WO2019069893A1 - Biomolecule detection method - Google Patents

Biomolecule detection method Download PDF

Info

Publication number
WO2019069893A1
WO2019069893A1 PCT/JP2018/036808 JP2018036808W WO2019069893A1 WO 2019069893 A1 WO2019069893 A1 WO 2019069893A1 JP 2018036808 W JP2018036808 W JP 2018036808W WO 2019069893 A1 WO2019069893 A1 WO 2019069893A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomolecule
detecting
biomolecules
sample
separated
Prior art date
Application number
PCT/JP2018/036808
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 田中
潤平 篠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019069893A1 publication Critical patent/WO2019069893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/95Detectors specially adapted therefor; Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present disclosure relates to methods of detecting biomolecules comprising aromatic amino acids.
  • Patent Document 1 discloses a method and reagent mixture for staining and visualizing amino acids, peptides and similar compounds after separation using thin-layer chromatography (TLC).
  • the present disclosure provides a method for detecting biomolecules that easily and rapidly detects biomolecules.
  • a method of detecting a biomolecule is a method of detecting a biomolecule contained in a sample, comprising: a separation step of separating the biomolecule in the sample by thin layer chromatography; The method includes an irradiation step of irradiating excitation light to a biomolecule, and a detection step of detecting fluorescence generated by the excitation light with a light receiving element, wherein the fluorescence is autofluorescence of the biomolecule.
  • FIG. 1 is a schematic configuration diagram of a detection device used to detect a biomolecule according to the embodiment.
  • FIG. 2 is a flowchart illustrating the method of detecting a biomolecule according to the embodiment.
  • FIG. 3 is a diagram for explaining the results of the first embodiment.
  • FIG. 4 is a diagram for explaining the results of Comparative Example 1.
  • FIG. 5 is a graph showing the relationship between the concentration of biomolecules and the signal value in Example 1 and Comparative Example 1.
  • FIG. 6 is a diagram for explaining the result of the second embodiment.
  • FIG. 7 is a diagram for explaining the results of Comparative Example 2.
  • FIG. 8 is a diagram for explaining the result of the third embodiment.
  • FIG. 9 is a diagram for explaining the results of Comparative Example 3.
  • a method of detecting a biomolecule is a method of detecting a biomolecule contained in a sample, comprising: a separation step of separating the biomolecule in the sample by thin layer chromatography; The method includes an irradiation step of irradiating excitation light to a biomolecule, and a detection step of detecting fluorescence generated by the excitation light with a light receiving element, wherein the fluorescence is autofluorescence of the biomolecule.
  • the excitation light may be ultraviolet light
  • the biomolecule may have an aromatic ring.
  • biomolecules can be detected simply by irradiating the biomolecules with ultraviolet light. Therefore, biomolecules can be detected easily and quickly.
  • the irradiating and the detecting may be performed while the biomolecule is separated by the thin layer chromatography in the separation step.
  • the separation step can be performed while confirming the situation where biomolecules are separated by TLC. Therefore, biomolecules can be separated appropriately.
  • the autofluorescence may be derived from tryptophan contained in the biomolecule.
  • the biomolecule when the biomolecule contains a protein, a peptide or an amino acid, the biomolecule can be detected by the autofluorescence of the aromatic amino acid.
  • the biomolecule By detecting the autofluorescence of tryptophan, which has the highest fluorescence intensity among aromatic amino acids, biomolecules can be detected with higher sensitivity.
  • the light source may be a light emitting diode (LED).
  • LED light emitting diode
  • the light receiving element may be an image sensor.
  • the image sensor may have a photoelectric conversion film made of an organic resin.
  • the photosensitivity can be adjusted by changing the voltage applied to the photoelectric conversion film in accordance with the fluorescence intensity of the separated biomolecule.
  • the biomolecule in the sample is moved in a first direction by isoelectric focusing.
  • the biomolecules separated in the first direction may be separated in a second direction orthogonal to the first direction.
  • FIG. 1 is a schematic configuration diagram of a detection device 10 used to detect a biomolecule according to the present embodiment.
  • the detection apparatus 10 includes a stage 1 on which a TLC plate 40 provided for separation of biomolecules is placed, a light source 2 for irradiating the biomolecules with excitation light, and a light receiving element for detecting fluorescence from the biomolecules. And 3.
  • the biological molecule is a substance constituting a living body, and examples thereof include proteins, nucleic acids, macromolecules such as polysaccharides, and peptides, nucleotides, nucleosides, lipids, amino acids and the like.
  • proteins have various functions such as keratin and collagen, which have a function of forming a structure of a living body and maintaining strength, a function of catalyzing a biological reaction like an enzyme, and a function of protecting a living body such as an antibody. Therefore, for example, the biological state can be grasped by separating and detecting those biological molecules from a biological sample such as blood.
  • the biomolecule is a protein, a peptide, an amino acid and has an aromatic ring. Since an aromatic ring has a ⁇ electron system bond in which a carbon atom repeats a double bond and a single bond, when it is irradiated with ultraviolet light as excitation light, the ⁇ electron system bond absorbs ultraviolet light and is excited It becomes a state and emits fluorescence. Therefore, when the biomolecule is irradiated with ultraviolet light, the aromatic ring contained in the biomolecule is excited to emit fluorescence.
  • biomolecules can be detected simply by separating biomolecules by TLC and irradiating the TLC plate 40 with excitation light. Therefore, biomolecules can be detected easily and quickly.
  • biomolecules having an aromatic ring include amino acids that are components of proteins and peptides, that is, aromatic amino acids.
  • the aromatic amino acids are, for example, phenylalanine, tyrosine, tryptophan.
  • Aromatic amino acids absorb ultraviolet light near 280 nm and emit fluorescence at 350 nm.
  • tryptophan has high quantum efficiency and high fluorescence intensity. Therefore, the autofluorescence of the biomolecule may be derived from tryptophan contained in the biomolecule.
  • the biomolecule contains a protein, a peptide or an amino acid
  • the biomolecule can be detected by the autofluorescence of the aromatic amino acid.
  • biomolecules can be detected with higher sensitivity.
  • the biomolecule may have a heterocycle. Since a heterocyclic ring also has a bond of ⁇ electron system like an aromatic ring, it emits fluorescence when irradiated with ultraviolet light. As described above, it is called autofluorescence that a molecule to be detected, that is, a biomolecule, emits fluorescence without being modified with a fluorescent substance. In this embodiment, the type and concentration of biomolecules can be analyzed by detecting the autofluorescence of the biomolecules.
  • the light source 2 applies excitation light to the TLC plate 40 from which biomolecules have been separated.
  • the excitation light is ultraviolet light.
  • the light source 2 may be, for example, an LED. Biomolecules can be degraded, for example, when illuminated with high power light, such as a laser. Therefore, by using an LED with a relatively low output as the light source 2, it is possible to reduce the damage that biomolecules receive from light irradiation.
  • the light source 2 includes a heat sink 21, an LED 22 fixed to the heat sink 21, and an excitation light filter 23 disposed on the light emission side of the LED 22.
  • the light receiving element 3 is, for example, an image sensor, and may have a photoelectric conversion film made of an organic resin. Since the light receiving element 3 is an image sensor, the detection device 10 in the present embodiment can capture the fluorescence of the biomolecule separated by TLC. Further, since the light receiving element 3 is an organic image sensor, it is possible to adjust the light sensitivity of the light receiving element 3 in accordance with the intensity of the fluorescence emitted by the biomolecule. Thereby, biomolecules can be detected with high accuracy.
  • the light receiving element 3 is included in the imaging device 30.
  • the imaging device 30 includes a lens 31, a fluorescent filter 32, a light receiving element 3, a Peltier element 33, and a heat sink 34.
  • the lens 31 is preferably excellent in ultraviolet light permeability, and is, for example, a quartz lens.
  • the Peltier device 33 is disposed to be in contact with the back surface of the light receiving device 3 from the viewpoint of dark current suppression, and cools the light receiving device 3.
  • the heat sink 34 dissipates the heat stored in the Peltier element 33.
  • the detection device 10 in the present embodiment can detect biomolecules easily and quickly.
  • FIG. 2 is a flowchart illustrating the method of detecting a biomolecule according to the present embodiment.
  • the method for detecting a biomolecule is a method for detecting a biomolecule contained in a sample, and the separating step (step S1) comprises separating biomolecules in the sample by thin layer chromatography (hereinafter, TLC). ), An irradiation step (step S2) of irradiating excitation light from the light source 2 to a biomolecule, and a detection step (step S3) of detecting fluorescence generated by the excitation light by the light receiving element 3; Molecular autofluorescence.
  • TLC thin layer chromatography
  • step S1 prior to the separation by TLC, the biological molecules in the sample are separated in a first direction by isoelectric focusing, and in the separation by TLC, a living body separated in the first direction The molecules may be separated in a second direction orthogonal to the first direction.
  • the irradiation step (step S2) and the detection step (step S3) may be performed while separating biomolecules by TLC in the separation step (step S1).
  • the separation step can be performed while confirming the situation where biomolecules are separated by TLC. Therefore, biomolecules can be separated appropriately.
  • the biomolecule can be detected easily and rapidly.
  • imaging data was obtained under the following imaging conditions using the following light source and imaging device.
  • UV-LEDs with a center wavelength of 280 nm and an optical output of 15 mW were arranged at intervals of 20 mm for four each.
  • the height from the sample stage 1 to the light source 2 was 65 mm.
  • each LED 22 is fixed to the heat sink 21 and used while being exhausted.
  • a band pass filter having a transmission band of 250 nm to 290 nm and a band gap of approximately OD (Optical Density) 7 or less was used as the excitation filter 23.
  • CMOS complementary MOS
  • the Peltier device 33 was brought into contact with the back surface of the light receiving device 3 and cooled to about ⁇ 18 ° C.
  • the imaging lens 31 a quartz lens for UV light photography with a focal length of 25 mm and an f-number of 2.8 was used.
  • a band pass filter having a transmission band of 330 nm to 420 nm and a forbidden band of about OD 8 or less was used.
  • Imaging condition The image sensor was used to capture an image with 4 million pixels. The exposure time was 500 msec. The LED 22 was lit under the above conditions only during imaging. The imaging data was stored as data of 14-bit gradation.
  • Detection sensitivity by dilution series spotting of biomolecules (Example 1) The detection sensitivity by the method of detecting a biomolecule according to the present disclosure was confirmed using two types of proteins having different tryptophan content as the biomolecule.
  • the sample conditions are as follows.
  • -TLC plate Silica particle non-fluorescent HPTLC (High Performance TLC) plate (gel 60 RP-18, manufactured by Merck), size: 20 mm x 30 mm ⁇
  • Biomolecule sample (1) Bovine serum albumin (BSA: Bovine Serum Albumin) diluted solution, (2) lysodium (Lys: Lysozyme) diluted solution ⁇
  • BSA Bovine Serum Albumin
  • Lys Lysozyme
  • FIG. 3 is a diagram for explaining the results of the first embodiment.
  • the signal value was calculated by comparing the internal and external luminance of each spot from the captured 14-bit gradation data and subtracting the average value of the luminance distribution inside the spot from the average value of the external luminance distribution. .
  • the detection limit was taken as + ⁇ (about 200) of the variation in background brightness outside the spot.
  • FIG. 5 is a graph showing the relationship between the concentration of biomolecules and the signal value in Example 1 and Comparative Example 1.
  • the detection limit of the biomolecule in Example 1 was 6 ng for the biomolecule sample (1) BSA and 1 ng for the biomolecule sample (2) Lys.
  • Example 1 After imaging the autofluorescence of biomolecular samples (1) and (2) in Example 1, after spraying a ninhydrin solution on a TLC plate, it is dried on a hot plate at 120 ° C. for 15 seconds, and biomolecular sample (1) And spots (a) to (f) of each concentration of (2) were stained. After staining, the TLC plate was imaged with a 14-bit gradation scanner. The results are shown in FIG. FIG. 4 is a diagram for explaining the results of Comparative Example 1.
  • the detection limit of the biomolecule in Comparative Example 1 was about 100 ng for both of the biomolecule sample (1) BSA and (2) Lys.
  • Example 2 One-Dimensional Separation (Example 2) Lysotium was developed by TLC as a biomolecule, and the detection sensitivity by the method for detecting a biomolecule according to the present disclosure was confirmed.
  • the sample conditions are as follows.
  • -TLC plate silica particle non-fluorescent HPTLC plate (gel 60 RP-18, manufactured by Merck), size: 20 mm x 30 mm ⁇
  • FIG. 6 is a diagram for explaining the result of the second embodiment.
  • Example 2 Unlike Example 1, in Example 2, a biomolecule sample is spotted on a TLC plate and then developed by TLC. The development of the spot weakens the autofluorescence of the moved spot. However, also in Example 2, the signal derived from lysotium can be detected with high S / N, and the signal value could be confirmed even at (i) 11 ng / ⁇ L where the sample concentration is the lowest.
  • Example 2 After imaging the autofluorescence of three concentrations of lysodium (g), (h) and (i) in Example 2, after spraying a ninhydrin solution on a TLC plate, it was dried on a hot plate at 120 ° C. for 15 seconds. , Spots (g), (h) and (i) of each concentration were stained. After staining, the TLC plate was imaged with a 14-bit gradation scanner. The results are shown in FIG. FIG. 7 is a diagram for explaining the results of Comparative Example 2. The signal value was calculated in the same manner as in Example 1.
  • the stained spots could not be confirmed for any of the concentrations (g), (h) and (i) of lysodium. In addition, it was not possible to detect the signal derived from lysotium.
  • the sample conditions are as follows.
  • the biomolecular sample is a mixed solution of the following (1) to (3).
  • Each concentration of (1) to (3) is a final concentration in the mixed solution.
  • Myoglobin (Myo: Myoglobin): 1 ⁇ g / ⁇ L (2) Bovine serum albumin (BSA): 1 ⁇ g / ⁇ L (3) ⁇ -lactalbumin ( ⁇ -La): 1 ⁇ g / ⁇ L
  • the three proteins (1) to (3) separated by isoelectric focusing were further separated by TLC. Since Myo of protein (1) has two isoelectric points, it was divided into two bands by isoelectric focusing.
  • a cellulose acetate membrane was attached to a TLC plate.
  • the TLC plate has the same specifications as in Example 1 and Example 2.
  • isopropyl alcohol / acetic acid / water (volume ratio) 40 / 0.1 / 59.9 was used. Deployment time was about 15 minutes.
  • FIG. 8 is a diagram for explaining the result of the third embodiment.
  • Example 3 After confirming the autofluorescence of the above three types of proteins (1) to (3) separated in Example 3, the ninhydrin solution is sprayed on a TLC plate, and then dried on a hot plate at 120 ° C. for 15 seconds. Each spot of protein (1) to (3) was stained. After staining, the TLC plate was imaged with a 14-bit gradation scanner. The results are shown in FIG. FIG. 9 is a diagram for explaining the results of Comparative Example 3. The signal value was calculated in the same manner as in Example 1.
  • the method for detecting a biomolecule according to the present disclosure detects the autofluorescence of the biomolecule, for example, detecting the biomolecule by colorimetric method such as ninhydrin method A biomolecule can be detected more simply and quickly than the method. Furthermore, since it becomes difficult to receive the influence of the signal of the background, biomolecules can be detected with high sensitivity as compared with the colorimetric method.
  • the method of detecting biomolecules according to the present disclosure can detect biological components easily and quickly, so for example, by separating and detecting those biomolecules from a biological sample such as blood, etc. The state can be easily grasped.
  • sample stage 2 light source 3 light receiving element 10 detection device 21 heat sink 22 LED 23 excitation light filter 30 imaging device 31 lens 32 fluorescence filter 33 Peltier element 34 heat sink 40 TLC plate

Abstract

This biomolecule detection method is for detecting biomolecules included in a sample and comprises: a separation step (S1) in which the biomolecules in a sample are separated by thin-layer chromatography; an irradiation step (S2) in which the biomolecules are irradiated with excitation light from a light source (2); and a detection step (S3) in which fluorescence generated as a result of the excitation light is detected by a light-receiving element (3). The fluorescence is autofluorescence from biomolecules.

Description

生体分子の検出方法Method of detecting biomolecules
 本開示は、芳香族アミノ酸を含む生体分子の検出方法に関する。 The present disclosure relates to methods of detecting biomolecules comprising aromatic amino acids.
 生体試料には、複数種の生体分子が含まれており、生体試料からそれらの生体分子を分離した後、染色して検出する。例えば、特許文献1は、薄層クロマトグラフィー(TLC:Thin-Layer Chromatography)を用いた分離後の、アミノ酸、ペプチド及び類似の化合物の染色、可視化のための方法及び試薬混合物を開示している。 The biological sample contains a plurality of types of biological molecules, and these biological molecules are separated from the biological sample and then stained and detected. For example, Patent Document 1 discloses a method and reagent mixture for staining and visualizing amino acids, peptides and similar compounds after separation using thin-layer chromatography (TLC).
特開2009-545728号公報JP, 2009-545728, A
 特許文献1に記載の従来技術では、生体分子をTLCで分離し、染色することにより可視化できるが、試薬混合物による処理の後、TLCプレートを熱処理する必要があり、手間がかかる。 In the prior art described in Patent Document 1, biomolecules can be visualized by separation and staining by TLC, but after treatment with a reagent mixture, it is necessary to heat treat the TLC plate, which takes time and effort.
 そこで、本開示は、簡便に、かつ、迅速に生体分子を検出する生体分子の検出方法を提供する。 Thus, the present disclosure provides a method for detecting biomolecules that easily and rapidly detects biomolecules.
 本開示の一態様に係る生体分子の検出方法は、試料中に含まれる生体分子の検出方法であって、前記試料中の前記生体分子を薄層クロマトグラフィーで分離する分離ステップと、光源から前記生体分子に励起光を照射する照射ステップと、前記励起光により生じる蛍光を受光素子で検出する検出ステップと、を有し、前記蛍光は、前記生体分子の自家蛍光である。 A method of detecting a biomolecule according to an aspect of the present disclosure is a method of detecting a biomolecule contained in a sample, comprising: a separation step of separating the biomolecule in the sample by thin layer chromatography; The method includes an irradiation step of irradiating excitation light to a biomolecule, and a detection step of detecting fluorescence generated by the excitation light with a light receiving element, wherein the fluorescence is autofluorescence of the biomolecule.
 本開示によれば、簡便に、かつ、迅速に生体分子を検出できる生体分子の検出方法を提供することができる。 According to the present disclosure, it is possible to provide a method of detecting a biomolecule which can detect a biomolecule easily and quickly.
図1は、実施の形態に係る生体分子を検出するために用いる検出装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a detection device used to detect a biomolecule according to the embodiment. 図2は、実施の形態に係る生体分子の検出方法を説明するフローチャートである。FIG. 2 is a flowchart illustrating the method of detecting a biomolecule according to the embodiment. 図3は、実施例1の結果を説明する図である。FIG. 3 is a diagram for explaining the results of the first embodiment. 図4は、比較例1の結果を説明する図である。FIG. 4 is a diagram for explaining the results of Comparative Example 1. 図5は、実施例1及び比較例1における生体分子の濃度と信号値との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the concentration of biomolecules and the signal value in Example 1 and Comparative Example 1. 図6は、実施例2の結果を説明する図である。FIG. 6 is a diagram for explaining the result of the second embodiment. 図7は、比較例2の結果を説明する図である。FIG. 7 is a diagram for explaining the results of Comparative Example 2. 図8は、実施例3の結果を説明する図である。FIG. 8 is a diagram for explaining the result of the third embodiment. 図9は、比較例3の結果を説明する図である。FIG. 9 is a diagram for explaining the results of Comparative Example 3.
 本開示の一態様の概要は、以下のとおりである。 The outline of one aspect of the present disclosure is as follows.
 本開示の一態様に係る生体分子の検出方法は、試料中に含まれる生体分子の検出方法であって、前記試料中の前記生体分子を薄層クロマトグラフィーで分離する分離ステップと、光源から前記生体分子に励起光を照射する照射ステップと、前記励起光により生じる蛍光を受光素子で検出する検出ステップと、を有し、前記蛍光は、前記生体分子の自家蛍光である。 A method of detecting a biomolecule according to an aspect of the present disclosure is a method of detecting a biomolecule contained in a sample, comprising: a separation step of separating the biomolecule in the sample by thin layer chromatography; The method includes an irradiation step of irradiating excitation light to a biomolecule, and a detection step of detecting fluorescence generated by the excitation light with a light receiving element, wherein the fluorescence is autofluorescence of the biomolecule.
 これにより、TLCにより分離された生体分子に励起光を照射するだけで、生体分子が自家発光する蛍光を検出することができる。そのため、TLCにより分離された生体分子を染色するステップが不要となり、簡便に、かつ、迅速に生体分子を検出することができる。 In this way, it is possible to detect the fluorescence of self-emission of the biomolecule only by irradiating the biomolecule separated by TLC with the excitation light. Therefore, the step of staining the biomolecule separated by TLC is unnecessary, and the biomolecule can be detected simply and rapidly.
 例えば、本開示の一態様に係る生体分子の検出方法では、前記励起光は、紫外光であり、前記生体分子は、芳香環を有してもよい。 For example, in the method of detecting a biomolecule according to one aspect of the present disclosure, the excitation light may be ultraviolet light, and the biomolecule may have an aromatic ring.
 これにより、生体分子に含まれる芳香環が紫外光により励起し、蛍光を発する。そのため、生体分子に紫外光を照射するだけで生体分子を検出することができる。したがって、簡便に、かつ、迅速に生体分子を検出することができる。 Thereby, the aromatic ring contained in the biomolecule is excited by the ultraviolet light to emit fluorescence. Therefore, biomolecules can be detected simply by irradiating the biomolecules with ultraviolet light. Therefore, biomolecules can be detected easily and quickly.
 例えば、本開示の一態様に係る生体分子の検出方法では、前記照射ステップ及び前記検出ステップは、前記分離ステップにおいて、前記生体分子を前記薄層クロマトグラフィーで分離させながら行われてもよい。 For example, in the method of detecting a biomolecule according to an aspect of the present disclosure, the irradiating and the detecting may be performed while the biomolecule is separated by the thin layer chromatography in the separation step.
 これにより、生体分子がTLCにより分離される状況を確認しながら分離ステップを行うことができる。そのため、生体分子を適切に分離することができる。 Thereby, the separation step can be performed while confirming the situation where biomolecules are separated by TLC. Therefore, biomolecules can be separated appropriately.
 例えば、本開示の一態様に係る生体分子の検出方法では、前記自家蛍光は、前記生体分子に含まれるトリプトファンに由来してもよい。 For example, in the method of detecting a biomolecule according to one aspect of the present disclosure, the autofluorescence may be derived from tryptophan contained in the biomolecule.
 これにより、例えば、生体分子がタンパク質、ペプチド、アミノ酸を含む場合、芳香族アミノ酸の自家蛍光により生体分子を検出することができる。芳香族アミノ酸の中で最も蛍光強度の強いトリプトファンの自家蛍光を検出することにより、より高感度に生体分子を検出することができる。 Thereby, for example, when the biomolecule contains a protein, a peptide or an amino acid, the biomolecule can be detected by the autofluorescence of the aromatic amino acid. By detecting the autofluorescence of tryptophan, which has the highest fluorescence intensity among aromatic amino acids, biomolecules can be detected with higher sensitivity.
 例えば、本開示の一態様に係る生体分子の検出方法では、前記光源は、LED(Light Emitting Diode)であってもよい。 For example, in the method of detecting a biomolecule according to one aspect of the present disclosure, the light source may be a light emitting diode (LED).
 このように、安価で、光の出力が小さいLEDを光源に用いることにより、コストを低減することができる。また、設備を小型化することができる。 Thus, cost can be reduced by using an inexpensive LED with a small light output as a light source. In addition, the equipment can be miniaturized.
 例えば、本開示の一態様に係る生体分子の検出方法では、前記受光素子は、イメージセンサであってもよい。 For example, in the method of detecting a biomolecule according to one aspect of the present disclosure, the light receiving element may be an image sensor.
 これにより、分離した生体分子の蛍光を撮像することができる。 Thereby, the fluorescence of the separated biomolecule can be imaged.
 例えば、本開示の一態様に係る生体分子の検出方法では、前記イメージセンサは、有機樹脂から構成される光電変換膜を有してもよい。 For example, in the method of detecting a biomolecule according to an aspect of the present disclosure, the image sensor may have a photoelectric conversion film made of an organic resin.
 これにより、分離した生体分子の蛍光強度に合わせて光電変換膜への印加電圧を変えることで、光感度を調整することができる。 Thereby, the photosensitivity can be adjusted by changing the voltage applied to the photoelectric conversion film in accordance with the fluorescence intensity of the separated biomolecule.
 例えば、本開示の一態様に係る生体分子の検出方法は、前記分離ステップでは、前記薄層クロマトグラフィーによる分離に先立ち、前記試料中の前記生体分子を等電点電気泳動で第1の方向に分離し、前記薄層クロマトグラフィーによる分離では、前記第1の方向に分離された前記生体分子を前記第1の方向に直交する第2の方向に分離してもよい。 For example, in the method of detecting a biomolecule according to one aspect of the present disclosure, in the separation step, prior to the separation by the thin layer chromatography, the biomolecule in the sample is moved in a first direction by isoelectric focusing. In the separation by thin layer chromatography, the biomolecules separated in the first direction may be separated in a second direction orthogonal to the first direction.
 これにより、生体分子を等電点の違いにより分離した後、薄層クロマトグラフィーにより生体分子の極性の違いにより分離することができる。そのため、物理量の異なるパラメータで二次元に分離することにより、得られる情報量がより多くなり、より高精度に生体分子を検出することができる。 Thereby, after separating biomolecules by difference in isoelectric point, separation can be performed by thin layer chromatography by difference in polarity of biomolecules. Therefore, by separating in two dimensions with different physical quantities, the amount of information to be obtained becomes larger, and biomolecules can be detected with higher accuracy.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータで読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer readable CD-ROM, a system, a method, an integrated circuit, a computer It may be realized by any combination of program and recording medium.
 以下、本開示の実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化することがある。 Note that all the embodiments described below show general or specific examples. Numerical values, shapes, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, components not described in the independent claim indicating the highest concept are described as arbitrary components. Moreover, each figure is not necessarily illustrated exactly. In the drawings, substantially the same components are denoted by the same reference numerals, and redundant description may be omitted or simplified.
 (実施の形態)
 [検出装置の概要]
 まず、本実施の形態に係る生体分子の検出方法に用いる検出装置の概要について説明する。図1は、本実施の形態に係る生体分子を検出するために用いる検出装置10の概略構成図である。
Embodiment
[Overview of detection device]
First, an outline of a detection device used in the method of detecting a biomolecule according to the present embodiment will be described. FIG. 1 is a schematic configuration diagram of a detection device 10 used to detect a biomolecule according to the present embodiment.
 図1に示すように、検出装置10は、生体分子の分離に供したTLCプレート40を乗せるステージ1と、生体分子に励起光を照射する光源2と、生体分子からの蛍光を検出する受光素子3とを備える。 As shown in FIG. 1, the detection apparatus 10 includes a stage 1 on which a TLC plate 40 provided for separation of biomolecules is placed, a light source 2 for irradiating the biomolecules with excitation light, and a light receiving element for detecting fluorescence from the biomolecules. And 3.
 生体分子は、生体を構成する物質であり、例えば、タンパク質、核酸、多糖類などの高分子、及び、ペプチド、ヌクレオチド、ヌクレオシド、脂質、アミノ酸などが挙げられる。タンパク質は、例えば、ケラチン及びコラーゲンのように生体の構造を作り強度を保つ機能、酵素のように生体反応の触媒になる機能、抗体のように生体を防御する機能など、様々な機能を有する。そのため、例えば、血液などの生体試料からそれらの生体分子を分離し、検出することにより、生体状態を把握することができる。 The biological molecule is a substance constituting a living body, and examples thereof include proteins, nucleic acids, macromolecules such as polysaccharides, and peptides, nucleotides, nucleosides, lipids, amino acids and the like. For example, proteins have various functions such as keratin and collagen, which have a function of forming a structure of a living body and maintaining strength, a function of catalyzing a biological reaction like an enzyme, and a function of protecting a living body such as an antibody. Therefore, for example, the biological state can be grasped by separating and detecting those biological molecules from a biological sample such as blood.
 本実施の形態では、生体分子は、タンパク質、ペプチド、アミノ酸であり、芳香環を有する。芳香環は、炭素原子が二重結合と単結合を繰り返すπ電子系の結合を有しているため、励起光として紫外光を照射されるとπ電子系の結合が紫外光を吸収して励起状態になり、蛍光を発する。そのため、生体分子に紫外光を照射すると、生体分子に含まれる芳香環が励起され、蛍光を発する。これにより、TLCで生体分子を分離して、TLCプレート40に励起光を照射するだけで生体分子を検出することができる。したがって、簡便に、かつ、迅速に生体分子を検出することができる。 In the present embodiment, the biomolecule is a protein, a peptide, an amino acid and has an aromatic ring. Since an aromatic ring has a π electron system bond in which a carbon atom repeats a double bond and a single bond, when it is irradiated with ultraviolet light as excitation light, the π electron system bond absorbs ultraviolet light and is excited It becomes a state and emits fluorescence. Therefore, when the biomolecule is irradiated with ultraviolet light, the aromatic ring contained in the biomolecule is excited to emit fluorescence. Thus, biomolecules can be detected simply by separating biomolecules by TLC and irradiating the TLC plate 40 with excitation light. Therefore, biomolecules can be detected easily and quickly.
 芳香環を有する生体分子として、例えば、タンパク質及びペプチドの構成要素であるアミノ酸、つまり、芳香族アミノ酸が挙げられる。芳香族アミノ酸は、例えば、フェニルアラニン、チロシン、トリプトファンである。芳香族アミノ酸は、280nm付近の紫外光を吸収し、350nmの蛍光を発する。中でも、トリプトファンは量子効率が高く、蛍光強度が強い。そのため、生体分子の自家蛍光は、生体分子に含まれるトリプトファンに由来してもよい。これにより、例えば、生体分子がタンパク質、ペプチド、アミノ酸を含む場合、芳香族アミノ酸の自家蛍光により生体分子を検出することができる。芳香族アミノ酸の中で最も蛍光強度の強いトリプトファンの自家蛍光を検出することにより、より高感度に生体分子を検出することができる。 Examples of biomolecules having an aromatic ring include amino acids that are components of proteins and peptides, that is, aromatic amino acids. The aromatic amino acids are, for example, phenylalanine, tyrosine, tryptophan. Aromatic amino acids absorb ultraviolet light near 280 nm and emit fluorescence at 350 nm. Among them, tryptophan has high quantum efficiency and high fluorescence intensity. Therefore, the autofluorescence of the biomolecule may be derived from tryptophan contained in the biomolecule. Thereby, for example, when the biomolecule contains a protein, a peptide or an amino acid, the biomolecule can be detected by the autofluorescence of the aromatic amino acid. By detecting the autofluorescence of tryptophan, which has the highest fluorescence intensity among aromatic amino acids, biomolecules can be detected with higher sensitivity.
 なお、生体分子は、複素環を有してもよい。複素環にも芳香環と同様に、π電子系の結合を有するため、紫外光を照射されると蛍光を発する。このように、検出対象分子、すなわち、生体分子が蛍光物質で修飾されることなく、蛍光発光することを自家蛍光と言う。本実施の形態では、生体分子の自家蛍光を検出することにより、生体分子の種類及び濃度などを分析することができる。 The biomolecule may have a heterocycle. Since a heterocyclic ring also has a bond of π electron system like an aromatic ring, it emits fluorescence when irradiated with ultraviolet light. As described above, it is called autofluorescence that a molecule to be detected, that is, a biomolecule, emits fluorescence without being modified with a fluorescent substance. In this embodiment, the type and concentration of biomolecules can be analyzed by detecting the autofluorescence of the biomolecules.
 光源2は、生体分子が分離されたTLCプレート40に励起光を照射する。本実施の形態では、励起光は紫外光である。検出装置10を小型化する観点から、光源2は、例えば、LEDであってもよい。生体分子は、例えば、レーザのように高出力の光が照射されると、分解する可能性がある。そのため、比較的出力の低いLEDを光源2に用いることで、光の照射により生体分子が受けるダメージを低減することができる。 The light source 2 applies excitation light to the TLC plate 40 from which biomolecules have been separated. In the present embodiment, the excitation light is ultraviolet light. From the viewpoint of downsizing the detection device 10, the light source 2 may be, for example, an LED. Biomolecules can be degraded, for example, when illuminated with high power light, such as a laser. Therefore, by using an LED with a relatively low output as the light source 2, it is possible to reduce the damage that biomolecules receive from light irradiation.
 光源2は、ヒートシンク21と、ヒートシンク21に固定されたLED22と、LED22の光の出射側に配置された励起光フィルタ23と、を有する。LED22をヒートシンク21に固定することにより、LED22点灯時にLED22の発熱による温度上昇を抑えることができる。 The light source 2 includes a heat sink 21, an LED 22 fixed to the heat sink 21, and an excitation light filter 23 disposed on the light emission side of the LED 22. By fixing the LED 22 to the heat sink 21, it is possible to suppress the temperature rise due to the heat generation of the LED 22 when the LED 22 is lit.
 本実施の形態では、受光素子3は、例えば、イメージセンサであり、有機樹脂から構成される光電変換膜を有してもよい。受光素子3がイメージセンサであることにより、本実施の形態における検出装置10は、TLCで分離された生体分子の蛍光を撮像することができる。また、受光素子3が有機イメージセンサであることにより、生体分子が発する蛍光の強度に合わせて、受光素子3の光感度を調整することができる。これにより、生体分子を高精度に検出することができる。 In the present embodiment, the light receiving element 3 is, for example, an image sensor, and may have a photoelectric conversion film made of an organic resin. Since the light receiving element 3 is an image sensor, the detection device 10 in the present embodiment can capture the fluorescence of the biomolecule separated by TLC. Further, since the light receiving element 3 is an organic image sensor, it is possible to adjust the light sensitivity of the light receiving element 3 in accordance with the intensity of the fluorescence emitted by the biomolecule. Thereby, biomolecules can be detected with high accuracy.
 図1に示すように、受光素子3は、撮像装置30に含まれる。撮像装置30は、レンズ31と、蛍光フィルタ32と、受光素子3と、ペルチェ素子33と、ヒートシンク34とを備える。レンズ31は、紫外光の透過性に優れているとよく、例えば、石英レンズである。ペルチェ素子33は、暗電流抑制の観点から、受光素子3の裏面に接触するように配置され、受光素子3を冷却する。ヒートシンク34は、ペルチェ素子33に蓄積した熱を放熱する。 As shown in FIG. 1, the light receiving element 3 is included in the imaging device 30. The imaging device 30 includes a lens 31, a fluorescent filter 32, a light receiving element 3, a Peltier element 33, and a heat sink 34. The lens 31 is preferably excellent in ultraviolet light permeability, and is, for example, a quartz lens. The Peltier device 33 is disposed to be in contact with the back surface of the light receiving device 3 from the viewpoint of dark current suppression, and cools the light receiving device 3. The heat sink 34 dissipates the heat stored in the Peltier element 33.
 以上の構成を有することにより、本実施の形態における検出装置10は、生体分子の検出を簡便に、かつ、迅速に行うことができる。 By having the above configuration, the detection device 10 in the present embodiment can detect biomolecules easily and quickly.
 [生体分子の検出方法]
 以下、本実施の形態に係る生体分子の検出方法について説明する。図2は、本実施の形態に係る生体分子の検出方法を説明するフローチャートである。
[Method of detecting biomolecules]
Hereinafter, a method of detecting a biomolecule according to the present embodiment will be described. FIG. 2 is a flowchart illustrating the method of detecting a biomolecule according to the present embodiment.
 本実施の形態に係る生体分子の検出方法は、試料中に含まれる生体分子の検出方法であって、試料中の生体分子を薄層クロマトグラフィー(以下、TLC)で分離する分離ステップ(ステップS1)と、光源2から生体分子に励起光を照射する照射ステップ(ステップS2)と、励起光により生じる蛍光を受光素子3で検出する検出ステップ(ステップS3)と、を有し、蛍光は、生体分子の自家蛍光である。 The method for detecting a biomolecule according to the present embodiment is a method for detecting a biomolecule contained in a sample, and the separating step (step S1) comprises separating biomolecules in the sample by thin layer chromatography (hereinafter, TLC). ), An irradiation step (step S2) of irradiating excitation light from the light source 2 to a biomolecule, and a detection step (step S3) of detecting fluorescence generated by the excitation light by the light receiving element 3; Molecular autofluorescence.
 これにより、TLCにより分離された生体分子に励起光を照射するだけで、生体分子が自家発光する蛍光を検出することができる。そのため、TLCにより分離された生体分子を染色するステップが不要となり、簡便に、かつ、迅速に生体分子を検出することができる。 In this way, it is possible to detect the fluorescence of self-emission of the biomolecule only by irradiating the biomolecule separated by TLC with the excitation light. Therefore, the step of staining the biomolecule separated by TLC is unnecessary, and the biomolecule can be detected simply and rapidly.
 また、分離ステップ(ステップS1)では、TLCによる分離に先立ち、試料中の生体分子を等電点電気泳動で第1の方向に分離し、TLCによる分離では、第1の方向に分離された生体分子を第1の方向に直交する第2の方向に分離してもよい。 Further, in the separation step (step S1), prior to the separation by TLC, the biological molecules in the sample are separated in a first direction by isoelectric focusing, and in the separation by TLC, a living body separated in the first direction The molecules may be separated in a second direction orthogonal to the first direction.
 これにより、生体分子を等電点の違いにより分離した後、TLCにより生体分子の極性の違いにより分離することができる。そのため、物理量の異なるパラメータで二次元に分離することにより、得られる情報量がより多くなり、より高精度に生体分子を検出することができる。 Thereby, after separating biomolecules by difference in isoelectric point, separation can be performed by difference in polarity of biomolecules by TLC. Therefore, by separating in two dimensions with different physical quantities, the amount of information to be obtained becomes larger, and biomolecules can be detected with higher accuracy.
 さらに、照射ステップ(ステップS2)及び検出ステップ(ステップS3)は、分離ステップ(ステップS1)において、生体分子をTLCで分離させながら行われてもよい。 Furthermore, the irradiation step (step S2) and the detection step (step S3) may be performed while separating biomolecules by TLC in the separation step (step S1).
 これにより、生体分子がTLCにより分離される状況を確認しながら分離ステップを行うことができる。そのため、生体分子を適切に分離することができる。 Thereby, the separation step can be performed while confirming the situation where biomolecules are separated by TLC. Therefore, biomolecules can be separated appropriately.
 以上により、本実施の形態に係る生体分子の検出方法によれば、簡便に、かつ、迅速に生体分子を検出することができる。 As described above, according to the method of detecting a biomolecule according to the present embodiment, the biomolecule can be detected easily and rapidly.
 以下、実施例にて本開示の生体分子の検出方法を具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。 Hereinafter, the method for detecting a biomolecule of the present disclosure will be specifically described by way of examples, but the present disclosure is not limited to the following examples.
 なお、実施例1~3及び比較例1~3では、以下の光源及び撮像装置を使用し、以下の撮像条件にて撮像データを得た。 In Examples 1 to 3 and Comparative Examples 1 to 3, imaging data was obtained under the following imaging conditions using the following light source and imaging device.
 [光源]
 サンプルステージ1の左右に、中心波長280nm、光出力15mWのUV-LEDを4灯ずつ20mm間隔に配置した。サンプルステージ1から光源2までの高さは、65mmであった。なお、検出装置10で上述したように、各LED22は、ヒートシンク21に固定され、排熱しながら使用した。
[light source]
On the left and right of the sample stage 1, UV-LEDs with a center wavelength of 280 nm and an optical output of 15 mW were arranged at intervals of 20 mm for four each. The height from the sample stage 1 to the light source 2 was 65 mm. As described above for the detection device 10, each LED 22 is fixed to the heat sink 21 and used while being exhausted.
 また、励起フィルタ23には、透過帯が250nm~290nmであり、禁止帯が概ねOD(Optical Density)7以下であるバンドパスフィルタを使用した。 Further, as the excitation filter 23, a band pass filter having a transmission band of 250 nm to 290 nm and a band gap of approximately OD (Optical Density) 7 or less was used.
 [撮像装置]
 受光素子3には、パナソニック社製1600万画素(有効画素)のモノクロCMOS(complementary MOS)イメージセンサを用いた。受光素子3の裏面には、ペルチェ素子33を接触させ、約-18℃に冷却した。
[Imaging device]
As the light receiving element 3, a monochrome CMOS (complementary MOS) image sensor of 16 million pixels (effective pixel) manufactured by Panasonic Corporation was used. The Peltier device 33 was brought into contact with the back surface of the light receiving device 3 and cooled to about −18 ° C.
 撮像レンズ31には、焦点距離25mm、F値2.8のUV光撮影用石英レンズを用いた。 As the imaging lens 31, a quartz lens for UV light photography with a focal length of 25 mm and an f-number of 2.8 was used.
 蛍光フィルタ32には、透過帯が330nm~420nmであり、禁止帯が概ねOD8以下であるバンドパスフィルタを使用した。 As the fluorescent filter 32, a band pass filter having a transmission band of 330 nm to 420 nm and a forbidden band of about OD 8 or less was used.
 [撮像条件]
 上記イメージセンサを用いて、400万画素で撮像した。露光時間は、500msecであった。撮像中のみ、LED22を上記条件で点灯した。撮像データは、14bit階調のデータで保存した。
[Imaging condition]
The image sensor was used to capture an image with 4 million pixels. The exposure time was 500 msec. The LED 22 was lit under the above conditions only during imaging. The imaging data was stored as data of 14-bit gradation.
 [1]生体分子の希釈列スポッティングによる検出感度
 (実施例1)
 生体分子としてトリプトファン含量の異なる2種類のタンパク質を用いて、本開示に係る生体分子の検出方法による検出感度を確認した。サンプル条件は、以下のとおりである。
[1] Detection sensitivity by dilution series spotting of biomolecules (Example 1)
The detection sensitivity by the method of detecting a biomolecule according to the present disclosure was confirmed using two types of proteins having different tryptophan content as the biomolecule. The sample conditions are as follows.
 <サンプル条件>
 ・TLCプレート:シリカ粒子非蛍光HPTLC(High Performance TLC)プレート(gel60RP-18、メルク社製)、サイズ:20mm×30mm
 ・生体分子試料:(1)牛血清アルブミン(BSA:Bovine Serum Albumin)希釈溶液、(2)リゾチウム(Lys:Lysozyme)希釈溶液
 ・試料濃度:(a)1μg/μL、(b)333ng/μL、(c)111ng/μL、(d)34ng/μL、(e)11ng/μL、及び(f)4ng/μL
 ・生体分子試料のスポット量:各1μL
<Sample conditions>
-TLC plate: Silica particle non-fluorescent HPTLC (High Performance TLC) plate (gel 60 RP-18, manufactured by Merck), size: 20 mm x 30 mm
・ Biomolecule sample: (1) Bovine serum albumin (BSA: Bovine Serum Albumin) diluted solution, (2) lysodium (Lys: Lysozyme) diluted solution ・ Sample concentration: (a) 1 μg / μL, (b) 333 ng / μL, (C) 111 ng / μL, (d) 34 ng / μL, (e) 11 ng / μL, and (f) 4 ng / μL
・ Spot amount of biomolecule sample: 1 μL each
 <方法及び結果>
 TLCプレート上に、生体分子試料(1)及び(2)をそれぞれ所定量スポットし、上述した撮像条件で、生体分子試料(1)及び(2)の自家蛍光を撮像した。結果を図3に示す。図3は、実施例1の結果を説明する図である。
<Method and result>
Biomolecule samples (1) and (2) were spotted in predetermined amounts respectively on a TLC plate, and the autofluorescence of biomolecule samples (1) and (2) was imaged under the imaging conditions described above. The results are shown in FIG. FIG. 3 is a diagram for explaining the results of the first embodiment.
 図3に示すように、生体分子試料(1)及び(2)共に(f)4ng/μLまで自家蛍光を確認できた。特に、トリプトファン含量の多い生体分子試料(2)の方が自家蛍光をより明確に確認できた。 As shown in FIG. 3, autofluorescence could be confirmed up to 4 ng / μL of (f) for both of the biomolecular samples (1) and (2). In particular, the self-fluorescence was able to be identified more clearly in the case of the biomolecule sample (2) having a higher tryptophan content.
 また、撮像した14bit階調のデータから、各スポットの内部及び外部の輝度を比較し、スポット内部の輝度分布の平均値を外部の輝度分布の平均値から引き算することで、信号値を算出した。検出限界は、スポットの外部のバックグラウンド輝度のばらつきの+σ(約200)とした。結果を図5に示す。図5は、実施例1及び比較例1における生体分子の濃度と信号値との関係を示すグラフである。 In addition, the signal value was calculated by comparing the internal and external luminance of each spot from the captured 14-bit gradation data and subtracting the average value of the luminance distribution inside the spot from the average value of the external luminance distribution. . The detection limit was taken as + σ (about 200) of the variation in background brightness outside the spot. The results are shown in FIG. FIG. 5 is a graph showing the relationship between the concentration of biomolecules and the signal value in Example 1 and Comparative Example 1.
 図5に示すグラフから、実施例1における生体分子の検出限界は、生体分子試料(1)BSAでは6ngであり、生体分子試料(2)Lysでは1ngであった。 From the graph shown in FIG. 5, the detection limit of the biomolecule in Example 1 was 6 ng for the biomolecule sample (1) BSA and 1 ng for the biomolecule sample (2) Lys.
 (比較例1)
 実施例1にて生体分子試料(1)及び(2)の自家蛍光を撮像した後、TLCプレートにニンヒドリン溶液を噴霧したのち、120℃のホットプレートで15秒間乾燥させ、生体分子試料(1)及び(2)の各濃度のスポット(a)~(f)を染色した。染色後、TLCプレートを14bit階調のスキャナで撮像した。結果を図4に示す。図4は、比較例1の結果を説明する図である。
(Comparative example 1)
After imaging the autofluorescence of biomolecular samples (1) and (2) in Example 1, after spraying a ninhydrin solution on a TLC plate, it is dried on a hot plate at 120 ° C. for 15 seconds, and biomolecular sample (1) And spots (a) to (f) of each concentration of (2) were stained. After staining, the TLC plate was imaged with a 14-bit gradation scanner. The results are shown in FIG. FIG. 4 is a diagram for explaining the results of Comparative Example 1.
 なお、信号値及び検出限界の算出は、実施例1と同様に行った。結果を図5に示す。 The calculation of the signal value and the detection limit was performed in the same manner as in Example 1. The results are shown in FIG.
 図5に示すグラフから、比較例1における生体分子の検出限界は、生体分子試料(1)BSA及び(2)Lys共に、約100ngであった。 From the graph shown in FIG. 5, the detection limit of the biomolecule in Comparative Example 1 was about 100 ng for both of the biomolecule sample (1) BSA and (2) Lys.
 [2]1次元分離
 (実施例2)
 生体分子としてリゾチウムをTLCにより展開し、本開示に係る生体分子の検出方法による検出感度を確認した。サンプル条件は、以下のとおりである。
[2] One-Dimensional Separation (Example 2)
Lysotium was developed by TLC as a biomolecule, and the detection sensitivity by the method for detecting a biomolecule according to the present disclosure was confirmed. The sample conditions are as follows.
 <サンプル条件>
 ・TLCプレート:シリカ粒子非蛍光HPTLCプレート(gel60RP-18、メルク社製)、サイズ:20mm×30mm
 ・生体分子試料:リゾチウム(Lys:Lysozyme)希釈溶液
 ・試料濃度:(g)111ng/μL、(h)34ng/μL、及び(i)11ng/μL
 ・生体分子試料のスポット量:各1μL
<Sample conditions>
-TLC plate: silica particle non-fluorescent HPTLC plate (gel 60 RP-18, manufactured by Merck), size: 20 mm x 30 mm
・ Biomolecular sample: Lysotium (Lys: Lysozyme) diluted solution ・ Sample concentration: (g) 111 ng / μL, (h) 34 ng / μL, and (i) 11 ng / μL
・ Spot amount of biomolecule sample: 1 μL each
 <方法及び結果>
 上記3種類の濃度のリゾチウムを以下の条件でTLCにより展開した。そして、上述した撮像条件で、生体分子試料の自家蛍光を撮像した。結果を図6に示す。図6は、実施例2の結果を説明する図である。
<Method and result>
The three concentrations of lysodium were developed by TLC under the following conditions. And the auto-fluorescence of the biomolecule sample was imaged on the imaging conditions mentioned above. The results are shown in FIG. FIG. 6 is a diagram for explaining the result of the second embodiment.
 ・展開溶媒:イソプロピルアルコール/トリフルオロ酢酸/水(体積比)=40/0.1/59.9
 ・展開時間:約10分
Developing solvent: isopropyl alcohol / trifluoroacetic acid / water (volume ratio) = 40 / 0.1 / 59.9
・ Development time: Approximately 10 minutes
 図6に示すように、3種類の濃度のリゾチウム(g)、(h)及び(i)の全てにおいて、自家蛍光を確認できた。なお、信号値の算出は、実施例1と同様に行った。 As shown in FIG. 6, autofluorescence could be confirmed in all of the three concentrations of lysodium (g), (h) and (i). The signal value was calculated in the same manner as in Example 1.
 実施例1と異なり、実施例2では、生体分子試料をTLCプレートにスポットした後、TLCにより展開している。展開することにより移動したスポットの自家蛍光は弱くなる。しかしながら、実施例2においても、リゾチウム由来の信号を高いS/Nで検出でき、試料濃度が最も低い(i)11ng/μLにおいても信号値を確認することができた。 Unlike Example 1, in Example 2, a biomolecule sample is spotted on a TLC plate and then developed by TLC. The development of the spot weakens the autofluorescence of the moved spot. However, also in Example 2, the signal derived from lysotium can be detected with high S / N, and the signal value could be confirmed even at (i) 11 ng / μL where the sample concentration is the lowest.
 (比較例2)
 実施例2にて3種類の濃度のリゾチウム(g)、(h)及び(i)の自家蛍光を撮像した後、TLCプレートにニンヒドリン溶液を噴霧したのち、120℃のホットプレートで15秒間乾燥させ、各濃度のスポット(g)、(h)及び(i)を染色した。染色後、TLCプレートを14bit階調のスキャナで撮像した。結果を図7に示す。図7は、比較例2の結果を説明する図である。なお、信号値の算出は、実施例1と同様に行った。
(Comparative example 2)
After imaging the autofluorescence of three concentrations of lysodium (g), (h) and (i) in Example 2, after spraying a ninhydrin solution on a TLC plate, it was dried on a hot plate at 120 ° C. for 15 seconds. , Spots (g), (h) and (i) of each concentration were stained. After staining, the TLC plate was imaged with a 14-bit gradation scanner. The results are shown in FIG. FIG. 7 is a diagram for explaining the results of Comparative Example 2. The signal value was calculated in the same manner as in Example 1.
 図7に示すように、ニンヒドリン法では、(g)、(h)及び(i)のいずれの濃度のリゾチウムについても、染色されたスポットを確認することができなかった。また、リゾチウム由来の信号を検出することもできなかった。 As shown in FIG. 7, in the ninhydrin method, the stained spots could not be confirmed for any of the concentrations (g), (h) and (i) of lysodium. In addition, it was not possible to detect the signal derived from lysotium.
 [3]2次元分離
 (実施例3)
 生体分子として等電点の異なる3種類のタンパク質を等電点電気泳動法により分離し(1次元目の分離)、分離された生体分子をさらにTLCにより展開した(2次元目の分離)。
[3] Two-Dimensional Separation (Example 3)
Three types of proteins having different isoelectric points as biomolecules were separated by isoelectric focusing (first-dimension separation), and the separated biomolecules were further developed by TLC (second-dimension separation).
 サンプル条件は、以下のとおりである。 The sample conditions are as follows.
 <サンプル条件>
 生体分子試料は、以下の(1)~(3)の混合溶液である。(1)~(3)の各濃度は、混合溶液における終濃度である。
<Sample conditions>
The biomolecular sample is a mixed solution of the following (1) to (3). Each concentration of (1) to (3) is a final concentration in the mixed solution.
 (1)ミオグロビン(Myo:Myoglobin):1μg/μL
 (2)牛血清アルブミン(BSA):1μg/μL
 (3)αラクトアルブミン(α-La):1μg/μL
(1) Myoglobin (Myo: Myoglobin): 1 μg / μL
(2) Bovine serum albumin (BSA): 1 μg / μL
(3) α-lactalbumin (α-La): 1 μg / μL
 <方法及び結果>
 まず、1次元目の等電点電気泳動法による分離について説明する。
<Method and result>
First, separation by first-order isoelectric focusing will be described.
 1%アンフォライト-10%ショ糖溶液1μLに、上記3種類のタンパク質(1)~(3)の混合溶液7μLを添加し、長さ24mm×幅2mmのセルロースアセテート膜全体に含侵させた。次に、セルロースアセテート膜をペルチェ素子で10℃に冷却し、金電極をセルロースアセテート膜の長手方向の両端に接触させた。金電極に200Vの電圧を印加し、約30分間、等電点電気泳動を行った。 To 1 μL of a 1% ampholite-10% sucrose solution, 7 μL of a mixed solution of the above three types of proteins (1) to (3) was added to impregnate the entire 24 mm long × 2 mm wide cellulose acetate membrane. Next, the cellulose acetate membrane was cooled to 10 ° C. with a Peltier device, and gold electrodes were brought into contact with both ends of the cellulose acetate membrane in the longitudinal direction. A voltage of 200 V was applied to the gold electrode, and isoelectric focusing was performed for about 30 minutes.
 次に、2次元目のTLCによる分離ついて説明する。 Next, separation by second dimension TLC will be described.
 等電点電気泳動により分離された上記3種類のタンパク質(1)~(3)を、さらにTLCにより分離した。タンパク質(1)のMyoは、等電点が2つあるため、等電点電気泳動により2つのバンドに分かれた。 The three proteins (1) to (3) separated by isoelectric focusing were further separated by TLC. Since Myo of protein (1) has two isoelectric points, it was divided into two bands by isoelectric focusing.
 等電点電気泳動後、セルロースアセテート膜をTLCプレートに貼り付けた。TLCプレートは、実施例1及び実施例2と同じ仕様である。展開溶媒は、イソプロピルアルコール/酢酸/水(体積比)=40/0.1/59.9を用いた。展開時間は、約15分であった。 After isoelectric focusing, a cellulose acetate membrane was attached to a TLC plate. The TLC plate has the same specifications as in Example 1 and Example 2. As a developing solvent, isopropyl alcohol / acetic acid / water (volume ratio) = 40 / 0.1 / 59.9 was used. Deployment time was about 15 minutes.
 TLCにより展開した後、上述した撮像条件で、上記3種類のタンパク質(1)~(3)の自家蛍光を撮像した。結果を図8に示す。図8は、実施例3の結果を説明する図である。 After development by TLC, autofluorescence of the above three types of proteins (1) to (3) was imaged under the imaging conditions described above. The results are shown in FIG. FIG. 8 is a diagram for explaining the result of the third embodiment.
 図8に示すように、3種類のタンパク質(1)~(3)の全てにおいて、自家蛍光を確認できた。なお、信号値の算出は、実施例1と同様に行った。分離された3種類のタンパク質のそれぞれの自家蛍光は、高いS/Nで検出できた。 As shown in FIG. 8, autofluorescence could be confirmed in all three types of proteins (1) to (3). The signal value was calculated in the same manner as in Example 1. The autofluorescence of each of the three separated proteins could be detected with high S / N.
 (比較例3)
 実施例3で分離された上記3種類のタンパク質(1)~(3)の自家蛍光を確認した後、TLCプレートにニンヒドリン溶液を噴霧したのち、120℃のホットプレートで15秒間乾燥させ、上記3種類のタンパク質(1)~(3)の各スポットを染色した。染色後、TLCプレートを14bit階調のスキャナで撮像した。結果を図9に示す。図9は、比較例3の結果を説明する図である。なお、信号値の算出は、実施例1と同様に行った。
(Comparative example 3)
After confirming the autofluorescence of the above three types of proteins (1) to (3) separated in Example 3, the ninhydrin solution is sprayed on a TLC plate, and then dried on a hot plate at 120 ° C. for 15 seconds. Each spot of protein (1) to (3) was stained. After staining, the TLC plate was imaged with a 14-bit gradation scanner. The results are shown in FIG. FIG. 9 is a diagram for explaining the results of Comparative Example 3. The signal value was calculated in the same manner as in Example 1.
 図9に示すように、ニンヒドリン法では、上記3種類のタンパク質(1)~(3)について、染色されたスポットを確認することができ、信号を検出することもできた。しかしながら、実施例3に比べると、明瞭でなく、信号値も弱かった。 As shown in FIG. 9, in the ninhydrin method, stained spots could be confirmed for the above three types of proteins (1) to (3), and signals could also be detected. However, compared with Example 3, it was not clear and the signal value was weak.
 [まとめ]
 実施例1~3及び比較例1~3の結果から、本開示に係る生体分子の検出方法は、生体分子の自家蛍光を検出するため、例えば、ニンヒドリン法などの比色法による生体分子の検出方法よりも、簡便に、かつ、迅速に生体分子を検出することができる。さらに、バックグランドの信号の影響を受けにくくなるため、比色法に比べて高感度に生体分子を検出することができる。
[Summary]
From the results of Examples 1 to 3 and Comparative Examples 1 to 3, the method for detecting a biomolecule according to the present disclosure detects the autofluorescence of the biomolecule, for example, detecting the biomolecule by colorimetric method such as ninhydrin method A biomolecule can be detected more simply and quickly than the method. Furthermore, since it becomes difficult to receive the influence of the signal of the background, biomolecules can be detected with high sensitivity as compared with the colorimetric method.
 以上、本開示に係る生体分子の検出方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。 As mentioned above, although the detection method of the biomolecule concerning this indication was explained based on an embodiment, this indication is not limited to these embodiments. Without departing from the gist of the present disclosure, various modifications that may occur to those skilled in the art are added to the embodiment, and other embodiments configured by combining some of the components in the embodiment are also within the scope of the present disclosure. included.
 本開示に係る生体分子の検出方法は、簡便に、かつ、迅速に生体成分を検出することができるため、例えば、血液などの生体試料からそれらの生体分子を分離し、検出することにより、生体状態を簡便に把握することができる。 The method of detecting biomolecules according to the present disclosure can detect biological components easily and quickly, so for example, by separating and detecting those biomolecules from a biological sample such as blood, etc. The state can be easily grasped.
 1 サンプルステージ
 2 光源
 3 受光素子
 10 検出装置
 21 ヒートシンク
 22 LED
 23 励起光フィルタ
 30 撮像装置
 31 レンズ
 32 蛍光フィルタ
 33 ペルチェ素子
 34 ヒートシンク
 40 TLCプレート
1 sample stage 2 light source 3 light receiving element 10 detection device 21 heat sink 22 LED
23 excitation light filter 30 imaging device 31 lens 32 fluorescence filter 33 Peltier element 34 heat sink 40 TLC plate

Claims (8)

  1.  試料中に含まれる生体分子の検出方法であって、
     前記試料中の前記生体分子を薄層クロマトグラフィーで分離する分離ステップと、
     光源から前記生体分子に励起光を照射する照射ステップと、
     前記励起光により生じる蛍光を受光素子で検出する検出ステップと、を有し、
     前記蛍光は、前記生体分子の自家蛍光である、
     生体分子の検出方法。
    A method for detecting a biomolecule contained in a sample, comprising
    Separating the biomolecules in the sample by thin layer chromatography;
    Irradiating the biological molecule with excitation light from a light source;
    And detecting the fluorescence generated by the excitation light with a light receiving element,
    The fluorescence is autofluorescence of the biomolecule,
    Method of detecting biomolecules.
  2.  前記励起光は、紫外光であり、
     前記生体分子は、芳香環を有する、
     請求項1に記載の生体分子の検出方法。
    The excitation light is ultraviolet light,
    The biomolecule has an aromatic ring,
    The method of detecting a biomolecule according to claim 1.
  3.  前記照射ステップ及び前記検出ステップは、前記分離ステップにおいて、前記生体分子を前記薄層クロマトグラフィーで分離させながら行われる、
     請求項1又は請求項2に記載の生体分子の検出方法。
    The irradiating step and the detecting step are performed in the separating step while the biomolecules are separated by the thin layer chromatography.
    The method for detecting a biomolecule according to claim 1 or 2.
  4.  前記自家蛍光は、前記生体分子に含まれるトリプトファンに由来する、
     請求項1から請求項3のいずれか一項に記載の生体分子の検出方法。
    The autofluorescence is derived from tryptophan contained in the biomolecule,
    The method for detecting a biomolecule according to any one of claims 1 to 3.
  5.  前記光源は、LEDである、
     請求項1から請求項4のいずれか一項に記載の生体分子の検出方法。
    The light source is an LED,
    The method of detecting a biomolecule according to any one of claims 1 to 4.
  6.  前記受光素子は、イメージセンサである、
     請求項1から請求項5のいずれか一項に記載の生体分子の検出方法。
    The light receiving element is an image sensor.
    The method for detecting a biomolecule according to any one of claims 1 to 5.
  7.  前記イメージセンサは、有機樹脂から構成される光電変換膜を有する、
     請求項6に記載の生体分子の検出方法。
    The image sensor has a photoelectric conversion film made of an organic resin.
    A method of detecting a biomolecule according to claim 6.
  8.  前記分離ステップでは、
     前記薄層クロマトグラフィーによる分離に先立ち、前記試料中の前記生体分子を等電点電気泳動で第1の方向に分離し、
     前記薄層クロマトグラフィーによる分離では、前記第1の方向に分離された前記生体分子を前記第1の方向に直交する第2の方向に分離する、
     請求項1から請求項7のいずれか一項に記載の生体分子の検出方法。
    In the separation step,
    Prior to the separation by the thin layer chromatography, the biomolecules in the sample are separated in a first direction by isoelectric focusing,
    In the thin layer chromatography separation, the biomolecule separated in the first direction is separated in a second direction orthogonal to the first direction,
    The method of detecting a biomolecule according to any one of claims 1 to 7.
PCT/JP2018/036808 2017-10-05 2018-10-02 Biomolecule detection method WO2019069893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017195013 2017-10-05
JP2017-195013 2017-10-05

Publications (1)

Publication Number Publication Date
WO2019069893A1 true WO2019069893A1 (en) 2019-04-11

Family

ID=65994956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036808 WO2019069893A1 (en) 2017-10-05 2018-10-02 Biomolecule detection method

Country Status (1)

Country Link
WO (1) WO2019069893A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534914A (en) * 2002-07-31 2005-11-17 ソルヴィーアス アクチェンゲゼルシャフト Apparatus and measuring method
JP2008241447A (en) * 2007-03-27 2008-10-09 Fujifilm Corp Apparatus and method for reading image
JP2012233774A (en) * 2011-04-28 2012-11-29 Yamazen Corp Preparative liquid chromatograph apparatus
WO2016096078A1 (en) * 2014-12-19 2016-06-23 Merck Patent Gmbh Method and device for optically sensing a chromatographic specimen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534914A (en) * 2002-07-31 2005-11-17 ソルヴィーアス アクチェンゲゼルシャフト Apparatus and measuring method
JP2008241447A (en) * 2007-03-27 2008-10-09 Fujifilm Corp Apparatus and method for reading image
JP2012233774A (en) * 2011-04-28 2012-11-29 Yamazen Corp Preparative liquid chromatograph apparatus
WO2016096078A1 (en) * 2014-12-19 2016-06-23 Merck Patent Gmbh Method and device for optically sensing a chromatographic specimen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BHUSHAN, R. ET AL.: "Thin Layer Chromatography of Peptides and Proteins: A Review", BIOMEDICAL CHROMATOGRAPHY, vol. 3, no. 3, 1989, pages 95 - 104, XP055591790 *
DILLON, J. ET AL.: "THE PHOTOCHEMISTRY OF SPECIFIC TRYPTOPHAN RESIDUES IN PROTEINS AS ANALYZED BY THE FLUORESCENT SCANNING OF TRYPTIC PEPTIDE MAPS", PHOTOCHEMISTRY AND PHOTOBIOLOGY, vol. 45, no. 1, 1987, pages 147 - 150, XP055591787 *
LINARES APONTE, R. ET AL.: "SIMPLE THIN LAYER CHROMATOGRAPHY METHOD WITH FIBRE OPTIC REMOTE SENSOR FOR FLUORIMETRIC QUANTIFICATION OF TRYPTOPHAN AND RELATED METABOLITES", J LIQ CHROMATOGR RELAT TECHNOL, vol. 19, no. 5, 1996, pages 687 - 698 *
MUNIER, R. L. ET AL.: "Separation of Amino Acids. Possibilities Offered by Optimized Associations of Low-Voltage Electrophoresis and Chromatography on Finely Textured Paper and on Cellulose Thin-Layers", CHROMATOGRAPHIA, vol. 11, no. 9, 1978, pages 508 - 512, XP055591791 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Similar Documents

Publication Publication Date Title
WO2019069893A1 (en) Biomolecule detection method
Berggren et al. Background‐free, high sensitivity staining of proteins in one‐and two‐dimensional sodium dodecyl sulfate‐polyacrylamide gels using a luminescent ruthenium complex
JP2009517641A (en) Method and apparatus for measuring the concentration of a substance in a solution
US20100089753A1 (en) Fluorescent detection of proteins in polyacrylamide gels
CN101952949A (en) Apparatus and method for testing image sensor wafers to identify pixel defects
WO2015053144A1 (en) Nucleic-acid-sequence determination device and nucleic-acid-sequence determination method
JP4671226B2 (en) Direct mass spectrometry of biological tissue
US7727471B2 (en) Rare cell detection using flat-panel imager and chemiluminescent or radioisotopic tags
US20190226993A1 (en) Devices and methods for imaging biomolecules
US20150102234A1 (en) Systems and method for fluorescence imaging
JP2005534914A (en) Apparatus and measuring method
EP3745181A1 (en) Fluorescence microscopy system and method
US20130100660A1 (en) Multiple exciting light system
Miura Imaging technologies for the detection of multiple stains in proteomics
US9239292B2 (en) Method and apparatus for tracking the motion of molecules in a microscope
US6992303B2 (en) Detecting emitters of electromagnetic radiation, in particular fluorophore labeled substances
JP2005172790A (en) Fluorescence auxiliary test apparatus
US20050272165A1 (en) Method for detecting protein as fluorescence image
Kashiwagi et al. Effects of Tritrichomonas muris on the mouse intestine: a proteomic analysis
JP2000338087A (en) Electrophoretic apparatus
WO2016157458A1 (en) Measurement apparatus, measurement system, signal string processing method, and program
Scrivener et al. Performance validation of an improved Xenon‐arc lamp‐based CCD camera system for multispectral imaging in proteomics
Meyer et al. Reducing the cost and complexity of imaging for digital protein detection in point-of-care diagnostics
JPH0572179A (en) Detecting device for two-dimensional fluorescent image of nucleic acid and protein
JPH10215395A (en) Image generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP