WO2019069975A1 - 作業機械制御装置および制御方法 - Google Patents
作業機械制御装置および制御方法 Download PDFInfo
- Publication number
- WO2019069975A1 WO2019069975A1 PCT/JP2018/037019 JP2018037019W WO2019069975A1 WO 2019069975 A1 WO2019069975 A1 WO 2019069975A1 JP 2018037019 W JP2018037019 W JP 2018037019W WO 2019069975 A1 WO2019069975 A1 WO 2019069975A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transport vehicle
- bucket
- operation signal
- information
- loading
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2041—Automatic repositioning of implements, i.e. memorising determined positions of the implement
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
- E02F3/439—Automatic repositioning of the implement, e.g. automatic dumping, auto-return
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2033—Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/205—Remotely operated machines, e.g. unmanned vehicles
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/30—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
- E02F3/308—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working outwardly
Definitions
- the present invention relates to a work machine control apparatus and control method for controlling a work machine at a work site where a work machine and an automated guided vehicle are deployed.
- Patent Document 1 and Patent Document 2 disclose a technology for automatically operating a hydraulic shovel by designating a digging position and an unloading position.
- An aspect of the present invention aims to provide a work machine control device and control method capable of automatically specifying the earth removal position for control of a work machine.
- a work machine control apparatus controls a work machine including a swing body swinging around a swing center and a work machine attached to the swing body and including a bucket. And a loading place within the reach of the bucket from the transporter control device that controls the traveling of the AGV based on position information of the AGV, azimuth information, and a predetermined traveling route. Identifying the position of earth unloading for loading a load on the unmanned carrier based on the carrier information acquisition unit for acquiring position information and orientation information of the unmanned carrier existing in the vehicle and the position information and the orientation information And a discharge position specifying unit.
- the work machine control device can automatically specify the earth removal position for control of the work machine.
- FIG. 1 is a schematic view showing the configuration of the remote control system according to the first embodiment.
- the work system 1 includes a work machine 100, one or more transport vehicles 200 which are unmanned transport vehicles, a management device 300, and a remote operation room 500.
- the work machine 100 and the transport vehicle 200 operate at a work site (eg, a mine, a quarry).
- Remote operation room 500 is provided at a point away from the work site (for example, in the city, in the work site).
- the transport vehicle 200 runs unmanned based on the control information received from the management device 300.
- the transport vehicle 200 and the management device 300 are connected by communication via the access point 360.
- the management device 300 acquires the position and orientation of the transport vehicle 200 from the transport vehicle 200, and generates course information used for traveling the transport vehicle 200 based on these.
- the management device 300 transmits the course information to the transport vehicle 200.
- the transporter vehicle 200 runs unmanned based on the received course information. That is, the work system 1 includes an unmanned transfer system including the transport vehicle 200 and the management device 300.
- the access point 360 is used for communication of an unmanned carrier system.
- the management device 300 receives an instruction signal of the transport vehicle 200 from the work machine 100 and the remote operation room 500, and transmits the signal to the transport vehicle 200.
- the work machine 100 and the management device 300 are connected by communication via the access point 360. Further, the remote operation room 500 and the management device 300 are connected via a network.
- Examples of instruction signals of the transport vehicle 200 received from the work machine 100 and the remote driver's cab 500 include an entry instruction signal and a start instruction signal.
- the entry instruction signal is a signal instructing the delivery vehicle 200 to enter from the standby point P1 to the loading point P3.
- the start instruction signal is a signal for starting the loading point P3 when the loading of the transport vehicle 200 is completed and instructing the leaving of the loading station A1.
- Work machine 100 is remotely operated based on an operation signal transmitted from remote operator's cab 500.
- Work machine 100 and remote driver's cab 500 are connected by communication via access point 350.
- the first operation device 530 of the remote operation room 500 receives an operation of the work machine 100 according to the operation of the operator, and the control device 540 transmits an operation signal to the management device 300.
- Work machine 100 operates based on an operation signal received from remote operator's cab 500. That is, the work system 1 includes a remote operation system including the work machine 100 and the remote operation room 500.
- the access point 350 is used for communication of the remote control system.
- the transport vehicle 200 according to the first embodiment is an unmanned dump truck that travels unmanned on a set travel route.
- the transport vehicle 200 according to another embodiment may be a transport vehicle other than a dump truck.
- the transport vehicle 200 includes a position and orientation detector 210 and a controller 220.
- the position and orientation detector 210 detects the position and orientation of the transport vehicle 200.
- the position and orientation detector 210 includes two receivers that receive positioning signals from satellites that constitute a Global Navigation Satellite System (GNSS).
- GNSS Global Navigation Satellite System
- An example of the GNSS is GPS (Global Positioning System).
- the two receivers are respectively installed at different positions of the carrier vehicle 200.
- the position and orientation detector 210 detects the position of the representative point of the transporter vehicle 200 (the origin of the vehicle coordinate system, for example, the center position of the rear axle of the transporter vehicle 200) in the site coordinate system based on the positioning signal received by the receiver. To detect.
- the position and orientation detector 210 calculates the heading of the transport vehicle 200 as the relationship between the installation position of one receiver and the installation position of the other receiver, using each positioning signal received by the two receivers.
- the conveyance vehicle 200 may be provided with an inertial measurement device (IMU: Inertial Measurement Unit), and may calculate direction based on the measurement result of an inertial measurement device. In this case, the drift of the inertial measurement device may be corrected based on the traveling trajectory of the transport vehicle 200.
- IMU Inertial Measurement Unit
- the transport vehicle 200 may be provided with one receiver.
- the controller 220 transmits the position and orientation detected by the position and orientation detector 210 to the management device 300.
- the control device 220 receives course information and an instruction signal from the management device 300.
- the control device 220 causes the transport vehicle 200 to travel or raises and lowers the vessel of the transport vehicle 200 based on the received course information and the instruction signal.
- FIG. 2 is an external view of the working machine according to the first embodiment.
- the work machine 100 according to the first embodiment is a hydraulic shovel that is a type of loading machine.
- the working machine 100 according to the other embodiment may be a working machine other than a hydraulic shovel.
- the work machine 100 shown in FIG. 2 is a face shovel, it may be a backhoe shovel or a rope shovel.
- the work vehicle 100 includes a traveling body 130, a swinging body 120 supported by the traveling body 130, and a work implement 110 that is hydraulically operated and supported by the swinging body 120.
- the pivoting body 120 is pivotably supported about a pivoting center.
- the work implement 110 includes a boom 111, an arm 112, a bucket 113, a boom cylinder 114, an arm cylinder 115, a bucket cylinder 116, a boom angle sensor 117, an arm angle sensor 118, and a bucket angle sensor 119.
- the proximal end of the boom 111 is attached to the rotating body 120 via a pin.
- the arm 112 couples the boom 111 and the bucket 113.
- the proximal end of the arm 112 is attached to the distal end of the boom 111 via a pin.
- the bucket 113 includes a blade for excavating earth and sand and a container for accommodating the excavated earth and sand.
- the proximal end of the bucket 113 is attached to the distal end of the arm 112 via a pin.
- the boom cylinder 114 is a hydraulic cylinder for operating the boom 111.
- the proximal end of the boom cylinder 114 is attached to the rotating body 120.
- the tip of the boom cylinder 114 is attached to the boom 111.
- Arm cylinder 115 is a hydraulic cylinder for driving arm 112.
- the proximal end of the arm cylinder 115 is attached to the boom 111.
- the tip of the arm cylinder 115 is attached to the arm 112.
- the bucket cylinder 116 is a hydraulic cylinder for driving the bucket 113.
- the proximal end of the bucket cylinder 116 is attached to the boom 111.
- the tip of the bucket cylinder 116 is attached to the bucket 113.
- the boom angle sensor 117 is attached to the boom 111 and detects the tilt angle of the boom 111.
- the arm angle sensor 118 is attached to the arm 112 and detects an inclination angle of the arm 112.
- the bucket angle sensor 119 is attached to the bucket 113 and detects an inclination angle of the bucket 113.
- the boom angle sensor 117, the arm angle sensor 118, and the bucket angle sensor 119 according to the first embodiment detect an inclination angle with respect to the ground plane.
- the angle sensor which concerns on other embodiment is not restricted to this, You may detect the inclination angle with respect to another reference plane.
- the angle sensor may detect the relative rotation angle by a potentiometer provided at the base end of the boom 111, the arm 112 and the bucket 113, or the boom cylinder 114, the arm cylinder 115 and The inclination angle may be detected by measuring the cylinder length of the bucket cylinder 116 and converting the cylinder length into an angle.
- the revolving structure 120 is provided with a cab 121.
- An imaging device 122 is provided in the upper part of the cab 121.
- the imaging device 122 is installed forward and upward in the cab 121.
- the imaging device 122 captures an image of the front of the cab 121 through the windshield on the front of the cab 121.
- Examples of the imaging device 122 include, for example, an imaging device using a charge coupled device (CCD) sensor and a complementary metal oxide semiconductor (CMOS) sensor.
- the imaging device 122 may not necessarily be provided in the operation room 121, and the imaging device 122 may be provided at a position at which at least the work object and the work machine 110 can be imaged. Just do it.
- the work machine 100 includes an imaging device 122, a position / orientation calculator 123, an inclination measuring device 124, a hydraulic device 125, and a control device 126.
- the position / orientation calculator 123 calculates the position of the rotating body 120 and the direction in which the rotating body 120 faces.
- the position / orientation calculator 123 includes two receivers that receive positioning signals from the satellites that constitute the GNSS. The two receivers are respectively installed at different positions of the swing body 120.
- the position / orientation calculator 123 detects the position of the representative point (the origin of the shovel coordinate system) of the revolving unit 120 in the site coordinate system based on the positioning signal received by the receiver.
- the position / orientation calculator 123 calculates the direction in which the revolving unit 120 faces, as the relationship between the installation position of one receiver and the installation position of the other receiver, using the positioning signals received by the two receivers.
- the inclination measuring device 124 measures the acceleration and angular velocity of the rotating body 120, and detects the posture (for example, roll angle, pitch angle, yaw angle) of the rotating body 120 based on the measurement result.
- the inclination measuring instrument 124 is installed, for example, on the lower surface of the revolving unit 120.
- an inertial measurement unit (IMU) may be used as the tilt measurement device 124.
- the hydraulic device 125 includes a hydraulic fluid tank, a hydraulic pump, and a flow control valve.
- the hydraulic pump is driven by the power of an engine (not shown) and supplies hydraulic fluid to the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 through the flow control valve.
- the flow control valve has a rod-like spool, and adjusts the flow rate of the hydraulic oil supplied to the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 depending on the position of the spool.
- the spool is driven based on a control command received from the controller 126. That is, the amount of hydraulic fluid supplied to the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 is controlled by the controller 126.
- the control device 126 sets the image captured by the imaging device 122, the swing speed, position and orientation of the swing body 120, the inclination angles of the boom 111, the arm 112 and the bucket 113, the traveling speed of the traveling body 130, and the attitude of the swing body 120. , To the remote control room 500.
- the image, the turning speed, position and orientation of the turning body 120, the inclination angles of the boom 111, the arm 112 and the bucket 113, the traveling speed of the traveling body 130, and the posture of the turning body 120 are also referred to as vehicle information.
- the vehicle information which concerns on other embodiment is not restricted to this.
- the vehicle information may not include any of the turning speed, the position, the heading, the inclination angle, the traveling speed, and the attitude, and may include values detected by other sensors. And may include a value calculated from the detected value.
- the controller 126 receives an operation signal from the remote driver's cab 500.
- the control device 126 drives the work implement 110, the swing body 120, or the traveling body 130 based on the received operation signal.
- FIG. 3 is a schematic block diagram showing the configuration of the management device according to the first embodiment.
- the management device 300 manages the traveling of the transport vehicle 200.
- the management device 300 is a computer including a processor 3100, a main memory 3200, a storage 3300, and an interface 3400.
- the storage 3300 stores the program p3.
- the processor 3100 reads the program p3 from the storage 3300, develops it in the main memory 3200, and executes processing according to the program p3.
- the management device 300 is connected to the network via an interface 3400.
- An access point 360 is connected to the interface 3400.
- Management device 300 is wirelessly connected to work machine 100 and transport vehicle 200 via access point 360.
- the storage 3300 includes storage areas as a travel route storage unit 3301 and a position and orientation storage unit 3302. Examples of the storage 3300 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical magnetic disk, a compact disc read only memory (CD-ROM), and a digital versatile disc read only memory (DVD-ROM). , Semiconductor memory and the like.
- the storage 3300 may be internal media directly connected to the common communication line of the management apparatus 300, or may be external media connected to the management apparatus 300 via the interface 3400.
- the storage 3300 is a non-temporary tangible storage medium.
- the travel route storage unit 3301 stores the travel route R for each transport vehicle 200.
- FIG. 4 is a diagram illustrating an example of a travel route.
- the traveling route R is a predetermined connection route R1 connecting two areas A (for example, the loading site A1 and the unloading site A2), an approach route R2 which is a route in the area A, an approach route R3 and an exit route It has R4.
- the entry route R2 is a route connecting the waiting point P1 which is one end of the connection route R1 in the area A and a predetermined switching point P2.
- the approach route R3 is a route connecting the turning point P2 in the area A and the loading point P3 or the unloading point P4.
- the exit route R4 is a route connecting the loading point P3 or the unloading point P4 in the area A and the exit point P5 which is the other end of the connection route R1.
- the loading point P3 is a point set by the operation of the operator of the work machine 100.
- the turning point P2 is a point set by the management device 300 according to the position of the loading point P3.
- the position and orientation storage unit 3302 stores position information and orientation information of each transport vehicle 200.
- the processor 3100 includes a position and orientation collection unit 3101 and a traveling course generation unit 3102 by executing the program p3.
- the position and orientation collection unit 3101 receives position information and orientation information of the transport vehicle 200 from the transport vehicle 200 via the access point 360.
- the position and orientation collection unit 3101 causes the position and orientation storage unit 3302 to store the received position information and orientation information.
- the traveling course generation unit 3102 includes information of an area for permitting the movement of the transport vehicle 200 based on the traveling route stored by the traveling route storage unit 3301 and the position information and orientation information stored by the position and orientation storage unit 3302. Generate course information.
- the generated course information is transmitted to the transport vehicle 200.
- the course information includes position information of points set at predetermined intervals on the travel route, target speed information at that point, and travel permission area information that does not overlap with the travel permission areas of the other transport vehicles 200.
- the traveling course generation unit 3102 does not include the approach route R2 and the approach route R3 in the area indicated by the course information until the approach instruction signal is received from the remote driver's cab 500.
- the transport vehicle 200 stands by at the standby point P1 until it receives the entry instruction signal.
- the traveling course generation unit 3102 receives the entry instruction signal, the traveling course generation unit 3102 generates course information that includes the entry route R2 and the approach route R3 but does not include the exit route R4.
- the transport vehicle 200 starts from the standby point P1, travels to the loading point P3, and stops at the loading point P3.
- the traveling course generation unit 3102 When receiving the start instruction signal, the traveling course generation unit 3102 generates course information including the exit route R4.
- the conveyance vehicle 200 waits until the conveyance vehicle 200 receives an approach instruction
- the position where the transport vehicle 200 stands by may be the turning point P2 or a halfway point in the approach route R2 or the approach route R3.
- the remote driver's cab 500 includes a driver's seat 510, a display 520, a first operating device 530, a second operating device 531, and a controller 540.
- the display device 520 is disposed in front of the driver's seat 510.
- the display device 520 is located in front of the operator when the operator sits in the driver's seat 510.
- the display device 520 may be configured by a plurality of displays arranged side by side as shown in FIG. 1 or may be configured by one large display.
- the display device 520 may project an image on a curved surface or a spherical surface by a projector or the like.
- the first operating device 530 is an operating device for a remote operation system.
- the first operating device 530 controls the operation signal of the boom cylinder 114, the operation signal of the arm cylinder 115, the operation signal of the bucket cylinder 116, the turning operation signal to the left and right of the revolving unit 120, and the traveling unit 130 according to the operator's operation.
- a travel operation signal for forward and reverse travel is generated and output to control device 540.
- the first operating device 530 is configured of, for example, a lever, a knob switch, and a pedal.
- the second operation device 531 transmits the entry instruction signal to the transport vehicle 200, the start instruction signal, the stop instruction signal, and the stop release signal to the management device 300 by the operation of the operator.
- the second operating device 531 is configured of, for example, a touch panel.
- the first operating device 530 and the second operating device 531 are disposed in the vicinity of the driver's seat 510.
- the first operating device 530 and the second operating device 531 are located within the operable range of the operator when the operator sits on the driver's seat 510.
- Control device 540 causes display device 520 to display an image received from work machine 100, and transmits an operation signal representing an operation of first operation device 530 to work machine 100.
- FIG. 5 is a schematic block diagram showing the configuration of the control device for the remote driver's cab according to the first embodiment.
- the control device 540 is a computer including a processor 5100, a main memory 5200, a storage 5300, and an interface 5400.
- the storage 5300 stores the program p5.
- the processor 5100 reads the program p5 from the storage 5300, develops it in the main memory 5200, and executes processing according to the program p5.
- Control device 540 is connected to the network via interface 5400.
- Examples of the storage 5300 include an HDD, an SSD, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like.
- the storage 5300 may be internal media directly connected to the common communication line of the control device 540, or may be external media connected to the control device 540 via the interface 5400.
- the storage 5300 is a non-temporary, tangible storage medium.
- the processor 5100 executes the program p5 to load a loaded vehicle information acquisition unit 5101, a display control unit 5102, a transport vehicle information acquisition unit 5103, an operation signal input unit 5104, a bucket position specification unit 5105, an earth removal position specification unit 5106, and avoidance
- a position specifying unit 5107, an operation signal generation unit 5109, and an operation signal output unit 5110 are provided.
- the loaded vehicle information acquisition unit 5101 acquires vehicle information from the work machine 100.
- Display control unit 5102 generates a display signal for displaying an image included in the vehicle information received by loaded vehicle information acquisition unit 5101, and outputs the display signal to display device 520.
- the transport vehicle information acquisition unit 5103 acquires position information and orientation information of each transport vehicle 200 from the management device 300.
- Operation signal input unit 5104 receives an input of an operation signal from first operation device 530.
- the operation signals include an operation signal of boom 111, an operation signal of arm 112, an operation signal of bucket 113, a turning operation signal of rotating body 120, a traveling operation signal of traveling body 130, and a discharge instruction signal of work machine 100.
- Be The discharge instruction signal is a signal for instructing automatic discharge control for moving the bucket 113 to the discharge position to perform the discharge.
- the bucket position specification unit 5105 determines the position P of the tip of the arm 112 and the height from the tip of the arm 112 to the lowest point of the bucket 113 in the shovel coordinate system. Identify Hb.
- the lowest point of the bucket 113 refers to the point of the outer shape of the bucket 113 that has the shortest distance from the ground surface.
- the bucket position specifying unit 5105 specifies the position P of the tip of the arm 112 when receiving the input of the discharge instruction signal as the digging completion position P10.
- FIG. 6 is a diagram showing an example of a path of a bucket according to the first embodiment.
- the bucket position specifying unit 5105 determines the length of the boom 111 based on the tilt angle of the boom 111 and the known length of the boom 111 (the distance from the pin at the base end to the pin at the tip). Find the vertical and horizontal components of. Similarly, the bucket position specifying unit 5105 obtains the vertical component and the horizontal component of the length of the arm 112. Bucket position specifying unit 5105 is separated from the position of work machine 100 by the sum of the vertical components of the lengths of boom 111 and arm 112 and the sum of the horizontal components in the direction specified from the orientation and posture of work machine 100. The position is specified as the position P of the tip of the arm 112 (the position P of the pin at the tip of the arm 112 shown in FIG. 2).
- the bucket position specifying unit 5105 specifies the lowermost point of the bucket 113 in the vertical direction based on the inclination angle of the bucket 113 and the shape of the known bucket, and the height from the tip of the arm 112 to the lowermost point Identify Hb.
- the discharge position specifying unit 5106 is a discharge position based on the position information and the azimuth information of the transport vehicle 200 acquired by the transport vehicle information acquisition unit 5103. Identify P13. That is, the discharge position specifying unit 5106 specifies the discharge position P13 based on the position information and the azimuth information when the transport vehicle 200 stops at the loading point P3.
- the earth unloading position specifying unit 5106 changes the reference position P21 indicated by the position information of the transport vehicle 200 based on the position, orientation and attitude of the swing body 120 acquired by the loaded vehicle information acquiring unit 5101 from the site coordinate system to the shovel coordinate system.
- the distance D1 is a known distance between the reference position P21 and the discharge point P22 on the vessel.
- the discharge position specifying unit 5106 is a flat surface of the discharge position P13 at a position separated from the specified position P22 by the distance D2 from the center of the bucket 113 to the tip of the arm 112 in the direction of the swing body 120 of the work machine 100. Identify as a location.
- the discharge position specifying unit 5106 sets the height Ht of the transport vehicle 200 to the height Hb from the tip of the arm 112 specified by the bucket position specifying unit 5105 to the lowermost point and the height of the control margin of the bucket 113. By adding up, the height of the earth unloading position P13 is specified.
- the discharge position specifying unit 5106 may specify the discharge position P13 without adding the height for the control margin. That is, the unloading position specifying unit 5106 may specify the height of the unloading position P13 by adding the height Hb to the height Ht.
- the avoidance position specifying unit 5107 includes the earth unloading position P13 specified by the earth unloading position specifying unit 5106, the position of the work machine 100 acquired by the loading vehicle information acquiring unit 5101, and the transporting vehicle acquired by the transporting vehicle information acquiring unit 5103. Based on the position and orientation of 200, an interference avoidance position P12 that is a point that does not interfere with the transport vehicle 200 is identified.
- the interference avoidance position P12 has the same height as the earth unloading position P13, and the distance from the turning center of the turning body 120 is equal to the distance from the turning center to the earth unloading position P13 and the transport vehicle 200 downward. Is not present.
- the avoidance position specifying unit 5107 specifies, for example, a circle whose center is the turning center of the turning body 120 and whose radius is the distance between the turning center and the unloading position, and the outer shape of the bucket 113 among the positions on the circle.
- a position which does not interfere with the transport vehicle 200 in plan view and is closest to the earth unloading position P13 is specified as an interference avoidance position P12.
- the avoidance position specifying unit 5107 can determine whether the transporter vehicle 200 and the bucket 113 interfere with each other based on the position, the orientation, the known outer shape of the transporter vehicle 200, and the known shape of the bucket 113.
- “the same height” and “the distance are equal” are not necessarily limited to those whose heights or distances completely match, but some error or margin is allowed.
- the operation signal generation unit 5109 is an operation for moving the bucket 113 to the unloading position P13 based on the unloading position P13 identified by the unloading position identifying unit 5106 and the interference avoidance position P12 identified by the avoidance position identifying unit 5107. Generate a signal. That is, the operation signal generation unit 5109 generates an operation signal so as to reach the earth unloading position P13 from the excavation completion position P10 via the position P11 and the interference avoidance position P12. Further, the operation signal generation unit 5109 generates an operation signal of the bucket 113 so that the angle of the bucket 113 does not change even if the boom 111 and the arm 112 are driven.
- the operation signal output unit 5110 outputs the operation signal input to the operation signal input unit 5104 or the operation signal generated by the operation signal generation unit 5109 to the work machine 100.
- the transport vehicle 200 travels along the travel route R according to the course information generated by the management device 300, and stops at the standby point P1.
- the operator of the work machine 100 inputs the entry instruction signal to the second operating device 531 by operating the second operating device 531 (for example, pressing a predetermined button).
- the entry instruction signal is transmitted from the second operating device 531 to the management device 300.
- the management device 300 generates course information indicating the area of the approach route R2 and the approach route R3.
- the transporter vehicle 200 travels along the approach route R3 and stops at the loading point P3.
- the operator scoops soil with the bucket 113 of the working machine 100 by operating the first operation device 530, operates the knob switch of the first operation device 530, and generates and outputs a discharge instruction signal.
- FIG. 7 is a first flowchart showing an automatic discharge control method of the remote driver's cab according to the first embodiment.
- FIG. 8 is a second flowchart showing the automatic unloading control method of the remote driver's cab according to the first embodiment.
- the loading vehicle information acquisition unit 5101 acquires the position and orientation of the swing body 120, the tilt angles of the boom 111, the arm 112 and the bucket 113, and the posture of the swing body 120 from the work machine 100 (step S1).
- the transporter vehicle information acquisition unit 5103 acquires the position and orientation of the transporter vehicle 200 from the management device 300 (step S2).
- the bucket position specifying unit 5105 Based on the vehicle information acquired by the loading vehicle information acquisition unit 5101, the bucket position specifying unit 5105 detects the position P of the tip of the arm 112 at the time of inputting the earth removal instruction signal and the bottom of the bucket 113 from the tip of the arm 112. The height to the point is specified (step S3). The bucket position specifying unit 5105 specifies the position P as the digging completion position P10.
- the earth unloading position specifying unit 5106 converts the position information of the transporter vehicle 200 acquired by the transporter vehicle information acquiring unit 5103 based on the position, orientation, and posture of the swing body 120 acquired in step S1 from the site coordinate system to the shovel coordinate system. Do.
- the earth unloading position specifying unit 5106 specifies the plane position of the earth unloading position P13 based on the position information and the azimuth information of the transportation vehicle 200 and the known shape of the transportation vehicle 200 (step S4). At this time, the unloading position specifying unit 5106 sets the known height Ht of the transport vehicle 200 to the height Hb from the tip of the arm 112 specified in step S3 to the lowest point of the bucket 113 and the control margin of the bucket 113.
- the height of the earth unloading position P13 is specified by adding the height of the minute (step S5).
- the avoidance position specifying unit 5107 specifies the position of the turning center of the turning body 120 based on the position and orientation of the turning body 120 acquired by the loading vehicle information acquisition unit 5101 (step S6).
- the avoidance position specifying unit 5107 specifies a plane distance from the turning center to the earth unloading position P13 (step S7).
- the avoidance position specifying unit 5107 is a position separated by a plane distance specified from the turning center, and the outer shape of the bucket 113 does not interfere with the transport vehicle 200 in a plan view, and interferes with a position closest to the unloading position P13. It specifies as the avoidance position P12 (step S8).
- the operation signal generation unit 5109 determines whether or not the position of the tip of the arm 112 has reached the discharge position P13 (step S9). If the position of the tip of the arm 112 has not reached the discharge position P13 (step S9: NO), the operation signal generation unit 5109 has a height of the tip of the arm 112 less than the height of the interference avoidance position P12, or turns It is determined whether the planar distance from the pivot center of the body 120 to the tip of the arm 112 is less than the planar distance from the pivot center to the interference avoidance position P12 (step S10).
- the operation signal generation unit 5109 If the height of the bucket 113 is less than the height of the interference avoidance position P12, or if the plane distance from the turning center to the tip of the arm 112 is less than the plane distance from the turning center to the interference avoiding position P12 (step S10: YES), the operation signal generation unit 5109 generates an operation signal for raising the boom 111 and the arm 112 to the height of the interference avoidance position P12 (step S11). At this time, the operation signal generation unit 5109 generates an operation signal based on the positions and speeds of the boom 111 and the arm 112.
- the operation signal generation unit 5109 calculates the sum of the angular velocities of the boom 111 and the arm 112 based on the generated operation signals of the boom 111 and the arm 112, and rotates the bucket 113 at the same speed as the sum of the angular velocities. Are generated (step S12). Thereby, the operation signal generation unit 5109 can generate an operation signal for holding the ground angle of the bucket 113. In another embodiment, when the automatic ground control starts, the operation signal generation unit 5109 calculates the ground angle of the bucket 113 calculated from the detection values of the boom angle sensor 117, the arm angle sensor 118, and the bucket angle sensor 119. An operation signal may be generated to rotate the bucket 113 so as to be equal to the ground angle.
- step S10 NO
- the operation signal generation unit 5109 does not generate operation signals of the boom 111, the arm 112, and the bucket 113.
- the operation signal generation unit 5109 specifies a rising time which is a time from the height of the bucket 113 to the height of the interference avoidance position P12 from the height of the digging completion position P10 (step S13).
- the operation signal generation unit 5109 generates a turning operation signal (step S14).
- the operation signal generation unit 5109 turns and the tip of the arm 112 is the interference avoidance position P12. To generate a turning operation signal.
- the operation signal output unit 5110 When at least one of the operation signal of the boom 111, the arm 112 and the bucket 113, and the swing operation signal of the swing body 120 is generated in the process of step S9 to step S14, the operation signal output unit 5110 generates the generated operation signal. It outputs to the working machine 100 (step S15).
- the loaded vehicle information acquisition unit 5101 acquires vehicle information from the work machine 100 (step S16). Thus, the loaded vehicle information acquisition unit 5101 can acquire vehicle information after being driven by the output operation signal.
- Control device 540 returns the process to step S9, and repeatedly executes the generation of the operation signal.
- step S9 when the position of the tip of the arm 112 has reached the earth unloading position P13 in step S9 (step S9: YES), the operation signal generation unit 5109 does not generate an operation signal. Therefore, when the position of the tip of the arm 112 reaches the earth unloading position P13, the work implement 110 and the rotating body 120 stop.
- step S9: YES that is, when the operation signal generation unit 5109 has not generated an operation signal in the process from step S9 to step S14, the operation signal generation unit 5109 generates an operation signal for discharging the bucket 113 (step S17).
- Examples of the operation signal for removing the bucket 113 include an operation signal for rotating the bucket 113 in the unloading direction and an operation signal for opening a crumb when the bucket 113 is a clam bucket.
- the operation signal output unit 5110 outputs the generated operation signal to the work machine 100 (step S18). Then, the control device 540 ends the automatic discharge control.
- the rotating body 120 starts turning toward the unloading position P13.
- the raising of the boom 111 and the arm 112 is continued. While moving the tip of the arm 112 from the position P11 to the interference avoidance position P12, the boom 111, the arm 112 and the bucket 113 decelerate so that the height of the tip of the arm 112 becomes equal to the interference avoidance position P12.
- the drive of the work implement 110 is stopped.
- the swing body 120 continues the swing. That is, from the interference avoidance position P12 to the earth unloading position P13, the tip end of the arm 112 is moved only by the swing of the swing body 120 without the drive of the work implement 110.
- the revolving unit 120 decelerates so that the position of the tip of the arm 112 becomes equal to the unloading position P13.
- the work machine 100 can automatically discharge the soil that the bucket 113 has scooped to the transport vehicle 200.
- the operator repeatedly executes the digging by the work implement 110 and the automatic earth removal control based on the input of the earth removal instruction signal to such an extent that the load of the transport vehicle 200 does not exceed the maximum load.
- the operator operates the second operating device 531 to input a start instruction signal to the second operating device 531.
- the start instruction signal is transmitted from the second operation device 531 to the management device 300.
- the management device 300 generates course information including the area of the exit route R4.
- the transporter vehicle 200 starts from the loading point P3, travels along the exit route R4, and exits from the loading station A1.
- control device 540 specifies the earth removal position for loading the earth and sand onto the transport vehicle 200 based on the position information and the orientation information of the transport vehicle 200 detected by the transport vehicle 200. Thereby, control device 540 can automatically operate work machine 100 without receiving designation of the earth unloading position by the operator or the like.
- the control device 540 specifies the digging completion position P10 of the bucket 113, and generates an operation signal for moving the bucket 113 from the digging completion position P10 to the discharge position P13. . Thereby, the control device 540 can automatically discharge the earth and sand that the bucket 113 has scooped to the transport vehicle 200.
- the control device 540 generates a control signal such that the bucket 113 passes through the interference avoidance position P12.
- the interference avoidance position P12 according to the first embodiment has a height equal to the discharge position P13, and a distance from the turning center of the rotating body 120 equal to a distance from the turning center to the discharge position P13, and the bucket 113 In consideration of the outer shape of the lower position of the transport vehicle 200. Accordingly, it is possible to reliably prevent the bucket 113 from coming into contact with the transport vehicle 200 due to the turning of the turning body 120.
- the work machine 100 performs single-sided loading. That is, according to the first embodiment, when the plurality of transport vehicles 200 travel based on one travel route R, the transport vehicles 200 sequentially stop at one loading point P3. Thereby, the work machine 100 sequentially loads the transport vehicle 200 located at the loading point P3.
- the work machine 100 performs double-sided loading.
- FIG. 9 is a view showing an example of a traveling route of the loading space according to the second embodiment. In the second embodiment, loading points P3 are generated on the left and right sides of the work machine 100 by providing two traveling paths R.
- loading space A1 which concerns on 2nd Embodiment has two loading points P3, it is not restricted to this in other embodiment, loading space A1 is 3 or more loading points P3. May be included.
- FIG. 10 is a schematic block diagram showing the configuration of the control device for the remote driver's cab according to the second embodiment.
- the control device 540 according to the second embodiment further includes a loading target determination unit 5111 in addition to the configuration of the first embodiment. Further, in the main memory 5200 of the control device 540 according to the second embodiment, a storage area of the transport vehicle queue 5201 is secured.
- the transport vehicle queue 5201 stores identification information of the transport vehicles 200 to be loaded in the loading order.
- the identification information of the transport vehicle 200 is extracted from the top of the transport vehicle queue 5201 (Dequeue) and added to the end (Enqueue).
- the loading target determination unit 5111 extracts the identification information of the transport vehicle 200 from the top of the transport vehicle queue 5201 and determines the transport vehicle 200 indicated by the identification information as the loading target.
- the loading object determination unit 5111 adds identification information of the transport vehicle 200 to the end of the transport vehicle queue 5201.
- FIG. 11 is a flowchart showing a method of registering an unmanned transfer vehicle according to the second embodiment.
- the management device 300 determines whether or not the transport vehicle 200 is stopped at the loading point P3 based on the position of the transport vehicle 200 at regular intervals. If the management device 300 determines that the transport vehicle 200 is stopped at the loading point P3, the management device 300 notifies the remote driver's cab 500 that the transport vehicle 200 is stopped at the loading point P3.
- the notification includes the identification information of the transport vehicle 200.
- the control device 540 of the remote driver's cab 500 executes the process shown in FIG. 11 at regular intervals.
- the transport vehicle information acquisition unit 5103 of the control device 540 determines whether a notification indicating that the transport vehicle 200 has stopped at the loading point P3 has been received from the management device 300 (step S101).
- the loading target determination unit 5111 transfers the identification information of the transport vehicle 200 included in the notification to the transport vehicle queue 5201 Is added to the end of (step S102).
- the loading target determination unit 5111 does not add identification information to the transport vehicle queue 5201.
- the loading object determination unit 5111 of the control device 540 reads out the identification information of the head of the transport vehicle queue 5201 in step S4 of the flowchart shown in FIG. 7, and the discharge position specifying unit 5106 carries out the transport indicated by the identification information.
- the unloading position of the vehicle 200 is identified.
- the loading object determination unit 5111 extracts identification information from the top of the transport vehicle queue 5201.
- control device 540 when the transport vehicle 200 is present at each of the plurality of loading points P3, the transport vehicle 200 that has reached the loading point P3 earliest among the plurality of transport vehicles 200. An operation signal is generated on the basis of the unloading position P13 according to. After transmitting the transmission instruction signal to the transport vehicle 200 whose loading has been completed, the leading identification information of the transport vehicle queue 5201 is read out and the next transport vehicle 200 is loaded, and this is repeated. Thus, the control device 540 can cause the work machine 100 to perform the loading process in the order of arrival of the transport vehicle 200.
- the control device 540 according to the second embodiment stops the transport vehicle 200 for loading, as compared with, for example, the case where the loading target is determined such that the turning angle of the work machine 100 is minimized. You can shorten the time you are doing.
- the control device 540 determines the loading target based on the information stored in the transport vehicle queue 5201, but is not limited thereto.
- the control device 540 may determine the loading target based on a database storing the identification information of the plurality of transport vehicles 200 and the flag indicating the loading target in association. In this case, as in the second embodiment, the control device 540 rewrites the flag when the start instruction signal is input to the operation signal input unit 5104.
- the control device 540 determines the transport vehicle 200 that arrives at the loading point P3 at the earliest when the transport vehicle 200 exists at each of the plurality of loading points P3. Not limited to this.
- the control device 540 according to the other embodiment determines an arbitrary method such as determining, as a loading target, one of the transport vehicles 200 existing at each of the plurality of loading points P3 that has the largest current loading amount. You may decide the loading target by.
- the control device 540 of the remote driver's cab 500 calculates the automatic discharge processing and determines the loading target based on the position information and the orientation information of the transport vehicle 200 received from the management device 300. Do, but not limited to.
- the work system 1 according to the other embodiment is a calculation and loading target of the automatic discharge processing based on the position information and the direction information of the transport vehicle 200 received from the management device 300 by the control device 126 of the work machine 100. You may make a decision.
- the control device 540 of the remote driver's cab 500 calculates the automatic earth removal processing based on the position information and the direction information of the transport vehicle 200 received from the management device 300 It is not limited.
- the work system 1 according to another embodiment may calculate the automatic discharge processing based on the position information and the direction information of the transport vehicle 200 received from the management device 300 by the control device 126 of the loading machine 100. Good.
- work machine 100 concerning an embodiment mentioned above is operated by remote control, it is not restricted to this.
- the operator may get in the cab 121 and operate the lever or the switch.
- the control device 126 of the work machine 100 may calculate the automatic discharge processing and determine the loading target based on the position information and the orientation information of the transport vehicle 200 received from the management device 300.
- the loading machine 100 acquires the position and direction of the transport vehicle 200 via the management device 300 in the above-described embodiment, the present invention is not limited thereto.
- the loading machine 100 according to another embodiment may acquire the position and orientation of the transport vehicle 200 from the transport vehicle 200 by inter-vehicle communication.
- earth removal position P13 is specified based on position information and direction information when conveyance vehicle 200 stops at loading point P3, it is not restricted to this.
- the unloading position P13 may be identified based on the position of the loading point P3 instead of the position information and the orientation information of the transporter vehicle 200.
- the work system 1 can specify the loading point P3 before the transport vehicle 200 stops.
- the loading machine 100 loads earth and sand as a load in the work system 1 according to the above-described embodiment, the other embodiments are not limited thereto.
- the cargo according to another embodiment may be ore, crushed stone, coal or the like.
- the program p5 may be distributed to the control device 540 by a communication line.
- the control device 540 that has received the distribution develops the program p5 in the main memory 5200, and executes the above processing.
- the automatic earth unloading control such as the earth unloading position is handled by the shovel coordinate system, but may be handled by the site coordinate system.
- the program p5 may be for realizing a part of the functions described above.
- the program p5 may realize the above-described function in combination with another program p5 already stored in the storage 5300 or in combination with another program p5 implemented in another device. .
- control device 126, the management device 300, and the control device 540 may include a PLD (Programmable Logic Device).
- PLDs include Programmable Array Logic (PAL), Generic Array Logic (GAL), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA).
- PAL Programmable Array Logic
- GAL Generic Array Logic
- CPLD Complex Programmable Logic Device
- FPGA Field Programmable Gate Array
- the work machine control device can automatically specify the earth unloading position for control of the work machine.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
Abstract
Description
本願は、2017年10月4日に日本に出願された特願2017-194672号について優先権を主張し、その内容をここに援用する。
本発明の態様は、作業機械の制御のための排土位置を自動的に特定することができる作業機械制御装置および制御方法を提供することを目的とする。
《作業システム》
図1は、第1の実施形態に係る遠隔操作システムの構成を示す概略図である。
作業システム1は、作業機械100と、無人運搬車である1または複数の運搬車両200と、管理装置300と、遠隔運転室500とを備える。作業機械100および運搬車両200は、作業現場(例えば、鉱山、採石場)で稼働する。遠隔運転室500は、作業現場から離れた地点(例えば、市街、作業現場内)に設けられる。
第1の実施形態に係る運搬車両200は、設定された走行経路を無人で走行する無人ダンプトラックである。なお、他の実施形態に係る運搬車両200は、ダンプトラック以外の運搬車であってもよい。
運搬車両200は、位置方位検出器210および制御装置220を備える。
位置方位検出器210は、2つの受信器が受信した各測位信号を用いて、一方の受信器の設置位置に対する他方の受信器の設置位置の関係として、運搬車両200の向く方位を演算する。なお、他の実施形態においてはこれに限られず、例えば運搬車両200が慣性計測装置(IMU:Inertial Measurement Unit)を備え、慣性計測装置の計測結果に基づいて方位を演算してもよい。この場合、運搬車両200の走行軌跡に基づいて慣性計測装置のドリフトを補正してもよい。慣性計測装置を用いて方位を演算する場合、運搬車両200は1つの受信機を備えていればよい。
図2は、第1の実施形態に係る作業機械の外観図である。
第1の実施形態に係る作業機械100は、積込機械の一種である油圧ショベルである。なお、他の実施形態に係る作業機械100は、油圧ショベル以外の作業機械であってもよい。また図2に示す作業機械100はフェイスショベルであるが、バックホウショベルやロープショベルであってもよい。
作業車両100は、走行体130と、走行体130に支持される旋回体120と、油圧により作動し旋回体120に支持される作業機110とを備える。旋回体120は旋回中心を中心として旋回自在に支持される。
アーム112は、ブーム111とバケット113とを連結する。アーム112の基端部は、ブーム111の先端部にピンを介して取り付けられる。
バケット113は、土砂などを掘削するための刃と掘削した土砂を収容するための容器とを備える。バケット113の基端部は、アーム112の先端部にピンを介して取り付けられる。
アームシリンダ115は、アーム112を駆動するための油圧シリンダである。アームシリンダ115の基端部は、ブーム111に取り付けられる。アームシリンダ115の先端部は、アーム112に取り付けられる。
バケットシリンダ116は、バケット113を駆動するための油圧シリンダである。バケットシリンダ116の基端部は、ブーム111に取り付けられる。バケットシリンダ116の先端部は、バケット113に取り付けられる。
アーム角度センサ118は、アーム112に取り付けられ、アーム112の傾斜角を検出する。
バケット角度センサ119は、バケット113に取り付けられ、バケット113の傾斜角を検出する。
第1の実施形態に係るブーム角度センサ117、アーム角度センサ118、およびバケット角度センサ119は、地平面に対する傾斜角を検出する。なお、他の実施形態に係る角度センサはこれに限られず、他の基準面に対する傾斜角を検出してもよい。例えば、他の実施形態においては、角度センサは、ブーム111、アーム112およびバケット113の基端部に設けられたポテンショメータによって相対回転角を検出してもよいし、ブームシリンダ114、アームシリンダ115およびバケットシリンダ116のシリンダ長さを計測し、シリンダ長さを角度に変換することで傾斜角を検出するものであってもよい。
位置方位演算器123は、2つの受信器が受信した各測位信号を用いて、一方の受信器の設置位置に対する他方の受信器の設置位置の関係として、旋回体120の向く方位を演算する。
制御装置126は、遠隔運転室500から操作信号を受信する。制御装置126は、受信した操作信号に基づいて、作業機110、旋回体120、または走行体130を駆動させる。
図3は、第1の実施形態に係る管理装置の構成を示す概略ブロック図である。
管理装置300は、運搬車両200の走行を管理する。
管理装置300は、プロセッサ3100、メインメモリ3200、ストレージ3300、インタフェース3400を備えるコンピュータである。ストレージ3300は、プログラムp3を記憶する。プロセッサ3100は、プログラムp3をストレージ3300から読み出してメインメモリ3200に展開し、プログラムp3に従った処理を実行する。管理装置300は、インタフェース3400を介してネットワークに接続される。インタフェース3400には、アクセスポイント360が接続される。管理装置300は、アクセスポイント360を介して作業機械100および運搬車両200と無線接続される。
遠隔運転室500は、運転席510、表示装置520、第1操作装置530、第2操作装置531、制御装置540を備える。
表示装置520は、運転席510の前方に配置される。表示装置520は、オペレータが運転席510に座ったときにオペレータの眼前に位置する。表示装置520は、図1に示すように、並べられた複数のディスプレイによって構成されてもよいし、1つの大きなディスプレイによって構成されてもよい。また、表示装置520は、プロジェクタ等によって曲面や球面に画像を投影するものであってもよい。
第2操作装置531は、オペレータの操作により、運搬車両200への進入指示信号、発進指示信号、停止指示信号、停止解除信号を管理装置300に送信する。第2操作装置531は、例えばタッチパネル等により構成される。
第1操作装置530および第2操作装置531は、運転席510の近傍に配置される。第1操作装置530および第2操作装置531は、オペレータが運転席510に座ったときにオペレータの操作可能な範囲内に位置する。
制御装置540は、プロセッサ5100、メインメモリ5200、ストレージ5300、インタフェース5400を備えるコンピュータである。ストレージ5300は、プログラムp5を記憶する。プロセッサ5100は、プログラムp5をストレージ5300から読み出してメインメモリ5200に展開し、プログラムp5に従った処理を実行する。制御装置540は、インタフェース5400を介してネットワークに接続される。
運搬車両200は、管理装置300が生成するコース情報によって走行経路Rに沿って走行し、待機点P1で停止する。作業機械100のオペレータは、第2操作装置531を操作することで(例えば、所定のボタンを押下することで)、第2操作装置531に進入指示信号を入力する。進入指示信号は、第2操作装置531から管理装置300に送信される。これによって、管理装置300が進入経路R2およびアプローチ経路R3の領域を示すコース情報を生成する。運搬車両200は、アプローチ経路R3に沿って走行し、積込点P3で停止する。オペレータは、第1操作装置530の操作により作業機械100のバケット113で土砂をすくい、第1操作装置530のノブスイッチを操作して排土指示信号を生成し出力する。
自動排土制御が開始されると、ブーム111およびアーム112は、掘削完了位置P10から位置P11へ向けて上昇する。このとき、バケット113は、掘削終了時の角度を維持するように駆動する。
第1の実施形態によれば、制御装置540は、運搬車両200が検出した運搬車両200の位置情報および方位情報に基づいて、土砂を運搬車両200に積み込むための排土位置を特定する。これにより、制御装置540は、オペレータ等によって排土位置の指定を受けることなく、作業機械100を自動運転させることができる。
第1の実施形態に係る作業システム1では、作業機械100は片側積込を行う。すなわち、第1の実施形態によれば、複数の運搬車両200が1つの走行経路Rに基づいて走行することで、1つの積込点P3に順次運搬車両200が停止する。これにより、作業機械100は、積込点P3に位置する運搬車両200に順次積込を行う。
これに対し、第2の実施形態に係る作業システム1では、作業機械100は両側積込を行う。図9は、第2の実施形態に係る積込場の走行経路の例を示す図である。第2の実施形態においては、2つの走行経路Rが設けられることで、作業機械100の左右両側に積込点P3が生成される。これにより、作業機械100が一方の積込点P3に停車する運搬車両200に積込作業をしている間、他方の積込点P3に運搬車両200を待機させることができる。このように両側積込を行うことで、作業機械100は、ある積込作業を終えた直後に次の積込作業を開始することができる。なお、第2の実施形態に係る積込場A1は2か所の積込点P3を有するが、他の実施形態ではこれに限られず、積込場A1が3か所以上の積込点P3を有していてもよい。
図10は、第2の実施形態に係る遠隔運転室の制御装置の構成を示す概略ブロック図である。
第2の実施形態に係る制御装置540は、第1の実施形態の構成に加え、積込対象決定部5111をさらに備える。また、第2の実施形態に係る制御装置540のメインメモリ5200には、運搬車両キュー5201の記憶領域が確保される。
積込対象決定部5111は、運搬車両キュー5201の先頭から運搬車両200の識別情報を取り出し、当該識別情報が示す運搬車両200を、積込対象に決定する。積込対象決定部5111は、運搬車両200が積込点P3で停止したときに、当該運搬車両200の識別情報を運搬車両キュー5201の末尾に追加する。
図11は、第2の実施形態に係る無人運搬車の登録方法を示すフローチャートである。
管理装置300は、一定時間ごとに運搬車両200の位置に基づいて、運搬車両200が積込点P3で停止しているか否かを判定する。管理装置300は、運搬車両200が積込点P3で停止していると判定すると、運搬車両200が積込点P3で停止していることを遠隔運転室500に通知する。当該通知には、運搬車両200の識別情報が含まれる。
第2の実施形態に係る制御装置540は、複数の積込点P3のそれぞれに運搬車両200が存在する場合に、複数の運搬車両200のうち、積込点P3に最も早く到着した運搬車両200に係る排土位置P13に基づいて操作信号を生成する。積み込みが完了した運搬車両200に発信指示信号を送信した後、運搬車両キュー5201の先頭の識別情報を読み出し次の運搬車両200に積み込みを行い、これを繰り返す。これにより、制御装置540は、作業機械100に運搬車両200の到着順に、積み込み処理をさせることができる。
これにより、第2の実施形態に係る制御装置540は、例えば作業機械100の旋回角度が最小になるように積込対象を決定する場合と比較して、積込のために運搬車両200が停止している時間を短くすることができる。
以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
例えば、第2の実施形態に係る制御装置540は、運搬車両キュー5201に格納された情報に基づいて積込対象を決定するが、これに限られない。例えば、他の実施形態に係る制御装置540は、複数の運搬車両200の識別情報と、積込対象を示すフラグとを関連付けて記憶するデータベースに基づいて積込対象を決定してもよい。この場合、制御装置540は、第2の実施形態と同様に、操作信号入力部5104に発進指示信号が入力された場合にフラグを書き換える。
上述した実施形態に係る作業システム1では、遠隔運転室500の制御装置540が管理装置300から受信した運搬車両200の位置情報および方位情報に基づいて自動排土処理の計算を行うが、これに限られない。例えば、他の実施形態に係る作業システム1は、積込機械100の制御装置126が管理装置300から受信した運搬車両200の位置情報および方位情報に基づいて自動排土処理の計算を行ってもよい。
また、上述した実施形態では、積込機械100は管理装置300を介して運搬車両200の位置および方位を取得するが、これに限られない。例えば、他の実施形態に係る積込機械100は、車車間通信により運搬車両200から運搬車両200の位置および方位を取得してもよい。
なお、上述した実施形態に係る作業システム1では、積込機械100が積荷として土砂を積み込むが、他の実施形態においてはこれに限られない。例えば、他の実施形態に係る積荷は、鉱石、砕石、石炭などであってもよい。
上述した実施形態において、排土位置など自動排土制御をショベル座標系で取り扱ったが、現場座標系で取り扱ってもよい。
Claims (5)
- 旋回体と、前記旋回体に取り付けられバケットを含む作業機とを備える作業機械を制御する作業機械制御装置であって、
無人運搬車が検出した前記無人運搬車の位置情報および方位情報を取得する運搬車情報取得部と、
前記位置情報および前記方位情報に基づいて、積荷を前記無人運搬車に積み込むための排土位置を特定する排土位置特定部と
を備える作業機械制御装置。 - 前記バケットを前記排土位置まで移動させる排土指示信号が入力されたときの前記バケットの位置を特定するバケット位置特定部と、
前記バケットを、前記特定した位置から前記排土位置まで移動させるための操作信号を生成する操作信号生成部と、
を備える請求項1に記載の作業機械制御装置。 - 高さが前記排土位置と等しく、かつ前記旋回体の旋回中心からの距離が前記旋回中心から前記排土位置までの距離と等しく、かつ下方に前記無人運搬車が存在しない位置である干渉回避位置を特定する回避位置特定部を備え、
前記操作信号生成部は、前記バケットが前記干渉回避位置を経由するように前記操作信号を生成する
請求項2に記載の作業機械制御装置。 - 少なくとも2台の無人運搬車が複数個所に設定された積込点のうち少なくとも2か所の積込点のそれぞれに存在する場合に、前記少なくとも2台の無人運搬車のうち1台の無人運搬車を積込対象に決定する積込対象決定部を備え、
前記操作信号生成部は、積込対象の前記無人運搬車が発進するまで、当該無人運搬車に係る前記排土位置に基づいて前記操作信号を生成する
請求項2または請求項3に記載の作業機械制御装置。 - 旋回中心まわりに旋回する旋回体と、前記旋回体に取り付けられバケットを含む作業機とを備える作業機械の制御方法であって、
無人運搬車が検出した前記無人運搬車の位置情報および方位情報を取得するステップと、
前記位置情報および前記方位情報に基づいて、積荷を前記無人運搬車に積み込むための排土位置へ前記バケットを移動させるための操作信号を出力するステップと
を備える制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880047483.7A CN110914501B (zh) | 2017-10-04 | 2018-10-03 | 作业机械控制装置以及控制方法 |
CA3066356A CA3066356A1 (en) | 2017-10-04 | 2018-10-03 | Work machine control device and control method |
AU2018345223A AU2018345223C1 (en) | 2017-10-04 | 2018-10-03 | Work machine control device and control method |
US16/628,738 US11591772B2 (en) | 2017-10-04 | 2018-10-03 | Work machine control device and control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-194672 | 2017-10-04 | ||
JP2017194672A JP7202064B2 (ja) | 2017-10-04 | 2017-10-04 | 作業機械制御装置および制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019069975A1 true WO2019069975A1 (ja) | 2019-04-11 |
Family
ID=65995081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/037019 WO2019069975A1 (ja) | 2017-10-04 | 2018-10-03 | 作業機械制御装置および制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11591772B2 (ja) |
JP (3) | JP7202064B2 (ja) |
CN (1) | CN110914501B (ja) |
AU (1) | AU2018345223C1 (ja) |
CA (1) | CA3066356A1 (ja) |
WO (1) | WO2019069975A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7088691B2 (ja) * | 2018-02-28 | 2022-06-21 | 株式会社小松製作所 | 積込機械の制御装置、制御方法および遠隔操作システム |
JP7281975B2 (ja) * | 2019-06-18 | 2023-05-26 | 株式会社小松製作所 | 作業機械、システムおよび作業機械の制御方法 |
AU2019250202A1 (en) | 2019-10-17 | 2021-05-06 | Caterpillar Underground Mining Pty Ltd | System and method for changing orientation of machines |
JP7423399B2 (ja) | 2020-04-17 | 2024-01-31 | 株式会社小松製作所 | 作業システムおよび制御方法 |
JP7367606B2 (ja) * | 2020-05-14 | 2023-10-24 | コベルコ建機株式会社 | 遠隔操作支援装置および遠隔操作支援方法 |
CN113687647A (zh) * | 2020-05-15 | 2021-11-23 | 长沙智能驾驶研究院有限公司 | 矿车运输驾驶控制方法、装置、矿车和存储介质 |
JP7450492B2 (ja) * | 2020-07-31 | 2024-03-15 | 日立建機株式会社 | 無人作業機械 |
JP7450491B2 (ja) * | 2020-07-31 | 2024-03-15 | 日立建機株式会社 | 無人作業機械 |
EP4190977A4 (en) * | 2020-07-31 | 2024-09-04 | Hitachi Construction Mach Co | UNMANNED CONSTRUCTION VEHICLE |
US11675354B2 (en) * | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11247231A (ja) * | 1997-12-19 | 1999-09-14 | Carnegie Mellon Univ | 土工機械の自律制御のためのソフトウェア・アーキテクチュア |
JP2012022611A (ja) * | 2010-07-16 | 2012-02-02 | Komatsu Ltd | 無人車両の走行システムおよびその走行制御方法 |
JP2012113429A (ja) * | 2010-11-22 | 2012-06-14 | Komatsu Ltd | 無人車両の走行システムおよび走行経路生成方法 |
WO2013058247A1 (ja) * | 2011-10-17 | 2013-04-25 | 日立建機株式会社 | ダンプトラック停車位置方向指示システムおよび運搬システム |
US20140046540A1 (en) * | 2012-08-10 | 2014-02-13 | Caterpillar, Inc. | Mining truck spotting under a shovel |
WO2015025369A1 (ja) * | 2013-08-20 | 2015-02-26 | 株式会社小松製作所 | 管理システム及び管理方法 |
WO2015087430A1 (ja) * | 2013-12-12 | 2015-06-18 | 日立建機株式会社 | 車両走行システム及び車両走行制御方法 |
WO2015087382A1 (ja) * | 2013-12-09 | 2015-06-18 | 日立建機株式会社 | 行動指示システム及び方法 |
WO2017131194A1 (ja) * | 2016-01-29 | 2017-08-03 | 住友建機株式会社 | ショベル及びショベルの周囲を飛行する自律式飛行体 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09244745A (ja) * | 1996-03-05 | 1997-09-19 | Cap Top Eng:Kk | 無人車両制御方法および装置 |
US6363632B1 (en) | 1998-10-09 | 2002-04-02 | Carnegie Mellon University | System for autonomous excavation and truck loading |
JP2002115271A (ja) | 2000-10-11 | 2002-04-19 | Hitachi Constr Mach Co Ltd | 自動運転ショベル |
US6691010B1 (en) | 2000-11-15 | 2004-02-10 | Caterpillar Inc | Method for developing an algorithm to efficiently control an autonomous excavating linkage |
WO2005106139A1 (ja) | 2004-04-28 | 2005-11-10 | Komatsu Ltd. | 建設機械のメンテナンス支援システム |
US7901009B2 (en) * | 2006-09-14 | 2011-03-08 | Hagenbuch Leroy G | Severe application off-highway truck body |
JP6285838B2 (ja) * | 2014-09-29 | 2018-02-28 | 日立建機株式会社 | 作業車両の移動制御装置及び作業車両 |
JP6345080B2 (ja) * | 2014-10-30 | 2018-06-20 | 日立建機株式会社 | 作業機械の旋回支援装置 |
JP6382688B2 (ja) * | 2014-11-06 | 2018-08-29 | 日立建機株式会社 | 地図生成装置 |
US20170277163A1 (en) | 2014-11-28 | 2017-09-28 | Komatsu Ltd. | Communication System and Work Vehicle |
JP2017109705A (ja) | 2015-12-18 | 2017-06-22 | 株式会社小松製作所 | 作業機械の管理システム、作業機械の制御システム、及び作業機械 |
JP6932647B2 (ja) * | 2015-12-28 | 2021-09-08 | 住友建機株式会社 | ショベル、及びショベルの制御装置 |
WO2016167374A1 (ja) | 2016-04-28 | 2016-10-20 | 株式会社小松製作所 | 作業機械の管理装置 |
-
2017
- 2017-10-04 JP JP2017194672A patent/JP7202064B2/ja active Active
-
2018
- 2018-10-03 US US16/628,738 patent/US11591772B2/en active Active
- 2018-10-03 CA CA3066356A patent/CA3066356A1/en not_active Withdrawn
- 2018-10-03 CN CN201880047483.7A patent/CN110914501B/zh active Active
- 2018-10-03 AU AU2018345223A patent/AU2018345223C1/en active Active
- 2018-10-03 WO PCT/JP2018/037019 patent/WO2019069975A1/ja active Application Filing
-
2022
- 2022-02-07 JP JP2022017105A patent/JP7404414B2/ja active Active
-
2023
- 2023-12-11 JP JP2023208370A patent/JP2024015333A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11247231A (ja) * | 1997-12-19 | 1999-09-14 | Carnegie Mellon Univ | 土工機械の自律制御のためのソフトウェア・アーキテクチュア |
JP2012022611A (ja) * | 2010-07-16 | 2012-02-02 | Komatsu Ltd | 無人車両の走行システムおよびその走行制御方法 |
JP2012113429A (ja) * | 2010-11-22 | 2012-06-14 | Komatsu Ltd | 無人車両の走行システムおよび走行経路生成方法 |
WO2013058247A1 (ja) * | 2011-10-17 | 2013-04-25 | 日立建機株式会社 | ダンプトラック停車位置方向指示システムおよび運搬システム |
US20140046540A1 (en) * | 2012-08-10 | 2014-02-13 | Caterpillar, Inc. | Mining truck spotting under a shovel |
WO2015025369A1 (ja) * | 2013-08-20 | 2015-02-26 | 株式会社小松製作所 | 管理システム及び管理方法 |
WO2015087382A1 (ja) * | 2013-12-09 | 2015-06-18 | 日立建機株式会社 | 行動指示システム及び方法 |
WO2015087430A1 (ja) * | 2013-12-12 | 2015-06-18 | 日立建機株式会社 | 車両走行システム及び車両走行制御方法 |
WO2017131194A1 (ja) * | 2016-01-29 | 2017-08-03 | 住友建機株式会社 | ショベル及びショベルの周囲を飛行する自律式飛行体 |
Also Published As
Publication number | Publication date |
---|---|
JP2022051849A (ja) | 2022-04-01 |
JP7404414B2 (ja) | 2023-12-25 |
JP2024015333A (ja) | 2024-02-01 |
CA3066356A1 (en) | 2019-04-11 |
AU2018345223C1 (en) | 2021-05-27 |
AU2018345223A1 (en) | 2020-01-16 |
US20200283993A1 (en) | 2020-09-10 |
JP2019065660A (ja) | 2019-04-25 |
CN110914501B (zh) | 2021-11-02 |
JP7202064B2 (ja) | 2023-01-11 |
AU2018345223B2 (en) | 2021-04-08 |
CN110914501A (zh) | 2020-03-24 |
US11591772B2 (en) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7404414B2 (ja) | 作業機械制御装置および制御方法 | |
AU2018345153B2 (en) | Loading machine control device and control method | |
AU2021200371B2 (en) | Work system, work machine, and control method | |
CA3064369C (en) | Control device and control method | |
US11663748B2 (en) | Display control device, display control system, and display control method | |
JP7311667B2 (ja) | 作業システムおよび制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18864196 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3066356 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2018345223 Country of ref document: AU Date of ref document: 20181003 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18864196 Country of ref document: EP Kind code of ref document: A1 |