvg80 ⁇ T (t) ⁇ of 80 frames 'worth of temperature is calculated as wide-time mean temperature calculation, and temperature of 4 frames' worth as narrow-time average temperature calculation.
  • the moving average value of MovingAvg4 ⁇ T (t) ⁇ is calculated.
  • the temperature change amount ⁇ T (t) is obtained as the difference between the temperature average value of the wide time and the temperature average value of the narrow time, as shown in the following equation.
  • MovingAvg80 ⁇ T (t) ⁇ and MovingAvg4 ⁇ T (t) ⁇ are further simplified and used as equations expressed as M80 (t) and M4 (t), respectively.
  • step S130 the time change data of the temperature change ⁇ T using the image of the temperature change ⁇ T obtained from the result of the average temperature calculation for each pixel, that is, the difference data of the reference temperature and the temperature at the time of the temperature change.
  • Create image data representing the image For example, the brightness of gray scale is changed in accordance with the temperature change amount ⁇ T for each pixel, and image data is created such that the larger the temperature change amount ⁇ T, the brighter the display.
  • the region where the vortex 12a is peeled is moved according to the volume and direction of the airflow, that is, the vector of the airflow.
  • the vector of air flow can be estimated by performing calculation based on the image data created as time change data. Specifically, the temperature change amount ⁇ T (t) obtained from the average temperature calculation result for each pixel is input, and the optical flow analysis is performed from there to determine the movement distance between the frames of the region where the vortex 12a is peeled off. If analyzed, the airflow vector can be estimated. Therefore, in step S140, optical flow analysis is performed as calculation of the airflow vector.
  • Lucas-Kanade method is a method of estimating the direction and velocity of a moving area, for example, in an arbitrary frame and the next frame.
  • an arbitrary frame is frame 1 and the next frame is frame 2.
  • the movement distance and direction between the centers of gravity of the tracked area R1 and the area R2 are vectors corresponding to the volume and direction of the air flow.
  • the moving distance between the centers of gravity of the region R1 and the region R2 and the air volume of the air flow on the object surface are expressed as a relationship as shown in FIG.
  • the actual air flow velocity can be calculated by multiplying the distance per pixel.
  • the range of the imaging target in one frame is determined according to the distance from the camera 1 to the imaging target.
  • an actual imaging range in one frame that is, an actual distance in one direction of an image reflected in one frame is L1 mm.
  • L1 / 640 [mm] is the shooting distance per pixel.
  • the velocity of the air flow can be obtained by multiplying L1 / 640 [mm] by the moving distance between the centers of gravity of the regions R1 and R2 in each frame, that is, the number of moving pixels.
  • the velocity of the air flow described here is the velocity at the imaging interval of the frame, in other words, the velocity for the time of the imaging cycle.
  • the imaging interval of a frame is represented by a frame rate, and as shown in FIG. 2A, in the present embodiment, the frame rate is 15 Hz. For this reason, when expressing the velocity of the air flow as a second velocity, the above-mentioned L1 / 640 [mm] is multiplied by the frame rate.
  • L1 is 3 ⁇ 640, that is, if the movement amount between the centers of gravity of region R1 and region R2 in each frame is 16 pixels / frame, and the frame rate is 15 Hz, It can be asked.
  • the airflow vector is displayed on the display 3 so as to overlap with or separately from the image data of the temperature change amount ⁇ T, and these visualizations are performed.
  • the temperature change amount ⁇ T is indicated by light and shade, and the airflow vector is displayed by an arrow to perform visualization.
  • the temperature change amount ⁇ T in a minute time of the surface 10 a of the object 10 is calculated, and the temperature change amount ⁇ T is visualized.
  • the object 10 since the air flow on the surface 10 a of the object 10 can be visualized, the object 10 does not have to be heated, and measurement can be performed outdoors or the like, and there is no restriction on the measurement location. It also enables real-time air flow measurement. Therefore, it is possible to provide an airflow visualization device capable of performing airflow measurement in real time without being limited in the measurement object or the measurement location.
  • Such an air flow visualization device can be applied to the visualization of air flow with respect to various measurement objects, and in particular, at a medium distance, for example 10 m to 100 m, in which the air flow can not be visualized conventionally. It can be used to visualize air flow.
  • applicable applications include air volume control and air flow management of an air conditioner by air flow visualization in a room or in a vehicle cabin, outdoor air flow monitoring, and air resistance optimization by air flow and turbulence visualization.
  • the above embodiment has described the case of applying the method of changing the light and shade of gray scale according to the magnitude of the temperature change amount ⁇ T in a minute time as the air flow visualization method, other methods are applied. You can also. For example, the color may be changed in accordance with the magnitude of the temperature change amount ⁇ T.
  • the filter 1a is installed in the camera 1 as shown in FIG. 1, and the image data filtering process is performed.
  • the airflow by specifying a specific airflow, for example, toxic gas or carbon dioxide, and measuring the temperature.
  • a specific airflow for example, toxic gas or carbon dioxide
  • the wavelength of light to be extracted varies depending on the type of gas. For this reason, although the wavelength which the filter 1a passes according to it will be set, for example, when performing airflow of carbon dioxide, if the filter 1a should be able to pass 4.26 micrometers and the wavelength of that vicinity good.
  • visualization of the air flow in addition to visualization of the temperature change amount ⁇ T, visualization of the air flow vector is also described simultaneously. However, at least the temperature change amount ⁇ T is visualized. You can visualize the air flow.
  • calculation of the number of moving pixels of the center of gravity between the region R1 and the region R2 in which the temperature change amount ⁇ T and the temperature change occur in each pixel is performed.
  • this is just an example. For example, assuming a plurality of adjacent pixels in each frame, for example, 4 pixels of 2 ⁇ 2 as one section, the temperature change amount ⁇ T or the number of movement sections of the center of gravity of the area R1 and the area R2 The calculation may be performed.
  • the computer 2 calculates the average temperature in the narrow time or the wide time, calculates the temperature change ⁇ T, calculates the temperature change ⁇ T, and changes the image data in visualization etc.
  • a measurement data creation unit that creates data and a vector calculation unit that calculates an airflow vector are configured.
  • each component may be configured by a different computer.
  • various controls related to the vehicle are performed by various electronic control devices (hereinafter referred to as ECUs), but each component may be configured by one or more of the ECUs.
  • the airflow visualization device that can perform visualization of the airflow has been described as an example including the airflow measurement device, but the airflow measurement device has a function capable of measuring the airflow on at least the surface of the object. It is good if it is.

Abstract

An amount of change in temperature (ΔT) of a surface (10a) of an object (10) over a very short time is calculated, and the amount of change in temperature (ΔT) is made visible. Since airflow at the surface (10a) of the object (10) can be made visible in this way, it is not necessary to heat the object (10), and measurements can even be taken outdoors, for example, and there are therefore no restrictions on the measuring location. Further, real-time airflow measurement is also possible. It is therefore possible to provide an airflow visualizing device with which there are no restrictions on the object to be measured or the measurement location, and with which real-time airflow measurement can be performed.

Description

気流測定装置Airflow measuring device 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2017年10月3日に出願された日本特許出願番号2017-193645号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-193645 filed on October 3, 2017, the contents of which are incorporated herein by reference.
 本開示は、物体表面の気流を測定可能とする気流測定装置に関するものであり、例えば、物体表面の気流を可視化することによって測定可能とする気流可視化装置などに適用すると好適である。 The present disclosure relates to an air flow measurement device capable of measuring an air flow on the surface of an object, and is suitably applied to, for example, an air flow visualization device capable of measuring by visualizing an air flow on the surface of an object.
 従来、特許文献1において、気流測定装置として、物体表面の気流を可視化できる可視化装置が提案されている。この装置では、気流の可視化を行いたい物体を加熱したのち、風による加熱物体の温度変化を計測することによって、気流の可視化を行っている。具体的には、この装置は、加熱物体に対して風の当たり方が大きい場所ほど物体表面の温度が低下することに基づき、サーモビューアを用いて加熱物体の温度分布を計測し、温度分布から加熱物体への気流の可視化を行っている。 DESCRIPTION OF RELATED ART Conventionally, in patent document 1, the visualization apparatus which can visualize the airflow on the surface of an object is proposed as an airflow measurement apparatus. In this device, the air flow is visualized by heating the object whose flow is to be visualized and then measuring the temperature change of the heated object due to the wind. Specifically, this device measures the temperature distribution of the heated object using a thermoviewer based on the fact that the temperature of the object surface decreases as the wind hits the heated object at a greater place, and the temperature distribution is Visualization of the air flow to the heating object is performed.
特開昭63-27766号公報Japanese Patent Application Laid-Open No. 63-27766
 しかしながら、上記した特許文献1の可視化装置は、物体を加熱しないと物体への風量の可視化を行うことができない。このため、加熱できる対象、場所であることが必要となり、例えば人体を測定対象とすることはできないし、加熱装置を配置できない屋外などを測定場所にすることができず、測定対象や測定場所が限定される。また、長い時間の温度変化を利用するため、リアルタイムでの気流測定を行うことが難しい。 However, the visualization device of Patent Document 1 described above can not visualize the air volume to the object without heating the object. For this reason, it is necessary to be an object that can be heated, a place, for example, a human body can not be measured, and an outdoor where a heating device can not be placed can not be measured. It is limited. In addition, it is difficult to measure airflow in real time because of using temperature change over a long time.
 本開示は上記点に鑑みて、測定対象や測定場所が限定されず、かつ、リアルタイムでの気流測定を行うことも可能な気流測定装置を提供することを目的とする。 In view of the above-described point, the present disclosure aims to provide an air flow measurement device that is not limited in measurement object and measurement location, and can also perform air flow measurement in real time.
 本開示の1つの観点では、物体の表面における測定を行う気流測定装置であって、表面の放射光のデータとして、表面の測定データを所定のフレームレートで取得するカメラと、カメラが取得した測定データに基づいて、各フレームの画素毎もしくは複数画素毎の基準温度と温度変化時の温度との差分である温度変化量を計算する変化量計算部と、変化量計算部で計算された温度変化量の大きさに応じて、基準温度と温度変化時の温度との差分データを利用し温度変化量の時間変化データを作成する測定データ作成部と、を有し、測定データ作成部が作成した時間変化データの計算を行う。 One aspect of the present disclosure is an air flow measurement device that performs measurement on the surface of an object, and a camera that acquires measurement data of the surface at a predetermined frame rate as emission light data of the surface, and measurement acquired by the camera Temperature change calculated by the change amount calculation unit, which calculates the temperature change amount that is the difference between the reference temperature for each pixel or each pixel of each frame and the temperature at the time of temperature change based on the data The measurement data creation unit has a measurement data creation unit that creates time change data of the temperature change amount using difference data between the reference temperature and the temperature at the time of the temperature change according to the magnitude of the amount. Calculate time change data.
 このように、物体の表面の測定データに基づいて、各フレームの画素毎もしくは複数画素毎の基準温度と温度変化時の温度との差分である温度変化量、つまり物体の表面の微小時間での温度変化量を算出し、温度変化量を測定している。このようにして、物体の表面での気流を測定できることから、物体を加熱する必要がないし、屋外などにおいても測定が可能になるため測定場所の制限もない。また、リアルタイムでの気流測定も可能となる。したがって、測定対象や測定場所が限定されず、かつ、リアルタイムでの気流測定を行うことが可能な気流測定装置とすることができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
Thus, based on the measurement data of the surface of the object, the amount of temperature change which is the difference between the reference temperature for each pixel or each pixel of each frame and the temperature at the time of temperature change, ie, the minute time on the surface of the object The amount of temperature change is calculated and the amount of temperature change is measured. In this way, since the air flow on the surface of the object can be measured, it is not necessary to heat the object, and measurement can be performed outdoors as well, so there is no restriction on the measurement location. It also enables real-time air flow measurement. Therefore, the measurement object and the measurement place are not limited, and it is possible to obtain an air flow measurement device capable of performing air flow measurement in real time.
In addition, the parenthesized reference symbol attached to each component etc. shows an example of the correspondence of the component etc. and the specific component etc. as described in the embodiment to be described later.
第1実施形態にかかる気流可視化装置のブロック構成を示す図である。It is a figure which shows the block configuration of the airflow visualization device concerning 1st Embodiment. 気流可視化装置に備えられるカメラの仕様を示した図表である。It is the chart which showed the specification of the camera with which an airflow visualization device is equipped. 環境温度と温度分解能(NETD:Noise Equivalent Temperature Difference)との関係を示した図表である。It is the graph which showed the relationship between environmental temperature and temperature resolution (NETD: Noise Equivalent Temperature Difference). 気流可視化装置のコンピュータが実行する処理のフローチャートである。It is a flowchart of the process which the computer of air flow visualization apparatus performs. 物体表面の気流に乱れが生じたときの様子を示した図である。It is the figure which showed a mode when disorder generate | occur | produced in the airflow on the surface of an object. 気流に乱れによって物体表面の温度変化が生じたときの様子を示した図である。It is the figure which showed a mode that the temperature change of the object surface produced by disorder to air flow. 物体表面の気流が再び安定したときの様子を示した図である。It is the figure which showed a mode when the airflow on the surface of an object stabilized again. 図4A~図4Cの過程における物体の表面の温度の変化を示した図である。FIG. 5 is a view showing the change of the surface temperature of the object in the process of FIG. 4A to FIG. 4C. 物体表面の温度と、瞬間的な物体表面の温度の差分の変化の様子を示した図である。It is the figure which showed the mode of the change of the temperature of an object surface, and the difference of the temperature of an object surface instantaneously. 連続するフレーム間において移動する領域の方向と速度の推定手法を説明する図である。It is a figure explaining an estimation method of direction and speed of a field which moves between consecutive frames. フレーム内移動距離と物体表面での気流の風量の関係を示した図である。It is the figure which showed the relationship between the movement distance in a flame | frame, and the air volume of the airflow in the object surface. 温度変化量を可視化した画像データと共に、気流ベクトルを矢印で示したときの様子を示した図である。It is the figure which showed a mode when an airflow vector was shown by the arrow with the image data which visualized temperature variation.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts that are the same as or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本実施形態にかかる気流可視化装置について説明する。本実施形態の気流可視化装置は、物体表面における気流の可視化を行うものであり、例えば、図1に示すシステム構成とされる。
First Embodiment
An air flow visualization device according to the present embodiment will be described. The air flow visualization device of the present embodiment is for visualizing the air flow on the surface of an object, and has, for example, a system configuration shown in FIG.
 図1に示すように、気流可視化装置は、カメラ1とコンピュータ2および表示器3を有した構成とされている。 As shown in FIG. 1, the air flow visualization device is configured to have a camera 1, a computer 2, and a display 3.
 カメラ1は、例えば赤外線カメラによって構成されている。カメラ1は、例えば1画素を最小単位として、各画素の画像を入力し、その映像信号、つまり測定データとなる画像データをコンピュータ2に対して伝える。 The camera 1 is configured of, for example, an infrared camera. The camera 1 inputs an image of each pixel with, for example, one pixel as a minimum unit, and transmits the video signal, that is, image data to be measurement data to the computer 2.
 カメラ1の仕様については任意であるが、ここでは、例えば図2Aに示す仕様の赤外線カメラを用いている。具体的には、検知器がInSb、画素数が640×512、画素ピッチが20μm、検知波長帯域は2.95-4.97μm、F値つまりカメラ1のレンズの大きさがf/2.3、使用温度が77K、フレームレートが60Hzの量子型冷却赤外線カメラを用いている。そして、4フレーム分の平均化処理を行うことで15Hzで表示している。他にもゼーベック効果を利用したサーモパイルや抵抗変化を利用したボロメータ式、焦電効果を利用した焦電式等のいわゆる非冷却型赤外線カメラを用いても問題はない。 Although the specification of the camera 1 is arbitrary, here, for example, an infrared camera of the specification shown in FIG. 2A is used. Specifically, the detector is InSb, the number of pixels is 640 × 512, the pixel pitch is 20 μm, the detection wavelength band is 2.95-4.97 μm, the F value, that is, the size of the lens of the camera 1 is f / 2.3. Using a quantum-type cooled infrared camera with an operating temperature of 77 K and a frame rate of 60 Hz. Then, by performing averaging processing for four frames, display is made at 15 Hz. Besides, there is no problem even if a so-called uncooled infrared camera such as a thermopile using the Seebeck effect, a bolometer type using resistance change, or a pyroelectric type using pyroelectric effect is used.
 また、微小な温度変動を検出するには、物体10の温度とカメラ1のNETD、つまりどの程度の温度差までを識別可能かが重要となる。本実施形態では、カメラ1として、物体10の周囲の環境温度とNETDとの関係は図2Bに示す関係となるものを用いている。 Further, in order to detect a minute temperature variation, it is important to be able to distinguish between the temperature of the object 10 and the NETD of the camera 1, that is, to what extent the temperature difference can be distinguished. In the present embodiment, as the camera 1, the relationship between the ambient temperature around the object 10 and the NETD has the relationship shown in FIG. 2B.
 コンピュータ2は、カメラ1から入力される画像データに基づいて画像処理を行って、気流を可視化したデータを作成する役割を果たす。また、コンピュータ2は、作成後の画像データから気流の風量および向きに相当する気流ベクトルの計算を行い、作成後の画像データや気流ベクトルの計算結果を表示器3に伝える役割を果たす。このコンピュータ2の具体的な動作については後述する。 The computer 2 performs image processing based on image data input from the camera 1 and plays a role of creating data in which the air flow is visualized. Further, the computer 2 performs calculation of an air flow vector corresponding to the air volume and direction of the air flow from the image data after creation, and plays a role of transmitting the calculation result of the image data and air flow vector after creation to the display 3. The specific operation of the computer 2 will be described later.
 表示器3は、画像表示部を構成するものであり、コンピュータ2から伝えられる画像データおよび気流ベクトルの計算結果を画像として表示する。これにより、物体表面の微小時間での温度変化量を画像として表すことができるとともに、その画像中に、気流ベクトルを示すことが可能となる。 The display 3 constitutes an image display unit, and displays the calculation result of the image data and the air flow vector transmitted from the computer 2 as an image. Thus, the amount of temperature change of the object surface in a minute time can be represented as an image, and an airflow vector can be shown in the image.
 以上のようにして、本実施形態にかかる気流可視化装置が構成されている。続いて、上記のように構成される気流可視化装置の動作について、図3に示すコンピュータ2が実行する処理のフローチャートを参照して説明する。 As described above, the air flow visualization device according to the present embodiment is configured. Subsequently, the operation of the air flow visualization device configured as described above will be described with reference to the flowchart of the process executed by the computer 2 shown in FIG. 3.
 気流可視化装置では、カメラ1にて物体10の表面10aの画像を撮影することで、表面10aの画像データを取得し、それをコンピュータ2に入力することによってコンピュータ2で各種処理を行わせ、その処理結果を表示器3に表示するという動作を行う。 In the airflow visualization device, the camera 1 captures an image of the surface 10a of the object 10 to acquire image data of the surface 10a, and inputs the data to the computer 2 to cause the computer 2 to perform various processes. An operation of displaying the processing result on the display 3 is performed.
 コンピュータ2は、画像データが入力されると、その画像データに基づいて、画像処理を行うことで気流を可視化したデータを作成する。画像データは、物体10の表面10aの放射光のデータである。表面10aの放射光は、表面10aの温度に応じて出力されていることから、画像データ、つまり放射光のデータを処理することで表面10aの気流を可視化することができる。また、コンピュータ2は、作成後の画像データのオプティカルフロー解析を行うことで気流ベクトルの計算を行う。そして、コンピュータ2は、作成後の画像データや気流ベクトルの計算結果を表示器3に伝える。 When the image data is input, the computer 2 performs image processing based on the image data to create data in which the air flow is visualized. The image data is data of radiation of the surface 10 a of the object 10. Since the radiation of the surface 10a is output according to the temperature of the surface 10a, the air flow of the surface 10a can be visualized by processing the image data, that is, the data of the radiation. Further, the computer 2 performs an optical flow analysis of the image data after creation to calculate an air flow vector. Then, the computer 2 transmits the calculated image data and the calculation result of the airflow vector to the display 3.
 具体的には、コンピュータ2は、図3のフローチャートに示す処理を実行することにより、上記動作を行っている。 Specifically, the computer 2 performs the above operation by executing the process shown in the flowchart of FIG.
 まず、図3のステップS100に示すように、コンピュータ2は、カメラ1からの画像データとして、赤外画像を入力する。次に、ステップS110に進み、入力された各画像のフレームにおける平均温度計算を行う。この平均温度計算では、複数フレームでの画素毎の温度の平均値を計算する。続いて、ステップS120において、可視化のために、ステップS110での平均温度計算の結果に基づいて、微小時間での基準温度に対する温度変化量ΔTの計算を行う。さらに、ステップS130において、微小時間での基準温度に対する温度変化量ΔTの計算結果に基づく可視化のための画像データの作成を行うと共に、ステップS140において、気流ベクトルの計算としてオプティカルフロー解析を行う。そして、ステップS150において、ステップS130で得た画像データとステップS140での気流ベクトルの計算結果を表示器3に伝えることで、表示器3による表示により、物体表面の微小時間での温度変化量や気流ベクトルの可視化を行う。 First, as shown in step S100 of FIG. 3, the computer 2 inputs an infrared image as image data from the camera 1. Next, the process proceeds to step S110 to calculate an average temperature in a frame of each input image. In this average temperature calculation, an average value of temperatures per pixel in a plurality of frames is calculated. Subsequently, in step S120, the temperature change amount ΔT with respect to the reference temperature in a minute time is calculated based on the result of the average temperature calculation in step S110 for visualization. Further, in step S130, image data for visualization is created based on the calculation result of the temperature change amount ΔT with respect to the reference temperature in a minute time, and in step S140, optical flow analysis is performed as calculation of the air flow vector. Then, in step S150, the image data obtained in step S130 and the calculation result of the air flow vector in step S140 are transmitted to the display 3 to display the amount of temperature change of the object surface in a minute time or Visualize the airflow vector.
 具体的には、ステップS110では、平均温度計算として、狭時間での計算とそれよりも時間的に長いワイド時間での計算とを行っている。狭時間での平均温度計算では、所定の短時間に相当する第1所定数分のフレーム、例えば4フレームでの画素毎の温度の移動平均値を計算している。この狭時間での平均温度計算により、微小時間での変動後の温度が計算される。また、ワイド時間での平均温度計算では、狭時間よりも長いワイド時間に相当する第2所定数、つまり第1所定数よりも多い数分のフレーム、例えば80フレームでの画素毎の温度の移動平均値を計算している。このワイド時間での平均温度計算により、基準温度が計算される。このようなワイド時間での平均温度計算を行うことで、外乱要因による温度変動を平均化し、微小温度変化を抽出しやすくする時間変動温度平均を求めることができる。 Specifically, in step S110, calculation with narrow time and calculation with wide time longer than that are performed as average temperature calculation. In the average temperature calculation in a narrow time, a moving average value of the temperature for each pixel in a first predetermined number of frames corresponding to a predetermined short time, for example, four frames is calculated. With this narrow time average temperature calculation, the temperature after fluctuation in minute time is calculated. In addition, in the average temperature calculation in the wide time, the movement of the temperature for each pixel in the second predetermined number corresponding to the wide time longer than the narrow time, that is, several minutes more than the first predetermined number, for example 80 frames The average value is calculated. The reference temperature is calculated by the average temperature calculation in the wide time. By performing the average temperature calculation in such a wide time, it is possible to average the temperature variation due to the disturbance factor and to obtain the time variation temperature average that facilitates the extraction of the minute temperature variation.
 物体表面の温度は、図4A~図4Cに示すようなメカニズムによって変化する。 The temperature of the object surface changes by a mechanism as shown in FIGS. 4A to 4C.
 まず、図4Aに示すように、物体10には、気流として層流11が物体10の表面10aに沿って流れている。そして、層流11と物体10との間の境界位置には、安定層となっている境界層12が形成されている。境界層12は、例えば物体10の表面10aに無数に点在する渦流12aによって敷き詰められた状態となっている。 First, as shown in FIG. 4A, a laminar flow 11 flows as a gas flow along the surface 10 a of the object 10 in the object 10. At the boundary between the laminar flow 11 and the object 10, a boundary layer 12 which is a stable layer is formed. The boundary layer 12 is, for example, in a state of being spread by the vortices 12 a interspersed innumerably on the surface 10 a of the object 10.
 しかしながら、層流11は、物体10の表面10aに沿って流れているものの、その流れの向きは必ずしも一定ではない。このため、図4A中に示したように、層流11から境界層12に向かう外乱13が発生し得る。この外乱13に基づく層流11の乱れにより、図4Bに示すように、安定層となっている境界層12の一部の渦流12aが剥がれる。そして、この渦流12aが剥がれた領域において、表面10aの温度が変化し、表面10aのうちの他の領域よりも温度が低下する。 However, although the laminar flow 11 flows along the surface 10 a of the object 10, the flow direction is not necessarily constant. For this reason, as shown in FIG. 4A, disturbance 13 from the laminar flow 11 toward the boundary layer 12 may occur. Due to the disturbance of the laminar flow 11 due to the disturbance 13, as shown in FIG. 4B, a part of the vortex 12a of the boundary layer 12 which is a stable layer is peeled off. Then, in the region where the vortex 12a is peeled off, the temperature of the surface 10a is changed, and the temperature is lower than that of the other region of the surface 10a.
 続いて、図4Cに示すように、再び境界層12が安定して、渦流12aによって敷き詰められた状態に戻る。 Subsequently, as shown in FIG. 4C, the boundary layer 12 is stabilized again and returns to the state in which it is spread by the vortex 12a.
 これらの状態における温度変化は、図5のように表される。すなわち、図4A~図4Cそれぞれのときを状態(1)~(3)とすると、図5に示すように、状態(1)のときは温度がほぼ一定、状態(2)のときは温度が低下、状態(3)のときは温度が再び状態(1)まで上昇する。このときの温度変化が生じた時間は例えば数secという微小時間であり、温度変化量はΔTで表すことができる。 The temperature change in these states is represented as shown in FIG. That is, when states (1) to (3) are shown in FIGS. 4A to 4C, respectively, as shown in FIG. 5, the temperature is substantially constant in the state (1) and in the state (2). When the temperature is low, the temperature rises again to the state (1). The time when the temperature change occurs at this time is, for example, a minute time of several seconds, and the temperature change amount can be represented by ΔT.
 このように、物体10の表面10aの微小時間での温度変化が気流の変化を示していることから、ステップS120において、温度変化量ΔTを求めることにより、気流の変化を求めている。 As described above, since the temperature change of the surface 10 a of the object 10 in a minute time indicates the change of the air flow, the change of the air flow is obtained by obtaining the temperature change amount ΔT in step S120.
 ここで、微小時間での温度変化量ΔTは、数secの間に生じた瞬間的な温度変化である。このため、基準温度、換言すれば温度変化前の温度から温度変化時の温度を差し引けば、温度変化量ΔTを計算することができる。例えば、物体表面の温度と温度変動の時間変化は、図6のようなグラフとして表されることから、図6中に示したように、瞬間的な物体表面の温度の差分を算出することができる。そして、基本的には、図中に示したように、瞬間的な物体表面の温度の差分における微小時間での変化が温度変化量ΔTとなる。しかしながら、カメラ1の画像中においてノイズ的な画像変化が発生した場合等にも温度変化として現れてしまうことがある。また、物体10の表面10aの温度が緩やかに変化することから、その緩やかな温度変化の影響については除外するのが好ましい。 Here, the temperature change amount ΔT in a minute time is an instantaneous temperature change that occurs in a few seconds. Therefore, the temperature change amount ΔT can be calculated by subtracting the temperature at the time of the temperature change from the reference temperature, that is, the temperature before the temperature change. For example, since the temperature of the object surface and the time change of the temperature fluctuation are represented as a graph as shown in FIG. 6, it is possible to calculate the difference of the temperature of the object surface instantaneously as shown in FIG. it can. And, basically, as shown in the figure, the change in instantaneous time in the difference of the temperature of the object surface becomes the temperature change amount ΔT. However, even when a noise-like image change occurs in the image of the camera 1, it may appear as a temperature change. In addition, since the temperature of the surface 10 a of the object 10 changes gradually, it is preferable to exclude the influence of the gradual temperature change.
 このため、ステップS110では、緩やかな温度変化の影響を除外できるように、基準温度、換言すれば温度変化前の温度として、ワイド時間での温度平均値を平均温度計算で求めている。また、温度変化時の温度として、ノイズ的な画像変化が発生した場合等の精度低下を抑制できるように、狭時間での温度平均値を平均温度計算で求めている。 For this reason, in step S110, a temperature average value in a wide time is obtained by the average temperature calculation as the reference temperature, in other words, the temperature before the temperature change, so that the influence of the gradual temperature change can be excluded. Further, as a temperature at the time of temperature change, a temperature average value in a narrow time is obtained by the average temperature calculation so as to suppress a decrease in accuracy when a noise-like image change occurs.
 具体的には、画素毎に、ワイド時間の平均温度計算として、80フレーム分の温度の移動平均値MovingAvg80{T(t)}を計算し、狭時間の平均温度計算として、4フレーム分の温度の移動平均値MovingAvg4{T(t)}を計算している。そして、ステップS120では、次式に示されるように、これらワイド時間の温度平均値と狭時間での温度平均値との差として、温度変化量ΔT(t)を求めている。なお、次式では、さらにMovingAvg80{T(t)}やMovingAvg4{T(t)}を簡素化して、それぞれM80(t)、M4(t)と表した式として用いている。 Specifically, for each pixel, moving average value MovingAvg80 {T (t)} of 80 frames 'worth of temperature is calculated as wide-time mean temperature calculation, and temperature of 4 frames' worth as narrow-time average temperature calculation. The moving average value of MovingAvg4 {T (t)} is calculated. Then, in step S120, the temperature change amount ΔT (t) is obtained as the difference between the temperature average value of the wide time and the temperature average value of the narrow time, as shown in the following equation. In the following equations, MovingAvg80 {T (t)} and MovingAvg4 {T (t)} are further simplified and used as equations expressed as M80 (t) and M4 (t), respectively.
 (数1)
 ΔT(t)=MovingAvg80{T(t)}-MovingAvg4{T(t)}
      =M80(t)-M4(t)
 このようにして、温度変化量ΔTを取得することができる。このため、ステップS130では、画素毎の平均温度計算の結果から得られる温度変化量ΔTの画像、つまり基準温度と温度変化時の温度との差分データを利用して温度変化量ΔTの時間変化データとなる画像を表す画像データを作成する。例えば、画素毎に、温度変化量ΔTの大きさに合わせて、グレースケールの明暗を変化させ、温度変化量ΔTが大きいほど明るい表示となるような画像データを作成する。
(1)
ΔT (t) = MovingAvg80 {T (t)}-MovingAvg4 {T (t)}
= M80 (t)-M4 (t)
Thus, the temperature change amount ΔT can be acquired. Therefore, in step S130, the time change data of the temperature change ΔT using the image of the temperature change ΔT obtained from the result of the average temperature calculation for each pixel, that is, the difference data of the reference temperature and the temperature at the time of the temperature change. Create image data representing the image. For example, the brightness of gray scale is changed in accordance with the temperature change amount ΔT for each pixel, and image data is created such that the larger the temperature change amount ΔT, the brighter the display.
 このとき、画像データの作成において、|ΔT(t)|≧X(ただし、Xは任意の値)となる領域については、画像をブラックもしくはホワイトとして表示するようにすると好ましい。これは、ノイズ的に絶対値が大きな値として得られた温度変化量ΔT(t)の除去を行うためであり、特異点の処理の手法である。これにより、画像データに示されるフレーム中のすべての領域において、|ΔT(t)|<Xの範囲での描写が可能になる。 At this time, it is preferable to display the image as black or white for an area where | ΔT (t) | ≧ X (where X is an arbitrary value) in the creation of the image data. This is to remove the temperature change amount ΔT (t) obtained as a large absolute value in terms of noise, and is a method of processing a singular point. This enables depiction in the range of | ΔT (t) | <X in all regions in the frame shown in the image data.
 また、上記のように、渦流12aが剥がれた領域は、気流の風量および向き、つまり気流のベクトルに対応して移動させられる。このため、時間変化データとして作成した画像データに基づく計算を行うことで、気流のベクトルを推定できる。具体的には、画素毎の平均温度計算の結果から得られる温度変化量ΔT(t)を入力し、そこからオプティカルフロー解析を行うことで渦流12aが剥がれた領域のフレーム間での移動距離を解析すれば、気流ベクトルを推定することができる。したがって、ステップS140では、気流ベクトルの計算として、オプティカルフロー解析を行っている。 Further, as described above, the region where the vortex 12a is peeled is moved according to the volume and direction of the airflow, that is, the vector of the airflow. For this reason, the vector of air flow can be estimated by performing calculation based on the image data created as time change data. Specifically, the temperature change amount ΔT (t) obtained from the average temperature calculation result for each pixel is input, and the optical flow analysis is performed from there to determine the movement distance between the frames of the region where the vortex 12a is peeled off. If analyzed, the airflow vector can be estimated. Therefore, in step S140, optical flow analysis is performed as calculation of the airflow vector.
 オプティカルフロー解析については、周知となっている様々な手法を適用することができ、例えばオプティカルフロー解析として一般的なLucas-Kanade法を用いることができる。Lucas-Kanade法は、例えば任意のフレームとその次のフレームにおいて、移動する領域の方向と速度を推定する手法である。例えば、図7に示すように、任意のフレームをフレーム1、その次のフレームをフレーム2とする。そして、フレーム1において温度変化があった領域R1の重心から、フレーム2において温度変化があった領域R2の重心までの移動距離、つまり移動画素数および向きをトラッキングする。このトラッキングした領域R1と領域R2の重心間の移動距離および向きが気流の風量および向きと対応するベクトルとなる。例えば、領域R1と領域R2の重心間の移動距離と物体表面での気流の風量は、図8のような関係として表され、移動距離が大きくなるほど風量が大きくなるという関係となる。 Various well-known techniques can be applied to optical flow analysis, and for example, a general Lucas-Kanade method can be used as optical flow analysis. The Lucas-Kanade method is a method of estimating the direction and velocity of a moving area, for example, in an arbitrary frame and the next frame. For example, as shown in FIG. 7, an arbitrary frame is frame 1 and the next frame is frame 2. Then, the moving distance from the center of gravity of the region R1 in which the temperature change occurs in the frame 1 to the center of gravity of the region R2 in which the temperature change occurs in the frame 2; The movement distance and direction between the centers of gravity of the tracked area R1 and the area R2 are vectors corresponding to the volume and direction of the air flow. For example, the moving distance between the centers of gravity of the region R1 and the region R2 and the air volume of the air flow on the object surface are expressed as a relationship as shown in FIG.
 実際の気流の速度については、1画素当たりの距離を掛け合わせることで演算できる。具体的には、カメラ1で撮像を行った場合、カメラ1から撮像対象までの距離に応じて1フレーム中における撮像対象の範囲が決まる。例えば、1フレーム中における撮影範囲、つまり1フレーム中に映り込んでいる画像の一方向における実際の距離がL1mmであるとする。その場合、図2A中に示したようにカメラ1の左右方向の画素数が640であった場合、L1/640[mm]が1画素当たりの撮影距離となる。このため、1フレーム毎における領域R1と領域R2の重心間の移動距離、つまり移動画素数に対してL1/640[mm]を掛けることにより、気流の速度を求めることができる。 The actual air flow velocity can be calculated by multiplying the distance per pixel. Specifically, when imaging is performed by the camera 1, the range of the imaging target in one frame is determined according to the distance from the camera 1 to the imaging target. For example, it is assumed that an actual imaging range in one frame, that is, an actual distance in one direction of an image reflected in one frame is L1 mm. In that case, as shown in FIG. 2A, when the number of pixels in the left-right direction of the camera 1 is 640, L1 / 640 [mm] is the shooting distance per pixel. For this reason, the velocity of the air flow can be obtained by multiplying L1 / 640 [mm] by the moving distance between the centers of gravity of the regions R1 and R2 in each frame, that is, the number of moving pixels.
 ただし、ここで説明している気流の速度は、フレームの撮像間隔、換言すれば撮像周期分の時間における速度である。フレームの撮像間隔は、フレームレートで表され、図2Aに示すように本実施形態ではフレームレートが15Hzとなっている。このため、気流の速度を秒速として表す場合、上記したL1/640[mm]に対してフレームレートを掛けることになる。 However, the velocity of the air flow described here is the velocity at the imaging interval of the frame, in other words, the velocity for the time of the imaging cycle. The imaging interval of a frame is represented by a frame rate, and as shown in FIG. 2A, in the present embodiment, the frame rate is 15 Hz. For this reason, when expressing the velocity of the air flow as a second velocity, the above-mentioned L1 / 640 [mm] is multiplied by the frame rate.
 したがって、気流の秒速は、L1が3×640、つまり、1フレーム毎における領域R1と領域R2の重心間の移動量を16画素/フレーム、フレームレートが15Hzである場合、次式のようにして求めることができる。 Therefore, if L1 is 3 × 640, that is, if the movement amount between the centers of gravity of region R1 and region R2 in each frame is 16 pixels / frame, and the frame rate is 15 Hz, It can be asked.
 (数2)
 気流の秒速=(1フレーム中における左右の幅mm/1フレーム画素数)×(1フレーム毎の重心間の移動量)×(フレームレート/s)
      =3mm/画素×16画素/フレーム×15フレーム/s
      =0.7
 このようにして、温度変化量ΔTの画像データが作成され、気流ベクトルの計算として、オプティカルフロー解析が行われると、ステップS150において、作成した画像データとオプティカルフロー解析の結果を表示器3に伝える。これにより、表示器3において、温度変化量ΔTの画像データと重ねて、もしくはそれとは別に気流ベクトルが表示されることで、これらの可視化が行われる。例えば、図9に示すように、温度変化量ΔTが明暗によって示されるとともに、気流ベクトルが矢印によって表示されることで可視化が行われる。
(2)
Second speed of air flow = (width in left / right mm in one frame / number of pixels in one frame) x (amount of movement between centers of gravity in each frame) x (frame rate / s)
= 3 mm / pixel x 16 pixels / frame x 15 frames / s
= 0.7
Thus, when image data of the temperature change amount ΔT is created and optical flow analysis is performed as calculation of the airflow vector, the created image data and the result of the optical flow analysis are transmitted to the display 3 in step S150. . As a result, the airflow vector is displayed on the display 3 so as to overlap with or separately from the image data of the temperature change amount ΔT, and these visualizations are performed. For example, as shown in FIG. 9, the temperature change amount ΔT is indicated by light and shade, and the airflow vector is displayed by an arrow to perform visualization.
 以上説明したように、本実施形態の気流可視化装置においては、物体10の表面10aの微小時間での温度変化量ΔTを算出するとともに、温度変化量ΔTを可視化している。このようにして、物体10の表面10aでの気流を可視化できることから、物体10を加熱する必要がないし、屋外などにおいても測定が可能になるため測定場所の制限もない。また、リアルタイムでの気流測定も可能となる。したがって、測定対象や測定場所が限定されず、かつ、リアルタイムでの気流測定を行うことが可能な気流可視化装置を提供することが可能となる。 As described above, in the airflow visualization device of the present embodiment, the temperature change amount ΔT in a minute time of the surface 10 a of the object 10 is calculated, and the temperature change amount ΔT is visualized. In this manner, since the air flow on the surface 10 a of the object 10 can be visualized, the object 10 does not have to be heated, and measurement can be performed outdoors or the like, and there is no restriction on the measurement location. It also enables real-time air flow measurement. Therefore, it is possible to provide an airflow visualization device capable of performing airflow measurement in real time without being limited in the measurement object or the measurement location.
 さらに、矢印表示などによって、気流ベクトルについても可視化することで、気流の風量や向きまで可視化でき、より的確に気流モニタリングを行うことが可能となる。 Furthermore, by visualizing the air flow vector by arrow display or the like, it is possible to visualize the air volume and direction of the air flow, and air flow monitoring can be performed more accurately.
 なお、このような気流可視化装置は、様々な測定対象に対する気流の可視化に適用することが可能であり、特に、従来では気流の可視化を行うことができない中距離、例えば10m~100mの距離での気流の可視化に利用できる。例えば、適用可能なアプリケーションとしては、建物の室内もしくは車室内における気流可視化によるエアコンの風量や風向の管理、屋外の気流モニタリング、気流や乱流などの可視化による空気抵抗最適化などが挙げられる。 Such an air flow visualization device can be applied to the visualization of air flow with respect to various measurement objects, and in particular, at a medium distance, for example 10 m to 100 m, in which the air flow can not be visualized conventionally. It can be used to visualize air flow. For example, applicable applications include air volume control and air flow management of an air conditioner by air flow visualization in a room or in a vehicle cabin, outdoor air flow monitoring, and air resistance optimization by air flow and turbulence visualization.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
The present disclosure has been described based on the above-described embodiment, but is not limited to the embodiment, and includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.
 例えば、上記実施形態では、気流の可視化手法として、微小時間における温度変化量ΔTの大きさに応じてグレースケールの明暗を変化させる手法を適用する場合について説明したが、他の手法を適用することもできる。例えば、温度変化量ΔTの大きに合わせて色彩を変化させるようにしても良い。 For example, although the above embodiment has described the case of applying the method of changing the light and shade of gray scale according to the magnitude of the temperature change amount ΔT in a minute time as the air flow visualization method, other methods are applied. You can also. For example, the color may be changed in accordance with the magnitude of the temperature change amount ΔT.
 また、カメラ1が入力する光の波長を制御することで、特定の気流を可視化することも可能となる。例えば、カメラ1にて赤外画像を入力できるようにしつつ、図1に示すようにフィルタ1aをカメラ1に設置し、画像データのフィルタリング処理を行う。これにより、特定の気流、例えば有毒ガスや二酸化炭素のみを特定して温度を測定することで気流の可視化を行うことも可能となる。有毒ガスの場合、ガスの種類によって抽出する光の波長が変わる。このため、それに応じてフィルタ1aが通過させる波長を設定することになるが、例えば、二酸化炭素の気流の可視化を行う場合、フィルタ1aを4.26μmおよびその付近の波長のみを通すものとすれば良い。 Further, by controlling the wavelength of light input by the camera 1, it is also possible to visualize a specific air flow. For example, while enabling the camera 1 to input an infrared image, the filter 1a is installed in the camera 1 as shown in FIG. 1, and the image data filtering process is performed. Thereby, it is also possible to visualize the airflow by specifying a specific airflow, for example, toxic gas or carbon dioxide, and measuring the temperature. In the case of toxic gas, the wavelength of light to be extracted varies depending on the type of gas. For this reason, although the wavelength which the filter 1a passes according to it will be set, for example, when performing airflow of carbon dioxide, if the filter 1a should be able to pass 4.26 micrometers and the wavelength of that vicinity good.
 また、上記実施形態では、気流の可視化として、温度変化量ΔTを可視化するのに加えて、気流ベクトルの可視化も同時に行う例を挙げて説明したが、少なくとも温度変化量ΔTの可視化を行うことで気流の可視化が行える。 Further, in the above embodiment, as visualization of the air flow, in addition to visualization of the temperature change amount ΔT, visualization of the air flow vector is also described simultaneously. However, at least the temperature change amount ΔT is visualized. You can visualize the air flow.
 また、上記実施形態では、画素毎に温度変化量ΔTや温度変化が生じた領域R1と領域R2との重心の移動画素数の算出などを行っている。しかしながら、これも一例を挙げたに過ぎない。例えば、各フレーム中における隣接する複数画素、例えば2×2の4画素分を1区画として、各区画毎に温度変化量ΔTや領域R1と領域R2との重心の移動区画数、つまり移動距離の算出を行うようにしてもよい。 Further, in the above embodiment, calculation of the number of moving pixels of the center of gravity between the region R1 and the region R2 in which the temperature change amount ΔT and the temperature change occur in each pixel is performed. However, this is just an example. For example, assuming a plurality of adjacent pixels in each frame, for example, 4 pixels of 2 × 2 as one section, the temperature change amount ΔT or the number of movement sections of the center of gravity of the area R1 and the area R2 The calculation may be performed.
 なお、上記実施形態では、コンピュータ2にて、狭時間やワイド時間での平均温度計算を行う平均値計算部、温度変化量ΔTの計算を行う変化量計算部、可視化の画像データ等の時間変化データを作成する測定データ作成部、気流ベクトルを計算するベクトル計算部を構成した。しかしながら、これは一例を挙げたに過ぎない。例えば、各構成部を異なるコンピュータによって構成してもよい。また、車両では、様々な電子制御装置(以下、ECUという)によって、車両に関する各種制御を行っているが、そのうちの1つもしくは複数のECUによって各構成部を構成してもよい。 In the above embodiment, the computer 2 calculates the average temperature in the narrow time or the wide time, calculates the temperature change ΔT, calculates the temperature change ΔT, and changes the image data in visualization etc. A measurement data creation unit that creates data and a vector calculation unit that calculates an airflow vector are configured. However, this is only an example. For example, each component may be configured by a different computer. In addition, in the vehicle, various controls related to the vehicle are performed by various electronic control devices (hereinafter referred to as ECUs), but each component may be configured by one or more of the ECUs.
 また、上記実施形態では、気流測定装置を含むものとして、気流の可視化まで行える気流可視化装置を例に挙げて説明したが、少なくとも物体表面の気流を測定することができる機能を有する気流測定装置であれば良い。 Further, in the above embodiment, the airflow visualization device that can perform visualization of the airflow has been described as an example including the airflow measurement device, but the airflow measurement device has a function capable of measuring the airflow on at least the surface of the object. It is good if it is.

Claims (9)

  1.  物体(10)の表面(10a)における気流の測定を行う気流測定装置であって、
     前記表面の放射光のデータとして、前記表面の測定データを所定のフレームレートで取得するカメラ(1)と、
     前記カメラが取得した前記測定データに基づいて、前記各フレームの画素毎もしくは複数画素毎の基準温度と温度変化時の温度との差分である温度変化量(ΔT)を計算する変化量計算部(2、S110、S120)と、
     前記変化量計算部で計算された前記温度変化量の大きさに応じて、前記基準温度と前記温度変化時の温度との差分データを利用して前記温度変化量の時間変化データを作成する測定データ作成部(2、S130)と、を有し、
     前記測定データ作成部が作成した前記時間変化データの計算を行う気流測定装置。
    An air flow measuring device for measuring an air flow on a surface (10a) of an object (10), comprising:
    A camera (1) for acquiring measurement data of the surface at a predetermined frame rate as data of radiation on the surface;
    A change amount calculation unit that calculates a temperature change amount (ΔT) that is a difference between a reference temperature for each pixel or each pixel of each frame and a temperature at the time of temperature change based on the measurement data acquired by the camera 2, S110, S120),
    According to the magnitude of the temperature change calculated by the change calculation unit, measurement is performed to create time change data of the temperature change using difference data between the reference temperature and the temperature at the time of the temperature change. A data creation unit (2, S130);
    The air flow measuring device which calculates the said time change data which the said measurement data creation part created.
  2.  前記フレームの第1所定数分における前記画素毎もしくは複数画素毎の温度の平均値となる狭時間での温度の平均値を計算するとともに、前記フレームの前記第1所定数よりも多い第2所定数分における前記画素毎もしくは複数画素毎の温度の平均値となるワイド時間での温度の平均値を計算する平均値計算部(2、S110)を有し、
     前記変化量計算部は、前記平均値計算部で計算した前記ワイド時間での温度の平均値から前記狭時間での温度の平均値を差し引いた値を前記温度変化量とする請求項1に記載の気流測定装置。
    Calculating an average value of temperatures in a narrow time which is an average value of temperatures of the pixels or plural pixels in the first predetermined number of the frames, and calculating a second predetermined number more than the first predetermined number of the frames And an average value calculation unit (2, S110) for calculating an average value of temperatures in wide time which is an average value of temperatures of the pixels or a plurality of pixels in a few minutes.
    The change amount calculation unit according to claim 1, wherein a value obtained by subtracting the average value of the temperatures in the narrow time period from the average value of the temperatures in the wide time period calculated by the average value calculation unit is the temperature change amount. Air flow measuring device.
  3.  前記カメラは、波長が2~14μmの範囲の光を検知する請求項1または2に記載の気流測定装置。 The air flow measuring device according to claim 1 or 2, wherein the camera detects light having a wavelength of 2 to 14 μm.
  4.  前記カメラは、特定波長の光のみを通すフィルタ(1a)を有している請求項1ないし3のいずれか1つに記載の気流測定装置。 The air flow measuring device according to any one of claims 1 to 3, wherein the camera includes a filter (1a) that transmits only light of a specific wavelength.
  5.  前記測定データ作成部が作成した前記時間変化データに基づき、前記表面のうち前記温度変化があった領域のオプティカルフロー解析を行うことで、前記気流の風量および向きと対応する気流ベクトルを計算するベクトル計算部(2、S140)を有する請求項1ないし4のいずれか1つに記載の気流測定装置。 A vector for calculating an air flow vector corresponding to the air volume and direction of the air flow by performing optical flow analysis of a region where the temperature change occurs in the surface based on the time change data generated by the measurement data generation unit The air flow measuring device according to any one of claims 1 to 4, further comprising a calculation unit (2, S140).
  6.  請求項1ないし4のいずれか1つに記載の気流測定装置を含み、
     前記測定データを画像として表示する表示部(3)を備え、
     前記表示部にて、前記測定データの画像を表示することで前記気流の可視化を行う気流可視化装置。
    A gas flow measuring device according to any one of claims 1 to 4, including:
    A display unit (3) for displaying the measurement data as an image;
    An airflow visualization device that visualizes the airflow by displaying an image of the measurement data on the display unit.
  7.  前記測定データ作成部が作成した前記時間変化データに基づき、前記表面のうち前記温度変化があった領域のオプティカルフロー解析を行うことで、前記気流の風量および向きと対応する気流ベクトルを計算するベクトル計算部(2、S140)を有し、
     前記表示部は、前記測定データ作成部が作成した前記時間変化データの表示に加えて、前記ベクトル計算部が計算した前記気流ベクトルを表示する請求項6に記載の気流可視化装置。
    A vector for calculating an air flow vector corresponding to the air volume and direction of the air flow by performing optical flow analysis of a region where the temperature change occurs in the surface based on the time change data generated by the measurement data generation unit Has a calculation unit (2, S140),
    The air flow visualization device according to claim 6, wherein the display unit displays the air flow vector calculated by the vector calculation unit in addition to the display of the time change data generated by the measurement data generation unit.
  8.  前記ベクトル計算部は、前記各フレームの間における前記領域の移動距離および向きをトラッキングすることにより、前記気流ベクトルを計算する請求項7に記載の気流可視化装置。 The air flow visualization device according to claim 7, wherein the vector calculation unit calculates the air flow vector by tracking the movement distance and the direction of the area between the respective frames.
  9.  前記各フレームにおける隣接する複数画素を1区画として、該区画ごとに前記領域の移動距離および向きのトラッキングを行って、前記気流ベクトルを計算する請求項8に記載の気流可視化装置。 The air flow visualization device according to claim 8, wherein the air flow vector is calculated by tracking the movement distance and the direction of the area for each section, with a plurality of adjacent pixels in each frame as one section.
PCT/JP2018/037079 2017-10-03 2018-10-03 Airflow measuring device WO2019069994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-193645 2017-10-03
JP2017193645A JP7006104B2 (en) 2017-10-03 2017-10-03 Airflow measuring device

Publications (1)

Publication Number Publication Date
WO2019069994A1 true WO2019069994A1 (en) 2019-04-11

Family

ID=65995218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037079 WO2019069994A1 (en) 2017-10-03 2018-10-03 Airflow measuring device

Country Status (2)

Country Link
JP (1) JP7006104B2 (en)
WO (1) WO2019069994A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111387957A (en) * 2020-03-13 2020-07-10 智方达(天津)科技有限公司 Non-contact type body temperature and respiration rate combined detection method
CN112241970A (en) * 2020-09-15 2021-01-19 西安建筑科技大学 Schlieren imaging-based gas-liquid two-phase gas-liquid flow field velocity measuring method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933613B2 (en) * 2017-08-10 2021-09-08 Jfeテクノリサーチ株式会社 Temperature distribution measuring device and temperature distribution measuring method
JP7065060B2 (en) 2018-08-20 2022-05-11 Jfeテクノリサーチ株式会社 Fluid flow measuring device and gas detecting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243571A (en) * 1984-05-18 1985-12-03 Nippon Furnace Kogyo Kaisha Ltd Measurement of speed in direction perpendicular to flow sectional plane
JPH06294808A (en) * 1993-04-08 1994-10-21 Babcock Hitachi Kk Method and device for moving body detection
JPH1183643A (en) * 1997-09-03 1999-03-26 Ricoh Co Ltd Method and apparatus for measuring heat flow direction and temperature
JP2008064533A (en) * 2006-09-06 2008-03-21 Mimi:Kk Air current measuring device
US20110268149A1 (en) * 2010-05-03 2011-11-03 General Electric Company System and method for compressor inlet temperature measurement
JP2015500476A (en) * 2011-12-10 2015-01-05 ディーシージー システムズ、 インコーポライテッドDcg Systems Inc. Sample inspection method by heat flow thermography
US20160247375A1 (en) * 2015-02-19 2016-08-25 Russell P. Mills Fire Detection Apparatus Utilizing A Camera

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474992B (en) 2014-04-29 2015-03-01 Univ Nat Central Method for preparing perovskite thin film and solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243571A (en) * 1984-05-18 1985-12-03 Nippon Furnace Kogyo Kaisha Ltd Measurement of speed in direction perpendicular to flow sectional plane
JPH06294808A (en) * 1993-04-08 1994-10-21 Babcock Hitachi Kk Method and device for moving body detection
JPH1183643A (en) * 1997-09-03 1999-03-26 Ricoh Co Ltd Method and apparatus for measuring heat flow direction and temperature
JP2008064533A (en) * 2006-09-06 2008-03-21 Mimi:Kk Air current measuring device
US20110268149A1 (en) * 2010-05-03 2011-11-03 General Electric Company System and method for compressor inlet temperature measurement
JP2015500476A (en) * 2011-12-10 2015-01-05 ディーシージー システムズ、 インコーポライテッドDcg Systems Inc. Sample inspection method by heat flow thermography
US20160247375A1 (en) * 2015-02-19 2016-08-25 Russell P. Mills Fire Detection Apparatus Utilizing A Camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111387957A (en) * 2020-03-13 2020-07-10 智方达(天津)科技有限公司 Non-contact type body temperature and respiration rate combined detection method
CN112241970A (en) * 2020-09-15 2021-01-19 西安建筑科技大学 Schlieren imaging-based gas-liquid two-phase gas-liquid flow field velocity measuring method and system
CN112241970B (en) * 2020-09-15 2022-06-24 西安建筑科技大学 Schlieren imaging-based gas-liquid two-phase gas-liquid flow field velocity measuring method and system

Also Published As

Publication number Publication date
JP7006104B2 (en) 2022-01-24
JP2019066384A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2019069994A1 (en) Airflow measuring device
US8374438B1 (en) Visual template-based thermal inspection system
TWI591384B (en) Target tracking method and device thereof, and 3d display method and device thereof
CN107532999B (en) Passive infrared gas imaging based on wavelength bands
JP6468439B2 (en) Gas detection image processing apparatus, gas detection image processing method, and gas detection image processing program
WO2019138873A1 (en) Gas detection-use image processing device, and gas detection-use image processing method
EP2243012B1 (en) Method and apparatus for measuring the temperature of a sheet material
CN107864375B (en) Imaging device with alignment analysis
EP3716205B1 (en) An apparatus for hot spot sensing
EP3501990B1 (en) Quantitative blockage analysis of a grid in icing conditions
Gleichauf et al. Thermographic flow visualization by means of non-negative matrix factorization
US9702555B2 (en) Equipment and method for furnace visualization using virtual interactive windows
Mier et al. Color gradient background-oriented schlieren imaging
Rangel et al. On scene flow computation of gas structures with optical gas imaging cameras
Whitenton An introduction for machining researchers to measurement uncertainty sources in thermal images of metal cutting
WO2015195055A1 (en) Apparatus and method for non-contact temperature measurement with a visible light camera
CN116608955A (en) Online detection method and system for temperature field of molten metal fluid under dust interference
Rangel et al. Characterization and calibration of a stereo gas camera system for obtaining spatial information of gas structures
CN109792489B (en) Method for noise optimization of a camera, in particular a hand-held thermal imaging camera
KR101649181B1 (en) Flight information estimator and estimation method of the flying objects
JP6750672B2 (en) Gas observation method
Mommert et al. Measurement of the turbulent heat fluxes in mixed convection using combined stereoscopic PIV and PIT
CN117387778B (en) Temperature measurement method and device, electronic equipment and storage medium
JPH08325614A (en) Method for measuring gas flow rate in blast furnace
Soleimanijavid et al. Smart Low-cost Thermal Imaging Acquisition Towards Personal Comfort Prediction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864401

Country of ref document: EP

Kind code of ref document: A1