WO2019069928A1 - Emulsion composition - Google Patents

Emulsion composition Download PDF

Info

Publication number
WO2019069928A1
WO2019069928A1 PCT/JP2018/036891 JP2018036891W WO2019069928A1 WO 2019069928 A1 WO2019069928 A1 WO 2019069928A1 JP 2018036891 W JP2018036891 W JP 2018036891W WO 2019069928 A1 WO2019069928 A1 WO 2019069928A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
emulsion composition
polymer particles
polyvinyl alcohol
Prior art date
Application number
PCT/JP2018/036891
Other languages
French (fr)
Japanese (ja)
Inventor
久保 敬次
雅洋 川崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019546736A priority Critical patent/JPWO2019069928A1/en
Publication of WO2019069928A1 publication Critical patent/WO2019069928A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/023Emulsion inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals

Definitions

  • the present invention relates to an emulsion composition containing polymer particles having a core-shell structure and a polyvinyl alcohol resin, and uses thereof.
  • the polyvinyl alcohol-based resin further includes a copolymer resin having a constituent unit such as ethylene in addition to a single resin composed of a constituent unit of vinyl alcohol, and these include a wide range of films for packaging, oxygen barrier films, adhesives, paints, etc. It is used in the application field.
  • polyvinyl alcohol is also used as vinylon fiber by acetalizing part of it with formaldehyde.
  • a polymer resin obtained by acetalizing polyvinyl alcohol with butyraldehyde is called polyvinyl butyral, and is used for various binders, an intermediate film of laminated glass, and the like.
  • the present invention has been made based on the above-described circumstances, and an object of the present invention is to provide an emulsion composition in which polymer particles are less likely to aggregate even under high temperature conditions.
  • the glass transition temperature (hereinafter sometimes abbreviated as "Tg") of the aqueous solution or aqueous dispersion of polyvinyl alcohol resin is 100 ° C. It has been found that by mixing polymer particles having the above-described polymer as a shell, it is possible to obtain an emulsion composition in which polymer particles are less likely to aggregate under high temperature conditions, and repeated studies based on the above findings The present invention has been completed.
  • an emulsion composition comprising a polymer particle (A) having a core-shell structure and a polyvinyl alcohol resin (B),
  • the glass transition temperature of the polymer constituting the shell of the polymer particles (A) is 100 ° C. or higher
  • an emulsion composition in which polymer particles are less likely to aggregate even under high temperature conditions.
  • (meth) acrylic means a generic name of “methacrylic” and “acrylic”
  • (meth) acrylate means a generic name of “methacrylate” and “acrylate”.
  • the emulsion composition of the present invention comprises a polymer particle (A) having a core-shell structure and a polyvinyl alcohol resin (B), and the Tg of the polymer constituting the shell of the polymer particle (A) is 100 ° C. or higher
  • the polymer particle (A) of the present invention has a core-shell structure comprising a core and a shell covering at least a part of the core.
  • the average particle size of the polymer particles (A) is not particularly limited, but it is known that there is a suitable average particle size depending on the matrix resin (for example, A. Morgolina and S. Wu, Polymer, 29, 2170 (1988)), it is preferable to set an average particle diameter effective to obtain the effect of the present invention, and it is preferable to set the average particle diameter to 1/10 to 10 times the suitable average particle diameter. Moreover, in the application which needs transparency, 200 nm or less is preferable, as for the said average particle diameter, 100 nm or less is more preferable, and 70 nm or less is more preferable. Moreover, 1 nm or more is preferable and, as for the said average particle diameter, 5 nm or more is more preferable. In addition, the average particle diameter of a polymer particle (A) is measured by the method as described in the Example mentioned later.
  • the polymer constituting the core may be a polymer composed of one kind of monomer unit, or a copolymer composed of plural kinds of monomer units. Also, it may be a mixture of a plurality of polymers.
  • the monomer which comprises a core is not specifically limited, It is preferable that it is radically polymerizable and the solubility to water is less than 10 mass%. If the solubility in water is less than 10% by mass, there is no possibility of polymerization occurring in the aqueous phase, and the production in the emulsion polymerization method becomes easy.
  • the monomer constituting the core include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t -Butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecyl (meth) acrylate, lauryl (meth) acrylate lauryl, dodecyl (meth) acrylate, tri Methoxysilylpropyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, 2-methoxyethyl (meth)
  • the Tg of the polymer constituting the core should be equal to or less than the minimum use temperature in each application Is preferred. Specifically, the Tg of the polymer constituting the core is preferably ⁇ 10 ° C. or less, more preferably ⁇ 20 ° C. or less. The Tg of the polymer constituting the core is preferably ⁇ 100 ° C. or higher, and more preferably ⁇ 80 ° C. or higher.
  • Tg represents the Tg of the copolymer
  • fw1, fw2 ... represents the weight fraction of each component
  • Tg1, Tg2 ... represent the Tg of the homopolymer of each component. Therefore, it is preferable to determine the composition ratio of copolymerization so that Tg calculated
  • crosslinking agent it becomes possible to maintain the shape even after processing steps such as thermoforming.
  • mechanical properties such as breaking strength can be improved by appropriately crosslinking.
  • a bifunctional monomer having two polymerizing groups is suitably used as the above-mentioned crosslinking agent, but using a trifunctional or higher polyfunctional monomer, the width of coarse density of the crosslink density in the core polymer is obtained. It is also possible to increase the size and adjust mechanical properties and the like.
  • a diene monomer such as butadiene or isoprene is used for all or part of the core monomer, an unsaturated double bond remains after polymerization, and this can be used as a crosslinked portion.
  • crosslinking agent examples include, for example, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol Di (meth) acrylic acid addition of di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, bisphenol A diglycidyl ether Body, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, polyester di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate , Tris (2- (2,3-dihydroxypropoxy) ethyl)
  • a grafting agent may be added to the core.
  • the addition of the grafting agent makes it possible to chemically bond the core and the shell, and can prevent the breakage of the polymer particles (A) even in various processing steps.
  • a diene monomer such as butadiene or isoprene
  • the unsaturated double bond remaining after polymerization can be regarded as a substitute for a grafting agent, and thus many In the case of no addition of a grafting agent is necessary.
  • the grafting agent include, for example, (meth) acrylic acid esters such as allyl (meth) acrylate, dicyclopentenyl (meth) acrylate, tricyclodecyl (meth) acrylate and the like.
  • the polymer constituting the shell may be a polymer composed of one kind of monomer unit, or a copolymer composed of plural kinds of monomer units. Also, it may be a mixture of a plurality of polymers.
  • the Tg of the polymer constituting the shell is 100 ° C. or more, more preferably 110 ° C. or more, and still more preferably 120 ° C. or more.
  • the polymer particles (A) are coagulated in the high temperature process when using the emulsion composition for production of various applications, so the polymer constituting the shell The higher the Tg of, the better.
  • the affinity with the polyvinyl alcohol resin may be lowered, so the temperature is preferably 180 ° C. or less.
  • the monomer which comprises a shell is not specifically limited, For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t -Butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecyl (meth) acrylate, lauryl (meth) acrylate, dodecyl (meth) acrylate, trimethoxysilyl Propyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, 2-methoxyethyl (meth)
  • the shell may be fused and aggregated in the manufacturing process under high temperature conditions, so the Tg of the polymer constituting the shell is higher than the temperature of the manufacturing process. Is preferred. However, fusion of the polymer particles (A) can be suppressed by introducing sufficient crosslinking to the shell even if the Tg of the shell is equal to or lower than the temperature of the above-mentioned production process.
  • a chain transfer agent can be added to the shell as needed. By adding the chain transfer agent, it becomes possible to adjust the molecular weight to secure the melt flowability. Furthermore, the degree of interaction with the polyvinyl alcohol resin (B) can be controlled.
  • chain transfer agent examples include, for example, 2-mercaptoethanol, 3-mercapto-1,3-propanediol, mercaptoacetic acid, methyl mercaptoacetate, ethyl mercaptoacetate, 2-ethylhexyl mercaptoacetate, 3-mercaptopropionic acid, Methyl 3-mercaptopropionate, n-hexyl 3-mercaptopropionate, cyclohexyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, n-octyl 3-mercaptopropionate, n-dodecyl 3-mercaptopropionate, 3-mercapto N-Tridecyl propionate, mercaptosuccinic acid, butanethiol, octanethiol, n-dodecanethiol, t-dodecanethiol, hexadodecane,
  • the chain transfer reaction takes place in micelles, which are the place of polymerization, and the molecular weight is determined by the ratio of the monomer to the chain transfer agent, it is desirable to make the micelle reach the same extent as the monomer. That is, it is preferable to select a chain transfer agent having the same degree of hydrophilicity and hydrophobicity as the monomer to be used.
  • the content of the shell in the polymer particles (A) is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass, based on the total mass of the polymer particles (A).
  • polymer particle (A) is not specifically limited, For example, an emulsion polymerization method is employable. Specifically, first, the core particles are synthesized by polymerizing the monomers constituting the core, and then the monomers constituting the shell are continuously or intermittently added to the emulsion containing the core particles to carry out polymerization. A shell can be formed to obtain a polymer particle (A) having a core-shell structure.
  • the amount of water used in the emulsion polymerization is advantageously small from the viewpoint of productivity, but if the concentration of the emulsion is too high, problems occur in liquid viscosity and stability, heat removal of polymerization heat, and the like. From these viewpoints, the amount of water is preferably in the range of 1 to 10 parts by mass, and more preferably 1.2 to 6 parts by mass with respect to 1 part by mass of all the monomers including the core and the shell. Is more preferable, and the range of 1.5 to 3 parts by mass is more preferable.
  • the nonionic-anionic emulsifier has a structure of both a nonionic emulsifier and an anionic emulsifier.
  • the emulsifier include, for example, sodium, potassium or ammonium salts of aliphatic carboxylic acids such as laurate, myristate, palmitate, and stearate; disproportionation or hydrogenation of natural rosin Sodium salts, potassium salts or ammonium salts of sodium, potassium or ammonium salts of aliphatic sulfuric acid compounds such as lauryl sulfate, anionic emulsifiers such as potassium salts or ammonium salts, and polyoxyethylene alkyl ether sulfonates, polyoxyethylene alkylphenyl Nonion-anionic emulsifiers such as ether sulfonates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, polyoxyethylene alkyl ether sulfates, etc. may be mentioned.
  • the counter cations of these salts include sodium, potassium or ammonium.
  • the nonionic emulsifier Since the nonionic emulsifier has a cloud point at high temperature, the emulsification performance is lowered even if it is a temperature below the cloud point, if it has a step to become high temperature during production when using the emulsion composition for various applications Aggregation is likely to occur. From the viewpoint of suppressing the aggregation, it is preferable to use an anionic or nonionic-anionic emulsifier, and in order to secure the thickness of the electric double layer of micelles, a nonionic-anionic system is more preferable. In this case, a reactive emulsifying agent may be used, but like the non-reactive emulsifying agents described above, nonionic-anionic systems are preferred.
  • the solubility of the monomer in water is approximately 1% by mass or less, the following relationship is known between the emulsifier addition amount and the particle concentration (example of reference material: "chemistry of polymer latex", Polymer Journal , Muroi Soichi, published in May 1995).
  • Particle concentration k ⁇ (emulsifier concentration) (3/5)
  • k is a constant which varies depending on the type of emulsifier. Therefore, the target particle concentration may be calculated from the target particle diameter, the amount of monomers, and the amount of water, and the emulsifier amount corresponding thereto may be added.
  • the emulsifying agent is generally dissolved in water from the beginning of the polymerization, but it is possible to add it later, or the emulsifying agent may be added sequentially with the monomer.
  • a material that forms a protective colloid may be added.
  • a material that forms a protective colloid it is possible to adjust the storage stability of the polymer particles (A) and the affinity with the polyvinyl alcohol resin (B).
  • the material forming the protective colloid include nonionic emulsifiers such as polyoxyethylene octyl phenyl ether and polyoxyethylene nonyl phenyl ether, and polyvinyl alcohol.
  • the polymerization initiator used in the emulsion polymerization is basically a water-soluble azo-based or peroxide-based polymerization initiator, but an oil-soluble polymerization initiator may be used if necessary.
  • polymerization initiator examples include, for example, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazoline-2-) [I] propane] disulphate dihydrate, 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate , 2,2'-azobis [2- (2-imidazolin-2-yl) propane, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 4,4'- Azobis (4-cyanovaleric acid), azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), 2 Azo compounds such as 2'-azobis (4-methoxy-2,4-dimethylvaleronitrile); inorganic peroxides such as sodium
  • a redox polymerization initiator system may be used in which the organic peroxide or hydrogen peroxide and a transition metal salt are mixed to generate a radical by an oxidation reduction reaction.
  • transition metal salt examples include iron (II) sulfate, iron (II) thiosulfate, iron (II) carbonate, iron (II) chloride, iron (II) bromide, iron (II) iodide, hydroxide Iron (II), iron (II) oxide, copper (I) sulfate, copper (I) thiosulfate, copper (I) carbonate, copper (I) chloride, copper (I) bromide, copper (I) iodide, Examples include copper (I) hydroxide, copper (I) oxide, and hydrates thereof.
  • a reducing agent such as sodium hydroxymethanesulfinate and sodium ascorbate
  • metal ion chelating agents such as disodium dihydrogen ethylenediaminetetraacetate disodium
  • electrolytes such as sodium chloride, sodium sulfate and trisodium phosphate.
  • the polymerization initiator or redox polymerization initiator system may be added to water from the initial stage of polymerization, or may be added continuously or intermittently.
  • the consumption rate of the polymerization initiator system is often fast in the redox polymerization initiator system, it is desirable to additionally add the polymerization initiator system to compensate for this.
  • additives include antioxidants, light stabilizers, preservatives and the like. Specific examples thereof include hindered phenol compounds such as 2,6-di-t-butyl-4-methylphenol and hindered amine compounds such as diphenyl-p-phenylenediamine. These may be used alone or in combination of two or more. The addition amount thereof is usually about 0.05 to 5 parts by mass with respect to 100 parts by mass of the used monomer. Although these additions are generally added to the emulsion after completion of the emulsion polymerization, they may be added from the beginning of the polymerization as long as they do not affect the polymerization reaction.
  • the polymerization rate decreases but also the particle size increases due to the decrease in the concentration of micelles, which is the place of polymerization.
  • 0.1 mass% or more of the core monomer whole is preferable, and 1 mass% or more of the amount of core monomers initially added collectively is more preferable.
  • 10 mass% or less of the core monomer whole is preferable, and 7 mass% or less of the said core monomer amount is more preferable.
  • polyvinyl alcohol resins (B) examples include polyvinyl alcohol homopolymer resins, polyvinyl butyral, and copolymer resins containing vinyl alcohol units. These polyvinyl alcohol resins may be used alone or in combination of two or more. Examples of copolymer resins containing vinyl alcohol units include ethylene-vinyl alcohol copolymer resins and the like.
  • a resin used for the polyvinyl alcohol resin (B) it is desirable to use a resin used for the polyvinyl alcohol resin (B) as an aqueous solution, but in the case of a water-insoluble resin, it may be used as an aqueous dispersion. Moreover, when it becomes an aqueous solution in the process of emulsion composition manufacture, it is also possible to mix polymer particle (A) in the process.
  • An emulsion composition is obtained by mixing an aqueous solution or a dispersion of the polymer particles (A) and the polyvinyl alcohol resin (B).
  • concentration of the aqueous solution of polyvinyl alcohol homopolymer resin is high, crystallization occurs in the solution to form a three-dimensional structure to form a gel, so it is desirable to heat depending on the concentration.
  • a water-insoluble resin such as ethylene-vinyl alcohol copolymer resin can be uniformly mixed with the polymer particles (A) having a core-shell structure by finely dispersing in water.
  • a uniform emulsion composition can be obtained by means of finely dispersing the resin itself, but in the case of polyvinyl butyral, after mixing polymer particles (A) with an aqueous solution of polyvinyl alcohol homopolymer resin, A method of acetalization can also be employed.
  • the mass ratio of the polymer particles (A) is less than 1, when using the emulsion composition for various applications, the toughness imparting effect, the softening effect and the like possessed by the polymer particles (A) are insufficient.
  • the said mass ratio of a polymer particle (A) is larger than 50, a polymer particle (A) will aggregate significantly at the manufacturing process of the high temperature at the time of using an emulsion composition for various uses.
  • the emulsion composition of the present invention can be suitably used for various films such as packaging films and oxygen via films, binders used for adhesives and coatings, vehicles included in inks and paints, fibers and the like.
  • a film can be obtained by casting from the emulsion composition.
  • hot air is used for drying, the surface is dried to form a film, so that it takes time to dry to the inside as well as problems such as bubble biting tend to occur. Therefore, it is desirable that the film be formed by heating from the lower surface side of the cast. Furthermore, continuous film formation is also possible by using a drum roll.
  • the fiber can be obtained from the emulsion composition by a wet spinning method, and can be a fiber in which polymer particles (A) having a core-shell structure are dispersed. That is, fibers can be obtained by using the emulsion composition as a spinning solution and discharging it from the nozzle into the coagulating solution.
  • the polyvinyl alcohol homopolymer resin is dissolved in water as it is, it is desirable to make it insoluble in water as a fiber acetalized with formaldehyde after being fiberized.
  • Tg ⁇ Glass transition temperature
  • the solid content was taken out of the solution containing the polymer particles (A) obtained by the synthesis example by a salting-out method, sufficiently dried, and then the Tg was determined by a differential scanning calorimeter.
  • Tg of a core and a shell is measured simultaneously, among the intermediate points calculated
  • DSC 822 manufactured by METTLER TOLEDO
  • Synthesis Example 1 Polymer particle 1; poly (tricyclodecyl methacrylate) shell 300 parts by mass of ion exchange water was charged in a reaction vessel with a reflux condenser, and 35.7 parts by mass of Latem ASK (emulsifier, dipotassium alkenyl succinic acid, manufactured by Kao Corp.) 35.7 parts by mass and 0.2 parts by mass of potassium persulfate were added. After performing nitrogen substitution at room temperature for about 30 minutes, the temperature is raised to 60 ° C.
  • Latem ASK emulsifier, dipotassium alkenyl succinic acid, manufactured by Kao Corp.
  • Synthesis Example 2 Polymer particles 2; poly (tricyclodecyl methacrylate) shell
  • a solution containing polymer particles 2 was obtained in the same manner as in Synthesis Example 1 except that in the synthesis example 1, Latemul E-108 MB (sodium polyoxyethylene alkyl ether sulfate, manufactured by Kao Corporation) was used as the emulsifier.
  • the average particle size of the polymer particles 2 measured by dynamic light scattering was 61.3 nm.
  • the Tg of the shell measured by DSC was 175 ° C.
  • Synthesis Example 3 (Polymer particle 3; polymethyl methacrylate (PMMA) shell)
  • a solution containing polymer particles 3 was obtained in the same manner as in Synthesis Example 1 except that the monomer of the shell was changed to methyl methacrylate.
  • the average particle size of the polymer particles 3 measured by dynamic light scattering was 59.8 nm.
  • the Tg of the shell measured by DSC was 117 ° C.
  • Synthesis Example 4 (Polymer particle 4; without shell) 300 parts by mass of ion exchange water was charged in a reaction vessel with a reflux condenser, and 35.7 parts by mass of Latem ASK (emulsifier, dipotassium alkenyl succinic acid, manufactured by Kao Corp.) 35.7 parts by mass and 0.2 parts by mass of potassium persulfate were added. After performing nitrogen substitution at room temperature for about 30 minutes, the temperature is raised to 60 ° C. and held at that temperature for 15 minutes, then 100 parts by mass of butyl acrylate, 0.5 parts by mass of trimethylolpropane trimethacrylate, 1.0 part of allyl methacrylate The mixture of parts by weight was continuously added over about 1 hour. After completion of the addition, the solution was maintained for 1 hour, and then heated to 100 ° C. and heated for 1 hour to obtain a solution containing polymer particles 4. The average particle size of the polymer particles 4 measured by dynamic light scattering was 52.2 nm.
  • Example 1 (Emulsion Composition 1) A 10% by mass aqueous solution of polyvinyl alcohol having a degree of polymerization of 2400 and a degree of saponification of 98% and polymer particles 1 are mixed so that the mass ratio of polymer particles 1 to polyvinyl alcohol resin is 20:80 in terms of solid content, Emulsion Composition 1 was prepared. When the above-mentioned high temperature test was conducted on this composition, no formation of large aggregates was observed under the conditions of the high temperature test. The average particle size of the aggregate measured by dynamic light scattering after the high temperature test is shown in Table 1.
  • Emulsion compositions 2 and 3 were obtained in the same manner as in Example 1 except that polymer particles 2 or 3 were used in Example 1. When the above-mentioned high temperature test was conducted on this composition, no formation of large aggregates was observed under the conditions of the high temperature test. The average particle size measured by dynamic light scattering after the high temperature test is shown in Table 1.
  • Comparative Example 1 (Emulsion Composition 4) An emulsion composition 4 was obtained in the same manner as in Example 1 except that polymer particles 4 were used in Example 1. When the above-mentioned high temperature test was conducted on this emulsion composition, the liquid became cloudy, and the formation of giant aggregates of polymer particles 4 of milliorder could be visually confirmed. It was judged that dynamic light scattering measurement was not possible because of significant aggregation.
  • Example 4 film made of an emulsion composition
  • a glass plate was placed on a hot plate, and a polyethylene terephthalate film (Lumirror, manufactured by Toray Industries, Inc.) was spread and heated to 60 ° C.
  • the emulsion composition after the high temperature test in Example 1 was cast with a wire bar and dried to obtain a film 1. Even when the film was bent, it was flexible without any cracks or traces of bending.
  • Comparative Example 2 Polyvinyl alcohol (PVA) plain film
  • Film 2 was obtained in the same manner as in Example 4 except that a 10 mass% aqueous solution of polyvinyl alcohol having a degree of polymerization of 2400 and a degree of saponification of 98% was used instead of the emulsion composition of Example 1.
  • an emulsion composition which is not easily aggregated even at high temperatures.
  • films, fibers and the like without agglomerates can be obtained.

Abstract

An emulsion composition which contains (A) polymer particles having a core-shell structure and (B) a polyvinyl alcohol resin, and wherein: a polymer that constitutes the shell of the polymer particles (A) has a glass transition temperature of 100°C or higher; and the mass ratio of the polymer particles (A) to the polyvinyl alcohol resin (B), namely (A):(B) is within the range of from 1:99 to 50:50.

Description

エマルション組成物Emulsion composition
 本発明は、コアシェル構造を有する重合体粒子とポリビニルアルコール系樹脂を含むエマルション組成物及びその用途に関する。 The present invention relates to an emulsion composition containing polymer particles having a core-shell structure and a polyvinyl alcohol resin, and uses thereof.
 ポリビニルアルコール系樹脂は、ビニルアルコールの構成単位からなる単独樹脂に加えて、さらにエチレン等の構成単位を有する共重合樹脂を含み、これらは包装用フィルム、酸素バリアフィルム、接着剤、塗料等広範な用途分野に使用されている。また、ポリビニルアルコールは、その一部をホルムアルデヒドでアセタール化することでビニロン繊維としても利用されている。さらに、ポリビニルアルコールをブチルアルデヒドでアセタール化した重合樹脂はポリビニルブチラールと呼ばれ、各種バインダーや合わせガラスの中間膜等に利用されている。 The polyvinyl alcohol-based resin further includes a copolymer resin having a constituent unit such as ethylene in addition to a single resin composed of a constituent unit of vinyl alcohol, and these include a wide range of films for packaging, oxygen barrier films, adhesives, paints, etc. It is used in the application field. In addition, polyvinyl alcohol is also used as vinylon fiber by acetalizing part of it with formaldehyde. Furthermore, a polymer resin obtained by acetalizing polyvinyl alcohol with butyraldehyde is called polyvinyl butyral, and is used for various binders, an intermediate film of laminated glass, and the like.
 これらの用途の中でも、特にビニロン繊維やフィルムの用途では柔軟化や靱性化の要求が強い。例えばビニロン繊維では、ソフトな風合いや強度保持の目的で、後乳化したエチレン-ビニルアルコール共重合樹脂の重合体粒子をポリビニルアルコール水溶液に添加して紡糸原液とし、これを紡糸した後アセタール化することが提案されている(特許文献1)。また、エチレン-ビニルアルコール共重合樹脂からなるフィルムの柔軟化では、バリア性を保持するためにブチルゴム等のバリア性の高いゴムをブレンドする等の方法が検討されている。一方、ポリビニルブチラールからなるフィルムの柔軟化では可塑剤を添加する方法等も提案されている。 Among these applications, particularly in applications of vinylon fibers and films, the demand for softening and toughening is strong. For example, in vinylon fibers, polymer particles of a post-emulsified ethylene-vinyl alcohol copolymer resin are added to a polyvinyl alcohol aqueous solution to make a spinning stock solution for the purpose of soft feeling and strength retention, and it is spun after being spun and acetalized. Has been proposed (Patent Document 1). In addition, in the softening of a film made of an ethylene-vinyl alcohol copolymer resin, a method of blending a rubber having a high barrier property such as butyl rubber in order to maintain the barrier property has been studied. On the other hand, a method of adding a plasticizer and the like are also proposed for softening a film made of polyvinyl butyral.
特公昭47-42050号公報Japanese Patent Publication No. 47-42050
 しかしながら、重合体粒子を添加する場合、ビニロン繊維やフィルムの製造工程において、ポリビニルアルコール系樹脂の水溶液又は水分散液が高温の条件下となる工程があり、製造条件によっては重合体粒子の凝集が起こり、均一な水溶液又は水分散液が得られないことが大きな課題となっている。また、ゴムをブレンドする場合、工程の履歴によってはミクロな形態が変化するため、実質的には安定した性能のフィルムを得ることが難しい。 However, when polymer particles are added, there is a step in which the aqueous solution or aqueous dispersion of the polyvinyl alcohol resin becomes high temperature in the process of producing vinylon fibers and films, and depending on the production conditions, aggregation of polymer particles may occur. The major problem is that a uniform aqueous solution or dispersion can not be obtained. In addition, when blending rubber, it is difficult to obtain a film with substantially stable performance because the micro morphology changes depending on the process history.
 本発明は、上述のような事情に基づいてなされたものであり、高温の条件下においても重合体粒子が凝集しにくいエマルション組成物を提供することを目的とする。 The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide an emulsion composition in which polymer particles are less likely to aggregate even under high temperature conditions.
 上記課題を解決すべく本発明者らが鋭意検討を重ねた結果、ポリビニルアルコール系樹脂の水溶液又は水分散液に、ガラス転移温度(以下、「Tg」と略記することがある。)が100℃以上である重合体をシェルとする重合体粒子を混合することによって、高温の条件下において重合体粒子が凝集しにくいエマルション組成物を得られることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。 As a result of extensive investigations by the present inventors to solve the above problems, the glass transition temperature (hereinafter sometimes abbreviated as "Tg") of the aqueous solution or aqueous dispersion of polyvinyl alcohol resin is 100 ° C. It has been found that by mixing polymer particles having the above-described polymer as a shell, it is possible to obtain an emulsion composition in which polymer particles are less likely to aggregate under high temperature conditions, and repeated studies based on the above findings The present invention has been completed.
 すなわち、本発明は、
 コアシェル構造を有する重合体粒子(A)とポリビニルアルコール系樹脂(B)を含むエマルション組成物であって、
 該重合体粒子(A)のシェルを構成する重合体のガラス転移温度が100℃以上であり、
 該重合体粒子(A)と該ポリビニルアルコール系樹脂(B)の質量比が(A):(B)=1:99~50:50の範囲であるエマルション組成物、である。
That is, the present invention
An emulsion composition comprising a polymer particle (A) having a core-shell structure and a polyvinyl alcohol resin (B),
The glass transition temperature of the polymer constituting the shell of the polymer particles (A) is 100 ° C. or higher,
The emulsion composition is such that the mass ratio of the polymer particles (A) to the polyvinyl alcohol resin (B) is in the range of (A) :( B) = 1: 99 to 50:50.
 本発明によれば、高温の条件下においても重合体粒子が凝集しにくいエマルション組成物が提供される。 According to the present invention, an emulsion composition is provided in which polymer particles are less likely to aggregate even under high temperature conditions.
 以下、本発明について、詳細に説明する。
 なお、本明細書において「(メタ)アクリル」とは「メタクリル」と「アクリル」との総称を意味し、「(メタ)アクリレート」とは「メタクリレート」と「アクリレート」との総称を意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, “(meth) acrylic” means a generic name of “methacrylic” and “acrylic”, and “(meth) acrylate” means a generic name of “methacrylate” and “acrylate”.
 本発明のエマルション組成物は、コアシェル構造を有する重合体粒子(A)とポリビニルアルコール系樹脂(B)を含み、重合体粒子(A)のシェルを構成する重合体のTgが100℃以上であり、重合体粒子(A)とポリビニルアルコール系樹脂(B)の質量比が(A):(B)=1:99~50:50の範囲である。 The emulsion composition of the present invention comprises a polymer particle (A) having a core-shell structure and a polyvinyl alcohol resin (B), and the Tg of the polymer constituting the shell of the polymer particle (A) is 100 ° C. or higher The mass ratio of the polymer particles (A) to the polyvinyl alcohol resin (B) is in the range of (A) :( B) = 1: 99 to 50:50.
<重合体粒子(A)>
 本発明の重合体粒子(A)は、コア及び該コアの少なくとも一部を被覆するシェルからなるコアシェル構造を有する。
<Polymer particles (A)>
The polymer particle (A) of the present invention has a core-shell structure comprising a core and a shell covering at least a part of the core.
 重合体粒子(A)の平均粒子径に特に限定はないが、マトリックスとなる樹脂によって適する平均粒子径があることが知られているため(例えば、A.Morgolina and S. Wu,Polymer, 29, 2170(1988))、本発明の効果を得るのに効果的な平均粒子径に設定することが好ましく、上記適する平均粒子径の1/10~10倍とすることが好ましい。また、透明性が必要な用途においては、上記平均粒子径は200nm以下が好ましく、100nm以下がより好ましく、70nm以下がさらに好ましい。また、上記平均粒子径は1nm以上が好ましく、5nm以上がより好ましい。
 なお、重合体粒子(A)の平均粒子径は、後述する実施例に記載の方法により測定される。
The average particle size of the polymer particles (A) is not particularly limited, but it is known that there is a suitable average particle size depending on the matrix resin (for example, A. Morgolina and S. Wu, Polymer, 29, 2170 (1988)), it is preferable to set an average particle diameter effective to obtain the effect of the present invention, and it is preferable to set the average particle diameter to 1/10 to 10 times the suitable average particle diameter. Moreover, in the application which needs transparency, 200 nm or less is preferable, as for the said average particle diameter, 100 nm or less is more preferable, and 70 nm or less is more preferable. Moreover, 1 nm or more is preferable and, as for the said average particle diameter, 5 nm or more is more preferable.
In addition, the average particle diameter of a polymer particle (A) is measured by the method as described in the Example mentioned later.
(コア)
 コアを構成する重合体は、一種の単量体単位からなる重合体でもよく、複数種の単量体単位からなる共重合体でもよい。また、複数の重合体の混合物であってもよい。コアを構成する単量体は特に限定されないが、ラジカル重合性があること、及び水への溶解度が10質量%未満であることが好ましい。水への溶解度が10質量%未満であれば、水相で重合が起こるおそれがないため乳化重合法での製造が容易となる。
(core)
The polymer constituting the core may be a polymer composed of one kind of monomer unit, or a copolymer composed of plural kinds of monomer units. Also, it may be a mixture of a plurality of polymers. Although the monomer which comprises a core is not specifically limited, It is preferable that it is radically polymerizable and the solubility to water is less than 10 mass%. If the solubility in water is less than 10% by mass, there is no possibility of polymerization occurring in the aqueous phase, and the production in the emulsion polymerization method becomes easy.
 コアを構成する単量体の具体例としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、ラウリル(メタ)アクリル酸ラウリル、ドデシル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、2-(トリメチルシリルオキシ)エチル(メタ)アクリレート、3-(トリメチルシリルオキシ)プロピル(メタ)アクリレート等の(メタ)アクリル酸エステル;スチレン、インデン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブトキシスチレン、p-クロロメチルスチレン、p-アセトキシスチレン、ジビニルベンゼン等の芳香族ビニル化合物;酢酸ビニル;塩化ビニル等のハロゲン化ビニル化合物;ブタジエン、イソプレン等の共役ジエン化合物;アクリロニトリル等のその他のビニル化合物;等が挙げられる。これらの単量体は、1種単独で用いてもよく、2種以上組み合わせて使用してもよい。 Specific examples of the monomer constituting the core include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t -Butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecyl (meth) acrylate, lauryl (meth) acrylate lauryl, dodecyl (meth) acrylate, tri Methoxysilylpropyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, phenyl (meth) acrylate (Meth) acrylic acid esters such as naphthyl (meth) acrylate, 2- (trimethylsilyloxy) ethyl (meth) acrylate, 3- (trimethylsilyloxy) propyl (meth) acrylate; styrene, indene, p-methylstyrene, α-methylstyrene Aromatic vinyl compounds such as styrene, p-methoxystyrene, p-tert-butoxystyrene, p-chloromethylstyrene, p-acetoxystyrene and divinylbenzene; vinyl acetate; halogenated vinyl compounds such as vinyl chloride; butadiene, isoprene and the like Conjugated diene compounds of the above; other vinyl compounds such as acrylonitrile; and the like. These monomers may be used alone or in combination of two or more.
 前記単量体の中でも、力学特性を確保する観点からは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2-(トリメチルシリルオキシ)エチル(メタ)アクリレート、3-(トリメチルシリルオキシ)プロピル(メタ)アクリレート等の炭素数10以下の側鎖を有する(メタ)アクリル酸エステル;スチレン、酢酸ビニル、塩化ビニル、ブタジエン、及びイソプレンが好ましい。 Among the above monomers, from the viewpoint of securing mechanical properties, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t-Butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecyl (meth) acrylate, trimethoxysilylpropyl (meth) acrylate, N, N-dimethyl Aminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2- (trimethylsilyloxy) ethyl (meth) acrylate, 3 (Meth) acrylic acid ester having a side chain having 10 or less carbon atoms such as (trimethylsilyloxy) propyl (meth) acrylate; styrene, vinyl acetate, vinyl chloride, butadiene, and isoprene are preferred.
 重合体粒子(A)を含有するエマルション組成物を用いてなるフィルムや繊維等に柔軟性を付与するためには、コアを構成する重合体のTgが各用途での最低使用温度以下であることが好ましい。具体的には、コアを構成する重合体のTgは-10℃以下であることが好ましく、-20℃以下であることがより好ましい。また、コアを構成する重合体のTgは-100℃以上であることが好ましく、-80℃以上であることがより好ましい。 In order to impart flexibility to a film, fiber or the like made of an emulsion composition containing polymer particles (A), the Tg of the polymer constituting the core should be equal to or less than the minimum use temperature in each application Is preferred. Specifically, the Tg of the polymer constituting the core is preferably −10 ° C. or less, more preferably −20 ° C. or less. The Tg of the polymer constituting the core is preferably −100 ° C. or higher, and more preferably −80 ° C. or higher.
 ここで、多元共重合体のTgは下記のFoxの式で求められる。
 1/Tg=fw1/Tg1+fw2/Tg2+・・・
 なお、上記式においてTgは共重合体のTgを表し、fw1、fw2・・・は各成分の重量分率を表し、Tg1、Tg2・・・は、各成分の単独重合体のTgを表す。
 よって、上記式で求められるTgが、使用温度以下となるように共重合の組成比を決定することが好ましい。
Here, the Tg of the multicomponent copolymer can be obtained by the following Fox equation.
1 / Tg = fw1 / Tg1 + fw2 / Tg2 + ...
In the above formula, Tg represents the Tg of the copolymer, fw1, fw2 ... represents the weight fraction of each component, and Tg1, Tg2 ... represent the Tg of the homopolymer of each component.
Therefore, it is preferable to determine the composition ratio of copolymerization so that Tg calculated | required by the said Formula may become below operating temperature.
 コアには、架橋剤を添加して共重合することが一般的である。架橋剤を添加することにより、熱成形等の加工工程を経ても形状を保持することが可能となる。また、適度に架橋することによって破断強度等の力学物性を向上させることができる。
 通常上記架橋剤には、重合基を2つ有する2官能単量体が好適に使用されるが、3官能以上の多官能単量体を使用してコア重合体内の架橋密度の粗密の幅を大きくし、力学物性等を調整することも可能である。なお、ブタジエンやイソプレン等のジエン系単量体をコア単量体の全部又は一部に用いる場合には、重合後に不飽和二重結合が残存するため、これを架橋部とすることができる。
It is common to add a crosslinking agent to the core and copolymerize. By adding the crosslinking agent, it becomes possible to maintain the shape even after processing steps such as thermoforming. In addition, mechanical properties such as breaking strength can be improved by appropriately crosslinking.
Usually, a bifunctional monomer having two polymerizing groups is suitably used as the above-mentioned crosslinking agent, but using a trifunctional or higher polyfunctional monomer, the width of coarse density of the crosslink density in the core polymer is obtained. It is also possible to increase the size and adjust mechanical properties and the like. When a diene monomer such as butadiene or isoprene is used for all or part of the core monomer, an unsaturated double bond remains after polymerization, and this can be used as a crosslinked portion.
 架橋剤の具体例としては、例えば、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの両末端(メタ)アクリル酸付加体、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(2-(2,3-ジヒドロキシプロポキシ)エチル)イソシアヌレートトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド又はプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、水添ビスフェノールAのエチレンオキサイド又はプロピレンオキサイドの付加体であるジオールのジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート等が挙げられる。 Specific examples of the crosslinking agent include, for example, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol Di (meth) acrylic acid addition of di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, bisphenol A diglycidyl ether Body, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, polyester di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate , Tris (2- (2,3-dihydroxypropoxy) ethyl) isocyanurate tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, cyclohexane dimethanol di (meth) acrylate, tricyclo Decane dimethanol di (meth) acrylate, di (meth) acrylate of diol which is an adduct of ethylene oxide or propylene oxide of bisphenol A, di (meth) acrylate of an adduct of ethylene oxide or propylene oxide of hydrogenated bisphenol A ) Acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate and the like.
 さらに、コアにはグラフト剤を添加してもよい。グラフト剤を添加することにより、コアとシェルを化学的に結合させることが可能となり、種々の加工工程においても重合体粒子(A)の破壊を防止することができる。なお、ブタジエンやイソプレン等のジエン系単量体をコア単量体の全部又は一部に用いる場合には、重合後に残存する不飽和二重結合をグラフト剤の代用と見なすことができるため、多くの場合はグラフト剤の添加は不要である。 Furthermore, a grafting agent may be added to the core. The addition of the grafting agent makes it possible to chemically bond the core and the shell, and can prevent the breakage of the polymer particles (A) even in various processing steps. When a diene monomer such as butadiene or isoprene is used for all or part of the core monomer, the unsaturated double bond remaining after polymerization can be regarded as a substitute for a grafting agent, and thus many In the case of no addition of a grafting agent is necessary.
 グラフト剤の具体例としては、例えば、アリル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート等の(メタ)アクリル酸エステル等が挙げられる。 Specific examples of the grafting agent include, for example, (meth) acrylic acid esters such as allyl (meth) acrylate, dicyclopentenyl (meth) acrylate, tricyclodecyl (meth) acrylate and the like.
(シェル)
 シェルを構成する重合体は、一種の単量体単位からなる重合体でもよく、複数種の単量体単位からなる共重合体でもよい。また、複数の重合体の混合物であってもよい。
 シェルを構成する重合体のTgは100℃以上であり、より好ましくは110℃以上であり、さらに好ましくは120℃以上である。シェルを構成する重合体のTgが100℃よりも低いと、エマルション組成物を各種用途の製造に用いる際の高温の工程中で重合体粒子(A)が凝集するため、シェルを構成する重合体のTgは高いほど好ましい。ただし、あまりに高すぎるとポリビニルアルコール系樹脂との親和性が低下することがあるため、180℃以下であることが好ましい。
(shell)
The polymer constituting the shell may be a polymer composed of one kind of monomer unit, or a copolymer composed of plural kinds of monomer units. Also, it may be a mixture of a plurality of polymers.
The Tg of the polymer constituting the shell is 100 ° C. or more, more preferably 110 ° C. or more, and still more preferably 120 ° C. or more. When the Tg of the polymer constituting the shell is lower than 100 ° C., the polymer particles (A) are coagulated in the high temperature process when using the emulsion composition for production of various applications, so the polymer constituting the shell The higher the Tg of, the better. However, if it is too high, the affinity with the polyvinyl alcohol resin may be lowered, so the temperature is preferably 180 ° C. or less.
 シェルを構成する単量体は特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、2-(トリメチルシリルオキシ)エチル(メタ)アクリレート、3-(トリメチルシリルオキシ)プロピル(メタ)アクリレート等の(メタ)アクリル酸エステル;スチレン、インデン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブトキシスチレン、p-クロロメチルスチレン、p-アセトキシスチレン、ジビニルベンゼン等の芳香族ビニル化合物;酢酸ビニル;塩化ビニル等のハロゲン化ビニル化合物;ブタジエン、イソプレン等の共役ジエン化合物;アクリロニトリル等のその他のビニル化合物;等が挙げられる。これらの単量体は、1種単独で用いてもよく、2種以上組み合わせて使用してもよい。 Although the monomer which comprises a shell is not specifically limited, For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t -Butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecyl (meth) acrylate, lauryl (meth) acrylate, dodecyl (meth) acrylate, trimethoxysilyl Propyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, phenyl (meth) acrylate (Meth) acrylic acid esters such as naphthyl (meth) acrylate, 2- (trimethylsilyloxy) ethyl (meth) acrylate, 3- (trimethylsilyloxy) propyl (meth) acrylate; styrene, indene, p-methylstyrene, α-methylstyrene Aromatic vinyl compounds such as styrene, p-methoxystyrene, p-tert-butoxystyrene, p-chloromethylstyrene, p-acetoxystyrene and divinylbenzene; vinyl acetate; halogenated vinyl compounds such as vinyl chloride; butadiene, isoprene and the like Conjugated diene compounds of the above; other vinyl compounds such as acrylonitrile; and the like. These monomers may be used alone or in combination of two or more.
 前記単量体の中でも、力学特性を確保する観点からは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2-(トリメチルシリルオキシ)エチル(メタ)アクリレート、3-(トリメチルシリルオキシ)プロピル(メタ)アクリレート等の炭素数10以下の側鎖を有する(メタ)アクリル酸エステル;スチレン、酢酸ビニル、塩化ビニル、ブタジエン、及びイソプレンが好ましい。 Among the above monomers, from the viewpoint of securing mechanical properties, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t-Butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecyl (meth) acrylate, trimethoxysilylpropyl (meth) acrylate, N, N-dimethyl Aminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2- (trimethylsilyloxy) ethyl (meth) acrylate, 3 (Meth) acrylic acid ester having a side chain having 10 or less carbon atoms such as (trimethylsilyloxy) propyl (meth) acrylate; styrene, vinyl acetate, vinyl chloride, butadiene, and isoprene are preferred.
 また、エマルション組成物を各種用途に用いる際に、高温の条件となる製造工程において、シェルが融着して凝集する可能性があるため、シェルを構成する重合体のTgは製造工程の温度以上であることが好ましい。ただし、シェルのTgが上記製造工程の温度以下であってもシェルに十分な架橋を導入することによって重合体粒子(A)同士の融着を抑制することができる。 In addition, when the emulsion composition is used in various applications, the shell may be fused and aggregated in the manufacturing process under high temperature conditions, so the Tg of the polymer constituting the shell is higher than the temperature of the manufacturing process. Is preferred. However, fusion of the polymer particles (A) can be suppressed by introducing sufficient crosslinking to the shell even if the Tg of the shell is equal to or lower than the temperature of the above-mentioned production process.
 シェルには、必要に応じて連鎖移動剤を添加することができる。連鎖移動剤を添加することにより、分子量を調整して溶融流動性を確保することが可能となる。さらに、ポリビニルアルコール系樹脂(B)との相互作用の程度を制御することができる。 A chain transfer agent can be added to the shell as needed. By adding the chain transfer agent, it becomes possible to adjust the molecular weight to secure the melt flowability. Furthermore, the degree of interaction with the polyvinyl alcohol resin (B) can be controlled.
 連鎖移動剤の具体例としては、例えば、2-メルカプトエタノール、3-メルカプト-1,3-プロパンジオール、メルカプト酢酸、メルカプト酢酸メチル、メルカプト酢酸エチル、メルカプト酢酸2-エチルヘキシル、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸nヘキシル、3-メルカプトプロピオン酸シクロヘキシル、3-メルカプトプロピオン酸2-エチルヘキシル、3-メルカプトプロピオン酸nオクチル、3-メルカプトプロピオン酸nドデシル、3-メルカプトプロピオン酸nトリデシル、メルカプトサクシン酸、ブタンチオール、オクタンチオール、n-ドデカンチオール、t-ドデカンチオール、ヘキサドデカンチオール、オクタドデカンチオール、シクロヘキサンチオール、チオフェノール等のチオール類;ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲンジスルフィド化合物;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド等のチウラムジスルフィド化合物;四塩化炭素等のハロゲン化炭化水素化合物;2,4-ジフェニル-4-メチル-1-ペンテン等の芳香族化合物が挙げられる。 Specific examples of the chain transfer agent include, for example, 2-mercaptoethanol, 3-mercapto-1,3-propanediol, mercaptoacetic acid, methyl mercaptoacetate, ethyl mercaptoacetate, 2-ethylhexyl mercaptoacetate, 3-mercaptopropionic acid, Methyl 3-mercaptopropionate, n-hexyl 3-mercaptopropionate, cyclohexyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, n-octyl 3-mercaptopropionate, n-dodecyl 3-mercaptopropionate, 3-mercapto N-Tridecyl propionate, mercaptosuccinic acid, butanethiol, octanethiol, n-dodecanethiol, t-dodecanethiol, hexadodecanethiol, octadodecanethiol, cyclohexane Thiols such as diols, thiophenols and the like; xanthogen disulfide compounds such as dimethylxanthogen disulfide, diethylxanthogen disulfide and diisopropylxanthogen disulfide; thiuram disulfide compounds such as tetramethylthiuram disulfide and tetraethylthiuram disulfide; halogenated hydrocarbon compounds such as carbon tetrachloride And aromatic compounds such as 2,4-diphenyl-4-methyl-1-pentene.
 連鎖移動反応は重合の場であるミセル中で起こり、単量体と連鎖移動剤の比で分子量が決まるため、単量体と同程度にミセルに到達するものにすることが望ましい。即ち、使用する単量体と同程度の親水性、疎水性を有する連鎖移動剤を選ぶことが好ましい。 Since the chain transfer reaction takes place in micelles, which are the place of polymerization, and the molecular weight is determined by the ratio of the monomer to the chain transfer agent, it is desirable to make the micelle reach the same extent as the monomer. That is, it is preferable to select a chain transfer agent having the same degree of hydrophilicity and hydrophobicity as the monomer to be used.
 重合体粒子(A)におけるシェルの含有率は、重合体粒子(A)全体の質量に基づいて、1~50質量%であることが好ましく、5~30質量%であることがより好ましい。 The content of the shell in the polymer particles (A) is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass, based on the total mass of the polymer particles (A).
(重合体粒子(A)の製造方法)
 重合体粒子(A)の製造方法は特に限定されないが、例えば、乳化重合法が採用できる。具体的には、まずコアを構成する単量体を重合してコア粒子を合成した後、そのコア粒子を含むエマルションにシェルを構成する単量体を連続又は断続で添加して重合することによりシェルを形成させ、コアシェル構造を有する重合体粒子(A)を得ることができる。
(Method of producing polymer particles (A))
Although the manufacturing method of polymer particle (A) is not specifically limited, For example, an emulsion polymerization method is employable. Specifically, first, the core particles are synthesized by polymerizing the monomers constituting the core, and then the monomers constituting the shell are continuously or intermittently added to the emulsion containing the core particles to carry out polymerization. A shell can be formed to obtain a polymer particle (A) having a core-shell structure.
 乳化重合において用いる水の量は、生産性の観点では少ないほうが有利だが、エマルションの濃度が高すぎると液粘度や安定性、及び重合熱の除熱等で問題が生ずる。これらの観点から水の量は、コア及びシェルを含めた全単量体1質量部に対して、1~10質量部の範囲であることが好ましく、1.2~6質量部の範囲であることがより好ましく、1.5~3質量部の範囲であることがさらに好ましい。 The amount of water used in the emulsion polymerization is advantageously small from the viewpoint of productivity, but if the concentration of the emulsion is too high, problems occur in liquid viscosity and stability, heat removal of polymerization heat, and the like. From these viewpoints, the amount of water is preferably in the range of 1 to 10 parts by mass, and more preferably 1.2 to 6 parts by mass with respect to 1 part by mass of all the monomers including the core and the shell. Is more preferable, and the range of 1.5 to 3 parts by mass is more preferable.
 乳化重合で使用する乳化剤としては、アニオン系、ノニオン系、ノニオン-アニオン系等、一般的なものが挙げられる。ノニオン-アニオン系乳化剤とは、ノニオン系乳化剤とアニオン系乳化剤の両方の構造を有するものである。
 乳化剤の具体例としては、例えば、ラウリン酸塩、ミリスチン酸塩、パルミチン酸塩、ステアリン酸塩等の脂肪族カルボン酸のナトリウム塩、カリウム塩又はアンモニウム塩;天然ロジンの不均化又は水添物のナトリウム塩、カリウム塩又はアンモニウム塩;ラウリル硫酸塩等の脂肪族硫酸化合物のナトリウム塩、カリウム塩又はアンモニウム塩等のアニオン系乳化剤、及び、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸等のノニオン-アニオン系乳化剤が挙げられる。これら塩の対カチオンとしては、ナトリウム、カリウム又はアンモニウムが挙げられる。
As an emulsifier used by emulsion polymerization, general things, such as an anion type, nonionic type, nonionic anion type, are mentioned. The nonionic-anionic emulsifier has a structure of both a nonionic emulsifier and an anionic emulsifier.
Specific examples of the emulsifier include, for example, sodium, potassium or ammonium salts of aliphatic carboxylic acids such as laurate, myristate, palmitate, and stearate; disproportionation or hydrogenation of natural rosin Sodium salts, potassium salts or ammonium salts of sodium, potassium or ammonium salts of aliphatic sulfuric acid compounds such as lauryl sulfate, anionic emulsifiers such as potassium salts or ammonium salts, and polyoxyethylene alkyl ether sulfonates, polyoxyethylene alkylphenyl Nonion-anionic emulsifiers such as ether sulfonates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, polyoxyethylene alkyl ether sulfates, etc. may be mentioned. The counter cations of these salts include sodium, potassium or ammonium.
 ノニオン系乳化剤は高温に曇点を有することから、エマルション組成物を各種用途に用いる際の製造時に高温となる工程を有する場合には、それが曇点以下の温度であっても乳化性能が低下するため凝集が起こりやすい。凝集を抑制する観点からアニオン系又はノニオン-アニオン系の乳化剤を用いるのが好ましく、また、ミセルの電気二重層の厚みを確保するためノニオン-アニオン系がより好ましい。この場合、反応性乳化剤としてもよいが、上述の非反応性乳化剤と同様にノニオン-アニオン系が好ましい。 Since the nonionic emulsifier has a cloud point at high temperature, the emulsification performance is lowered even if it is a temperature below the cloud point, if it has a step to become high temperature during production when using the emulsion composition for various applications Aggregation is likely to occur. From the viewpoint of suppressing the aggregation, it is preferable to use an anionic or nonionic-anionic emulsifier, and in order to secure the thickness of the electric double layer of micelles, a nonionic-anionic system is more preferable. In this case, a reactive emulsifying agent may be used, but like the non-reactive emulsifying agents described above, nonionic-anionic systems are preferred.
 単量体の水への溶解度がおおよそ1質量%以下の場合、乳化剤添加量と粒子濃度には以下の関係が知られている(参考資料例:「高分子ラテックスの化学」、高分子刊行会、室井宗一著、1995年5月発行)。
 粒子濃度=k×(乳化剤濃度)(3/5)
 ここで、kは乳化剤種によって異なる定数である。
 したがって、目標粒子径と単量体量及び水の量から目標の粒子濃度を算出し、それに見合う乳化剤量を添加すればよい。
 通常、乳化剤は重合の初期から水に溶解させておくのが一般的であるが、後添加することも可能であり、また単量体とともに乳化剤を逐次添加してもよい。
When the solubility of the monomer in water is approximately 1% by mass or less, the following relationship is known between the emulsifier addition amount and the particle concentration (example of reference material: "chemistry of polymer latex", Polymer Journal , Muroi Soichi, published in May 1995).
Particle concentration = k × (emulsifier concentration) (3/5)
Here, k is a constant which varies depending on the type of emulsifier.
Therefore, the target particle concentration may be calculated from the target particle diameter, the amount of monomers, and the amount of water, and the emulsifier amount corresponding thereto may be added.
Usually, the emulsifying agent is generally dissolved in water from the beginning of the polymerization, but it is possible to add it later, or the emulsifying agent may be added sequentially with the monomer.
 乳化重合において、保護コロイドを形成する材料を添加してもよい。保護コロイドを形成する材料を添加することにより、重合体粒子(A)の保存安定性やポリビニルアルコール系樹脂(B)との親和性を調整することが可能となる。
 保護コロイドを形成する材料としては、ポリオキシエチレンオクチルフェニルエーテルやポリオキシエチレンノニルフェニルエーテル等のノニオン性乳化剤やポリビニルアルコール等が挙げられる。
In emulsion polymerization, a material that forms a protective colloid may be added. By adding a material that forms a protective colloid, it is possible to adjust the storage stability of the polymer particles (A) and the affinity with the polyvinyl alcohol resin (B).
Examples of the material forming the protective colloid include nonionic emulsifiers such as polyoxyethylene octyl phenyl ether and polyoxyethylene nonyl phenyl ether, and polyvinyl alcohol.
 乳化重合において用いる重合開始剤は、基本的には水溶性のアゾ系、パーオキサイド系等の重合開始剤が一般的であるが、必要に応じて油溶性の重合開始剤を用いてもよい。 The polymerization initiator used in the emulsion polymerization is basically a water-soluble azo-based or peroxide-based polymerization initiator, but an oil-soluble polymerization initiator may be used if necessary.
 重合開始剤の具体例としては、例えば、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジサルフェートジハイドレート、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラハイドレート、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、4,4’-アゾビス(4-シアノバレイックアシッド)、アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物;過硫酸ナトリウム、過硫酸カリウム、過酸化水素等の無機過酸化物;t-ブチルヒドロパーオキシド、クメンヒドロパーオキシド、p-メンタンクメンヒドロパーオキシド等の有機過酸化物が挙げられる。これらは、1種単独で用いてもよく、2種以上組み合わせて使用してもよい。 Specific examples of the polymerization initiator include, for example, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazoline-2-) [I] propane] disulphate dihydrate, 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate , 2,2'-azobis [2- (2-imidazolin-2-yl) propane, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 4,4'- Azobis (4-cyanovaleric acid), azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), 2 Azo compounds such as 2'-azobis (4-methoxy-2,4-dimethylvaleronitrile); inorganic peroxides such as sodium persulfate, potassium persulfate, hydrogen peroxide; t-butyl hydroperoxide, cumene hydroper And organic peroxides such as oxide, p-menthane, and hydroperoxide. These may be used alone or in combination of two or more.
 前記重合開始剤以外に、前記有機過酸化物又は過酸化水素と遷移金属塩を混合して酸化還元反応によりラジカルを発生させるレドックス重合開始剤系を用いてもよい。 In addition to the polymerization initiator, a redox polymerization initiator system may be used in which the organic peroxide or hydrogen peroxide and a transition metal salt are mixed to generate a radical by an oxidation reduction reaction.
 前記遷移金属塩としては、例えば、硫酸鉄(II)、チオ硫酸鉄(II)、炭酸鉄(II)、塩化鉄(II)、臭化鉄(II)、ヨウ化鉄(II)、水酸化鉄(II)、酸化鉄(II)、硫酸銅(I)、チオ硫酸銅(I)、炭酸銅(I)、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、水酸化銅(I)、酸化銅(I)、又はそれらの水和物等が挙げられる。 Examples of the transition metal salt include iron (II) sulfate, iron (II) thiosulfate, iron (II) carbonate, iron (II) chloride, iron (II) bromide, iron (II) iodide, hydroxide Iron (II), iron (II) oxide, copper (I) sulfate, copper (I) thiosulfate, copper (I) carbonate, copper (I) chloride, copper (I) bromide, copper (I) iodide, Examples include copper (I) hydroxide, copper (I) oxide, and hydrates thereof.
 さらにレドックス重合開始剤系では必要に応じて還元剤、金属イオンキレート剤、電解質等を添加してもよい。具体的には、ヒドロキシメタンスルフィン酸ナトリウム、アスコルビン酸ナトリウム等の還元剤、エチレンジアミン四酢酸二水素二ナトリウム等の金属イオンキレート剤、塩化ナトリウム、硫酸ナトリウム、リン酸三ナトリウム等の電解質等が挙げられる。 Further, in the redox polymerization initiator system, a reducing agent, a metal ion chelating agent, an electrolyte and the like may be added as required. Specific examples include reducing agents such as sodium hydroxymethanesulfinate and sodium ascorbate, metal ion chelating agents such as disodium dihydrogen ethylenediaminetetraacetate disodium, and electrolytes such as sodium chloride, sodium sulfate and trisodium phosphate. .
 前記重合開始剤又はレドックス重合開始剤系は重合初期から水中に添加しておいてもよく、連続又は断続で添加してもよい。特にレドックス重合開始剤系では重合開始剤系の消費速度が速いことが多いため、これを補うために重合開始剤系を追加添加することが望ましい。 The polymerization initiator or redox polymerization initiator system may be added to water from the initial stage of polymerization, or may be added continuously or intermittently. In particular, since the consumption rate of the polymerization initiator system is often fast in the redox polymerization initiator system, it is desirable to additionally add the polymerization initiator system to compensate for this.
 乳化重合で重合体粒子(A)を製造する際、必要に応じて各種添加剤を加えてもよい。添加剤としては、酸化防止剤、光安定剤、防腐剤等が挙げられる。具体的には、2,6-ジ-t-ブチル-4-メチルフェノール等のヒンダートフェノール化合物、ジフェニル-p-フェニレンジアミン等のヒンダートアミン化合物が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて使用してもよい。これらの添加量は、用いた単量体100質量部に対して通常0.05~5質量部程度である。これらの添加は、乳化重合の終了後の乳化液に添加する方法が一般的であるが、重合反応に影響しないものであれば重合初期から添加しておくこともできる。 When the polymer particles (A) are produced by emulsion polymerization, various additives may be added as necessary. Examples of additives include antioxidants, light stabilizers, preservatives and the like. Specific examples thereof include hindered phenol compounds such as 2,6-di-t-butyl-4-methylphenol and hindered amine compounds such as diphenyl-p-phenylenediamine. These may be used alone or in combination of two or more. The addition amount thereof is usually about 0.05 to 5 parts by mass with respect to 100 parts by mass of the used monomer. Although these additions are generally added to the emulsion after completion of the emulsion polymerization, they may be added from the beginning of the polymerization as long as they do not affect the polymerization reaction.
 また、重合系を安定化させるためにコア単量体の一部を一括投入し、重合の場である粒子を生成させてから残りの単量体を連続追加する方法(シード重合法)を採用してもよい。これは、少量の単量体を加えた状態でしばらく撹拌することで単量体が分配されたミセル濃度が安定化するという効果を有するが、加える単量体量が少ないと十分に分配されず、効果が表れない。一方、加える単量体量が多すぎる場合にはミセルが肥大化するためこれを安定化するために乳化剤が使われ、ミセル濃度が減少する。この場合、重合の場であるミセルの濃度低下により重合速度が低下するだけでなく、粒子径が大きくなる。以上のような観点から、最初に一括添加するコア単量体量は、コア単量体全体の0.1質量%以上が好ましく、1質量%以上がより好ましい。また、上記コア単量体量は、コア単量体全体の10質量%以下が好ましく、7質量%以下がより好ましい。 In addition, in order to stabilize the polymerization system, a part of the core monomer is charged at one time, and after the particles that are the place of polymerization are generated, the remaining monomers are continuously added (seed polymerization method). You may This has the effect of stabilizing the micelle concentration in which the monomers are distributed by stirring for a while while adding a small amount of monomers, but when the amount of monomers added is small, the distribution is not sufficient. , The effect does not appear. On the other hand, when the amount of monomer added is too large, micelles are enlarged and an emulsifier is used to stabilize them, and the micelle concentration decreases. In this case, not only the polymerization rate decreases but also the particle size increases due to the decrease in the concentration of micelles, which is the place of polymerization. From the above viewpoint, 0.1 mass% or more of the core monomer whole is preferable, and 1 mass% or more of the amount of core monomers initially added collectively is more preferable. Moreover, 10 mass% or less of the core monomer whole is preferable, and 7 mass% or less of the said core monomer amount is more preferable.
<ポリビニルアルコール系樹脂(B)>
 ポリビニルアルコール系樹脂(B)としては、ポリビニルアルコール単独重合樹脂、ポリビニルブチラール、及びビニルアルコール単位を含む共重合樹脂が挙げられる。これらのポリビニルアルコール系樹脂は、1種単独で用いてもよく、2種以上組み合わせて使用してもよい。
 ビニルアルコール単位を含む共重合樹脂の例としては、エチレン-ビニルアルコール共重合樹脂等が挙げられる。
 重合体粒子(A)と混合するためには、ポリビニルアルコール系樹脂(B)に用いる樹脂を水溶液とすることが望ましいが、水に不溶な樹脂の場合には水分散液として用いてもよい。また、エマルション組成物製造の過程で水溶液となる場合には、その工程で重合体粒子(A)を混合することも可能である。
<Polyvinyl alcohol resin (B)>
Examples of polyvinyl alcohol resins (B) include polyvinyl alcohol homopolymer resins, polyvinyl butyral, and copolymer resins containing vinyl alcohol units. These polyvinyl alcohol resins may be used alone or in combination of two or more.
Examples of copolymer resins containing vinyl alcohol units include ethylene-vinyl alcohol copolymer resins and the like.
In order to mix with the polymer particles (A), it is desirable to use a resin used for the polyvinyl alcohol resin (B) as an aqueous solution, but in the case of a water-insoluble resin, it may be used as an aqueous dispersion. Moreover, when it becomes an aqueous solution in the process of emulsion composition manufacture, it is also possible to mix polymer particle (A) in the process.
<エマルション組成物>
 前記重合体粒子(A)と前記ポリビニルアルコール系樹脂(B)の水溶液又は分散液を混合することでエマルション組成物が得られる。ただし、ポリビニルアルコール単独重合樹脂の水溶液は、高濃度になると、溶液中で結晶化が起こり3次元構造をつくってゲル状となるため、濃度によっては加温することが望ましい。また、エチレン-ビニルアルコール共重合樹脂のような水に不溶な樹脂でも、水に微分散させることでコアシェル構造を有する重合体粒子(A)と均一に混合することができる。ポリビニルブチラールでも樹脂自体を微分散させるという手法で均一なエマルション組成物を得ることができるが、ポリビニルブチラールの場合には、ポリビニルアルコール単独重合樹脂の水溶液に重合体粒子(A)を混合した後、アセタール化する方法を採用することもできる。
<Emulsion composition>
An emulsion composition is obtained by mixing an aqueous solution or a dispersion of the polymer particles (A) and the polyvinyl alcohol resin (B). However, when the concentration of the aqueous solution of polyvinyl alcohol homopolymer resin is high, crystallization occurs in the solution to form a three-dimensional structure to form a gel, so it is desirable to heat depending on the concentration. Further, even a water-insoluble resin such as ethylene-vinyl alcohol copolymer resin can be uniformly mixed with the polymer particles (A) having a core-shell structure by finely dispersing in water. Even with polyvinyl butyral, a uniform emulsion composition can be obtained by means of finely dispersing the resin itself, but in the case of polyvinyl butyral, after mixing polymer particles (A) with an aqueous solution of polyvinyl alcohol homopolymer resin, A method of acetalization can also be employed.
 本発明のエマルション組成物では、重合体粒子(A)とポリビニルアルコール系樹脂(B)の質量比が(A):(B)=1:99~50:50であり、5:95~40:60の範囲が好ましく、10:90~30:70の範囲がより好ましい。重合体粒子(A)の上記質量比が1よりも少ないとエマルション組成物を各種用途に用いる際に重合体粒子(A)の有する靱性付与効果や柔軟化効果などが不足する。また、重合体粒子(A)の上記質量比が50よりも大きいと、エマルション組成物を各種用途に用いる際の高温の製造工程で重合体粒子(A)が著しく凝集する。 In the emulsion composition of the present invention, the mass ratio of the polymer particles (A) to the polyvinyl alcohol resin (B) is (A) :( B) = 1: 99 to 50:50, 5:95 to 40: The range of 60 is preferable, and the range of 10:90 to 30:70 is more preferable. When the mass ratio of the polymer particles (A) is less than 1, when using the emulsion composition for various applications, the toughness imparting effect, the softening effect and the like possessed by the polymer particles (A) are insufficient. Moreover, when the said mass ratio of a polymer particle (A) is larger than 50, a polymer particle (A) will aggregate significantly at the manufacturing process of the high temperature at the time of using an emulsion composition for various uses.
<用途>
 本発明のエマルション組成物は、包装用フィルムや酸素バイアフィルム等の各種フィルム、接着剤やコーティング剤等に用いられるバインダー、インクや塗料に含まれるビヒクル、及び繊維等に好適に用いることができる。
<Use>
The emulsion composition of the present invention can be suitably used for various films such as packaging films and oxygen via films, binders used for adhesives and coatings, vehicles included in inks and paints, fibers and the like.
 フィルムは、前記エマルション組成物からキャスト法により得ることができる。乾燥に熱風を用いると表面が乾燥して膜ができるため、内部まで乾燥するのに時間を要するだけでなく泡噛み等の問題も発生しやすい。そのため、キャストの下面側から加熱してフィルム化することが望ましい。さらに、ドラムロールを用いることで連続製膜も可能である。 A film can be obtained by casting from the emulsion composition. When hot air is used for drying, the surface is dried to form a film, so that it takes time to dry to the inside as well as problems such as bubble biting tend to occur. Therefore, it is desirable that the film be formed by heating from the lower surface side of the cast. Furthermore, continuous film formation is also possible by using a drum roll.
 繊維は、前記エマルション組成物から湿式紡糸法によって得ることができ、コアシェル構造を有する重合体粒子(A)を分散させた繊維とすることができる。即ち、エマルション組成物を紡糸液とし、凝固液中にノズルより吐出することで繊維を得ることができる。ただし、ポリビニルアルコール単独重合樹脂は、そのままでは水に溶解するため、繊維化した後にホルムアルデヒドでアセタール化した繊維として、水に不溶とすることが望ましい。 The fiber can be obtained from the emulsion composition by a wet spinning method, and can be a fiber in which polymer particles (A) having a core-shell structure are dispersed. That is, fibers can be obtained by using the emulsion composition as a spinning solution and discharging it from the nozzle into the coagulating solution. However, since the polyvinyl alcohol homopolymer resin is dissolved in water as it is, it is desirable to make it insoluble in water as a fiber acetalized with formaldehyde after being fiberized.
 以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 EXAMPLES The present invention will be specifically described below by way of Examples, but the present invention is not limited by these Examples.
<ガラス転移温度(Tg)>
 合成例により得られた重合体粒子(A)を含む溶液から塩析法によって固形分を取り出し、十分乾燥させた後、示差走査熱量計によりTgを求めた。なお、コアとシェルのTgが同時に測定されることから、昇温時に測定される示差走査熱量測定(DSC)曲線から求められる中間点のうち、高い温度の方がシェルのTgとなる。
装置;DSC822(メトラー トレド社製)
条件;昇温速度10℃/min
<Glass transition temperature (Tg)>
The solid content was taken out of the solution containing the polymer particles (A) obtained by the synthesis example by a salting-out method, sufficiently dried, and then the Tg was determined by a differential scanning calorimeter. In addition, since Tg of a core and a shell is measured simultaneously, among the intermediate points calculated | required from the differential scanning calorimetry (DSC) curve measured at the time of temperature rising, the higher one becomes Tg of a shell.
Device: DSC 822 (manufactured by METTLER TOLEDO)
Condition: Heating rate 10 ° C / min
<平均粒子径測定>
 合成例により得られた重合体粒子(A)である重合体平均粒子1~4を含む溶液をイオン交換水で約100倍に希釈し、動的光散乱法により測定した。
装置:nano Partica SZ-100 (株式会社堀場製作所製)
<Mean particle size measurement>
A solution containing polymer average particles 1 to 4, which are polymer particles (A) obtained according to the synthesis example, was diluted about 100 times with ion-exchanged water and measured by a dynamic light scattering method.
Device: nano Partica SZ-100 (made by Horiba, Ltd.)
<高温試験>
 実施例又は比較例で得られたエマルション組成物をオートクレーブに入れ、内温93℃で4時間保持した。40℃に冷却してから液を取り出し、重合体粒子(A)の凝集塊の生成有無を目視で確認した後、上記と同様に動的散乱法によって凝集塊の平均粒子径を測定した。
装置:nano Partica SZ-100 (株式会社堀場製作所製)
<High temperature test>
The emulsion composition obtained in Examples or Comparative Examples was placed in an autoclave and maintained at an internal temperature of 93 ° C. for 4 hours. After cooling to 40 ° C., the solution was taken out, and the presence or absence of formation of aggregates of polymer particles (A) was visually confirmed, and the average particle size of the aggregates was measured by the dynamic scattering method in the same manner as described above.
Device: nano Partica SZ-100 (made by Horiba, Ltd.)
[合成例1](重合体粒子1;ポリ(トリシクロデシルメタクリレート)シェル)
 イオン交換水300質量部を還流管付の反応容器に仕込み、ラテムルASK(乳化剤、アルケニルコハク酸ジカリウム、花王株式会社製)35.7質量部、及び過硫酸カリウム0.2質量部を添加した。室温で窒素置換を約30分行った後、60℃に昇温し、その温度で15分保持してからブチルアクリレート100質量部、トリメチロールプロパントリメタクリレート0.5質量部、アリルメタクリレート1.0質量部の混合物を約1時間かけて連続添加した。添加終了後、1時間反応を追込んだ後、別途窒素置換しておいたシェル層の単量体であるトリシクロデシルメタクリレート12.5質量部を約10分かけて連続添加した。添加終了後、1時間保持し、さらに100℃に昇温して1時間加熱し、重合体粒子1を含む溶液を得た。
 動的光散乱で測定した重合体粒子1の平均粒子径は58.3nmであった。また、DSCで測定したシェルのTgは、178℃であった。
Synthesis Example 1 (Polymer particle 1; poly (tricyclodecyl methacrylate) shell)
300 parts by mass of ion exchange water was charged in a reaction vessel with a reflux condenser, and 35.7 parts by mass of Latem ASK (emulsifier, dipotassium alkenyl succinic acid, manufactured by Kao Corp.) 35.7 parts by mass and 0.2 parts by mass of potassium persulfate were added. After performing nitrogen substitution at room temperature for about 30 minutes, the temperature is raised to 60 ° C. and held at that temperature for 15 minutes, then 100 parts by mass of butyl acrylate, 0.5 parts by mass of trimethylolpropane trimethacrylate, 1.0 part of allyl methacrylate The mixture of parts by weight was continuously added over about 1 hour. After completion of the addition, the reaction was carried out for 1 hour, and 12.5 parts by mass of tricyclodecyl methacrylate, which is a monomer of the shell layer separately substituted with nitrogen, was continuously added over about 10 minutes. After completion of the addition, the solution was maintained for 1 hour, and further heated to 100 ° C. and heated for 1 hour to obtain a solution containing polymer particles 1.
The average particle size of the polymer particles 1 measured by dynamic light scattering was 58.3 nm. The Tg of the shell measured by DSC was 178 ° C.
[合成例2](重合体粒子2;ポリ(トリシクロデシルメタクリレート)シェル)
 合成例1において、乳化剤にラテムルE-108MB(ポリオキシエチレンアルキルエーテル硫酸ナトリウム、花王株式会社製)を用いた以外は合成例1と同様の方法で重合体粒子2を含む溶液を得た。
 動的光散乱で測定した重合体粒子2の平均粒子径は61.3nmであった。また、DSCで測定したシェルのTgは、175℃であった。
Synthesis Example 2 (Polymer particles 2; poly (tricyclodecyl methacrylate) shell)
A solution containing polymer particles 2 was obtained in the same manner as in Synthesis Example 1 except that in the synthesis example 1, Latemul E-108 MB (sodium polyoxyethylene alkyl ether sulfate, manufactured by Kao Corporation) was used as the emulsifier.
The average particle size of the polymer particles 2 measured by dynamic light scattering was 61.3 nm. The Tg of the shell measured by DSC was 175 ° C.
[合成例3](重合体粒子3;ポリメチルメタクリレート(PMMA)シェル)
 合成例1において、シェルの単量体をメチルメタクリレートに変更した以外は合成例1と同様の方法で重合体粒子3を含む溶液を得た。
 動的光散乱で測定した重合体粒子3の平均粒子径は59.8nmであった。DSCで測定したシェルのTgは、117℃であった。
Synthesis Example 3 (Polymer particle 3; polymethyl methacrylate (PMMA) shell)
In Synthesis Example 1, a solution containing polymer particles 3 was obtained in the same manner as in Synthesis Example 1 except that the monomer of the shell was changed to methyl methacrylate.
The average particle size of the polymer particles 3 measured by dynamic light scattering was 59.8 nm. The Tg of the shell measured by DSC was 117 ° C.
[合成例4](重合体粒子4;シェルなし)
 イオン交換水300質量部を還流管付の反応容器に仕込み、ラテムルASK(乳化剤、アルケニルコハク酸ジカリウム、花王株式会社製)35.7質量部、及び過硫酸カリウム0.2質量部を添加した。室温で窒素置換を約30分行った後、60℃に昇温し、その温度で15分保持してからブチルアクリレート100質量部、トリメチロールプロパントリメタクリレート0.5質量部、アリルメタクリレート1.0質量部の混合物を約1時間かけて連続添加した。添加終了後、1時間保持し、さらに100℃に昇温して1時間加熱し、重合体粒子4を含む溶液を得た。
 動的光散乱で測定した重合体粒子4の平均粒子径は52.2nmであった。
Synthesis Example 4 (Polymer particle 4; without shell)
300 parts by mass of ion exchange water was charged in a reaction vessel with a reflux condenser, and 35.7 parts by mass of Latem ASK (emulsifier, dipotassium alkenyl succinic acid, manufactured by Kao Corp.) 35.7 parts by mass and 0.2 parts by mass of potassium persulfate were added. After performing nitrogen substitution at room temperature for about 30 minutes, the temperature is raised to 60 ° C. and held at that temperature for 15 minutes, then 100 parts by mass of butyl acrylate, 0.5 parts by mass of trimethylolpropane trimethacrylate, 1.0 part of allyl methacrylate The mixture of parts by weight was continuously added over about 1 hour. After completion of the addition, the solution was maintained for 1 hour, and then heated to 100 ° C. and heated for 1 hour to obtain a solution containing polymer particles 4.
The average particle size of the polymer particles 4 measured by dynamic light scattering was 52.2 nm.
[実施例1](エマルション組成物1)
 重合度2400、鹸化度98%のポリビニルアルコールの10質量%水溶液と重合体粒子1を、固形分換算で重合体粒子1とポリビニルアルコール系樹脂の質量比が20:80となるように混合し、エマルション組成物1を調製した。
 この組成物について上記高温試験を行ったところ、高温試験の条件では巨大凝集塊の生成は見られなかった。上記高温試験後の動的光散乱で測定した凝集塊の平均粒子径を表1に示す。
Example 1 (Emulsion Composition 1)
A 10% by mass aqueous solution of polyvinyl alcohol having a degree of polymerization of 2400 and a degree of saponification of 98% and polymer particles 1 are mixed so that the mass ratio of polymer particles 1 to polyvinyl alcohol resin is 20:80 in terms of solid content, Emulsion Composition 1 was prepared.
When the above-mentioned high temperature test was conducted on this composition, no formation of large aggregates was observed under the conditions of the high temperature test. The average particle size of the aggregate measured by dynamic light scattering after the high temperature test is shown in Table 1.
[実施例2,3](エマルション組成物2,3)
 実施例1において、重合体粒子2又は重合体粒子3を用いる以外は実施例1と同じ方法でエマルション組成物2,3を得た。
 この組成物について上記高温試験を行ったところ、高温試験の条件では巨大凝集塊の生成は見られなかった。上記高温試験後の動的光散乱で測定した平均粒子径を表1に示す。
[Examples 2, 3] (Emulsion Compositions 2, 3)
Emulsion compositions 2 and 3 were obtained in the same manner as in Example 1 except that polymer particles 2 or 3 were used in Example 1.
When the above-mentioned high temperature test was conducted on this composition, no formation of large aggregates was observed under the conditions of the high temperature test. The average particle size measured by dynamic light scattering after the high temperature test is shown in Table 1.
[比較例1](エマルション組成物4)
 実施例1において、重合体粒子4を用いる以外は実施例1と同じ方法でエマルション組成物4を得た。
 このエマルション組成物について上記高温試験を行ったところ、液が白濁し、ミリオーダーの重合体粒子4の巨大凝集塊の生成が目視で確認できた。凝集が著しいため動的光散乱の測定は不可と判断した。
Comparative Example 1 (Emulsion Composition 4)
An emulsion composition 4 was obtained in the same manner as in Example 1 except that polymer particles 4 were used in Example 1.
When the above-mentioned high temperature test was conducted on this emulsion composition, the liquid became cloudy, and the formation of giant aggregates of polymer particles 4 of milliorder could be visually confirmed. It was judged that dynamic light scattering measurement was not possible because of significant aggregation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例4](エマルション組成物を用いてなるフィルム)
 ホットプレート上にガラス板を設置し、ポリエチレンテレフタレートフィルム(ルミラー、東レ株式会社製)を敷いて60℃に加温した。次いで、実施例1において高温試験を行った後のエマルション組成物をワイヤーバーで流延し、乾燥させてフィルム1を得た。フィルムは折り曲げてもヒビや折り曲げた跡が生じず柔軟であった。
[Example 4] (film made of an emulsion composition)
A glass plate was placed on a hot plate, and a polyethylene terephthalate film (Lumirror, manufactured by Toray Industries, Inc.) was spread and heated to 60 ° C. Next, the emulsion composition after the high temperature test in Example 1 was cast with a wire bar and dried to obtain a film 1. Even when the film was bent, it was flexible without any cracks or traces of bending.
[比較例2](ポリビニルアルコール(PVA)プレーンフィルム)
 実施例1のエマルション組成物の代わりに、重合度2400、鹸化度98%のポリビニルアルコールの10質量%水溶液を用いた以外は実施例4と同様の方法でフィルム2を得た。フィルムは折り曲げるとヒビが生じてしまい柔軟ではなかった。
Comparative Example 2 (Polyvinyl alcohol (PVA) plain film)
Film 2 was obtained in the same manner as in Example 4 except that a 10 mass% aqueous solution of polyvinyl alcohol having a degree of polymerization of 2400 and a degree of saponification of 98% was used instead of the emulsion composition of Example 1. When the film was bent, a crack occurred and it was not flexible.
 本発明によれば、高温においても凝集しにくいエマルション組成物が提供される。このエマルション組成物を用いることで、凝集塊の無いフィルムや繊維等が得られる。
 
 
According to the present invention, there is provided an emulsion composition which is not easily aggregated even at high temperatures. By using this emulsion composition, films, fibers and the like without agglomerates can be obtained.

Claims (8)

  1.  コアシェル構造を有する重合体粒子(A)とポリビニルアルコール系樹脂(B)を含むエマルション組成物であって、
     該重合体粒子(A)のシェルを構成する重合体のガラス転移温度が100℃以上であり、
     該重合体粒子(A)と該ポリビニルアルコール系樹脂(B)の質量比が(A):(B)=1:99~50:50の範囲であるエマルション組成物。
    An emulsion composition comprising a polymer particle (A) having a core-shell structure and a polyvinyl alcohol resin (B),
    The glass transition temperature of the polymer constituting the shell of the polymer particles (A) is 100 ° C. or higher,
    An emulsion composition wherein the mass ratio of the polymer particles (A) to the polyvinyl alcohol resin (B) is in the range of (A) :( B) = 1: 99 to 50:50.
  2.  前記ポリビニルアルコール系樹脂(B)が、ポリビニルアルコール、ポリビニルブチラール、及びエチレン-ビニルアルコール共重合樹脂から選ばれる1種以上である、請求項1に記載のエマルション組成物。 The emulsion composition according to claim 1, wherein the polyvinyl alcohol resin (B) is at least one selected from polyvinyl alcohol, polyvinyl butyral, and ethylene-vinyl alcohol copolymer resin.
  3.  請求項1又は2に記載のエマルション組成物を用いてなるフィルム。 A film comprising the emulsion composition according to claim 1 or 2.
  4.  請求項1又は2に記載のエマルション組成物を含有する接着剤用バインダー。 The binder for adhesives containing the emulsion composition of Claim 1 or 2.
  5.  請求項1又は2に記載のエマルション組成物を含有するコーティング用バインダー。 The coating binder containing the emulsion composition of Claim 1 or 2.
  6.  請求項1又は2に記載のエマルション組成物を含有するビヒクルを含むインク又は塗料。 An ink or paint comprising a vehicle containing the emulsion composition according to claim 1 or 2.
  7.  請求項1又は2に記載のエマルション組成物を紡糸してなる繊維。 A fiber formed by spinning the emulsion composition according to claim 1 or 2.
  8.  請求項7に記載の繊維をアセタール化した繊維。
     
     
     
    The fiber which acetalized the fiber of Claim 7.


PCT/JP2018/036891 2017-10-03 2018-10-02 Emulsion composition WO2019069928A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019546736A JPWO2019069928A1 (en) 2017-10-03 2018-10-02 Emulsion composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-193697 2017-10-03
JP2017193697 2017-10-03

Publications (1)

Publication Number Publication Date
WO2019069928A1 true WO2019069928A1 (en) 2019-04-11

Family

ID=65994862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036891 WO2019069928A1 (en) 2017-10-03 2018-10-02 Emulsion composition

Country Status (2)

Country Link
JP (1) JPWO2019069928A1 (en)
WO (1) WO2019069928A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282727A (en) * 2005-03-31 2006-10-19 Kuraray Co Ltd Powder containing ethylene-vinyl alcohol copolymer and powdered coating comprising the same
JP2012251092A (en) * 2011-06-06 2012-12-20 Kuraray Co Ltd Vinyl alcohol-based polymer composition
JP2013139506A (en) * 2011-12-29 2013-07-18 Nippon Zeon Co Ltd Method for manufacturing core-shell type particle
JP2016190898A (en) * 2015-03-30 2016-11-10 積水化学工業株式会社 Polyvinyl alcohol hydrogel particle
JP2017082045A (en) * 2015-10-23 2017-05-18 国立大学法人 東京大学 Method for producing core-shell particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282727A (en) * 2005-03-31 2006-10-19 Kuraray Co Ltd Powder containing ethylene-vinyl alcohol copolymer and powdered coating comprising the same
JP2012251092A (en) * 2011-06-06 2012-12-20 Kuraray Co Ltd Vinyl alcohol-based polymer composition
JP2013139506A (en) * 2011-12-29 2013-07-18 Nippon Zeon Co Ltd Method for manufacturing core-shell type particle
JP2016190898A (en) * 2015-03-30 2016-11-10 積水化学工業株式会社 Polyvinyl alcohol hydrogel particle
JP2017082045A (en) * 2015-10-23 2017-05-18 国立大学法人 東京大学 Method for producing core-shell particle

Also Published As

Publication number Publication date
JPWO2019069928A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
TWI445750B (en) A liquid resin composition, and a cured product using the liquid resin composition
KR100306738B1 (en) Large emulsion polymer production process and polymer particles produced therefrom
KR100818964B1 (en) Aqueous nanocomposite dispersions: processes, compositions, and uses thereof
JP6302207B2 (en) Method for manufacturing vehicle member
KR101391048B1 (en) MBS Graft Copolymer, Method For Preparing The Same And PVC Composition Containing The Same
CN102753618B (en) The hybrid particulates be made up of polymkeric substance and nano particle
CN109748999A (en) A kind of acrylic acid ester emulsion and the preparation method and application thereof
JPS62101639A (en) Mutual permeation polymer network latex
KR101886395B1 (en) New and stable aqueous hybrid binder
JPH035405B2 (en)
JP4381595B2 (en) Method for producing copolymer latex
KR102210031B1 (en) Matrix copolymer, graft copolymer, and thermoplastic resin composition
WO2019069928A1 (en) Emulsion composition
JPH02147603A (en) Manufacture of aqueous dispersion of giant particles of synthetic resin
JP2011168632A (en) Crosslinked polymer fine particle and method for producing the same
JP6874154B2 (en) Vinyl chloride resin latex composition and its manufacturing method
KR20210073050A (en) Alkyl acrylate-vinyl compound-vinylcyan compound copolyemr, method for preparing thereof and thermoplastic resin composition
JP2019196422A (en) Polyvinyl alcohol film and method for producing the same
JP3924450B2 (en) Improved small particle size copolymer latex.
JP3907992B2 (en) Method for producing novel copolymer latex
KR20210020682A (en) Method for preparing vinylcyan compound-conjugated diene compound-aromatic vinyl compound graft copolymer and thermoplastic resin composition contatining the same
KR100380016B1 (en) Process for Producing Rubber Latices
JPH05155907A (en) Production of methacrylic resin particle
CN117924623A (en) Modified styrene-butadiene copolymer composite latex for paper coating
JP4073531B2 (en) Method for producing seed latex and copolymer latex, and paper coating composition containing the copolymer latex.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864194

Country of ref document: EP

Kind code of ref document: A1