JP2000338087A - Electrophoretic apparatus - Google Patents

Electrophoretic apparatus

Info

Publication number
JP2000338087A
JP2000338087A JP11149400A JP14940099A JP2000338087A JP 2000338087 A JP2000338087 A JP 2000338087A JP 11149400 A JP11149400 A JP 11149400A JP 14940099 A JP14940099 A JP 14940099A JP 2000338087 A JP2000338087 A JP 2000338087A
Authority
JP
Japan
Prior art keywords
electrophoresis
sample
fluorescent
light
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11149400A
Other languages
Japanese (ja)
Other versions
JP3695631B2 (en
Inventor
Takeo Tanaami
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP14940099A priority Critical patent/JP3695631B2/en
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to DE60044923T priority patent/DE60044923D1/en
Priority to DE1055925T priority patent/DE1055925T1/en
Priority to EP08160013A priority patent/EP1983331B1/en
Priority to EP00109722A priority patent/EP1055925B1/en
Publication of JP2000338087A publication Critical patent/JP2000338087A/en
Priority to US10/769,017 priority patent/US20040182710A1/en
Priority to US10/768,632 priority patent/US20040184960A1/en
Application granted granted Critical
Publication of JP3695631B2 publication Critical patent/JP3695631B2/en
Priority to US12/550,001 priority patent/US8264680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an electrophoretic apparatus capable of obtaining many information relative to each other in a short time by simplifying a migrating unit and obtaining an accurately migrating pattern. SOLUTION: The electrophoretic apparatus conducts an electrophoresis of a sample labeled by a fluorescent pigment in a migrating unit 201 and reads a luminescent fluorescent pattern. In this case, the apparatus comprises an electrophoretic device 200 for conducting an electrophoresis by feeding a plurality of samples for connecting different fluorescent pigments to a labeled substance such as many types of proteins or DNA or the like to the same lane of the unit 201, and a cofocal scanner or a fluorescent image measuring device for scanning the sample of the unit 201 by an exciting light and simultaneously detecting multicolor fluorescent pattern of the sample emitting by illuminating with an exciting light through a plurality of filters having different transmitting characteristics of multicolor fluorescent pattern of the sample emitted by irradiating with the light, thereby simultaneously detecting a plurality of types of migrating patterns.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バイオ分野で使用
される電気泳動装置に関し、特に電気泳動の高速化およ
び高分解能化のための改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophoresis apparatus used in the field of biotechnology, and more particularly to an improvement for increasing the speed and resolution of electrophoresis.

【0002】[0002]

【従来の技術】従来より、電気泳動法は、安価で簡単な
装置を使って遺伝子構造解析やアミノ酸などの蛋白質の
構造分析を行うことができる方法としてよく知られ、バ
イオ分野で多用されている。
2. Description of the Related Art Hitherto, electrophoresis has been well known as a method capable of analyzing the structure of a gene or the structure of a protein such as an amino acid using an inexpensive and simple apparatus, and is widely used in the field of biotechnology. .

【0003】電気泳動法には、ポリアクリルアミドを使
ったディスク電気泳動法をはじめとして、SDS(ドデ
シル硫酸ナトリウム)ポリアクリルアミドゲル電気泳動
法、等電点電気泳動法、核酸のゲル電気泳動法、他分子
との相互作用の影響を利用した電気泳動法、2次元電気
泳動法、キャピラリー電気泳動法などがある。
[0003] Electrophoresis includes disk electrophoresis using polyacrylamide, SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis, isoelectric focusing, nucleic acid gel electrophoresis, and others. There are electrophoresis, two-dimensional electrophoresis, and capillary electrophoresis utilizing the influence of interaction with molecules.

【0004】図9は従来の泳動計測装置の一例を示す構
成図であり、この泳動計測装置は大別して電気泳動装置
部10と信号処理装置部20から構成されている。電気
泳動装置部10は、電気泳動を行う泳動部11と、泳動
部11に電圧を印加するための第1電極12および第2電
極13と、泳動部11および各電極12,13を保持す
る支持板14と、前記電極に電圧を加える電気泳動用電
源装置15と、蛍光物質を励起するための光を発生する
光源16と、光源16からの光を導く光ファイバ17
と、蛍光物質から発生した蛍光を集光し、光学フィルタ
により特定波長の光を選択的に通した後、これを電気信
号に変換する光検出器18から構成されている。
FIG. 9 is a block diagram showing an example of a conventional electrophoresis measuring device. This electrophoresis measuring device is roughly composed of an electrophoresis device section 10 and a signal processing device section 20. The electrophoresis device section 10 includes an electrophoresis section 11 that performs electrophoresis, a first electrode 12 and a second electrode 13 for applying a voltage to the electrophoresis section 11, and a support that holds the electrophoresis section 11 and the electrodes 12 and 13. A plate 14, an electrophoresis power supply 15 for applying a voltage to the electrodes, a light source 16 for generating light for exciting a fluorescent substance, and an optical fiber 17 for guiding light from the light source 16.
And a photodetector 18 for condensing fluorescence generated from a fluorescent substance, selectively passing light of a specific wavelength through an optical filter, and converting the light into an electric signal.

【0005】信号処理装置部20では、光検出器18か
らの電気信号を受けて、適宜の処理、例えば、デジタル
データへのデータ変換、加算平均処理等の前処理などを
施すことができるようになっている。この信号処理装置
部20の出力は図示しないデータ処理装置に送られ、解
析処理により試料の分析が行われる。
The signal processing unit 20 receives the electric signal from the photodetector 18 and performs appropriate processing such as pre-processing such as data conversion into digital data and averaging processing. Has become. The output of the signal processing unit 20 is sent to a data processing device (not shown), and the sample is analyzed by an analysis process.

【0006】このような装置において、泳動部11にゲ
ルを注入し、このゲルの上部から蛍光物質で標識したD
NA断片の試料を注入し、続いて電源装置15により第
1電極12および第2電極13に電圧を印加すると、電
気泳動が始まる。試料の各レーンには試料に含まれる分
子が分子量ごとに集まり、それぞれバンドを作る。分子
量の軽い分子ほど泳動速度が速いため同一時間内に泳動
される距離は大きい。
In such an apparatus, a gel is injected into the electrophoresis section 11 and D is labeled with a fluorescent substance from above the gel.
When a sample of an NA fragment is injected, and subsequently a voltage is applied to the first electrode 12 and the second electrode 13 by the power supply device 15, electrophoresis starts. In each lane of the sample, the molecules contained in the sample are collected for each molecular weight, and a band is formed. The lighter the molecular weight, the faster the migration speed, and thus the longer the migration distance in the same time.

【0007】これらのバンドの検出は、光源16からの
光(例えば、レーザ光)でゲルを照射してゲル中でバン
ドに集まっている標識の蛍光物質に蛍光を発生させ、こ
の蛍光を光検出器18で検出する。
The detection of these bands is performed by irradiating the gel with light (eg, laser light) from the light source 16 to generate fluorescence in the labeled fluorescent substance collected in the band in the gel. Detected by the detector 18.

【0008】すなわち、レーザ光が照射されると、図1
0に示すように光路31上に存在するゲルの蛍光物質が
励起されて、蛍光を発する。この蛍光を、レーンごとに
所定の検出位置で電気泳動方向に時間の経過と共に検出
する。これにより、各レーンのバンド32が光路31上
の位置を通過する時に蛍光が検出されることになり、1
つのレーンにおける蛍光強度のパターン信号が得られ
る。図示しないデータ処理装置は、このパターン信号か
ら、例えば、DNAの各塩基配列を解析することができ
る。
That is, when the laser beam is irradiated,
As shown in FIG. 0, the fluorescent substance of the gel existing on the optical path 31 is excited to emit fluorescence. This fluorescence is detected at a predetermined detection position for each lane in the electrophoresis direction over time. As a result, fluorescence is detected when the band 32 of each lane passes through a position on the optical path 31.
A pattern signal of the fluorescence intensity in one lane is obtained. A data processing device (not shown) can analyze, for example, each base sequence of DNA from the pattern signal.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の電気泳動装置では、次のような課題があっ
た。 測定に時間がかかる。 分離能が十分ではない。多種の分離には多数のレーン
が必要である。2次元が限界であるため3次元以上の相
互関連情報は得られない。 設置面積が大きい。泳動部の面積は、例えば、50c
m×50cm、あるいは5cm×5cm等といずれも大
きい。 特に2次元は位置の再現性が悪い。別レーンにマーカ
を入れてこれを参照すればよいが、マーカを入れると面
積が増大する。
However, such a conventional electrophoresis apparatus has the following problems. Measurement takes time. Insufficient resolution. Many lanes are required for many types of separations. Since two dimensions are the limit, three or more dimensions of mutual relation information cannot be obtained. Large installation area. The area of the electrophoresis section is, for example, 50 c
Each of them is as large as mx 50 cm or 5 cm x 5 cm. Particularly in two dimensions, the reproducibility of the position is poor. It is sufficient to insert a marker in another lane and refer to it, but if the marker is inserted, the area increases.

【0010】本発明の目的は、上記の課題を解決するも
ので、泳動部がコンパクトであり、しかも高精度な泳動
パターンが得られ、更に相互関連した多くの情報を短時
間で得ることができる電気泳動装置を提供するものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems. The electrophoresis section is compact, a high-precision electrophoresis pattern can be obtained, and a lot of related information can be obtained in a short time. An electrophoresis apparatus is provided.

【0011】[0011]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の本発明では、蛍光色素で標識した
試料を泳動部で電気泳動し、発光する蛍光パターンを読
み取るように構成した電気泳動装置であって、多種の蛋
白またはDNA等の標的物質に対してそれぞれ異なる蛍
光色素を結合させた複数の試料を前記泳動部の同一レー
ンに流して電気泳動を行う電気泳動装置部と、前記泳動
部の試料を励起光で走査し、励起光の照射により発光し
た前記試料の多色の蛍光パターンを透過特性の異なる複
数のフィルタを介して同時に検出するように構成してな
る共焦点スキャナまたは蛍光画像測定装置を具備し、複
数種の泳動パターンを同時に検出できるようにしたこと
を特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a sample labeled with a fluorescent dye is electrophoresed in an electrophoresis section to read a fluorescent pattern to emit light. An electrophoresis apparatus unit for performing electrophoresis by flowing a plurality of samples each having a different fluorescent dye bound to a target substance such as various proteins or DNAs in the same lane of the electrophoresis unit. A confocal structure configured to scan the sample of the electrophoresis section with excitation light and simultaneously detect a multicolor fluorescent pattern of the sample emitted by irradiation of the excitation light through a plurality of filters having different transmission characteristics. A scanner or a fluorescence image measuring device is provided so that a plurality of types of migration patterns can be detected simultaneously.

【0012】このような構成によれば、レーンの数が減
って泳動部がコンパクトになると共に、電圧勾配の不均
一やゲルの不均一を防止でき高精度の測定が可能とな
る。また、共焦点スキャナまたは蛍光画像測定装置によ
り多色の蛍光パターンを同時に検出することができ、検
出時間の短縮化を図ることができる。
According to such a configuration, the number of lanes is reduced, the electrophoresis section is made compact, and non-uniformity of the voltage gradient and non-uniformity of the gel can be prevented, so that highly accurate measurement can be performed. Further, a multicolor fluorescent pattern can be simultaneously detected by a confocal scanner or a fluorescent image measuring device, and the detection time can be reduced.

【0013】また、請求項2の発明は、蛍光色素で標識
した試料を泳動部で電気泳動し、発光する蛍光パターン
を読み取るように構成した電気泳動装置であって、多種
の蛋白またはDNA等の標的物質を前記泳動部に流し、
試料の厚さ方向に電圧、pH、密度などの物理的勾配を
設けて電気泳動を行う電気泳動装置部と、前記泳動部の
試料を励起光で走査し、励起光の照射により発光した前
記試料の多色の蛍光パターンを透過特性の異なる複数の
フィルタを介して同時に検出するように構成してなる走
査型または非走査型の共焦点型顕微鏡あるいは2光子励
起型顕微鏡を具備し、試料の3次元位置と濃度を検出で
きるようにしたことを特徴とする。
According to a second aspect of the present invention, there is provided an electrophoresis apparatus configured to electrophorese a sample labeled with a fluorescent dye in an electrophoresis section and read a fluorescent pattern that emits light. Flowing the target substance to the electrophoresis section,
An electrophoresis device unit for performing electrophoresis by providing a physical gradient such as voltage, pH, and density in the thickness direction of the sample, and the sample that scans the sample of the electrophoresis unit with excitation light and emits light by irradiation with excitation light A scanning or non-scanning confocal microscope or a two-photon excitation microscope configured to simultaneously detect the multicolor fluorescent pattern through a plurality of filters having different transmission characteristics. It is characterized in that a dimensional position and a density can be detected.

【0014】このような構成では、試料の厚さ方向に電
圧、pH、密度などの物理的勾配を設けて電気泳動を行
っても、共焦点顕微鏡あるいは2光子励起型顕微鏡を使
用することにより同時に3次元の泳動パターンを検出す
ることができる。
In such a configuration, even if electrophoresis is performed by providing a physical gradient such as voltage, pH, and density in the thickness direction of the sample, the electrophoresis can be performed simultaneously by using a confocal microscope or a two-photon excitation microscope. A three-dimensional migration pattern can be detected.

【0015】請求項2の発明において、この場合請求項
3のように、平面方向と厚み方向にそれぞれ異なる物理
的勾配を設けて3軸方向に同時に泳動を行うことによ
り、高速でかつ3軸の影響の相互関係を測定できる。
In the invention of claim 2, in this case, by providing different physical gradients in the plane direction and the thickness direction and performing electrophoresis simultaneously in the three axis directions, high speed and three axis Can measure the interrelationship of effects.

【0016】また、請求項4のように、試料の厚さ方向
に試料とマーカを並べて配置すれば、ゲル濃度、温度
瀬、電圧の分布などと他の条件が同じとなるため、高精
度でコンパクトな測定が可能となる。
Further, when the sample and the marker are arranged side by side in the thickness direction of the sample as in claim 4, other conditions such as gel concentration, temperature and voltage distribution become the same, so that high accuracy is achieved. Compact measurement becomes possible.

【0017】更に、請求項5のように共焦点顕微鏡の開
口部を各試料の位置に一致させるかまたは試料の位置の
内側に位置するように配置すると、試料のふちの影響の
ない高S/Nの測定を実現することができる。
Further, when the aperture of the confocal microscope is arranged so as to coincide with the position of each sample or to be located inside the position of the sample, a high S / S ratio free from the edge of the sample is provided. N can be measured.

【0018】また、請求項6のように開口部の光源側に
集光手段を備えれば、光源の有効利用を図ることができ
る。
If the light condensing means is provided on the light source side of the opening as in claim 6, the light source can be effectively used.

【0019】更に、厚さ方向の濃度分布は、ゲルの片面
のみに高濃度溶液を接触させるかまたは遠心分離または
多層の積層により厚み方向に密度差をつけることにより
実現することができる。
Further, the concentration distribution in the thickness direction can be realized by bringing a high-concentration solution into contact with only one side of the gel, or by providing a density difference in the thickness direction by centrifugation or lamination of multiple layers.

【0020】[0020]

【発明の実施の形態】以下本発明を詳しく説明する。図
1は本発明に係る電気泳動装置の一実施例を示す要部構
成図である。図において、100は共焦点顕微鏡部、2
00は電気泳動装置部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. FIG. 1 is a main part configuration diagram showing an embodiment of the electrophoresis apparatus according to the present invention. In the figure, 100 is a confocal microscope section, 2
Reference numeral 00 denotes an electrophoresis device.

【0021】共焦点顕微鏡部(共焦点光スキャナとも呼
ぶ)100は、泳動部201の担体を光走査し、担体か
ら発光した蛍光の泳動パターンを読み取ることができる
ものであり、以下のような構成になっている。
The confocal microscope unit (also referred to as a confocal optical scanner) 100 is capable of optically scanning the carrier of the electrophoretic unit 201 and reading the electrophoretic pattern of the fluorescence emitted from the carrier. It has become.

【0022】光源101からの励起光(例えば、波長λ
1の青色のレーザ光)はレンズ102により平行光とな
り、ダイクロイックミラー103で反射した後、レンズ
104を介してスリットアレイ105のスリット上に集
光され、続いてスリットを通過した光は対物レンズ10
6により絞られ泳動部201の担体上に入射する。泳動
部の蛍光物質はこの光により励起され蛍光を発する。
The excitation light (for example, wavelength λ)
1 is converted into parallel light by a lens 102, reflected by a dichroic mirror 103, condensed on a slit of a slit array 105 via a lens 104, and subsequently passed through the slit by an objective lens 10.
6 and is incident on the carrier of the electrophoresis unit 201. The fluorescent substance in the migration section is excited by this light and emits fluorescence.

【0023】この蛍光は、再び対物レンズ106、スリ
ットアレイ105、レンズ104と逆戻りし、ダイクロ
イックミラー103を透過して次のダイクロイックミラ
ー107に入射する。なお、ダイクロイックミラー10
3は波長λ1(例えば、青色)の光を反射し、波長λ1
より長い波長の光を透過する。また、ダイクロイックミ
ラー107は波長λ2(例えば、緑色)の光を反射し、
波長λ3(例えば、赤色)の光を透過する。波長λ1,
λ2,λ3は図2のような関係にある。
This fluorescence returns to the objective lens 106, the slit array 105, and the lens 104 again, passes through the dichroic mirror 103, and enters the next dichroic mirror 107. The dichroic mirror 10
3 reflects light having a wavelength of λ1 (for example, blue);
Transmits longer wavelength light. The dichroic mirror 107 reflects light of wavelength λ2 (for example, green),
Light of wavelength λ3 (for example, red) is transmitted. Wavelength λ1,
λ2 and λ3 have a relationship as shown in FIG.

【0024】ダイクロイックミラー107を反射した波
長λ2の光はレンズ108を介して受光器109に集光
し、ダイクロイックミラー107を透過した波長λ3の
光はレンズ110を介して受光器111に集光する。ス
リットアレイ105を移動させて光源からの光が泳動部
201の表面を光走査するように制御すれば、各受光器
109,111には泳動部201で発生した蛍光泳動パ
ターンが結像する。
The light of wavelength λ2 reflected by the dichroic mirror 107 is condensed on a light receiver 109 via a lens 108, and the light of wavelength λ3 transmitted on the dichroic mirror 107 is condensed on a light receiver 111 via a lens 110. . When the slit array 105 is moved to control the light from the light source to optically scan the surface of the migration unit 201, a fluorescent electrophoresis pattern generated by the migration unit 201 forms an image on each of the light receivers 109 and 111.

【0025】この場合、受光器109上には泳動パター
ン中で緑色に発光したパターンのみ像し、受光器111
には泳動パターン中で赤色に発光したパターンのみが結
像する。受光器109,111は結像画像を電気信号に
変換して出力する。
In this case, only the pattern which emits green light in the electrophoresis pattern is imaged on the light receiving
Only the pattern that emits red light in the migration pattern forms an image. The light receivers 109 and 111 convert the formed image into an electric signal and output it.

【0026】電気泳動装置部200には、泳動部201
と、泳動部201で電気泳動を行うための電圧を供給す
る電源202を備えている。
The electrophoresis device section 200 includes an electrophoresis section 201.
And a power supply 202 for supplying a voltage for performing electrophoresis in the migration section 201.

【0027】このように共焦点スキャナを用いて泳動部
201で発生した多色の蛍光泳動パターンを高精度で容
易に測定することができる。
As described above, the multicolor fluorescent electrophoresis pattern generated in the electrophoresis section 201 can be easily measured with high precision using the confocal scanner.

【0028】ところで、電気泳動では分子量の絶対値は
得られない。そのため、通常は図3に示すように参照用
のマーカ分子を隣りのレーンに流すが、この方式では、
場所をとり、また全レーンにわたり電圧を均一に印加し
難いなどが原因で、測定誤差が生じるという問題があ
る。
Incidentally, the absolute value of the molecular weight cannot be obtained by electrophoresis. For this reason, a marker molecule for reference is usually supplied to an adjacent lane as shown in FIG. 3, but in this method,
There is a problem that a measurement error occurs due to a space requirement and difficulty in applying a voltage uniformly over all lanes.

【0029】本発明では、図4に示すように同一レーン
に試料と共に参照用のマーカ分子(以下単にマーカとい
う)も混入して流す。ただし、各マーカと試料には異な
る蛍光波長を持つ色素を結合しておく。このような物質
を電気泳動させて、共焦点スキャナで光走査することに
より同時に複数種の蛍光泳動パターンを検出することが
できる。
In the present invention, as shown in FIG. 4, a marker molecule for reference (hereinafter simply referred to as a marker) is mixed with the sample and flows into the same lane. However, a dye having a different fluorescence wavelength is bound to each marker and sample. By electrophoresing such a substance and optically scanning with a confocal scanner, a plurality of types of fluorophore patterns can be detected simultaneously.

【0030】図5は本発明の他の実施例である。2次元
電気泳動は一般によく知られているが、これに対して図
5は厚み方向(Z軸方向)に更に1次元加えた3次元電
気泳動の例である。
FIG. 5 shows another embodiment of the present invention. Although two-dimensional electrophoresis is generally well known, FIG. 5 shows an example of three-dimensional electrophoresis in which one dimension is added in the thickness direction (Z-axis direction).

【0031】この場合、例えば、X軸方向(縦方向)、
Y軸方向(横方向)、Z軸方向(厚み方向)に対し次の
ような電圧勾配やpH勾配のかけ方がある。 1)X軸方向に高電圧、Y軸方向にpH勾配、Z軸方向
に低電圧をそれぞれ与える。 2)X軸方向に電圧、Y軸方向にpH勾配を与え、Z軸
方向はゲル濃度を変えた多層ゲルとする。 3)X軸方向に電圧、Y軸方向にpH勾配を与え、Z軸
方向には電圧勾配をかけアフィニティー電気泳動を行
う。
In this case, for example, in the X-axis direction (vertical direction),
The following voltage gradient and pH gradient are applied to the Y-axis direction (lateral direction) and the Z-axis direction (thickness direction). 1) A high voltage is applied in the X-axis direction, a pH gradient is applied in the Y-axis direction, and a low voltage is applied in the Z-axis direction. 2) A multilayer gel having a voltage applied in the X-axis direction, a pH gradient in the Y-axis direction, and a gel concentration varied in the Z-axis direction. 3) A voltage is applied in the X-axis direction, a pH gradient is applied in the Y-axis direction, and a voltage gradient is applied in the Z-axis direction to perform affinity electrophoresis.

【0032】この場合、泳動部201の光走査面が光軸
方向(Z軸方向)に上下できるように、例えば共焦点ス
キャナ100の対物レンズ106を上下移動可能に構成
しておく。そしてZ軸方向の光走査面を制御しながら、
XY軸方向の蛍光泳動パターンを多色検出することによ
り、容易に3次元の情報を得ることができる。
In this case, for example, the objective lens 106 of the confocal scanner 100 is configured to be able to move up and down so that the light scanning surface of the electrophoresis unit 201 can move up and down in the optical axis direction (Z axis direction). And while controlling the optical scanning surface in the Z-axis direction,
By performing multicolor detection of the fluorescent electrophoresis pattern in the XY axis directions, three-dimensional information can be easily obtained.

【0033】なお、以上の説明は、本発明の説明および
例示を目的として特定の好適な実施例を示したに過ぎな
い。したがって本発明は、上記実施例に限定されること
なく、その本質から逸脱しない範囲で更に多くの変更、
変形をも含むものである。
The foregoing description has been directed to specific preferred embodiments for the purpose of illustration and illustration of the invention. Therefore, the present invention is not limited to the above-described embodiments, and includes many more modifications without departing from the spirit thereof.
This includes deformation.

【0034】例えば、図5の実施例において、例えば図
6に示すようにXZのみをレーンとして使えば、通常の
2次元電気泳動よりコンパクトとなる。また、厚み方向
(Z軸方向)の濃度分布は、片面のみ高濃度溶液を接触
させたり、あるいは遠心分離により密度差を厚み方向に
つけることによって実現することができる。あるいはま
た濃度の異なるゲルを多層に積層する方式で実現するこ
ともできる。
For example, in the embodiment of FIG. 5, if only XZ is used as a lane as shown in FIG. 6, for example, it becomes more compact than ordinary two-dimensional electrophoresis. The concentration distribution in the thickness direction (Z-axis direction) can be realized by contacting a high-concentration solution on one side only, or by providing a density difference in the thickness direction by centrifugation. Alternatively, it can be realized by a method in which gels having different concentrations are laminated in multiple layers.

【0035】また、図7に示すように厚み方向に試料と
マーカを分離して入れると、他の条件は図6と同じでコ
ンパクトな測定ができる。この場合、共焦点方式で厚み
方向を分離して測定できるため、蛍光色は同一でもよ
い。更にまた、図8に示すように、電気泳動を非走査型
共焦点顕微鏡で測定するときは、共焦点の開口部61が
試料の位置62と一致あるいはその一部を測定するよう
に設置すれば、試料のふちの影響のない高S/Nの測定
が実現できる。
When the sample and the marker are separately inserted in the thickness direction as shown in FIG. 7, other conditions are the same as in FIG. 6, and compact measurement can be performed. In this case, since the thickness direction can be measured separately by the confocal method, the fluorescent colors may be the same. Furthermore, as shown in FIG. 8, when electrophoresis is measured with a non-scanning confocal microscope, it is necessary to set the confocal opening 61 so as to coincide with the sample position 62 or to measure a part thereof. In addition, high S / N measurement without the influence of the edge of the sample can be realized.

【0036】なお、光源としては単一光子型または2光
子型のいずれの光源を用いても差し支えず、同様の効果
が得られる。
It should be noted that either a single-photon or two-photon light source can be used as the light source, and the same effect can be obtained.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば次の
ような効果がある。 1)コンパクトで高精度の多色電気泳動を容易に実現す
ることができる。 2)3次元の電気泳動が実現でき、装置がコンパクトで
あり、しかも相互関連を持った多くの情報を短時間で得
ることができる。
As described above, according to the present invention, the following effects can be obtained. 1) Compact and highly accurate multicolor electrophoresis can be easily realized. 2) Three-dimensional electrophoresis can be realized, the apparatus is compact, and a large amount of correlated information can be obtained in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多色電気泳動装置の一実施例を示
す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a multicolor electrophoresis apparatus according to the present invention.

【図2】励起光および蛍光の各波長分布を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing wavelength distributions of excitation light and fluorescence.

【図3】試料とマーカの配置についての説明図である。FIG. 3 is an explanatory diagram of an arrangement of a sample and a marker.

【図4】試料、マーカを同一レーンに注入する場合の説
明図である。
FIG. 4 is an explanatory diagram when a sample and a marker are injected into the same lane.

【図5】3次元泳動を行う場合の泳動部の説明図であ
る。
FIG. 5 is an explanatory diagram of a migration unit when performing three-dimensional migration.

【図6】1つの軸方向を切り離す場合の説明図である。FIG. 6 is an explanatory diagram in a case where one axial direction is separated.

【図7】試料の厚み方向にマーカを並べた場合の説明図
である。
FIG. 7 is an explanatory diagram when markers are arranged in the thickness direction of a sample.

【図8】試料の位置と開口部の関係を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a relationship between a position of a sample and an opening.

【図9】従来の電気泳動装置の一例を示す構成図であ
る。
FIG. 9 is a configuration diagram illustrating an example of a conventional electrophoresis apparatus.

【図10】泳動パターンの説明図である。FIG. 10 is an explanatory diagram of an electrophoresis pattern.

【符号の説明】[Explanation of symbols]

100 共焦点顕微鏡部 101 光源 102,104,108,110 レンズ 103,107 ダイクロイックミラー 105 スリットアレイ 106 対物レンズ 109,111 受光器 200 電気泳動装置部 201 泳動部 202 電源 REFERENCE SIGNS LIST 100 confocal microscope section 101 light source 102, 104, 108, 110 lens 103, 107 dichroic mirror 105 slit array 106 objective lens 109, 111 light receiver 200 electrophoresis apparatus section 201 migration section 202 power supply

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】蛍光色素で標識した試料を泳動部で電気泳
動し、発光する蛍光パターンを読み取るように構成した
電気泳動装置であって、 多種の蛋白またはDNA等の標的物質に対してそれぞれ
異なる蛍光色素を結合させた複数の試料を前記泳動部の
同一レーンに流して電気泳動を行う電気泳動装置部と、 前記泳動部の試料を励起光で走査し、励起光の照射によ
り発光した前記試料の多色の蛍光パターンを透過特性の
異なる複数のフィルタを介して同時に検出するように構
成してなる共焦点スキャナまたは蛍光画像測定装置を具
備し、 複数種の泳動パターンを同時に検出できるようにしたこ
とを特徴とする電気泳動装置。
An electrophoresis apparatus configured to electrophorese a sample labeled with a fluorescent dye in an electrophoresis section and read a fluorescent pattern that emits light, wherein the electrophoresis apparatus is different for various kinds of target substances such as proteins or DNA. An electrophoresis apparatus for performing electrophoresis by flowing a plurality of samples to which fluorescent dyes are bound in the same lane of the electrophoresis section; and the sample that scans a sample of the electrophoresis section with excitation light and emits light by irradiation with excitation light. Equipped with a confocal scanner or a fluorescence image measuring device configured to simultaneously detect the multicolor fluorescent pattern through a plurality of filters having different transmission characteristics, so that a plurality of types of migration patterns can be detected simultaneously. An electrophoresis apparatus, comprising:
【請求項2】蛍光色素で標識した試料を泳動部で電気泳
動し、発光する蛍光パターンを読み取るように構成した
電気泳動装置であって、 多種の蛋白またはDNA等の標的物質を前記泳動部に流
し、試料の厚さ方向に電圧、pH、密度、濃度などの物
理的勾配を設けて電気泳動を行う電気泳動装置部と、 前記泳動部の試料を励起光で走査し、励起光の照射によ
り発光した前記試料の蛍光パターンを検出するように構
成してなる走査型または非走査型の共焦点型顕微鏡ある
いは2光子励起型顕微鏡を具備し、 試料の3次元位置と濃度を検出できるようにしたことを
特徴とする3次元型の電気泳動装置。
2. An electrophoresis apparatus configured to electrophorese a sample labeled with a fluorescent dye in an electrophoresis section and read a fluorescent pattern to emit light, wherein a target substance such as various proteins or DNAs is applied to the electrophoresis section. An electrophoresis device section for performing electrophoresis by providing a physical gradient such as voltage, pH, density, concentration, etc. in the thickness direction of the sample, and scanning the sample of the electrophoresis section with excitation light, and irradiating with excitation light A scanning or non-scanning confocal microscope or a two-photon excitation microscope configured to detect the fluorescent pattern of the sample that emits light is provided so that the three-dimensional position and concentration of the sample can be detected. A three-dimensional electrophoresis apparatus, characterized in that:
【請求項3】請求項2に記載の電気泳動装置において、
前記電気泳動装置部は平面方向2軸と厚み方向にそれぞ
れ異なる物理的勾配を設け、3軸を同時に試料分離する
ように構成したことを特徴とする3次元型の多色電気泳
動装置。
3. The electrophoretic device according to claim 2, wherein
A three-dimensional multicolor electrophoresis apparatus, wherein the electrophoresis apparatus has different physical gradients in two plane directions and different thickness directions, and is configured to simultaneously separate samples in three axes.
【請求項4】請求項2に記載の電気泳動装置において、
前記電気泳動装置部は試料の厚さ方向に試料とマーカを
設けたことを特徴とする3次元型の電気泳動装置。
4. The electrophoretic device according to claim 2, wherein
3. The three-dimensional electrophoresis apparatus according to claim 1, wherein the electrophoresis apparatus includes a sample and a marker provided in a thickness direction of the sample.
【請求項5】請求項2に記載の電気泳動装置において、
前記非走査型の共焦点顕微鏡は開口部が各試料の位置と
一致または各試料の位置の内側に来るように配置された
ことを特徴とする3次元型の電気泳動装置。
5. The electrophoretic device according to claim 2, wherein
The non-scanning confocal microscope is arranged so that an opening coincides with the position of each sample or is located inside the position of each sample.
【請求項6】前記請求項1または2に記載の共焦点顕微
鏡は、共焦点用開口部の光源側に集光手段を持つことを
特徴とする電気泳動装置。
6. An electrophoretic apparatus according to claim 1, wherein said confocal microscope has a condensing means on a light source side of said confocal opening.
【請求項7】請求項2に記載の厚さ方向の濃度分布は、
ゲルの片面のみに高濃度溶液を接触させるかまたは遠心
分離または多層の積層により厚み方向に密度差をつける
ことにより実現したことを特徴とする電気泳動装置。
7. The concentration distribution in the thickness direction according to claim 2,
An electrophoresis apparatus, which is realized by bringing a high-concentration solution into contact with only one side of a gel or providing a density difference in a thickness direction by centrifugation or lamination of multiple layers.
JP14940099A 1999-05-28 1999-05-28 Electrophoresis device Expired - Fee Related JP3695631B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14940099A JP3695631B2 (en) 1999-05-28 1999-05-28 Electrophoresis device
DE1055925T DE1055925T1 (en) 1999-05-28 2000-05-08 Biochip reader and electrophoresis system
EP08160013A EP1983331B1 (en) 1999-05-28 2000-05-08 Optical system for reading a biochip
EP00109722A EP1055925B1 (en) 1999-05-28 2000-05-08 Biochip reader
DE60044923T DE60044923D1 (en) 1999-05-28 2000-05-08 Biochip reader
US10/769,017 US20040182710A1 (en) 1999-05-28 2004-01-30 Biochip reader and electrophoresis system
US10/768,632 US20040184960A1 (en) 1999-05-28 2004-01-30 Biochip reader and electrophoresis system
US12/550,001 US8264680B2 (en) 1999-05-28 2009-08-28 Biochip reader and electrophoresis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14940099A JP3695631B2 (en) 1999-05-28 1999-05-28 Electrophoresis device

Publications (2)

Publication Number Publication Date
JP2000338087A true JP2000338087A (en) 2000-12-08
JP3695631B2 JP3695631B2 (en) 2005-09-14

Family

ID=15474312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14940099A Expired - Fee Related JP3695631B2 (en) 1999-05-28 1999-05-28 Electrophoresis device

Country Status (1)

Country Link
JP (1) JP3695631B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350350A (en) * 2001-03-21 2002-12-04 Olympus Optical Co Ltd Biochemical inspection method
JP2005233974A (en) * 2001-03-21 2005-09-02 Olympus Corp Biochemical inspection method
US9702850B2 (en) 2013-04-30 2017-07-11 System Instruments Co., Ltd. Electrophoresis method and electrophoresis device
CN113295830A (en) * 2021-05-31 2021-08-24 黄埔海关技术中心 Simple wine caramel pigment detection robot and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350350A (en) * 2001-03-21 2002-12-04 Olympus Optical Co Ltd Biochemical inspection method
JP2005233974A (en) * 2001-03-21 2005-09-02 Olympus Corp Biochemical inspection method
US9702850B2 (en) 2013-04-30 2017-07-11 System Instruments Co., Ltd. Electrophoresis method and electrophoresis device
CN113295830A (en) * 2021-05-31 2021-08-24 黄埔海关技术中心 Simple wine caramel pigment detection robot and detection method
CN113295830B (en) * 2021-05-31 2021-12-07 黄埔海关技术中心 Simple wine caramel pigment detection robot and detection method

Also Published As

Publication number Publication date
JP3695631B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US8264680B2 (en) Biochip reader and electrophoresis system
EP1983331A2 (en) Biochip reader and system for reading image data according to samples on a biochip
EP1835281B1 (en) Multiplexed capillary electrophoresis system
EP0666982B1 (en) Method and detector for separation processes
EP0628164B1 (en) Capillary array confocal fluorescence scanner and method
US6309601B1 (en) Scanning optical detection system
US6191425B1 (en) Multicolor fluorescence detection type electrophoretic analyzer
JP3566207B2 (en) Rotary confocal scanner for capillary array detection
JP3613032B2 (en) Capillary array electrophoresis device
EP0773438B1 (en) Automated optical alignment using a galvanometric scanner
US20040023229A1 (en) Direct detection of individual molecules
JP2001311690A (en) Biochip reader and electrophoretic apparatus
JP4616051B2 (en) Electrophoresis apparatus and electrophoresis method
Wu et al. Fast analysis of proteins by isoelectric focusing performed in capillary array detected with concentration gradient imaging system
JP3695631B2 (en) Electrophoresis device
US20050259256A1 (en) Device and method for measurement
JP4357399B2 (en) Electrophoresis device
JPH05322771A (en) Multi-marker electrophoretic system
JPH05322770A (en) Multi-marker electrophoresis
JP2840586B2 (en) Light detection electrophoresis device
CN115639178A (en) Imaging system based on multicolor upconversion fluorescence coding microspheres and multiple detection method
JPH09243562A (en) Dna sequencer
JPH09243597A (en) Multi-capillary dna sequencer
JPH09318600A (en) Dna sequencer
Hapuarachchi Rapid, high sensitivity capillary separations for the analysis of biologically active species

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees