WO2019069925A1 - Crosslinked polymer composition containing organic nonlinear optical compound - Google Patents

Crosslinked polymer composition containing organic nonlinear optical compound Download PDF

Info

Publication number
WO2019069925A1
WO2019069925A1 PCT/JP2018/036881 JP2018036881W WO2019069925A1 WO 2019069925 A1 WO2019069925 A1 WO 2019069925A1 JP 2018036881 W JP2018036881 W JP 2018036881W WO 2019069925 A1 WO2019069925 A1 WO 2019069925A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
substituent
formula
Prior art date
Application number
PCT/JP2018/036881
Other languages
French (fr)
Japanese (ja)
Inventor
士吉 横山
マーク スプリング,アンドリュー
翼 菓子野
Original Assignee
国立大学法人九州大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学株式会社 filed Critical 国立大学法人九州大学
Priority to JP2019546734A priority Critical patent/JP7079941B2/en
Publication of WO2019069925A1 publication Critical patent/WO2019069925A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present invention relates to a polymer composition containing an organic nonlinear optical compound used for optical information processing such as optical switching, light modulation, etc., optical communication, etc. More specifically, the composition in which the organic nonlinear optical compound is dispersed in a crosslinked polymer matrix And optical materials formed from the composition.
  • nonlinear optical materials are materials that exhibit a polarization response that is proportional to the second-, third-, or higher-order term of the electric field of light, and generate second harmonic generation (SHG) or first-order Applications that produce a second-order non-linear optical effect such as the Pockels effect, which is an electro-optical effect, are considered to be applications such as a light source, an optical switch, and light modulation.
  • lithium niobate and potassium dihydrogen phosphate are practically used and widely used as inorganic nonlinear optical materials.
  • organic non-linear optical materials that have advantages such as high non-linear optical performance, inexpensive material costs, high mass productivity, etc. have attracted attention for these inorganic materials, and active research and development toward commercialization are underway. It is
  • a method of manufacturing a device using an organic material a method of using a single crystal of a compound (organic nonlinear optical compound) having nonlinear optical characteristics, a vapor deposition method and an LB film method are known. Furthermore, there is a method of introducing a structure having nonlinear optical properties into the main chain or side chain of a polymer compound, or a method of dispersing a nonlinear optical compound in a polymer matrix.
  • the film can be formed by a casting method, a dipping method, a spin coating method or the like, so that the processing is easy.
  • the organic nonlinear optical compound in the method of dispersing the organic nonlinear optical compound in the polymer matrix, it is required that the organic nonlinear optical compound is dispersed at a high concentration without aggregation and is optically uniform.
  • a push-pull type ⁇ conjugated compound having an electron donating functional group at one end of the ⁇ conjugated chain and an electron attracting functional group at the other end is known.
  • Disperse Red 1 (DR1) which has an azobenzene as a ⁇ conjugated chain, a diethylamino group as an electron donating group and a nitro group as an electron withdrawing group.
  • PMMA polymethyl methacrylate
  • Patent Document 1 a norbornene imide polymer having a high glass transition temperature and capable of dispersing an organic nonlinear optical compound at a high concentration is used as the polymer matrix.
  • the present invention provides a polymer matrix capable of highly orienting the organic nonlinear optical compound, facilitating viscosity adjustment, and suppressing the alignment relaxation of the organic nonlinear optical compound, and the polymer matrix and the organic It is an object of the present invention to provide a composition containing a non-linear optical compound, and an optical material obtained using the composition.
  • the present inventors adopt a norbornene imide copolymer in which a crosslinked structure is introduced to the norbornene imide polymer instead of the norbornene imide polymer, and the copolymer and the organic nonlinear optical compound It has been found that the combination not only can suppress the orientation relaxation of the organic nonlinear optical compound but also provides a polymer matrix which can orient the organic nonlinear optical compound to a higher degree and whose viscosity can be easily adjusted. Completed.
  • the present invention relates to, as a first aspect, a composition comprising a norbornene imide copolymer having a structural unit represented by Formula [1] and a structural unit represented by Formula [2], and an organic nonlinear optical compound.
  • R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent
  • L 1 represents a divalent organic group having 1 to 30 carbon atoms.
  • L 1 is —Z 1 -L 2 -Z 2- (wherein Z 1 and Z 2 are each independently a cyclohexylene group which may have a substituent, or a substituent
  • the composition according to the first aspect relates to a phenylene group which may have a group, and L 2 represents a divalent organic group having 1 to 18 carbon atoms.
  • the above L 2 is —O—L 3 —O— (wherein L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond).
  • the composition according to the second aspect is a group represented by
  • the present invention relates to the composition according to any one of the first to third aspects, wherein the organic nonlinear optical compound is a compound having a furan ring represented by the formula [3].
  • a fifth aspect relates to the composition according to the fourth aspect, wherein the organic nonlinear optical compound is a compound represented by formula [4].
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or the number of carbon atoms which may have a substituent
  • R 4 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or the like Silyloxy group having an alkylcarbonyloxy group of 2 to 11, an aryloxy group of 4 to 10 carbon atoms, an arylcarbonyloxy group of 5 to 11 carbon atoms, an alkyl group of 1 to 6 carbon atoms and / or a phenyl group
  • R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or an aryl of 6 to 10 carbon atoms Group
  • Ar represents a divalent organic group
  • the present invention relates to a varnish including the composition according to any one of the first to sixth aspects.
  • An eighth aspect relates to a thin film formed of the composition according to any one of the first to sixth aspects.
  • a ninth aspect relates to an electro-optical element including the composition according to any one of the first to sixth aspects.
  • the present invention relates to, as a tenth aspect, an optical switching element including the composition according to any one of the first to sixth aspects.
  • the present invention relates to an organic nonlinear optical material using the composition according to any one of the first to sixth aspects.
  • a twelfth aspect relates to a norbornene imide copolymer having a structural unit represented by the formula [1] and a structural unit represented by the formula [2].
  • R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent
  • L 1 represents a divalent organic group having 1 to 30 carbon atoms.
  • L 1 is —Z 1 -L 2 -Z 2- (wherein Z 1 and Z 2 are each independently a cyclohexylene group which may have a substituent, or a substituent
  • a norbornene imide copolymer according to the twelfth aspect which is a group represented by phenylene group which may have a group, L 2 is a divalent organic group having 1 to 18 carbon atoms) .
  • L 2 is —O—L 3 —O— (wherein L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond).
  • the norbornene imide copolymer according to the thirteenth aspect which is a group represented by The present invention relates, as a fifteenth aspect, to a bis (norbornene dicarboximide) compound represented by the formula [7].
  • Z 1 and Z 2 each independently represent a cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent
  • L 3 has 3 carbon atoms Represents an alkylene group of to 18
  • the composition of the present invention can not only suppress the alignment relaxation of the organic nonlinear optical compound by combining a norbornene imide copolymer having a specific structural unit with the organic nonlinear optical compound, but it is also possible to use the organic nonlinear optical compound Higher orientation can be achieved, and viscosity adjustment can be made easier.
  • the composition of the present invention is dissolved in a solvent to form a varnish form, and can be easily molded, so that the optical material having high handleability can be suitably used in the field of optoelectronic materials.
  • the organic nonlinear optical material of the present invention has a large nonlinear optical constant, which makes it possible to form an optical device that can be easily formed.
  • the norbornene imide copolymer having the specific structural unit of the present invention suppresses relaxation of the alignment of the organic nonlinear optical compound, highly aligns the organic nonlinear optical compound, and facilitates the adjustment of viscosity, so that organic nonlinear It can be suitably used as a polymer matrix of an optical compound.
  • the bis (norbornene dicarboximide) compound which is a bifunctional monomer of the present invention is useful as a crosslinking agent (crosslinker) for introducing a crosslinking structure into norbornene imide homopolymer, and in particular, the thermal properties of the polymer
  • the compound is useful as a crosslinking agent capable of enhancing the electric field alignment of the organic nonlinear optical compound while maintaining the suppression effect of the alignment relaxation of the organic nonlinear optical compound equally.
  • FIG. 1 shows the degree of dispersion (Mw / Mn) of the norbornene imide copolymer obtained in Examples and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from bifunctional monomer in each polymer.
  • FIG. FIG. 2 shows the viscosity V of a 10 mass% toluene solution of the norbornene imide copolymer obtained in the example and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from bifunctional monomer in each polymer. It is a figure which shows (mPa * s).
  • FIG. 3 shows the glass transition temperature Tg (° C.) of the norbornene imide copolymer obtained in Examples and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from bifunctional monomer in each polymer.
  • FIG. 4 shows the 5% weight loss temperature Td 5 (relative to the weight ratio of the structural unit derived from the bifunctional monomer in each polymer, of the norbornene imide copolymer obtained in the example and the norbornene imide polymer obtained in Comparative Example 1 C).
  • FIG. 5 shows the electro-optical constant r 33 (pm /) of the norbornene imide copolymer obtained in the example and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from the bifunctional monomer in each polymer.
  • V left axis
  • Mw / Mn dispersity
  • FIG. 6 shows the results of the temperature endurance test for the test piece for which the electro-optic constant was measured, and the rate of change (r 33 / r 33 (from the initial value (r 33 (0))) of the electro-optic constant r 33
  • FIG. 2 shows 0) ⁇ 100) as a function of time (h).
  • the average molecular weight is not particularly limited,
  • the weight average molecular weight is 10,000 to 3,000,000, preferably 10,000 to 1,000,000, and more preferably 20,000 to 500,000.
  • the degree of dispersion is, for example, 1.1 to 80, 1.2 to 20, and can be 1.2 to 10.
  • the weight average molecular weight and the number average molecular weight in the present invention are measured values by gel permeation chromatography (in terms of polystyrene). Also, a norbornene imide copolymer having a structural unit represented by the above formula [1] and a structural unit represented by the following formula [2] is also an object of the present invention.
  • R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • the alkyl group having 1 to 12 carbon atoms may have a branched structure or a cyclic structure, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, n-dodecyl, 1-adamantyl Groups, benzyl group, phenethyl group and the like.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl group and naphthyl group.
  • substituent of the alkyl group having 1 to 12 carbon atoms include a hydroxy group; and a halogen atom such as a fluoro group, a chloro group, a bromo group or an iodo group.
  • substituent of the aryl group having 6 to 10 carbon atoms include alkyl groups such as methyl and ethyl; hydroxyalkyl groups such as hydroxymethyl; hydroxy; alkoxy such as methoxy and octyloxy; fluoro And halogen atoms such as chloro, bromo and iodo.
  • R 1 examples include cyclohexyl group, 4-hydroxycyclohexyl group, n-octyl group, 1-adamantyl group, phenyl group, 4-tolyl group, 4-hydroxymethylphenyl group, 4-hydroxyphenyl group, 2,3,4,5,6-pentafluorophenyl group etc. are mentioned.
  • the structural unit represented by the formula [1] may be cis or trans.
  • L 1 represents a divalent organic group having 1 to 30 carbon atoms.
  • the divalent organic group having 1 to 30 carbon atoms is not particularly limited, and may contain, for example, one or more aromatic rings and / or aliphatic rings, and one or more ether bonds (— A divalent group which may contain a bonding group such as O-) or an ester bond (-COO-), and the total number of carbon atoms constituting the group is at most 30, provided that the ester bond When it is contained, carbon atoms in the ester bond are not included in the above 1 to 30 carbon atoms.
  • the divalent organic group having 1 to 30 carbon atoms is preferably an alkylene group, an aromatic ring or an aliphatic ring, or both, and may contain an ether bond and / or an ester bond. It is selected from valent hydrocarbon groups.
  • L 1 is preferably -Z 1 -L 2 -Z 2- .
  • each of Z 1 and Z 2 independently represents a cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent
  • L 2 has 1 to carbon atoms It represents 18 divalent organic groups.
  • alkyl group such as methyl group and ethyl group
  • hydroxyalkyl group such as hydroxymethyl group
  • hydroxy group alkoxy group such as methoxy group and octyloxy group
  • fluoro group, chloro And halogen atoms such as bromo, iodo and the like.
  • an alkylene group having 1 to 18 carbon atoms which may contain an ether bond and / or an ester bond (however, in the case of containing an ester bond, the ester bond may be And the carbon atom of (1) is not included in the above 1 to 18 carbon atoms).
  • L 2 is a group represented by -O-L 3 -O-, that is, the above L 1 is a group represented by -Z 1 -O-L 3 -O-Z 2- Is preferred.
  • L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond (Z 1 and Z 2 are as defined above).
  • the alkylene group having 1 to 18 carbon atoms may have a branched structure or a cyclic structure, and a methylene group, an ethylene group, a trimethylene group, a 1-methylethylene group, a tetramethylene group, a 1-methyltrimethylene group 1,1-Dimethylethylene, Pentamethylene, 1-Methyltetramethylene, 2-Methyltetramethylene, 1,1-Dimethyltrimethylene, 1,2-Dimethyltrimethylene, 2,2-Dimethyl Trimethylene, 1-ethyltrimethylene, hexamethylene, 1-methylpentamethylene, 2-methylpentamethylene, 3-methylpentamethylene, 1,1-dimethyltetramethylene, 1,2-dimethyl Tetramethylene, 2,2-dimethyltetramethylene, 1-ethyltetramethylene, 1,1,2-trimethylto Methylene, 1,2,2-trimethyltrimethylene, 1-ethyl-1-methyltrimethylene, 1-ethyl-2-methylt
  • the steric configuration is not particularly limited.
  • the ratio of the structural unit represented by the formula [1] and the structural unit represented by the formula [2] in the norbornene imide copolymer is not particularly limited, and the ratio to the structural unit represented by the formula [1]
  • the mass fraction of the structural unit represented by Formula [2] may be more than 0.
  • the ratio of the structural unit represented by Formula [2] to the structural unit represented by Formula [1] can be 0.01 to 10% by mass.
  • the ratio of the structural unit represented by the formula [2] to the structural unit represented by the formula [1] is 0.01 to 5% by mass
  • the content can be 0.01 to 3% by mass.
  • the norbornene imide copolymer used in the present invention may have other structural units other than the structural unit represented by the formula [1] and the structural unit represented by the formula [2].
  • structural units such as norbornene, cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene and the like can be mentioned.
  • the norbornene imide copolymer is more preferably a polymer comprising only the structural unit represented by the formula [1] and the structural unit represented by the formula [2], because the effects of the present invention can be easily exhibited. Therefore, it is desirable that the norbornene imide copolymer used in the present invention has 50 to 100% by mole of the structural unit represented by the formula [1] and the structural unit represented by the formula [2].
  • the norbornene imide copolymer which has a structural unit represented by the said Formula [1] and a structural unit represented by Formula [2] is metal complexes, such as a norbornene imide monomer and a bis (norbornene imide) monomer, a ruthenium catalyst etc., for example Obtained by performing the polymerization reaction in a solvent in the presence of
  • the norbornene imide copolymer is preferably Macromol. Chem. Phys.
  • the norbornene imide polymer can be synthesized according to the method for producing norbornene imide polymer described in 2002, 203, 1811-1818.
  • each of Z 1 and Z 2 independently represents a cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent, and L 3 represents 3 to 6 carbon atoms. Represents 18 alkylene groups.
  • each of norbornene imide monomer and bis (norbornene imide) monomer is used alone It may be used in combination of two or more.
  • the ratio of these monomers is not particularly limited, and can be appropriately adjusted according to the structure of the target polymer.
  • the norbornene imide copolymer having the structural unit represented by the above formula [1] and the structural unit represented by the formula [2] is a structural unit represented by the above formula [1] and the formula [2] In addition to the structural units represented by the above, it may have a structural unit (norbornene, cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene, etc.).
  • the above other monomers may be used alone or in any combination of two or more.
  • the ratio is also not particularly limited, and can be adjusted according to the structure of the target norbornene imide copolymer.
  • the metal complex used in the above-mentioned polymerization reaction is not particularly limited, and can be arbitrarily selected and used from various known metal complexes for polymerization. Among them, ruthenium catalysts such as Grubbs catalyst (first generation Grubbs catalyst, second generation Grubbs catalyst) are preferable.
  • the metal complex can be used at a molar ratio of 5 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 times with respect to the total monomer as the raw material.
  • the solvent used for the polymerization reaction is not particularly limited as long as it does not inhibit the polymerization reaction, and examples thereof include halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene.
  • a solvent may be used individually by 1 type, and 2 or more types may be mixed and used by arbitrary combinations.
  • the temperature at the time of the polymerization reaction is not particularly limited, but is -50 to 100 ° C. Preferably, it is -50 to 60 ° C.
  • the pressure at the time of the polymerization reaction is not particularly limited, but it is usually carried out under normal pressure.
  • the time of the polymerization reaction is 10 minutes to 10 hours, though it varies depending on the types of monomers and metal complexes used, temperature and pressure at the time of polymerization, and the like. Preferably, it is 20 minutes to 5 hours.
  • the obtained norbornene imide copolymer is recovered by any method, and after treatment such as washing is performed if necessary.
  • methods such as reprecipitation may be mentioned.
  • the organic non-linear optical compound used in the present invention is a ⁇ -conjugated compound having an electron donating group at one end of the ⁇ conjugated chain and an electron withdrawing group at the other end, preferably having a large molecular hyperpolarizability ⁇ .
  • the electron donating group include dialkylamino groups
  • examples of the electron withdrawing group include cyano group, nitro group and fluoroalkyl group.
  • a compound having a furan ring represented by the formula [3] can be mentioned as the organic nonlinear optical compound used in the present invention.
  • R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or an aryl group of 6 to 10 carbon atoms. Represents, and ⁇ represents a bond.
  • the organic nonlinear optical compound is preferably a compound represented by the following formula [4].
  • R 2 and R 3 each independently have a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent A good aryl group having 6 to 10 carbon atoms is represented.
  • the alkyl group having 1 to 10 carbon atoms may have a branched structure or a cyclic structure, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, 1-adamantyl, benzyl A phenethyl group etc. are mentioned.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group and naphthyl group.
  • Examples of the substituent include amino group; hydroxy group; alkoxycarbonyl group such as methoxycarbonyl group and tert-butoxycarbonyl group; trimethylsilyloxy group, tert-butyldimethylsilyloxy group, tert-butyldiphenylsilyloxy group, triphenylsilyl group Silyloxy groups such as oxy group; and halogen atoms such as fluoro group, chloro group, bromo group and iodo group.
  • R 4 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or 2 to 6 carbon atoms 11 alkylcarbonyloxy group, an aryloxy group having 4 to 10 carbon atoms, an arylcarbonyloxy group having 5 to 11 carbon atoms, a silyloxy group having an alkyl group having 1 to 6 carbon atoms and / or a phenyl group, or Represents a halogen atom.
  • examples of the alkyl group having 1 to 10 carbon atoms include those exemplified for the aforementioned R 2 and R 3 .
  • Examples of the alkoxy group having 1 to 10 carbon atoms include a group in which the above-mentioned alkyl group having 1 to 10 carbon atoms is bonded via an oxygen atom.
  • Examples of the alkylcarbonyloxy group having 2 to 11 carbon atoms include a group in which the above-mentioned alkyl group having 1 to 10 carbon atoms is bonded via a carbonyloxy group.
  • Examples of the aryloxy group having 4 to 10 carbon atoms include phenoxy group, naphthalen-2-yloxy group, furan-3-yloxy group, thiophene-2-yloxy group and the like.
  • Examples of the arylcarbonyloxy group having 5 to 11 carbon atoms include benzoyloxy, 1-naphthyloxy, furan-2-carbonyloxy, thiophene-3-carbonyloxy and the like.
  • Examples of the silyloxy group having an alkyl group having 1 to 6 carbon atoms and / or a phenyl group include trimethylsilyloxy group, tert-butyldimethylsilyloxy group, tert-butyldiphenylsilyloxy group, triphenylsilyloxy group and the like.
  • a halogen atom a fluoro group, a chloro group, a bromo group, an iodo group etc. are mentioned.
  • R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or a carbon atom Represents an aryl group of 6 to 10;
  • the alkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Examples thereof include isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and cyclopentyl group.
  • the haloalkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and a fluoromethyl group, a trifluoromethyl group, a bromodifluoromethyl group, a 2-chloroethyl group, a 2-bromoethyl group, 1 , 1-Difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl group , 3-bromopropyl, 2,2,3,3-tetrafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, 1,1,1,3,3,3-hexa Fluoropropan-2-yl group, 3-bromo-2-methylpropyl group, 2,2,3,3-tetrafluorocyclopropyl group, 4-brom
  • Ar represents the bivalent organic group represented by following formula [5] or Formula [6].
  • R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent It represents an aryl group having 6 to 10 carbon atoms which may be possessed.
  • the alkyl group having 1 to 10 carbon atoms the aryl group having 6 to 10 carbon atoms, and the substituent, those exemplified for the aforementioned R 2 and R 3 can be mentioned.
  • the content of the organic nonlinear optical compound is 100 parts by mass of the norbornene imide copolymer having the structural unit represented by the above formula [1] and the structural unit represented by the formula [2] Usually, it is 1 to 150 parts by mass, preferably 10 to 100 parts by mass.
  • composition of the present invention When the composition of the present invention is used as an organic nonlinear optical material, it is generally used in the form of a thin film.
  • a suitable organic solvent e.g, silicon / silicon dioxide coated substrate, silicon nitride substrate, metal ( For example, on a substrate such as a substrate coated with aluminum, molybdenum, chromium or the like, a glass substrate, a quartz substrate, an ITO substrate or the like) or a film (for example, a resin film such as a triacetyl cellulose film, a polyester film or an acrylic film)
  • a wet coating method in which a film is formed by coating by spin coating, flow coating, roll coating, slit coating, spin coating following a slit, inkjet coating, printing or the like.
  • the solvent used for varnish preparation dissolves the norbornene imide copolymer and the organic nonlinear optical compound having the structural unit represented by the formula [1] and the structural unit represented by the formula [2], and optionally added
  • the type, structure, etc. thereof are not particularly limited as long as they dissolve the later-described additives and the like, and the solvent has such a dissolving ability.
  • preferred organic solvents include ethers such as tetrahydrofuran (THF), methyltetrahydrofuran, 1,4-dioxane, diethylene glycol dimethyl ether; ketones such as methyl ethyl ketone (MEK), cyclopentanone, cyclohexanone etc.
  • esters such as ethyl acetate Alcohols such as cyclohexanol and propylene glycol monomethyl ether (PGME); halides such as 1,2-dichloroethane, chloroform and chlorobenzene; aromatic hydrocarbons such as toluene and xylene; N, N-dimethylformamide (DMF), Amides such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone (NMP); sulfoxides such as dimethyl sulfoxide (DMSO) and the like. These solvents can be used alone or in combination of two or more.
  • PGME propylene glycol monomethyl ether
  • halides such as 1,2-dichloroethane, chloroform and chlorobenzene
  • aromatic hydrocarbons such as toluene and xylene
  • Amides such as N, N-dimethylacetamide and N-methyl-2-pyr
  • cyclopentanone, 1,2-dichloroethane, chloroform and the like have high solubility of the norbornene imide copolymer having the structural unit represented by the formula [1] and the structural unit represented by the formula [2] And from the viewpoint of good coatability.
  • the solid content concentration in the varnish is, for example, 0.5 to 30% by mass, and for example, 5 to 30% by mass.
  • the solid content as referred to herein means all the components of the varnish excluding the solvent.
  • the above-mentioned varnish may, if necessary, be an antioxidant such as hydroquinone, an ultraviolet absorber such as benzophenone, a silicone oil, a rheology modifier such as a surfactant, or a silane coupling as long as the effect of the present invention is not impaired.
  • the composition may contain adhesion promoters such as additives, crosslinking agents for polymer matrix, compatibilizers, curing agents, pigments, storage stabilizers, antifoaming agents, and the like.
  • the composition of the present invention can be applied as a material of various electro-optical devices proposed conventionally.
  • a representative example of the electro-optical element is an optical switching element (optical communication element) such as a Mach-Zehnder type optical modulator.
  • the composition of the present invention is coated on a substrate such as glass or plastic and then processed by light or electron beam lithography, wet and dry etching, or nanoimprinting to obtain light.
  • An optical waveguide structure capable of transmission is used.
  • the optical waveguide structure is formed by coating and laminating on a material having a smaller refractive index than the composition, but the present composition is also applicable to other optical waveguide structures without being limited to this structure.
  • a Mach-Zehnder type optical modulator which is a typical optical switching element
  • high-frequency voltage is applied to both or one of the branched optical waveguide structures to exhibit electro-optical characteristics, and light propagated by changing the refractive index Cause a phase change of
  • the electro-optical element mentioned here is not limited to only phase and intensity modulation, and can be used, for example, as a polarization conversion element, a branching and combining element, and the like.
  • the composition of the present invention can be used for applications such as an electric field sensor that detects a change in electric field as a change in refractive index, as well as in a communication device.
  • a poling treatment is required to develop the second-order non-linear optical properties of a material (for example, a thin film) manufactured using the composition.
  • the nonlinear optical compound molecules are applied by applying a predetermined electric field while heating the material to a temperature about 25 ° C. lower than the glass transition temperature of the material, preferably about 10 ° C. lower than the melting point. It is an operation for orientation, and the material is cooled while maintaining the electric field, and the orientation is fixed. By this operation, the material can exhibit macroscopic non-linear optical characteristics.
  • the glass of the composition containing the norbornene imide copolymer as a matrix and the organic nonlinear optical compound is that the orientation of the organic nonlinear optical compound molecules is random only by thinning the composition.
  • the temperature is about 25 ° C. lower than the transition temperature, preferably about 10 ° C. lower (about 120 ° C. if the composition does not exhibit a glass transition temperature), heated to a temperature below the melting point, and subjected to poling treatment , Nonlinear optical characteristics.
  • thermogravimetry simultaneous measurement device TG / DTA 6200 Measurement conditions: under nitrogen atmosphere, temperature rising rate: 10 ° C./min (50 to 450 ° C.) (6) Measurement of ruthenium content Apparatus: Agilent Technologies ICP-MS Agilent (registered trademark) 7500 cs (7) Viscosity measurement device: rheometer MCR 302 manufactured by Anton Paar
  • the reaction mixture was added to deionized water after cooling to room temperature (approximately 23 ° C.).
  • the precipitated white precipitate was collected by filtration and washed with deionized water to obtain a crude product.
  • the crude product is recrystallized several times from a hot ethanol / THF mixture (volume ratio 10: 1) to give exo-N- (4-hydroxyphenyl) -2-norbornene-5,6-dicarboximide as white crystals. (Yield 39%).
  • Example 1 Preparation of N, N '-((octamethylenebisoxy) bis (4,1-phenylene)) bis (2-norbornene-5,6-dicarboximide) [10] 12.30 g (48.2 mmol) of exo-N- (4-hydroxyphenyl) -2-norbornene-5,6-dicarboximide [9] obtained according to the above Preparation example 1-2, 1,8-dibromooctane [ Dissolve 6.55 g (24.1 mmol) of Tokyo Chemical Industry Co., Ltd., 33.00 g (238.8 mmol) of potassium carbonate [Tokyo Tokyo Chemical Industry Co., Ltd.] in 200 mL of acetonitrile, and reflux this for 48 hours The The reaction mixture was cooled to room temperature (approximately 23 ° C.) and then acetonitrile was distilled off using a rotary evaporator.
  • the residue was added to deionized water and stirred for 1 hour to ensure dissolution of potassium carbonate.
  • the organics were extracted with dichloromethane and washed several times with saturated brine.
  • the organic layer was dried over anhydrous magnesium sulfate (manufactured by Kanto Chemical Co., Ltd.), and then dichloromethane was distilled off to obtain a crude product.
  • the crude product was purified by silica gel column chromatography (ethyl acetate / hexane mixture (volume ratio 1:10)).
  • Example 2a Poly (exo-N-cyclohexyl-2-norbornene-5,6-dicarboximido-co-N, N ′-((octamethylenebisoxy) bis (4,1-phenylene)) bis ( Preparation of 2-Norbornene-5,6-dicarboximide)) [12a] 1.00 g (4.08 mmol) of exo-N-cyclohexyl-2-norbornene-5,6-dicarboximide [11] obtained according to the above Preparation example 2 and N, N '-( Schlenk tube of (octamethylenebisoxy) bis (4,1-phenylene)) bis (2-norbornene-5,6-dicarboximide) [10] 2 mg (0.2 mass% with respect to compound [11]) And purged with nitrogen.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 35,000, the number average molecular weight Mn is 21,000, the weight average molecular weight Mw is 25,000, and the dispersion degree Mw / Mn is 1 It was .2. Further, the glass transition temperature Tg was 209 ° C., the 5% weight loss temperature Td 5 was 410 ° C., and the viscosity in a 10% by mass toluene solution was 5.9 mPa ⁇ s. 1 H NMR (400 MHz, CDCl 3 ) ⁇ : 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11, 1.79, 1.59 , 1.21 ppm.
  • Example 2b Preparation of Compound [12b] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 6 mg (0.6 mass% with respect to compound [11]). An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 24,000, the number average molecular weight Mn is 21,000, the weight average molecular weight Mw is 28,000, and the dispersion degree Mw / Mn is 1 It was .4.
  • the glass transition temperature Tg was 209 ° C.
  • the 5% weight loss temperature Td 5 was 410 ° C.
  • the viscosity in a 10% by mass toluene solution was 4.2 mPa ⁇ s.
  • Example 2c Preparation of Compound [12c] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 8 mg (0.8 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 24,000, the number average molecular weight Mn is 21,000, the weight average molecular weight Mw is 30,000, and the dispersion degree Mw / Mn is 1 It was .4.
  • the glass transition temperature Tg was 210 ° C.
  • the 5% weight loss temperature Td 5 was 418 ° C.
  • the viscosity in a 10% by mass toluene solution was 8.4 mPa ⁇ s.
  • Example 2d Preparation of Compound [12d]
  • a norbornene imide copolymer is operated in the same manner as in Example 2a except that the amount of compound [10] used is changed to 10 mg (1 mass% with respect to compound [11]).
  • I got The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 26,000, the number average molecular weight Mn is 26,000, the weight average molecular weight Mw is 42,000, and the dispersion degree Mw / Mn is 1 It was .6.
  • the glass transition temperature Tg was 208 ° C.
  • the 5% weight loss temperature Td 5 was 362 ° C.
  • the viscosity in a 10% by mass toluene solution was 8.3 mPa ⁇ s
  • the ruthenium content derived from the residual catalyst was 980 ppm.
  • Example 2e Production of compound [12e] The same operation as in Example 2a except that the amount of compound [10] used was changed to 14 mg (1.4 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 25,000, the number average molecular weight Mn is 24,000, the weight average molecular weight Mw is 46,000, and the dispersion degree Mw / Mn is 1 .9.
  • the glass transition temperature Tg was 208 ° C.
  • the 5% weight loss temperature Td 5 was 399 ° C.
  • the viscosity in a 10% by mass toluene solution was 3.8 mPa ⁇ s.
  • Example 2 f Preparation of Compound [12 f] The procedure of Example 2a was repeated, except that the amount of compound [10] used was changed to 16 mg (1.6 mass% with respect to compound [11]). An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 25,000, the number average molecular weight Mn is 26,000, the weight average molecular weight Mw is 60,000, and the dispersion degree Mw / Mn is 2 It was .1.
  • the glass transition temperature Tg was 210 ° C.
  • the 5% weight loss temperature Td 5 was 398 ° C.
  • the viscosity in a 10% by mass toluene solution was 5.2 mPa ⁇ s
  • the ruthenium content derived from the residual catalyst was 1,100 ppm.
  • Example 2g Preparation of compound [12g] The same procedure as in Example 2a was repeated except that the amount of compound [10] used was changed to 18mg (1.8% by mass relative to compound [11]), norbornene An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 31,000, the number average molecular weight Mn is 27,000, the weight average molecular weight Mw is 75,000, and the dispersion degree Mw / Mn is 2 It was .8.
  • the glass transition temperature Tg was 212 ° C.
  • the 5% weight loss temperature Td 5 was 405 ° C.
  • the viscosity in a 10% by mass toluene solution was 5.8 mPa ⁇ s.
  • Example 2h Preparation of compound [12h] The same operation as in Example 2a except that the amount of compound [10] used was changed to 20 mg (2.0 mass% with respect to compound [11]) An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 29,000, the number average molecular weight Mn is 28,000, the weight average molecular weight Mw is 102,000, and the dispersion degree Mw / Mn is 3 It was .6.
  • the glass transition temperature Tg was 207 ° C.
  • the 5% weight loss temperature Td 5 was 365 ° C.
  • the viscosity in a 10% by mass toluene solution was 5.1 mPa ⁇ s
  • the ruthenium content derived from the residual catalyst was 1,000 ppm.
  • Example 2i Preparation of Compound [12i] The same procedure as in Example 2a was repeated except that the amount of compound [10] used was changed to 22 mg (2.2 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 28,000, the number average molecular weight Mn is 31,000, the weight average molecular weight Mw is 122,000, and the dispersion degree Mw / Mn is 3 .9.
  • the glass transition temperature Tg was 211 ° C.
  • the 5% weight loss temperature Td 5 was 406 ° C.
  • the viscosity in a 10% by mass toluene solution was 6.5 mPa ⁇ s.
  • Example 2j Preparation of Compound [12j] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 24 mg (2.4 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 28,000, the number average molecular weight Mn is 35,000, the weight average molecular weight Mw is 146,000, and the dispersion degree Mw / Mn is 4 It was .2.
  • the glass transition temperature Tg was 212 ° C.
  • the 5% weight loss temperature Td 5 was 408 ° C.
  • the viscosity in a 10% by mass toluene solution was 8.0 mPa ⁇ s.
  • Example 2k Preparation of Compound [12k] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 26 mg (2.6 mass% with respect to compound [11]). An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 27,000, the number average molecular weight Mn is 32,000, the weight average molecular weight Mw is 155,000, and the dispersion degree Mw / Mn is 4 It was .8.
  • the glass transition temperature Tg was 213 ° C.
  • the 5% weight loss temperature Td 5 was 358 ° C.
  • the viscosity in a 10% by mass toluene solution was 7.9 mPa ⁇ s.
  • Example 2l Preparation of Compound [12l] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 28 mg (2.8 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 27,000, the number average molecular weight Mn is 32,000, the weight average molecular weight Mw is 191,000, and the dispersion degree Mw / Mn is 5 .9.
  • the glass transition temperature Tg was 213 ° C.
  • the 5% weight loss temperature Td 5 was 410 ° C.
  • the viscosity in a 10% by mass toluene solution was 7.7 mPa ⁇ s.
  • Example 2m Preparation of Compound [12m]
  • a norbornene imide copolymer is operated in the same manner as Example 2a except that the amount of compound [10] used is changed to 30 mg (3 mass% with respect to compound [11]).
  • I got The peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 737,000, the number average molecular weight Mn is 35,000, the weight average molecular weight Mw is 155,000, and the dispersion degree Mw / Mn is 7 It was .3.
  • the glass transition temperature Tg was 213 ° C.
  • the 5% weight loss temperature Td 5 was 391 ° C.
  • the viscosity in a 10% by mass toluene solution was 8.4 mPa ⁇ s.
  • Example 2 n Preparation of Compound [12n] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 34 mg (3.4 mass% with respect to compound [11]). An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 828,000, the number average molecular weight Mn is 40,000, the weight average molecular weight Mw is 408,000, and the dispersion degree Mw / Mn is 10 It was .2.
  • the glass transition temperature Tg was 215 ° C.
  • the 5% weight loss temperature Td 5 was 402 ° C.
  • the viscosity in a 10% by mass toluene solution was 151.4 mPa ⁇ s.
  • Example 2o Preparation of compound [12o] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 38 mg (3.8 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 853,000, the number average molecular weight Mn is 44,000, the weight average molecular weight Mw is 815,000, and the dispersion degree Mw / Mn is 18 It was .6.
  • the glass transition temperature Tg was 215 ° C.
  • the 5% weight loss temperature Td 5 was 382 ° C.
  • the viscosity in a 10% by mass toluene solution was 281.4 mPa ⁇ s.
  • Example 2p Preparation of Compound [12p] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 44 mg (4.4 mass% with respect to compound [11]), An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 716,000, the number average molecular weight Mn is 43,000, the weight average molecular weight Mw is 2,026,000, and the dispersion degree Mw / Mn Was 47.2.
  • the glass transition temperature Tg was 216 ° C.
  • the 5% weight loss temperature Td 5 was 384 ° C.
  • the viscosity at a 10 mass% toluene solution was 343.1 mPa ⁇ s.
  • Example 2 q Preparation of Compound [12q] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 46 mg (4.6 mass% with respect to compound [11]). An imide copolymer was obtained.
  • the peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 906,000, the number average molecular weight Mn is 29,000, the weight average molecular weight Mw is 2,135,000, the dispersion degree Mw / Mn Was 73.5.
  • the glass transition temperature Tg was 213 ° C.
  • the 5% weight loss temperature Td 5 was 381 ° C.
  • the viscosity in a 10% by mass toluene solution was 538.7 mPa ⁇ s.
  • the glass transition temperature Tg was 203 ° C.
  • the 5% weight loss temperature Td 5 was 365 ° C.
  • the viscosity in a 10% by mass toluene solution was 5.3 mPa ⁇ s
  • the ruthenium content derived from the residual catalyst was 910 ppm.
  • the molecular weight distribution (dispersion degree) of the obtained norbornene polymer can be dramatically increased by the copolymerization of a minute amount of the bifunctional monomer (compound [10]).
  • the viscosity of a 10 mass% toluene solution of the norbornene polymer obtained can be increased by the copolymerization of a small amount of a bifunctional monomer (compound [10]), which is suitable for film formation. It was confirmed that the viscosity can be freely adjusted.
  • the glass transition temperature and the 5% weight loss temperature are around 210 ° C.
  • the solution was filtered through a filter with a pore diameter of 0.20 ⁇ m, and spin-coated (1,000 rpm ⁇ 30 seconds) on a 20 mm ⁇ 20 mm ITO substrate.
  • the coating was heated on an 85 ° C. hot plate for 30 minutes and further heated in a 85 ° C. vacuum oven for 24 hours.
  • the film thickness of the obtained thin film is shown together in Table 1.
  • a gold electrode with a diameter of 4 mm and a thickness of 200 nm was produced by sputtering to obtain a test piece.
  • each test piece is heated and held at a predetermined temperature on a hot plate, and voltage application is performed at a field strength described in Table 1 via a gold electrode and an ITO electrode, and poling treatment is performed for about 1 minute. Did. Then, after rapidly cooling to fix the polarization orientation, voltage application was stopped. The test pieces for which the poling treatment was completed were subjected to the evaluation of the electro-optical characteristics.
  • the values of the electro-optic constant r 33 obtained from each test piece are shown together with the temperature at which the electric field alignment treatment was performed and the electric field strength in Table 1.
  • the value of electro-optic constant r 33 (as well as the degree of dispersion) of the compound in the polymer [10] a graph plotted against the mass ratio of the structural unit derived from, shown in FIG.
  • the electro-optical constant of the composition of the present invention is increased from 63 pm / V to 78 pm / V by introducing a crosslinked structure into the norbornene imide polymer by copolymerization of bifunctional monomers. That was confirmed. That is, the effect of enhancing the electric field alignment of the organic nonlinear optical compound was observed. Although the reason is not elucidated, it is presumed that the introduction of the cross-linked structure increased the amorphism of the polymer.
  • Example 4h Comparative Example 3
  • Temperature Durability Test A temperature durability test was conducted on the test pieces for which the electro-optic constant was measured in Example 3h and Comparative Example 2. Each test piece was kept at 85 ° C., and the relaxation characteristics of the electro-optical constant from immediately after poling to after 500 hours were measured.
  • FIG. 6 shows the rate of change (r 33 / r 33 (0) ⁇ 100) from the initial value (r 33 (0)) of the electro-optical constant r 33 as a function of time (h).
  • the relaxation of the alignment of the nonlinear optical compound is generally liable to occur by heat, and the electro-optical constant decreases with time.
  • the electro-optical constant of the composition of the present invention is amorphous. It was confirmed to have the same thermal stability (Example 4h: 79%, Comparative Example 3: 77%) as the low-quality homopolymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

[Problem] To provide a polymer matrix which not only can inhibit an organic nonlinear optical compound from undergoing a relaxation from orientation but also can more highly orient the organic nonlinear optical compound and which renders viscosity regulation easy; and to provide a composition comprising the polymer matrix and an organic nonlinear optical compound and an optical material obtained from the composition. [Solution] A composition which comprises: a norbornene imide copolymer having a structural unit represented by formula [1] and a structural unit represented by formula [2]; and an organic nonlinear optical compound. (In the formulae, R1 represents an optionally substituted C1-12 alkyl group or an optionally substituted C6-10 aryl group and L1 represents a C1-30 divalent organic group.)

Description

有機非線形光学化合物を含む架橋ポリマー組成物Crosslinked polymer composition comprising organic non-linear optical compound
 本発明は、光スイッチ、光変調などの光情報処理、光通信などに用いられる有機非線形光学化合物を含むポリマー組成物に関し、詳細には有機非線形光学化合物を架橋高分子マトリクス中に分散させた組成物並びに該組成物から形成される光学材料に関する。 The present invention relates to a polymer composition containing an organic nonlinear optical compound used for optical information processing such as optical switching, light modulation, etc., optical communication, etc. More specifically, the composition in which the organic nonlinear optical compound is dispersed in a crosslinked polymer matrix And optical materials formed from the composition.
 近年、光情報処理、光通信などの分野において、蛍光色素を含有する材料や非線形光学材料を用いた種々の光電子素子の開発が進められている。これらのうち非線形光学材料とは、光の電界の2乗や3乗あるいはそれ以上の高次の項に比例する分極応答を示す材料であって、第2次高調波発生(SHG)や1次の電気光学効果であるポッケルス効果といった2次の非線形光学効果を生じるものは、光源、光スイッチ、光変調などの応用が考えられている。 In recent years, in the fields of optical information processing, optical communication, and the like, development of various optoelectronic devices using materials containing fluorescent dyes and nonlinear optical materials has been advanced. Of these, nonlinear optical materials are materials that exhibit a polarization response that is proportional to the second-, third-, or higher-order term of the electric field of light, and generate second harmonic generation (SHG) or first-order Applications that produce a second-order non-linear optical effect such as the Pockels effect, which is an electro-optical effect, are considered to be applications such as a light source, an optical switch, and light modulation.
 従来、無機非線形光学材料としてニオブ酸リチウム、リン酸二水素カリウムが実用化され、広く用いられている。しかしながら近年、これらの無機材料に対し、高い非線形光学性能、安価な材料コスト、高い量産性等の優位性を有する、有機非線形光学材料が注目され、実用化に向けての活発な研究開発が行われている。 Conventionally, lithium niobate and potassium dihydrogen phosphate are practically used and widely used as inorganic nonlinear optical materials. However, in recent years, organic non-linear optical materials that have advantages such as high non-linear optical performance, inexpensive material costs, high mass productivity, etc. have attracted attention for these inorganic materials, and active research and development toward commercialization are underway. It is
 有機材料を用いてデバイスを作製する方法としては、非線形光学特性を有する化合物(有機非線形光学化合物)の単結晶を用いる方法、また、蒸着法やLB膜法が知られている。さらには非線形光学特性を有する構造を高分子化合物の主鎖又は側鎖に導入する方法、或いは非線形光学化合物を高分子マトリクス中に分散させる方法などがある。特に高分子系においては、キャスト法、ディップ法、スピンコート法などにより成膜できるため、加工が容易である。 As a method of manufacturing a device using an organic material, a method of using a single crystal of a compound (organic nonlinear optical compound) having nonlinear optical characteristics, a vapor deposition method and an LB film method are known. Furthermore, there is a method of introducing a structure having nonlinear optical properties into the main chain or side chain of a polymer compound, or a method of dispersing a nonlinear optical compound in a polymer matrix. In particular, in the case of a polymer type, the film can be formed by a casting method, a dipping method, a spin coating method or the like, so that the processing is easy.
 これらのうち、高分子マトリクス中に有機非線形光学化合物を分散させる方法においては、有機非線形光学化合物が凝集せず高濃度に分散され、光学的に均一になることが必要とされる。
 ここで使用する有機非線形光学化合物としては、π共役鎖の一方の端に電子供与性官能基、他方の端に電子吸引性官能基を有する、プッシュ-プル型のπ共役系化合物が知られている。例えば、π共役鎖としてのアゾベンゼンに、電子供与性基であるジエチルアミノ基及び電子吸引性基であるニトロ基を有する、Disperse Red 1(DR1)などである。
Among these, in the method of dispersing the organic nonlinear optical compound in the polymer matrix, it is required that the organic nonlinear optical compound is dispersed at a high concentration without aggregation and is optically uniform.
As the organic nonlinear optical compound to be used here, a push-pull type π conjugated compound having an electron donating functional group at one end of the π conjugated chain and an electron attracting functional group at the other end is known. There is. For example, Disperse Red 1 (DR1), which has an azobenzene as a π conjugated chain, a diethylamino group as an electron donating group and a nitro group as an electron withdrawing group.
 しかしながら、このような分子は双極子モーメントが大きいため分子間相互作用が大きく、媒体への溶解性ないしは分散性が悪く、高分子マトリクスとして一般に用いられているポリメタクリル酸メチル(PMMA)等へ高濃度で分散させることが困難であった。また、PMMAのガラス転移温度は100℃程度と低く、PMMAを高分子マトリクスとして用いた有機非線形光学化合物の配向は室温でも次第に緩和し、その特性が経時で低下してしまうという欠点がある。 However, such molecules have large intermolecular interaction due to a large dipole moment, and are poorly soluble or dispersible in the medium, and are high in polymethyl methacrylate (PMMA) or the like generally used as a polymer matrix. It was difficult to disperse by concentration. Further, the glass transition temperature of PMMA is as low as about 100 ° C., and the alignment of the organic nonlinear optical compound using PMMA as a polymer matrix is gradually relaxed even at room temperature, and there is a disadvantage that the characteristics thereof deteriorate with time.
 このため、PMMAの代替となる高分子マトリクスが種々検討され、例えば、ガラス転移温度が高く、有機非線形光学化合物を高濃度に分散できるノルボルネンイミドポリマーを、高分子マトリクスとして用いることが報告されている(特許文献1)。 For this reason, various polymer matrices as alternatives to PMMA have been studied, and for example, it has been reported that a norbornene imide polymer having a high glass transition temperature and capable of dispersing an organic nonlinear optical compound at a high concentration is used as the polymer matrix. (Patent Document 1).
国際公開第2013/172342号International Publication No. 2013/172342
 しかしながら、実用化の観点から、分散した有機非線形光学化合物の配向をより高められ(すなわち、より高い電気光学定数を得られ)、さらに所望の粘度に調整しやすく所望の膜厚に成膜しやすい高分子マトリクスが求められている。
 そこで、本発明は、有機非線形光学化合物を高度に配向し、粘度調整が容易であり、かつ有機非線形光学化合物の配向緩和を抑制することができる高分子マトリクスを提供し、この高分子マトリクスと有機非線形光学化合物を含有する組成物、及び該組成物を用いて得られる光学材料を提供することを目的とする。
However, from the viewpoint of practical use, the orientation of the dispersed organic nonlinear optical compound can be further enhanced (that is, a higher electro-optical constant can be obtained), and the viscosity can be easily adjusted to a desired viscosity There is a need for polymeric matrices.
Therefore, the present invention provides a polymer matrix capable of highly orienting the organic nonlinear optical compound, facilitating viscosity adjustment, and suppressing the alignment relaxation of the organic nonlinear optical compound, and the polymer matrix and the organic It is an object of the present invention to provide a composition containing a non-linear optical compound, and an optical material obtained using the composition.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ノルボルネンイミドポリマーに替えて、これに架橋構造を導入したノルボルネンイミドコポリマーを採用し、該コポリマーと有機非線形光学化合物とを組み合わせることにより、有機非線形光学化合物の配向緩和を抑制することができるだけでなく、該有機非線形光学化合物をより高度に配向でき、しかも粘度調整も容易となる高分子マトリクスとなることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors adopt a norbornene imide copolymer in which a crosslinked structure is introduced to the norbornene imide polymer instead of the norbornene imide polymer, and the copolymer and the organic nonlinear optical compound It has been found that the combination not only can suppress the orientation relaxation of the organic nonlinear optical compound but also provides a polymer matrix which can orient the organic nonlinear optical compound to a higher degree and whose viscosity can be easily adjusted. Completed.
 すなわち本発明は、第1観点として、式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーと、有機非線形光学化合物とを含む組成物に関する。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、Lは炭素原子数1~30の二価の有機基を表す。)
 第2観点として、前記Lが、-Z-L-Z-(ここで、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数1~18の二価の有機基を表す。)で表される基である、第1観点に記載の組成物に関する。
 第3観点として、前記Lが、-O-L-O-(ここで、Lは、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1~18のアルキレン基を表す。)で表される基である、第2観点に記載の組成物に関する。
 第4観点として、前記有機非線形光学化合物が、式[3]で表されるフラン環を有する化合物である、第1観点乃至第3観点のうち何れか一項に記載の組成物に関する。
Figure JPOXMLDOC01-appb-C000008
(式中、R、Rはそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、●は結合手を表す。)
 第5観点として、前記有機非線形光学化合物が、式[4]で表される化合物である、第4観点に記載の組成物に関する。
Figure JPOXMLDOC01-appb-C000009
(式中、R、Rはそれぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数4~10のアリールオキシ基、炭素原子数5~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R、Rはそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは式[5]又は式[6]で表される二価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000010
(式中、R10~R15はそれぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。)
 第6観点として、前記有機非線形光学化合物の含有量が、前記ノルボルネンイミドコポリマー100質量部に対して1~150質量部である、第1観点乃至第5観点のうち何れか一項に記載の組成物に関する。
 第7観点として、第1観点乃至第6観点のうち何れか一項に記載の組成物を含むワニスに関する。
 第8観点として、第1観点乃至第6観点のうち何れか一項に記載の組成物からなる薄膜に関する。
 第9観点として、第1観点乃至第6観点のうち何れか一項に記載の組成物を含む電気光学素子に関する。
 第10観点として、第1観点乃至第6観点のうち何れか一項に記載の組成物を含む光スイッチング素子に関する。
 第11観点として、第1観点乃至第6観点のうち何れか一項に記載の組成物を用いた有機非線形光学材料に関する。
 第12観点として、式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーに関する。
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、Lは炭素原子数1~30の二価の有機基を表す。)
 第13観点として、前記Lが、-Z-L-Z-(ここで、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数1~18の二価の有機基を表す。)で表される基である、第12観点に記載のノルボルネンイミドコポリマーに関する。
 第14観点として、前記Lが、-O-L-O-(ここで、Lは、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1~18のアルキレン基を表す。)で表される基である、第13観点に記載のノルボルネンイミドコポリマーに関する。
 第15観点として、式[7]で表されるビス(ノルボルネンジカルボキシミド)化合物に関する。
Figure JPOXMLDOC01-appb-C000012
(式中、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数3~18のアルキレン基を表す。)
That is, the present invention relates to, as a first aspect, a composition comprising a norbornene imide copolymer having a structural unit represented by Formula [1] and a structural unit represented by Formula [2], and an organic nonlinear optical compound.
Figure JPOXMLDOC01-appb-C000007
(Wherein, R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent, L 1 represents a divalent organic group having 1 to 30 carbon atoms.)
As a second aspect, L 1 is —Z 1 -L 2 -Z 2- (wherein Z 1 and Z 2 are each independently a cyclohexylene group which may have a substituent, or a substituent The composition according to the first aspect relates to a phenylene group which may have a group, and L 2 represents a divalent organic group having 1 to 18 carbon atoms.
As a third aspect, the above L 2 is —O—L 3 —O— (wherein L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond). The composition according to the second aspect is a group represented by
As a fourth aspect, the present invention relates to the composition according to any one of the first to third aspects, wherein the organic nonlinear optical compound is a compound having a furan ring represented by the formula [3].
Figure JPOXMLDOC01-appb-C000008
(Wherein, R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or an aryl group of 6 to 10 carbon atoms , ● represents a bond.)
A fifth aspect relates to the composition according to the fourth aspect, wherein the organic nonlinear optical compound is a compound represented by formula [4].
Figure JPOXMLDOC01-appb-C000009
(Wherein, R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or the number of carbon atoms which may have a substituent) And R 4 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or the like Silyloxy group having an alkylcarbonyloxy group of 2 to 11, an aryloxy group of 4 to 10 carbon atoms, an arylcarbonyloxy group of 5 to 11 carbon atoms, an alkyl group of 1 to 6 carbon atoms and / or a phenyl group Or R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or an aryl of 6 to 10 carbon atoms Group It represents, Ar represents a divalent organic group represented by the formula [5] or Formula [6].)
Figure JPOXMLDOC01-appb-C000010
(Wherein, R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or the number of carbon atoms which may have a substituent) 6-10 aryl groups are represented.)
As a sixth aspect, the composition according to any one of the first to fifth aspects, wherein the content of the organic nonlinear optical compound is 1 to 150 parts by mass with respect to 100 parts by mass of the norbornene imide copolymer. Related to things.
As a seventh aspect, the present invention relates to a varnish including the composition according to any one of the first to sixth aspects.
An eighth aspect relates to a thin film formed of the composition according to any one of the first to sixth aspects.
A ninth aspect relates to an electro-optical element including the composition according to any one of the first to sixth aspects.
The present invention relates to, as a tenth aspect, an optical switching element including the composition according to any one of the first to sixth aspects.
As an eleventh aspect, the present invention relates to an organic nonlinear optical material using the composition according to any one of the first to sixth aspects.
A twelfth aspect relates to a norbornene imide copolymer having a structural unit represented by the formula [1] and a structural unit represented by the formula [2].
Figure JPOXMLDOC01-appb-C000011
(Wherein, R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent, L 1 represents a divalent organic group having 1 to 30 carbon atoms.)
As a thirteenth aspect, L 1 is —Z 1 -L 2 -Z 2- (wherein Z 1 and Z 2 are each independently a cyclohexylene group which may have a substituent, or a substituent A norbornene imide copolymer according to the twelfth aspect, which is a group represented by phenylene group which may have a group, L 2 is a divalent organic group having 1 to 18 carbon atoms) .
As a fourteenth aspect, L 2 is —O—L 3 —O— (wherein L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond). The norbornene imide copolymer according to the thirteenth aspect, which is a group represented by
The present invention relates, as a fifteenth aspect, to a bis (norbornene dicarboximide) compound represented by the formula [7].
Figure JPOXMLDOC01-appb-C000012
(Wherein, Z 1 and Z 2 each independently represent a cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent, and L 3 has 3 carbon atoms Represents an alkylene group of to 18)
 本発明の組成物は、特定の構造単位を有するノルボルネンイミドコポリマーと有機非線形光学化合物とを組み合わせることにより、該有機非線形光学化合物の配向緩和を抑制することができるだけでなく、該有機非線形光学化合物をより高度に配向させることができ、さらに粘度調整を容易なものとすることができる。
 また本発明の組成物は、溶媒に溶解してワニス形態と為し、簡単に成形可能であることから、ハンドリング性の高い光学材料として、光電子材料分野において好適に用いることができるという効果が得られる。
 さらに本発明の有機非線形光学材料は、大きな非線形光学定数を有し、簡単に成形できる光学デバイスを形成することが可能となる。
The composition of the present invention can not only suppress the alignment relaxation of the organic nonlinear optical compound by combining a norbornene imide copolymer having a specific structural unit with the organic nonlinear optical compound, but it is also possible to use the organic nonlinear optical compound Higher orientation can be achieved, and viscosity adjustment can be made easier.
In addition, the composition of the present invention is dissolved in a solvent to form a varnish form, and can be easily molded, so that the optical material having high handleability can be suitably used in the field of optoelectronic materials. Be
Furthermore, the organic nonlinear optical material of the present invention has a large nonlinear optical constant, which makes it possible to form an optical device that can be easily formed.
 また本発明の特定の構造単位を有するノルボルネンイミドコポリマーは、該有機非線形光学化合物の配向緩和を抑制し、該有機非線形光学化合物を高度に配向し、さらには粘度調整が容易にできるため、有機非線形光学化合物の高分子マトリクスとして好適に用いることができる。
 さらに、本発明の2官能モノマーであるビス(ノルボルネンジカルボキシミド)化合物は、ノルボルネンイミドホモポリマーに架橋構造を導入するための架橋剤(クロスリンカー)として有用であり、特に、ポリマーの熱的特性や、有機非線形光学化合物の配向緩和の抑制効果を同等に維持しながら、有機非線形光学化合物の電場配向を高めることができる架橋剤として、有用な化合物である。
In addition, the norbornene imide copolymer having the specific structural unit of the present invention suppresses relaxation of the alignment of the organic nonlinear optical compound, highly aligns the organic nonlinear optical compound, and facilitates the adjustment of viscosity, so that organic nonlinear It can be suitably used as a polymer matrix of an optical compound.
Furthermore, the bis (norbornene dicarboximide) compound which is a bifunctional monomer of the present invention is useful as a crosslinking agent (crosslinker) for introducing a crosslinking structure into norbornene imide homopolymer, and in particular, the thermal properties of the polymer Also, the compound is useful as a crosslinking agent capable of enhancing the electric field alignment of the organic nonlinear optical compound while maintaining the suppression effect of the alignment relaxation of the organic nonlinear optical compound equally.
図1は、実施例で得られたノルボルネンイミドコポリマー及び比較例1で得られたノルボルネンイミドポリマーの、各ポリマー中の2官能モノマー由来の構造単位の質量割合に対する、分散度(Mw/Mn)を示す図である。FIG. 1 shows the degree of dispersion (Mw / Mn) of the norbornene imide copolymer obtained in Examples and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from bifunctional monomer in each polymer. FIG. 図2は、実施例で得られたノルボルネンイミドコポリマー及び比較例1で得られたノルボルネンイミドポリマーの、各ポリマー中の2官能モノマー由来の構造単位の質量割合に対する、10質量%トルエン溶液の粘度V(mPa・s)を示す図である。FIG. 2 shows the viscosity V of a 10 mass% toluene solution of the norbornene imide copolymer obtained in the example and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from bifunctional monomer in each polymer. It is a figure which shows (mPa * s). 図3は、実施例で得られたノルボルネンイミドコポリマー及び比較例1で得られたノルボルネンイミドポリマーの、各ポリマー中の2官能モノマー由来の構造単位の質量割合に対する、ガラス転移温度Tg(℃)を示す図である。FIG. 3 shows the glass transition temperature Tg (° C.) of the norbornene imide copolymer obtained in Examples and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from bifunctional monomer in each polymer. FIG. 図4は、実施例で得られたノルボルネンイミドコポリマー及び比較例1で得られたノルボルネンイミドポリマーの、各ポリマー中の2官能モノマー由来の構造単位の質量割合に対する、5%重量減少温度Td(℃)を示す図である。FIG. 4 shows the 5% weight loss temperature Td 5 (relative to the weight ratio of the structural unit derived from the bifunctional monomer in each polymer, of the norbornene imide copolymer obtained in the example and the norbornene imide polymer obtained in Comparative Example 1 C). 図5は、実施例で得られたノルボルネンイミドコポリマー及び比較例1で得られたノルボルネンイミドポリマーの、各ポリマー中の2官能モノマー由来の構造単位の質量割合に対する、電気光学定数r33(pm/V)(左軸)及び分散度(Mw/Mn)(右軸)を示す図である。FIG. 5 shows the electro-optical constant r 33 (pm /) of the norbornene imide copolymer obtained in the example and the norbornene imide polymer obtained in Comparative Example 1 with respect to the mass ratio of the structural unit derived from the bifunctional monomer in each polymer. V) (left axis) and dispersity (Mw / Mn) (right axis). 図6は、電気光学定数を測定した試験片における温度耐久試験の結果を示すものであり、電気光学定数r33の初期値(r33(0))からの変化率(r33/r33(0)×100)を時間(h)の関数として示す図である。FIG. 6 shows the results of the temperature endurance test for the test piece for which the electro-optic constant was measured, and the rate of change (r 33 / r 33 (from the initial value (r 33 (0))) of the electro-optic constant r 33 FIG. 2 shows 0) × 100) as a function of time (h).
<式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマー>
 本発明の組成物に用いる下記式[1]で表される構造単位及び下記式[2]で表される構造単位を有するノルボルネンイミドコポリマーにおいて、その平均分子量は特に限定されるものではないが、例えば重量平均分子量が10,000~3,000,000であり、10,000~1,000,000であることが好ましく、20,000~500,000であることがより好ましい。また、分散度(重量平均分子量/数平均分子量)は、例えば1.1~80であり、1.2~20であり、1.2~10とすることができる。
 なお、本発明における重量平均分子量、数平均分子量とは、ゲル浸透クロマトグラフィー(ポリスチレン換算)による測定値である。
 また上記式[1]で表される構造単位及び下記式[2]で表される構造単位を有するノルボルネンイミドコポリマーも、本発明の対象である。
<A norbornene imide copolymer which has a structural unit represented by a formula [1], and a structural unit represented by a formula [2]>
In the norbornene imide copolymer having a structural unit represented by the following formula [1] and a structural unit represented by the following formula [2] used for the composition of the present invention, the average molecular weight is not particularly limited, For example, the weight average molecular weight is 10,000 to 3,000,000, preferably 10,000 to 1,000,000, and more preferably 20,000 to 500,000. Also, the degree of dispersion (weight average molecular weight / number average molecular weight) is, for example, 1.1 to 80, 1.2 to 20, and can be 1.2 to 10.
The weight average molecular weight and the number average molecular weight in the present invention are measured values by gel permeation chromatography (in terms of polystyrene).
Also, a norbornene imide copolymer having a structural unit represented by the above formula [1] and a structural unit represented by the following formula [2] is also an object of the present invention.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式[1]中、Rは、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~12のアルキル基としては、分岐構造、環状構造を有していてもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、1-アダマンチル基、ベンジル基、フェネチル基等が挙げられる。
 炭素原子数6~10のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭素原子数1~12のアルキル基の置換基としては、ヒドロキシ基;フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲン原子が挙げられる。
 上記炭素原子数6~10のアリール基の置換基としては、メチル基、エチル基等のアルキル基;ヒドロキシメチル基等のヒドロキシアルキル基;ヒドロキシ基;メトキシ基、オクチルオキシ基等のアルコキシ基;フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲン原子が挙げられる。
 Rの具体的な例としては、シクロヘキシル基、4-ヒドロキシシクロヘキシル基、n-オクチル基、1-アダマンチル基、フェニル基、4-トリル基、4-ヒドロキシメチルフェニル基、4-ヒドロキシフェニル基、2,3,4,5,6-ペンタフルオロフェニル基等が挙げられる。
In the above formula [1], R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent. Represent.
Here, the alkyl group having 1 to 12 carbon atoms may have a branched structure or a cyclic structure, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, n-dodecyl, 1-adamantyl Groups, benzyl group, phenethyl group and the like.
Examples of the aryl group having 6 to 10 carbon atoms include phenyl group and naphthyl group.
Examples of the substituent of the alkyl group having 1 to 12 carbon atoms include a hydroxy group; and a halogen atom such as a fluoro group, a chloro group, a bromo group or an iodo group.
Examples of the substituent of the aryl group having 6 to 10 carbon atoms include alkyl groups such as methyl and ethyl; hydroxyalkyl groups such as hydroxymethyl; hydroxy; alkoxy such as methoxy and octyloxy; fluoro And halogen atoms such as chloro, bromo and iodo.
Specific examples of R 1 include cyclohexyl group, 4-hydroxycyclohexyl group, n-octyl group, 1-adamantyl group, phenyl group, 4-tolyl group, 4-hydroxymethylphenyl group, 4-hydroxyphenyl group, 2,3,4,5,6-pentafluorophenyl group etc. are mentioned.
 また、式[1]で表される構造単位は、シス体であってもトランス体であってもよい。 Furthermore, the structural unit represented by the formula [1] may be cis or trans.
 上記式[2]中、Lは炭素原子数1~30の二価の有機基を表す。
 上記炭素原子数1~30の二価の有機基としては、特に限定されないが、例えば一以上の芳香族環及び/又は脂肪族環を含んでいてもよく、また、一以上のエーテル結合(-O-)、エステル結合(-COO-)などの結合基を含んでいてもよい二価の基であって、該基を構成する炭素原子の合計が最大で30である基(ただしエステル結合を含む場合、エステル結合中の炭素原子は上記の1~30の炭素原子数に含めない)が挙げられる。
 上記炭素原子数1~30の二価の有機基は、好ましくは、アルキレン基、芳香族環又は脂肪族環、或いはその両方を有し、エーテル結合及び/又はエステル結合を含んでいてもよい二価の炭化水素基から選択される。
In the above formula [2], L 1 represents a divalent organic group having 1 to 30 carbon atoms.
The divalent organic group having 1 to 30 carbon atoms is not particularly limited, and may contain, for example, one or more aromatic rings and / or aliphatic rings, and one or more ether bonds (— A divalent group which may contain a bonding group such as O-) or an ester bond (-COO-), and the total number of carbon atoms constituting the group is at most 30, provided that the ester bond When it is contained, carbon atoms in the ester bond are not included in the above 1 to 30 carbon atoms.
The divalent organic group having 1 to 30 carbon atoms is preferably an alkylene group, an aromatic ring or an aliphatic ring, or both, and may contain an ether bond and / or an ester bond. It is selected from valent hydrocarbon groups.
 中でも、上記Lが-Z-L-Z-であることが好ましい。ここで、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数1~18の二価の有機基を表す。
 上記シクロヘキシレン基又はフェニレン基の置換基としては、メチル基、エチル基等のアルキル基;ヒドロキシメチル基等のヒドロキシアルキル基;ヒドロキシ基;メトキシ基、オクチルオキシ基等のアルコキシ基;フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲン原子が挙げられる。
 また上記炭素原子数1~18の二価の有機基としては、エーテル結合及び/又はエステル結合を含んでいてもよい炭素原子数1~18のアルキレン基(ただしエステル結合を含む場合、エステル結合中の炭素原子は上記の1~18の炭素原子数に含めない)が挙げられる。
Among them, the above L 1 is preferably -Z 1 -L 2 -Z 2- . Here, each of Z 1 and Z 2 independently represents a cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent, and L 2 has 1 to carbon atoms It represents 18 divalent organic groups.
As a substituent of the above-mentioned cyclohexylene group or phenylene group, alkyl group such as methyl group and ethyl group; hydroxyalkyl group such as hydroxymethyl group; hydroxy group; alkoxy group such as methoxy group and octyloxy group; fluoro group, chloro And halogen atoms such as bromo, iodo and the like.
Further, as the above-mentioned divalent organic group having 1 to 18 carbon atoms, an alkylene group having 1 to 18 carbon atoms which may contain an ether bond and / or an ester bond (however, in the case of containing an ester bond, the ester bond may be And the carbon atom of (1) is not included in the above 1 to 18 carbon atoms).
 特に前記Lが、-O-L-O-で表される基であること、すなわち上記Lが-Z-O-L-O-Z-で表される基であることが好ましい。ここで、Lは、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1~18のアルキレン基を表す(Z及びZは上記に定義したとおりである)。
 炭素原子数1~18のアルキレン基としては、分岐構造、環状構造を有していてもよく、メチレン基、エチレン基、トリメチレン基、1-メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、1,1-ジメチルエチレン基、ペンタメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-エチルトリメチレン基、ヘキサメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1-エチルテトラメチレン基、1,1,2-トリメチルトリメチレン基、1,2,2-トリメチルトリメチレン基、1-エチル-1-メチルトリメチレン基、1-エチル-2-メチルトリメチレン基、1,4-シクロへキシレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデカメチレン基、ヘキサデカメチレン基、ヘプタデカメチレン基、オクタデカメチレン基等が挙げられる。
 また、エーテル結合を含む上記アルキレン基としては、3-オキサペンタン-1,5-ジイル基、3,6-ジオキサオクタン-1,8-ジイル基等が挙げられる。
In particular, the above L 2 is a group represented by -O-L 3 -O-, that is, the above L 1 is a group represented by -Z 1 -O-L 3 -O-Z 2- Is preferred. Here, L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond (Z 1 and Z 2 are as defined above).
The alkylene group having 1 to 18 carbon atoms may have a branched structure or a cyclic structure, and a methylene group, an ethylene group, a trimethylene group, a 1-methylethylene group, a tetramethylene group, a 1-methyltrimethylene group 1,1-Dimethylethylene, Pentamethylene, 1-Methyltetramethylene, 2-Methyltetramethylene, 1,1-Dimethyltrimethylene, 1,2-Dimethyltrimethylene, 2,2-Dimethyl Trimethylene, 1-ethyltrimethylene, hexamethylene, 1-methylpentamethylene, 2-methylpentamethylene, 3-methylpentamethylene, 1,1-dimethyltetramethylene, 1,2-dimethyl Tetramethylene, 2,2-dimethyltetramethylene, 1-ethyltetramethylene, 1,1,2-trimethylto Methylene, 1,2,2-trimethyltrimethylene, 1-ethyl-1-methyltrimethylene, 1-ethyl-2-methyltrimethylene, 1,4-cyclohexylene, heptamethylene, octal Methylene, nonamethylene, decamethylene, undecamethylene, dodecamethylene, tridecamethylene, tetradecamethylene, tetradecamethylene, pentadecamethylene, hexadecamethylene, heptadecamethylene, octadecamethylene, etc. Be
Further, as the above-mentioned alkylene group containing an ether bond, 3-oxapentane-1,5-diyl group, 3,6-dioxaoctane-1,8-diyl group and the like can be mentioned.
 また、式[2]で表される構造単位においても、立体配置は特に限定されない。 Also in the structural unit represented by the formula [2], the steric configuration is not particularly limited.
 本発明において、上記ノルボルネンイミドコポリマーにおける式[1]で表される構造単位と式[2]で表される構造単位の割合は特に限定されず、式[1]で表される構造単位に対して式[2]で表される構造単位の質量割合が0を超えていればよい。例えば、式[1]で表される構造単位に対して、式[2]で表される構造単位の割合を0.01~10質量%とすることできる。
 本発明の組成物における粘度調整を容易とする観点からは、式[1]で表される構造単位に対して、式[2]で表される構造単位の割合を0.01~5質量%程度、後述する有機非線形光学化合物をより高度に配向できる観点からは、同0.01~3質量%とすることができる。
In the present invention, the ratio of the structural unit represented by the formula [1] and the structural unit represented by the formula [2] in the norbornene imide copolymer is not particularly limited, and the ratio to the structural unit represented by the formula [1] The mass fraction of the structural unit represented by Formula [2] may be more than 0. For example, the ratio of the structural unit represented by Formula [2] to the structural unit represented by Formula [1] can be 0.01 to 10% by mass.
From the viewpoint of facilitating viscosity adjustment in the composition of the present invention, the ratio of the structural unit represented by the formula [2] to the structural unit represented by the formula [1] is 0.01 to 5% by mass From the viewpoint of allowing the organic non-linear optical compound described later to be more highly oriented, the content can be 0.01 to 3% by mass.
 本発明に用いられるノルボルネンイミドコポリマーは、式[1]で表される構造単位及び式[2]で表される構造単位以外のその他の構造単位を有していてもよい。その他の構造単位としては、ノルボルネン、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、1,5-シクロオクタジエン等の構造単位を挙げることができる。上記その他の構造単位を有する場合、ポリマー全体に対して、式[1]で表される構造単位及び式[2]で表される構造単位が50~99モル%であることが望ましい。
 一方、上記ノルボルネンイミドコポリマーは、式[1]で表される構造単位及び式[2]で表される構造単位のみからなるポリマーであることが、本発明の効果を発現させやすいためより好ましい。したがって、本発明に用いられるノルボルネンイミドコポリマーは、式[1]で表される構造単位及び式[2]で表される構造単位を50~100モル%で有することが望ましい。
The norbornene imide copolymer used in the present invention may have other structural units other than the structural unit represented by the formula [1] and the structural unit represented by the formula [2]. As other structural units, structural units such as norbornene, cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene and the like can be mentioned. In the case of having the above other structural units, it is desirable that the structural unit represented by the formula [1] and the structural unit represented by the formula [2] be 50 to 99% by mole based on the whole polymer.
On the other hand, the norbornene imide copolymer is more preferably a polymer comprising only the structural unit represented by the formula [1] and the structural unit represented by the formula [2], because the effects of the present invention can be easily exhibited. Therefore, it is desirable that the norbornene imide copolymer used in the present invention has 50 to 100% by mole of the structural unit represented by the formula [1] and the structural unit represented by the formula [2].
<式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーの製造方法>
 上記式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーは、例えば、ノルボルネンイミドモノマーとビス(ノルボルネンイミド)モノマーとを、ルテニウム触媒などの金属錯体の存在下、溶媒中で重合反応を行うことによって得られる。
 なお、前記ノルボルネンイミドコポリマーは、Macromol.Chem.Phys.2002,203,1811-1818に記載されたノルボルネンイミドポリマーの製造方法に倣い合成することができる。
<Method of producing norbornene imide copolymer having structural unit represented by Formula [1] and structural unit represented by Formula [2]
The norbornene imide copolymer which has a structural unit represented by the said Formula [1] and a structural unit represented by Formula [2] is metal complexes, such as a norbornene imide monomer and a bis (norbornene imide) monomer, a ruthenium catalyst etc., for example Obtained by performing the polymerization reaction in a solvent in the presence of
The norbornene imide copolymer is preferably Macromol. Chem. Phys. The norbornene imide polymer can be synthesized according to the method for producing norbornene imide polymer described in 2002, 203, 1811-1818.
 上記ビス(ノルボルネンイミド)モノマーとしては、例えば下記式[7]で表されるビス(ノルボルネンジカルボキシミド)化合物が挙げられ、本化合物も本発明の対象である。
Figure JPOXMLDOC01-appb-C000014
 式中、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数3~18のアルキレン基を表す。
Examples of the above-mentioned bis (norbornene imide) monomers include bis (norbornene dicarboximide) compounds represented by the following formula [7], and the present compound is also an object of the present invention.
Figure JPOXMLDOC01-appb-C000014
In the formula, each of Z 1 and Z 2 independently represents a cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent, and L 3 represents 3 to 6 carbon atoms. Represents 18 alkylene groups.
 上記式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーの製造において、ノルボルネンイミドモノマー及びビス(ノルボルネンイミド)モノマーは、それぞれを一種単独で使用してもよいし、又は二種以上を組み合わせて用いることもできる。二種以上のノルボルネンイミドモノマー及び/又はビス(ノルボルネンイミド)モノマーを用いる場合には、それらモノマーの比率は特に制限されず、目的とするポリマーの構造に応じて適宜調整することができる。 In the production of a norbornene imide copolymer having a structural unit represented by the above formula [1] and a structural unit represented by the formula [2], each of norbornene imide monomer and bis (norbornene imide) monomer is used alone It may be used in combination of two or more. When two or more norbornene imide monomers and / or bis (norbornene imide) monomers are used, the ratio of these monomers is not particularly limited, and can be appropriately adjusted according to the structure of the target polymer.
 また、上述の通り、上記式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーは、上記式[1]で表される構造単位及び式[2]で表される構造単位以外の構造単位(ノルボルネン、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、1,5-シクロオクタジエン等)を有していてもよい。その場合、ノルボルネンイミドモノマー・ビス(ノルボルネンイミド)モノマーに加え、その他モノマーとして、上記式[1]で表される構造単位及び式[2]で表される構造単位以外の構造単位を構成するモノマーを用いて、ノルボルネンイミドコポリマーを得ることができる。
 その他のモノマーを用いる場合には、本発明に用いられる式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーを得るために用いる全モノマーに対して、1~50モル%の範囲で、その他のモノマーを用いることができる。
In addition, as described above, the norbornene imide copolymer having the structural unit represented by the above formula [1] and the structural unit represented by the formula [2] is a structural unit represented by the above formula [1] and the formula [2] In addition to the structural units represented by the above, it may have a structural unit (norbornene, cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene, etc.). In that case, in addition to the norbornene imide monomer and bis (norbornene imide) monomer, as other monomers, monomers constituting the structural unit other than the structural unit represented by the above formula [1] and the structural unit represented by the formula [2] Can be used to obtain norbornene imide copolymers.
When other monomers are used, relative to all monomers used to obtain a norbornene imide copolymer having the structural unit represented by the formula [1] and the structural unit represented by the formula [2] used in the present invention Other monomers can be used in the range of 1 to 50 mol%.
 上記その他のモノマーについても、一種を単独で用いてもよく、二種以上を任意の組み合わせで使用してもよい。また、その比率も特に制限されず、目的とするノルボルネンイミドコポリマーの構造に応じて調整することができる。 The above other monomers may be used alone or in any combination of two or more. The ratio is also not particularly limited, and can be adjusted according to the structure of the target norbornene imide copolymer.
 上記重合反応で用いる金属錯体は特に制限されず、公知の各種の重合用金属錯体の中から、任意に選択して使用することができる。中でも、グラブス触媒(第1世代グラブス触媒、第2世代グラブス触媒)などのルテニウム触媒が好ましい。
 金属錯体は、原料である全モノマーに対して、5×10-3~1×10-2倍のモル比で使用することができる。
The metal complex used in the above-mentioned polymerization reaction is not particularly limited, and can be arbitrarily selected and used from various known metal complexes for polymerization. Among them, ruthenium catalysts such as Grubbs catalyst (first generation Grubbs catalyst, second generation Grubbs catalyst) are preferable.
The metal complex can be used at a molar ratio of 5 × 10 −3 to 1 × 10 −2 times with respect to the total monomer as the raw material.
 上記重合反応に用いられる溶媒としては、重合反応を阻害しないものであれば、特に限定されないが、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素類などが挙げられる。なお、溶媒は一種を単独で用いても良く、二種以上を任意の組み合わせで混合して用いてもよい。 The solvent used for the polymerization reaction is not particularly limited as long as it does not inhibit the polymerization reaction, and examples thereof include halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene. In addition, a solvent may be used individually by 1 type, and 2 or more types may be mixed and used by arbitrary combinations.
 重合反応時の温度に特に制限はないが、-50~100℃である。好ましくは、-50~60℃である。重合反応時の圧力にも特に制限はないが、通常は常圧で行う。 The temperature at the time of the polymerization reaction is not particularly limited, but is -50 to 100 ° C. Preferably, it is -50 to 60 ° C. The pressure at the time of the polymerization reaction is not particularly limited, but it is usually carried out under normal pressure.
 重合反応の時間は、使用するモノマーや金属錯体の種類、重合時の温度や圧力等によっても異なるが、10分~10時間である。好ましくは20分~5時間である。 The time of the polymerization reaction is 10 minutes to 10 hours, though it varies depending on the types of monomers and metal complexes used, temperature and pressure at the time of polymerization, and the like. Preferably, it is 20 minutes to 5 hours.
 重合反応の終了後、得られたノルボルネンイミドコポリマーを任意の方法で回収し、必要に応じて洗浄等の後処理を行う。反応溶液からノルボルネンイミドコポリマーを回収する方法としては、再沈殿等の方法が挙げられる。 After completion of the polymerization reaction, the obtained norbornene imide copolymer is recovered by any method, and after treatment such as washing is performed if necessary. As a method of recovering a norbornene imide copolymer from a reaction solution, methods such as reprecipitation may be mentioned.
<有機非線形光学化合物>
 本発明に用いられる有機非線形光学化合物は、π共役鎖の一方の端に電子供与性基、他方の端に電子吸引基を有するπ共役系化合物であり、分子超分極率βの大きいものが望ましい。電子供与性基としてはジアルキルアミノ基、電子吸引基としては、シアノ基、ニトロ基、フルオロアルキル基を挙げることができる。
 中でも、本発明において用いられる有機非線形光学化合物としては、式[3]で表されるフラン環を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
<Organic nonlinear optical compound>
The organic non-linear optical compound used in the present invention is a π-conjugated compound having an electron donating group at one end of the π conjugated chain and an electron withdrawing group at the other end, preferably having a large molecular hyperpolarizability β . Examples of the electron donating group include dialkylamino groups, and examples of the electron withdrawing group include cyano group, nitro group and fluoroalkyl group.
Among them, as the organic nonlinear optical compound used in the present invention, a compound having a furan ring represented by the formula [3] can be mentioned.
Figure JPOXMLDOC01-appb-C000015
 上記式中、R、Rは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、●は結合手を表す。 In the above formulas, R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or an aryl group of 6 to 10 carbon atoms. Represents, and ● represents a bond.
 上記有機非線形光学化合物は、具体的には下記式[4]で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
Specifically, the organic nonlinear optical compound is preferably a compound represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000016
 上記式[4]中、R、Rは、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~10のアルキル基としては、分岐構造、環状構造を有していてもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基、1-アダマンチル基、ベンジル基、フェネチル基等が挙げられる。
 炭素原子数6~10のアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。
 上記置換基としては、アミノ基;ヒドロキシ基;メトキシカルボニル基、tert-ブトキシカルボニル基等のアルコキシカルボニル基;トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基、トリフェニルシリルオキシ基等のシリルオキシ基;フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲン原子が挙げられる。
In the above formula [4], R 2 and R 3 each independently have a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent A good aryl group having 6 to 10 carbon atoms is represented.
Here, the alkyl group having 1 to 10 carbon atoms may have a branched structure or a cyclic structure, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, cyclopentyl, n-hexyl, cyclohexyl, n-octyl, n-decyl, 1-adamantyl, benzyl A phenethyl group etc. are mentioned.
Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group and naphthyl group.
Examples of the substituent include amino group; hydroxy group; alkoxycarbonyl group such as methoxycarbonyl group and tert-butoxycarbonyl group; trimethylsilyloxy group, tert-butyldimethylsilyloxy group, tert-butyldiphenylsilyloxy group, triphenylsilyl group Silyloxy groups such as oxy group; and halogen atoms such as fluoro group, chloro group, bromo group and iodo group.
 上記式[4]中、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数4~10のアリールオキシ基、炭素原子数5~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表す。
 ここで炭素原子数1~10のアルキル基としては、例えば、前記R、Rにて例示したものが挙げられる。
 炭素原子数1~10のアルコキシ基としては、例えば、上記炭素原子数1~10のアルキル基が酸素原子を介して結合する基が挙げられる。
 炭素原子数2~11のアルキルカルボニルオキシ基としては、例えば、上記炭素原子数1~10のアルキル基がカルボニルオキシ基を介して結合する基が挙げられる。
 炭素原子数4~10のアリールオキシ基としては、フェノキシ基、ナフタレン-2-イルオキシ基、フラン-3-イルオキシ基、チオフェン-2-イルオキシ基等が挙げられる。
 炭素原子数5~11のアリールカルボニルオキシ基としては、ベンゾイルオキシ基、1-ナフトイルオキシ基、フラン-2-カルボニルオキシ基、チオフェン-3-カルボニルオキシ基等が挙げられる。
 炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基としては、トリメチルシリルオキシ基、tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基、トリフェニルシリルオキシ基等が挙げられる。
 ハロゲン原子としては、フルオロ基、クロロ基、ブロモ基、ヨード基等が挙げられる。
In the above formula [4], R 4 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or 2 to 6 carbon atoms 11 alkylcarbonyloxy group, an aryloxy group having 4 to 10 carbon atoms, an arylcarbonyloxy group having 5 to 11 carbon atoms, a silyloxy group having an alkyl group having 1 to 6 carbon atoms and / or a phenyl group, or Represents a halogen atom.
Here, examples of the alkyl group having 1 to 10 carbon atoms include those exemplified for the aforementioned R 2 and R 3 .
Examples of the alkoxy group having 1 to 10 carbon atoms include a group in which the above-mentioned alkyl group having 1 to 10 carbon atoms is bonded via an oxygen atom.
Examples of the alkylcarbonyloxy group having 2 to 11 carbon atoms include a group in which the above-mentioned alkyl group having 1 to 10 carbon atoms is bonded via a carbonyloxy group.
Examples of the aryloxy group having 4 to 10 carbon atoms include phenoxy group, naphthalen-2-yloxy group, furan-3-yloxy group, thiophene-2-yloxy group and the like.
Examples of the arylcarbonyloxy group having 5 to 11 carbon atoms include benzoyloxy, 1-naphthyloxy, furan-2-carbonyloxy, thiophene-3-carbonyloxy and the like.
Examples of the silyloxy group having an alkyl group having 1 to 6 carbon atoms and / or a phenyl group include trimethylsilyloxy group, tert-butyldimethylsilyloxy group, tert-butyldiphenylsilyloxy group, triphenylsilyloxy group and the like. .
As a halogen atom, a fluoro group, a chloro group, a bromo group, an iodo group etc. are mentioned.
 上記式[3]及び式[4]中、R、Rは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~5のアルキル基としては、分岐構造、環状構造を有していてもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基等が挙げられる。
 炭素原子数1~5のハロアルキル基としては、分岐構造、環状構造を有していてもよく、フルオロメチル基、トリフルオロメチル基、ブロモジフルオロメチル基、2-クロロエチル基、2-ブロモエチル基、1,1-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、2-クロロ-1,1,2-トリフルオロエチル基、ペンタフルオロエチル基、3-ブロモプロピル基、2,2,3,3-テトラフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基、3-ブロモ-2-メチルプロピル基、2,2,3,3-テトラフルオロシクロプロピル基、4-ブロモブチル基、パーフルオロペンチル基、パーフルオロシクロペンチル基等が挙げられる。
 炭素原子数6~10のアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。
In the above Formula [3] and Formula [4], R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or a carbon atom Represents an aryl group of 6 to 10;
Here, the alkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, Examples thereof include isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and cyclopentyl group.
The haloalkyl group having 1 to 5 carbon atoms may have a branched structure or a cyclic structure, and a fluoromethyl group, a trifluoromethyl group, a bromodifluoromethyl group, a 2-chloroethyl group, a 2-bromoethyl group, 1 , 1-Difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl group , 3-bromopropyl, 2,2,3,3-tetrafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, 1,1,1,3,3,3-hexa Fluoropropan-2-yl group, 3-bromo-2-methylpropyl group, 2,2,3,3-tetrafluorocyclopropyl group, 4-bromobutyl group, perfluoropentyl group, perfluoro Roshikuropenchiru group, and the like.
Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group and naphthyl group.
 上記式[4]中、Arは下記式[5]又は式[6]で表される二価の有機基を表す。
Figure JPOXMLDOC01-appb-C000017
In said formula [4], Ar represents the bivalent organic group represented by following formula [5] or Formula [6].
Figure JPOXMLDOC01-appb-C000017
 上記式[5]及び式[6]中、R10~R15は、それぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。
 ここで炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基、及び置換基については、前記R、Rにて例示したものが挙げられる。
In the above formulas [5] and [6], R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent It represents an aryl group having 6 to 10 carbon atoms which may be possessed.
Here, as the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 10 carbon atoms, and the substituent, those exemplified for the aforementioned R 2 and R 3 can be mentioned.
 本発明の組成物において、有機非線形光学化合物の含有量は、上記式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマー100質量部に対して、通常、1~150質量部であり、好ましくは10~100質量部である。
 有機非線形光学化合物の含有量を1質量部以上とすることで十分な非線形光学効果を得やすくなり、また150質量部以下とすることで成膜しやすく、さらに材料の機械的な強度が低下しにくい。
In the composition of the present invention, the content of the organic nonlinear optical compound is 100 parts by mass of the norbornene imide copolymer having the structural unit represented by the above formula [1] and the structural unit represented by the formula [2] Usually, it is 1 to 150 parts by mass, preferably 10 to 100 parts by mass.
By setting the content of the organic nonlinear optical compound to 1 part by mass or more, a sufficient nonlinear optical effect can be easily obtained, and by setting the content to 150 parts by mass or less, it is easy to form a film, and the mechanical strength of the material is further reduced. Hateful.
<組成物並びにワニス>
 本発明の組成物を有機非線形光学材料として使用する場合、一般に薄膜の形態として使用する。前記薄膜の作製方法としては、本発明の組成物を適当な有機溶媒に溶解してワニスの形態とし、該ワニスを適当な基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属(例えば、アルミニウム、モリブデン、クロムなど)が被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロースフィルム、ポリエステルフィルム、アクリルフィルム等の樹脂フィルム)等の基材上に、回転塗布、流し塗布、ロール塗布、スリット塗布、スリットに続いた回転塗布、インクジェット塗布、印刷などによって塗布することによって成膜する湿式塗布法が好ましい。
<Composition and Varnish>
When the composition of the present invention is used as an organic nonlinear optical material, it is generally used in the form of a thin film. As a method of producing the thin film, the composition of the present invention is dissolved in a suitable organic solvent to form a varnish, and the varnish is used as a suitable substrate (eg, silicon / silicon dioxide coated substrate, silicon nitride substrate, metal ( For example, on a substrate such as a substrate coated with aluminum, molybdenum, chromium or the like, a glass substrate, a quartz substrate, an ITO substrate or the like) or a film (for example, a resin film such as a triacetyl cellulose film, a polyester film or an acrylic film) It is preferable to use a wet coating method in which a film is formed by coating by spin coating, flow coating, roll coating, slit coating, spin coating following a slit, inkjet coating, printing or the like.
 ここでワニス調製に用いられる溶媒は、前記式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマー及び有機非線形光学化合物を溶解し、且つ所望により添加される後述の添加剤などを溶解するものであり、斯様な溶解能を有する溶媒であれば、その種類及び構造などは特に限定されるものでない。
 好ましい有機溶媒の例としては、テトラヒドロフラン(THF)、メチルテトラヒドロフラン、1,4-ジオキサン、ジエチレングリコールジメチルエーテル等のエーテル類;メチルエチルケトン(MEK)、シクロペンタノン、シクロヘキサノン等のケトン類;酢酸エチル等のエステル類;シクロヘキサノール、プロピレングリコールモノメチルエーテル(PGME)等のアルコール類;1,2-ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化物;トルエン、キシレン等の芳香族炭化水素;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)等のアミド類;ジメチルスルホキシド(DMSO)等のスルホキシド類等が挙げられる。これらの溶媒は、一種単独で、又は二種以上の組合せで使用することができる。
 これら溶媒の中でも、シクロペンタノン、1,2-ジクロロエタン、クロロホルム等が、式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーの溶解性が高く、塗膜性が良好という観点より好ましい。
 上記ワニスにおける固形分濃度は、例えば0.5~30質量%であり、又、例えば5~30質量%である。ここで言うところの固形分とは、前記ワニスから溶媒を除いた全成分を意味する。
 而して、調製されたワニスは、孔径が0.2μm程度のフィルタなどを用いて濾過した後、使用することが好ましい。
Here, the solvent used for varnish preparation dissolves the norbornene imide copolymer and the organic nonlinear optical compound having the structural unit represented by the formula [1] and the structural unit represented by the formula [2], and optionally added The type, structure, etc. thereof are not particularly limited as long as they dissolve the later-described additives and the like, and the solvent has such a dissolving ability.
Examples of preferred organic solvents include ethers such as tetrahydrofuran (THF), methyltetrahydrofuran, 1,4-dioxane, diethylene glycol dimethyl ether; ketones such as methyl ethyl ketone (MEK), cyclopentanone, cyclohexanone etc. esters such as ethyl acetate Alcohols such as cyclohexanol and propylene glycol monomethyl ether (PGME); halides such as 1,2-dichloroethane, chloroform and chlorobenzene; aromatic hydrocarbons such as toluene and xylene; N, N-dimethylformamide (DMF), Amides such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone (NMP); sulfoxides such as dimethyl sulfoxide (DMSO) and the like. These solvents can be used alone or in combination of two or more.
Among these solvents, cyclopentanone, 1,2-dichloroethane, chloroform and the like have high solubility of the norbornene imide copolymer having the structural unit represented by the formula [1] and the structural unit represented by the formula [2] And from the viewpoint of good coatability.
The solid content concentration in the varnish is, for example, 0.5 to 30% by mass, and for example, 5 to 30% by mass. The solid content as referred to herein means all the components of the varnish excluding the solvent.
Thus, it is preferable to use the prepared varnish after filtering with a filter having a pore diameter of about 0.2 μm.
 なお、上記ワニスは、本発明の効果を損なわない限りにおいて、必要に応じて、ヒドロキノン等の酸化防止剤、ベンゾフェノン等の紫外線吸収剤、シリコーンオイル、界面活性剤等のレオロジー調整剤、シランカップリング剤等の接着補助剤、高分子マトリクスの架橋剤、相溶化剤、硬化剤、顔料、保存安定剤、消泡剤等を含有することができる。 The above-mentioned varnish may, if necessary, be an antioxidant such as hydroquinone, an ultraviolet absorber such as benzophenone, a silicone oil, a rheology modifier such as a surfactant, or a silane coupling as long as the effect of the present invention is not impaired. The composition may contain adhesion promoters such as additives, crosslinking agents for polymer matrix, compatibilizers, curing agents, pigments, storage stabilizers, antifoaming agents, and the like.
<電気光学素子、光スイッチング素子>
 本発明の組成物は、従来提案されている種々の電気光学素子の材料として適用可能である。
 電気光学素子の代表的なものとして、マッハツェンダー型光変調器などの光スイッチング素子(光通信素子)が挙げられる。光スイッチング素子においては、本発明の組成物をガラス、プラスチック等の基材上に塗布後、光又は電子線によるリソグラフィー法、ウェット及びドライエッチング法、あるいはナノインプリント法などで加工することで、光を伝送可能な光導波路構造とする。通常組成物より屈折率の小さい材料上に塗布、積層することで光導波路構造を形成するが、この構造に限定されず他の光導波路構造にも本組成物は適用可能である。
 代表的な光スイッチング素子であるマッハツェンダー型光変調器においては、分岐した光導波路構造の両方あるいは一方に高周波電圧を印加して電気光学特性を発現させ、屈折率を変化させることで伝搬する光の位相変化を生じさせる。この位相変化によって分岐、合波後の光強度を変化させることで光の高速な変調が可能となる。
 またここでいう電気光学素子は、位相、強度変調だけに限定されず、例えば偏光変換素子や分波及び合波素子などにも使用できる。
 さらに本組成物は通信素子用途以外にも、電界の変化を屈折率の変化として検出する電界センサー等の用途にも使用できる。
<Electro-optical element, optical switching element>
The composition of the present invention can be applied as a material of various electro-optical devices proposed conventionally.
A representative example of the electro-optical element is an optical switching element (optical communication element) such as a Mach-Zehnder type optical modulator. In the optical switching element, the composition of the present invention is coated on a substrate such as glass or plastic and then processed by light or electron beam lithography, wet and dry etching, or nanoimprinting to obtain light. An optical waveguide structure capable of transmission is used. Usually, the optical waveguide structure is formed by coating and laminating on a material having a smaller refractive index than the composition, but the present composition is also applicable to other optical waveguide structures without being limited to this structure.
In a Mach-Zehnder type optical modulator, which is a typical optical switching element, high-frequency voltage is applied to both or one of the branched optical waveguide structures to exhibit electro-optical characteristics, and light propagated by changing the refractive index Cause a phase change of By changing the light intensity after branching and multiplexing by this phase change, high-speed modulation of light becomes possible.
In addition, the electro-optical element mentioned here is not limited to only phase and intensity modulation, and can be used, for example, as a polarization conversion element, a branching and combining element, and the like.
Furthermore, the composition of the present invention can be used for applications such as an electric field sensor that detects a change in electric field as a change in refractive index, as well as in a communication device.
<有機非線形光学材料>
 本発明において、前記組成物を用いて作製された材料(例えば薄膜)の2次の非線形光学特性を発現させるためには、ポーリング処理を必要とする。ポーリング処理とは、材料のガラス転移温度よりおよそ25℃低い温度、好ましくはおよそ10℃低い温度以上、溶融点以下の温度に材料を加熱した状態で所定電界を印加することで非線形光学化合物分子を配向させる操作であり、さらにその電界を維持した状態で材料を冷却し、その配向を固定する。この操作により材料は巨視的な非線形光学特性を発現することができる。
 本発明においても、単に組成物を薄膜化しただけでは、有機非線形光学化合物分子の配向はランダムとなっていることから、マトリクスである上記ノルボルネンイミドコポリマーと有機非線形光学化合物とを含む組成物のガラス転移温度よりおよそ25℃低い温度、好ましくはおよそ10℃低い温度以上(上記組成物がガラス転移温度を示さない場合にはおよそ120℃以上)、溶融点以下の温度に加熱し、ポーリング処理を行い、非線形光学特性を発現させる。
<Organic nonlinear optical material>
In the present invention, a poling treatment is required to develop the second-order non-linear optical properties of a material (for example, a thin film) manufactured using the composition. In the poling treatment, the nonlinear optical compound molecules are applied by applying a predetermined electric field while heating the material to a temperature about 25 ° C. lower than the glass transition temperature of the material, preferably about 10 ° C. lower than the melting point. It is an operation for orientation, and the material is cooled while maintaining the electric field, and the orientation is fixed. By this operation, the material can exhibit macroscopic non-linear optical characteristics.
Also in the present invention, the glass of the composition containing the norbornene imide copolymer as a matrix and the organic nonlinear optical compound is that the orientation of the organic nonlinear optical compound molecules is random only by thinning the composition. The temperature is about 25 ° C. lower than the transition temperature, preferably about 10 ° C. lower (about 120 ° C. if the composition does not exhibit a glass transition temperature), heated to a temperature below the melting point, and subjected to poling treatment , Nonlinear optical characteristics.
 以下、実施例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。なお、実施例で用いた各測定装置等は以下のとおりである。 EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In addition, each measuring apparatus etc. which were used in the Example are as follows.
(1)H NMRスペクトル
 装置:日本電子(株)製 JNM-LA400
 溶媒:CDCl
    CDOD(実施例1)
 内部標準:テトラメチルシラン(0.00ppm)
(2)13C NMRスペクトル
 装置:日本電子(株)製 JNM-LA400
 溶媒:CDCl
    CDOD(実施例1)
 内部標準:CDCl(76.9ppm)
      CDOD(49.3ppm)(実施例1)
(3)GPC(ゲル浸透クロマトグラフィー)
 装置:日本分光(株)製 LC-2000
 カラム:東ソー(株)製 TSKgel(登録商標) G2000HXL
 溶離液:テトラヒドロフラン
 検出器:RI
 標準試料:昭和電工(株)製 Shodex(登録商標) STANDARD SM-105
(4)ガラス転移温度(Tg)測定
 装置:エスアイアイ・ナノテクノロジー(株)製 示差走査熱量計 DSC6220
 測定条件:窒素雰囲気下
 昇温速度:10℃/分(50~250℃)
(5)5%重量減少温度(Td)測定
 装置:エスアイアイ・ナノテクノロジー(株)製 示差熱熱重量同時測定装置 TG/DTA6200
 測定条件:窒素雰囲気下
 昇温速度:10℃/分(50~450℃)
(6)ルテニウム含量測定
 装置:アジレント・テクノロジー(株)製 ICP-MS Agilent(登録商標) 7500cs
(7)粘度測定
 装置:Anton Paar社製 レオメータ MCR 302
(1) 1 H NMR spectrum apparatus: JNM-LA400 manufactured by JEOL Ltd.
Solvent: CDCl 3
CD 3 OD (Example 1)
Internal standard: tetramethylsilane (0.00 ppm)
(2) 13 C NMR spectrum Device: JNM-LA400 manufactured by JEOL Ltd.
Solvent: CDCl 3
CD 3 OD (Example 1)
Internal standard: CDCl 3 (76.9 ppm)
CD 3 OD (49.3 ppm) (Example 1)
(3) GPC (gel permeation chromatography)
Device: LC-2000 manufactured by JASCO Corporation
Column: Tosoh Co., Ltd. TSKgel (registered trademark) G2000H XL
Eluent: Tetrahydrofuran Detector: RI
Standard sample: Shodex (registered trademark) STANDARD SM-105 manufactured by Showa Denko KK
(4) Glass transition temperature (Tg) measurement device: SII Nano Technology Co., Ltd. differential scanning calorimeter DSC 6220
Measurement conditions: under nitrogen atmosphere Temperature rising rate: 10 ° C / min (50 to 250 ° C)
(5) 5% weight loss temperature (Td 5 ) measurement device: manufactured by SII Nano Technology Co., Ltd. Differential thermogravimetry simultaneous measurement device TG / DTA 6200
Measurement conditions: under nitrogen atmosphere, temperature rising rate: 10 ° C./min (50 to 450 ° C.)
(6) Measurement of ruthenium content Apparatus: Agilent Technologies ICP-MS Agilent (registered trademark) 7500 cs
(7) Viscosity measurement device: rheometer MCR 302 manufactured by Anton Paar
 また、略記号は以下の意味を表す。
DMF:N,N-ジメチルホルムアミド
EDC:1,2-ジクロロエタン
THF:テトラヒドロフラン
The abbreviations have the following meanings.
DMF: N, N-dimethylformamide EDC: 1,2-dichloroethane THF: tetrahydrofuran
[製造例1-1]エキソ-2-ノルボルネン-5,6-ジカルボン酸無水物[8]の製造
Figure JPOXMLDOC01-appb-C000018
 無水マレイン酸[東京化成工業(株)製]188.24g(1.92mol)を、o-ジクロロベンゼン200mLに溶解させ、この溶液を還流させた。ここへ、50℃に加熱し融解させたジシクロペンタジエン[東京化成工業(株)製]128.66g(0.97mol)を、30分間で加えた。添加終了後、還流下さらに1.5時間撹拌した。この反応混合物を、室温(およそ23℃)で放冷した。24時間後、析出した白色の結晶性固体を減圧ろ過し、粗物を得た。この粗物を、熱クロロベンゼンから数回再結晶し、エキソ-2-ノルボルネン-5,6-ジカルボン酸無水物を得た(得率48%)。
Production Example 1-1 Production of exo-2-norbornene-5,6-dicarboxylic acid anhydride [8]
Figure JPOXMLDOC01-appb-C000018
188.24 g (1.92 mol) of maleic anhydride [manufactured by Tokyo Chemical Industry Co., Ltd.] was dissolved in 200 mL of o-dichlorobenzene, and this solution was refluxed. Thereto was added 128.66 g (0.97 mol) of dicyclopentadiene (manufactured by Tokyo Chemical Industry Co., Ltd.) heated and melted at 50 ° C. in 30 minutes. After completion of the addition, the mixture was further stirred for 1.5 hours under reflux. The reaction mixture was allowed to cool at room temperature (approximately 23 ° C.). After 24 hours, the precipitated white crystalline solid was filtered under reduced pressure to obtain a crude product. The crude product was recrystallized several times from hot chlorobenzene to obtain exo-2-norbornene-5,6-dicarboxylic acid anhydride (yield: 48%).
[製造例1-2]エキソ-N-(4-ヒドロキシフェニル)-2-ノルボルネン-5,6-ジカルボキシミド[9]の製造
Figure JPOXMLDOC01-appb-C000019
 上記製造例1-1に従って得たエキソ-2-ノルボルネン-5,6-ジカルボン酸無水物[8]33.20g(0.20mol)を、THF200mLに溶解させた。ここへ、4-アミノフェノール[東京化成工業(株)製]20.96g(0.19mol)を、室温(およそ23℃)で撹拌しながら滴下した。滴下終了後、さらに4時間還流させた。この反応混合物を、室温(およそ23℃)で放冷した。析出した白色の沈殿物を減圧ろ過し、冷THFで洗浄した。この湿品を60℃で12時間減圧乾燥し、アミド酸を得た(得率78%)。
 上記の方法に従って得たアミド酸75.00g(0.27mol)を、無水DMF300mLに溶解させた。ここへ、トリエチルアミン[東京化成工業(株)製]41.65g(0.41mol)を、10分間で加えた。添加終了後、さらに120℃で3時間撹拌した。この反応混合物を、室温(およそ23℃)まで冷却後、脱イオン水に加えた。析出した白色の沈殿物をろ取し、脱イオン水で洗浄して粗物を得た。この粗物を、熱エタノール/THF混合液(体積比10:1)から数回再結晶し、白色結晶のエキソ-N-(4-ヒドロキシフェニル)-2-ノルボルネン-5,6-ジカルボキシミドを得た(得率39%)。
Preparation Example 1-2 Preparation of exo-N- (4-hydroxyphenyl) -2-norbornene-5,6-dicarboximide [9]
Figure JPOXMLDOC01-appb-C000019
33.20 g (0.20 mol) of exo-2-norbornene-5,6-dicarboxylic acid anhydride [8] obtained according to the above-mentioned Preparation Example 1-1 was dissolved in 200 mL of THF. To this, 20.96 g (0.19 mol) of 4-aminophenol [manufactured by Tokyo Chemical Industry Co., Ltd.] was added dropwise at room temperature (approximately 23 ° C.) with stirring. After completion of the dropwise addition, the mixture was further refluxed for 4 hours. The reaction mixture was allowed to cool at room temperature (approximately 23 ° C.). The precipitated white precipitate was filtered under reduced pressure and washed with cold THF. The wet product was dried under reduced pressure at 60 ° C. for 12 hours to obtain an amic acid (yield 78%).
75.00 g (0.27 mol) of the amic acid obtained according to the above method were dissolved in 300 mL of anhydrous DMF. To this, 41.65 g (0.41 mol) of triethylamine [manufactured by Tokyo Chemical Industry Co., Ltd.] was added over 10 minutes. After the addition was completed, the mixture was further stirred at 120 ° C. for 3 hours. The reaction mixture was added to deionized water after cooling to room temperature (approximately 23 ° C.). The precipitated white precipitate was collected by filtration and washed with deionized water to obtain a crude product. The crude product is recrystallized several times from a hot ethanol / THF mixture (volume ratio 10: 1) to give exo-N- (4-hydroxyphenyl) -2-norbornene-5,6-dicarboximide as white crystals. (Yield 39%).
[実施例1]N,N’-((オクタメチレンビスオキシ)ビス(4,1-フェニレン))ビス(2-ノルボルネン-5,6-ジカルボキシミド)[10]の製造
Figure JPOXMLDOC01-appb-C000020
 上記製造例1-2に従って得たエキソ-N-(4-ヒドロキシフェニル)-2-ノルボルネン-5,6-ジカルボキシミド[9]12.30g(48.2mmol)、1,8-ジブロモオクタン[東京化成工業(株)製]6.55g(24.1mmol)、炭酸カリウム[東京化成工業(株)製]33.00g(238.8mmol)を、アセトニトリル200mLに溶解させ、これを48時間還流させた。この反応混合物を、室温(およそ23℃)まで冷却した後、ロータリーエバポレーターを用いてアセトニトリルを留去した。この残渣を脱イオン水に加え、1時間撹拌して炭酸カリウムを確実に溶解させた。有機物をジクロロメタンで抽出し、飽和食塩水で数回洗浄した。有機層を、無水硫酸マグネシウム[関東化学(株)製]で乾燥した後、ジクロロメタンを留去して粗物を得た。この粗物を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン混合液(体積比1:10))で精製した。さらに、熱エタノール/THF混合液(体積比9:1)から再結晶し、N,N’-((オクタメチレンビスオキシ)ビス(4,1-フェニレン))ビス(2-ノルボルネン-5,6-ジカルボキシミド)を得た(得率67%)。
H NMR(400MHz,CDOD) δ:7.13(d,J=9.2Hz,4H),7.00(d,J=8.7Hz,4H),6.36(m,4H),3.99(t,J=6.8Hz,4H),3.19(s,4H),2.81(s,4H),2.50(m,4H),1.72(m,4H),1.42(m,8H)ppm.
13C NMR(125MHz,CDOD) δ:189.59,170.96,150.32,140.71,137.25,127.16,80.25,59.97,57.45,55.21,41.23,41.10,37.95ppm.
Example 1 Preparation of N, N '-((octamethylenebisoxy) bis (4,1-phenylene)) bis (2-norbornene-5,6-dicarboximide) [10]
Figure JPOXMLDOC01-appb-C000020
12.30 g (48.2 mmol) of exo-N- (4-hydroxyphenyl) -2-norbornene-5,6-dicarboximide [9] obtained according to the above Preparation example 1-2, 1,8-dibromooctane [ Dissolve 6.55 g (24.1 mmol) of Tokyo Chemical Industry Co., Ltd., 33.00 g (238.8 mmol) of potassium carbonate [Tokyo Tokyo Chemical Industry Co., Ltd.] in 200 mL of acetonitrile, and reflux this for 48 hours The The reaction mixture was cooled to room temperature (approximately 23 ° C.) and then acetonitrile was distilled off using a rotary evaporator. The residue was added to deionized water and stirred for 1 hour to ensure dissolution of potassium carbonate. The organics were extracted with dichloromethane and washed several times with saturated brine. The organic layer was dried over anhydrous magnesium sulfate (manufactured by Kanto Chemical Co., Ltd.), and then dichloromethane was distilled off to obtain a crude product. The crude product was purified by silica gel column chromatography (ethyl acetate / hexane mixture (volume ratio 1:10)). Furthermore, it is recrystallized from a hot ethanol / THF mixed solution (volume ratio 9: 1), N, N '-((octamethylene bisoxy) bis (4,1-phenylene)) bis (2-norbornene-5,6) (Dicarboximide) was obtained (yield 67%).
1 H NMR (400 MHz, CD 3 OD) δ: 7.13 (d, J = 9.2 Hz, 4 H), 7.00 (d, J = 8.7 Hz, 4 H), 6.36 (m, 4 H) , 3.99 (t, J = 6.8 Hz, 4 H), 3. 19 (s, 4 H), 2.8 1 (s, 4 H), 2.50 (m, 4 H), 1.72 (m, 4 H) ), 1.42 (m, 8H) ppm.
13 C NMR (125 MHz, CD 3 OD) δ: 189.59, 170.96, 150.32, 140.71, 137.25, 127.16, 80.25, 59.97, 57.45, 55. 21, 41.23, 41.10, 37.95 ppm.
[製造例2]エキソ-N-シクロヘキシル-2-ノルボルネン-5,6-ジカルボキシミド[11]の製造
Figure JPOXMLDOC01-appb-C000021
 上記製造例1-1に従って得たエキソ-2-ノルボルネン-5,6-ジカルボン酸無水物[8]100g(0.61mol)を、トルエン400mLに溶解させた。ここへ、シクロヘキシルアミン[東京化成工業(株)製]60.85g(0.61mol)を、室温(およそ23℃)で撹拌しながら1時間で滴下した。滴下途中、白色沈殿物が生成し撹拌し難くなったため、トルエン100mLをさらに加えた。滴下終了後、さらに50℃で1時間撹拌した。析出した白色の沈殿物を減圧ろ過し、トルエンで洗浄した。この湿品を70℃で12時間減圧乾燥し、アミド酸を得た(得率72%)。
 上記の方法に従って得たアミド酸50.00g(0.19mmol)を、無水DMF300mLに溶解させた。ここへ、トリエチルアミン[東京化成工業(株)製]28.78g(0.28mol)を、10分間で加えた。添加終了後、さらに120℃で3時間撹拌した。この反応混合物を、室温(およそ23℃)まで冷却後、脱イオン水に加えた。析出した白色の沈殿物をろ取し、脱イオン水で洗浄して粗物を得た。この粗物を、熱メタノールから再結晶し、エキソ-N-シクロヘキシル-2-ノルボルネン-5,6-ジカルボキシミドを得た(得率54%)。
Preparation Example 2 Preparation of exo-N-cyclohexyl-2-norbornene-5,6-dicarboximide [11]
Figure JPOXMLDOC01-appb-C000021
100 g (0.61 mol) of exo-2-norbornene-5,6-dicarboxylic acid anhydride [8] obtained according to the above-mentioned Preparation Example 1-1 was dissolved in 400 mL of toluene. To this, 60.85 g (0.61 mol) of cyclohexylamine [manufactured by Tokyo Chemical Industry Co., Ltd.] was added dropwise over 1 hour while stirring at room temperature (approximately 23 ° C.). During the dropping, a white precipitate was formed and stirring became difficult, so 100 mL of toluene was further added. After completion of the dropwise addition, the mixture was further stirred at 50 ° C. for 1 hour. The precipitated white precipitate was filtered under reduced pressure and washed with toluene. The wet product was dried under reduced pressure at 70 ° C. for 12 hours to obtain an amic acid (yield: 72%).
50.00 g (0.19 mmol) of the amic acid obtained according to the above method were dissolved in 300 mL of anhydrous DMF. To this, 28.78 g (0.28 mol) of triethylamine [manufactured by Tokyo Chemical Industry Co., Ltd.] was added over 10 minutes. After the addition was completed, the mixture was further stirred at 120 ° C. for 3 hours. The reaction mixture was added to deionized water after cooling to room temperature (approximately 23 ° C.). The precipitated white precipitate was collected by filtration and washed with deionized water to obtain a crude product. The crude product was recrystallized from hot methanol to give exo-N-cyclohexyl-2-norbornene-5,6-dicarboximide (yield 54%).
[実施例2a]ポリ(エキソ-N-シクロヘキシル-2-ノルボルネン-5,6-ジカルボキシミド-co-N,N’-((オクタメチレンビスオキシ)ビス(4,1-フェニレン))ビス(2-ノルボルネン-5,6-ジカルボキシミド))[12a]の製造
Figure JPOXMLDOC01-appb-C000022
 上記製造例2に従って得たエキソ-N-シクロヘキシル-2-ノルボルネン-5,6-ジカルボキシミド[11]1.00g(4.08mmol)、及び上記実施例1に従って製造したN,N’-((オクタメチレンビスオキシ)ビス(4,1-フェニレン))ビス(2-ノルボルネン-5,6-ジカルボキシミド)[10]2mg(化合物[11]に対して0.2質量%)をシュレンクチューブに入れ、窒素でパージした。ここへ、クロロホルム20mLをシリンジで注入した。この溶液を10分間撹拌した後、グラブス第1世代触媒[SIGMA-ALDRICH社製]67mg(81.6μmol)をクロロホルム2mLに溶解させた溶液を、素早く加えた。さらに3時間撹拌した後、脱気したエチルビニルエーテル[関東化学(株)製]2mLをシリンジで注入し、反応をクエンチした。さらに、室温(およそ23℃)で1時間撹拌した。この反応混合物を濃縮した後、クロロホルムに溶解し、メタノールに添加してポリマーを再沈殿させた。クロロホルム-メタノールによる再沈殿を、さらに数回繰り返した。ポリマーをろ別し、メタノールで洗浄して、目的物であるポリ(エキソ-N-シクロヘキシル-2-ノルボルネン-5,6-ジカルボキシミド-co-N,N’-((オクタメチレンビスオキシ)ビス(4,1-フェニレン))ビス(2-ノルボルネン-5,6-ジカルボキシミド))を得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは35,000、数平均分子量Mnは21,000、重量平均分子量Mwは25,000、分散度Mw/Mnは1.2であった。また、ガラス転移温度Tgは209℃、5%重量減少温度Tdは410℃、10質量%トルエン溶液での粘度は5.9mPa・sであった。
H NMR(400MHz,CDCl) δ:5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2a Poly (exo-N-cyclohexyl-2-norbornene-5,6-dicarboximido-co-N, N ′-((octamethylenebisoxy) bis (4,1-phenylene)) bis ( Preparation of 2-Norbornene-5,6-dicarboximide)) [12a]
Figure JPOXMLDOC01-appb-C000022
1.00 g (4.08 mmol) of exo-N-cyclohexyl-2-norbornene-5,6-dicarboximide [11] obtained according to the above Preparation example 2 and N, N '-( Schlenk tube of (octamethylenebisoxy) bis (4,1-phenylene)) bis (2-norbornene-5,6-dicarboximide) [10] 2 mg (0.2 mass% with respect to compound [11]) And purged with nitrogen. Here, 20 mL of chloroform was injected by a syringe. After stirring this solution for 10 minutes, a solution of 67 mg (81.6 μmol) of Grubbs first generation catalyst (manufactured by SIGMA-ALDRICH) dissolved in 2 mL of chloroform was quickly added. After further stirring for 3 hours, 2 mL of degassed ethyl vinyl ether [manufactured by Kanto Chemical Co., Ltd.] was injected by a syringe to quench the reaction. Furthermore, it stirred at room temperature (about 23 degreeC) for 1 hour. The reaction mixture was concentrated and then dissolved in chloroform and added to methanol to reprecipitate the polymer. Chloroform-methanol reprecipitation was repeated several more times. The polymer is filtered off and washed with methanol, and the desired product poly (exo-N-cyclohexyl-2-norbornene-5,6-dicarboximido-co-N, N '-((octamethylene bisoxy) is obtained. Bis (4,1-phenylene)) bis (2-norbornene-5,6-dicarboximide)) was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 35,000, the number average molecular weight Mn is 21,000, the weight average molecular weight Mw is 25,000, and the dispersion degree Mw / Mn is 1 It was .2. Further, the glass transition temperature Tg was 209 ° C., the 5% weight loss temperature Td 5 was 410 ° C., and the viscosity in a 10% by mass toluene solution was 5.9 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11, 1.79, 1.59 , 1.21 ppm.
[実施例2b]化合物[12b]の製造
 化合物[10]の使用量を6mg(化合物[11]に対して0.6質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは24,000、数平均分子量Mnは21,000、重量平均分子量Mwは28,000、分散度Mw/Mnは1.4であった。また、ガラス転移温度Tgは209℃、5%重量減少温度Tdは410℃、10質量%トルエン溶液での粘度は4.2mPa・sであった。
H NMR(400MHz,CDCl) δ:5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2b Preparation of Compound [12b] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 6 mg (0.6 mass% with respect to compound [11]). An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 24,000, the number average molecular weight Mn is 21,000, the weight average molecular weight Mw is 28,000, and the dispersion degree Mw / Mn is 1 It was .4. Further, the glass transition temperature Tg was 209 ° C., the 5% weight loss temperature Td 5 was 410 ° C., and the viscosity in a 10% by mass toluene solution was 4.2 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11, 1.79, 1.59 , 1.21 ppm.
[実施例2c]化合物[12c]の製造
 化合物[10]の使用量を8mg(化合物[11]に対して0.8質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは24,000、数平均分子量Mnは21,000、重量平均分子量Mwは30,000、分散度Mw/Mnは1.4であった。また、ガラス転移温度Tgは210℃、5%重量減少温度Tdは418℃、10質量%トルエン溶液での粘度は8.4mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2c Preparation of Compound [12c] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 8 mg (0.8 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 24,000, the number average molecular weight Mn is 21,000, the weight average molecular weight Mw is 30,000, and the dispersion degree Mw / Mn is 1 It was .4. Further, the glass transition temperature Tg was 210 ° C., the 5% weight loss temperature Td 5 was 418 ° C., and the viscosity in a 10% by mass toluene solution was 8.4 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2d]化合物[12d]の製造
 化合物[10]の使用量を10mg(化合物[11]に対して1質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは26,000、数平均分子量Mnは26,000、重量平均分子量Mwは42,000、分散度Mw/Mnは1.6であった。また、ガラス転移温度Tgは208℃、5%重量減少温度Tdは362℃、10質量%トルエン溶液での粘度は8.3mPa・s、残留触媒由来のルテニウム含量は980ppmであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2d Preparation of Compound [12d] A norbornene imide copolymer is operated in the same manner as in Example 2a except that the amount of compound [10] used is changed to 10 mg (1 mass% with respect to compound [11]). I got
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 26,000, the number average molecular weight Mn is 26,000, the weight average molecular weight Mw is 42,000, and the dispersion degree Mw / Mn is 1 It was .6. The glass transition temperature Tg was 208 ° C., the 5% weight loss temperature Td 5 was 362 ° C., the viscosity in a 10% by mass toluene solution was 8.3 mPa · s, and the ruthenium content derived from the residual catalyst was 980 ppm.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2e]化合物[12e]の製造
 化合物[10]の使用量を14mg(化合物[11]に対して1.4質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは25,000、数平均分子量Mnは24,000、重量平均分子量Mwは46,000、分散度Mw/Mnは1.9であった。また、ガラス転移温度Tgは208℃、5%重量減少温度Tdは399℃、10質量%トルエン溶液での粘度は3.8mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
[Example 2e] Production of compound [12e] The same operation as in Example 2a except that the amount of compound [10] used was changed to 14 mg (1.4 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 25,000, the number average molecular weight Mn is 24,000, the weight average molecular weight Mw is 46,000, and the dispersion degree Mw / Mn is 1 .9. Further, the glass transition temperature Tg was 208 ° C., the 5% weight loss temperature Td 5 was 399 ° C., and the viscosity in a 10% by mass toluene solution was 3.8 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2f]化合物[12f]の製造
 化合物[10]の使用量を16mg(化合物[11]に対して1.6質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは25,000、数平均分子量Mnは26,000、重量平均分子量Mwは60,000、分散度Mw/Mnは2.1であった。また、ガラス転移温度Tgは210℃、5%重量減少温度Tdは398℃、10質量%トルエン溶液での粘度は5.2mPa・s、残留触媒由来のルテニウム含量は1,100ppmであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2 f Preparation of Compound [12 f] The procedure of Example 2a was repeated, except that the amount of compound [10] used was changed to 16 mg (1.6 mass% with respect to compound [11]). An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 25,000, the number average molecular weight Mn is 26,000, the weight average molecular weight Mw is 60,000, and the dispersion degree Mw / Mn is 2 It was .1. The glass transition temperature Tg was 210 ° C., the 5% weight loss temperature Td 5 was 398 ° C., the viscosity in a 10% by mass toluene solution was 5.2 mPa · s, and the ruthenium content derived from the residual catalyst was 1,100 ppm.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2g]化合物[12g]の製造
 化合物[10]の使用量を18mg(化合物[11]に対して1.8質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは31,000、数平均分子量Mnは27,000、重量平均分子量Mwは75,000、分散度Mw/Mnは2.8であった。また、ガラス転移温度Tgは212℃、5%重量減少温度Tdは405℃、10質量%トルエン溶液での粘度は5.8mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
[Example 2g] Preparation of compound [12g] The same procedure as in Example 2a was repeated except that the amount of compound [10] used was changed to 18mg (1.8% by mass relative to compound [11]), norbornene An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 31,000, the number average molecular weight Mn is 27,000, the weight average molecular weight Mw is 75,000, and the dispersion degree Mw / Mn is 2 It was .8. Further, the glass transition temperature Tg was 212 ° C., the 5% weight loss temperature Td 5 was 405 ° C., and the viscosity in a 10% by mass toluene solution was 5.8 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2h]化合物[12h]の製造
 化合物[10]の使用量を20mg(化合物[11]に対して2.0質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは29,000、数平均分子量Mnは28,000、重量平均分子量Mwは102,000、分散度Mw/Mnは3.6であった。また、ガラス転移温度Tgは207℃、5%重量減少温度Tdは365℃、10質量%トルエン溶液での粘度は5.1mPa・s、残留触媒由来のルテニウム含量は1,000ppmであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
[Example 2h] Preparation of compound [12h] The same operation as in Example 2a except that the amount of compound [10] used was changed to 20 mg (2.0 mass% with respect to compound [11]) An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 29,000, the number average molecular weight Mn is 28,000, the weight average molecular weight Mw is 102,000, and the dispersion degree Mw / Mn is 3 It was .6. Further, the glass transition temperature Tg was 207 ° C., the 5% weight loss temperature Td 5 was 365 ° C., the viscosity in a 10% by mass toluene solution was 5.1 mPa · s, and the ruthenium content derived from the residual catalyst was 1,000 ppm.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2i]化合物[12i]の製造
 化合物[10]の使用量を22mg(化合物[11]に対して2.2質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは28,000、数平均分子量Mnは31,000、重量平均分子量Mwは122,000、分散度Mw/Mnは3.9であった。また、ガラス転移温度Tgは211℃、5%重量減少温度Tdは406℃、10質量%トルエン溶液での粘度は6.5mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2i Preparation of Compound [12i] The same procedure as in Example 2a was repeated except that the amount of compound [10] used was changed to 22 mg (2.2 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 28,000, the number average molecular weight Mn is 31,000, the weight average molecular weight Mw is 122,000, and the dispersion degree Mw / Mn is 3 .9. Further, the glass transition temperature Tg was 211 ° C., the 5% weight loss temperature Td 5 was 406 ° C., and the viscosity in a 10% by mass toluene solution was 6.5 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2j]化合物[12j]の製造
 化合物[10]の使用量を24mg(化合物[11]に対して2.4質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは28,000、数平均分子量Mnは35,000、重量平均分子量Mwは146,000、分散度Mw/Mnは4.2であった。また、ガラス転移温度Tgは212℃、5%重量減少温度Tdは408℃、10質量%トルエン溶液での粘度は8.0mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2j Preparation of Compound [12j] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 24 mg (2.4 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 28,000, the number average molecular weight Mn is 35,000, the weight average molecular weight Mw is 146,000, and the dispersion degree Mw / Mn is 4 It was .2. In addition, the glass transition temperature Tg was 212 ° C., the 5% weight loss temperature Td 5 was 408 ° C., and the viscosity in a 10% by mass toluene solution was 8.0 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2k]化合物[12k]の製造
 化合物[10]の使用量を26mg(化合物[11]に対して2.6質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは27,000、数平均分子量Mnは32,000、重量平均分子量Mwは155,000、分散度Mw/Mnは4.8であった。また、ガラス転移温度Tgは213℃、5%重量減少温度Tdは358℃、10質量%トルエン溶液での粘度は7.9mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2k Preparation of Compound [12k] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 26 mg (2.6 mass% with respect to compound [11]). An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 27,000, the number average molecular weight Mn is 32,000, the weight average molecular weight Mw is 155,000, and the dispersion degree Mw / Mn is 4 It was .8. Further, the glass transition temperature Tg was 213 ° C., the 5% weight loss temperature Td 5 was 358 ° C., and the viscosity in a 10% by mass toluene solution was 7.9 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2l]化合物[12l]の製造
 化合物[10]の使用量を28mg(化合物[11]に対して2.8質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは27,000、数平均分子量Mnは32,000、重量平均分子量Mwは191,000、分散度Mw/Mnは5.9であった。また、ガラス転移温度Tgは213℃、5%重量減少温度Tdは410℃、10質量%トルエン溶液での粘度は7.7mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2l Preparation of Compound [12l] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 28 mg (2.8 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 27,000, the number average molecular weight Mn is 32,000, the weight average molecular weight Mw is 191,000, and the dispersion degree Mw / Mn is 5 .9. Further, the glass transition temperature Tg was 213 ° C., the 5% weight loss temperature Td 5 was 410 ° C., and the viscosity in a 10% by mass toluene solution was 7.7 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2m]化合物[12m]の製造
 化合物[10]の使用量を30mg(化合物[11]に対して3質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは737,000、数平均分子量Mnは35,000、重量平均分子量Mwは155,000、分散度Mw/Mnは7.3であった。また、ガラス転移温度Tgは213℃、5%重量減少温度Tdは391℃、10質量%トルエン溶液での粘度は8.4mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2m Preparation of Compound [12m] A norbornene imide copolymer is operated in the same manner as Example 2a except that the amount of compound [10] used is changed to 30 mg (3 mass% with respect to compound [11]). I got
The peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 737,000, the number average molecular weight Mn is 35,000, the weight average molecular weight Mw is 155,000, and the dispersion degree Mw / Mn is 7 It was .3. Further, the glass transition temperature Tg was 213 ° C., the 5% weight loss temperature Td 5 was 391 ° C., and the viscosity in a 10% by mass toluene solution was 8.4 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2n]化合物[12n]の製造
 化合物[10]の使用量を34mg(化合物[11]に対して3.4質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは828,000、数平均分子量Mnは40,000、重量平均分子量Mwは408,000、分散度Mw/Mnは10.2であった。また、ガラス転移温度Tgは215℃、5%重量減少温度Tdは402℃、10質量%トルエン溶液での粘度は151.4mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2 n Preparation of Compound [12n] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 34 mg (3.4 mass% with respect to compound [11]). An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 828,000, the number average molecular weight Mn is 40,000, the weight average molecular weight Mw is 408,000, and the dispersion degree Mw / Mn is 10 It was .2. Further, the glass transition temperature Tg was 215 ° C., the 5% weight loss temperature Td 5 was 402 ° C., and the viscosity in a 10% by mass toluene solution was 151.4 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11 , 1.79, 1.59, 1.21 ppm.
[実施例2o]化合物[12o]の製造
 化合物[10]の使用量を38mg(化合物[11]に対して3.8質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは853,000、数平均分子量Mnは44,000、重量平均分子量Mwは815,000、分散度Mw/Mnは18.6であった。また、ガラス転移温度Tgは215℃、5%重量減少温度Tdは382℃、10質量%トルエン溶液での粘度は281.4mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
[Example 2o] Preparation of compound [12o] The procedure of Example 2a was repeated except that the amount of compound [10] used was changed to 38 mg (3.8 mass% with respect to compound [11]), norbornene An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 853,000, the number average molecular weight Mn is 44,000, the weight average molecular weight Mw is 815,000, and the dispersion degree Mw / Mn is 18 It was .6. Further, the glass transition temperature Tg was 215 ° C., the 5% weight loss temperature Td 5 was 382 ° C., and the viscosity in a 10% by mass toluene solution was 281.4 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.26, 2.92, 2.65, 2.11, 1.79 , 1.59, 1.21 ppm.
[実施例2p]化合物[12p]の製造
 化合物[10]の使用量を44mg(化合物[11]に対して4.4質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは716,000、数平均分子量Mnは43,000、重量平均分子量Mwは2,026,000、分散度Mw/Mnは47.2であった。また、ガラス転移温度Tgは216℃、5%重量減少温度Tdは384℃、10質量%トルエン溶液での粘度は343.1mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2p Preparation of Compound [12p] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 44 mg (4.4 mass% with respect to compound [11]), An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer measured by polystyrene conversion by GPC is 716,000, the number average molecular weight Mn is 43,000, the weight average molecular weight Mw is 2,026,000, and the dispersion degree Mw / Mn Was 47.2. In addition, the glass transition temperature Tg was 216 ° C., the 5% weight loss temperature Td 5 was 384 ° C., and the viscosity at a 10 mass% toluene solution was 343.1 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.26, 2.92, 2.65, 2.11, 1.79 , 1.59, 1.21 ppm.
[実施例2q]化合物[12q]の製造
 化合物[10]の使用量を46mg(化合物[11]に対して4.6質量%)に変更した以外は実施例2aと同様に操作して、ノルボルネンイミドコポリマーを得た。
 得られたノルボルネンイミドコポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは906,000、数平均分子量Mnは29,000、重量平均分子量Mwは2,135,000、分散度Mw/Mnは73.5であった。また、ガラス転移温度Tgは213℃、5%重量減少温度Tdは381℃、10質量%トルエン溶液での粘度は538.7mPa・sであった。
H NMR(400MHz,CDCl) δ:7.12,6.93,5.73,5.51,3.87,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Example 2 q Preparation of Compound [12q] The same procedure as in Example 2a was repeated, except that the amount of compound [10] used was changed to 46 mg (4.6 mass% with respect to compound [11]). An imide copolymer was obtained.
The peak top molecular weight Mp of the obtained norbornene imide copolymer as measured by polystyrene conversion by GPC is 906,000, the number average molecular weight Mn is 29,000, the weight average molecular weight Mw is 2,135,000, the dispersion degree Mw / Mn Was 73.5. Further, the glass transition temperature Tg was 213 ° C., the 5% weight loss temperature Td 5 was 381 ° C., and the viscosity in a 10% by mass toluene solution was 538.7 mPa · s.
1 H NMR (400 MHz, CDCl 3 ) δ: 7.12, 6.93, 5.73, 5.51, 3.87, 3.26, 2.92, 2.65, 2.11, 1.79 , 1.59, 1.21 ppm.
[比較例1]ポリ(エキソ-N-シクロヘキシル-2-ノルボルネン-5,6-ジカルボキシミド)[13]の製造
Figure JPOXMLDOC01-appb-C000023
 化合物[10]を使用しなかった以外は実施例2aと同様に操作して、ノルボルネンイミドポリマーを得た。
 得られたノルボルネンイミドポリマーの、GPCによるポリスチレン換算で測定されるピークトップ分子量Mpは25,000、数平均分子量Mnは20,000、重量平均分子量Mwは23,000、分散度Mw/Mnは1.2であった。また、ガラス転移温度Tgは203℃、5%重量減少温度Tdは365℃、10質量%トルエン溶液での粘度は5.3mPa・s、残留触媒由来のルテニウム含量は910ppmであった。
H NMR(400MHz,CDCl) δ:5.73,5.51,3.87,3.48,3.26,2.92,2.65,2.11,1.79,1.59,1.21ppm.
Comparative Example 1 Preparation of Poly (exo-N-cyclohexyl-2-norbornene-5,6-dicarboximide) [13]
Figure JPOXMLDOC01-appb-C000023
A norbornene imide polymer was obtained in the same manner as in Example 2a except that the compound [10] was not used.
The peak top molecular weight Mp of the obtained norbornene imide polymer as measured by polystyrene conversion by GPC is 25,000, the number average molecular weight Mn is 20,000, the weight average molecular weight Mw is 23,000, and the dispersion degree Mw / Mn is 1 It was .2. The glass transition temperature Tg was 203 ° C., the 5% weight loss temperature Td 5 was 365 ° C., the viscosity in a 10% by mass toluene solution was 5.3 mPa · s, and the ruthenium content derived from the residual catalyst was 910 ppm.
1 H NMR (400 MHz, CDCl 3 ) δ: 5.73, 5.51, 3.87, 3.48, 3.26, 2.92, 2.65, 2.11, 1.79, 1.59 , 1.21 ppm.
 実施例2a~2qで得られたノルボルネンイミドコポリマー、及び比較例1で得られたノルボルネンイミドポリマーの、各ポリマー中の化合物[10]由来の構造単位の質量割合(例えば化合物[12a]の場合、2mg÷(1,000mg+2mg)×100=0.20%)に対する、分散度を図1に、10質量%トルエン溶液の粘度を図2に、Tgを図3に、Tdを図4に、それぞれ併せて示す。 The mass ratio of the norbornene imide copolymer obtained in Examples 2a to 2q and the norbornene imide polymer obtained in Comparative Example 1 from the compound [10] in each polymer (for example, in the case of the compound [12a]) For 2 mg ÷ (1,000 mg + 2 mg) x 100 = 0.20%), the degree of dispersion is shown in Figure 1, the viscosity of the 10 mass% toluene solution is shown in Figure 2, Tg is in Figure 3, Td 5 is in Figure 4 It shows together.
 図1に示すように、微小量の2官能モノマー(化合物[10])の共重合によって、得られるノルボルネンポリマーの分子量分布(分散度)を飛躍的に増大させることができることが確認された。
 また、図2に示すように、微小量の2官能モノマー(化合物[10])の共重合によって、得られるノルボルネンポリマーの10質量%トルエン溶液の粘度を増大させることができ、成膜に好適な粘度に自在に調整できることが確認された。
 一方で、図3~図4に示すように、ガラス転移温度及び5%重量減少温度は、2官能モノマー(化合物[10])の共重合量によらず、それぞれ210℃前後、390℃前後でほぼ一定であった。すなわち、2官能モノマー(化合物[10])を共重合し架橋ポリマーとしても、熱に対する特性に影響を及ぼさないことが示唆された。
As shown in FIG. 1, it was confirmed that the molecular weight distribution (dispersion degree) of the obtained norbornene polymer can be dramatically increased by the copolymerization of a minute amount of the bifunctional monomer (compound [10]).
Further, as shown in FIG. 2, the viscosity of a 10 mass% toluene solution of the norbornene polymer obtained can be increased by the copolymerization of a small amount of a bifunctional monomer (compound [10]), which is suitable for film formation. It was confirmed that the viscosity can be freely adjusted.
On the other hand, as shown in FIGS. 3 to 4, the glass transition temperature and the 5% weight loss temperature are around 210 ° C. and 390 ° C., respectively, regardless of the copolymerization amount of the bifunctional monomer (compound [10]). It was almost constant. That is, it has been suggested that even when a bifunctional monomer (compound [10]) is copolymerized to form a crosslinked polymer, the properties against heat are not affected.
[参考例1]有機非線形光学化合物[FTC]の製造
 有機非線形光学化合物として、下記の化合物[FTC]を用いた。本化合物は、X.M.Zhangら、Tetrahedron Lett.,51,p5873(2010)に開示される手法と同様な手法により製造した。
Figure JPOXMLDOC01-appb-C000024
Reference Example 1 Production of Organic Nonlinear Optical Compound [FTC] The following compound [FTC] was used as an organic nonlinear optical compound. The compound is X.1. M. Zhang et al., Tetrahedron Lett. , 51, p 5873 (2010).
Figure JPOXMLDOC01-appb-C000024
[実施例3c、3f、3h、比較例2]組成物の調製及び電気光学特性
 表1に記載のノルボルネンイミド(コ)ポリマー65mg、参考例1で製造した有機非線形光学化合物[FTC]35mg、及びEDC1mLを混合し、室温(およそ23℃)で12時間撹拌した。
[Examples 3c, 3f, 3h, Comparative Example 2] Preparation of composition and electro-optical properties 65 mg of the norbornene imide (co) polymer described in Table 1, 35 mg of the organic nonlinear optical compound [FTC] produced in Reference Example 1, and 1 mL of EDC was mixed and stirred at room temperature (approximately 23 ° C.) for 12 hours.
 この溶液を孔径0.20μmのフィルタでろ過後、20mm×20mmのITO基板上にスピンコート(1,000rpm×30秒間)した。この塗膜を、85℃のホットプレートで30分間加熱し、さらに85℃の真空オーブンで24時間加熱した。得られた薄膜の膜厚を表1に併せて示す。
 この薄膜上に、直径4mm、厚さ200nmの金電極をスパッタにより作製し、試験片を得た。
The solution was filtered through a filter with a pore diameter of 0.20 μm, and spin-coated (1,000 rpm × 30 seconds) on a 20 mm × 20 mm ITO substrate. The coating was heated on an 85 ° C. hot plate for 30 minutes and further heated in a 85 ° C. vacuum oven for 24 hours. The film thickness of the obtained thin film is shown together in Table 1.
On this thin film, a gold electrode with a diameter of 4 mm and a thickness of 200 nm was produced by sputtering to obtain a test piece.
 各試験片の電気光学定数を、波長1.31μmの半導体レーザーを光源として、C.C.Tengら、Appl.Phys.Lett.,56,p1734(1990)、及びY.Shutoら、J.Appl.Phys.,77,p4632(1995)に開示される手法と同様の手法によって測定した。電界配向処理は、各試験片を、ホットプレート上で所定の温度に加温・保持し、金電極及びITO電極を介して表1に記載の電界強度で電圧印加して、およそ1分間ポーリング処理を行った。その後、急冷して分極配向を固定化した後、電圧印加を停止した。ポーリング処理が完了した試験片を電気光学特性の評価に供した。
 各試験片から得られた電気光学定数r33の値を、電界配向処理を行った温度、電界強度とともに表1に併せて示す。また、電気光学定数r33の値(並びに分散度)を各ポリマー中の化合物[10]由来の構造単位の質量割合に対してプロットしたグラフを、図5に示す。
The electro-optical constant of each test piece was determined using C.I. C. Teng et al., Appl. Phys. Lett. , 56, p 1734 (1990), and Y.P. Shuto et al. Appl. Phys. , 77, p 4632 (1995). In the electric field alignment process, each test piece is heated and held at a predetermined temperature on a hot plate, and voltage application is performed at a field strength described in Table 1 via a gold electrode and an ITO electrode, and poling treatment is performed for about 1 minute. Did. Then, after rapidly cooling to fix the polarization orientation, voltage application was stopped. The test pieces for which the poling treatment was completed were subjected to the evaluation of the electro-optical characteristics.
The values of the electro-optic constant r 33 obtained from each test piece are shown together with the temperature at which the electric field alignment treatment was performed and the electric field strength in Table 1. The value of electro-optic constant r 33 (as well as the degree of dispersion) of the compound in the polymer [10] a graph plotted against the mass ratio of the structural unit derived from, shown in FIG.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1及び図5に示すように、本発明の組成物の電気光学定数は、2官能モノマーの共重合によってノルボルネンイミドポリマーに架橋構造を導入することにより、63pm/Vから78pm/Vまで上昇することが確認された。すなわち、有機非線形光学化合物の電場配向を高める効果が認められた。その理由は解明できていないが、架橋構造の導入によりポリマーの非晶性が上昇したことによるものと推測される。 As shown in Table 1 and FIG. 5, the electro-optical constant of the composition of the present invention is increased from 63 pm / V to 78 pm / V by introducing a crosslinked structure into the norbornene imide polymer by copolymerization of bifunctional monomers. That was confirmed. That is, the effect of enhancing the electric field alignment of the organic nonlinear optical compound was observed. Although the reason is not elucidated, it is presumed that the introduction of the cross-linked structure increased the amorphism of the polymer.
[実施例4h、比較例3]温度耐久試験
 実施例3h及び比較例2において電気光学定数を測定した試験片について、温度耐久試験を行った。各試験片を85℃に保持し、ポーリング直後から500時間後までの電気光学定数の緩和特性を測定した。図6に電気光学定数r33の初期値(r33(0))からの変化率(r33/r33(0)×100)を時間(h)の関数として示す。
[Example 4h, Comparative Example 3] Temperature Durability Test A temperature durability test was conducted on the test pieces for which the electro-optic constant was measured in Example 3h and Comparative Example 2. Each test piece was kept at 85 ° C., and the relaxation characteristics of the electro-optical constant from immediately after poling to after 500 hours were measured. FIG. 6 shows the rate of change (r 33 / r 33 (0) × 100) from the initial value (r 33 (0)) of the electro-optical constant r 33 as a function of time (h).
 非晶質のホストは、一般に熱による非線形光学化合物の配向緩和が起こりやすく、経時により電気光学定数が低下するが、図6に示すように、本発明の組成物の電気光学定数は、非晶性の低いホモポリマーと同等の熱安定性(実施例4h:79%、比較例3:77%)を有することが確認された。 In an amorphous host, the relaxation of the alignment of the nonlinear optical compound is generally liable to occur by heat, and the electro-optical constant decreases with time. However, as shown in FIG. 6, the electro-optical constant of the composition of the present invention is amorphous. It was confirmed to have the same thermal stability (Example 4h: 79%, Comparative Example 3: 77%) as the low-quality homopolymer.

Claims (15)

  1. 式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマーと、有機非線形光学化合物とを含む組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、Lは炭素原子数1~30の二価の有機基を表す。)
    A composition comprising a norbornene imide copolymer having a structural unit represented by the formula [1] and a structural unit represented by the formula [2], and an organic nonlinear optical compound.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent, L 1 represents a divalent organic group having 1 to 30 carbon atoms.)
  2. 前記Lが、-Z-L-Z-(ここで、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数1~18の二価の有機基を表す。)で表される基である、請求項1に記載の組成物。 L 1 is —Z 1 -L 2 -Z 2- (wherein Z 1 and Z 2 are each independently a cyclohexylene group which may have a substituent, or a substituent The composition according to claim 1, which is a phenylene group which may be substituted, and L 2 is a group represented by a C 1-18 divalent organic group).
  3. 前記Lが、-O-L-O-(ここで、Lは、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1~18のアルキレン基を表す。)で表される基である、請求項2に記載の組成物。 The group represented by the above L 2 is —O—L 3 —O— (wherein L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond). The composition according to claim 2, which is
  4. 前記有機非線形光学化合物が、式[3]で表されるフラン環を有する化合物である、請求項1乃至請求項3のうち何れか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、Rはそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、●は結合手を表す。)
    The composition according to any one of claims 1 to 3, wherein the organic nonlinear optical compound is a compound having a furan ring represented by the formula [3].
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or an aryl group of 6 to 10 carbon atoms , ● represents a bond.)
  5. 前記有機非線形光学化合物が、式[4]で表される化合物である、請求項4に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、Rはそれぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、R~Rは、それぞれ独立して、水素原子、炭素原子数1~10のアルキル基、ヒドロキシ基、炭素原子数1~10のアルコキシ基、炭素原子数2~11のアルキルカルボニルオキシ基、炭素原子数4~10のアリールオキシ基、炭素原子数5~11のアリールカルボニルオキシ基、炭素原子数1~6のアルキル基及び/又はフェニル基を有するシリルオキシ基、又はハロゲン原子を表し、R、Rはそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数1~5のハロアルキル基、又は炭素原子数6~10のアリール基を表し、Arは式[5]又は式[6]で表される二価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R10~R15はそれぞれ独立して、水素原子、置換基を有していてもよい炭素原子数1~10のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表す。)
    The composition according to claim 4, wherein the organic nonlinear optical compound is a compound represented by the formula [4].
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or the number of carbon atoms which may have a substituent) And R 4 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or the like Silyloxy group having an alkylcarbonyloxy group of 2 to 11, an aryloxy group of 4 to 10 carbon atoms, an arylcarbonyloxy group of 5 to 11 carbon atoms, an alkyl group of 1 to 6 carbon atoms and / or a phenyl group Or R 8 and R 9 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, a haloalkyl group of 1 to 5 carbon atoms, or an aryl of 6 to 10 carbon atoms Group It represents, Ar represents a divalent organic group represented by the formula [5] or Formula [6].)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, R 10 to R 15 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or the number of carbon atoms which may have a substituent) 6-10 aryl groups are represented.)
  6. 前記有機非線形光学化合物の含有量が、前記ノルボルネンイミドコポリマー100質量部に対して1~150質量部である、請求項1乃至請求項5のうち何れか一項に記載の組成物。 The composition according to any one of claims 1 to 5, wherein the content of the organic nonlinear optical compound is 1 to 150 parts by mass with respect to 100 parts by mass of the norbornene imide copolymer.
  7. 請求項1乃至請求項6のうち何れか一項に記載の組成物を含むワニス。 A varnish comprising the composition according to any one of claims 1 to 6.
  8. 請求項1乃至請求項6のうち何れか一項に記載の組成物からなる薄膜。 A thin film comprising the composition according to any one of claims 1 to 6.
  9. 請求項1乃至請求項6のうち何れか一項に記載の組成物を含む電気光学素子。 An electro-optical device comprising the composition according to any one of claims 1 to 6.
  10. 請求項1乃至請求項6のうち何れか一項に記載の組成物を含む光スイッチング素子。 The optical switching element containing the composition as described in any one of Claims 1 thru | or 6.
  11. 請求項1乃至請求項6のうち何れか一項に記載の組成物を用いた有機非線形光学材料。 An organic nonlinear optical material using the composition according to any one of claims 1 to 6.
  12. 式[1]で表される構造単位及び式[2]で表される構造単位を有するノルボルネンイミドコポリマー。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは、置換基を有していてもよい炭素原子数1~12のアルキル基、又は置換基を有していてもよい炭素原子数6~10のアリール基を表し、Lは炭素原子数1~30の二価の有機基を表す。)
    A norbornene imide copolymer having a structural unit represented by Formula [1] and a structural unit represented by Formula [2].
    Figure JPOXMLDOC01-appb-C000005
    (Wherein, R 1 represents an alkyl group having 1 to 12 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent, L 1 represents a divalent organic group having 1 to 30 carbon atoms.)
  13. 前記Lが、-Z-L-Z-(ここで、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数1~18の二価の有機基を表す。)で表される基である、請求項12に記載のノルボルネンイミドコポリマー。 L 1 is —Z 1 -L 2 -Z 2- (wherein Z 1 and Z 2 are each independently a cyclohexylene group which may have a substituent, or a substituent The norbornene imide copolymer according to claim 12, wherein L represents an optionally substituted phenylene group, and L 2 represents a divalent organic group having 1 to 18 carbon atoms.
  14. 前記Lが、-O-L-O-(ここで、Lは、エーテル結合又はエステル結合を含んでいてもよい炭素原子数1~18のアルキレン基を表す。)で表される基である、請求項13に記載のノルボルネンイミドコポリマー。 The group represented by the above L 2 is —O—L 3 —O— (wherein L 3 represents an alkylene group having 1 to 18 carbon atoms which may contain an ether bond or an ester bond). The norbornene imide copolymer according to claim 13, which is
  15. 式[7]で表されるビス(ノルボルネンジカルボキシミド)化合物。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Z、Zはそれぞれ独立して、置換基を有していてもよいシクロヘキシレン基、又は置換基を有していてもよいフェニレン基を表し、Lは炭素原子数3~18のアルキレン基を表す。)
    The bis (norbornene dicarboximide) compound represented by Formula [7].
    Figure JPOXMLDOC01-appb-C000006
    (Wherein, Z 1 and Z 2 each independently represent a cyclohexylene group which may have a substituent, or a phenylene group which may have a substituent, and L 3 has 3 carbon atoms Represents an alkylene group of to 18)
PCT/JP2018/036881 2017-10-02 2018-10-02 Crosslinked polymer composition containing organic nonlinear optical compound WO2019069925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019546734A JP7079941B2 (en) 2017-10-02 2018-10-02 Cross-linked polymer composition comprising an organic nonlinear optical compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-192743 2017-10-02
JP2017192743 2017-10-02

Publications (1)

Publication Number Publication Date
WO2019069925A1 true WO2019069925A1 (en) 2019-04-11

Family

ID=65994374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036881 WO2019069925A1 (en) 2017-10-02 2018-10-02 Crosslinked polymer composition containing organic nonlinear optical compound

Country Status (2)

Country Link
JP (1) JP7079941B2 (en)
WO (1) WO2019069925A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263557A (en) * 1985-05-22 1987-03-20 Agency Of Ind Science & Technol Diacetylenic compound having terminal double bond
DE10102086A1 (en) * 2000-08-26 2002-03-07 Bahram Hemmasi Single-stage synthesis of crosslinked polyolefin, useful e.g. as supports for organic synthesis, by catalytic ring-opening reaction between cyclic and bicyclic olefins
WO2013172342A1 (en) * 2012-05-14 2013-11-21 国立大学法人九州大学 Polymer composition containing organic non-linear optical compound
JP2014130196A (en) * 2012-12-28 2014-07-10 Kyushu Univ Nonlinear optical active copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263557A (en) * 1985-05-22 1987-03-20 Agency Of Ind Science & Technol Diacetylenic compound having terminal double bond
DE10102086A1 (en) * 2000-08-26 2002-03-07 Bahram Hemmasi Single-stage synthesis of crosslinked polyolefin, useful e.g. as supports for organic synthesis, by catalytic ring-opening reaction between cyclic and bicyclic olefins
WO2013172342A1 (en) * 2012-05-14 2013-11-21 国立大学法人九州大学 Polymer composition containing organic non-linear optical compound
JP2014130196A (en) * 2012-12-28 2014-07-10 Kyushu Univ Nonlinear optical active copolymer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO, ANGELA X. ET AL.: "Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate Nanoparticles via Brush-First ROMP", ACS MACRO LETT., vol. 3, 2014, pages 854 - 857, XP055316376, DOI: doi:10.1021/mz5004097 *
SPRING, ANDREW M. ET AL.: "Electro-optic properties of a side chain poly(norbornene- dicarboximide) system with an appended phenyl vinylene thiophene chromophore", POLYMER, vol. 119, 3 May 2017 (2017-05-03), pages 13 - 27, XP085057030, DOI: doi:10.1016/j.polymer.2017.05.005 *
YU , FENG ET AL.: "An Enhanced Host-Guest Electro- Optical Polymer System Using Poly(norbornene- dicarboximides) via ROMP", JOURNAL OF POLYMER SCIENCE , PART A: POLYMER CHEMISTRY, vol. 51, no. 6, 2013, pages 1278 - 1284, XP055590086, ISSN: 0887-624X, DOI: 10.1002/pola.26505 *
ZHANG, YAGANG ET AL.: "Solvent Programmable Polymers Based on Restricted Rotation", J. AM. CHEM. SOC., vol. 131, no. 34, 2009, pages 12062 - 12063, XP055590082, ISSN: 0002-7863, DOI: 10.1021/ja904234w *

Also Published As

Publication number Publication date
JPWO2019069925A1 (en) 2020-11-05
JP7079941B2 (en) 2022-06-03

Similar Documents

Publication Publication Date Title
JP5758458B2 (en) Photo-alignable polyimide copolymer and liquid crystal alignment film
JP6498711B2 (en) Liquid crystal composition
TW201030095A (en) Alignment agent and liquid crystalline polyimide used therein
TWI810273B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and compound
JP2015129210A (en) Block carboxylic acid type photoalignment material
US8318969B2 (en) Alignment material for liquid crystal display device of vertical alignment mode and method of preparing the same
KR20160142614A (en) Composition for photo-alignment layer and photo-alignment layer
CN113544184B (en) Composition for film formation, cured film, liquid crystal alignment film, and retardation film
KR101514019B1 (en) Photoalignment polyimide copolymer and liquid crystal alignment layer
TW202102557A (en) Polymer composition and single-layer retardation material
TW201022317A (en) Liquid crystal photo-alignment agent, liquid crystal photo-alignment film manufactured using the same
JP7079941B2 (en) Cross-linked polymer composition comprising an organic nonlinear optical compound
KR20130131663A (en) Benzylidene phthalimide monomer, method for preparing the same, polymer comprising the same, liquid crystal alignment film comprising the same and retarder film comprising the same
TWI744318B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element and novel monomer
JP6066353B2 (en) Polymer composition comprising organic nonlinear optical compound
TWI458755B (en) Liquid crystal alignment agent, liquid crystal alignment film manufactured using the same, and liquid crystal display device including the liquid crystal alignment film
KR20140103447A (en) Benzylidene phthalimide monomer, method for preparing the same, polymer comprising the same, photoalignment film comprising the same and retardation film comprising the same
TW202313936A (en) Polymer composition and single-layer retardation material
Jeyasheela et al. Effect of biphenyl conjugation on the photosensitive properties of liquid crystalline polymers”
KR20130048135A (en) Polyamide-based photoreactive polymer and preparation method thereof
WO2021060270A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20120048264A (en) Liquid crystal alignment agent, liquid crystal alignment film manufactured using the same, and liquid crystal display device including the liquid crystal alignment film
CN107924092B (en) Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, method for producing same, liquid crystal display element having liquid crystal alignment film, and method for producing same
EP1751466A2 (en) Non-linear optical device material composition
TW201927865A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546734

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864105

Country of ref document: EP

Kind code of ref document: A1