WO2019069712A1 - Electromagnetic wave transmission cable - Google Patents

Electromagnetic wave transmission cable Download PDF

Info

Publication number
WO2019069712A1
WO2019069712A1 PCT/JP2018/035000 JP2018035000W WO2019069712A1 WO 2019069712 A1 WO2019069712 A1 WO 2019069712A1 JP 2018035000 W JP2018035000 W JP 2018035000W WO 2019069712 A1 WO2019069712 A1 WO 2019069712A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
foamed resin
transmission cable
resin material
dielectric
Prior art date
Application number
PCT/JP2018/035000
Other languages
French (fr)
Japanese (ja)
Inventor
康雄 細田
一智 小幡
知幸 宮本
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019069712A1 publication Critical patent/WO2019069712A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor

Definitions

  • the present invention relates to an electromagnetic wave transmission cable.
  • a waveguide made of a dielectric such as resin is lighter in weight and more flexible than a metal cable such as a coaxial cable or a metal waveguide.
  • a metal cable such as a coaxial cable or a metal waveguide.
  • PTFE polytetrafluoroethylene
  • the transmission loss is also small and the transmission efficiency is good, so millimeter waves (30 to 300 GHz) are mainly used. Is effective as a cable for transmitting electromagnetic waves in the THz band (0.1 to 100 THz).
  • the waveguide is made of a single-layer dielectric having a diameter smaller than the wavelength of the electromagnetic wave
  • the electromagnetic wave will propagate while leaking out from the surface of the waveguide.
  • the electromagnetic wave gets out of the waveguide and scatters.
  • PTFE or the like having a low refractive index is rod-shaped and used as a waveguide material, there arises a problem that there is no dielectric material which can be a clad layer having a single layer with a lower refractive index than the waveguide.
  • the problem to be solved by the present invention is, for example, the problem that the confinement effect of the electromagnetic wave is impaired when another object is in contact with the waveguide.
  • the invention according to claim 1 comprises one or more dielectric waveguides made of dielectrics and transmitting electromagnetic waves, and provided along the longitudinal direction of the one or more dielectric waveguides, And a foamed resin material covering the outer peripheral surface of the dielectric waveguide.
  • FIG. 2 is a longitudinal sectional view of the electromagnetic wave transmission cable of the first embodiment.
  • FIG. 8 is a longitudinal sectional view showing a modification of the electromagnetic wave transmission cable of the first embodiment. It is a figure which shows typically the modification of the electromagnetic wave transmission cable of Example 1.
  • FIG. It is sectional drawing of the direction perpendicular
  • FIG. 8 is a longitudinal sectional view showing a modification of the electromagnetic wave transmission cable of the first embodiment.
  • FIG. 8 is a longitudinal sectional view showing a modification of the electromagnetic wave transmission cable of the first embodiment.
  • FIG. 7 is a view schematically showing an electromagnetic wave transmission cable of Example 2; FIG.
  • FIG. 7 is a cross-sectional view of the electromagnetic wave transmission cable of the second embodiment in the longitudinal direction. It is a figure which shows the relationship between the presence or absence of outer covering, and a transmission loss. It is a figure which shows the relationship between the presence or absence of outer coating
  • FIG. 1 is a view schematically showing a configuration of the electromagnetic wave transmission cable 100 of the present embodiment.
  • the electromagnetic wave transmission cable 100 includes a dielectric waveguide 10 made of a dielectric such as resin, and a foamed resin material 20 that covers the outer surface of the dielectric waveguide 10.
  • the dielectric waveguide 10 is a waveguide for transmitting the electromagnetic wave EW.
  • the electromagnetic wave EW is, for example, a millimeter wave having a frequency of 30 to 300 GHz or a THz wave having a frequency of 0.1 to 100 THz.
  • FIG. 2 is a cross-sectional view of the electromagnetic wave transmission cable 100 along the longitudinal direction.
  • the dielectric waveguide 10 has a cylindrical shape centered on the central axis CA. That is, the dielectric waveguide 10 has a rotationally symmetric shape about the central axis CA.
  • the dielectric waveguide 10 does not necessarily have to be cylindrical as long as the desired performance can be obtained.
  • FIG. 1 shows the case where the outer edge of the cross section of the dielectric waveguide 10 perpendicular to the central axis CA is circular, but it may be oval, elliptical, rectangular or the like.
  • the dielectric waveguide 10 is made of, for example, PTFE (polytetrafluoroethylene) which is a fluorocarbon resin, or e-PTFE (expanded polytetrafluoroethylene) obtained by subjecting the same to a drawing process.
  • e-PTFE is obtained, for example, by stretching a PTFE material in at least one direction to give continuous porosity (structure having a large number of continuous pores) and then sintering and fixing (fixing by firing) at high temperature .
  • the dielectric waveguide 10 is stretched in the longitudinal direction, and pores continuous in the stretching direction are formed. In the following description, among the continuous porosity, one having pores continuous in the stretching direction is also referred to as particularly stretched porosity.
  • the dielectric waveguide 10 has a refractive index of about 1.5 when composed of PTFE, and a refractive index of about 1.1 to 1.2 when composed of e-PTFE. Have.
  • the dielectric waveguide 10 is configured such that the diameter of the waveguide (the diameter of the cross section in the direction perpendicular to the central axis CA) is sufficiently shorter than the wavelength of the electromagnetic wave EW to be transmitted.
  • the diameter of the dielectric waveguide 10 is set to, for example, 0.8 mm.
  • the foamed resin material 20 extends in the longitudinal direction of the dielectric waveguide 10 and covers the outer surface (that is, the outer peripheral surface) of the dielectric waveguide 10 so as to surround the outer periphery of the dielectric waveguide 10 .
  • the foamed resin material 20 has, as its simplest shape, a cross-sectional shape that is rotationally symmetric about the central axis CA of the dielectric waveguide 10.
  • the shape is arbitrary as long as a desired performance can be obtained.
  • FIG. 1 shows the case where the outer edge of the cross section of the foamed resin material 20 in the direction perpendicular to the central axis CA is circular, it may be an oval, an ellipse, a rectangle or the like.
  • the outer edge of the cross section of the foamed resin material 20 may have the same shape as the outer edge of the cross section of the dielectric waveguide 10, or may have a different shape.
  • the foamed resin material 20 is made of, for example, expanded polystyrene.
  • Expanded polystyrene has a structure in which air (pores) of refractive index 1 is finely interspersed in polystyrene having a refractive index of 1.6, and a large number of fine reflective interfaces between polystyrene, which is a dielectric, and air are present.
  • the average refractive index in the bulk state of the low-foam polystyrene foam used as a packaging material is 0.1
  • the average refractive index for electromagnetic waves of ⁇ 0.5 THz was about 1.1. From this result, it can be confirmed that a large amount of air is mixed in the expanded polystyrene.
  • the foamed resin material 20 contains a large amount of air, and the proportion of polystyrene in contact with the surface of the dielectric waveguide 10 is very small. Therefore, even when metal, a human body or the like contacts the outer surface of the foamed resin material 20 (that is, the surface opposite to the surface in contact with the dielectric waveguide 10), the leakage of electromagnetic waves can be greatly reduced. .
  • the thickness of the foamed resin material 20 is too thin, the effect of confining electromagnetic waves (that is, the effect of reducing the leakage of electromagnetic waves) is reduced.
  • the thickness of the foamed resin material 20 (the thickness of the coated portion) is desirably equal to or greater than the thickness (wavelength ⁇ average refractive index) corresponding to the wavelength of the electromagnetic wave to be transmitted.
  • the thickness of the foamed resin material 20 is desirably set to 50 mm or less, preferably 10 mm or less.
  • FIG. 3 (a) is a cross-sectional view of an electromagnetic wave transmission cable in which a concavo-convex or notch-shaped structure (for example, shown as 20a in FIG. 3 (a)) is provided on the outer surface of the foamed resin material 20. .
  • a concavo-convex or notch-shaped structure for example, shown as 20a in FIG. 3 (a)
  • the electromagnetic wave transmission cable 100 can be easily bent.
  • FIG. 3 (b) by providing an uneven or notched structure (for example, shown as 20b in FIG. 3 (b)) on the inner surface in contact with the dielectric waveguide 10, it is possible to The confinement effect can be enhanced.
  • a coating OC may be provided.
  • the electromagnetic wave transmission cable 100 may be configured as a multi-lumen cable in which the foamed resin material 20 covers a plurality of dielectric waveguides.
  • the electromagnetic wave transmission cable 100 has a configuration in which the first dielectric waveguide 11 and the second dielectric waveguide 12 are provided, and the foamed resin material 20 covers them in common. It is good. According to such a configuration, it becomes possible to transmit a plurality of signals and a plurality of electromagnetic waves of different wavelengths (shown as EW1 and EW2 in the figure).
  • the outer edge of the cross section of the foamed resin material 20 may not be circular, but may be oval or the like as shown in FIG. 5A.
  • the number of dielectric waveguides in the multi-lumen cable is not limited to two, and as shown in FIG. 5B, the number of dielectric waveguides 11, 12 and 13 of three or more is more It may have a body waveguide.
  • the cross section of the foamed resin material 20 may be a polygon such as a square.
  • the outer edge of the cross section of the foamed resin material 20 is a quadrangle, and has a configuration covering the three dielectric waveguides 11, 12, and 13 having a circular cross section. You may
  • the plurality of dielectric waveguides in the multi-lumen cable may have mutually different diameters. Also, as shown in FIG. 5 (e), even if the plurality of dielectric waveguides have different cross-sectional shapes (for example, one has a circular outer edge and the other has an elliptical outer edge). good. That is, the diameter and the cross section of each of the plurality of dielectric waveguides can be set to an appropriate size and shape according to the wavelength of the electromagnetic wave transmitted by each.
  • a connector portion for connecting the dielectric waveguides with each other and a predetermined dielectric waveguide 10 are used instead of covering the entire dielectric waveguide 10 with the foamed resin material 20, a connector portion for connecting the dielectric waveguides with each other and a predetermined dielectric waveguide 10 are used. Only a portion that may come in contact with another member, such as a support portion for holding at a height, may be covered with the foamed resin material 20. That is, the foamed resin material 20 may be provided over a predetermined length (distance) in the longitudinal direction of the dielectric waveguide 10, and may be provided at a plurality of places.
  • the foaming ratio of the foamed resin material 20 may be changed between a region close to the contact surface in contact with the dielectric waveguide 10 (i.e., inside) and a region far from the contact surface (i.e., outer).
  • the area from the area close to the contact surface with the dielectric waveguide 10 of the foamed resin material 20 to the area far from is divided into areas A1 to A4, and each area advances as areas A1, A2, A3 and A4.
  • the foaming rate of the area may be reduced stepwise.
  • the effect of confining the electromagnetic wave is enhanced by relatively increasing the foaming ratio, and in the outer region far from the contact surface with the dielectric waveguide 10.
  • the rigidity of the cable can be increased by relatively reducing the foaming rate.
  • the surface of the dielectric waveguide 10 is covered with the foamed resin material 20.
  • the foamed resin material 20 contains a large amount of air, and the average refractive index is smaller than the refractive index of the dielectric waveguide 10. According to this configuration, even when another object such as a metal or a human body is in contact with the outer surface of the electromagnetic wave transmission cable 100, it is possible to maintain the electromagnetic wave confinement effect in the dielectric waveguide 10. Become.
  • the dielectric waveguide 10 is made of PTFE or e-PTFE. Since the expanded porous resin (e-PTFE) used in the present embodiment has a characteristic micro nodule and a fine fiber structure in the extending direction, a low refractive index medium (average Can act as a low rate medium).
  • e-PTFE expanded porous resin
  • the porosity (proportion of the porous portion in the resin) of the drawn porous resin can be selected between 30 and 90% according to the application, but in order to coat the outside with the foamed resin material 20 as in this embodiment, The refractive index difference with the foamed resin material 20 is required. In order to suppress the transmission loss of electromagnetic waves, a refractive index difference of at least about 0.01 is required, and the desirable porosity obtained therefrom is 70% or less. Therefore, the optimum range of the porosity of the stretched porous resin in the dielectric waveguide 10 of the present embodiment is 30 to 70%.
  • FIG. 8 is a view schematically showing the configuration of the electromagnetic wave transmission cable 200 of the present embodiment.
  • the electromagnetic wave transmission cable 200 includes a dielectric waveguide 10 made of a dielectric such as resin, a foamed resin material 20 covering the outer surface of the dielectric waveguide 10, and a metal film 30 coating the outer surface of the foamed resin material 20. And.
  • the dielectric waveguide 10 is a waveguide for transmitting the electromagnetic wave EW.
  • FIG. 9 is a cross-sectional view of the electromagnetic wave transmission cable 200 along the longitudinal direction. Similar to the dielectric waveguide 10 and the foamed resin material 20, the metal film 30 has a rotationally symmetric shape around the central axis CA. The metal film 30 extends in the longitudinal direction of the dielectric waveguide 10, and the outer surface of the foamed resin material 20 covering the dielectric waveguide 10 so as to surround the outer periphery of the foamed resin material 20 about the central axis CA. Is further coated.
  • FIG. 8 shows the case where the outer edge of the cross section of the metal film 30 in the direction perpendicular to the central axis CA is circular, it may be oval, elliptical, rectangular or the like.
  • the outer edge of the cross section of the metal film 30 may have the same shape as the outer edge of the cross section of the dielectric waveguide 10 or the foamed resin material 20, or may have a different shape. That is, the metal film 30 may have a shape that covers the foamed resin material 20.
  • the dielectric waveguide 10 of the present embodiment is made of e-PTFE (expanded polytetrafluoroethylene) which is expanded by drawing PTFE (polytetrafluoroethylene), which is a fluorocarbon resin, to have continuous porosity, and fixed by firing. It consists of The dielectric waveguide 10 has a refractive index of about 1.1 to 1.2, and has a diameter of about 0.6 mm (the diameter of the cross section in the direction perpendicular to the central axis CA) shorter than the wavelength of the electromagnetic wave EW .
  • e-PTFE expanded polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the foamed resin material 20 of the present embodiment is composed of expanded polystyrene with an expansion ratio of about 30 times (about 3% of the bulk density).
  • the foamed resin material 20 has a refractive index (a refractive index close to 1, for example, 1.016) lower than that of the dielectric waveguide 10.
  • the foamed resin material 20 can be obtained by, for example, inserting the dielectric waveguide 10 inside the foamed resin having a hollow shape, winding the foamed resin around the dielectric waveguide 10, or the like. It is formed on the outer peripheral surface.
  • the metal film 30 is made of, for example, a metal having a relatively high conductivity such as gold, silver, copper or the like.
  • the metal film 30 is formed on the outer surface of the foamed resin material 20 and has a thickness of about 1 ⁇ m or more.
  • the metal film 30 can be formed, for example, by a method of forming a metal film directly on the surface of the foamed resin material 20, or a sheet with a metal film having a metal film formed beforehand on the surface of a dielectric sheet. It is manufactured by the method of winding so that it may face the side of.
  • the outer peripheral portion of the metal film 30 is covered with a protective film (not shown) made of a dielectric or the like.
  • This protective film has only a protective function and does not contribute to electromagnetic wave transmission.
  • the metal film 30 is produced by a method of winding the metal film-covered sheet around the foamed resin material 20, the dielectric sheet can be used as a protective film as it is without peeling off.
  • the metal film 30 is formed to further cover the outer surface of the foamed resin material 20 covering the dielectric waveguide 10. The effect of the metal film 30 will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a graph showing the relationship between the diameter of the dielectric waveguide and the transmission loss according to the presence or absence of the outer coating.
  • the transmission loss decreases as the diameter of the dielectric waveguide becomes smaller (the dielectric waveguide becomes thinner), as shown by a broken line in FIG.
  • the outer coating is formed in the range where the diameter of the dielectric waveguide is more than a certain extent (about 0.7 mm to 1 mm in FIG. 10).
  • the transmission loss is lower as compared to the case where it is not provided (shown by a broken line), and the transmission loss decreases as the diameter of the dielectric waveguide becomes smaller.
  • the diameter of the dielectric waveguide becomes smaller than a certain value (0.6 mm)
  • the transmission loss is deteriorated to the extent that transmission can not be performed (shown as unmeasurable in FIG. 10).
  • FIG. 11 is a graph showing the relationship between the diameter of the dielectric waveguide and the effective refractive index according to the presence or absence of the outer coating.
  • the effective refractive index indicates the average refractive index of the medium contributing to the electromagnetic wave transmission, and is a parameter that characterizes the transmission state of the electromagnetic wave.
  • the effective refractive index is Asymptotically to the refractive index (1.016). This indicates that the propagation medium of the electromagnetic wave is changed from the dielectric to the foamed resin as the diameter of the dielectric waveguide becomes smaller. In transmission using a foamed resin as a propagation medium, confinement of electromagnetic waves is unstable, and eventually transmission can not be performed.
  • the effective refractive index does not gradually approach the refractive index of the foamed resin, and the diameter of the dielectric waveguide is small.
  • the effective refractive index also decreases as This indicates that the electromagnetic wave propagation medium is not changed to the foamed resin, and the electromagnetic wave is stably transmitted in the dielectric portion of the dielectric waveguide.
  • the outer coating of the dielectric waveguide 10 is a double structure of the foamed resin material 20 and the metal film 30, so that the transmission occurs when covered only with the foamed resin. Loss reduction can be suppressed. That is, when the dielectric waveguide is coated only with the foamed resin, the electromagnetic wave is below the lower limit of the transmission loss determined by the physical properties of the dielectric waveguide and the foamed resin (for example, the effective refractive index is less than the refractive index of the foamed resin) Can not be transmitted. However, by further covering the foamed resin material 20 with the metal film as in the present embodiment, it is possible to realize the transmission loss equal to or lower than the lower limit value (the lower limit value of the transmission loss in the case of covering only with the foamed resin). .
  • the metal film 30 functions as a shield against electromagnetic waves (noises) from the outside. Therefore, since the dielectric waveguide 10 is shielded from the outside, stable electromagnetic wave transmission becomes possible.
  • the thickness of the entire covering portion can be reduced, so that miniaturization can be achieved.
  • the embodiment of the present invention is not limited to the one shown in the above example.
  • the material of the foamed resin material 20 is not limited to this, and it may be made of a foamed resin material having an average attenuation rate of 0.1 cm ⁇ 1 or less.
  • the foamed resin material 20 may be made of foamed polyurethane, foamed polyolefin, foamed polyolefin (foamed polyethylene, foamed polypropylene), foamed polytetrafluoroethylene (PTFE) or the like. That is, the foamed resin material 20 may be made of foamed resin of the same material as the dielectric waveguide 10.
  • the dielectric waveguide 10 As a material for forming the dielectric waveguide 10, an example is used in which e-PTFE obtained by further stretching and forming a PTFE material to give continuous porosity, and further sintering and fixing it.
  • e-PTFE obtained by further stretching and forming a PTFE material to give continuous porosity
  • sintering and fixing it.
  • such materials do not necessarily have to be sintered and fixed because they have low loss transmission performance even before sintering and fixing. That is, the dielectric waveguide 10 may be made of a dielectric material having expanded porosity.
  • the foamed resin material 20 is made of foamed polystyrene and the refractive index to an electromagnetic wave of 0.1 to 0.5 THz is about 1.1 has been described as an example.
  • the average refractive index of the foamed resin material 20 is not limited to this. It is desirable that the foaming rate of the foamed resin material 20 is high because a low refractive index produces a confinement effect of electromagnetic waves, but if the foaming rate is too high, it becomes too soft and difficult to handle. Therefore, it is desirable that the foamed resin material 20 is foamed to such an extent that the average refractive index in the bulk state is less than 1.2.
  • the dielectric waveguide 10 may be formed to have a diameter equal to or less than the wavelength of the electromagnetic wave EW, preferably equal to or less than a half wavelength.
  • the dielectric waveguide 10 is covered with the foamed resin material 20, and the outer surface of the foamed resin material 20 is covered with the metal film 30.
  • air may be sandwiched between the dielectric waveguide 10 and the metal film 30 instead of the foamed resin material 20.
  • the foamed resin material 20 may not be uniformly provided between the dielectric waveguide 10 and the metal film 30, but the foamed resin material 20 may be partially provided. According to such a configuration, it is possible to make the average refractive index close to one.
  • the metal film 30 may be patterned to partially cover the outer surface of the foamed resin material 20 as long as the distance is equal to or less than the wavelength of the electromagnetic wave EW.
  • the patterning of the metal film may be configured, for example, by a method of winding a metal thin wire or a method of covering a net like a mesh shield.
  • the patterning of the metal film may be configured by forming a wire grid or a metamaterial structure using a mask at the time of film formation.
  • the second embodiment by adjusting the structures and materials of the dielectric waveguide 10 and the metal film 30, it is possible to reduce the necessary thickness of the foamed resin material 20.
  • the metal film 30 is made of metal such as gold, silver or copper.
  • the metal film 30 may be made of aluminum or alloy.
  • a dielectric film may be used in place of the metal film 30 as an outer film for covering the foamed resin material 20. For example, if the dielectric film has a refractive index of about 1.4 or more, the refractive index difference at the interface can be sufficiently secured.
  • the electromagnetic wave transmission cable of this embodiment is, for example, a cable for large capacity high speed information communication for in-vehicle use as a substitute for a car information harness such as a car, a data center for large capacity communication required for large capacity communication, etc. It can be used as a cable.

Abstract

This electromagnetic wave transmission cable comprises: one or more dielectric waveguides which are formed of a dielectric body and transmit electromagnetic waves; and a resin foam material which is provided along the longitudinal direction of the one or more dielectric waveguides and covers the outer circumferential surfaces of the one or more dielectric waveguides.

Description

電磁波伝送ケーブルElectromagnetic wave transmission cable
   本発明は、電磁波伝送ケーブルに関する。 The present invention relates to an electromagnetic wave transmission cable.
 樹脂等の誘電体で作られた導波路は、同軸ケーブル等の金属ケーブルや金属導波管に比べると軽量で且つフレキシブル性が高い。また、屈折率の低いPTFE(ポリテトラフルオロエチレン)等を用いて且つ直径が波長よりも短い誘電体の場合には、伝送ロスも少なく伝送効率が良いため、主にミリ波(30~300GHz)からTHz帯(0.1~100THz)の電磁波を伝送するケーブルとして有効である。 A waveguide made of a dielectric such as resin is lighter in weight and more flexible than a metal cable such as a coaxial cable or a metal waveguide. In the case of using PTFE (polytetrafluoroethylene) or the like having a low refractive index and a dielectric whose diameter is shorter than the wavelength, the transmission loss is also small and the transmission efficiency is good, so millimeter waves (30 to 300 GHz) are mainly used. Is effective as a cable for transmitting electromagnetic waves in the THz band (0.1 to 100 THz).
 しかしながら、導波路を電磁波の波長よりも直径の短い単層の誘電体で構成すると、電磁波が導波路表面から外部へ染み出しながら伝播するモードとなるため、金属や別の誘電体、特に人体等が誘電体導波路の外壁に触れると、電磁波が導波路の外側に抜け出て散乱してしまう。ここで、屈折率の低いPTFE等をロッド状にして導波路材料として用いた場合、単層で導波路よりも屈折率の低いクラッド層となりうる誘電体材料が存在しないという問題点が発生する。 However, if the waveguide is made of a single-layer dielectric having a diameter smaller than the wavelength of the electromagnetic wave, the electromagnetic wave will propagate while leaking out from the surface of the waveguide. When it touches the outer wall of the dielectric waveguide, the electromagnetic wave gets out of the waveguide and scatters. Here, when PTFE or the like having a low refractive index is rod-shaped and used as a waveguide material, there arises a problem that there is no dielectric material which can be a clad layer having a single layer with a lower refractive index than the waveguide.
 そこで、2種類の誘電体を何層も重ねたブラッグミラーを誘電体導波管の外周部に接して構築することにより、電磁波を閉じ込めて伝送する伝送路が提案されている(例えば、特許文献1)。 Therefore, a transmission path for confining and transmitting an electromagnetic wave has been proposed by constructing a Bragg mirror in which two or more kinds of dielectrics are stacked in contact with the outer peripheral portion of the dielectric waveguide (for example, Patent Document) 1).
米国特許出願公開第2009/0097809号公報U.S. Patent Application Publication 2009/0097809
 上記した従来技術では、ブラッグミラーを構成するために、異なる材料を何層も重ねなければならない。そのため、工数が多くなり、製造コストがかかるという問題があった。また、伝送する電磁波の波長に合わせて各層の厚さを設計しなければならず、波長依存性があるという問題があった。 In the prior art described above, several layers of different materials have to be stacked to form a Bragg mirror. Therefore, there is a problem that the number of steps is increased and the manufacturing cost is increased. In addition, the thickness of each layer must be designed in accordance with the wavelength of the electromagnetic wave to be transmitted, and there is a problem that there is wavelength dependency.
 本発明が解決しようとする課題としては、導波路に他の物体が接触している場合に電磁波の閉じ込め効果が阻害されるという問題が一例として挙げられる。 The problem to be solved by the present invention is, for example, the problem that the confinement effect of the electromagnetic wave is impaired when another object is in contact with the waveguide.
 請求項1に記載の発明は、誘電体からなり、電磁波を伝送する1又は複数の誘電体導波路と、前記1又は複数の誘電体導波路の長手方向に沿って設けられ、前記1又は複数の誘電体導波路の外周面を被覆する発泡樹脂材と、を有することを特徴とする。 The invention according to claim 1 comprises one or more dielectric waveguides made of dielectrics and transmitting electromagnetic waves, and provided along the longitudinal direction of the one or more dielectric waveguides, And a foamed resin material covering the outer peripheral surface of the dielectric waveguide.
実施例1の電磁波伝送ケーブルを模式的に示す図である。It is a figure which shows the electromagnetic wave transmission cable of Example 1 typically. 実施例1の電磁波伝送ケーブルの長手方向の断面図である。FIG. 2 is a longitudinal sectional view of the electromagnetic wave transmission cable of the first embodiment. 実施例1の電磁波伝送ケーブルの変形例を示す長手方向の断面図である。FIG. 8 is a longitudinal sectional view showing a modification of the electromagnetic wave transmission cable of the first embodiment. 実施例1の電磁波伝送ケーブルの変形例を模式的に示す図である。It is a figure which shows typically the modification of the electromagnetic wave transmission cable of Example 1. FIG. 実施例1の電磁波伝送ケーブルの変形例の中心軸に垂直な方向の断面図である。It is sectional drawing of the direction perpendicular | vertical to the central axis of the modification of the electromagnetic wave transmission cable of Example 1. FIG. 実施例1の電磁波伝送ケーブルの変形例を示す長手方向の断面図である。FIG. 8 is a longitudinal sectional view showing a modification of the electromagnetic wave transmission cable of the first embodiment. 実施例1の電磁波伝送ケーブルの変形例を示す長手方向の断面図である。FIG. 8 is a longitudinal sectional view showing a modification of the electromagnetic wave transmission cable of the first embodiment. 実施例2の電磁波伝送ケーブルを模式的に示す図である。FIG. 7 is a view schematically showing an electromagnetic wave transmission cable of Example 2; 実施例2の電磁波伝送ケーブルの長手方向の断面図である。FIG. 7 is a cross-sectional view of the electromagnetic wave transmission cable of the second embodiment in the longitudinal direction. 外部被覆の有無と伝送損失との関係を示す図である。It is a figure which shows the relationship between the presence or absence of outer covering, and a transmission loss. 外部被覆の有無と有効屈折率との関係を示す図である。It is a figure which shows the relationship between the presence or absence of outer coating | cover, and effective refractive index.
 以下、本発明の実施例について、図面を参照して説明する。なお、以下の各実施例における説明及び添付図面においては、実質的に同一又は等価な部分には同一の参照符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the following embodiments and the accompanying drawings, substantially the same or equivalent parts are denoted by the same reference numerals.
 図1は、本実施例の電磁波伝送ケーブル100の構成を模式的に示す図である。電磁波伝送ケーブル100は、樹脂等の誘電体からなる誘電体導波路10と、誘電体導波路10の外側表面を被覆する発泡樹脂材20とを備える。誘電体導波路10は、電磁波EWを伝送する導波路となっている。電磁波EWは、例えば30~300GHzの周波数を有するミリ波や、0.1~100THzの周波数を有するTHz波である。 FIG. 1 is a view schematically showing a configuration of the electromagnetic wave transmission cable 100 of the present embodiment. The electromagnetic wave transmission cable 100 includes a dielectric waveguide 10 made of a dielectric such as resin, and a foamed resin material 20 that covers the outer surface of the dielectric waveguide 10. The dielectric waveguide 10 is a waveguide for transmitting the electromagnetic wave EW. The electromagnetic wave EW is, for example, a millimeter wave having a frequency of 30 to 300 GHz or a THz wave having a frequency of 0.1 to 100 THz.
 図2は、電磁波伝送ケーブル100の長手方向に沿った断面図である。誘電体導波路10は、中心軸CAを中心とした円柱状の形状を有する。すなわち、誘電体導波路10は、中心軸CAを中心とした回転対称の形状を有する。但し、誘電体導波路10は、所望の性能が得られるのであれば、必ずしも円柱状である必要は無い。例えば、図1では中心軸CAに垂直な誘電体導波路10の断面の外縁が円形である場合を示しているが、長円形、楕円形、矩形等の形状であっても良い。 FIG. 2 is a cross-sectional view of the electromagnetic wave transmission cable 100 along the longitudinal direction. The dielectric waveguide 10 has a cylindrical shape centered on the central axis CA. That is, the dielectric waveguide 10 has a rotationally symmetric shape about the central axis CA. However, the dielectric waveguide 10 does not necessarily have to be cylindrical as long as the desired performance can be obtained. For example, FIG. 1 shows the case where the outer edge of the cross section of the dielectric waveguide 10 perpendicular to the central axis CA is circular, but it may be oval, elliptical, rectangular or the like.
 誘電体導波路10は、例えばフッ素樹脂であるPTFE(ポリテトラフルオロエチレン)や、これに延伸加工を施したe-PTFE(エキスパンデッドポリテトラフルオロエチレン)から構成されている。e-PTFEは、例えばPTFE材料を少なくとも一方向に延伸して連続気孔性(連続した多数の気孔を有する構造)を持たせた後、高温で焼結固定(焼成によって固定)することにより得られる。誘電体導波路10は長手方向に延伸されており、延伸方向に連続した気孔が形成されている。以下の説明では、連続気孔性のうち延伸方向に連続した気孔を有するものを特に延伸気孔性とも称する。誘電体導波路10は、PTFEから構成されている場合には1.5程度の屈折率を有し、e-PTFEから構成されている場合には1.1~1.2程度の屈折率を有する。 The dielectric waveguide 10 is made of, for example, PTFE (polytetrafluoroethylene) which is a fluorocarbon resin, or e-PTFE (expanded polytetrafluoroethylene) obtained by subjecting the same to a drawing process. e-PTFE is obtained, for example, by stretching a PTFE material in at least one direction to give continuous porosity (structure having a large number of continuous pores) and then sintering and fixing (fixing by firing) at high temperature . The dielectric waveguide 10 is stretched in the longitudinal direction, and pores continuous in the stretching direction are formed. In the following description, among the continuous porosity, one having pores continuous in the stretching direction is also referred to as particularly stretched porosity. The dielectric waveguide 10 has a refractive index of about 1.5 when composed of PTFE, and a refractive index of about 1.1 to 1.2 when composed of e-PTFE. Have.
 誘電体導波路10は、その導波路の径(中心軸CAに垂直な方向における断面の直径)が、伝送対象である電磁波EWの波長よりも十分に短くなるように構成されている。例えば、電磁波EWが周波数300GHz、波長1mmであって、且つ誘電体導波路10がe-PTFEから構成されている場合、誘電体導波路10の径は例えば0.8mmに設定される。 The dielectric waveguide 10 is configured such that the diameter of the waveguide (the diameter of the cross section in the direction perpendicular to the central axis CA) is sufficiently shorter than the wavelength of the electromagnetic wave EW to be transmitted. For example, when the electromagnetic wave EW has a frequency of 300 GHz and a wavelength of 1 mm, and the dielectric waveguide 10 is made of e-PTFE, the diameter of the dielectric waveguide 10 is set to, for example, 0.8 mm.
 発泡樹脂材20は、誘電体導波路10の長手方向に延在し、誘電体導波路10の外周を囲むように、誘電体導波路10の外側表面(すなわち、外周面)を被覆している。また、発泡樹脂材20は、最も単純な形状としては誘電体導波路10の中心軸CAを中心とした回転対称の断面形状を有する。但し、所望の性能が得られるのであれば、形状は任意である。例えば、図1では中心軸CAに垂直な方向における発泡樹脂材20の断面の外縁が円形である場合を示しているが、長円、楕円、矩形等であっても良い。また、発泡樹脂材20の断面の外縁は、誘電体導波路10の断面の外縁と同様の形状であっても良く、異なる形状であっても良い。 The foamed resin material 20 extends in the longitudinal direction of the dielectric waveguide 10 and covers the outer surface (that is, the outer peripheral surface) of the dielectric waveguide 10 so as to surround the outer periphery of the dielectric waveguide 10 . In addition, the foamed resin material 20 has, as its simplest shape, a cross-sectional shape that is rotationally symmetric about the central axis CA of the dielectric waveguide 10. However, the shape is arbitrary as long as a desired performance can be obtained. For example, although FIG. 1 shows the case where the outer edge of the cross section of the foamed resin material 20 in the direction perpendicular to the central axis CA is circular, it may be an oval, an ellipse, a rectangle or the like. The outer edge of the cross section of the foamed resin material 20 may have the same shape as the outer edge of the cross section of the dielectric waveguide 10, or may have a different shape.
 発泡樹脂材20は、例えば発泡ポリスチレンから構成されている。発泡ポリスチレンは、屈折率1.6のポリスチレン中に屈折率1の空気(気孔)が微細に入り組んだ構造をしており、誘電体であるポリスチレンと空気との微細な反射界面が大量に存在している。例えば、梱包材として使われていた発泡率が低い発泡ポリスチレンのバルク状態での平均屈折率(バルク材料が単一物質の均質媒体であると仮定した場合の屈折率)を測定すると、0.1~0.5THzの電磁波に対する平均屈折率は約1.1であった。この結果から、発泡ポリスチレン中には空気が大量に混在していることが確認できる。 The foamed resin material 20 is made of, for example, expanded polystyrene. Expanded polystyrene has a structure in which air (pores) of refractive index 1 is finely interspersed in polystyrene having a refractive index of 1.6, and a large number of fine reflective interfaces between polystyrene, which is a dielectric, and air are present. ing. For example, the average refractive index in the bulk state of the low-foam polystyrene foam used as a packaging material (refractive index assuming that the bulk material is a homogeneous medium of single substance) is 0.1 The average refractive index for electromagnetic waves of ̃0.5 THz was about 1.1. From this result, it can be confirmed that a large amount of air is mixed in the expanded polystyrene.
 このように、発泡樹脂材20には大量の空気が含まれており、誘電体導波路10の表面に接触しているポリスチレンの割合は非常に少ない。従って、金属や人体等が発泡樹脂材20の外側表面(すなわち誘電体導波路10と接する表面とは反対側の表面)に接触するような場合においても、電磁波の漏れ出しを大きく減らすことができる。 Thus, the foamed resin material 20 contains a large amount of air, and the proportion of polystyrene in contact with the surface of the dielectric waveguide 10 is very small. Therefore, even when metal, a human body or the like contacts the outer surface of the foamed resin material 20 (that is, the surface opposite to the surface in contact with the dielectric waveguide 10), the leakage of electromagnetic waves can be greatly reduced. .
 なお、発泡樹脂材20の厚さがあまり薄いと、電磁波の閉じ込め効果(すなわち、電磁波の漏れ出しを減らす効果)が減少する。例えば、導波周波数300GHz、外径0.9mmのPTFEで構成された誘電体導波路に対して発泡ポリエチレン被覆を用いた実験では、被覆の厚さが1mm未満では十分な電磁波の閉じ込め効果が得られなかった。例えば、発泡樹脂材20の厚さ(被覆部分の厚さ)は、伝送する電磁波の波長相当の厚さ(波長×平均屈折率)以上が望ましい。また、厚すぎると扱いづらくなるため、発泡樹脂材20の厚さは、50mm以下、好ましくは10mm以下に設定されていることが望ましい。 If the thickness of the foamed resin material 20 is too thin, the effect of confining electromagnetic waves (that is, the effect of reducing the leakage of electromagnetic waves) is reduced. For example, in an experiment using a foamed polyethylene coating for a dielectric waveguide composed of PTFE with a waveguide frequency of 300 GHz and an outer diameter of 0.9 mm, sufficient electromagnetic wave confinement effects can be obtained if the coating thickness is less than 1 mm. It was not done. For example, the thickness of the foamed resin material 20 (the thickness of the coated portion) is desirably equal to or greater than the thickness (wavelength × average refractive index) corresponding to the wavelength of the electromagnetic wave to be transmitted. Moreover, since it will be difficult to handle if it is too thick, the thickness of the foamed resin material 20 is desirably set to 50 mm or less, preferably 10 mm or less.
 また、発泡樹脂材20には、立体構造が設けられていても良い。例えば、図3(a)は、発泡樹脂材20の外側表面に凹凸形状又は切り欠き形状の構造(例えば、図3(a)に20aとして示す)が設けられた電磁波伝送ケーブルの断面図である。このような構造を有することにより、電磁波伝送ケーブル100を曲げやすくすることができる。また、図3(b)に示すように誘電体導波路10に接触する内側表面に凹凸形状又は切り欠き形状の構造(例えば、図3(b)に20bとして示す)を設けることにより、電磁波の閉じ込め効果を強化することができる。また、電磁波伝送ケーブル100を保護し、つぶれることを防止するため、図3(c)に示すように、誘電体導波路10の長手方向に沿って、発泡樹脂材20の外側表面を被覆する外部被膜OCを設けても良い。 In addition, the foamed resin material 20 may have a three-dimensional structure. For example, FIG. 3 (a) is a cross-sectional view of an electromagnetic wave transmission cable in which a concavo-convex or notch-shaped structure (for example, shown as 20a in FIG. 3 (a)) is provided on the outer surface of the foamed resin material 20. . By having such a structure, the electromagnetic wave transmission cable 100 can be easily bent. Further, as shown in FIG. 3 (b), by providing an uneven or notched structure (for example, shown as 20b in FIG. 3 (b)) on the inner surface in contact with the dielectric waveguide 10, it is possible to The confinement effect can be enhanced. Also, in order to protect the electromagnetic wave transmission cable 100 and to prevent it from collapsing, as shown in FIG. 3 (c), the outside covering the outer surface of the foamed resin material 20 along the longitudinal direction of the dielectric waveguide 10. A coating OC may be provided.
 また、電磁波伝送ケーブル100は、発泡樹脂材20が複数本の誘電体導波路を被覆するマルチルーメン型のケーブルとして構成されていても良い。例えば、図4に示すように、電磁波伝送ケーブル100は、第1の誘電体導波路11及び第2の誘電体導波路12を有し、発泡樹脂材20がこれらを共通に被覆する構成であっても良い。このような構成によれば、複数の信号や波長の異なる複数の電磁波(図中、EW1及びEW2として示す)を伝送することが可能となる。 In addition, the electromagnetic wave transmission cable 100 may be configured as a multi-lumen cable in which the foamed resin material 20 covers a plurality of dielectric waveguides. For example, as shown in FIG. 4, the electromagnetic wave transmission cable 100 has a configuration in which the first dielectric waveguide 11 and the second dielectric waveguide 12 are provided, and the foamed resin material 20 covers them in common. It is good. According to such a configuration, it becomes possible to transmit a plurality of signals and a plurality of electromagnetic waves of different wavelengths (shown as EW1 and EW2 in the figure).
 また、マルチルーメン型のケーブルにおいて、発泡樹脂材20の断面の外縁は、円形ではなく図5(a)に示すような楕円形等の形状であっても良い。また、マルチルーメン型のケーブルにおける誘電体導波路の数は2本に限られず、図5(b)に示すように3本の誘電体導波路11、12及び13や、それ以上の数の誘電体導波路を有していても良い。また、発泡樹脂材20の断面は、四角形等の多角形であっても良い。例えば、図5(c)に示すように、発泡樹脂材20の断面の外縁が四角形であり、断面が円形である3本の誘電体導波路11、12及び13を被覆するような構成を有していても良い。 Further, in the multi-lumen type cable, the outer edge of the cross section of the foamed resin material 20 may not be circular, but may be oval or the like as shown in FIG. 5A. Further, the number of dielectric waveguides in the multi-lumen cable is not limited to two, and as shown in FIG. 5B, the number of dielectric waveguides 11, 12 and 13 of three or more is more It may have a body waveguide. Moreover, the cross section of the foamed resin material 20 may be a polygon such as a square. For example, as shown in FIG. 5C, the outer edge of the cross section of the foamed resin material 20 is a quadrangle, and has a configuration covering the three dielectric waveguides 11, 12, and 13 having a circular cross section. You may
 また、マルチルーメン型のケーブルにおける複数本の誘電体導波路は、図5(d)に示すように、互いに異なる径を有していても良い。また、図5(e)に示すように、複数本の誘電体導波路がそれぞれ異なる断面形状(例えば、1つは外縁が円形、他の1つは外縁が楕円形)を有していても良い。すなわち、複数本の誘電体導波路の各々の径や断面は、それぞれが伝送する電磁波の波長に応じて適切な大きさや形状とすることが可能である。 Further, as shown in FIG. 5D, the plurality of dielectric waveguides in the multi-lumen cable may have mutually different diameters. Also, as shown in FIG. 5 (e), even if the plurality of dielectric waveguides have different cross-sectional shapes (for example, one has a circular outer edge and the other has an elliptical outer edge). good. That is, the diameter and the cross section of each of the plurality of dielectric waveguides can be set to an appropriate size and shape according to the wavelength of the electromagnetic wave transmitted by each.
 また、図6に示すように、誘電体導波路10の全体を発泡樹脂材20により被覆するのではなく、誘電体導波路同士を接続するためのコネクタ部や、誘電体導波路10を所定の高さに保持するための支持部等、他の部材と接触する可能性のある部分だけを発泡樹脂材20により被覆する構成としても良い。すなわち、発泡樹脂材20は誘電体導波路10の長手方向の所定の長さ(距離)に亘って設けられていれば良く、複数箇所に設けられていても良い。 Further, as shown in FIG. 6, instead of covering the entire dielectric waveguide 10 with the foamed resin material 20, a connector portion for connecting the dielectric waveguides with each other and a predetermined dielectric waveguide 10 are used. Only a portion that may come in contact with another member, such as a support portion for holding at a height, may be covered with the foamed resin material 20. That is, the foamed resin material 20 may be provided over a predetermined length (distance) in the longitudinal direction of the dielectric waveguide 10, and may be provided at a plurality of places.
 また、発泡樹脂材20の発泡率を誘電体導波路10と接触する接触面に近い領域(すなわち、内側)と接触面から遠い領域(すなわち、外側)とで変えても良い。例えば、図7に示すように、発泡樹脂材20の誘電体導波路10との接触面に近い領域から遠い領域までをエリアA1~A4に分け、エリアA1、A2、A3、A4と進むにつれて各エリアの発泡率を段階的に小さくしても良い。この構成によれば、誘電体導波路10との接触面に近い内側領域では発泡率を比較的大きくすることにより電磁波の閉じ込め効果を高め、誘電体導波路10との接触面から遠い外側領域では発泡率を比較的小さくすることによりケーブルの剛性を高めることができる。 In addition, the foaming ratio of the foamed resin material 20 may be changed between a region close to the contact surface in contact with the dielectric waveguide 10 (i.e., inside) and a region far from the contact surface (i.e., outer). For example, as shown in FIG. 7, the area from the area close to the contact surface with the dielectric waveguide 10 of the foamed resin material 20 to the area far from is divided into areas A1 to A4, and each area advances as areas A1, A2, A3 and A4. The foaming rate of the area may be reduced stepwise. According to this configuration, in the inner region near the contact surface with the dielectric waveguide 10, the effect of confining the electromagnetic wave is enhanced by relatively increasing the foaming ratio, and in the outer region far from the contact surface with the dielectric waveguide 10. The rigidity of the cable can be increased by relatively reducing the foaming rate.
 以上のように、本実施例の電磁波伝送ケーブル100では、誘電体導波路10の表面が発泡樹脂材20により被覆されている。発泡樹脂材20は空気を大量に含んでおり、平均屈折率が誘電体導波路10の屈折率よりも小さい。この構成によれば、金属や人体等の他の物体が電磁波伝送ケーブル100の外側表面に接触するような場合であっても、誘電体導波路10における電磁波の閉じ込め効果を維持することが可能となる。 As described above, in the electromagnetic wave transmission cable 100 of the present embodiment, the surface of the dielectric waveguide 10 is covered with the foamed resin material 20. The foamed resin material 20 contains a large amount of air, and the average refractive index is smaller than the refractive index of the dielectric waveguide 10. According to this configuration, even when another object such as a metal or a human body is in contact with the outer surface of the electromagnetic wave transmission cable 100, it is possible to maintain the electromagnetic wave confinement effect in the dielectric waveguide 10. Become.
 また、本実施例の電磁波伝送ケーブル100では、誘電体導波路10がPTFE又はe-PTFEから構成されている。本実施例で用いている延伸気孔性樹脂(e-PTFE)は、延伸方向に特徴的な微小結節と微細繊維構造を有するため、電磁波の伝送損失を上げることなく、低屈折率媒体(平均屈折率が低い媒体)として機能することが出来る。 Further, in the electromagnetic wave transmission cable 100 of the present embodiment, the dielectric waveguide 10 is made of PTFE or e-PTFE. Since the expanded porous resin (e-PTFE) used in the present embodiment has a characteristic micro nodule and a fine fiber structure in the extending direction, a low refractive index medium (average Can act as a low rate medium).
 延伸気孔性樹脂の気孔率(樹脂中の多孔部分の割合)は30~90%の間で用途に応じて選択できるが、本実施例のように外部を発泡樹脂材20で被覆するためには、発泡樹脂材20との屈折率差が必要となる。電磁波の伝送損失を抑えるためには、最低でも0.01程度の屈折率差が必要であり、そこから求められる望ましい気孔率は70%以下となる。従って、本実施例の誘電体導波路10における延伸気孔性樹脂の気孔率の最適な範囲は30~70%となる。 The porosity (proportion of the porous portion in the resin) of the drawn porous resin can be selected between 30 and 90% according to the application, but in order to coat the outside with the foamed resin material 20 as in this embodiment, The refractive index difference with the foamed resin material 20 is required. In order to suppress the transmission loss of electromagnetic waves, a refractive index difference of at least about 0.01 is required, and the desirable porosity obtained therefrom is 70% or less. Therefore, the optimum range of the porosity of the stretched porous resin in the dielectric waveguide 10 of the present embodiment is 30 to 70%.
 図8は、本実施例の電磁波伝送ケーブル200の構成を模式的に示す図である。電磁波伝送ケーブル200は、樹脂等の誘電体からなる誘電体導波路10と、誘電体導波路10の外側表面を被覆する発泡樹脂材20と、発泡樹脂材20の外側表面を被覆する金属膜30と、を備える。誘電体導波路10は、電磁波EWを伝送する導波路となっている。 FIG. 8 is a view schematically showing the configuration of the electromagnetic wave transmission cable 200 of the present embodiment. The electromagnetic wave transmission cable 200 includes a dielectric waveguide 10 made of a dielectric such as resin, a foamed resin material 20 covering the outer surface of the dielectric waveguide 10, and a metal film 30 coating the outer surface of the foamed resin material 20. And. The dielectric waveguide 10 is a waveguide for transmitting the electromagnetic wave EW.
 図9は、電磁波伝送ケーブル200の長手方向に沿った断面図である。金属膜30は、誘電体導波路10及び発泡樹脂材20と同様、中心軸CAを中心とした回転対称の形状を有する。金属膜30は、誘電体導波路10の長手方向に延在し、中心軸CAを中心として発泡樹脂材20の外周を囲むように、誘電体導波路10を被覆する発泡樹脂材20の外側表面をさらに被覆している。図8では中心軸CAに垂直な方向における金属膜30の断面の外縁が円形である場合を示しているが、長円、楕円、矩形等であっても良い。また、金属膜30の断面の外縁は、誘電体導波路10や発泡樹脂材20の断面の外縁と同様の形状であっても良く、異なる形状であっても良い。すなわち、金属膜30は発泡樹脂材20を覆うような形状を有していれば良い。 FIG. 9 is a cross-sectional view of the electromagnetic wave transmission cable 200 along the longitudinal direction. Similar to the dielectric waveguide 10 and the foamed resin material 20, the metal film 30 has a rotationally symmetric shape around the central axis CA. The metal film 30 extends in the longitudinal direction of the dielectric waveguide 10, and the outer surface of the foamed resin material 20 covering the dielectric waveguide 10 so as to surround the outer periphery of the foamed resin material 20 about the central axis CA. Is further coated. Although FIG. 8 shows the case where the outer edge of the cross section of the metal film 30 in the direction perpendicular to the central axis CA is circular, it may be oval, elliptical, rectangular or the like. The outer edge of the cross section of the metal film 30 may have the same shape as the outer edge of the cross section of the dielectric waveguide 10 or the foamed resin material 20, or may have a different shape. That is, the metal film 30 may have a shape that covers the foamed resin material 20.
 本実施例の誘電体導波路10は、フッ素樹脂であるPTFE(ポリテトラフルオロエチレン)を延伸して連続気孔性を持たせ、焼成により固定化したe-PTFE(エキスパンデッドポリテトラフルオロエチレン)から構成されている。誘電体導波路10は、1.1~1.2程度の屈折率を有し、電磁波EWの波長よりも短い約0.6mmの径(中心軸CAに垂直な方向における断面の直径)を有する。 The dielectric waveguide 10 of the present embodiment is made of e-PTFE (expanded polytetrafluoroethylene) which is expanded by drawing PTFE (polytetrafluoroethylene), which is a fluorocarbon resin, to have continuous porosity, and fixed by firing. It consists of The dielectric waveguide 10 has a refractive index of about 1.1 to 1.2, and has a diameter of about 0.6 mm (the diameter of the cross section in the direction perpendicular to the central axis CA) shorter than the wavelength of the electromagnetic wave EW .
 本実施例の発泡樹脂材20は、発泡倍率が約30倍(密度がバルクの約3%)の発泡ポリスチレンから構成されている。発泡樹脂材20は、誘電体導波路10よりも低い屈折率(1に近い屈折率、例えば1.016)を有する。 The foamed resin material 20 of the present embodiment is composed of expanded polystyrene with an expansion ratio of about 30 times (about 3% of the bulk density). The foamed resin material 20 has a refractive index (a refractive index close to 1, for example, 1.016) lower than that of the dielectric waveguide 10.
 発泡樹脂材20は、例えば中空の形状を有する発泡樹脂の内部に誘電体導波路10を挿入する方法や、発泡樹脂を誘電体導波路10の周囲に巻き付ける方法等により、誘電体導波路10の外周面に形成されている。 The foamed resin material 20 can be obtained by, for example, inserting the dielectric waveguide 10 inside the foamed resin having a hollow shape, winding the foamed resin around the dielectric waveguide 10, or the like. It is formed on the outer peripheral surface.
 金属膜30は、例えば金、銀、銅等の比較的導電率の高い金属から構成されている。金属膜30は、発泡樹脂材20の外側表面に形成され、1μm程度以上の厚みを有する。金属膜30は、例えば発泡樹脂材20の表面に直接金属膜を成膜する方法や、予め誘電体シート表面に金属膜を成膜した金属膜付きシートを作製し、金属面が発泡樹脂材20の側を向くように巻き付ける方法等により作製されている。 The metal film 30 is made of, for example, a metal having a relatively high conductivity such as gold, silver, copper or the like. The metal film 30 is formed on the outer surface of the foamed resin material 20 and has a thickness of about 1 μm or more. The metal film 30 can be formed, for example, by a method of forming a metal film directly on the surface of the foamed resin material 20, or a sheet with a metal film having a metal film formed beforehand on the surface of a dielectric sheet. It is manufactured by the method of winding so that it may face the side of.
 また、金属膜30の外周部分は、誘電体等からなる保護膜(図示せず)により被覆されている。この保護膜は保護の機能のみを有し、電磁波伝送には寄与しない。例えば、金属膜付きシートを発泡樹脂材20に巻き付ける方法で金属膜30を作製した場合には、誘電体シートを剥離せずにそのまま保護膜として用いることができる。 The outer peripheral portion of the metal film 30 is covered with a protective film (not shown) made of a dielectric or the like. This protective film has only a protective function and does not contribute to electromagnetic wave transmission. For example, when the metal film 30 is produced by a method of winding the metal film-covered sheet around the foamed resin material 20, the dielectric sheet can be used as a protective film as it is without peeling off.
 このように、本実施例の電磁波伝送ケーブル200では、誘電体導波路10を被覆する発泡樹脂材20の外側表面をさらに被覆するように金属膜30が形成されている。この金属膜30の効果について、図10及び図11を参照して説明する。 Thus, in the electromagnetic wave transmission cable 200 of the present embodiment, the metal film 30 is formed to further cover the outer surface of the foamed resin material 20 covering the dielectric waveguide 10. The effect of the metal film 30 will be described with reference to FIGS. 10 and 11.
 図10は、外部被覆の有無に応じた、誘電体導波路の直径と伝送損失との関係を示すグラフである。 FIG. 10 is a graph showing the relationship between the diameter of the dielectric waveguide and the transmission loss according to the presence or absence of the outer coating.
 誘電体導波路のみで外部被膜を有しない場合、図10に破線で示すように、誘電体導波路の直径が小さくなる(誘電体導波路が細くなる)にしたがって、伝送損失が低減する。 In the case where the dielectric waveguide alone is not provided with the outer coating, the transmission loss decreases as the diameter of the dielectric waveguide becomes smaller (the dielectric waveguide becomes thinner), as shown by a broken line in FIG.
 発泡樹脂で誘電体導波路を被覆した場合、図10に一点鎖線で示すように、誘電体導波路の直径がある程度以上の範囲(図10では、約0.7mm~1mm)では、外部被膜を有しない場合(破線で示す)と比べて伝送損失が低く、且つ誘電体導波路の直径が小さくなるにしたがって伝送損失が低減する。しかし、誘電体導波路の直径がある値(0.6mm)よりも小さくなると、伝送が出来なくなる程度まで伝送損失が悪化する(図10では、測定不能として示す)。 When the dielectric waveguide is coated with the foamed resin, as shown by the alternate long and short dash line in FIG. 10, the outer coating is formed in the range where the diameter of the dielectric waveguide is more than a certain extent (about 0.7 mm to 1 mm in FIG. 10). The transmission loss is lower as compared to the case where it is not provided (shown by a broken line), and the transmission loss decreases as the diameter of the dielectric waveguide becomes smaller. However, when the diameter of the dielectric waveguide becomes smaller than a certain value (0.6 mm), the transmission loss is deteriorated to the extent that transmission can not be performed (shown as unmeasurable in FIG. 10).
 これに対し、誘電体導波路を被覆する発泡樹脂の外側表面をさらに金属膜で被覆した場合、図10に実線で示すように、誘電体導波路の直径に比例して伝送損失が低減し、誘電体導波路の直径がある値(0.6mm)よりも小さい範囲においても、伝送が出来なくなるほどの伝送損失の悪化が生じない。 On the other hand, when the outer surface of the foamed resin covering the dielectric waveguide is further covered with a metal film, transmission loss is reduced in proportion to the diameter of the dielectric waveguide, as shown by a solid line in FIG. Even in the range in which the diameter of the dielectric waveguide is smaller than a certain value (0.6 mm), the deterioration of the transmission loss to the extent that transmission can not be performed does not occur.
 図11は、外部被覆の有無に応じた、誘電体導波路の直径と有効屈折率との関係を示すグラフである。有効屈折率は、電磁波伝送に寄与する媒質の平均屈折率を示すものであり、電磁波の伝送状態を特徴づけるパラメータである。 FIG. 11 is a graph showing the relationship between the diameter of the dielectric waveguide and the effective refractive index according to the presence or absence of the outer coating. The effective refractive index indicates the average refractive index of the medium contributing to the electromagnetic wave transmission, and is a parameter that characterizes the transmission state of the electromagnetic wave.
 発泡樹脂で誘電体導波路を被覆した場合、図11に一点鎖線で示すように、誘電体導波路の直径が小さくなる(誘電体導波路が細くなる)にしたがって、有効屈折率が発泡樹脂の屈折率(1.016)に漸近する。これは、誘電体導波路の直径が小さくなるにしたがって、電磁波の伝播媒質が誘電体から発泡樹脂に変化していることを示している。発泡樹脂を伝播媒質とする伝送は、電磁波の閉じ込めが不安定であり、最終的に伝送ができなくなってしまう。 When the dielectric waveguide is coated with the foamed resin, as shown by the alternate long and short dash line in FIG. 11, as the diameter of the dielectric waveguide becomes smaller (the dielectric waveguide becomes thinner), the effective refractive index is Asymptotically to the refractive index (1.016). This indicates that the propagation medium of the electromagnetic wave is changed from the dielectric to the foamed resin as the diameter of the dielectric waveguide becomes smaller. In transmission using a foamed resin as a propagation medium, confinement of electromagnetic waves is unstable, and eventually transmission can not be performed.
 これに対し、金属膜で発泡樹脂の外側表面を被覆した場合には、図11に実線で示すように、有効屈折率は発泡樹脂の屈折率に漸近せず、誘電体導波路の直径が小さくなるにしたがって有効屈折率も小さくなる。これは、電磁波の伝播媒質が発泡樹脂に変化せず、電磁波が誘電体導波路の誘電体部分で安定して伝送されることを示している。 On the other hand, when the outer surface of the foamed resin is covered with a metal film, as shown by a solid line in FIG. 11, the effective refractive index does not gradually approach the refractive index of the foamed resin, and the diameter of the dielectric waveguide is small. The effective refractive index also decreases as This indicates that the electromagnetic wave propagation medium is not changed to the foamed resin, and the electromagnetic wave is stably transmitted in the dielectric portion of the dielectric waveguide.
 このように、本実施例の電磁波伝送ケーブル200では、誘電体導波路10の外部被覆を発泡樹脂材20及び金属膜30の二重構造とすることにより、発泡樹脂のみで被覆した場合に生じる伝送損失の低下を抑制することができる。すなわち、誘電体導波路を発泡樹脂のみで被覆すると、誘電体導波路と発泡樹脂の物性値によって決まる伝送損失の下限値を下回る(例えば、有効屈折率が発泡樹脂の屈折率を下回る)と電磁波の伝送ができなくなる。しかし、本実施例のように発泡樹脂材20を金属膜でさらに被覆することにより、その下限値(発泡樹脂のみで被覆した場合における伝送損失の下限値)以下の伝送損失を実現することができる。 As described above, in the electromagnetic wave transmission cable 200 according to the present embodiment, the outer coating of the dielectric waveguide 10 is a double structure of the foamed resin material 20 and the metal film 30, so that the transmission occurs when covered only with the foamed resin. Loss reduction can be suppressed. That is, when the dielectric waveguide is coated only with the foamed resin, the electromagnetic wave is below the lower limit of the transmission loss determined by the physical properties of the dielectric waveguide and the foamed resin (for example, the effective refractive index is less than the refractive index of the foamed resin) Can not be transmitted. However, by further covering the foamed resin material 20 with the metal film as in the present embodiment, it is possible to realize the transmission loss equal to or lower than the lower limit value (the lower limit value of the transmission loss in the case of covering only with the foamed resin). .
 また、本実施例の電磁波伝送ケーブル200では、金属膜30が外部からの電磁波(ノイズ)に対するシールドとして機能する。従って、誘電体導波路10が外部から遮蔽されるため、安定した電磁波の伝送が可能となる。 Further, in the electromagnetic wave transmission cable 200 of the present embodiment, the metal film 30 functions as a shield against electromagnetic waves (noises) from the outside. Therefore, since the dielectric waveguide 10 is shielded from the outside, stable electromagnetic wave transmission becomes possible.
 また、発泡樹脂のみで誘電体導波路を被覆する場合と比べて、被覆部分全体の厚みを薄くすることができるため、小型化が可能となる。 Further, as compared with the case where the dielectric waveguide is covered with only the foamed resin, the thickness of the entire covering portion can be reduced, so that miniaturization can be achieved.
 本発明の実施形態は、上記実施例で示したものに限られない。例えば、上記実施例では、発泡樹脂材20が発泡ポリスチレンから構成されている例について説明した。しかし、発泡樹脂材20の材料はこれに限られず、平均減衰率が0.1cm-1以下の発泡樹脂材料から構成されていれば良い。例えば、発泡樹脂材20は、発泡ポリウレタン、発泡ポリオレフィン、発泡ポリオレフィン(発泡ポリエチレン、発泡ポリプロピレン)、発泡ポリテトラフルオロエチレン(PTFE)等から構成されていても良い。すなわち、発泡樹脂材20は、誘電体導波路10と同種材料の発泡樹脂から構成されていても良い。 The embodiment of the present invention is not limited to the one shown in the above example. For example, in the said Example, the example which the foamed resin material 20 was comprised from expanded polystyrene was demonstrated. However, the material of the foamed resin material 20 is not limited to this, and it may be made of a foamed resin material having an average attenuation rate of 0.1 cm −1 or less. For example, the foamed resin material 20 may be made of foamed polyurethane, foamed polyolefin, foamed polyolefin (foamed polyethylene, foamed polypropylene), foamed polytetrafluoroethylene (PTFE) or the like. That is, the foamed resin material 20 may be made of foamed resin of the same material as the dielectric waveguide 10.
 また、上記実施例では、誘電体導波路10を構成する材料として、PTFE材料を延伸して連続気孔性を持たせた上で、さらに焼結固定することにより得られたe-PTFEを用いる例について説明した。しかし、かかる材料は、焼結固定前の状態でも低損失の伝送性能を有しているため、必ずしも焼結固定されていなくても良い。すなわち、誘電体導波路10は、延伸気孔性を有する誘電体材料から構成されていれば良い。 Further, in the above embodiment, as a material for forming the dielectric waveguide 10, an example is used in which e-PTFE obtained by further stretching and forming a PTFE material to give continuous porosity, and further sintering and fixing it. Explained. However, such materials do not necessarily have to be sintered and fixed because they have low loss transmission performance even before sintering and fixing. That is, the dielectric waveguide 10 may be made of a dielectric material having expanded porosity.
 また、上記実施例では、発泡樹脂材20が発泡ポリスチレンから構成され、0.1~0.5THzの電磁波に対する屈折率が約1.1である場合を例として説明した。しかし、発泡樹脂材20の平均屈折率はこれに限られない。屈折率が低いことにより電磁波の閉じ込め効果が生じるため、発泡樹脂材20の発泡率は高いことが望ましいが、発泡率が高すぎると軟らかくなりすぎて扱いづらくなる。このため、発泡樹脂材20は、バルク状態での平均屈折率が1.2を下回る程度まで発泡していることが望ましい。 Further, in the above embodiment, the case where the foamed resin material 20 is made of foamed polystyrene and the refractive index to an electromagnetic wave of 0.1 to 0.5 THz is about 1.1 has been described as an example. However, the average refractive index of the foamed resin material 20 is not limited to this. It is desirable that the foaming rate of the foamed resin material 20 is high because a low refractive index produces a confinement effect of electromagnetic waves, but if the foaming rate is too high, it becomes too soft and difficult to handle. Therefore, it is desirable that the foamed resin material 20 is foamed to such an extent that the average refractive index in the bulk state is less than 1.2.
 また、上記実施例1では、誘電体導波路10の径が0.8mm~1mmである場合を例として説明したが、径の大きさはこれに限られない。ただし、損失の少ない伝送を可能とするため、誘電体導波路10は、その径が電磁波EWの波長以下、望ましくは半波長以下となるように形成されていれば良い。 In the first embodiment, the case where the diameter of the dielectric waveguide 10 is 0.8 mm to 1 mm has been described as an example, but the size of the diameter is not limited to this. However, in order to enable transmission with little loss, the dielectric waveguide 10 may be formed to have a diameter equal to or less than the wavelength of the electromagnetic wave EW, preferably equal to or less than a half wavelength.
 また、上記実施例2では、誘電体導波路10を発泡樹脂材20が被覆し、さらに発泡樹脂材20の外側表面を金属膜30が被覆する構成について説明した。しかし、誘電体導波路10と金属膜30との間には発泡樹脂材20の代わりに空気が挟まれていても良い。例えば、誘電体導波路10と金属膜30との間に発泡樹脂材20が万遍なく設けられているのではなく、部分的に発泡樹脂材20が設けられている構成であっても良い。このような構成によれば、平均の屈折率を1に近づけることが可能となる。 In the second embodiment, the dielectric waveguide 10 is covered with the foamed resin material 20, and the outer surface of the foamed resin material 20 is covered with the metal film 30. However, air may be sandwiched between the dielectric waveguide 10 and the metal film 30 instead of the foamed resin material 20. For example, the foamed resin material 20 may not be uniformly provided between the dielectric waveguide 10 and the metal film 30, but the foamed resin material 20 may be partially provided. According to such a configuration, it is possible to make the average refractive index close to one.
 また、上記実施例2では、発泡樹脂材20の外側表面全体を金属膜30が被覆している場合について説明した。しかし、金属膜30は、電磁波EWの波長以下の間隔であれば、パターニングされて部分的に発泡樹脂材20の外側表面を被覆するものであっても良い。金属膜のパターニングは、例えば金属細線を巻き付ける方法や、網組シールドのように網をかぶせる方法により構成されていても良い。また、金属膜のパターニングは、成膜時にマスクを用いてワイヤーグリッドやメタマテリアル構造を作り込むことにより構成されていても良い。 In the second embodiment, the case where the entire outer surface of the foamed resin material 20 is covered with the metal film 30 has been described. However, the metal film 30 may be patterned to partially cover the outer surface of the foamed resin material 20 as long as the distance is equal to or less than the wavelength of the electromagnetic wave EW. The patterning of the metal film may be configured, for example, by a method of winding a metal thin wire or a method of covering a net like a mesh shield. The patterning of the metal film may be configured by forming a wire grid or a metamaterial structure using a mask at the time of film formation.
 また、上記実施例2において、誘電体導波路10と金属膜30の構造と材質を調整することにより、必要な発泡樹脂材20の厚みを薄くすることができる。 Further, in the second embodiment, by adjusting the structures and materials of the dielectric waveguide 10 and the metal film 30, it is possible to reduce the necessary thickness of the foamed resin material 20.
 また、上記実施例2では、金属膜30が金、銀、銅等の金属から構成されている場合を例として説明したが、アルミや合金により構成されていても良い。また、発泡樹脂材20を被覆する外部被膜として、金属膜30の代わりに誘電体膜を用いても良い。例えば、屈折率が1.4程度以上の誘電体膜であれば、界面での屈折率差を十分に確保することができる。 In the second embodiment, the metal film 30 is made of metal such as gold, silver or copper. However, the metal film 30 may be made of aluminum or alloy. Alternatively, a dielectric film may be used in place of the metal film 30 as an outer film for covering the foamed resin material 20. For example, if the dielectric film has a refractive index of about 1.4 or more, the refractive index difference at the interface can be sufficiently secured.
 また、本実施例の電磁波伝送ケーブルは、例えば自動車等の車用情報ハーネスの代わりとなる車内用の大容量高速情報通信用のケーブルや、大容量通信が必要なデータセンターや動画伝送用等のケーブルとして用いることが可能である。 In addition, the electromagnetic wave transmission cable of this embodiment is, for example, a cable for large capacity high speed information communication for in-vehicle use as a substitute for a car information harness such as a car, a data center for large capacity communication required for large capacity communication, etc. It can be used as a cable.
10 誘電体導波路
20 発泡樹脂材
30 金属膜
100,200 電磁波伝送ケーブル
11~13 誘電体導波路
DESCRIPTION OF REFERENCE NUMERALS 10 dielectric waveguide 20 foamed resin material 30 metal film 100 200 electromagnetic wave transmission cable 11 to 13 dielectric waveguide

Claims (19)

  1.  誘電体からなり、電磁波を伝送する1又は複数の誘電体導波路と、
     前記1又は複数の誘電体導波路の長手方向に沿って設けられ、前記1又は複数の誘電体導波路の外周面を被覆する発泡樹脂材と、
     を有することを特徴とする電磁波伝送ケーブル。
    One or more dielectric waveguides made of a dielectric and transmitting electromagnetic waves;
    A foamed resin material provided along the longitudinal direction of the one or more dielectric waveguides and covering the outer peripheral surface of the one or more dielectric waveguides;
    The electromagnetic wave transmission cable characterized by having.
  2.  前記1又は複数の誘電体導波路は、延伸気孔性を有する材料を含む誘電体からなることを特徴とする請求項1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to claim 1, wherein the one or more dielectric waveguides are made of a dielectric including a material having expanded porosity.
  3.  前記1又は複数の誘電体導波路の各々の外径は、伝送する前記電磁波の波長×前記誘電体の屈折率で表される長さ未満であることを特徴とする請求項1又は2に記載の電磁波伝送ケーブル。 The outer diameter of each of the one or more dielectric waveguides is less than the length represented by the wavelength of the electromagnetic wave to be transmitted × the refractive index of the dielectric, according to claim 1 or 2. Electromagnetic transmission cable.
  4.  前記発泡樹脂材は、前記1又は複数の誘電体導波路の前記外周面と接触する接触面に近い領域と前記接触面から遠い領域とで発泡率が異なることを特徴とする請求項1乃至3のいずれか1に記載の電磁波伝送ケーブル。 4. The foamed resin material according to claim 1, wherein the foaming ratio is different between an area close to a contact surface in contact with the outer peripheral surface of the one or more dielectric waveguides and an area far from the contact surface. The electromagnetic wave transmission cable as described in any one of the above.
  5.  前記発泡樹脂材は、前記接触面に近い領域から離れるにつれて発泡率が小さくなることを特徴とする請求項4に記載の電磁波伝送ケーブル。 5. The electromagnetic wave transmission cable according to claim 4, wherein the foamed resin material decreases in foaming ratio as it goes away from the area near the contact surface.
  6.  前記発泡樹脂材は、前記1又は複数の誘電体導波路に接触する内側表面に凸形状の構造を有することを特徴とする請求項1乃至5のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to any one of claims 1 to 5, wherein the foamed resin material has a convex structure on an inner surface in contact with the one or more dielectric waveguides.
  7.  前記発泡樹脂材は、前記1又は複数の誘電体導波路に接触する内側表面とは反対側の外側表面に凸形状の構造を有することを特徴とする請求項1乃至6のいずれか1に記載の電磁波伝送ケーブル。 The foamed resin material according to any one of claims 1 to 6, wherein the foamed resin material has a convex structure on the outer surface opposite to the inner surface in contact with the one or more dielectric waveguides. Electromagnetic transmission cable.
  8.  前記1又は複数の誘電体導波路の長手方向に沿って、前記発泡樹脂材の外側表面を被覆する外部被膜をさらに有することを特徴とする請求項1乃至7のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission according to any one of claims 1 to 7, further comprising an outer coating that covers the outer surface of the foamed resin material along the longitudinal direction of the one or more dielectric waveguides. cable.
  9.  前記外部被膜は金属膜であることを特徴とする請求項8に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to claim 8, wherein the outer coating is a metal film.
  10.  前記外部被膜は誘電体膜であることを特徴とする請求項8に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to claim 8, wherein the outer coating is a dielectric film.
  11.  前記外部被膜の外側表面を前記誘電体導波路の長手方向に沿って被覆する保護膜をさらに有することを特徴とする請求項8乃至10のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to any one of claims 8 to 10, further comprising a protective film which covers the outer surface of the outer coating along the longitudinal direction of the dielectric waveguide.
  12.  前記保護膜は、誘電体材料を含む材料から構成されていることを特徴とする請求項11に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to claim 11, wherein the protective film is made of a material including a dielectric material.
  13.  前記発泡樹脂材は、前記1又は複数の誘電体導波路の長手方向の複数箇所において前記1又は複数の誘電体導波路の外側表面を被覆することを特徴とする請求項1乃至12のいずれか1に記載の電磁波伝送ケーブル。 The foam resin material covers the outer surface of the one or more dielectric waveguides at a plurality of locations in the longitudinal direction of the one or more dielectric waveguides. The electromagnetic wave transmission cable as described in 1.
  14.  前記発泡樹脂材は、発泡ポリスチレン、発泡ポリウレタン、発泡ポリオレフィン、及び発泡ポリテトラフルオロエチレンのいずれかから構成されていることを特徴とする請求項1乃至13のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to any one of claims 1 to 13, wherein the foamed resin material is made of any of foamed polystyrene, foamed polyurethane, foamed polyolefin, and foamed polytetrafluoroethylene.
  15.  前記発泡樹脂材は、前記誘電体と同種材料の発泡樹脂から構成されていることを特徴とする請求項1乃至14のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to any one of claims 1 to 14, wherein the foamed resin material is formed of a foamed resin of the same material as the dielectric.
  16.  前記電磁波は、周波数が30~100000GHzであることを特徴とする請求項1乃至15のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to any one of claims 1 to 15, wherein the electromagnetic wave has a frequency of 30 to 100,000 GHz.
  17.  前記発泡樹脂材の前記電磁波に対する平均屈折率は、1以上1.2以下であることを特徴とする請求項1乃至16のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to any one of claims 1 to 16, wherein an average refractive index to the electromagnetic wave of the foamed resin material is 1 or more and 1.2 or less.
  18.  前記発泡樹脂材の前記1又は複数の誘電体導波路を被覆する部分の厚さは、前記電磁波の波長×前記発泡樹脂材の平均屈折率で表される長さ以上であることを特徴とする請求項1乃至17のいずれか1に記載の電磁波伝送ケーブル。 The thickness of the portion covering the one or more dielectric waveguides of the foamed resin material is characterized by being equal to or more than the length of the wavelength of the electromagnetic wave × the average refractive index of the foamed resin material. The electromagnetic wave transmission cable according to any one of claims 1 to 17.
  19.  前記発泡樹脂材の前記電磁波に対する平均減衰率は、0.1cm-1以下であることを特徴とする請求項1乃至18のいずれか1に記載の電磁波伝送ケーブル。 The electromagnetic wave transmission cable according to any one of claims 1 to 18, wherein an average attenuation factor of the foamed resin material to the electromagnetic wave is 0.1 cm -1 or less.
PCT/JP2018/035000 2017-10-02 2018-09-21 Electromagnetic wave transmission cable WO2019069712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017192623 2017-10-02
JP2017-192623 2017-10-02

Publications (1)

Publication Number Publication Date
WO2019069712A1 true WO2019069712A1 (en) 2019-04-11

Family

ID=65994864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035000 WO2019069712A1 (en) 2017-10-02 2018-09-21 Electromagnetic wave transmission cable

Country Status (1)

Country Link
WO (1) WO2019069712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851806A (en) * 2021-09-07 2021-12-28 珠海汉胜科技股份有限公司 Dielectric waveguide and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875301A (en) * 1982-07-09 1983-05-07 Junkosha Co Ltd Transmission line
JP2007235630A (en) * 2006-03-01 2007-09-13 Nippon Tungsten Co Ltd Electromagnetic wave transmission line and antenna
WO2016182667A1 (en) * 2015-05-14 2016-11-17 At&T Intellectual Property I, Lp Waveguide having a nonconductive material and methods for use therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875301A (en) * 1982-07-09 1983-05-07 Junkosha Co Ltd Transmission line
JP2007235630A (en) * 2006-03-01 2007-09-13 Nippon Tungsten Co Ltd Electromagnetic wave transmission line and antenna
WO2016182667A1 (en) * 2015-05-14 2016-11-17 At&T Intellectual Property I, Lp Waveguide having a nonconductive material and methods for use therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851806A (en) * 2021-09-07 2021-12-28 珠海汉胜科技股份有限公司 Dielectric waveguide and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2020092451A (en) Electromagnetic wave transmission cable
US3434774A (en) Waveguide for millimeter and optical waves
US4468672A (en) Wide bandwidth hybrid mode feeds
EP3391457B1 (en) Dielectric waveguide
KR102365038B1 (en) High gain, constant beamwidth, broadband horn antenna
JP5717202B2 (en) Invisible enclosure
JPS61163704A (en) Dielectric line
US11568848B2 (en) Airborne acoustic absorber
US20110209892A1 (en) Coaxial cable
CN110767207B (en) Ultrathin multi-absorption peak low-frequency sound absorber
JP6815848B2 (en) Electromagnetic wave transmission cable
WO2019069712A1 (en) Electromagnetic wave transmission cable
JP2003534686A (en) Method of manufacturing a waveguide channel
CN113875090A (en) Artificial electromagnetic material and focusing lens made of same
JP2020524447A (en) New hollow lightweight lens structure
JPS6338884B2 (en)
JP2015188146A (en) Waveguide and method of manufacturing the same
CN110854538A (en) Microwave metamaterial
WO2013025515A2 (en) Multi-conductor stripline rf transmission cable
CN113078476B (en) Broadband Fabry-Perot resonant cavity antenna based on artificial electromagnetic material
KR100992865B1 (en) Transmission type electromagnetic refractor
JP2010040200A (en) Transmission cable
WO2020126717A1 (en) Dielectric waveguide cable
US3066269A (en) Tubular waveguides
US3078428A (en) Spurious mode suppressing wave guide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP