WO2019069802A1 - Polyurethane resin, molded article, and method for producing polyurethane resin - Google Patents

Polyurethane resin, molded article, and method for producing polyurethane resin Download PDF

Info

Publication number
WO2019069802A1
WO2019069802A1 PCT/JP2018/036241 JP2018036241W WO2019069802A1 WO 2019069802 A1 WO2019069802 A1 WO 2019069802A1 JP 2018036241 W JP2018036241 W JP 2018036241W WO 2019069802 A1 WO2019069802 A1 WO 2019069802A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
less
polyurethane resin
molecular weight
mass
Prior art date
Application number
PCT/JP2018/036241
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 長谷川
浩明 田子
宏 金山
山崎 聡
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2019546671A priority Critical patent/JP6946447B2/en
Priority to KR1020207007191A priority patent/KR102351760B1/en
Priority to CN201880058242.2A priority patent/CN111065666B/en
Publication of WO2019069802A1 publication Critical patent/WO2019069802A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic

Definitions

  • the present invention relates to a polyurethane resin, a molded article, and a method for producing a polyurethane resin.
  • Thermoplastic polyurethane resin is generally a rubber elastic body obtained by the reaction of polyisocyanate, high molecular weight polyol and low molecular weight polyol, and a hard segment formed by the reaction of polyisocyanate and low molecular weight polyol, and poly And a soft segment formed by the reaction of an isocyanate and a high molecular weight polyol.
  • polyurethane resins include 1,4-bis (isocyanatomethyl) cyclohexane, a polycaprolactone diol having a number average molecular weight of 1000, and a polycarbonate diol having a number average molecular weight of 2000 (weight ratio 1: 1 mixture),
  • a polyurethane elastomer obtained by reacting with 3-propanediol has been proposed (see, for example, Patent Document 1 (Example 74)).
  • molded articles of polyurethane elastomers are required to have various physical properties depending on the application.
  • molding stability molding release property
  • transparency transparency
  • mechanical properties stain resistance
  • It is required to have bloom resistance, color fastness and the like.
  • the polyurethane elastomer described in Patent Document 1 may not have sufficient molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance, discoloration resistance, etc. .
  • the present invention relates to a polyurethane resin having both molding stability (mold removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance, a molded article obtained from the polyurethane resin, and such a polyurethane. It is a manufacturing method of the polyurethane resin which can manufacture resin.
  • the present invention [1] is a reaction of a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane with a low molecular weight polyol having a molecular weight of less than 400 and a polyol component containing a carbonyl group-containing polyol having a number average molecular weight of 400 to 1200. It is a product, and the aggregation temperature measured by a differential scanning calorimeter is not less than the aggregation temperature T 1 of the hard segment phase represented by the following formula, and not more than the aggregation temperature T 2 of the hard segment phase represented by the following formula Some contain polyurethane resin.
  • the present invention [2] contains the polyurethane resin according to the above [1], wherein the concentration of the cyclic carbonyl compound not containing a hydroxyl group in the carbonyl group-containing polyol is 3% by mass or less.
  • the present invention [3] comprises the polyurethane resin according to the above [1] or [2], wherein the bis (isocyanatomethyl) cyclohexane contains 1,4-bis (isocyanatomethyl) cyclohexane.
  • the present invention [4] contains the polyurethane resin according to the above [3], wherein the 1,4-bis (isocyanatomethyl) cyclohexane contains a trans form at a ratio of 70 mol% or more and 99 mol% or less There is.
  • the present invention [5] is described in the above-mentioned [3] or [4], wherein the content ratio of 1,4-bis (isocyanatomethyl) cyclohexane to the bis (isocyanatomethyl) cyclohexane is 85% by mass or more. Contains polyurethane resin.
  • the present invention [6] includes a molded article comprising the polyurethane resin according to any one of the above [1] to [5].
  • the present invention [7] includes the molded article according to the above-mentioned [6], which is a cover of a smart device.
  • the present invention [8] reacts a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a molecular weight of less than 400, and a polyol component containing a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less. And a heat treatment step of heat treating the primary product to obtain a polyurethane resin, wherein the heat treatment conditions in the heat treatment step are 50 ° C. or more and 100 ° C. or less, 3 days or more and 10 days or less And a method of producing a polyurethane resin.
  • a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less is used as a raw material (high molecular weight polyol). That is, the number average molecular weight of the high molecular weight polyol is limited so as not to be excessively large, whereby the urethane group concentration of the polyurethane resin is improved.
  • the polyurethane resin of the present invention and the molded article thereof have the aggregation temperature of the hard segment phase adjusted appropriately, and as a result, the molding stability (mold release property), transparency, mechanical properties, stain resistance, resistance to staining It is possible to combine bloom resistance and color fastness.
  • the primary product obtained by reacting a specific polyisocyanate component and a polyol component is heat-treated under predetermined conditions. Therefore, the aggregation temperature of the hard segment phase of the resulting polyurethane resin can be adjusted appropriately. As a result, it is possible to obtain a polyurethane resin having both molding stability (mold release property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
  • the polyurethane resin of the present invention is, for example, a thermoplastic polyurethane resin, and as described later, it is obtained by reacting a polyisocyanate component and a polyol component, and then heat treating (heating and curing).
  • the polyurethane resin is a reaction product of a polyisocyanate component and a polyol component.
  • the polyisocyanate component contains bis (isocyanatomethyl) cyclohexane as an essential component.
  • Examples of bis (isocyanatomethyl) cyclohexane include 1,3-bis (isocyanatomethyl) cyclohexane and 1,4-bis (isocyanatomethyl) cyclohexane.
  • the molding stability of the polyurethane resin (removal property) And 1,4-bis (isocyanatomethyl) cyclohexane having a symmetrical structure from the viewpoint of improving mechanical properties, stain resistance and discoloration resistance.
  • bis (isocyanatomethyl) cyclohexane preferably contains 1,4-bis (isocyanatomethyl) cyclohexane.
  • the content ratio of 1,4-bis (isocyanatomethyl) cyclohexane to bis (isocyanatomethyl) cyclohexane is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, more preferably Is 80% by mass or more, particularly preferably 85% by mass or more, and usually 100% by mass or less.
  • cis-1,4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as cis-1,4 isomer) and trans-, 4-bis (isocyanate) are exemplified.
  • 1,4-bis (isocyanatomethyl) cyclohexane is a trans 1,4 form, for example, 60 Mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, more preferably 85 mol% or more, for example, 99.8 mol% or less, preferably 99 mol% or less, more preferably , 96 mol% or less, more preferably 90 mol% or less.
  • cis 1,4 form is, for example, 0.2 mole. % Or more, preferably 1 mol% or more, more preferably 4 mol% or more, more preferably 10 mol% or more, for example, 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol % Or less, more preferably 15 mol% or less.
  • the content ratio of the transformers 1 and 4 is at least the above lower limit, it is possible to improve the molding stability, mechanical properties, stain resistance and discoloration resistance.
  • the content ratio of the transformers 1 and 4 is less than or equal to the above upper limit, mechanical properties, transparency, bloom resistance, and discoloration resistance can be improved.
  • Bis (isocyanatomethyl) cyclohexane can be produced, for example, by the method described in International Publication WO2009 / 051114.
  • bis (isocyanatomethyl) cyclohexane can also be prepared as a modified product, as long as the excellent effects of the present invention are not impaired.
  • modified products of bis (isocyanatomethyl) cyclohexane include multimers of bis (isocyanatomethyl) cyclohexane (such as dimers (eg, uretdione modified products), trimers (eg, isocyanurate modified products, iminooxadiazine dione).
  • modified products biuret modified products (for example, biuret modified products produced by reaction of bis (isocyanatomethyl) cyclohexane with water), allophanate modified products (for example, bis (isocyanatomethyl) cyclohexane and monovalent compounds Allophanate modified products produced by reaction with alcohol or dihydric alcohol), polyol modified products (eg polyol modified product produced by reaction of bis (isocyanatomethyl) cyclohexane with trihydric alcohol (adduct) etc.) Oxia It is produced by decarboxylation condensation reaction of a chondrion-modified product (eg, oxadiazinetrione produced by reaction of bis (isocyanatomethyl) cyclohexane with carbon dioxide gas), a carbodiimide-modified product (eg, bis (isocyanatomethyl) cyclohexane And carbodiimide-modified products).
  • chondrion-modified product eg, oxadiazin
  • polyisocyanate component may contain, as an optional component, other polyisocyanates such as aliphatic polyisocyanates, aromatic polyisocyanates, araliphatic polyisocyanates and the like, as long as the excellent effects of the present invention are not impaired. Can.
  • aliphatic polyisocyanates include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate, nonamethylene diisocyanate, 2,2'-dimethylpentane diisocyanate , 2,2,4-trimethylhexane diisocyanate, decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecamethylene Triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyl Octane, 2,5,7-trimethyl-1,8-diisocyanato-5-isocyanatomethyloctane, bis
  • Aliphatic polyisocyanates also include alicyclic polyisocyanates (excluding bis (isocyanatomethyl) cyclohexane).
  • Alicyclic polyisocyanates include, for example, isophorone diisocyanate (IPDI), trans, trans-, trans, cis-, cis, cis-dicyclohexylmethane diisocyanate and mixtures thereof (Hydrogenated MDI), 1,3- or 1,4-cyclohexane diisocyanate and mixtures thereof, 1,3- or 1,4-bis (isocyanatoethyl) cyclohexane, methylcyclohexane diisocyanate, 2,2'-dimethyldicyclohexyl Methane diisocyanate, dimer acid diisocyanate, 2,5-diisocyanatomethylbicyclo [2,2,1] -heptane, its isomer 2,6-diisocyanatomethylbicyclo [2,2,1] -hepta (NBDI), 2-isocyana
  • IPDI isophorone diisocyanate
  • trans trans
  • aromatic polyisocyanates examples include 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and isomer mixtures of these tolylene diisocyanates (TDI), 4,4'-diphenylmethane diisocyanate, 2,4 These include '-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, and any isomer mixture of these diphenylmethane diisocyanates (MDI), toluidine diisocyanate (TODI), paraphenylene diisocyanate, naphthalene diisocyanate (NDI) and the like.
  • TDI tolylene diisocyanates
  • TDI 4,4'-diphenylmethane diisocyanate
  • 2,4 include '-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, and any isomer mixture of these di
  • aromatic aliphatic polyisocyanate for example, 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), etc. Can be mentioned.
  • These other polyisocyanates can be used alone or in combination of two or more.
  • polyisocyanates can also be prepared as a modified body in the range which does not inhibit the outstanding effect of this invention.
  • modified products of other polyisocyanates include multimers (dimers, trimers, etc.) of other polyisocyanates, biuret modified products, allophanate modified products, polyol modified products, oxadiazine trione modified products, carbodiimide modified products etc. It can be mentioned.
  • the content ratio in the case of containing other polyisocyanate is, for example, 50% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, more preferably, based on the total amount of the polyisocyanate component. It is at most 15% by mass, particularly preferably at most 10% by mass.
  • polyisocyanate component preferably, bis (isocyanatomethyl) cyclohexane is used alone. More preferably, 1,4-bis (isocyanatomethyl) cyclohexane is used alone.
  • the polyol component is a compound containing two or more hydroxyl groups in the molecule.
  • the polyol component includes a low molecular weight polyol having a molecular weight of less than 400 and a carbonyl group-containing polyol having a molecular weight of 400 to 1200, preferably, essentially a low molecular weight polyol having a molecular weight of less than 400 and a carbonyl having a molecular weight of 400 to 1200 It consists of a group containing polyol.
  • the polyol component has a molecular weight distribution
  • a number average molecular weight is employed.
  • the number average molecular weight can be determined by measurement by GPC method, the hydroxyl value of each component of the polyol component, and the formulation (the same applies hereinafter).
  • low molecular weight polyols include compounds (monomers) having two or more hydroxyl groups in the molecule and having a molecular weight of 50 or more and less than 400.
  • ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol (1,4-butanediol, 1,4-BD), 1,3-butylene glycol, 1, C2-4 alkanediols such as 2-butylene glycol, for example, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2,2-trimethyl Pentanediol, 3,3-dimethylolheptane, alkane (C7-20) diol, 1,3- or 1,4-cyclohexanedimethanol and mixtures thereof, 1,3- or 1,4-cyclohexanedi
  • trihydric alcohols such as glycerin, trimethylolpropane and triisopropanolamine
  • tetrahydric alcohols such as tetramethylolmethane (pentaerythritol) and diglycerin
  • pentahydric alcohols such as xylitol, such as sorbitol and mannitol
  • Hexahydric alcohols such as alithol, iditol, dalcitol, altolitol, inositol, dipentaerythritol etc.
  • a tetrahydric alcohol such as perseitol
  • an octahydric alcohol such as sucrose And polyhydric alcohols such Lumpur and the like.
  • a polyoxyalkylene polyol in which an alkylene oxide (ethylene oxide, propylene oxide) having a carbon number of 2 to 3 is addition-reacted to have the above molecular weight using the above polyhydric alcohol as an initiator Also included are random and / or block copolymers.
  • These low molecular weight polyols can be used alone or in combination of two or more.
  • the low molecular weight polyol preferably includes a dihydric alcohol, more preferably a C2 to C4 alkanediol, still more preferably 1,4-butanediol.
  • the molecular weight of the low molecular weight polyol is, for example, 50 or more, preferably 70 or more, and less than 400, preferably 300 or less.
  • the molecular weight of the low molecular weight polyol is in the above range, a molded article (described later) excellent in mechanical properties can be obtained.
  • the carbonyl group-containing polyol is a high molecular weight compound (preferably a polymer) having one or more carbonyl groups and two or more hydroxyl groups in the molecule.
  • carbonyl group-containing polyol examples include carbonyl group-containing macro polyols such as polyester polyols and polycarbonate polyols.
  • polyester polyols examples include polycondensates obtained by reacting the above-described low molecular weight polyols with polybasic acids under known conditions.
  • polybasic acids examples include oxalic acid, malonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, 3-methyl-3-ethylglutaric acid
  • Saturated aliphatic dicarboxylic acids such as azelaic acid and sebacic acid
  • unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid
  • Aromatic dicarboxylic acids such as acids, alicyclic dicarboxylic acids such as hexahydrophthalic acid, for example, dimer acids, hydrogenated dimer acids, other carboxylic acids such as hetonic acid, and derivatives thereof
  • Anhydrides such as oxalic anhydride, succinic anhydr
  • polyester polyols for example, plant-derived polyester polyols, specifically, hydroxyl group-containing vegetable oil fatty acids (for example, castor oil fatty acids containing licinoleic acid, 12-hydroxystearic acid, using the low molecular weight polyol described above as an initiator) Vegetable oil base polyester polyol etc. which are obtained by carrying out the condensation reaction of hydroxycarboxylic acids, such as hydrogenated castor oil fatty acid etc. which contain C), under well-known conditions.
  • hydroxycarboxylic acids such as hydrogenated castor oil fatty acid etc. which contain C
  • polyester polyol for example, lactones such as ⁇ -caprolactone, ⁇ -valerolactone and the like, for example, L-lactide, D- and the like, using the above-mentioned low molecular weight polyol (preferably dihydric alcohol) as an initiator
  • polycaprolactone polyols, polyvalerolactone polyols, and lactone-based polyester polyols such as those obtained by copolymerizing the above-mentioned dihydric alcohol, which are obtained by ring-opening polymerization of lactides and the like such as lactide and the like, and the like can be mentioned.
  • polycarbonate polyol for example, a ring-opening polymer of ethylene carbonate or phenyl carbonate having the above-mentioned low molecular weight polyol (preferably, the above-mentioned dihydric alcohol) as an initiator, for example, 1,4-butanediol, 1,5- Amorphous polycarbonate polyols obtained by copolymerizing a ring-opening polymer with a dihydric alcohol such as pentanediol, 3-methyl-1,5-pentanediol or 1,6-hexanediol may, for example, be mentioned.
  • a ring-opening polymer of ethylene carbonate or phenyl carbonate having the above-mentioned low molecular weight polyol (preferably, the above-mentioned dihydric alcohol) as an initiator for example, 1,4-butanediol, 1,5- Amorphous polycarbonate polyols obtained by copolymerizing a
  • carbonyl group-containing polyols can be used alone or in combination of two or more.
  • a carbonyl group-containing polyol By using a carbonyl group-containing polyol, various physical properties such as contamination resistance can be improved as compared to the case of using a polyol not containing a carbonyl group (for example, a carbonyl group-free polyol such as polyether polyol).
  • a polyol not containing a carbonyl group for example, a carbonyl group-free polyol such as polyether polyol.
  • a polyol not containing a carbonyl group for example, a carbonyl group-free polyol such as a polyether polyol
  • the carbonyl group-containing polyol such as sweat or oil and fat attached to the surface of the polyurethane resin
  • contamination resistance for example, the dirt penetrates into the inside of the polyurethane resin. Therefore, problems occur in applications (eg, smart device applications, etc.) where contamination resistance (sink resistance) is required.
  • polyester polyol in view of improving mechanical strength, stain resistance (sinking resistance) and discoloration resistance, polyester polyol is more preferably mentioned, and particularly preferably low molecular weight polyol and polybasic acid. Examples include polycondensates with acids and polycaprolactone polyols.
  • the number average molecular weight of the carbonyl group-containing polyol is 400 or more, preferably 600 or more, as described above, particularly from the viewpoint of molding stability and mechanical properties, and, among others, bloom resistance, stain resistance and resistance From the viewpoint of color-changing properties, as described above, it is 1200 or less, preferably 1100 or less, more preferably 1000 or less.
  • the number average molecular weight of the carbonyl group-containing polyol is in the above-mentioned range, it is possible to combine molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
  • the number average molecular weight of the carbonyl group-containing polyol is more preferably 700 or more, particularly preferably 800 or more from the viewpoint of improving molding stability and mechanical strength.
  • the number average molecular weight of the carbonyl group-containing polyol is more preferably 900 or less, particularly preferably 800 or less, from the viewpoint of improving stain resistance and color fastness.
  • the number average molecular weight of the carbonyl group-containing polyol indicates the number average molecular weight of a single type of carbonyl group-containing polyol and does not indicate the number average molecular weight of a mixture of multiple types of carbonyl group-containing polyols.
  • carbonyl group-containing polyols having a number average molecular weight of less than 400, and a number average molecular weight together with a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less
  • carbonyl group-containing polyols having a molecular weight of more than 1200 can also be used.
  • the other carbonyl group-containing polyol is, for example, 10 parts by mass or less, preferably 5 parts by mass or less, more preferably 1 part by mass or less with respect to 100 parts by mass of the carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less. Especially preferably, it is 0 mass part.
  • the carbonyl group-containing polyol may contain a cyclic carbonyl compound containing no hydroxyl group (hereinafter sometimes referred to as a "hydroxyl-free cyclic carbonyl compound").
  • the hydroxyl group-free cyclic carbonyl compound is a cyclic organic compound containing a carbonyl group in the molecule and having no hydroxyl group, and examples thereof include cyclic esters (eg, lactones such as ⁇ -caprolactone, ⁇ -valerolactone, etc.)
  • cyclic esters eg, lactones such as ⁇ -caprolactone, ⁇ -valerolactone, etc.
  • cyclic amide eg, lactam such as ⁇ -lactam, ⁇ -lactam, ⁇ -lactam and the like
  • cyclic carbonyl compounds containing no hydroxyl group may be used alone or in combination of two or more.
  • the hydroxyl-free cyclic carbonyl compound may be obtained as a side reaction product and may be contained in the polyester polyol, for example, when the above-mentioned polyester polyol is produced by the reaction of a low molecular weight polyol and a polybasic acid.
  • a hydroxyl-free cyclic carbonyl compound is produced, for example, by the above-described polycaprolactone polyol by ring-opening polymerization of lactones, it is possible to use poly as a raw material component (or its multimer) remaining without ring-opening polymerization reaction. It may be contained in caprolactone polyol.
  • the hydroxyl-free cyclic carbonyl compound is obtained, for example, as a side reaction product when the above polycarbonate polyol is produced by the reaction of ethylene carbonate or phenyl carbonate with a low molecular weight polyol, and is contained in the polycarbonate polyol. May be
  • the concentration of the hydroxyl group-free cyclic carbonyl compound in the carbonyl group-containing polyol can be adjusted by a known purification method such as a stripping method, a distillation method, or an extraction method.
  • the concentration of the hydroxyl group-free cyclic carbonyl compound in the carbonyl group-containing polyol is, for example, 5% by mass or less, preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass Or less, for example, 0% by mass or more, preferably more than 0% by mass, more preferably 0.1% by mass or more, and still more preferably 0.3% by mass or more.
  • the mechanical physical properties and the bloom resistance can be particularly improved, and further, the molding stability (removal property), transparency, Contamination resistance and discoloration resistance can be improved.
  • the carbonyl group-containing polyol contains a hydroxyl group-free cyclic carbonyl compound
  • the carbonyl group-containing polyol is a carbonyl group-containing polyol composition.
  • the content ratio of the low molecular weight polyol and the carbonyl group-containing polyol is, for example, 5 mol% or more, preferably 7 mol% or more, more preferably 10 with respect to the total amount thereof. It is at least 15 mol%, for example, at most 75 mol%, preferably at most 65 mol%, more preferably at most 50 mol%.
  • the low molecular weight polyol is, for example, 25 mol% or more, preferably 35 mol% or more, more preferably 50 mol% or more, and for example, 95 mol% or less, preferably 93 mol% or less, more preferably Is 90 mol% or less, more preferably 85 mol% or less.
  • the polyol component can also contain other polyols (polyols excluding low molecular weight polyols and polyols containing carbonyl groups).
  • polyols include polyether polyols and polyolefin polyols.
  • the other polyol is, for example, 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less, and particularly preferably 0% by mass, based on the total amount of the polyol components.
  • a polyurethane resin is obtained by the manufacturing method of a polyurethane resin provided with a reaction process and a heat treatment process as shown below.
  • the reaction step is a step of reacting the above-mentioned polyisocyanate component and the above-mentioned polyol component to obtain a primary product (reaction product before heat treatment).
  • each said component polyisocyanate component, polyol component
  • well-known methods such as a one-shot method and a prepolymer method, are employ
  • a prepolymer method is employed.
  • a polyisocyanate component and a macro polyol are reacted to synthesize an isocyanate group-terminated prepolymer (prepolymer synthesis step).
  • the polyisocyanate component and the macropolyol are reacted by a polymerization method such as bulk polymerization or solution polymerization.
  • the polyisocyanate component and the macropolyol are reacted at a reaction temperature of, for example, 50.degree. C. or more, for example, 250.degree. C. or less, preferably 200.degree.
  • the reaction is performed for 0.5 hours or more, for example, 15 hours or less.
  • a polyisocyanate component and a macropolyol are added to an organic solvent, and the reaction temperature is, for example, 50 ° C. or more, for example, 120 ° C. or less, preferably 100 ° C. or less, for example
  • the reaction is performed for 0.5 hours or more, for example, 15 hours or less.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, for example, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, n- Aliphatic hydrocarbons such as hexane, n-heptane, octane, etc., for example, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane etc., for example, aromatic hydrocarbons such as toluene, xylene, ethylbenzene etc., eg methyl cellosolve acetate , Ethyl cellosolve acetate, methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol eth
  • urethanization catalysts such as amines and an organometallic compound, can be added as needed, for example.
  • amines for example, tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, for example, quaternary ammonium salts such as tetraethylhydroxyammonium, for example, imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, for example, quaternary ammonium salts such as tetraethylhydroxyammonium, for example, imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • organic metal compound for example, tin acetate, tin octylate (tin octylate), tin oleate, tin laurate, dibutyl tin diacetate, dimethyl tin dilaurate, dibutyl tin dilaurate, dibutyl tin di mercaptide, dibutyl tin maleate, dibutyl tin Organotin compounds such as tin dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, dibutyltin dichloride, for example, organic lead compounds such as lead octanoate and lead naphthenate, for example, organic nickel compounds such as nickel naphthenate, For example, organic cobalt compounds such as cobalt naphthenate, for example, organic copper compounds such as copper octenate, for example, organic bismuth compounds such as
  • potassium salts such as potassium carbonate, potassium acetate, potassium octylate and the like can be mentioned.
  • urethanization catalysts can be used alone or in combination of two or more.
  • the addition ratio of the urethanization catalyst is, for example, 0.001 parts by mass or more, preferably 0.01 parts by mass or more, with respect to the total 10000 parts by mass of the polyisocyanate component and the macropolyol (carbonyl group-containing polyol). For example, it is 1 part by mass or less, preferably 0.5 part by mass or less.
  • the unreacted polyisocyanate component and the organic solvent when an organic solvent is used can be removed by a known removal means such as distillation or extraction.
  • the compounding ratio of each component is, for example, 1.3 or more as the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the polyisocyanate component to the hydroxyl group in the macropolyol (carbonyl group-containing polyol)
  • it is 1.5 or more, for example, 20 or less, preferably 15 or less, more preferably 10 or less, still more preferably 8 or less.
  • the blending ratio of each component in the prepolymer synthesis step is, for example, 5 parts by mass or more, preferably 10 parts by mass of the polyisocyanate component with respect to 100 parts by mass of the macro polyol (carbonyl group-containing polyol). It is 15 parts by mass or more, for example, 150 parts by mass or less, preferably 100 parts by mass or less, more preferably 90 parts by mass or less.
  • the isocyanate group content is, for example, 1.0% by mass or more, preferably 3.0% by mass or more, more preferably 5.0% by mass or more, from the viewpoint of mechanical strength and stain resistance Or more, more preferably 8.0% by mass or more, for example, 30.0% by mass or less, preferably 19.0% by mass or less, more preferably 16.0% by mass or less, from the viewpoint of transparency
  • the above components are reacted until reaching 12.0% by mass or less. Thereby, an isocyanate group end prepolymer can be obtained.
  • the isocyanate group content (isocyanate group content) can be determined by a known method such as titration with di-n-butylamine or FT-IR analysis.
  • the isocyanate group-terminated prepolymer obtained as described above is reacted with a low molecular weight polyol to obtain a primary product of a polyisocyanate component and a polyol component (chain elongation step).
  • the low molecular weight polyol is a chain extender.
  • the isocyanate group-terminated prepolymer and the low molecular weight polyol are reacted by a polymerization method such as bulk polymerization described above or solution polymerization described above.
  • the reaction temperature is, for example, room temperature or more, preferably 50 ° C. or more, for example, 200 ° C. or less, preferably 150 ° C. or less, and the reaction time is, for example, 5 minutes or more, preferably 1 hour or more, for example 72 hours or less, preferably 48 hours or less.
  • the compounding ratio of each component is, for example, 0.75 or more, preferably 0.9, as the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the isocyanate group-terminated prepolymer to the hydroxyl group in the low molecular weight polyol.
  • the above for example, 1.3 or less, preferably 1.1 or less.
  • the blending ratio of each component in the chain elongation step is, for example, 1.0 parts by mass or more, preferably 2.0 parts by mass of low molecular weight polyol with respect to 100 parts by mass of isocyanate group-terminated prepolymer. It is at least 3.0 parts by mass, more preferably at most 50 parts by mass, preferably at most 40 parts by mass, more preferably at most 30 parts by mass.
  • a macropolyol carbonyl group-containing polyol
  • the above-mentioned urethanization catalyst can be added as needed.
  • the urethanization catalyst can be blended into the isocyanate group-terminated prepolymer and / or the low molecular weight polyol, or can be blended separately when mixing them.
  • a polyisocyanate component When the one-shot method is adopted as a method for obtaining the above primary product, a polyisocyanate component, a polyol component (including a macropolyol (carbonyl group-containing polyol) and a low molecular weight polyol), and a polyol component
  • the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the polyisocyanate component to the hydroxyl group in the mixture is, for example, 0.9 or more, preferably 0.95 or more, more preferably 0.98 or more, for example, 1 .2 or less, preferably 1.1 or less, more preferably 1.08 or less, and simultaneously compounded and stirred.
  • the stirring and mixing may be performed, for example, under an inert gas (for example, nitrogen) atmosphere, at a reaction temperature of, for example, 40.degree. C. or more, preferably 100.degree. C. or more, for example, 280.degree.
  • the reaction time is, for example, 30 seconds or more and 1 hour or less.
  • the above-mentioned urethanization catalyst and the organic solvent can be added at an appropriate ratio, as needed.
  • the heat treatment step is a step of heat treating the primary product to obtain a secondary product (a reaction product after heat treatment, ie, a polyurethane resin which is a reaction product).
  • the primary product obtained in the above reaction step is heat-treated by leaving it for a predetermined heat treatment period at a predetermined heat treatment temperature, and then dried if necessary.
  • the heat treatment temperature is, for example, 50 ° C. or more, preferably 60 ° C. or more, more preferably 70 ° C. or more, and for example, 100 ° C. or less, preferably 90 ° C. or less.
  • the heat treatment temperature is less than the above-mentioned lower limit, it is inferior to molding stability (mold removability), and also inferior to mechanical strength and stain resistance.
  • the heat processing temperature exceeds the said upper limit, it is inferior to transparency, bloom resistance, discoloration resistance, etc.
  • the heat treatment temperature is in the above-mentioned range, the molding stability (removal property), the transparency, the bloom resistance and the color fastness are excellent, and furthermore, the mechanical properties and the stain resistance can be combined.
  • the heat treatment period is, for example, 3 days or more, preferably 4 days or more, more preferably 5 days or more, more preferably 6 days or more, for example, 10 days or less, preferably 9 days or less, more Preferably, it is 8 days or less.
  • the heat treatment period is less than the above-mentioned lower limit, it is inferior to molding stability (mold removability), and also inferior to mechanical strength and stain resistance.
  • the heat treatment period is in the above-mentioned range, the molding stability (removal property), the transparency, the bloom resistance and the color fastness are excellent, and furthermore, the mechanical properties and the stain resistance can be combined.
  • the polyurethane resin may, if necessary, be a known additive, such as an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a hydrolysis inhibitor (such as a carbodiimide compound), and a plasticizer.
  • Antiblocking agents, mold release agents, pigments, dyes (such as bluing agents), lubricants (such as fatty acid amide lubricants), fillers, rust inhibitors, fillers and the like can be added. These additives can be added during mixing of the components, during synthesis or after synthesis.
  • the antioxidant is not particularly limited and is not particularly limited, and examples thereof include known antioxidants (for example, described in a catalog made by BASF Japan), and more specifically, for example, phenolic antioxidants, hindered And dephenolic antioxidants.
  • the heat-resistant stabilizer is not particularly limited, and examples thereof include known heat-resistant stabilizers (for example, described in a catalog made by BASF Japan). More specifically, for example, phosphorus-based processing heat stabilizers, lactone-based processing heat stability Agents, sulfur processing heat stabilizers and the like.
  • the UV absorber is not particularly limited, and examples thereof include known UV absorbers (for example, described in catalogs manufactured by BASF Japan). More specifically, for example, benzotriazole-based UV absorbers, triazine-based UV absorbers And benzophenone-based ultraviolet absorbers.
  • the light stabilizers are not particularly limited, and include known light stabilizers (for example, described in the catalog made by ADEKA), and more specifically, for example, benzoate-based light stabilizers, hindered amine-based light stabilizers, etc. It can be mentioned.
  • Each of these additives is, for example, 0.001% by mass or more, preferably 0.01% by mass or more, for example, 3.0% by mass or less, preferably 2.0% by mass or less, based on the polyurethane resin. Is added at a rate of
  • polyurethane resin production method contains a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a molecular weight of less than 400, and a carbonyl group-containing polyol having a number average molecular weight of 400 to 1200.
  • the polyol component is reacted, and the obtained primary product is heat-treated under predetermined conditions.
  • the polyurethane resin obtained by such a production method can have both molding stability (mold releasability), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
  • the above-mentioned polyurethane resin comprises a hard segment formed by the reaction of a polyisocyanate component and a low molecular weight polyol, a polyisocyanate component and a carbonyl group-containing polyol (carbonyl group-containing polyol having a number average molecular weight of 400 to 1200). And a soft segment formed by the reaction of
  • the hard segment concentration of the polyurethane resin is, for example, 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and particularly preferably 25% by mass or more
  • the content is 55% by mass or less, preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • the molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance of the resulting molded article (described later) are improved. It can be done.
  • the concentration of the hard segment of the polyurethane resin (the hard segment formed by the reaction of the polyisocyanate component and the low molecular weight polyol) can be calculated, for example, from the blending ratio (preparation) of each component (Examples described later) reference.).
  • the aggregation temperature of the polyurethane resin corresponds to the aggregation temperature of the hard segment phase in the polyurethane resin, and the aggregation temperature T 1 or more of the hard segment phase shown by the following calculation formula, and the following calculation formula Or lower than the aggregation temperature T 2 of the hard segment phase shown by Aggregation temperature T 1 (unit: ° C.) of hard segment phase: 80 + 1.2 ⁇ hard segment concentration (mass%) Aggregation temperature T 2 (unit: ° C.) of hard segment phase: 115 + 1.2 ⁇ hard segment concentration (mass%)
  • T 1 unit: ° C.
  • the cohesion of the hard segment phase is not excessively weak, so that the molding stability (removal property) and mechanical properties are excellent.
  • the aggregation temperature is equal to or lower than the upper limit (T 2 )
  • the cohesion of the hard segment phase is not excessively high, and therefore, the transparency and the color fastness, and the bloom resistance are excellent.
  • the polyurethane resin whose aggregation temperature is in the above-mentioned range is excellent in molding stability (removal property), transparency, mechanical properties, blooming resistance and discoloration resistance.
  • said calculation formula is not a theoretical formula but is an empirical formula (experimental formula) calculated
  • the aggregation temperature of the polyurethane resin is, for example, 75 ° C. or more, preferably 90 ° C. or more, more preferably 100 ° C. or more, still more preferably 105 ° C. or more, particularly preferably 110 ° C. or more
  • the temperature is 200 ° C. or less, preferably 180 ° C. or less, more preferably 170 ° C. or less, still more preferably 160 ° C. or less, particularly preferably 155 ° C. or less.
  • the aggregation temperature of the polyurethane resin is not less than the above lower limit, the molding stability (removal property) and the mechanical properties can be improved, and if the aggregation temperature of the polyurethane resin is not more than the above upper limit, the transparency and the resistance It is also possible to improve the discoloration resistance and further the bloom resistance.
  • the aggregation temperature of the polyurethane resin can be measured by differential scanning calorimetry (DSC measurement) in accordance with the conditions of the examples.
  • the above polyurethane resin uses a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less as a raw material, it has stain resistance (smear resistance) compared to the case of using a polyol not containing a carbonyl group. Can be improved.
  • the above polyurethane resin uses a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1,200 or less as a raw material
  • a polyol having a number average molecular weight exceeding 1,200 is not used as a raw material, Is a small amount that does not inhibit the excellent effect of. Therefore, the cohesion of the hard segment phase of the primary product becomes relatively low, and as a result, the molding stability and mechanical properties become relatively low.
  • the cohesion of the hard segment phase can be improved, and the molding stability and mechanical properties can be improved.
  • the cohesion of the hard segment phase may become excessively high, which may cause a decrease in transparency, discoloration resistance, bleed resistance and the like.
  • the cohesion of the hard segment phase corresponds to the aggregation temperature. Therefore, if the aggregation temperature is above the range of the hard segment phase (T 1 or T 2 or less), molding stability (mold releasability), transparency, mechanical properties, resistance to bloom and discoloration resistance in excellent polyurethane resin You can get it.
  • the above-mentioned polyurethane resin can have both molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
  • the present invention also includes a molded article containing the above-described polyurethane resin.
  • the molded article is molded from a polyurethane resin.
  • the molded product may be, for example, the above-mentioned polyurethane resin by a known molding method, for example, heat compression molding and injection molding using a specific mold, or extrusion molding using a sheet winding device, for example, melt spin molding According to the thermoforming processing method of the present invention, it can be obtained, for example, by forming into various shapes such as pellet, plate, fiber, strand, film, sheet, pipe, hollow and box.
  • the obtained molded article can be combined with molding stability (mold-removal property), transparency, mechanical property, stain resistance, bloom resistance and discoloration resistance.
  • the polyurethane resin of the present invention and the method for producing the same are a thermoplastic polyurethane resin and a method for producing the same, but the polyurethane resin of the present invention and a method for producing the same are a thermosetting polyurethane resin and a method for producing the same It can be applied to
  • thermosetting polyurethane resin for example, the above-mentioned isocyanate group-terminated prepolymer, a dihydric alcohol (such as 1,4-butanediol) and a trihydric alcohol (such as trimethylolpropane), and further known fragrances Group diamine or the like (reaction step), for example, after cast molding, the obtained molded product is heat-treated under the above conditions (heat treatment step). Thereby, a molded article comprising a thermosetting polyurethane resin and the thermosetting polyurethane resin can be obtained.
  • a dihydric alcohol such as 1,4-butanediol
  • trihydric alcohol such as trimethylolpropane
  • reaction step for example, after cast molding, the obtained molded product is heat-treated under the above conditions (heat treatment step).
  • thermosetting polyurethane resin and a method for producing the same, and a molded article made of the thermosetting polyurethane resin are also suitable for molding stability (mold releasability), transparency, mechanical properties, stain resistance, and bloom resistance. Combination of resistance and color fastness.
  • the molded article can be suitably used in the field where the various physical properties described above are required, and in particular, can be suitably used as a cover of a smart device.
  • the smart device is a multifunctional information processing terminal, and examples thereof include a smartphone, a tablet computer (tablet PC), and a slate computer (slate PC).
  • Such a smart device is usually formed so as to be able to remove a resin cover, and such a cover has mold stability (removal property), transparency, mechanical properties, stain resistance, Bloom resistance and discoloration resistance are required. Therefore, the molded article of the above-mentioned polyurethane resin is suitably used as a cover of a smart device.
  • the molded articles can be widely used industrially besides the above-mentioned applications, and specifically, for example, transparent hard plastics, coating materials, adhesives, adhesives, waterproof materials, potting agents, inks , Binders, films (for example, films such as paint protection films, chipping films), sheets, bands (for example, bands such as watch bands, for example, transmission belts for automobiles, belts such as conveyor belts for various industries (conveyor belts)) , Tubes (for example, medical tubes, catheters, etc., air tubes, hydraulic tubes, tubes such as electric wire tubes, hoses such as fire hoses), blades, speakers, sensors, LED seals for high brightness Agent, organic EL member, photovoltaic member, robot member, android Materials, wearables, clothing products, sanitary products, cosmetic products, food packaging materials, sports products, leisure products, medical products, care products, housing components, acoustic components, lighting components, chandeliers, exterior lights, sealing materials, sealing materials , Cork, packing, anti-vib
  • Furniture supplies clothing products such as bra and shoulder pads, medical supplies such as disposable diapers, napkins, medical tape cushioning materials, cosmetics, sanitary products such as facial puffs and pillows, soles (outsole), midsoles, cover materials
  • Shoe products such as, body pressure dispersion products such as pads and cushions for vehicles, door trims, instrument panels, gear knobs and other touching members, shock absorbers such as electric refrigerator and building insulation, shock absorbers etc.
  • the present invention is suitably used in the following vehicle articles, semiconductor manufacturing articles such as chemical mechanical polishing (CMP) pads, and the like.
  • CMP chemical mechanical polishing
  • the above-mentioned molded articles can be coated materials (films, sheets, belts, wires, electric wires, metal rotating devices, wheels, drills, etc.), yarns and fibers (tubes, tights, spats, sportswear, Yarns and composite fibers used in swimwear etc., extrusion applications (extinution applications for tennis, batton and other bats and their convergence materials), slush molded articles in powder form by micropelletization, artificial leather, skin, Sheets, coated rolls (coated rolls such as steel), sealants, rollers, gears, balls, bat covers or core materials (golf balls, basketballs, tennis balls, volleyballs, softballs, bats, etc.) It may be in the form of foam molded polyurethane resin))), , Ski products, boots, tennis products, grips (grips for golf clubs and motorcycles), rack boots, wipers, seat cushion members, films for care products, 3D printer molded products, fiber reinforced materials (carbon fibers, lignin, ken
  • 1,4-BIC 1,4-bis (isocyanatomethyl) cyclohexane 1,3-BIC synthesized by the method described in Preparation Examples 1 to 5 described below: 1,3-bis (isocyanatomethyl) cyclohexane, commercial item Name: Takenate 600, manufactured by Mitsui Chemicals, Inc. MDI: Diphenylmethane diisocyanate, trade name; Cosmonate PH, manufactured by Mitsui Chemicals SKC, Inc.
  • Antioxidant Hindered phenolic compound, trade name: Irganox 245, manufactured by BASF Japan, UV absorber: Benzotriazole compound, trade name: Tinuvin 234, light stabilizer manufactured by BASF Japan, light stabilizer: hindered amine compound, trade name; LA- 72, Hydrolysis inhibitor manufactured by ADEKA: Carbodiimide compound, trade name; Stabacol I-LF, manufactured by LANXESS, ⁇ dye> Anthraquinone bluing agent: trade name; Plast Blue 8514, manufactured by Arimoto Chemical Industries, Ltd.
  • ⁇ Polyethylene adipate (polyester polyol)> Cyclic ester formed from one molecule of adipic acid and one molecule of ethylene glycol: 7.6 minutes, two molecules of adipic acid cyclic ester formed from two molecules of ethylene glycol: 20.4 minutes, three molecules or more of adipic acid And cyclic esters formed from three or more molecules of ethylene glycol: not detected due to high boiling point.
  • ⁇ Polycaprolactone diol> Caprolactone monomer: 5.8 minutes caprolactone dimer: 13.2 minutes caprolactone trimer: 21.0 minutes tetramer or more of caprolactone: not detected due to high boiling point.
  • 1,4-BIC (1) The purity by gas chromatography measurement of 1,4-BIC (1) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 99.5 / 0.5.
  • the hydrolyzable chlorine concentration (hereinafter referred to as HC concentration) was 18 ppm.
  • Production Example 2 (Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (2) (hereinafter referred to as 1,4-BIC (2))) According to the description of Production Example 6 in JP-A-2014-55229, 92% of 1,4-bis (aminomethyl) cyclohexane having a purity of 99.5% or more and a trans / cis ratio of 98/2 is collected. Obtained at a rate.
  • the purity by gas chromatography measurement of the obtained 1,4-BIC (2) was 99.9%, the hue by APHA measurement was 5, and the trans / cis body ratio by 13 C-NMR measurement was 98/2. .
  • the HC concentration was 18 ppm.
  • 1,4-BIC (3) Metal for producing 1,4-bis (isocyanatomethyl) cyclohexane (3) (hereinafter referred to as 1,4-BIC (3)))
  • 1,4-BIC (3) Metal for producing 1,4-bis (isocyanatomethyl) cyclohexane (3)
  • 1,4-BIC (3) 789 parts by mass of 1,4-BIC (2) of Production Example 2 and 1,4-BIC of Production Example 6 described later 211 parts by mass of (6) was charged, and stirred at room temperature for 1 hour under a nitrogen atmosphere.
  • the purity by gas chromatography measurement of the obtained 1,4-BIC (3) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 86/14.
  • the HC concentration was 19 ppm.
  • Production Example 4 Metal for producing 1,4-bis (isocyanatomethyl) cyclohexane (4) (hereinafter referred to as 1,4-BIC (4))
  • 1,4-BIC (4) Metal for producing 1,4-bis (isocyanatomethyl) cyclohexane (4)
  • the purity by gas chromatography measurement of the obtained 1,4-BIC (4) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 73/27.
  • the HC concentration was 20 ppm.
  • the purity by gas chromatography measurement of the obtained 1,4-BIC (5) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 68/32.
  • the HC concentration was 21 ppm.
  • Production Example 6 Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (6) (hereinafter referred to as 1,4-BIC (6))
  • 1,4-BIC (6) 1,4-bis (aminomethyl) cyclohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) having a trans / cis ratio of 41/59 as determined by 13 C-NMR measurement as a raw material
  • Production Example 1 of JP-A-2014-55229 According to the description, 388 parts by weight of 1,4-BIC (6) were obtained.
  • the purity by gas chromatography measurement of the obtained 1,4-BIC (6) was 99.9%, the hue by APHA measurement was 5, and the trans / cis body ratio by 13 C-NMR measurement was 41/59. .
  • the HC concentration was 22 ppm.
  • tin octylate (trade name: Stanocto, manufactured by AP Corporation) diluted to 4% by mass in advance with DINA (manufactured by Daihachi Chemical Co., Ltd.) is used as the polyisocyanate component (a) and the carbonyl group-containing polyol (b). With respect to the total amount, it was added so as to be 5 ppm as a catalytic amount.
  • Synthesis example 9 An isocyanate group-terminated prepolymer (i) was obtained in the same manner as in Synthesis Example 1 except that the carbonyl group-containing polyol (b) was used without stripping treatment.
  • Synthesis example 18 In accordance with the formulations described in Tables 1 to 3, using stabazole I-, using PTMEG (b-13, number average molecular weight 1000) which is a carbonyl group-free polyol (b ′) in place of the carbonyl group-containing polyol (b) An isocyanate group-terminated prepolymer (r) was obtained in the same manner as in Synthesis Example 1 except that LF was not used.
  • Synthesis example 20 Isocyanate-terminated prepolymer in the same manner as in Synthesis Example 1 except that MDI (diphenylmethane diisocyanate) was used as the polyisocyanate component (a) according to the formulation described in Tables 1 to 3 and no catalyst was used. I got (t).
  • MDI diphenylmethane diisocyanate
  • Synthesis example 23 An isocyanate-terminated prepolymer (w) was obtained in the same manner as in Synthesis Example 1 except that the stripping treatment temperature and the urethanation reaction temperature were changed to 120 ° C. according to the formulations described in Tables 1 to 3.
  • the equivalent ratio (NCO index) of the isocyanate group in the isocyanate group-terminated prepolymer to the hydroxyl group in the low molecular weight polyol is set to 1.01 with 1,4-butanediol (1,4-BD) as the low molecular weight polyol.
  • the temperature was adjusted to 80 ° C. by weighing in a stainless steel cup.
  • the isocyanate group-terminated prepolymer is weighed into another stainless steel cup, and 0.3 parts by mass of Irganox 245 (BASF heat stabilizer) based on the total amount of isocyanate group-terminated prepolymer and 1,4-BD, 0.1 part by mass of Tinuvin 234 (ultraviolet absorber manufactured by BASF), 0.1 part by mass of Adekastab LA-72 (ALLS manufactured by ADEKA), and 0 parts by weight of Kao Wax EB-P (fatty acid amide lubricant manufactured by Kao Chemical Co., Ltd.) 0 .1 part by weight was added to the isocyanate-terminated prepolymer.
  • Irganox 245 BASF heat stabilizer
  • Tinuvin 234 ultraviolet absorber manufactured by BASF
  • Adekastab LA-72 ALLS manufactured by ADEKA
  • Kao Wax EB-P fatty acid amide lubricant manufactured by Kao Chemical Co., Ltd.
  • Plast Blue 8514 diluted to 0.5% by mass in advance with DINA (manufactured by Daihachi Chemical Co., Ltd.) was added to the isocyanate group-terminated prepolymer so as to be 0.5 ppm as Plast Blue 8514.
  • an isocyanate group-terminated prepolymer such that tin octylate (trade name: stanoct, manufactured by AP Corporation) diluted to 4% by mass beforehand with DINA (made by Daihachi Chemical Co., Ltd.) becomes 10 ppm as a catalytic amount Added to
  • the isocyanate group-terminated prepolymer was then stirred and mixed for 3 minutes in an 80 ° C. oil bath using a high-speed stirring disper under stirring at 500-1500 rpm.
  • 1,4-BD pre-weighed to a temperature of 80 ° C. was added to the isocyanate group-terminated prepolymer, and stirred and mixed for 3 to 10 minutes under stirring at 500 to 1500 rpm using a high speed stirring disper .
  • the mixed solution is poured into a Teflon (registered trademark) vat preheated to 150 ° C., reacted at 150 ° C. for 2 hours, and then cooled to 100 ° C. to continue the reaction for 20 hours to obtain polyurethane resin
  • Teflon registered trademark
  • the primary products (A) to (Z), (AC) to (AD), (AF), (AH) and (AJ) of the polyurethane resin are removed from the vat, diced with a bale cutter, and crushed The diced resin was crushed by a machine to obtain crushed pellets.
  • ground pellets were then heat treated (cured, aged) at the heat treatment temperature and heat treatment period described in Tables 4 to 7 and dried at 23 ° C. for 12 hours under vacuum reduced pressure.
  • pellets of polyurethane resins (A) to (Z), (AC) to (AD), (AF), (AH) and (AJ) were obtained.
  • Example 19 Pellets of polyurethane resin (AE) were obtained in the same manner as in Example 1 except that the preheating temperature of the isocyanate group-terminated prepolymer was changed to 120 ° C. according to the formulation described in Table 6.
  • Example 21 and Example 23 Pellets of polyurethane resin (AG) and (AI) were obtained in the same manner as in Example 1 according to the formulation described in Table 6, except that the NCO index was 0.98.
  • Comparative example 11 Pellets of polyurethane resin (AA) were obtained in the same manner as in Example 1 except that 1,3-propanediol (PDO) was used as a low molecular weight polyol according to the formulation described in Table 7.
  • PDO 1,3-propanediol
  • Comparative Example 12 Pellets of polyurethane resin (AB) were obtained in the same manner as in Example 1 except that the catalyst was not used according to the formulation described in Table 7.
  • the obtained 1 mm thick sheet was annealed in an oven at 80 ° C. for 24 hours, and then aged for 7 days under constant temperature and humidity conditions of room temperature 23 ° C. and relative humidity 55% to obtain a polyurethane sheet .
  • Evaluation 5 A uniform sheet with no sticking to the mold at the time of demolding and no surface roughness is obtained.
  • Evaluation 4 Although there is sticking of the sheet to the mold, the peeling marks on the sheet surface are less than 20% of the whole sheet.
  • Evaluation 3 There is sticking of the sheet to the mold, and the peeling marks on the sheet surface are 20% or more and less than 50% of the whole sheet.
  • Evaluation 2 There is sticking of the sheet to the mold, and peeling marks remain on 50% or more of the sheet surface.
  • Evaluation 1 When the mold is opened, the sheet is stuck to the molds on both sides, and the sheet is torn.
  • Total light transmittance (unit:%)> The total light transmittance (based on JIS K7105 (light source: D 65 )) of a 1 mm-thick polyurethane sheet obtained by injection molding was measured using Haze Meter (manufactured by Nippon Denshoku Kogyo, model: NDH 2000).
  • ⁇ Tear strength (unit: kN / m)> It measured on the conditions of tearing speed 300 mm / min using the right-angled type tear test piece manufactured according to JISK7311 (1995) from the polyurethane sheet obtained by injection molding from 1 mm thickness.
  • DSC differential scanning calorimeter
  • the polyurethane sheet was cut into thin pieces of about 8 mg so as to be in close contact with an aluminum pan as much as possible.
  • the aluminum pan was covered with a cover and crimped to obtain a measurement sample (sample).
  • a sample of alumina was taken as a reference sample. After setting the sample and reference in place in the cell, cool the sample to -100 ° C at a rate of 10 ° C / min under a nitrogen stream with a flow rate of 40 NmL / min, hold for 5 minutes at the same temperature, and then 10 The temperature was raised to 270 ° C at a rate of ° C / min. After further holding at 270 ° C. for 5 minutes, it was cooled to ⁇ 70 ° C. at a rate of 10 ° C./min. The temperature of the exothermic peak appearing during this cooling was taken as the aggregation temperature of the polyurethane.
  • ⁇ Stain resistance> A test piece of 20 ⁇ 60 mm in size was cut out from a polyurethane sheet of 1 mm in thickness, immersed in a red oil-based magic ink (made by Teranishi Chemical Industry) for 1 hour, and then washed with distilled water. The cut cross section was observed using a digital microscope (trade name: VHX-6000, manufactured by Keyence Corporation) to measure the thickness of the soaking in the magic ink. The smaller the thickness impregnated with the magic ink, the better the stain resistance.
  • b * The yellowness b * of a 1 mm-thick polyurethane sheet obtained by injection molding was measured using a color difference meter (Color Ace MODEL TC-1 manufactured by Tokyo Denshoku Co., Ltd.). In addition, b * is generally used as an index of the hue of the polyurethane resin.
  • ⁇ NOx discoloration resistance> A 20 ⁇ 60 mm size test piece was cut out of a 1 mm thick polyurethane sheet and allowed to stand in 5000 ppm NOx gas for 15 hours. After taking out the test piece, it was subjected to a moist heat test at 60 ° C. and 93% relative humidity for 96 hours.
  • the ⁇ b (the amount of change of the b value) of the polyurethane sheet before and after the test was measured using a color difference meter (Color Ace MODEL TC-1, manufactured by Tokyo Denshoku Co., Ltd.).
  • (DELTA) b is generally used as a parameter
  • ⁇ UV resistance to discoloration> Using a QUV weathering tester (manufactured by Suga Test Instruments Co., Ltd., an ultraviolet fluorescent light weather meter FUV) with a 20 ⁇ 60 mm size cut out of a 1 mm thick polyurethane sheet and attached with an ultraviolet fluorescent light, 60 ° C., The conditions of relative humidity 10%, irradiation intensity 28 W / m 2 of ultraviolet light (wavelength 270 to 720 nm) and conditions of 50 ° C., relative humidity 95%, no ultraviolet irradiation were repeated every 4 hours for 48 hours for 6 cycles.
  • a QUV weathering tester manufactured by Suga Test Instruments Co., Ltd., an ultraviolet fluorescent light weather meter FUV
  • the ⁇ b (the amount of change of the b value) of the polyurethane sheet before and after the test was measured using a color difference meter (Color Ace MODEL TC-1, manufactured by Tokyo Denshoku Co., Ltd.).
  • (DELTA) b is generally made into the parameter
  • Example 4 Thereafter, using the injection molding machine, the polyurethane resin of Example 4 was used to obtain a smartphone cover having a thickness of 1 mm.
  • the thickness to which the oil-based magic ink permeated was 100 ⁇ m.
  • red artificial sweat obtained by adding 1 ml of red aqueous dye (trade name: IP-540R) to 100 ml of artificial sweat according to JIS-L0848 (2004) After immersion, it was washed with distilled water. The cut cross section was observed using a digital microscope (trade name: VHX-6000, manufactured by Keyence Corporation), and the thickness in which the red artificial sweat was soaked was measured and was 55 ⁇ mt.
  • red aqueous dye trade name: IP-540R
  • the polyurethane resin, the molded article, and the method for producing a polyurethane resin of the present invention can be suitably used, for example, in a cover of a smart device such as a smartphone, a tablet computer (tablet PC), or a slate computer (slate PC).
  • a smart device such as a smartphone, a tablet computer (tablet PC), or a slate computer (slate PC).

Abstract

In a reaction product of a polyisocyanate component including bis(isocyanatomethyl)cyclohexane and a polyol component including a low-molecular-weight polyol having a molecular weight of less than 400 and a carbonyl group-containing polyol having a number-average molecular weight of from 400 to 1200, the coagulation temperature measured by a differential scanning calorimeter is equal to or greater than the coagulation temperature T1 of the hard segment phase represented by the formula and equal to or less than the coagulation temperature T2 of the hard segment phase represented by the formula. Coagulation temperature T1 of hard segment (unit: °C): 80 + 1.2 x hard segment concentration (mass%). Hard segment coagulation temperature T2 (unit: °C): 115 + 1.2 x hard segment concentration (mass%)

Description

ポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法Polyurethane resin, molded article, and method for producing polyurethane resin
 本発明は、ポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法に関する。 The present invention relates to a polyurethane resin, a molded article, and a method for producing a polyurethane resin.
 熱可塑性ポリウレタン樹脂(TPU)は、一般に、ポリイソシアネート、高分子量ポリオールおよび低分子量ポリオールの反応により得られるゴム弾性体であって、ポリイソシアネートおよび低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネートおよび高分子量ポリオールの反応により形成されるソフトセグメントとを備えている。このような熱可塑性ポリウレタン樹脂を溶融成形することにより、ポリウレタン樹脂からなる成形品を得ることができる。 Thermoplastic polyurethane resin (TPU) is generally a rubber elastic body obtained by the reaction of polyisocyanate, high molecular weight polyol and low molecular weight polyol, and a hard segment formed by the reaction of polyisocyanate and low molecular weight polyol, and poly And a soft segment formed by the reaction of an isocyanate and a high molecular weight polyol. By melt-molding such a thermoplastic polyurethane resin, a molded article made of a polyurethane resin can be obtained.
 ポリウレタン樹脂として、具体的には、1,4-ビス(イソシアナトメチル)シクロヘキサンと、数平均分子量1000のポリカプロラクトンジオールおよび数平均分子量2000のポリカーボネートジオール(質量比1:1混合物)と、1,3-プロパンジオールとを反応させて得られるポリウレタンエラストマーが、提案されている(例えば、特許文献1(実施例74)参照。)。 Specific examples of polyurethane resins include 1,4-bis (isocyanatomethyl) cyclohexane, a polycaprolactone diol having a number average molecular weight of 1000, and a polycarbonate diol having a number average molecular weight of 2000 (weight ratio 1: 1 mixture), A polyurethane elastomer obtained by reacting with 3-propanediol has been proposed (see, for example, Patent Document 1 (Example 74)).
国際公開WO2015/046369号パンフレットInternational Publication WO2015 / 046369 Brochure
 一方、ポリウレタンエラストマーの成形品は、用途に応じて各種物性が要求され、例えば、スマートデバイスのカバーなどの分野においては、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性、耐変色性などを兼ね備えることが要求される。 On the other hand, molded articles of polyurethane elastomers are required to have various physical properties depending on the application. For example, in the field of covers for smart devices, molding stability (mold release property), transparency, mechanical properties, stain resistance, It is required to have bloom resistance, color fastness and the like.
 しかし、特許文献1に記載のポリウレタンエラストマーは、用途によっては、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性、耐変色性などが十分ではない場合がある。 However, depending on the application, the polyurethane elastomer described in Patent Document 1 may not have sufficient molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance, discoloration resistance, etc. .
 本発明は、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備えるポリウレタン樹脂、そのポリウレタン樹脂から得られる成形品、および、そのようなポリウレタン樹脂を製造できるポリウレタン樹脂の製造方法である。 The present invention relates to a polyurethane resin having both molding stability (mold removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance, a molded article obtained from the polyurethane resin, and such a polyurethane. It is a manufacturing method of the polyurethane resin which can manufacture resin.
 本発明[1]は、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、分子量400未満の低分子量ポリオール、および、数平均分子量400以上1200以下のカルボニル基含有ポリオールを含むポリオール成分との反応生成物であり、示差走査熱量計により測定した凝集温度が、以下の計算式で示すハードセグメント相の凝集温度T以上、かつ、以下の計算式で示すハードセグメント相の凝集温度T以下である、ポリウレタン樹脂を含んでいる。
ハードセグメント相の凝集温度T(単位:℃):80+1.2×ハードセグメント濃度(質量%)
ハードセグメント相の凝集温度T(単位:℃):115+1.2×ハードセグメント濃度(質量%)
 本発明[2]は、前記カルボニル基含有ポリオール中における、水酸基を含まない環状カルボニル化合物の濃度が、3質量%以下である、上記[1]に記載のポリウレタン樹脂を含んでいる。
The present invention [1] is a reaction of a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane with a low molecular weight polyol having a molecular weight of less than 400 and a polyol component containing a carbonyl group-containing polyol having a number average molecular weight of 400 to 1200. It is a product, and the aggregation temperature measured by a differential scanning calorimeter is not less than the aggregation temperature T 1 of the hard segment phase represented by the following formula, and not more than the aggregation temperature T 2 of the hard segment phase represented by the following formula Some contain polyurethane resin.
Aggregation temperature T 1 (unit: ° C.) of hard segment phase: 80 + 1.2 × hard segment concentration (mass%)
Aggregation temperature T 2 (unit: ° C.) of hard segment phase: 115 + 1.2 × hard segment concentration (mass%)
The present invention [2] contains the polyurethane resin according to the above [1], wherein the concentration of the cyclic carbonyl compound not containing a hydroxyl group in the carbonyl group-containing polyol is 3% by mass or less.
 本発明[3]は、前記ビス(イソシアナトメチル)シクロヘキサンが、1,4-ビス(イソシアナトメチル)シクロヘキサンを含む、上記[1]または[2]に記載のポリウレタン樹脂を含んでいる。 The present invention [3] comprises the polyurethane resin according to the above [1] or [2], wherein the bis (isocyanatomethyl) cyclohexane contains 1,4-bis (isocyanatomethyl) cyclohexane.
 本発明[4]は、前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、70モル%以上99モル%以下の割合でトランス体を含有する、上記[3]に記載のポリウレタン樹脂を含んでいる。 The present invention [4] contains the polyurethane resin according to the above [3], wherein the 1,4-bis (isocyanatomethyl) cyclohexane contains a trans form at a ratio of 70 mol% or more and 99 mol% or less There is.
 本発明[5]は、前記ビス(イソシアナトメチル)シクロヘキサンに対する1,4-ビス(イソシアナトメチル)シクロヘキサンの含有割合が、85質量%以上である、上記[3]または[4]に記載のポリウレタン樹脂を含んでいる。 The present invention [5] is described in the above-mentioned [3] or [4], wherein the content ratio of 1,4-bis (isocyanatomethyl) cyclohexane to the bis (isocyanatomethyl) cyclohexane is 85% by mass or more. Contains polyurethane resin.
 本発明[6]は、上記[1]~[5]のいずれか一項に記載のポリウレタン樹脂を含む、成形品を含んでいる。 The present invention [6] includes a molded article comprising the polyurethane resin according to any one of the above [1] to [5].
 本発明[7]は、スマートデバイスのカバーである、上記[6]に記載の成形品を含んでいる。 The present invention [7] includes the molded article according to the above-mentioned [6], which is a cover of a smart device.
 本発明[8]は、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、分子量400未満の低分子量ポリオール、および、数平均分子量400以上1200以下のカルボニル基含有ポリオールを含むポリオール成分とを反応させて一次生成物を得る反応工程と、前記一次生成物を熱処理してポリウレタン樹脂を得る熱処理工程とを備え、前記熱処理工程における熱処理条件が、50℃以上100℃以下、3日以上10日以下である、ポリウレタン樹脂の製造方法を含んでいる。 The present invention [8] reacts a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a molecular weight of less than 400, and a polyol component containing a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less. And a heat treatment step of heat treating the primary product to obtain a polyurethane resin, wherein the heat treatment conditions in the heat treatment step are 50 ° C. or more and 100 ° C. or less, 3 days or more and 10 days or less And a method of producing a polyurethane resin.
 本発明のポリウレタン樹脂およびその成形品は、原料(高分子量ポリオール)として、数平均分子量400以上1200以下のカルボニル基含有ポリオールが用いられている。
すなわち、高分子量ポリオールの数平均分子量が、過度に大きくならないよう制限されており、これにより、ポリウレタン樹脂のウレタン基濃度が向上されている。
In the polyurethane resin of the present invention and the molded article thereof, a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less is used as a raw material (high molecular weight polyol).
That is, the number average molecular weight of the high molecular weight polyol is limited so as not to be excessively large, whereby the urethane group concentration of the polyurethane resin is improved.
 そして、本発明のポリウレタン樹脂およびその成形品は、ハードセグメント相の凝集温度が適度に調整されており、その結果、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備えることができる。 And, the polyurethane resin of the present invention and the molded article thereof have the aggregation temperature of the hard segment phase adjusted appropriately, and as a result, the molding stability (mold release property), transparency, mechanical properties, stain resistance, resistance to staining It is possible to combine bloom resistance and color fastness.
 また、本発明のポリウレタン樹脂の製造方法によれば、特定のポリイソシアネート成分およびポリオール成分を反応させて得られた一次生成物を所定条件で熱処理する。そのため、得られるポリウレタン樹脂のハードセグメント相の凝集温度を適度に調整できる。その結果、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備えたポリウレタン樹脂を得ることができる。 Moreover, according to the method for producing a polyurethane resin of the present invention, the primary product obtained by reacting a specific polyisocyanate component and a polyol component is heat-treated under predetermined conditions. Therefore, the aggregation temperature of the hard segment phase of the resulting polyurethane resin can be adjusted appropriately. As a result, it is possible to obtain a polyurethane resin having both molding stability (mold release property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
 本発明のポリウレタン樹脂は、例えば、熱可塑性ポリウレタン樹脂であり、後述するように、ポリイソシアネート成分と、ポリオール成分とを反応させ、その後、熱処理(加熱養生)することによって得られる。 The polyurethane resin of the present invention is, for example, a thermoplastic polyurethane resin, and as described later, it is obtained by reacting a polyisocyanate component and a polyol component, and then heat treating (heating and curing).
 換言すれば、ポリウレタン樹脂は、ポリイソシアネート成分と、ポリオール成分との反応生成物である。 In other words, the polyurethane resin is a reaction product of a polyisocyanate component and a polyol component.
 ポリイソシアネート成分は、ビス(イソシアナトメチル)シクロヘキサンを、必須成分として含んでいる。 The polyisocyanate component contains bis (isocyanatomethyl) cyclohexane as an essential component.
 ビス(イソシアナトメチル)シクロヘキサンとしては、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサンが挙げられ、好ましくは、ポリウレタン樹脂の成形安定性(脱型性)、機械物性、耐汚染性および耐変色性の向上を図る観点から、対称構造である1,4-ビス(イソシアナトメチル)シクロヘキサンが挙げられる。 Examples of bis (isocyanatomethyl) cyclohexane include 1,3-bis (isocyanatomethyl) cyclohexane and 1,4-bis (isocyanatomethyl) cyclohexane. Preferably, the molding stability of the polyurethane resin (removal property) And 1,4-bis (isocyanatomethyl) cyclohexane having a symmetrical structure from the viewpoint of improving mechanical properties, stain resistance and discoloration resistance.
 すなわち、ビス(イソシアナトメチル)シクロヘキサンは、好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンを含有する。 That is, bis (isocyanatomethyl) cyclohexane preferably contains 1,4-bis (isocyanatomethyl) cyclohexane.
 ビス(イソシアナトメチル)シクロヘキサンに対する1,4-ビス(イソシアナトメチル)シクロヘキサンの含有割合は、例えば、50質量%以上、好ましくは、60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上、とりわけ好ましくは、85質量%以上であり、通常、100質量%以下である。 The content ratio of 1,4-bis (isocyanatomethyl) cyclohexane to bis (isocyanatomethyl) cyclohexane is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, more preferably Is 80% by mass or more, particularly preferably 85% by mass or more, and usually 100% by mass or less.
 1,4-ビス(イソシアナトメチル)シクロヘキサンには、シス-1,4-ビス(イソシアナトメチル)シクロヘキサン(以下、シス1,4体とする。)、および、トランス-,4-ビス(イソシアナトメチル)シクロヘキサン(以下、トランス1,4体とする。)の立体異性体があり、本発明では、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体を、例えば、60モル%以上、好ましくは、70モル%以上、より好ましくは、80モル%以上、さらに好ましくは、85モル%以上、例えば、99.8モル%以下、好ましくは、99モル%以下、より好ましくは、96モル%以下、さらに好ましくは、90モル%以下の割合で、含有している。換言すると、1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体およびシス1,4体の総量が100モル%であるため、シス1,4体を、例えば、0.2モル%以上、好ましくは、1モル%以上、より好ましくは、4モル%以上、さらに好ましくは、10モル%以上、例えば、40モル%以下、好ましくは、30モル%以下、より好ましくは、20モル%以下、さらに好ましくは、15モル%以下の割合で、含有している。 As 1,4-bis (isocyanatomethyl) cyclohexane, cis-1,4-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as cis-1,4 isomer) and trans-, 4-bis (isocyanate) are exemplified. There is a stereoisomer of natomethyl) cyclohexane (hereinafter referred to as trans 1,4 form), and in the present invention, 1,4-bis (isocyanatomethyl) cyclohexane is a trans 1,4 form, for example, 60 Mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, more preferably 85 mol% or more, for example, 99.8 mol% or less, preferably 99 mol% or less, more preferably , 96 mol% or less, more preferably 90 mol% or less. In other words, since 1,4-bis (isocyanatomethyl) cyclohexane is 100 mol% in total of trans 1,4 form and cis 1,4 form, cis 1,4 form is, for example, 0.2 mole. % Or more, preferably 1 mol% or more, more preferably 4 mol% or more, more preferably 10 mol% or more, for example, 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol % Or less, more preferably 15 mol% or less.
 トランス1,4体の含有割合が上記下限以上であれば、成形安定性、機械物性、耐汚染性および耐変色性の向上を図ることができる。また、トランス1,4体の含有割合が上記上限以下であれば、機械物性、透明性、耐ブルーム性および耐変色性の向上を図ることができる。 If the content ratio of the transformers 1 and 4 is at least the above lower limit, it is possible to improve the molding stability, mechanical properties, stain resistance and discoloration resistance. In addition, when the content ratio of the transformers 1 and 4 is less than or equal to the above upper limit, mechanical properties, transparency, bloom resistance, and discoloration resistance can be improved.
 ビス(イソシアナトメチル)シクロヘキサンは、例えば、国際公開WO2009/051114パンフレットに記載の方法などにより、製造することができる。 Bis (isocyanatomethyl) cyclohexane can be produced, for example, by the method described in International Publication WO2009 / 051114.
 また、ビス(イソシアナトメチル)シクロヘキサンは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。 In addition, bis (isocyanatomethyl) cyclohexane can also be prepared as a modified product, as long as the excellent effects of the present invention are not impaired.
 ビス(イソシアナトメチル)シクロヘキサンの変性体としては、例えば、ビス(イソシアナトメチル)シクロヘキサンの多量体(ダイマー(例えば、ウレトジオン変性体など)、トリマー(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体など)など)、ビウレット変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと水との反応により生成するビウレット変性体など)、アロファネート変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと1価アルコールまたは2価アルコールとの反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと3価アルコールとの反応より生成するポリオール変性体(付加体)など)、オキサジアジントリオン変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(例えば、ビス(イソシアナトメチル)シクロヘキサンの脱炭酸縮合反応により生成するカルボジイミド変性体など)などが挙げられる。 Examples of modified products of bis (isocyanatomethyl) cyclohexane include multimers of bis (isocyanatomethyl) cyclohexane (such as dimers (eg, uretdione modified products), trimers (eg, isocyanurate modified products, iminooxadiazine dione). Such as modified products), biuret modified products (for example, biuret modified products produced by reaction of bis (isocyanatomethyl) cyclohexane with water), allophanate modified products (for example, bis (isocyanatomethyl) cyclohexane and monovalent compounds Allophanate modified products produced by reaction with alcohol or dihydric alcohol), polyol modified products (eg polyol modified product produced by reaction of bis (isocyanatomethyl) cyclohexane with trihydric alcohol (adduct) etc.) Oxia It is produced by decarboxylation condensation reaction of a chondrion-modified product (eg, oxadiazinetrione produced by reaction of bis (isocyanatomethyl) cyclohexane with carbon dioxide gas), a carbodiimide-modified product (eg, bis (isocyanatomethyl) cyclohexane And carbodiimide-modified products).
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲で、その他のポリイソシアネート、例えば、脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートなどを、任意成分として含有することができる。 In addition, the polyisocyanate component may contain, as an optional component, other polyisocyanates such as aliphatic polyisocyanates, aromatic polyisocyanates, araliphatic polyisocyanates and the like, as long as the excellent effects of the present invention are not impaired. Can.
 脂肪族ポリイソシアネートとしては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-ウンデカメチレントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアナトメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω、ω’-ジイソシアネート、リジンイソシアナトメチルエステル、リジントリイソシアネート、2-イソシアナトエチル-2,6-ジイソシアネートヘキサノエート、2-イソシアナトプロピル-2,6-ジイソシアネートヘキサノエート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、2,6-ジイソシアネートメチルカプロエートなどが挙げられる。 Examples of aliphatic polyisocyanates include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate, nonamethylene diisocyanate, 2,2'-dimethylpentane diisocyanate , 2,2,4-trimethylhexane diisocyanate, decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecamethylene Triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyl Octane, 2,5,7-trimethyl-1,8-diisocyanato-5-isocyanatomethyloctane, bis (isocyanatoethyl) carbonate, bis (isocyanatoethyl) ether, 1,4-butylene glycol dipropyl ether-ω , Ω'-diisocyanate, lysine isocyanato methyl ester, lysine triisocyanate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, 2-isocyanatopropyl-2,6-diisocyanatohexanoate, bis (4- Isocyanate-n-butylidene) pentaerythritol, 2,6-diisocyanatomethyl caproate and the like.
 また、脂肪族ポリイソシアネートには、脂環族ポリイソシアネート(ビス(イソシアナトメチル)シクロヘキサンを除く。)が含まれる。 Aliphatic polyisocyanates also include alicyclic polyisocyanates (excluding bis (isocyanatomethyl) cyclohexane).
 脂環族ポリイソシアネート(ビス(イソシアナトメチル)シクロヘキサンを除く。)としては、例えば、イソホロンジイソシアネート(IPDI)、トランス,トランス-、トランス,シス-、およびシス,シス-ジシクロヘキシルメタンジイソシアネートおよびこれらの混合物(水添MDI)、1,3-または1,4-シクロヘキサンジイソシアネートおよびこれらの混合物、1,3-または1,4-ビス(イソシアナトエチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ダイマー酸ジイソシアネート、2,5-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン、その異性体である2,6-ジイソシアナトメチルビシクロ〔2,2,1〕-ヘプタン(NBDI)、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-6-イソシアナトメチルビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル3-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタン、2-イソシアナトメチル2-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)-ビシクロ-〔2,2,1〕-ヘプタンなどが挙げられる。 Alicyclic polyisocyanates (except bis (isocyanatomethyl) cyclohexane) include, for example, isophorone diisocyanate (IPDI), trans, trans-, trans, cis-, cis, cis-dicyclohexylmethane diisocyanate and mixtures thereof (Hydrogenated MDI), 1,3- or 1,4-cyclohexane diisocyanate and mixtures thereof, 1,3- or 1,4-bis (isocyanatoethyl) cyclohexane, methylcyclohexane diisocyanate, 2,2'-dimethyldicyclohexyl Methane diisocyanate, dimer acid diisocyanate, 2,5-diisocyanatomethylbicyclo [2,2,1] -heptane, its isomer 2,6-diisocyanatomethylbicyclo [2,2,1] -hepta (NBDI), 2-isocyanatomethyl 2- (3-isocyanatopropyl) -5-isocyanatomethylbicyclo- [2,2,1] -heptane, 2-isocyanatomethyl-2- (3-isocyanatopropyl) ) -6-Isocyanatomethylbicyclo- [2,2,1] -heptane, 2-isocyanatomethyl 3- (3-isocyanatopropyl) -5- (2-isocyanatoethyl) -bicyclo- [2,2] , 1] -heptane, 2-isocyanatomethyl 3- (3-isocyanatopropyl) -6- (2-isocyanatoethyl) -bicyclo- [2,2,1] -heptane, 2-isocyanatomethyl 2- (3-isocyanatopropyl) -5- (2-isocyanatoethyl) -bicyclo- [2,2,1] -heptane, 2-isocyanatomethyl 2- (3-isocyanatopro ) -6- (2-isocyanatoethyl) - bicyclo - [2,2,1] - heptane, and the like.
 芳香族ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネートおよび2,6-トリレンジイソシアネート、ならびに、これらトリレンジイソシアネートの異性体混合物(TDI)、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネートおよび2,2’-ジフェニルメタンジイソシアネート、ならびに、これらジフェニルメタンジイソシアネートの任意の異性体混合物(MDI)、トルイジンジイソシアネート(TODI)、パラフェニレンジイソシアネート、ナフタレンジイソシアネート(NDI)などが挙げられる。 Examples of aromatic polyisocyanates include 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, and isomer mixtures of these tolylene diisocyanates (TDI), 4,4'-diphenylmethane diisocyanate, 2,4 These include '-diphenylmethane diisocyanate and 2,2'-diphenylmethane diisocyanate, and any isomer mixture of these diphenylmethane diisocyanates (MDI), toluidine diisocyanate (TODI), paraphenylene diisocyanate, naphthalene diisocyanate (NDI) and the like.
 芳香脂肪族ポリイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)などが挙げられる。 As the aromatic aliphatic polyisocyanate, for example, 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), etc. Can be mentioned.
 これらその他のポリイソシアネートは、単独使用または2種類以上併用することができる。 These other polyisocyanates can be used alone or in combination of two or more.
 また、その他のポリイソシアネートは、本発明の優れた効果を阻害しない範囲において、変性体として調製することもできる。 Moreover, other polyisocyanates can also be prepared as a modified body in the range which does not inhibit the outstanding effect of this invention.
 その他のポリイソシアネートの変性体としては、例えば、その他のポリイソシアネートの多量体(ダイマー、トリマーなど)、ビウレット変性体、アロファネート変性体、ポリオール変性体、オキサジアジントリオン変性体、カルボジイミド変性体などが挙げられる。 Examples of modified products of other polyisocyanates include multimers (dimers, trimers, etc.) of other polyisocyanates, biuret modified products, allophanate modified products, polyol modified products, oxadiazine trione modified products, carbodiimide modified products etc. It can be mentioned.
 その他のポリイソシアネートを含有する場合の含有割合は、ポリイソシアネート成分の総量に対して、例えば、50質量%以下、好ましくは、30質量%以下、より好ましくは、20質量%以下、さらに好ましくは、15質量%以下、とりわけ好ましくは、10質量%以下である。 The content ratio in the case of containing other polyisocyanate is, for example, 50% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, more preferably, based on the total amount of the polyisocyanate component. It is at most 15% by mass, particularly preferably at most 10% by mass.
 ポリイソシアネート成分として、好ましくは、ビス(イソシアナトメチル)シクロヘキサンを単独で用いる。より好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンを単独で用いる。 As the polyisocyanate component, preferably, bis (isocyanatomethyl) cyclohexane is used alone. More preferably, 1,4-bis (isocyanatomethyl) cyclohexane is used alone.
 本発明において、ポリオール成分は、分子中に水酸基を2つ以上含有する化合物である。 In the present invention, the polyol component is a compound containing two or more hydroxyl groups in the molecule.
 ポリオール成分は、分子量400未満の低分子量ポリオールと、分子量400以上1200以下のカルボニル基含有ポリオールとを含み、好ましくは、本質的に、分子量400未満の低分子量ポリオールと、分子量400以上1200以下のカルボニル基含有ポリオールとからなる。 The polyol component includes a low molecular weight polyol having a molecular weight of less than 400 and a carbonyl group-containing polyol having a molecular weight of 400 to 1200, preferably, essentially a low molecular weight polyol having a molecular weight of less than 400 and a carbonyl having a molecular weight of 400 to 1200 It consists of a group containing polyol.
 なお、ポリオール成分に分子量分布がある場合には、数平均分子量が採用される。また、このような場合において、数平均分子量は、GPC法による測定や、ポリオール成分の各成分の水酸基価および処方により決定することができる(以下同様)。 When the polyol component has a molecular weight distribution, a number average molecular weight is employed. Moreover, in such a case, the number average molecular weight can be determined by measurement by GPC method, the hydroxyl value of each component of the polyol component, and the formulation (the same applies hereinafter).
 低分子量ポリオールとしては、例えば、分子中に水酸基を2つ以上有し、分子量50以上400未満の化合物(単量体)が挙げられる。具体的には、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール(1,4-ブタンジオール、1,4-BD)、1,3-ブチレングリコール、1,2-ブチレングリコールなどのC2~4アルカンジオール、例えば、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物、1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールAおよびその水添物、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-ベンゼンジオール、1,3-ベンゼンジオール、1,4-ベンゼンジオールなどの2価アルコール、例えば、グリセリン、トリメチロールプロパン、トリイソプロパノールアミンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコール、例えば、キシリトールなどの5価アルコール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトールなどの6価アルコール、例えば、ペルセイトールなどの7価アルコール、例えば、ショ糖などの8価アルコールなどの多価アルコールなどが挙げられる。 Examples of low molecular weight polyols include compounds (monomers) having two or more hydroxyl groups in the molecule and having a molecular weight of 50 or more and less than 400. Specifically, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol (1,4-butanediol, 1,4-BD), 1,3-butylene glycol, 1, C2-4 alkanediols such as 2-butylene glycol, for example, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2,2-trimethyl Pentanediol, 3,3-dimethylolheptane, alkane (C7-20) diol, 1,3- or 1,4-cyclohexanedimethanol and mixtures thereof, 1,3- or 1,4-cyclohexanediol and their Mixture, 1,4-dihydroxy-2-butene, 2,6-dimethyl-1-octene 3,8-diol, bisphenol A and its hydrogenated product, dihydric alcohols such as diethylene glycol, triethylene glycol, dipropylene glycol, 1,2-benzenediol, 1,3-benzenediol, 1,4-benzenediol, etc. For example, trihydric alcohols such as glycerin, trimethylolpropane and triisopropanolamine, for example, tetrahydric alcohols such as tetramethylolmethane (pentaerythritol) and diglycerin, for example, pentahydric alcohols such as xylitol, such as sorbitol and mannitol, Hexahydric alcohols such as alithol, iditol, dalcitol, altolitol, inositol, dipentaerythritol etc., eg, a tetrahydric alcohol such as perseitol, eg, an octahydric alcohol such as sucrose And polyhydric alcohols such Lumpur and the like.
 また、低分子量ポリオールとしては、上記の多価アルコールを開始剤として、炭素数2~3のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド)を、上記分子量となるように付加反応させたポリオキシアルキレンポリオール(ランダムおよび/またはブロック共重合体を含む。)なども挙げられる。 Moreover, as a low molecular weight polyol, a polyoxyalkylene polyol in which an alkylene oxide (ethylene oxide, propylene oxide) having a carbon number of 2 to 3 is addition-reacted to have the above molecular weight using the above polyhydric alcohol as an initiator Also included are random and / or block copolymers.
 これら低分子量ポリオールは、単独使用または2種類以上併用することができる。 These low molecular weight polyols can be used alone or in combination of two or more.
 低分子量ポリオールとして、好ましくは、2価アルコール、より好ましくは、C2~C4アルカンジオール、さらに好ましくは、1,4-ブタンジオールが挙げられる。 The low molecular weight polyol preferably includes a dihydric alcohol, more preferably a C2 to C4 alkanediol, still more preferably 1,4-butanediol.
 低分子量ポリオールが上記のものであれば、機械物性に優れた成形品(後述)を得ることができる。 When the low molecular weight polyol is as described above, a molded article (described later) having excellent mechanical properties can be obtained.
 低分子量ポリオールの分子量は、例えば、50以上、好ましくは、70以上であり、400未満、好ましくは、300以下である。 The molecular weight of the low molecular weight polyol is, for example, 50 or more, preferably 70 or more, and less than 400, preferably 300 or less.
 低分子量ポリオールの分子量が上記範囲であれば、機械物性に優れた成形品(後述)を得ることができる。 If the molecular weight of the low molecular weight polyol is in the above range, a molded article (described later) excellent in mechanical properties can be obtained.
 カルボニル基含有ポリオールは、分子中に1つ以上のカルボニル基と、2つ以上の水酸基とを有する高分子量化合物(好ましくは、重合体)である。 The carbonyl group-containing polyol is a high molecular weight compound (preferably a polymer) having one or more carbonyl groups and two or more hydroxyl groups in the molecule.
 カルボニル基含有ポリオールとして、具体的には、ポリエステルポリオール、ポリカーボネートポリオールなどのカルボニル基含有マクロポリオールが挙げられる。 Specific examples of the carbonyl group-containing polyol include carbonyl group-containing macro polyols such as polyester polyols and polycarbonate polyols.
 ポリエステルポリオールとしては、例えば、上記した低分子量ポリオールと多塩基酸とを、公知の条件下、反応させて得られる重縮合物が挙げられる。 Examples of polyester polyols include polycondensates obtained by reacting the above-described low molecular weight polyols with polybasic acids under known conditions.
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタール酸、アジピン酸、1,1-ジメチル-1,3-ジカルボキシプロパン、3-メチル-3-エチルグルタール酸、アゼライン酸、セバシン酸などの飽和脂肪族ジカルボン酸、例えば、マレイン酸、フマル酸、イタコン酸などの不飽和脂肪族ジカルボン酸、例えば、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸、例えば、ヘキサヒドロフタル酸などの脂環族ジカルボン酸、例えば、ダイマー酸、水添ダイマー酸、ヘット酸などのその他のカルボン酸、および、それらカルボン酸から誘導される酸無水物、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2-アルキル(C12~C18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸、さらには、これらのカルボン酸などから誘導される酸ハライド、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライドなどが挙げられる。 Examples of polybasic acids include oxalic acid, malonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, 3-methyl-3-ethylglutaric acid Saturated aliphatic dicarboxylic acids such as azelaic acid and sebacic acid; unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; eg orthophthalic acid, isophthalic acid, terephthalic acid, toluenedicarboxylic acid, naphthalenedicarboxylic acid Aromatic dicarboxylic acids such as acids, alicyclic dicarboxylic acids such as hexahydrophthalic acid, for example, dimer acids, hydrogenated dimer acids, other carboxylic acids such as hetonic acid, and derivatives thereof Anhydrides such as oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride And 2-alkyl anhydride (C12 to C18) succinic acid, tetrahydrophthalic anhydride, trimellitic anhydride, and acid halides derived from these carboxylic acids and the like, for example, oxalic acid dichloride, adipic acid dichloride, sebacic acid Dichloride etc. are mentioned.
 また、ポリエステルポリオールとして、例えば、植物由来のポリエステルポリオール、具体的には、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12-ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油ベースポリエステルポリオールなどが挙げられる。 Further, as polyester polyols, for example, plant-derived polyester polyols, specifically, hydroxyl group-containing vegetable oil fatty acids (for example, castor oil fatty acids containing licinoleic acid, 12-hydroxystearic acid, using the low molecular weight polyol described above as an initiator) Vegetable oil base polyester polyol etc. which are obtained by carrying out the condensation reaction of hydroxycarboxylic acids, such as hydrogenated castor oil fatty acid etc. which contain C), under well-known conditions.
 また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン類や、例えば、L-ラクチド、D-ラクチドなどのラクチド類などを開環重合して得られる、ポリカプロラクトンポリオール、ポリバレロラクトンポリオール、さらには、それらに上記2価アルコールを共重合したものなどのラクトンベースポリエステルポリオールなどが挙げられる。 Further, as the polyester polyol, for example, lactones such as ε-caprolactone, γ-valerolactone and the like, for example, L-lactide, D- and the like, using the above-mentioned low molecular weight polyol (preferably dihydric alcohol) as an initiator Polycaprolactone polyols, polyvalerolactone polyols, and lactone-based polyester polyols such as those obtained by copolymerizing the above-mentioned dihydric alcohol, which are obtained by ring-opening polymerization of lactides and the like such as lactide and the like, and the like can be mentioned.
 ポリカーボネートポリオールとしては、例えば、上記した低分子量ポリオール(好ましくは、上記2価アルコール)を開始剤とするエチレンカーボネートまたはフェニルカーボネートの開環重合物、例えば、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオールや1,6-ヘキサンジオールなどの2価アルコールと、開環重合物とを共重合した非晶性ポリカーボネートポリオールなどが挙げられる。 As the polycarbonate polyol, for example, a ring-opening polymer of ethylene carbonate or phenyl carbonate having the above-mentioned low molecular weight polyol (preferably, the above-mentioned dihydric alcohol) as an initiator, for example, 1,4-butanediol, 1,5- Amorphous polycarbonate polyols obtained by copolymerizing a ring-opening polymer with a dihydric alcohol such as pentanediol, 3-methyl-1,5-pentanediol or 1,6-hexanediol may, for example, be mentioned.
 これらカルボニル基含有ポリオールは、単独使用または2種類以上併用することができる。 These carbonyl group-containing polyols can be used alone or in combination of two or more.
 カルボニル基含有ポリオールを用いることにより、カルボニル基を含有しないポリオール(例えば、ポリエーテルポリオールなどのカルボニル基不含ポリオール)を用いる場合に比べ、耐汚染性などの各種物性を向上させることができる。 By using a carbonyl group-containing polyol, various physical properties such as contamination resistance can be improved as compared to the case of using a polyol not containing a carbonyl group (for example, a carbonyl group-free polyol such as polyether polyol).
 より具体的には、カルボニル基含有ポリオールに代えて、カルボニル基を含有しないポリオール(例えば、ポリエーテルポリオールなどのカルボニル基不含ポリオール)を用いる場合、ポリウレタン樹脂の表面に付着した汗や油脂などの汚れがポリウレタン樹脂の内部に染み込むなど、耐汚染性(耐染み込み性)に劣る。そのため、耐汚染性(耐染み込み性)が要求される用途(例えば、スマートデバイス用途など)において、不具合を生じる。 More specifically, when using a polyol not containing a carbonyl group (for example, a carbonyl group-free polyol such as a polyether polyol) in place of the carbonyl group-containing polyol, such as sweat or oil and fat attached to the surface of the polyurethane resin It is inferior to the contamination resistance (soiling resistance), for example, the dirt penetrates into the inside of the polyurethane resin. Therefore, problems occur in applications (eg, smart device applications, etc.) where contamination resistance (sink resistance) is required.
 これに対して、カルボニル基含有ポリオールを用いると、耐汚染性(耐染み込み性)に優れるポリウレタン樹脂を得ることができ、耐汚染性(耐染み込み性)が要求される各種用途(例えば、スマートデバイス用途など)に好適に用いることができる。 On the other hand, when a carbonyl group-containing polyol is used, a polyurethane resin having excellent contamination resistance (soiling resistance) can be obtained, and various applications (eg, smart devices) for which contamination resistance (sinking resistance) is required And the like).
 また、カルボニル基含有ポリオールを用いることにより、さらに、成形安定性、機械物性、耐ブルーム性および耐変色性の向上を図ることもできる。 Further, by using a carbonyl group-containing polyol, it is possible to further improve the molding stability, the mechanical properties, the bloom resistance and the color fastness.
 また、カルボニル基含有ポリオールとして、機械強度、耐汚染性(耐染み込み性)および耐変色性の向上を図る観点から、さらに好ましくは、ポリエステルポリオールが挙げられ、とりわけ好ましくは、低分子量ポリオールと多塩基酸との重縮合物や、ポリカプロラクトンポリオールが挙げられる。 Further, as the carbonyl group-containing polyol, in view of improving mechanical strength, stain resistance (sinking resistance) and discoloration resistance, polyester polyol is more preferably mentioned, and particularly preferably low molecular weight polyol and polybasic acid. Examples include polycondensates with acids and polycaprolactone polyols.
 カルボニル基含有ポリオールの数平均分子量は、とりわけ成形安定性および機械物性の観点から、上記した通り、400以上であり、好ましくは、600以上であり、また、とりわけ耐ブルーム性、耐汚染性および耐変色性の観点から、上記した通り、1200以下であり、好ましくは、1100以下、より好ましくは、1000以下である。 The number average molecular weight of the carbonyl group-containing polyol is 400 or more, preferably 600 or more, as described above, particularly from the viewpoint of molding stability and mechanical properties, and, among others, bloom resistance, stain resistance and resistance From the viewpoint of color-changing properties, as described above, it is 1200 or less, preferably 1100 or less, more preferably 1000 or less.
 カルボニル基含有ポリオールの数平均分子量が上記範囲であれば、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備えることができる。 When the number average molecular weight of the carbonyl group-containing polyol is in the above-mentioned range, it is possible to combine molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
 また、カルボニル基含有ポリオールの数平均分子量は、成形安定性および機械強度の向上を図る観点から、さらに好ましくは、700以上、とりわけ好ましくは、800以上である。 The number average molecular weight of the carbonyl group-containing polyol is more preferably 700 or more, particularly preferably 800 or more from the viewpoint of improving molding stability and mechanical strength.
 また、カルボニル基含有ポリオールの数平均分子量は、耐汚染性および耐変色性の向上を図る観点から、さらに好ましくは、900以下、とりわけ好ましくは、800以下である。 The number average molecular weight of the carbonyl group-containing polyol is more preferably 900 or less, particularly preferably 800 or less, from the viewpoint of improving stain resistance and color fastness.
 また、カルボニル基含有ポリオールの数平均分子量は、単一種類のカルボニル基含有ポリオールの数平均分子量を示し、複数種類のカルボニル基含有ポリオールの混合物の数平均分子量を示すものではない。 The number average molecular weight of the carbonyl group-containing polyol indicates the number average molecular weight of a single type of carbonyl group-containing polyol and does not indicate the number average molecular weight of a mixture of multiple types of carbonyl group-containing polyols.
 また、本発明の優れた効果を阻害しない範囲において、数平均分子量400以上1200以下のカルボニル基含有ポリオールとともに、その他のカルボニル基含有ポリオール(数平均分子量400未満のカルボニル基含有ポリオール、および、数平均分子量が1200を超過するカルボニル基含有ポリオール)を使用することもできる。 In addition, other carbonyl group-containing polyols (carbonyl group-containing polyols having a number average molecular weight of less than 400, and a number average molecular weight together with a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less) within the range not inhibiting the excellent effects of the present invention. Carbonyl group-containing polyols having a molecular weight of more than 1200 can also be used.
 その他のカルボニル基含有ポリオールは、数平均分子量400以上1200以下のカルボニル基含有ポリオール100質量部に対して、例えば、10質量部以下、好ましくは、5質量部以下、より好ましくは、1質量部以下であり、とりわけ好ましくは、0質量部である。 The other carbonyl group-containing polyol is, for example, 10 parts by mass or less, preferably 5 parts by mass or less, more preferably 1 part by mass or less with respect to 100 parts by mass of the carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less. Especially preferably, it is 0 mass part.
 また、カルボニル基含有ポリオールは、水酸基を含まない環状カルボニル化合物(以下、「水酸基不含環状カルボニル化合物」と称する場合がある。)を含有する場合がある。 In addition, the carbonyl group-containing polyol may contain a cyclic carbonyl compound containing no hydroxyl group (hereinafter sometimes referred to as a "hydroxyl-free cyclic carbonyl compound").
 水酸基不含環状カルボニル化合物は、分子中にカルボニル基を含有し、かつ、水酸基を有さない環状有機化合物であって、例えば、環状エステル(例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン、例えば、L-ラクチド、D-ラクチドなどのラクチドなど)、環状アミド(例えば、β-ラクタム、γ-ラクタム、δ-ラクタムなどのラクタムなど)などが挙げられる。 The hydroxyl group-free cyclic carbonyl compound is a cyclic organic compound containing a carbonyl group in the molecule and having no hydroxyl group, and examples thereof include cyclic esters (eg, lactones such as ε-caprolactone, γ-valerolactone, etc.) For example, L-lactide, lactide such as D-lactide and the like), cyclic amide (eg, lactam such as β-lactam, γ-lactam, δ-lactam and the like) and the like can be mentioned.
 これら水酸基を含まない環状カルボニル化合物は、単独であってもよく、また、2種類以上であってもよい。 These cyclic carbonyl compounds containing no hydroxyl group may be used alone or in combination of two or more.
 水酸基不含環状カルボニル化合物は、例えば、上記したポリエステルポリオールを低分子量ポリオールと多塩基酸との反応により製造するときに、副反応生成物として得られ、ポリエステルポリオールに含有される場合がある。 The hydroxyl-free cyclic carbonyl compound may be obtained as a side reaction product and may be contained in the polyester polyol, for example, when the above-mentioned polyester polyol is produced by the reaction of a low molecular weight polyol and a polybasic acid.
 また、水酸基不含環状カルボニル化合物は、例えば、上記したポリカプロラクトンポリオールをラクトン類の開環重合により製造するときに、開環重合反応することなく残存する原料成分(またはその多量体)として、ポリカプロラクトンポリオールに含有される場合がある。 In addition, when a hydroxyl-free cyclic carbonyl compound is produced, for example, by the above-described polycaprolactone polyol by ring-opening polymerization of lactones, it is possible to use poly as a raw material component (or its multimer) remaining without ring-opening polymerization reaction. It may be contained in caprolactone polyol.
 また、水酸基不含環状カルボニル化合物は、例えば、上記のポリカーボネートポリオールを、エチレンカーボネートやフェニルカーボネートと、低分子量ポリオールとの反応によって製造するときに、副反応生成物として得られ、ポリカーボネートポリオールに含有される場合がある。 The hydroxyl-free cyclic carbonyl compound is obtained, for example, as a side reaction product when the above polycarbonate polyol is produced by the reaction of ethylene carbonate or phenyl carbonate with a low molecular weight polyol, and is contained in the polycarbonate polyol. May be
 また、カルボニル基含有ポリオール中における、水酸基不含環状カルボニル化合物の濃度は、例えば、ストリッピング法、蒸留法、抽出法など、公知の精製法によって調整することができる。 Further, the concentration of the hydroxyl group-free cyclic carbonyl compound in the carbonyl group-containing polyol can be adjusted by a known purification method such as a stripping method, a distillation method, or an extraction method.
 カルボニル基含有ポリオール中における、水酸基不含環状カルボニル化合物の濃度は、例えば、5質量%以下、好ましくは、3質量%以下、より好ましくは、2.5質量%以下、さらに好ましくは、2質量%以下であり、例えば、0質量%以上、好ましくは、0質量%を超過し、より好ましくは、0.1質量%以上、さらに好ましくは、0.3質量%以上である。 The concentration of the hydroxyl group-free cyclic carbonyl compound in the carbonyl group-containing polyol is, for example, 5% by mass or less, preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass Or less, for example, 0% by mass or more, preferably more than 0% by mass, more preferably 0.1% by mass or more, and still more preferably 0.3% by mass or more.
 カルボニル基含有ポリオール中における、水酸基不含環状カルボニル化合物が上記範囲であれば、とりわけ、機械物性および耐ブルーム性の向上を図ることができ、さらに、成形安定性(脱型性)、透明性、耐汚染性および耐変色性の向上を図ることができる。 If the hydroxyl group-free cyclic carbonyl compound in the carbonyl group-containing polyol is in the above-mentioned range, the mechanical physical properties and the bloom resistance can be particularly improved, and further, the molding stability (removal property), transparency, Contamination resistance and discoloration resistance can be improved.
 なお、カルボニル基含有ポリオールが水酸基不含環状カルボニル化合物を含む場合には、そのカルボニル基含有ポリオールは、カルボニル基含有ポリオール組成物である。 When the carbonyl group-containing polyol contains a hydroxyl group-free cyclic carbonyl compound, the carbonyl group-containing polyol is a carbonyl group-containing polyol composition.
 ポリオール成分において、低分子量ポリオールおよびカルボニル基含有ポリオールの含有割合は、それらの総量に対して、カルボニル基含有ポリオールが、例えば、5モル%以上、好ましくは、7モル%以上、より好ましくは、10モル%以上、さらに好ましくは、15モル%以上であり、例えば、75モル%以下、好ましくは、65モル%以下、より好ましくは、50モル%以下である。また、低分子量ポリオールが、例えば、25モル%以上、好ましくは、35モル%以上、より好ましくは、50モル%以上であり、例えば、95モル%以下、好ましくは、93モル%以下、より好ましくは、90モル%以下、さらに好ましくは、85モル%以下である。 In the polyol component, the content ratio of the low molecular weight polyol and the carbonyl group-containing polyol is, for example, 5 mol% or more, preferably 7 mol% or more, more preferably 10 with respect to the total amount thereof. It is at least 15 mol%, for example, at most 75 mol%, preferably at most 65 mol%, more preferably at most 50 mol%. The low molecular weight polyol is, for example, 25 mol% or more, preferably 35 mol% or more, more preferably 50 mol% or more, and for example, 95 mol% or less, preferably 93 mol% or less, more preferably Is 90 mol% or less, more preferably 85 mol% or less.
 また、ポリオール成分は、その他のポリオール(低分子量ポリオールおよびカルボニル基含有ポリオールを除くポリオール)を含有することができる。その他のポリオールとしては、例えば、ポリエーテルポリオール、ポリオレフィンポリオールなどが挙げられる。 The polyol component can also contain other polyols (polyols excluding low molecular weight polyols and polyols containing carbonyl groups). Examples of other polyols include polyether polyols and polyolefin polyols.
 その他のポリオールは、ポリオール成分の総量に対して、例えば、10質量%以下、好ましくは、5質量%以下、より好ましくは、1質量%以下であり、とりわけ好ましくは、0質量%である。 The other polyol is, for example, 10% by mass or less, preferably 5% by mass or less, more preferably 1% by mass or less, and particularly preferably 0% by mass, based on the total amount of the polyol components.
 そして、ポリウレタン樹脂は、以下に示すように、反応工程および熱処理工程を備えるポリウレタン樹脂の製造方法によって、得られる。 And a polyurethane resin is obtained by the manufacturing method of a polyurethane resin provided with a reaction process and a heat treatment process as shown below.
 反応工程は、上記のポリイソシアネート成分と上記のポリオール成分とを反応させて、一次生成物(熱処理前の反応生成物)を得る工程である。 The reaction step is a step of reacting the above-mentioned polyisocyanate component and the above-mentioned polyol component to obtain a primary product (reaction product before heat treatment).
 上記各成分(ポリイソシアネート成分、ポリオール成分)を反応させるには、例えば、ワンショット法やプレポリマー法などの公知の方法が採用される。各種物性の向上の観点から、好ましくは、プレポリマー法が採用される。 In order to make each said component (polyisocyanate component, polyol component) react, well-known methods, such as a one-shot method and a prepolymer method, are employ | adopted, for example. From the viewpoint of improving various physical properties, preferably, a prepolymer method is employed.
 具体的には、プレポリマー法では、まず、ポリイソシアネート成分とマクロポリオール(カルボニル基含有ポリオール)とを反応させて、イソシアネート基末端プレポリマーを合成する(プレポリマー合成工程)。 Specifically, in the prepolymer method, first, a polyisocyanate component and a macro polyol (carbonyl group-containing polyol) are reacted to synthesize an isocyanate group-terminated prepolymer (prepolymer synthesis step).
 プレポリマー合成工程では、ポリイソシアネート成分と、マクロポリオール(カルボニル基含有ポリオール)とを、例えば、バルク重合や溶液重合などの重合方法により反応させる。 In the prepolymer synthesis step, the polyisocyanate component and the macropolyol (carbonyl group-containing polyol) are reacted by a polymerization method such as bulk polymerization or solution polymerization.
 バルク重合では、例えば、窒素気流下において、ポリイソシアネート成分およびマクロポリオール(カルボニル基含有ポリオール)を、反応温度が、例えば、50℃以上、例えば、250℃以下、好ましくは、200℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。 In bulk polymerization, for example, under a nitrogen stream, the polyisocyanate component and the macropolyol (carbonyl group-containing polyol) are reacted at a reaction temperature of, for example, 50.degree. C. or more, for example, 250.degree. C. or less, preferably 200.degree. The reaction is performed for 0.5 hours or more, for example, 15 hours or less.
 溶液重合では、有機溶剤に、ポリイソシアネート成分およびマクロポリオール(カルボニル基含有ポリオール)を加えて、反応温度が、例えば、50℃以上、例えば、120℃以下、好ましくは、100℃以下で、例えば、0.5時間以上、例えば、15時間以下反応させる。 In solution polymerization, a polyisocyanate component and a macropolyol (carbonyl group-containing polyol) are added to an organic solvent, and the reaction temperature is, for example, 50 ° C. or more, for example, 120 ° C. or less, preferably 100 ° C. or less, for example The reaction is performed for 0.5 hours or more, for example, 15 hours or less.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n-ヘキサン、n-ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, for example, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate and isobutyl acetate, for example, n- Aliphatic hydrocarbons such as hexane, n-heptane, octane, etc., for example, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane etc., for example, aromatic hydrocarbons such as toluene, xylene, ethylbenzene etc., eg methyl cellosolve acetate , Ethyl cellosolve acetate, methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, 3-methyl-3-meth Glycol ether esters such as cyclohexyl acetate, ethyl 3-ethoxy propionate, etc., for example, ethers such as diethyl ether, tetrahydrofuran, dioxane etc., such as methyl chloride, methylene chloride, chloroform, carbon tetrachloride, methyl bromide, Halogenated aliphatic hydrocarbons such as methylene iodide and dichloroethane, for example, polar non-protons such as N-methylpyrrolidone, dimethylformamide, N, N'-dimethylacetamide, dimethylsulfoxide and hexamethylphosphonylamide Be
 また、上記の重合反応では、必要に応じて、例えば、アミン類や有機金属化合物などの公知のウレタン化触媒を添加することができる。 Moreover, in said polymerization reaction, well-known urethanization catalysts, such as amines and an organometallic compound, can be added as needed, for example.
 アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス-(2-ジメチルアミノエチル)エーテル、N-メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類などが挙げられる。 As amines, for example, tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, for example, quaternary ammonium salts such as tetraethylhydroxyammonium, for example, imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
 有機金属化合物としては、例えば、酢酸錫、オクチル酸錫(オクチル酸スズ)、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクタン酸ビスマス(オクチル酸ビスマス)、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられ、好ましくは、オクチル酸スズ、オクチル酸ビスマスが挙げられる。 As the organic metal compound, for example, tin acetate, tin octylate (tin octylate), tin oleate, tin laurate, dibutyl tin diacetate, dimethyl tin dilaurate, dibutyl tin dilaurate, dibutyl tin di mercaptide, dibutyl tin maleate, dibutyl tin Organotin compounds such as tin dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, dibutyltin dichloride, for example, organic lead compounds such as lead octanoate and lead naphthenate, for example, organic nickel compounds such as nickel naphthenate, For example, organic cobalt compounds such as cobalt naphthenate, for example, organic copper compounds such as copper octenate, for example, organic bismuth compounds such as bismuth octanoate (bismuth octylate), bismuth neodecanoate and the like can be mentioned. Tin octylate, octyl bismuth.
 さらに、ウレタン化触媒として、例えば、炭酸カリウム、酢酸カリウム、オクチル酸カリウムなどのカリウム塩が挙げられる。 Furthermore, as the urethanization catalyst, for example, potassium salts such as potassium carbonate, potassium acetate, potassium octylate and the like can be mentioned.
 これらウレタン化触媒は、単独使用または2種類以上併用することができる。 These urethanization catalysts can be used alone or in combination of two or more.
 ウレタン化触媒の添加割合は、ポリイソシアネート成分およびマクロポリオール(カルボニル基含有ポリオール)との総量10000質量部に対して、例えば、0.001質量部以上、好ましくは、0.01質量部以上であり、例えば、1質量部以下、好ましくは、0.5質量部以下である。 The addition ratio of the urethanization catalyst is, for example, 0.001 parts by mass or more, preferably 0.01 parts by mass or more, with respect to the total 10000 parts by mass of the polyisocyanate component and the macropolyol (carbonyl group-containing polyol). For example, it is 1 part by mass or less, preferably 0.5 part by mass or less.
 また、上記重合反応においては、未反応のポリイソシアネート成分や、有機溶剤を用いた場合には有機溶剤を、例えば、蒸留や抽出などの公知の除去手段により除去することができる。 In the polymerization reaction, the unreacted polyisocyanate component and the organic solvent when an organic solvent is used can be removed by a known removal means such as distillation or extraction.
 プレポリマー合成工程において、各成分の配合割合は、マクロポリオール(カルボニル基含有ポリオール)中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、1.3以上、好ましくは、1.5以上であり、例えば、20以下、好ましくは、15以下、より好ましくは、10以下、さらに好ましくは、8以下である。 In the prepolymer synthesis step, the compounding ratio of each component is, for example, 1.3 or more as the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the polyisocyanate component to the hydroxyl group in the macropolyol (carbonyl group-containing polyol) Preferably, it is 1.5 or more, for example, 20 or less, preferably 15 or less, more preferably 10 or less, still more preferably 8 or less.
 より具体的には、プレポリマー合成工程における各成分の配合割合は、マクロポリオール(カルボニル基含有ポリオール)100質量部に対して、ポリイソシアネート成分が、例えば、5質量部以上、好ましくは、10質量部以上、より好ましくは、15質量部以上であり、例えば、150質量部以下、好ましくは、100質量部以下、より好ましくは、90質量部以下である。 More specifically, the blending ratio of each component in the prepolymer synthesis step is, for example, 5 parts by mass or more, preferably 10 parts by mass of the polyisocyanate component with respect to 100 parts by mass of the macro polyol (carbonyl group-containing polyol). It is 15 parts by mass or more, for example, 150 parts by mass or less, preferably 100 parts by mass or less, more preferably 90 parts by mass or less.
 そして、この方法では、イソシアネート基含有率が、例えば、1.0質量%以上、好ましくは、3.0質量%以上、より好ましくは、5.0質量%以上、機械強度および耐汚染性の観点から、さらに好ましくは、8.0質量%以上、例えば、30.0質量%以下、好ましくは、19.0質量%以下、より好ましくは、16.0質量%以下、透明性の観点から、さらに好ましくは、12.0質量%以下に達するまで上記成分を反応させる。これにより、イソシアネート基末端プレポリマーを得ることができる。 And, in this method, the isocyanate group content is, for example, 1.0% by mass or more, preferably 3.0% by mass or more, more preferably 5.0% by mass or more, from the viewpoint of mechanical strength and stain resistance Or more, more preferably 8.0% by mass or more, for example, 30.0% by mass or less, preferably 19.0% by mass or less, more preferably 16.0% by mass or less, from the viewpoint of transparency Preferably, the above components are reacted until reaching 12.0% by mass or less. Thereby, an isocyanate group end prepolymer can be obtained.
 なお、イソシアネート基含有量(イソシアネート基含有率)は、ジ-n-ブチルアミンによる滴定法や、FT-IR分析などの公知の方法によって求めることができる。 The isocyanate group content (isocyanate group content) can be determined by a known method such as titration with di-n-butylamine or FT-IR analysis.
 次いで、この方法では、上記により得られたイソシアネート基末端プレポリマーと、低分子量ポリオールとを反応させて、ポリイソシアネート成分とポリオール成分との一次生成物を得る(鎖伸長工程)。 Next, in this method, the isocyanate group-terminated prepolymer obtained as described above is reacted with a low molecular weight polyol to obtain a primary product of a polyisocyanate component and a polyol component (chain elongation step).
 すなわち、この方法において、低分子量ポリオールは、鎖伸長剤である。 That is, in this method, the low molecular weight polyol is a chain extender.
 そして、鎖伸長工程では、イソシアネート基末端プレポリマーと、低分子量ポリオールとを、例えば、上記したバルク重合や上記した溶液重合などの重合方法により反応させる。 Then, in the chain extension step, the isocyanate group-terminated prepolymer and the low molecular weight polyol are reacted by a polymerization method such as bulk polymerization described above or solution polymerization described above.
 反応温度は、例えば、室温以上、好ましくは、50℃以上、例えば、200℃以下、好ましくは、150℃以下であり、反応時間が、例えば、5分以上、好ましくは、1時間以上、例えば、72時間以下、好ましくは、48時間以下である。 The reaction temperature is, for example, room temperature or more, preferably 50 ° C. or more, for example, 200 ° C. or less, preferably 150 ° C. or less, and the reaction time is, for example, 5 minutes or more, preferably 1 hour or more, for example 72 hours or less, preferably 48 hours or less.
 また、各成分の配合割合は、低分子量ポリオール中の水酸基に対する、イソシアネート基末端プレポリマー中のイソシアネート基の当量比(イソシアネート基/水酸基)として、例えば、0.75以上、好ましくは、0.9以上、例えば、1.3以下、好ましくは、1.1以下である。 In addition, the compounding ratio of each component is, for example, 0.75 or more, preferably 0.9, as the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the isocyanate group-terminated prepolymer to the hydroxyl group in the low molecular weight polyol. The above, for example, 1.3 or less, preferably 1.1 or less.
 より具体的には、鎖伸長工程における各成分の配合割合は、イソシアネート基末端プレポリマー100質量部に対して、低分子量ポリオールが、例えば、1.0質量部以上、好ましくは、2.0質量部以上、より好ましくは、3.0質量部以上であり、例えば、50質量部以下、好ましくは、40質量部以下、より好ましくは、30質量部以下である。 More specifically, the blending ratio of each component in the chain elongation step is, for example, 1.0 parts by mass or more, preferably 2.0 parts by mass of low molecular weight polyol with respect to 100 parts by mass of isocyanate group-terminated prepolymer. It is at least 3.0 parts by mass, more preferably at most 50 parts by mass, preferably at most 40 parts by mass, more preferably at most 30 parts by mass.
 また、鎖伸長工程において、得られるポリウレタン樹脂のハードセグメント濃度(後述)を調整するために、低分子量ポリオールの他に、マクロポリオール(カルボニル基含有ポリオール)を、適宜の割合で配合することもできる。 Further, in the chain elongation step, in order to adjust the hard segment concentration (described later) of the polyurethane resin to be obtained, in addition to the low molecular weight polyol, a macropolyol (carbonyl group-containing polyol) can be blended at an appropriate ratio. .
 さらに、この反応においては、必要に応じて、上記したウレタン化触媒を添加することができる。ウレタン化触媒は、イソシアネート基末端プレポリマーおよび/または低分子量ポリオールに配合することができ、また、それらの混合時に別途配合することもできる。 Furthermore, in this reaction, the above-mentioned urethanization catalyst can be added as needed. The urethanization catalyst can be blended into the isocyanate group-terminated prepolymer and / or the low molecular weight polyol, or can be blended separately when mixing them.
 また、上記の一次生成物を得る方法として、ワンショット法を採用する場合には、ポリイソシアネート成分と、ポリオール成分(マクロポリオール(カルボニル基含有ポリオール)および低分子量ポリオールを含む)とを、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(イソシアネート基/水酸基)が、例えば、0.9以上、好ましくは、0.95以上、より好ましくは、0.98以上、例えば、1.2以下、好ましくは、1.1以下、より好ましくは、1.08以下となる割合で、同時に配合して撹拌混合する。 When the one-shot method is adopted as a method for obtaining the above primary product, a polyisocyanate component, a polyol component (including a macropolyol (carbonyl group-containing polyol) and a low molecular weight polyol), and a polyol component The equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in the polyisocyanate component to the hydroxyl group in the mixture is, for example, 0.9 or more, preferably 0.95 or more, more preferably 0.98 or more, for example, 1 .2 or less, preferably 1.1 or less, more preferably 1.08 or less, and simultaneously compounded and stirred.
 また、この撹拌混合は、例えば、不活性ガス(例えば、窒素)雰囲気下、反応温度が、例えば、40℃以上、好ましくは、100℃以上、例えば、280℃以下、好ましくは、260℃以下で、反応時間が、例えば、30秒以上1時間以下で実施する。 The stirring and mixing may be performed, for example, under an inert gas (for example, nitrogen) atmosphere, at a reaction temperature of, for example, 40.degree. C. or more, preferably 100.degree. C. or more, for example, 280.degree. The reaction time is, for example, 30 seconds or more and 1 hour or less.
 また、撹拌混合時には、必要により、上記したウレタン化触媒や有機溶剤を、適宜の割合で添加することができる。 Moreover, at the time of stirring and mixing, the above-mentioned urethanization catalyst and the organic solvent can be added at an appropriate ratio, as needed.
 熱処理工程は、上記の一次生成物を熱処理して二次生成物(熱処理後の反応生成物、すなわち、反応生成物であるポリウレタン樹脂)を得る工程である。 The heat treatment step is a step of heat treating the primary product to obtain a secondary product (a reaction product after heat treatment, ie, a polyurethane resin which is a reaction product).
 熱処理工程では、上記の反応工程で得られた一次生成物を、所定の熱処理温度で、所定の熱処理期間静置することにより熱処理した後、必要により乾燥させる。 In the heat treatment step, the primary product obtained in the above reaction step is heat-treated by leaving it for a predetermined heat treatment period at a predetermined heat treatment temperature, and then dried if necessary.
 熱処理温度としては、例えば、50℃以上、好ましくは、60℃以上、より好ましくは、70℃以上であり、例えば、100℃以下、好ましくは、90℃以下である。 The heat treatment temperature is, for example, 50 ° C. or more, preferably 60 ° C. or more, more preferably 70 ° C. or more, and for example, 100 ° C. or less, preferably 90 ° C. or less.
 熱処理温度が上記下限未満である場合、成形安定性(脱型性)に劣り、さらに、機械強度や耐汚染性にも劣る。 When the heat treatment temperature is less than the above-mentioned lower limit, it is inferior to molding stability (mold removability), and also inferior to mechanical strength and stain resistance.
 また、熱処理温度が上記上限を超過する場合、透明性、耐ブルーム性、耐変色性などに劣る。 Moreover, when the heat processing temperature exceeds the said upper limit, it is inferior to transparency, bloom resistance, discoloration resistance, etc.
 一方、熱処理温度が上記範囲であれば、成形安定性(脱型性)、透明性、耐ブルーム性および耐変色性に優れ、さらに、機械物性および耐汚染性を兼ね備えることができる。 On the other hand, when the heat treatment temperature is in the above-mentioned range, the molding stability (removal property), the transparency, the bloom resistance and the color fastness are excellent, and furthermore, the mechanical properties and the stain resistance can be combined.
 熱処理期間としては、例えば、3日以上、好ましくは、4日以上、より好ましくは、5日以上、さらに好ましくは、6日以上であり、例えば、10日以下、好ましくは、9日以下、より好ましくは、8日以下である。 The heat treatment period is, for example, 3 days or more, preferably 4 days or more, more preferably 5 days or more, more preferably 6 days or more, for example, 10 days or less, preferably 9 days or less, more Preferably, it is 8 days or less.
 熱処理期間が上記下限未満である場合、成形安定性(脱型性)に劣り、さらに、機械強度や耐汚染性にも劣る。 When the heat treatment period is less than the above-mentioned lower limit, it is inferior to molding stability (mold removability), and also inferior to mechanical strength and stain resistance.
 また、熱処理期間が上記上限を超過する場合、透明性、耐ブルーム性、耐変色性などに劣る。 In addition, when the heat treatment period exceeds the above-mentioned upper limit, it is inferior to transparency, bloom resistance, discoloration resistance and the like.
 一方、熱処理期間が上記範囲であれば、成形安定性(脱型性)、透明性、耐ブルーム性および耐変色性に優れ、さらに、機械物性および耐汚染性を兼ね備えることができる。 On the other hand, when the heat treatment period is in the above-mentioned range, the molding stability (removal property), the transparency, the bloom resistance and the color fastness are excellent, and furthermore, the mechanical properties and the stain resistance can be combined.
 これにより、ポリウレタン樹脂を得ることができる。 Thereby, a polyurethane resin can be obtained.
 なお、ポリウレタン樹脂には、必要に応じて、公知の添加剤、例えば、酸化防止剤、耐熱安定剤、紫外線吸収剤、耐光安定剤、加水分解防止剤(カルボジイミド化合物など)、さらには、可塑剤、ブロッキング防止剤、離型剤、顔料、染料(ブルーイング剤など)、滑剤(脂肪酸アマイド系滑剤など)、フィラー、防錆剤、充填剤などを添加することができる。これら添加剤は、各成分の混合時、合成時または合成後に添加することができる。 The polyurethane resin may, if necessary, be a known additive, such as an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a hydrolysis inhibitor (such as a carbodiimide compound), and a plasticizer. Antiblocking agents, mold release agents, pigments, dyes (such as bluing agents), lubricants (such as fatty acid amide lubricants), fillers, rust inhibitors, fillers and the like can be added. These additives can be added during mixing of the components, during synthesis or after synthesis.
 酸化防止剤としては、特に制限されず、特に制限されず、公知の酸化防止剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、フェノール系酸化防止剤、ヒンダードフェノール系酸化防止剤などが挙げられる。 The antioxidant is not particularly limited and is not particularly limited, and examples thereof include known antioxidants (for example, described in a catalog made by BASF Japan), and more specifically, for example, phenolic antioxidants, hindered And dephenolic antioxidants.
 耐熱安定剤としては、特に制限されず、公知の耐熱安定剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、リン系加工熱安定剤、ラクトン系加工熱安定剤、イオウ系加工熱安定剤などが挙げられる。 The heat-resistant stabilizer is not particularly limited, and examples thereof include known heat-resistant stabilizers (for example, described in a catalog made by BASF Japan). More specifically, for example, phosphorus-based processing heat stabilizers, lactone-based processing heat stability Agents, sulfur processing heat stabilizers and the like.
 紫外線吸収剤としては、特に制限されず、公知の紫外線吸収剤(例えば、BASFジャパン製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などが挙げられる。 The UV absorber is not particularly limited, and examples thereof include known UV absorbers (for example, described in catalogs manufactured by BASF Japan). More specifically, for example, benzotriazole-based UV absorbers, triazine-based UV absorbers And benzophenone-based ultraviolet absorbers.
 耐光安定剤としては、特に制限されず、公知の耐光安定剤(例えば、ADEKA製カタログに記載)が挙げられ、より具体的には、例えば、ベンゾエート系光安定剤、ヒンダードアミン系光安定剤などが挙げられる。 The light stabilizers are not particularly limited, and include known light stabilizers (for example, described in the catalog made by ADEKA), and more specifically, for example, benzoate-based light stabilizers, hindered amine-based light stabilizers, etc. It can be mentioned.
 これら添加剤は、それぞれポリウレタン樹脂に対して、例えば、0.001質量%以上、好ましくは、0.01質量%以上、例えば、3.0質量%以下、好ましくは、2.0質量%以下となる割合で、添加される。 Each of these additives is, for example, 0.001% by mass or more, preferably 0.01% by mass or more, for example, 3.0% by mass or less, preferably 2.0% by mass or less, based on the polyurethane resin. Is added at a rate of
 そして、このようなポリウレタン樹脂の製造方法では、ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、分子量400未満の低分子量ポリオール、および、数平均分子量400以上1200以下のカルボニル基含有ポリオールを含むポリオール成分とを反応させ、得られた一次生成物を所定条件で熱処理する。 And in such a polyurethane resin production method, it contains a polyisocyanate component containing bis (isocyanatomethyl) cyclohexane, a low molecular weight polyol having a molecular weight of less than 400, and a carbonyl group-containing polyol having a number average molecular weight of 400 to 1200. The polyol component is reacted, and the obtained primary product is heat-treated under predetermined conditions.
 そのため、このような製造方法により得られるポリウレタン樹脂は、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備えることができる。 Therefore, the polyurethane resin obtained by such a production method can have both molding stability (mold releasability), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
 具体的には、上記のポリウレタン樹脂は、ポリイソシアネート成分および低分子量ポリオールの反応により形成されるハードセグメントと、ポリイソシアネート成分およびカルボニル基含有ポリオール(数平均分子量400以上1200以下のカルボニル基含有ポリオール)の反応により形成されるソフトセグメントとを備えている。 Specifically, the above-mentioned polyurethane resin comprises a hard segment formed by the reaction of a polyisocyanate component and a low molecular weight polyol, a polyisocyanate component and a carbonyl group-containing polyol (carbonyl group-containing polyol having a number average molecular weight of 400 to 1200). And a soft segment formed by the reaction of
 ポリウレタン樹脂のハードセグメント濃度は、例えば、5質量%以上、好ましくは、10質量%以上、より好ましくは、15質量%以上、さらに好ましくは、20質量%以上、とりわけ好ましくは、25質量%以上であり、例えば、55質量%以下、好ましくは、50質量%以下、より好ましくは、45質量%以下、さらに好ましくは、40質量%以下、とりわけ好ましくは、35質量%以下である。 The hard segment concentration of the polyurethane resin is, for example, 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and particularly preferably 25% by mass or more For example, the content is 55% by mass or less, preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
 ポリウレタン樹脂のハードセグメント濃度が上記範囲内であれば、得られる成形品(後述)の成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を向上させることができる。 If the hard segment concentration of the polyurethane resin is within the above range, the molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance of the resulting molded article (described later) are improved. It can be done.
 なお、ポリウレタン樹脂のハードセグメント(ポリイソシアネート成分と低分子量ポリオールとの反応により形成されるハードセグメント)濃度は、例えば、各成分の配合割合(仕込)から算出することができる(後述する実施例を参照。)。 The concentration of the hard segment of the polyurethane resin (the hard segment formed by the reaction of the polyisocyanate component and the low molecular weight polyol) can be calculated, for example, from the blending ratio (preparation) of each component (Examples described later) reference.).
 また、このポリウレタン樹脂において、ポリウレタン樹脂の凝集温度は、ポリウレタン樹脂中のハードセグメント相の凝集温度に相当し、以下の計算式で示すハードセグメント相の凝集温度T以上、かつ、以下の計算式で示すハードセグメント相の凝集温度T以下である。
ハードセグメント相の凝集温度T(単位:℃):80+1.2×ハードセグメント濃度(質量%)
ハードセグメント相の凝集温度T(単位:℃):115+1.2×ハードセグメント濃度(質量%)
 凝集温度が上記下限(T)以上であれば、ハードセグメント相の凝集力が過度に弱くないため、成形安定性(脱型性)および機械物性に優れる。
Further, in this polyurethane resin, the aggregation temperature of the polyurethane resin corresponds to the aggregation temperature of the hard segment phase in the polyurethane resin, and the aggregation temperature T 1 or more of the hard segment phase shown by the following calculation formula, and the following calculation formula Or lower than the aggregation temperature T 2 of the hard segment phase shown by
Aggregation temperature T 1 (unit: ° C.) of hard segment phase: 80 + 1.2 × hard segment concentration (mass%)
Aggregation temperature T 2 (unit: ° C.) of hard segment phase: 115 + 1.2 × hard segment concentration (mass%)
When the aggregation temperature is at least the above lower limit (T 1 ), the cohesion of the hard segment phase is not excessively weak, so that the molding stability (removal property) and mechanical properties are excellent.
 また、凝集温度が上記上限(T)以下であれば、ハードセグメント相の凝集力が過度に高くないため、透明性および耐変色性、さらには、耐ブルーム性に優れる。 In addition, when the aggregation temperature is equal to or lower than the upper limit (T 2 ), the cohesion of the hard segment phase is not excessively high, and therefore, the transparency and the color fastness, and the bloom resistance are excellent.
 そのため、凝集温度が上記範囲であるポリウレタン樹脂は、成形安定性(脱型性)、透明性、機械物性、耐ブルーム性および耐変色性に優れる。 Therefore, the polyurethane resin whose aggregation temperature is in the above-mentioned range is excellent in molding stability (removal property), transparency, mechanical properties, blooming resistance and discoloration resistance.
 なお、上記の計算式は、理論式ではなく、各種物性に優れたポリウレタン樹脂の凝集温度を測定して求めた経験式(実験式)である。 In addition, said calculation formula is not a theoretical formula but is an empirical formula (experimental formula) calculated | required by measuring the aggregation temperature of the polyurethane resin excellent in various physical properties.
 具体的には、ポリウレタン樹脂の凝集温度は、例えば、75℃以上、好ましくは、90℃以上、より好ましくは、100℃以上、さらに好ましくは、105℃以上、特に好ましくは、110℃以上であり、例えば、200℃以下、好ましくは、180℃以下、より好ましくは、170℃以下、さらに好ましくは、160℃以下、特に好ましくは、155℃以下である。 Specifically, the aggregation temperature of the polyurethane resin is, for example, 75 ° C. or more, preferably 90 ° C. or more, more preferably 100 ° C. or more, still more preferably 105 ° C. or more, particularly preferably 110 ° C. or more For example, the temperature is 200 ° C. or less, preferably 180 ° C. or less, more preferably 170 ° C. or less, still more preferably 160 ° C. or less, particularly preferably 155 ° C. or less.
 ポリウレタン樹脂の凝集温度が上記下限以上であれば、成形安定性(脱型性)および機械物性を向上させることができ、また、ポリウレタン樹脂の凝集温度が上記上限以下であれば、透明性および耐変色性、さらには、耐ブルーム性の向上を図ることもできる。 If the aggregation temperature of the polyurethane resin is not less than the above lower limit, the molding stability (removal property) and the mechanical properties can be improved, and if the aggregation temperature of the polyurethane resin is not more than the above upper limit, the transparency and the resistance It is also possible to improve the discoloration resistance and further the bloom resistance.
 なお、ポリウレタン樹脂の凝集温度は、実施例の条件に準拠した示差走査熱量測定(DSC測定)により測定することができる。 The aggregation temperature of the polyurethane resin can be measured by differential scanning calorimetry (DSC measurement) in accordance with the conditions of the examples.
 さらに詳細に説明すると、上記のポリウレタン樹脂は、数平均分子量400以上1200以下のカルボニル基含有ポリオールを原料として使用するため、カルボニル基を含有しないポリオールを用いる場合などに比べ、耐汚染性(耐染み込み性)の向上を図ることができる。 More specifically, since the above polyurethane resin uses a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less as a raw material, it has stain resistance (smear resistance) compared to the case of using a polyol not containing a carbonyl group. Can be improved.
 さらに、上記のポリウレタン樹脂は、数平均分子量400以上1200以下のカルボニル基含有ポリオールを原料として使用する一方、数平均分子量が1200を超過するポリオールを原料として使用しないか、その使用量が、本発明の優れた効果を阻害しない程度の少量である。そのため、一次生成物のハードセグメント相の凝集力が比較的低くなり、その結果、成形安定性や機械物性が比較的低くなる。 Furthermore, while the above polyurethane resin uses a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1,200 or less as a raw material, a polyol having a number average molecular weight exceeding 1,200 is not used as a raw material, Is a small amount that does not inhibit the excellent effect of. Therefore, the cohesion of the hard segment phase of the primary product becomes relatively low, and as a result, the molding stability and mechanical properties become relatively low.
 これに対して、上記のように熱処理することにより、ハードセグメント相の凝集力を向上させ、成形安定性および機械物性の向上を図ることができる。 On the other hand, by performing the heat treatment as described above, the cohesion of the hard segment phase can be improved, and the molding stability and mechanical properties can be improved.
 しかし、熱処理をする場合にも、その熱処理条件によっては、ハードセグメント相の凝集力が過度に高くなり、透明性、耐変色性、耐ブリード性などの低下を惹起する場合がある。 However, even when heat treatment is performed, depending on the heat treatment conditions, the cohesion of the hard segment phase may become excessively high, which may cause a decrease in transparency, discoloration resistance, bleed resistance and the like.
 これに対して、熱処理条件を上記の範囲に調整することにより、ハードセグメント相の凝集力を適度に向上させ、透明性、耐変色性、耐ブリード性の低下を抑制できる。 On the other hand, by adjusting the heat treatment conditions to the above-mentioned range, it is possible to appropriately improve the cohesion of the hard segment phase and to suppress the decrease of the transparency, the color fastness and the bleeding resistance.
 このように、ハードセグメント相の凝集力を適度に調整することにより、成形安定性(脱型性)、透明性、機械物性、耐ブルーム性および耐変色性を兼ね備えるポリウレタン樹脂を得ることができる。 As described above, by appropriately adjusting the cohesion of the hard segment phase, it is possible to obtain a polyurethane resin having both molding stability (removal property), transparency, mechanical properties, bloom resistance and discoloration resistance.
 なお、ハードセグメント相の凝集力は、凝集温度に対応する。そのため、ハードセグメント相の凝集温度が上記範囲(T以上T以下)であれば、成形安定性(脱型性)、透明性、機械物性、耐ブルーム性および耐変色性に優れるポリウレタン樹脂を得ることができる。 The cohesion of the hard segment phase corresponds to the aggregation temperature. Therefore, if the aggregation temperature is above the range of the hard segment phase (T 1 or T 2 or less), molding stability (mold releasability), transparency, mechanical properties, resistance to bloom and discoloration resistance in excellent polyurethane resin You can get it.
 このようにして、上記のポリウレタン樹脂は、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備えることができる。 In this way, the above-mentioned polyurethane resin can have both molding stability (removal property), transparency, mechanical properties, stain resistance, bloom resistance and discoloration resistance.
 また、本発明は、上記したポリウレタン樹脂を含む成形品を含んでいる。成形品は、ポリウレタン樹脂から成形される。 The present invention also includes a molded article containing the above-described polyurethane resin. The molded article is molded from a polyurethane resin.
 成形品は、例えば、上記のポリウレタン樹脂を、公知の成形方法、例えば、特定の金型を用いた熱圧縮成形および射出成形や、シート巻き取り装置を用いた押出成形、例えば、溶融紡糸成形などの熱成形加工方法により、例えば、ペレット状、板状、繊維状、ストランド状、フィルム状、シート状、パイプ状、中空状、箱状などの各種形状に成形することにより、得ることができる。 The molded product may be, for example, the above-mentioned polyurethane resin by a known molding method, for example, heat compression molding and injection molding using a specific mold, or extrusion molding using a sheet winding device, for example, melt spin molding According to the thermoforming processing method of the present invention, it can be obtained, for example, by forming into various shapes such as pellet, plate, fiber, strand, film, sheet, pipe, hollow and box.
 そして、得られた成形品は、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備えることができる。 And the obtained molded article can be combined with molding stability (mold-removal property), transparency, mechanical property, stain resistance, bloom resistance and discoloration resistance.
 また、上記した説明では、本発明のポリウレタン樹脂およびその製造方法は、熱可塑性ポリウレタン樹脂およびその製造方法であるが、本発明のポリウレタン樹脂およびその製造方法は、熱硬化性ポリウレタン樹脂およびその製造方法にも適用できる。 In the above description, the polyurethane resin of the present invention and the method for producing the same are a thermoplastic polyurethane resin and a method for producing the same, but the polyurethane resin of the present invention and a method for producing the same are a thermosetting polyurethane resin and a method for producing the same It can be applied to
 熱硬化性ポリウレタン樹脂およびその製造方法では、例えば、上記のイソシアネート基末端プレポリマーと、2価アルコール(1,4-ブタンジオールなど)および3価アルコール(トリメチロールプロパンなど)、さらに、公知の芳香族ジアミンなどとを反応させ(反応工程)、例えば、注型成形した後、得られた成形物を、上記の条件で熱処理する(熱処理工程)。これにより、熱硬化性ポリウレタン樹脂、および、その熱硬化性ポリウレタン樹脂からなる成形品を得ることができる。 In the thermosetting polyurethane resin and the method for producing the same, for example, the above-mentioned isocyanate group-terminated prepolymer, a dihydric alcohol (such as 1,4-butanediol) and a trihydric alcohol (such as trimethylolpropane), and further known fragrances Group diamine or the like (reaction step), for example, after cast molding, the obtained molded product is heat-treated under the above conditions (heat treatment step). Thereby, a molded article comprising a thermosetting polyurethane resin and the thermosetting polyurethane resin can be obtained.
 そして、このような熱硬化性ポリウレタン樹脂およびその製造方法、さらに、その熱硬化性ポリウレタン樹脂からなる成形品も、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性を兼ね備える。 And, such a thermosetting polyurethane resin and a method for producing the same, and a molded article made of the thermosetting polyurethane resin are also suitable for molding stability (mold releasability), transparency, mechanical properties, stain resistance, and bloom resistance. Combination of resistance and color fastness.
 そのため、成形品は、上記の各種物性が要求される分野において好適に用いることができ、とりわけ、スマートデバイスのカバーとして、好適に用いることができる。 Therefore, the molded article can be suitably used in the field where the various physical properties described above are required, and in particular, can be suitably used as a cover of a smart device.
 より具体的には、スマートデバイスは、多機能型の情報処理端末であり、例えば、スマートフォン、タブレットコンピュータ(タブレットPC)、スレートコンピュータ(スレートPC)などが挙げられる。 More specifically, the smart device is a multifunctional information processing terminal, and examples thereof include a smartphone, a tablet computer (tablet PC), and a slate computer (slate PC).
 このようなスマートデバイスは、通常、樹脂製のカバーを着脱可能に形成されており、また、そのようなカバーには、成形安定性(脱型性)、透明性、機械物性、耐汚染性、耐ブルーム性および耐変色性が要求される。そのため、上記のポリウレタン樹脂の成形品が、スマートデバイスのカバーとして、好適に用いられる。 Such a smart device is usually formed so as to be able to remove a resin cover, and such a cover has mold stability (removal property), transparency, mechanical properties, stain resistance, Bloom resistance and discoloration resistance are required. Therefore, the molded article of the above-mentioned polyurethane resin is suitably used as a cover of a smart device.
 また、成形品は、上記の用途の他、工業的に広範に使用可能であり、具体的には、例えば、透明性硬質プラスチック、コーティング材料、粘着剤、接着剤、防水材、ポッティング剤、インク、バインダー、フィルム(例えば、ペイントプロテクションフィルム、チッピングフィルムなどのフィルム)、シート、バンド(例えば、時計バンドなどのバンド、例えば、自動車用伝動ベルト、各種産業用搬送ベルト(コンベアベルト)などのベルト)、チューブ(例えば、医療用チューブ、カテーテルなどの部品の他、エアーチューブ、油圧チューブ、電線チューブなどのチューブ、例えば、消防ホースなどのホース)、ブレード、スピーカー、センサー類、高輝度用LED封止剤、有機EL部材、太陽光発電部材、ロボット部材、アンドロイド部材、ウェアラブル部材、衣料用品、衛生用品、化粧用品、食品包装部材、スポーツ用品、レジャー用品、医療用品、介護用品、住宅用部材、音響部材、照明部材、シャンデリア、外灯、シール材、封止材、コルク、パッキン、防振・制震・免震部材、防音部材、日用品、雑貨、クッション、寝具、応力吸収材、応力緩和材、自動車の内外装部品、鉄道部材、航空機部材、光学部材、OA機器用部材、雑貨表面保護部材、半導体封止材、自己修復材料、健康器具、メガネレンズ、玩具、ケーブルシース、ワイヤーハーネス、電気通信ケーブル、自動車配線、コンピューター配線、カールコードなど工業用品、シート、フィルムなどの介護用品、スポーツ用品、レジャー用品、各種雑貨、防振・免振材料、衝撃吸収材、光学材料、導光フィルムなどのフィルム、自動車部品、表面保護シート、化粧シート、転写シート、半導体保護テープなどのテープ部材、ゴルフボール部材、テニスラケット用ストリング、農業用フィルム、壁紙、防曇付与剤、不織布、マットレスやソファーなどの家具用品、ブラジャーや肩パッドなどの衣料用品、紙おむつ、ナプキン、メディカルテープの緩衝材などの医療用品、化粧品、洗顔パフや枕などのサニタリー用品、靴底(アウトソール)、ミッドソール、カバー材などの靴用品、さらには、車両用のパッドやクッションなどの体圧分散用品、ドアトリム、インスツルメントパネル、ギアノブなどの手で触れる部材、電気冷蔵庫や建築物の断熱材、ショックアブソーバーなどの衝撃吸収材、充填材、車両のハンドル、自動車内装部材、自動車外装部材などの車両用品、化学機械研磨(CMP)パッドなどの半導体製造用品などにおいて、好適に用いられる。 In addition, the molded articles can be widely used industrially besides the above-mentioned applications, and specifically, for example, transparent hard plastics, coating materials, adhesives, adhesives, waterproof materials, potting agents, inks , Binders, films (for example, films such as paint protection films, chipping films), sheets, bands (for example, bands such as watch bands, for example, transmission belts for automobiles, belts such as conveyor belts for various industries (conveyor belts)) , Tubes (for example, medical tubes, catheters, etc., air tubes, hydraulic tubes, tubes such as electric wire tubes, hoses such as fire hoses), blades, speakers, sensors, LED seals for high brightness Agent, organic EL member, photovoltaic member, robot member, android Materials, wearables, clothing products, sanitary products, cosmetic products, food packaging materials, sports products, leisure products, medical products, care products, housing components, acoustic components, lighting components, chandeliers, exterior lights, sealing materials, sealing materials , Cork, packing, anti-vibration / seismic / vibration-isolating member, sound-insulation member, household goods, sundries, cushions, bedding, stress-absorbing material, stress-relieving material, interior / exterior parts of cars, railway members, aircraft members, optical members, OA Equipment members, sundries surface protection members, semiconductor sealants, self-healing materials, health appliances, eyeglass lenses, toys, cable sheaths, wire harnesses, telecommunications cables, automobile wires, computer wires, industrial products such as curl cords, sheets, Nursing products such as films, sports goods, leisure goods, various miscellaneous goods, vibration and vibration isolation materials, shock absorbers, optical materials, light guide films Which films, auto parts, surface protection sheets, decorative sheets, transfer sheets, tape members such as semiconductor protection tapes, golf ball members, tennis racquet strings, agricultural films, wallpaper, antifogging agents, non-woven fabrics, mattresses, sofas, etc. Furniture supplies, clothing products such as bra and shoulder pads, medical supplies such as disposable diapers, napkins, medical tape cushioning materials, cosmetics, sanitary products such as facial puffs and pillows, soles (outsole), midsoles, cover materials Shoe products such as, body pressure dispersion products such as pads and cushions for vehicles, door trims, instrument panels, gear knobs and other touching members, shock absorbers such as electric refrigerator and building insulation, shock absorbers etc. Absorbent material, filler, handle of vehicle, automobile interior member, automobile exterior member, etc. The present invention is suitably used in the following vehicle articles, semiconductor manufacturing articles such as chemical mechanical polishing (CMP) pads, and the like.
 さらには、上記の成形品は、被覆材(フィルム、シート、ベルト、ワイヤー、電線、金属製の回転機器、ホイール、ドリルなどの被覆材)、糸や繊維(チューブ、タイツ、スパッツ、スポーツウエア、水着などに用いられる糸や複合繊維)、押出成形用途(テニス、バトミントンなどのガットおよびその収束材などの押出成形用途)、マイクロペレット化などによるパウダー形状でのスラッシュ成形品、人造皮革、表皮、シート、被覆ロール(鉄鋼などの被覆ロール)、シーラント、ローラー、ギアー、ボール、バットのカバーあるいはコア材(ゴルフボール、バスケットボール、テニスボール、バレーボール、ソフトボール、バットなどのカバーあるいはコア材(これらはポリウレタン樹脂を発泡成形した形態であってもよい。))、マット、スキー用品、ブーツ、テニス用品、グリップ(ゴルフクラブや二輪車などのグリップ)、ラックブーツ、ワイパー、シートクッション部材、介護製品のフィルム、3Dプリンター成形品、繊維強化材料(炭素繊維、リグニン、ケナフ、ナノセルロースファイバー、ガラス繊維などの繊維の強化材料)、安全ゴーグル、サングラス、メガネフレーム、スキーゴーグル、水泳ゴーグル、コンタクトレンズ、ガスアシストの発泡成形品、ショックアブソーバー、CMP研磨パッド、ダンバー、ベアリング、ダストカバー、切削バルブ、チッピングロール、高速回転ローラー、タイヤ、時計、ウエアブルバンドなど、繰返し伸縮、圧縮変形などによる回復性や耐摩耗が要求される用途において、好適に使用される。 Furthermore, the above-mentioned molded articles can be coated materials (films, sheets, belts, wires, electric wires, metal rotating devices, wheels, drills, etc.), yarns and fibers (tubes, tights, spats, sportswear, Yarns and composite fibers used in swimwear etc., extrusion applications (extinution applications for tennis, batton and other bats and their convergence materials), slush molded articles in powder form by micropelletization, artificial leather, skin, Sheets, coated rolls (coated rolls such as steel), sealants, rollers, gears, balls, bat covers or core materials (golf balls, basketballs, tennis balls, volleyballs, softballs, bats, etc.) It may be in the form of foam molded polyurethane resin))), , Ski products, boots, tennis products, grips (grips for golf clubs and motorcycles), rack boots, wipers, seat cushion members, films for care products, 3D printer molded products, fiber reinforced materials (carbon fibers, lignin, kenaf) , Fiber reinforced materials such as nano cellulose fiber, glass fiber), safety goggles, sunglasses, glasses frame, ski goggles, swimming goggles, contact lenses, gas-assisted foam moldings, shock absorbers, CMP polishing pads, dumbars, bearings, It is suitably used for dust covers, cutting valves, chipping rolls, high-speed rotating rollers, tires, watches, wearable bands, and other applications requiring recovery and wear resistance due to repeated expansion and contraction, compression deformation, and the like.
 次に、本発明を、製造例、合成例、実施例および比較例に基づいて説明するが、本発明は、これらによって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
1) 原料
 <ポリイソシアネート成分(a)>
1,4-BIC:後述の製造例1~5に記載の方法で合成した1,4-ビス(イソシアナトメチル)シクロヘキサン
1,3-BIC:1,3-ビス(イソシアナトメチル)シクロヘキサン、商品名;タケネート600、三井化学社製
MDI:ジフェニルメタンジイソシアネート、商品名;コスモネートPH、三井化学SKC社製
 <カルボニル基含有ポリオール(b)>
b-1)PBA#300(数平均分子量300):製造例7に記載の方法で合成したポリブチレンアジペート(ポリエステルポリオール)、水酸基価=373.8mgKOH/gb-2)PBA#500(数平均分子量500):製造例7に記載の方法で合成したポリブチレンアジペート(ポリエステルポリオール)、水酸基価=224.2mgKOH/gb-3)PBA#750(数平均分子量750):製造例7に記載の方法で合成したポリブチレンアジペート(ポリエステルポリオール)、水酸基価=149.5mgKOH/gb-4)PBA#800(数平均分子量800):製造例7に記載の方法で合成したポリブチレンアジペート(ポリエステルポリオール)、水酸基価=140.2mgKOH/gb-5)PBA#1000(数平均分子量1000):ポリブチレンアジペート(ポリエステルポリオール)、商品名;タケラックU-2410、水酸基価=112.2mgKOH/g、三井化学社製
b-6)PBA#2000(数平均分子量2000):ポリブチレンアジペート(ポリエステルポリオール)、商品名;タケラックU-2420、水酸基価=56.2mgKOH/g、三井化学社製
b-7)PCL#1000(数平均分子量1000):ポリカプロクトンポリオール、商品名;PLACCEL210N、水酸基価=112.1mgKOH/g、ダイセル社製b-8)PCD#1000(数平均分子量1000):ポリカーボネートポリオール、商品名;ETERNACOL UH-100、水酸基価=112.2mgKOH/g、宇部興産社製
b-9)PCD#2000(数平均分子量2000):ポリカーボネートポリオール、商品名;ETERNACOL UH-200D、水酸基価=55.9mgKOH/g、宇部興産社製
b-10)PEA#550(数平均分子量550):ポリエチレンアジペート(ポリエステルポリオール)、商品名;タケラックU-550、水酸基価=204.0mgKOH/g、三井化学社製
b-11)PEA#1000(数平均分子量1000):ポリエチレンアジペート(ポリエステルポリオール)、商品名;ニッポラン4002、水酸基価=112.2mgKOH/g、東ソー社製
b-12)PBS#1000(数平均分子量1000):製造例8に記載の方法で合成したポリブチレンスクシネート(ポリエステルポリオール)、水酸基価=112.2mgKOH/g
 <カルボニル基不含ポリオール(b’)>
b-13)PTMEG(数平均分子量1000):ポリテトラメチレンエーテルグリコール、商品名;PTG1000、水酸基価=112.0mgKOH/g、保土ヶ谷化学社製
 <低分子量ポリオール(c)>
1,4-BD:1,4-ブタンジオール、商品名;1,4-ブタンジオール、
三菱化学社製
1,3-PDO:1,3-プロパンジオール、商品名;サステラTMプロパンジオール、デュポン社製
 <ウレタン化触媒>
スズ系触媒:オクチル酸スズ(II)、商品名;スタノクト、エーピーアイコーポレーション社製
 <触媒希釈剤>
ジイソノニルアジペート:商品名:DINA、大八化学工業社製
 <安定剤>
酸化防止剤:ヒンダードフェノール化合物、商品名;イルガノックス245、BASFジャパン社製
紫外線吸収剤:ベンゾトリアゾール化合物、商品名;チヌビン234、BASFジャパン社製
耐光安定剤:ヒンダードアミン化合物、商品名;LA-72、ADEKA社製
加水分解防止剤:カルボジイミド化合物、商品名;スタバクゾールI-LF、ランクセス社製
<染料>
アントラキノン系ブルーイング剤:商品名;Plast Blue8514、有本化学工業社製
 <<水酸基不含環状カルボニル化合物の定量>>
 必要によりストリッピング処理したカルボニル基不含ポリオールまたはカルボニル基含有ポリオールを、0.2g精秤し、内標としてフタル酸ジ-n-ブチル(DBP)を添加した10mLのジクロロメタン溶液に溶解した。
Next, the present invention will be described based on Production Examples, Synthesis Examples, Examples and Comparative Examples, but the present invention is not limited by these. In addition, "part" and "%" are mass references | standards unless there is particular mention. In addition, specific numerical values such as mixing ratios (content ratios), physical property values, parameters, etc. used in the following description are the mixing ratios corresponding to those described in the above-mentioned “embodiments for carrying out the invention” Substitutes the upper limit (numerical value defined as "below", "less than") or lower limit (numerical value defined as "above", "excess"), etc. of the corresponding description such as content ratio), physical property value, parameters be able to.
1) Raw material <Polyisocyanate component (a)>
1,4-BIC: 1,4-bis (isocyanatomethyl) cyclohexane 1,3-BIC synthesized by the method described in Preparation Examples 1 to 5 described below: 1,3-bis (isocyanatomethyl) cyclohexane, commercial item Name: Takenate 600, manufactured by Mitsui Chemicals, Inc. MDI: Diphenylmethane diisocyanate, trade name; Cosmonate PH, manufactured by Mitsui Chemicals SKC, Inc. <Carbonyl group-containing polyol (b)>
b-1) PBA # 300 (number average molecular weight 300): polybutylene adipate (polyester polyol) synthesized by the method described in Preparation Example 7, hydroxyl value = 373.8 mg KOH / gb-2) PBA # 500 (number average molecular weight 500): Polybutylene adipate (polyester polyol) synthesized by the method described in Production Example 7, hydroxyl value 224.2 mg KOH / gb-3) PBA # 750 (number average molecular weight 750): The method described in Production Example 7 Synthesized polybutylene adipate (polyester polyol), hydroxyl value 149.5 mg KOH / gb-4) PBA # 800 (number average molecular weight 800): polybutylene adipate synthesized by the method described in Preparation Example 7 (polyester polyol), hydroxyl group Value 140.2 mg KOH / gb-5) PBA # 1000 ( Average molecular weight 1000): Polybutylene adipate (polyester polyol), trade name: Takelac U-2410, hydroxyl value = 122.2 mg KOH / g, Mitsui Chemical Co., Ltd. b-6) PBA # 2000 (number average molecular weight 2000): Polybutylene Adipate (polyester polyol), trade name: Takelac U-2420, hydroxyl value = 56.2 mg KOH / g, Mitsui Chemicals, Inc. b-7) PCL # 1000 (number average molecular weight 1000): polycaproctone polyol, trade name; PLACCEL 210 N Hydroxyl number = 112.1 mg KOH / g, made by Daicel b-8) PCD # 1000 (number average molecular weight 1000): Polycarbonate polyol, trade name; ETERANCOL UH-100, Hydroxyl number = 112.2 mg KOH / g, Ube Industries, Ltd. Made b-9) P D # 2000 (number average molecular weight 2000): Polycarbonate polyol, trade name; ETERANCOL UH-200D, hydroxyl value = 55.9 mg KOH / g, Ube Industries b-10) PEA # 550 (number average molecular weight 550): polyethylene adipate (Polyester polyol), trade name; Takelac U-550, hydroxyl value = 204.0 mg KOH / g, Mitsui Chemicals, Inc. b-11) PEA # 1000 (number average molecular weight 1000): polyethylene adipate (polyester polyol), trade name; Nipporan 4002, hydroxyl value = 112.2 mg KOH / g, Tosoh b-12) PBS # 1000 (number average molecular weight 1000): polybutylene succinate (polyester polyol) synthesized by the method described in Production Example 8, hydroxyl group Price = 112.2 mg OH / g
<Carbonyl-free polyol (b ')>
b-13) PTMEG (number average molecular weight 1000): polytetramethylene ether glycol, trade name; PTG 1000, hydroxyl value = 112.0 mg KOH / g, manufactured by Hodogaya Chemical Co., Ltd. <low molecular weight polyol (c)>
1,4-BD: 1,4-butanediol, trade name: 1,4-butanediol,
Mitsubishi Chemical Corporation 1,3-PDO: 1,3-propanediol, trade name; SusteraTM propanediol, manufactured by DuPont <Urethanization catalyst>
Tin-based catalyst: tin (II) octylate, trade name; STANOCT, manufactured by AP Corporation <Catalyst diluent>
Diisononyl adipate: Trade name: DINA, Daihachi Chemical Industry Co., Ltd. <Stabilizer>
Antioxidant: Hindered phenolic compound, trade name: Irganox 245, manufactured by BASF Japan, UV absorber: Benzotriazole compound, trade name: Tinuvin 234, light stabilizer manufactured by BASF Japan, light stabilizer: hindered amine compound, trade name; LA- 72, Hydrolysis inhibitor manufactured by ADEKA: Carbodiimide compound, trade name; Stabacol I-LF, manufactured by LANXESS, <dye>
Anthraquinone bluing agent: trade name; Plast Blue 8514, manufactured by Arimoto Chemical Industries, Ltd. << Determination of hydroxyl group-free cyclic carbonyl compound >>
The optionally stripped carbonyl group-free polyol or the carbonyl group-containing polyol was precisely weighed 0.2 g and dissolved in 10 mL of a dichloromethane solution to which di-n-butyl phthalate (DBP) was added as an internal standard.
 この溶解液を、以下の条件でGC-MS/FID測定し、得られたGC-MSスペクトルにおいて、水酸基不含環状カルボニル化合物を以下に記載の保持時間に帰属した。そして、FID検出面積比からDBP換算による含有量(質量%)を計算した。
測定装置:Agilent7890A/5975C MSD/FID
カラム:VF5ms
キャリアガス:He(圧力コントロールモード:23.602psi)
オーブン温度:100℃(2min)→10℃/min→300℃(23min)[Total=45min]
注入方法:スプリットレス注入
注入口温度:300℃
検出方法:FID
[GC-MSスペクトルの帰属]
<ポリブチレンアジペート(ポリエステルポリオール)>
1分子のアジピン酸および1分子の1,4-ブタンジオールから形成される環状エステル:10.7分
2分子のアジピン酸および2分子の1,4-ブタンジオールから形成される環状エステル:24.3分
3分子以上のアジピン酸および3分子以上の1,4-ブタンジオールから形成される環状エステル:高沸点のため、検出せず。
<ポリエチレンアジペート(ポリエステルポリオール)>
1分子のアジピン酸および1分子のエチレングリコールから形成される環状エステル:7.6分
2分子のアジピン酸および2分子のエチレングリコールから形成される環状エステル:20.4分
3分子以上のアジピン酸および3分子以上のエチレングリコールから形成される環状エステル:高沸点のため、検出せず。
<ポリブチレンスクシネート(ポリエステルポリオール)>
1分子のコハク酸および1分子の1,4-ブタンジオールから形成される環状エステル:8.0分
2分子のコハク酸および2分子の1,4-ブタンジオールから形成される環状エステル:21.2分
3分子以上のコハク酸および3分子以上の1,4-ブタンジオールから形成される環状エステル:高沸点のため、検出せず。
<ポリカプロラクトンジオール>
カプロラクトンモノマー:5.8分
カプロラクトンダイマー:13.2分
カプロラクトントリマー:21.0分
カプロラクトンの4量体以上:高沸点のため、検出せず。
<ポリカーボネートジオール>
2分子のカーボネート基および2分子の1,6-ヘキサンジオールから形成される環状ポリカーボネート化合物:17.2分
3分子以上のカーボネート基および3分子以上の1,6-ヘキサンジオールから形成される環状ポリカーボネート化合物:26.1分
4分子以上のカーボネート基および4分子以上の1,6-ヘキサンジオールから形成される環状ポリカーボネート化合物:高沸点のため、検出せず。
This solution was subjected to GC-MS / FID measurement under the following conditions, and the hydroxyl-free cyclic carbonyl compound was assigned to the retention time described below in the obtained GC-MS spectrum. And content (mass%) by DBP conversion was computed from FID detection area ratio.
Measuring device: Agilent 7890A / 5975C MSD / FID
Column: VF 5 ms
Carrier gas: He (pressure control mode: 23.602 psi)
Oven temperature: 100 ° C (2 min) → 10 ° C / min → 300 ° C (23 min) [Total = 45 min]
Injection method: splitless injection inlet temperature: 300 ° C
Detection method: FID
[Assignment of GC-MS spectrum]
<Polybutylene adipate (polyester polyol)>
24. Cyclic ester formed from one molecule of adipic acid and one molecule of 1,4-butanediol: 10.7 minutes Cyclic ester formed from two molecules of adipic acid and two molecules of 1,4-butanediol: 24. Cyclic ester formed from three or more molecules of adipic acid and three or more molecules of 1,4-butanediol: not detected due to high boiling point.
<Polyethylene adipate (polyester polyol)>
Cyclic ester formed from one molecule of adipic acid and one molecule of ethylene glycol: 7.6 minutes, two molecules of adipic acid cyclic ester formed from two molecules of ethylene glycol: 20.4 minutes, three molecules or more of adipic acid And cyclic esters formed from three or more molecules of ethylene glycol: not detected due to high boiling point.
<Polybutylene succinate (polyester polyol)>
21. Cyclic ester formed from one molecule of succinic acid and one molecule of 1,4-butanediol: 8.0 minutes Cyclic ester formed from two molecules of succinic acid and two molecules of 1,4-butanediol: 21. Cyclic ester formed from 2/3 molecules or more of succinic acid and 3 molecules or more of 1,4-butanediol: not detected due to high boiling point.
<Polycaprolactone diol>
Caprolactone monomer: 5.8 minutes caprolactone dimer: 13.2 minutes caprolactone trimer: 21.0 minutes tetramer or more of caprolactone: not detected due to high boiling point.
<Polycarbonate diol>
Cyclic polycarbonate compound formed from 2 molecules of carbonate group and 2 molecules of 1,6-hexanediol: 17.2 min. 3 molecules or more of carbonate groups and 3 or more molecules of 1,6-hexanediol formed cyclic polycarbonate Compound: 26.1 minutes Cyclic polycarbonate compound formed from four or more molecules of carbonate group and four or more molecules of 1,6-hexanediol: Not detected due to high boiling point.
 2)ポリウレタン樹脂の製造
<1,4-ビス(イソシアナトメチル)シクロヘキサン(1,4-HXDI)の製造>
 製造例1(1,4-ビス(イソシアナトメチル)シクロヘキサン(1)(以下、1,4-BIC(1)とする。)の製造方法)
 後述の製造例2に記載の1,4-BIC(2)を窒素パージしながら、石油缶に充填した後、1℃のインキュベーター内で2週間静置させた。得られた凝固物を4μmメッシュのメンブレンフィルターを用いて、手早く減圧ろ過して、液相部を除去し、固相部を得た。その固相部に対して、上記した操作を繰り返して、1,4-BIC(1)を得た。1,4-BIC(1)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は99.5/0.5であった。加水分解性塩素濃度(以下、HC濃度とする。)は18ppmであった。
2) Production of polyurethane resin <Production of 1,4-bis (isocyanatomethyl) cyclohexane (1,4-H 6 XDI)>
Production Example 1 (Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (1) (hereinafter referred to as 1,4-BIC (1)))
After filling a petroleum can with nitrogen purge of 1,4-BIC (2) described in the below-mentioned Production Example 2, it was allowed to stand for 2 weeks in an incubator at 1 ° C. The obtained coagulated material was filtered under reduced pressure using a membrane filter of 4 μm mesh quickly to remove the liquid phase portion to obtain a solid phase portion. The above operation was repeated on the solid phase portion to obtain 1,4-BIC (1). The purity by gas chromatography measurement of 1,4-BIC (1) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 99.5 / 0.5. The hydrolyzable chlorine concentration (hereinafter referred to as HC concentration) was 18 ppm.
 製造例2(1,4-ビス(イソシアナトメチル)シクロヘキサン(2)(以下、1,4-BIC(2)とする。)の製造方法)
 特開2014-55229号公報の製造例6の記載に準拠して、純度99.5%以上のトランス体/シス体比98/2の1,4-ビス(アミノメチル)シクロヘキサンを92%の収率で得た。
Production Example 2 (Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (2) (hereinafter referred to as 1,4-BIC (2)))
According to the description of Production Example 6 in JP-A-2014-55229, 92% of 1,4-bis (aminomethyl) cyclohexane having a purity of 99.5% or more and a trans / cis ratio of 98/2 is collected. Obtained at a rate.
 その後、特開2014-55229号公報の製造例1の記載に準拠して、この1,4-ビス(アミノメチル)シクロヘキサンを原料として、冷熱2段ホスゲン化法を加圧下で実施して、1,4-BIC(2)を382質量部得た。 Thereafter, according to the description of Production Example 1 of JP-A-2014-55229, a cold two-stage phosgenation method is carried out under pressure using this 1,4-bis (aminomethyl) cyclohexane as a raw material, , 382 parts by mass of 4-BIC (2) were obtained.
 得られた1,4-BIC(2)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は98/2であった。HC濃度は18ppmであった。 The purity by gas chromatography measurement of the obtained 1,4-BIC (2) was 99.9%, the hue by APHA measurement was 5, and the trans / cis body ratio by 13 C-NMR measurement was 98/2. . The HC concentration was 18 ppm.
 製造例3(1,4-ビス(イソシアナトメチル)シクロヘキサン(3)(以下、1,4-BIC(3)とする。)の製造方法)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2の1,4-BIC(2)を789質量部、後述の製造例6の1,4-BIC(6)を211質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(3)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は86/14であった。HC濃度は19ppmであった。
Production Example 3 (Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (3) (hereinafter referred to as 1,4-BIC (3)))
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introduction pipe, 789 parts by mass of 1,4-BIC (2) of Production Example 2 and 1,4-BIC of Production Example 6 described later 211 parts by mass of (6) was charged, and stirred at room temperature for 1 hour under a nitrogen atmosphere. The purity by gas chromatography measurement of the obtained 1,4-BIC (3) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 86/14. The HC concentration was 19 ppm.
 製造例4(1,4-ビス(イソシアナトメチル)シクロヘキサン(4)(以下、1,4-BIC(4)とする。)の製造方法)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2の1,4-BIC(2)を561質量部、後述の製造例6の1,4-BIC(6)を439質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(4)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は73/27であった。HC濃度は20ppmであった。
Production Example 4 (Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (4) (hereinafter referred to as 1,4-BIC (4)))
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introduction pipe, 561 parts by mass of 1,4-BIC (2) of Production Example 2 and 1,4-BIC of Production Example 6 described later 439 mass parts of (6) were charged, and it stirred at room temperature under nitrogen atmosphere for 1 hour. The purity by gas chromatography measurement of the obtained 1,4-BIC (4) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 73/27. The HC concentration was 20 ppm.
 製造例5(1,4-ビス(イソシアナトメチル)シクロヘキサン(5)(以下、1,4-BIC(5)とする。)の製造方法)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例2の1,4-BIC(2)を474質量部、後述の製造例6の1,4-BIC(6)を526質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-BIC(5)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は68/32であった。HC濃度は21ppmであった。
Production Example 5 (Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (5) (hereinafter referred to as 1,4-BIC (5)))
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introducing pipe, 474 parts by mass of 1,4-BIC (2) of Production Example 2 and 1,4-BIC of Production Example 6 described later 526 parts by mass of (6) was charged, and stirred at room temperature for 1 hour under a nitrogen atmosphere. The purity by gas chromatography measurement of the obtained 1,4-BIC (5) was 99.9%, the hue by APHA measurement was 5, and the trans / cis ratio by 13 C-NMR measurement was 68/32. The HC concentration was 21 ppm.
 製造例6(1,4-ビス(イソシアナトメチル)シクロヘキサン(6)(以下、1,4-BIC(6)とする。)の製造方法)
 13C-NMR測定によるトランス体/シス体比が41/59の1,4-ビス(アミノメチル)シクロヘキサン(東京化成工業社製)を原料として、特開2014-55229号公報の製造例1の記載に準拠して、388質量部の1,4-BIC(6)を得た。
Production Example 6 (Method for producing 1,4-bis (isocyanatomethyl) cyclohexane (6) (hereinafter referred to as 1,4-BIC (6)))
Using 1,4-bis (aminomethyl) cyclohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) having a trans / cis ratio of 41/59 as determined by 13 C-NMR measurement as a raw material, Production Example 1 of JP-A-2014-55229 According to the description, 388 parts by weight of 1,4-BIC (6) were obtained.
 得られた1,4-BIC(6)のガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス体/シス体比は41/59であった。HC濃度は22ppmであった。 The purity by gas chromatography measurement of the obtained 1,4-BIC (6) was 99.9%, the hue by APHA measurement was 5, and the trans / cis body ratio by 13 C-NMR measurement was 41/59. . The HC concentration was 22 ppm.
  <ポリブチレンアジペート(b-1)~(b-4)の製造>
 製造例7(ポリブチレンアジペート(ポリエステルポリオール)の製造方法)
 アジピン酸および1,4-ブタンジオールを、温度計、撹拌装置、リービッヒ冷却器を備えた4つ口フラスコに仕込み、180℃まで昇温し、窒素気流下にて、重縮合反応を進めながら、220℃まで昇温した。酸価が15mgKOH/gになった時点で、触媒として、スタノクトを添加して、酸価が1mgKOH/g未満に到達するまで、同温度で重縮合反応を継続した。その後、冷却して、ポリブチレンアジペートを得た。
<Production of Polybutylene Adipate (b-1) to (b-4)>
Production Example 7 (Production Method of Polybutylene Adipate (Polyester Polyol))
Adipic acid and 1,4-butanediol are charged into a four-necked flask equipped with a thermometer, a stirrer, and a Liebig cooler, the temperature is raised to 180 ° C., and the polycondensation reaction is advanced under a nitrogen stream, The temperature was raised to 220 ° C. When the acid value reached 15 mg KOH / g, stanoct was added as a catalyst, and the polycondensation reaction was continued at the same temperature until the acid value reached less than 1 mg KOH / g. Then, it cooled and obtained the polybutylene adipate.
  <ポリブチレンスクシネート(b-12)の製造>
 製造例8(ポリブチレンスクシネート(ポリエステルポリオール)の製造方法)
 コハク酸および1,4-ブタンジオールを、温度計、撹拌装置、リービッヒ冷却器を備えた4つ口フラスコに仕込み、150℃まで昇温し、窒素気流下にて、重縮合反応を進めながら、220℃まで昇温した。酸価が10mgKOH/gになった時点で、触媒として、スタノクトを添加して、酸価が1mgKOH/g未満に到達するまで、同温度で重縮合反応を継続した。その後、冷却して、ポリブチレンスクシネートを得た。
<Production of Polybutylene Succinate (b-12)>
Production Example 8 (Production Method of Polybutylene Succinate (Polyester Polyol))
Succinic acid and 1,4-butanediol are charged into a four-necked flask equipped with a thermometer, a stirrer, and a Liebig cooler, the temperature is raised to 150 ° C., and the polycondensation reaction is advanced under a nitrogen stream, The temperature was raised to 220 ° C. When the acid value reached 10 mg KOH / g, stanoct was added as a catalyst, and the polycondensation reaction was continued at the same temperature until the acid value reached less than 1 mg KOH / g. After cooling, polybutylene succinate was obtained.
  <イソシアネート基末端プレポリマーの合成>
 合成例1~8、10~17、19、21~22および24~28
・ストリッピング処理
 カルボニル基含有ポリオール(b)を、撹拌機、温度計およびキャピラリー付き窒素導入管を備えた4つ口フラスコに仕込み、1つの口から、リービッヒ冷却器を経由して、真空ポンプに連結させた。カルボニル基含有ポリオール(b)を、100℃に昇温し、キャピラリー付き窒素導入管の先端から窒素バブリングしながら、真空ポンプを用いて、真空度1.33kPa(10mgHg)以下に減圧し、4時間、ストリッピング処理した。
<Synthesis of isocyanate group terminal prepolymer>
Synthesis Examples 1 to 8, 10 to 17, 19, 21 to 22 and 24 to 28
Stripping treatment: The carbonyl group-containing polyol (b) is charged into a four-necked flask equipped with a stirrer, a thermometer and a nitrogen inlet tube with a capillary, and from one port, via a Liebig cooler, to a vacuum pump. It was connected. The temperature of the carbonyl group-containing polyol (b) is raised to 100 ° C., and the pressure is reduced to 1.33 kPa (10 mgHg) or less using a vacuum pump while bubbling nitrogen from the tip of the capillary tube with a capillary, for 4 hours , Stripped.
 このとき、ストリッピング処理後のカルボニル基含有ポリオール(b)の、水酸基不含環状カルボニル化合物の含有量を、上記の方法で測定した。
・ウレタン化反応
 表1~表3に記載の処方に従い、ポリイソシアネート成分(a)およびカルボニル基含有ポリオール(b)を、撹拌機、温度計、還流管および窒素導入管を備えた4つ口フラスコに仕込み、さらに、それらの総量に対して0.2質量%となるスタバクゾールI-LFを仕込み、窒素雰囲気下、80℃にて1時間撹拌した。
At this time, the content of the hydroxyl group-free cyclic carbonyl compound of the carbonyl group-containing polyol (b) after the stripping treatment was measured by the above method.
Urethane Formation Reaction According to the formulation described in Tables 1 to 3, a four-necked flask provided with a polyisocyanate component (a) and a carbonyl group-containing polyol (b), a stirrer, a thermometer, a reflux tube and a nitrogen introduction tube The mixture was further charged with stabactol I-LF, which is 0.2% by mass relative to the total amount of them, and stirred at 80 ° C. for 1 hour under a nitrogen atmosphere.
 その後、予めDINA(大八化学社製)により4質量%に希釈したオクチル酸スズ(商品名:スタノクト、エーピーアイコーポレーション社製)を、ポリイソシアネート成分(a)およびカルボニル基含有ポリオール(b)の総量に対して、触媒量として、5ppmとなるように添加した。 Thereafter, tin octylate (trade name: Stanocto, manufactured by AP Corporation) diluted to 4% by mass in advance with DINA (manufactured by Daihachi Chemical Co., Ltd.) is used as the polyisocyanate component (a) and the carbonyl group-containing polyol (b). With respect to the total amount, it was added so as to be 5 ppm as a catalytic amount.
 そして、80℃の温調下、窒素気流下で撹拌混合しながら、表1~表3に記載のイソシアネート基含有量に達するまで反応を進め、イソシアネート基末端プレポリマー(a)~(h)、(j)~(q)、(s)、(u)~(v)および(x)~(ab)を得た。 Then, the reaction is advanced until the isocyanate group content described in Tables 1 to 3 is reached while stirring and mixing under a nitrogen stream under temperature control of 80 ° C., and isocyanate group terminated prepolymers (a) to (h), (J) to (q), (s), (u) to (v) and (x) to (ab) were obtained.
 合成例9
 ストリッピング処理することなく、カルボニル基含有ポリオール(b)を用いた以外は、合成例1と同様の方法で、イソシアネート基末端プレポリマー(i)を得た。
Synthesis example 9
An isocyanate group-terminated prepolymer (i) was obtained in the same manner as in Synthesis Example 1 except that the carbonyl group-containing polyol (b) was used without stripping treatment.
 合成例18
 表1~表3に記載の処方に従い、カルボニル基含有ポリオール(b)に代えて、カルボニル基不含ポリオール(b’)であるPTMEG(b-13、数平均分子量1000)を用い、スタバクゾールI-LFを使用しなかった以外は、合成例1と同様の方法で、イソシアネート基末端プレポリマー(r)を得た。
Synthesis example 18
In accordance with the formulations described in Tables 1 to 3, using stabazole I-, using PTMEG (b-13, number average molecular weight 1000) which is a carbonyl group-free polyol (b ′) in place of the carbonyl group-containing polyol (b) An isocyanate group-terminated prepolymer (r) was obtained in the same manner as in Synthesis Example 1 except that LF was not used.
 合成例20
 表1~表3に記載の処方に従い、ポリイソシアネート成分(a)として、MDI(ジフェニルメタンジイソシアネート)を用い、触媒を使用しなかった以外は、合成例1と同様の方法で、イソシアネート基末端プレポリマー(t)を得た。
Synthesis example 20
Isocyanate-terminated prepolymer in the same manner as in Synthesis Example 1 except that MDI (diphenylmethane diisocyanate) was used as the polyisocyanate component (a) according to the formulation described in Tables 1 to 3 and no catalyst was used. I got (t).
 合成例23
 表1~表3に記載の処方に従い、ストリッピング処理温度およびウレタン化反応温度を120℃とした以外は、合成例1と同様の方法で、イソシアネート基末端プレポリマー(w)を得た。
Synthesis example 23
An isocyanate-terminated prepolymer (w) was obtained in the same manner as in Synthesis Example 1 except that the stripping treatment temperature and the urethanation reaction temperature were changed to 120 ° C. according to the formulations described in Tables 1 to 3.
  <ポリウレタン樹脂の合成>
 実施例1~18、20、22、24および比較例1~10
 80℃に温調したイソシアネート基末端プレポリマーのイソシアネート基濃度を測定した。
<Synthesis of polyurethane resin>
Examples 1 to 18, 20, 22, 24 and Comparative Examples 1 to 10
The isocyanate group concentration of the isocyanate group-terminated prepolymer temperature-controlled to 80 ° C. was measured.
 そして、低分子量ポリオールとしての1,4-ブタンジオール(1,4-BD)を、低分子量ポリオール中の水酸基に対するイソシアネート基末端プレポリマー中のイソシアネート基の当量比(NCOインデックス)が1.01となるように、ステンレスカップに計量して、80℃に温調した。 And, the equivalent ratio (NCO index) of the isocyanate group in the isocyanate group-terminated prepolymer to the hydroxyl group in the low molecular weight polyol is set to 1.01 with 1,4-butanediol (1,4-BD) as the low molecular weight polyol. The temperature was adjusted to 80 ° C. by weighing in a stainless steel cup.
 次いで、イソシアネート基末端プレポリマーを別のステンレスカップに計量し、イソシアネート基末端プレポリマーおよび1,4-BDの総量に対して、イルガノックス245(BASF社製 耐熱安定剤)0.3質量部、チヌビン234(BASF社製 紫外線吸収剤)0.1質量部、アデカスタブLA-72(ADEKA社製 HALS)0.1質量部、および、カオーワックスEB-P(花王ケミカル社製 脂肪酸アマイド系滑剤)0.1質量部を、イソシアネート基末端プレポリマーに添加した。 Next, the isocyanate group-terminated prepolymer is weighed into another stainless steel cup, and 0.3 parts by mass of Irganox 245 (BASF heat stabilizer) based on the total amount of isocyanate group-terminated prepolymer and 1,4-BD, 0.1 part by mass of Tinuvin 234 (ultraviolet absorber manufactured by BASF), 0.1 part by mass of Adekastab LA-72 (ALLS manufactured by ADEKA), and 0 parts by weight of Kao Wax EB-P (fatty acid amide lubricant manufactured by Kao Chemical Co., Ltd.) 0 .1 part by weight was added to the isocyanate-terminated prepolymer.
 さらに、予めDINA(大八化学社製)により0.5質量%に希釈したPlast Blue8514を、Plast Blue8514として0.5ppmとなるように、イソシアネート基末端プレポリマーに添加した。 Furthermore, Plast Blue 8514 diluted to 0.5% by mass in advance with DINA (manufactured by Daihachi Chemical Co., Ltd.) was added to the isocyanate group-terminated prepolymer so as to be 0.5 ppm as Plast Blue 8514.
 加えて、予めDINA(大八化学社製)により4質量%に希釈したオクチル酸スズ(商品名:スタノクト、エーピーアイコーポレーション社製)を、触媒量として10ppmとなるように、イソシアネート基末端プレポリマーに添加した。 In addition, an isocyanate group-terminated prepolymer such that tin octylate (trade name: stanoct, manufactured by AP Corporation) diluted to 4% by mass beforehand with DINA (made by Daihachi Chemical Co., Ltd.) becomes 10 ppm as a catalytic amount Added to
 次いで、80℃の油浴中で、高速撹拌ディスパーを使用して、500~1500rpmの撹拌下、イソシアネート基末端プレポリマーを3分間撹拌混合した。 The isocyanate group-terminated prepolymer was then stirred and mixed for 3 minutes in an 80 ° C. oil bath using a high-speed stirring disper under stirring at 500-1500 rpm.
 次いで、予め計量して80℃に温調した1,4-BDを、イソシアネート基末端プレポリマーに添加し、高速撹拌ディスパーを使用して、500~1500rpmの撹拌下、3~10分間撹拌混合した。 Then, 1,4-BD pre-weighed to a temperature of 80 ° C. was added to the isocyanate group-terminated prepolymer, and stirred and mixed for 3 to 10 minutes under stirring at 500 to 1500 rpm using a high speed stirring disper .
 次いで、予め150℃に温調したテフロン(登録商標)製のバットに混合液を流し込み、150℃にて2時間反応させた後、100℃に降温して20時間反応を継続し、ポリウレタン樹脂の一次生成物(A)~(Z)、(AC)~(AD)、(AF)、(AH)および(AJ)を得た。 Next, the mixed solution is poured into a Teflon (registered trademark) vat preheated to 150 ° C., reacted at 150 ° C. for 2 hours, and then cooled to 100 ° C. to continue the reaction for 20 hours to obtain polyurethane resin The primary products (A) to (Z), (AC) to (AD), (AF), (AH) and (AJ) were obtained.
 次いで、バットからポリウレタン樹脂の一次生成物(A)~(Z)、(AC)~(AD)、(AF)、(AH)および(AJ)を取り外し、ベールカッターによりサイコロ状に切断し、粉砕機にてサイコロ状の樹脂を粉砕し、粉砕ペレットを得た。 Next, the primary products (A) to (Z), (AC) to (AD), (AF), (AH) and (AJ) of the polyurethane resin are removed from the vat, diced with a bale cutter, and crushed The diced resin was crushed by a machine to obtain crushed pellets.
 次いで、粉砕ペレットを、表4~表7に記載した熱処理温度および熱処理期間で熱処理(養生、熟成)し、真空減圧下、23℃で12時間乾燥させた。 The ground pellets were then heat treated (cured, aged) at the heat treatment temperature and heat treatment period described in Tables 4 to 7 and dried at 23 ° C. for 12 hours under vacuum reduced pressure.
 その後、得られた粉砕ペレットを用い、単軸押出機(型式:SZW40-28MG、テクノベル社製)を用いて、スクリュー回転数30rpm、シリンダー温度200~270℃の範囲でストランドを押出し、カットすることによって、ポリウレタン樹脂(A)~(Z)、(AC)~(AD)、(AF)、(AH)および(AJ)のペレットを得た。 Then, using a single-screw extruder (model: SZW40-28MG, manufactured by Technobel), extrude and cut the strand at a screw rotation speed of 30 rpm and a cylinder temperature of 200 to 270 ° C. using the obtained crushed pellets Thus, pellets of polyurethane resins (A) to (Z), (AC) to (AD), (AF), (AH) and (AJ) were obtained.
 実施例19
 表6に記載の処方に従い、イソシアネート基末端プレポリマーの予熱温度を120℃とした以外は、実施例1と同様の方法で、ポリウレタン樹脂(AE)のペレットを得た。
Example 19
Pellets of polyurethane resin (AE) were obtained in the same manner as in Example 1 except that the preheating temperature of the isocyanate group-terminated prepolymer was changed to 120 ° C. according to the formulation described in Table 6.
  実施例21および実施例23
 表6に記載の処方に従い、NCOインデックスを0.98とした以外は、実施例1と同様の方法で、ポリウレタン樹脂(AG)および(AI)のペレットを得た。
Example 21 and Example 23
Pellets of polyurethane resin (AG) and (AI) were obtained in the same manner as in Example 1 according to the formulation described in Table 6, except that the NCO index was 0.98.
 比較例11
 表7に記載の処方に従い、低分子量ポリオールとして、1,3-プロパンジオール(PDO)を使用した以外は、実施例1と同様の方法で、ポリウレタン樹脂(AA)のペレットを得た。
Comparative example 11
Pellets of polyurethane resin (AA) were obtained in the same manner as in Example 1 except that 1,3-propanediol (PDO) was used as a low molecular weight polyol according to the formulation described in Table 7.
 比較例12
 表7に記載の処方に従い、触媒を使用しなかった以外は、実施例1と同様の方法で、ポリウレタン樹脂(AB)のペレットを得た。
Comparative Example 12
Pellets of polyurethane resin (AB) were obtained in the same manner as in Example 1 except that the catalyst was not used according to the formulation described in Table 7.
 3)評価用サンプルの成形
 <ポリウレタンシートの成形方法>
 得られたポリウレタン樹脂(A)~(AJ)のペレットを、予め、真空減圧下、80℃で12時間乾燥させ、射出成型機(型式:NEX-140、日精樹脂工業社製)を使用して、スクリュー回転数80rpm、バレル温度200~270℃の設定にて、金型温度20℃、射出時間10秒、射出速度60mm/s、保圧50MPaおよび冷却時間20~60秒の条件で、表面状態の良好なシートを得るように、射出成形した。
3) Molding of sample for evaluation <Method of molding polyurethane sheet>
The pellets of the obtained polyurethane resins (A) to (AJ) are preliminarily dried at 80 ° C. for 12 hours under vacuum reduced pressure, using an injection molding machine (type: NEX-140, manufactured by Nisshin Resin Co., Ltd.) Surface temperature condition at a screw rotation speed of 80 rpm, a barrel temperature of 200 to 270 ° C., a mold temperature of 20 ° C., an injection time of 10 seconds, an injection speed of 60 mm / s, a holding pressure of 50 MPa and a cooling time of 20 to 60 seconds It was injection molded to obtain a good sheet of
 得られた1mm厚みのシートを、80℃のオーブン中で24時間アニール処理をした後、室温23℃、相対湿度55%の恒温恒湿条件下にて、7日間養生し、ポリウレタンシートを得た。 The obtained 1 mm thick sheet was annealed in an oven at 80 ° C. for 24 hours, and then aged for 7 days under constant temperature and humidity conditions of room temperature 23 ° C. and relative humidity 55% to obtain a polyurethane sheet .
 4)評価
 <シートの表面性>
 射出成形時の脱型時間を15秒に統一し、脱型後のシートの表面状態を、以下の評価5~1の5段階で評価した。
評価5:脱型時に金型への貼り付きが無く、表面荒れの全く無い、均一なシートが得られる。
評価4:金型へのシートの貼り付きがあるが、シート表面の剥がし跡は、シート全体の20%未満である。
評価3:金型へのシートの貼り付きがあり、シート表面の剥がし跡は、シート全体の20%以上、50%未満である。
評価2:金型へのシートの貼り付きがあり、シート表面の50%以上に剥がし跡が残る。
評価1:金型開放時に、両側の金型にシートが貼り付いており、シートが裂ける。
4) Evaluation <Surface of sheet>
Demolding time at the time of injection molding was standardized to 15 seconds, and the surface condition of the sheet after demolding was evaluated in five stages of evaluation 5 to 1 below.
Evaluation 5: A uniform sheet with no sticking to the mold at the time of demolding and no surface roughness is obtained.
Evaluation 4: Although there is sticking of the sheet to the mold, the peeling marks on the sheet surface are less than 20% of the whole sheet.
Evaluation 3: There is sticking of the sheet to the mold, and the peeling marks on the sheet surface are 20% or more and less than 50% of the whole sheet.
Evaluation 2: There is sticking of the sheet to the mold, and peeling marks remain on 50% or more of the sheet surface.
Evaluation 1: When the mold is opened, the sheet is stuck to the molds on both sides, and the sheet is torn.
 <全光線透過率(単位:%)>
 Haze Meter(日本電色工業製、モデル:NDH 2000)を用いて、射出成形で得た1mm厚みのポリウレタンシートの全光線透過率(JIS K7105(光源:D65)に準拠)を測定した。
<Total light transmittance (unit:%)>
The total light transmittance (based on JIS K7105 (light source: D 65 )) of a 1 mm-thick polyurethane sheet obtained by injection molding was measured using Haze Meter (manufactured by Nippon Denshoku Kogyo, model: NDH 2000).
 <引裂強度(単位:kN/m)>
 射出成形で得た1mm厚みのポリウレタンシートから、JIS K7311(1995)に従って作製した直角型引裂試験片を用いて、引裂速度300mm/minの条件で測定した。
<Tear strength (unit: kN / m)>
It measured on the conditions of tearing speed 300 mm / min using the right-angled type tear test piece manufactured according to JISK7311 (1995) from the polyurethane sheet obtained by injection molding from 1 mm thickness.
 <破断強度(単位:MPa)および破断伸度(単位:%)>
 射出成形で得た1mm厚みのポリウレタンシートから、JIS K7311(1995)に従って作製したJIS-3号ダンベル型試験片を用いて、引張速度300mm/min、標線間距離20mmの条件で測定した。
<Breaking strength (unit: MPa) and breaking elongation (unit:%)>
The measurement was performed under the conditions of a tensile speed of 300 mm / min and a distance between marked lines of 20 mm using a JIS No. 3 dumbbell-shaped test piece prepared according to JIS K7311 (1995) from a polyurethane sheet of 1 mm thickness obtained by injection molding.
 <示差走査熱計(DSC)によるポリウレタンの凝集温度測定(単位:℃)>
 示差走査熱量計(エスアイアイ・ナノテクノロジー社製、商品名:EXSTAR6000 PCステーション、および、DSC220C)を使用して測定した。
<Flocculation temperature measurement of polyurethane by differential scanning calorimeter (DSC) (unit: ° C.)>
It was measured using a differential scanning calorimeter (trade name: EXSTAR 6000 PC station and DSC 220C, manufactured by SII Nano Technology Inc.).
 ポリウレタンシートを約8mg、アルミニウム製パンにできるだけ密着可能な形状となるように薄く切断して採取した。このアルミニウム製パンにカバーを被せてクリンプしたものを測定用試料(サンプル)とした。同様にアルミナを採取したものをリファレンス試料とした。サンプルおよびリファレンスをセル内の所定位置にセットした後、流量40NmL/minの窒素気流下、試料を10℃/minの速度で-100℃まで冷却し、同温度で5分間保持後、次いで、10℃/minの速度で270℃まで昇温した。さらに270℃で5分間保持した後、-70℃まで10℃/minの速度で冷却した。この冷却の間に現れる発熱ピークの温度をポリウレタンの凝集温度とした。 The polyurethane sheet was cut into thin pieces of about 8 mg so as to be in close contact with an aluminum pan as much as possible. The aluminum pan was covered with a cover and crimped to obtain a measurement sample (sample). Similarly, a sample of alumina was taken as a reference sample. After setting the sample and reference in place in the cell, cool the sample to -100 ° C at a rate of 10 ° C / min under a nitrogen stream with a flow rate of 40 NmL / min, hold for 5 minutes at the same temperature, and then 10 The temperature was raised to 270 ° C at a rate of ° C / min. After further holding at 270 ° C. for 5 minutes, it was cooled to −70 ° C. at a rate of 10 ° C./min. The temperature of the exothermic peak appearing during this cooling was taken as the aggregation temperature of the polyurethane.
 <耐汚染性>
 厚み1mmのポリウレタンシートから20×60mmのサイズの試験片を切り出して、赤色の油性マジックインキ(寺西化学工業製)に1時間浸漬した後、蒸留水で洗浄した。
カットした断面を、デジタルマイクロスコープ(キーエンス社製、商品名:VHX-6000)を用いて観察し、マジックインキの染み込んだ厚みを測定した。マジックインキの染み込んだ厚みが小さいほど、耐汚染性に優れる。
<Stain resistance>
A test piece of 20 × 60 mm in size was cut out from a polyurethane sheet of 1 mm in thickness, immersed in a red oil-based magic ink (made by Teranishi Chemical Industry) for 1 hour, and then washed with distilled water.
The cut cross section was observed using a digital microscope (trade name: VHX-6000, manufactured by Keyence Corporation) to measure the thickness of the soaking in the magic ink. The smaller the thickness impregnated with the magic ink, the better the stain resistance.
 <耐ブルーム性>
 射出成形で得た厚み1mmのシートを、80℃のオーブン中に静置して、シート表面に発生する粉吹き現象までの日数を、以下の評価5~1の5段階で評価した。
評価5:試験28日以内では、粉吹き現象が発生しない。
評価4:試験28日以内に粉吹き現象が発生する。
評価3:試験14日以内に粉吹き現象が発生する。
評価2:試験7日以内に粉吹き現象が発生する。
評価1:試験3日以内に粉吹き現象が発生する。
<Bloom resistance>
The sheet having a thickness of 1 mm obtained by injection molding was allowed to stand in an oven at 80 ° C., and the number of days until the powder blowing phenomenon generated on the sheet surface was evaluated in five stages of evaluation 5 to 1 below.
Evaluation 5: Powder blowing does not occur within 28 days of the test.
Evaluation 4: The powder blowing phenomenon occurs within 28 days of the test.
Evaluation 3: Powder blowing phenomenon occurs within 14 days of test.
Evaluation 2: The powder blowing phenomenon occurs within 7 days of the test.
Evaluation 1: The powder blowing phenomenon occurs within 3 days of the test.
 <初期色相>
 色差計(東京電色社製、カラーエースMODEL TC-1)を用いて、射出成形で得た1mm厚みのポリウレタンシートの黄色度bを測定した。なお、bは、一般に、ポリウレタン樹脂の色相の指標とされる。
<Initial color>
The yellowness b * of a 1 mm-thick polyurethane sheet obtained by injection molding was measured using a color difference meter (Color Ace MODEL TC-1 manufactured by Tokyo Denshoku Co., Ltd.). In addition, b * is generally used as an index of the hue of the polyurethane resin.
 <耐NOx変色性>
 厚み1mmのポリウレタンシートから20×60mmのサイズの試験片を切り出して、5000ppmのNOxガス中に15時間静置した。試験片を取り出した後、60℃、相対湿度93%の条件で、96時間、湿熱試験に供した。
<NOx discoloration resistance>
A 20 × 60 mm size test piece was cut out of a 1 mm thick polyurethane sheet and allowed to stand in 5000 ppm NOx gas for 15 hours. After taking out the test piece, it was subjected to a moist heat test at 60 ° C. and 93% relative humidity for 96 hours.
 試験前後におけるポリウレタンシートのΔb(b値の変化量)を、色差計(東京電色社製、カラーエースMODEL TC-1)を用いて測定した。なお、Δbは、一般に、ポリウレタン樹脂の変色性の指標とされる。 The Δb (the amount of change of the b value) of the polyurethane sheet before and after the test was measured using a color difference meter (Color Ace MODEL TC-1, manufactured by Tokyo Denshoku Co., Ltd.). In addition, (DELTA) b is generally used as a parameter | index of the color-change property of a polyurethane resin.
 <耐UV変色性>
 厚み1mmのポリウレタンシートから20×60mmのサイズの試験片を切り出して、紫外線蛍光灯が取り付けられたQUVウェザリングテスター(スガ試験機社製、紫外線蛍光灯ウェザーメーターFUV)を使用して、60℃、相対湿度10%、紫外線(波長270~720nm)の照射強度28W/mの条件および50℃、相対湿度95%、紫外線照射なしの条件を4時間ごとに、48時間にわたり、6サイクル繰り返した。
<UV resistance to discoloration>
Using a QUV weathering tester (manufactured by Suga Test Instruments Co., Ltd., an ultraviolet fluorescent light weather meter FUV) with a 20 × 60 mm size cut out of a 1 mm thick polyurethane sheet and attached with an ultraviolet fluorescent light, 60 ° C., The conditions of relative humidity 10%, irradiation intensity 28 W / m 2 of ultraviolet light (wavelength 270 to 720 nm) and conditions of 50 ° C., relative humidity 95%, no ultraviolet irradiation were repeated every 4 hours for 48 hours for 6 cycles.
 試験前後におけるポリウレタンシートのΔb(b値の変化量)を、色差計(東京電色社製、カラーエースMODEL TC-1)を用いて測定した。なお、Δbは、一般に、ポリウレタン樹脂変色性の指標とされる。 The Δb (the amount of change of the b value) of the polyurethane sheet before and after the test was measured using a color difference meter (Color Ace MODEL TC-1, manufactured by Tokyo Denshoku Co., Ltd.). In addition, (DELTA) b is generally made into the parameter | index of polyurethane resin discoloring property.
 5)ポリウレタン射出成形品
 <参考実施例1>
 上記の射出成形機において金型を、スマートフォンカバー型に変更した。
5) Polyurethane injection molded article <Reference Example 1>
In the above-mentioned injection molding machine, the mold was changed to a smartphone cover mold.
 その後、射出成形機を用いて、実施例4のポリウレタン樹脂を用いて、厚み1mmのスマートフォンカバーを得た。 Thereafter, using the injection molding machine, the polyurethane resin of Example 4 was used to obtain a smartphone cover having a thickness of 1 mm.
 成形品の全光線透過率を測定した結果、91%であった。また、室温23℃、相対湿度55%の条件下で、6ヶ月間、スマートフォンカバー表面の粉吹き現象(ブルーム)を観察した結果、ブルームは、観察されなかった。さらに、油性マジックインキに対する耐汚染性(前述の方法に準拠)を評価した結果、油性マジックインキが浸透した厚みは、100μmであった。 As a result of measuring the total light transmittance of the molded article, it was 91%. In addition, as a result of observing a powder blowing phenomenon (bloom) on the surface of the smartphone cover for 6 months under conditions of a room temperature of 23 ° C. and a relative humidity of 55%, no bloom was observed. Furthermore, as a result of evaluating the stain resistance (based on the above-mentioned method) to the oil-based magic ink, the thickness to which the oil-based magic ink permeated was 100 μm.
 同様に、JIS-L0848(2004年)に準拠した、100mLの人工汗に対して、1mLの赤色の水性染料(コクヨ製、商品名:IP-540R)を添加した赤色の人工汗液に、1時間浸漬した後、蒸留水で洗浄した。カットした断面を、デジタルマイクロスコープ(キーエンス社製、商品名:VHX-6000)を用いて観察し、赤色の人工汗液の染み込んだ厚みを測定した結果、55μmtであった。 Similarly, 1 hour of red artificial sweat obtained by adding 1 ml of red aqueous dye (trade name: IP-540R) to 100 ml of artificial sweat according to JIS-L0848 (2004) After immersion, it was washed with distilled water. The cut cross section was observed using a digital microscope (trade name: VHX-6000, manufactured by Keyence Corporation), and the thickness in which the red artificial sweat was soaked was measured and was 55 μmt.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該当技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention is provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the invention which are apparent to those skilled in the relevant art are within the scope of the following claims.
 本発明のポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法は、例えば、スマートフォン、タブレットコンピュータ(タブレットPC)、スレートコンピュータ(スレートPC)などのスマートデバイスのカバーにおいて、好適に用いることができる。 The polyurethane resin, the molded article, and the method for producing a polyurethane resin of the present invention can be suitably used, for example, in a cover of a smart device such as a smartphone, a tablet computer (tablet PC), or a slate computer (slate PC).

Claims (8)

  1.  ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、
     分子量400未満の低分子量ポリオール、および、数平均分子量400以上1200以下のカルボニル基含有ポリオールを含むポリオール成分と
    の反応生成物であり、
     示差走査熱量計により測定した凝集温度が、
      以下の計算式で示すハードセグメント相の凝集温度T以上、かつ、
      以下の計算式で示すハードセグメント相の凝集温度T以下
    であることを特徴とする、ポリウレタン樹脂。
    ハードセグメント相の凝集温度T(単位:℃):80+1.2×ハードセグメント濃度(質量%)
    ハードセグメント相の凝集温度T(単位:℃):115+1.2×ハードセグメント濃度(質量%)
    A polyisocyanate component comprising bis (isocyanatomethyl) cyclohexane,
    A low molecular weight polyol having a molecular weight of less than 400, and a reaction product with a polyol component containing a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less,
    The aggregation temperature measured by differential scanning calorimeter is
    The aggregation temperature T 1 or more of the hard segment phase represented by the following formula, and
    A polyurethane resin having a hard segment phase aggregation temperature T 2 or less as indicated by the following calculation formula.
    Aggregation temperature T 1 (unit: ° C.) of hard segment phase: 80 + 1.2 × hard segment concentration (mass%)
    Aggregation temperature T 2 (unit: ° C.) of hard segment phase: 115 + 1.2 × hard segment concentration (mass%)
  2.  前記カルボニル基含有ポリオール中における、水酸基を含まない環状カルボニル化合物の濃度が、3質量%以下である
    ことを特徴とする、請求項1に記載のポリウレタン樹脂。
    The polyurethane resin according to claim 1, wherein the concentration of the cyclic carbonyl compound not containing a hydroxyl group in the carbonyl group-containing polyol is 3% by mass or less.
  3.  前記ビス(イソシアナトメチル)シクロヘキサンが、1,4-ビス(イソシアナトメチル)シクロヘキサンを含む
    ことを特徴とする、請求項1に記載のポリウレタン樹脂。
    The polyurethane resin according to claim 1, wherein the bis (isocyanatomethyl) cyclohexane comprises 1,4-bis (isocyanatomethyl) cyclohexane.
  4.  前記1,4-ビス(イソシアナトメチル)シクロヘキサンが、70モル%以上99モル%以下の割合でトランス体を含有する
    ことを特徴とする、請求項3に記載のポリウレタン樹脂。
    The polyurethane resin according to claim 3, wherein the 1,4-bis (isocyanatomethyl) cyclohexane contains a trans isomer in a ratio of 70 mol% or more and 99 mol% or less.
  5.  前記ビス(イソシアナトメチル)シクロヘキサンに対する1,4-ビス(イソシアナトメチル)シクロヘキサンの含有割合が、85質量%以上である
    ことを特徴とする、請求項3に記載のポリウレタン樹脂。
    The polyurethane resin according to claim 3, wherein a content ratio of 1,4-bis (isocyanatomethyl) cyclohexane to the bis (isocyanatomethyl) cyclohexane is 85% by mass or more.
  6.  請求項1に記載のポリウレタン樹脂を含む
    ことを特徴とする、成形品。
    A molded article comprising the polyurethane resin according to claim 1.
  7.  スマートデバイスのカバーである
    ことを特徴とする、請求項6に記載の成形品。
    7. The molded article according to claim 6, which is a cover of a smart device.
  8.  ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、
     分子量400未満の低分子量ポリオール、および、数平均分子量400以上1200以下のカルボニル基含有ポリオールを含むポリオール成分とを反応させて一次生成物を得る反応工程と、
     前記一次生成物を熱処理してポリウレタン樹脂を得る熱処理工程とを備え、
     前記熱処理工程における熱処理条件が、50℃以上100℃以下、3日以上10日以下である
    ことを特徴とする、ポリウレタン樹脂の製造方法。
     
    A polyisocyanate component comprising bis (isocyanatomethyl) cyclohexane,
    A reaction step of obtaining a primary product by reacting a low molecular weight polyol having a molecular weight of less than 400 and a polyol component containing a carbonyl group-containing polyol having a number average molecular weight of 400 or more and 1200 or less;
    Heat treating the primary product to obtain a polyurethane resin,
    The method for producing a polyurethane resin, wherein the heat treatment conditions in the heat treatment step are 50 ° C. or more and 100 ° C. or less, and 3 days or more and 10 days or less.
PCT/JP2018/036241 2017-10-05 2018-09-28 Polyurethane resin, molded article, and method for producing polyurethane resin WO2019069802A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019546671A JP6946447B2 (en) 2017-10-05 2018-09-28 Polyurethane resin, molded products, and methods for manufacturing polyurethane resin
KR1020207007191A KR102351760B1 (en) 2017-10-05 2018-09-28 Polyurethane resin, molded article, and method for producing polyurethane resin
CN201880058242.2A CN111065666B (en) 2017-10-05 2018-09-28 Polyurethane resin, molded article, and method for producing polyurethane resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-194810 2017-10-05
JP2017194810 2017-10-05

Publications (1)

Publication Number Publication Date
WO2019069802A1 true WO2019069802A1 (en) 2019-04-11

Family

ID=65994602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036241 WO2019069802A1 (en) 2017-10-05 2018-09-28 Polyurethane resin, molded article, and method for producing polyurethane resin

Country Status (5)

Country Link
JP (1) JP6946447B2 (en)
KR (1) KR102351760B1 (en)
CN (1) CN111065666B (en)
TW (1) TWI802596B (en)
WO (1) WO2019069802A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065783A1 (en) * 2019-09-30 2021-04-08
CN114502612A (en) * 2019-09-30 2022-05-13 大日精化工业株式会社 Thermoplastic polyurethane, process for producing the same, and molded article
WO2022215650A1 (en) 2021-04-09 2022-10-13 三井化学株式会社 Fiber-reinforced resin sheet
WO2023140229A1 (en) * 2022-01-18 2023-07-27 三井化学株式会社 Prepolymer composition, polyurethane resin, elastic molded article, and production method of prepolymer composition
WO2023153398A1 (en) * 2022-02-09 2023-08-17 三井化学株式会社 Prepolymer composition, polyurethane resin, elastic molded article, and method for producing prepolymer composition
WO2023181514A1 (en) * 2022-03-23 2023-09-28 三菱電機株式会社 Antimicrobial resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102287235B1 (en) * 2019-10-30 2021-08-06 에스케이씨솔믹스 주식회사 Polishing pad with controlled crosslinking and preparation method thereof
CN113480709B (en) * 2021-07-15 2022-02-22 盛鼎高新材料有限公司 Polyurethane resin composition, method for producing same, molded article, and use

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913231A (en) * 1972-03-08 1974-02-05
JPS51106197A (en) * 1975-03-14 1976-09-20 Bridgestone Tire Co Ltd
JPS58118815A (en) * 1982-01-05 1983-07-15 Toyo Tire & Rubber Co Ltd Urethane elastomer with improved heat resistance
JPH0459809A (en) * 1990-06-29 1992-02-26 Dainippon Ink & Chem Inc Vinyl chloride resin composition
JPH05331255A (en) * 1992-06-02 1993-12-14 Sanko Chem Co Ltd Production of thermoplastic polyurethane
JPH0649409A (en) * 1992-08-04 1994-02-22 Mitsui Toatsu Chem Inc Production of polyurethane polyurea elastomer laminate by spray molding
JPH09504564A (en) * 1993-11-06 1997-05-06 ビーエーエスエフ ラッケ ウント ファルベン アクチエンゲゼルシャフト Aqueous lacquer and its use for producing packed layers in automotive coatings
JP2004506762A (en) * 2000-08-11 2004-03-04 アクゾ ノーベル ナムローゼ フェンノートシャップ Aqueous crosslinkable binder composition and method of using it for the production of lacquer coatings
WO2004067582A1 (en) * 2003-01-28 2004-08-12 Akzo Nobel Coatings International B.V. Curable composition comprising a compound having radically polymerizable olefinically unsaturated groups, an oxidation-reduction enzyme, and a thiol-functional compound
JP2010513596A (en) * 2006-12-14 2010-04-30 インターフェース バイオロジクス,インコーポレーテッド Polymer for surface modification having high decomposition temperature and use thereof
WO2010098316A1 (en) * 2009-02-26 2010-09-02 宇部興産株式会社 Aqueous polyurethane resin dispersion and manufacturing method thereof
JP2010235805A (en) * 2009-03-31 2010-10-21 Nhk Spring Co Ltd Closed-cell urethane sheet and production method thereof
JP2011012141A (en) * 2009-06-30 2011-01-20 Mitsui Chemicals Inc Polyurethane resin composition for optical application, polyurethane resin for optical application and manufacturing method for the same
US20150051328A1 (en) * 2012-07-09 2015-02-19 Shanghai Huihai Chemical Technology Co., Ltd. Alkyl phosphinate polymer and methods for preparing and using the same
WO2016152545A1 (en) * 2015-03-24 2016-09-29 富士フイルム株式会社 Nail cosmetic preparation and nail-art kit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087754A1 (en) * 2002-10-31 2004-05-06 Paul Foley Polyurethane compounds and articles prepared therefrom
KR101111990B1 (en) * 2002-10-31 2012-02-17 다우 글로벌 테크놀로지스 엘엘씨 Polyurethane dispersion and articles prepared therefrom
JP5543915B2 (en) * 2007-05-21 2014-07-09 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Polyurethane polymer
EP2204395B1 (en) * 2007-10-15 2013-10-09 Mitsui Chemicals, Inc. Polyurethane resin
JP5379014B2 (en) * 2007-10-15 2013-12-25 三井化学株式会社 Particulate polyurethane resin composition and molded product thereof
JP5335559B2 (en) * 2009-05-29 2013-11-06 三井化学株式会社 Curable polyurethane resin composition and cured product
JP2011213867A (en) * 2010-03-31 2011-10-27 Mitsui Chemicals Inc Thermoplastic polyurethane resin, molding, and method for producing thermoplastic polyurethane resin
CN107602824B (en) * 2012-06-05 2020-11-13 基因组股份公司 Process for producing polyester and polyurethane
JP6068265B2 (en) * 2013-05-30 2017-01-25 三井化学株式会社 Polyurethane elastomer
JP5997665B2 (en) * 2013-06-19 2016-09-28 三井化学株式会社 Thermosetting polyurethane urea resin composition and molded article
CN105556377B (en) 2013-09-26 2017-03-01 三井化学株式会社 Ocular lens material, spectacle-frame and glasses

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913231A (en) * 1972-03-08 1974-02-05
JPS51106197A (en) * 1975-03-14 1976-09-20 Bridgestone Tire Co Ltd
JPS58118815A (en) * 1982-01-05 1983-07-15 Toyo Tire & Rubber Co Ltd Urethane elastomer with improved heat resistance
JPH0459809A (en) * 1990-06-29 1992-02-26 Dainippon Ink & Chem Inc Vinyl chloride resin composition
JPH05331255A (en) * 1992-06-02 1993-12-14 Sanko Chem Co Ltd Production of thermoplastic polyurethane
JPH0649409A (en) * 1992-08-04 1994-02-22 Mitsui Toatsu Chem Inc Production of polyurethane polyurea elastomer laminate by spray molding
JPH09504564A (en) * 1993-11-06 1997-05-06 ビーエーエスエフ ラッケ ウント ファルベン アクチエンゲゼルシャフト Aqueous lacquer and its use for producing packed layers in automotive coatings
JP2004506762A (en) * 2000-08-11 2004-03-04 アクゾ ノーベル ナムローゼ フェンノートシャップ Aqueous crosslinkable binder composition and method of using it for the production of lacquer coatings
WO2004067582A1 (en) * 2003-01-28 2004-08-12 Akzo Nobel Coatings International B.V. Curable composition comprising a compound having radically polymerizable olefinically unsaturated groups, an oxidation-reduction enzyme, and a thiol-functional compound
JP2010513596A (en) * 2006-12-14 2010-04-30 インターフェース バイオロジクス,インコーポレーテッド Polymer for surface modification having high decomposition temperature and use thereof
WO2010098316A1 (en) * 2009-02-26 2010-09-02 宇部興産株式会社 Aqueous polyurethane resin dispersion and manufacturing method thereof
JP2010235805A (en) * 2009-03-31 2010-10-21 Nhk Spring Co Ltd Closed-cell urethane sheet and production method thereof
JP2011012141A (en) * 2009-06-30 2011-01-20 Mitsui Chemicals Inc Polyurethane resin composition for optical application, polyurethane resin for optical application and manufacturing method for the same
US20150051328A1 (en) * 2012-07-09 2015-02-19 Shanghai Huihai Chemical Technology Co., Ltd. Alkyl phosphinate polymer and methods for preparing and using the same
WO2016152545A1 (en) * 2015-03-24 2016-09-29 富士フイルム株式会社 Nail cosmetic preparation and nail-art kit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065783A1 (en) * 2019-09-30 2021-04-08
WO2021065783A1 (en) * 2019-09-30 2021-04-08 三井化学株式会社 Thermoplastic polyurethane resin and film
CN114375312A (en) * 2019-09-30 2022-04-19 三井化学株式会社 Thermoplastic polyurethane resin and film
CN114502612A (en) * 2019-09-30 2022-05-13 大日精化工业株式会社 Thermoplastic polyurethane, process for producing the same, and molded article
JP7257541B2 (en) 2019-09-30 2023-04-13 三井化学株式会社 Thermoplastic polyurethane resin and film
CN114375312B (en) * 2019-09-30 2024-04-09 三井化学株式会社 Thermoplastic polyurethane resin and film
WO2022215650A1 (en) 2021-04-09 2022-10-13 三井化学株式会社 Fiber-reinforced resin sheet
WO2023140229A1 (en) * 2022-01-18 2023-07-27 三井化学株式会社 Prepolymer composition, polyurethane resin, elastic molded article, and production method of prepolymer composition
WO2023153398A1 (en) * 2022-02-09 2023-08-17 三井化学株式会社 Prepolymer composition, polyurethane resin, elastic molded article, and method for producing prepolymer composition
WO2023181514A1 (en) * 2022-03-23 2023-09-28 三菱電機株式会社 Antimicrobial resin composition

Also Published As

Publication number Publication date
TW201922834A (en) 2019-06-16
JP6946447B2 (en) 2021-10-06
JPWO2019069802A1 (en) 2020-10-15
KR102351760B1 (en) 2022-01-14
TWI802596B (en) 2023-05-21
KR20200041348A (en) 2020-04-21
CN111065666A (en) 2020-04-24
CN111065666B (en) 2022-04-22

Similar Documents

Publication Publication Date Title
JP6946447B2 (en) Polyurethane resin, molded products, and methods for manufacturing polyurethane resin
KR102205059B1 (en) Manufacturing method of polyurethane resin, polyurethane resin and molded product
EP3805287B1 (en) Thermoplastic polyurethane resin, optical polyurethane resin, cover plate for display panel, eyewear material, eyewear lens, eyewear frame, automotive interior and exterior components, and method for producing thermoplastic polyurethane resin
TWI778062B (en) Polyurethane resin, method for producing polyurethane resin, and molded article
JP7257541B2 (en) Thermoplastic polyurethane resin and film
JP7296249B2 (en) Thermoplastic polyurethane resin
JP7280954B2 (en) Polyurethane resin composition and molded article
JP7246910B2 (en) Thermoplastic polyurethane resin, molded article, and method for producing thermoplastic polyurethane resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546671

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207007191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863990

Country of ref document: EP

Kind code of ref document: A1