WO2019069678A1 - Variable geometry mechanism - Google Patents

Variable geometry mechanism Download PDF

Info

Publication number
WO2019069678A1
WO2019069678A1 PCT/JP2018/034487 JP2018034487W WO2019069678A1 WO 2019069678 A1 WO2019069678 A1 WO 2019069678A1 JP 2018034487 W JP2018034487 W JP 2018034487W WO 2019069678 A1 WO2019069678 A1 WO 2019069678A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
link plate
drive ring
rotation
clearance
Prior art date
Application number
PCT/JP2018/034487
Other languages
French (fr)
Japanese (ja)
Inventor
克憲 林
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2019069678A1 publication Critical patent/WO2019069678A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to variable capacity mechanisms.
  • variable displacement supercharger described in Patent Document 1 or 2 below is known.
  • This supercharger is provided with a variable displacement mechanism that makes the capacity of the turbine variable.
  • the variable displacement mechanism pivots the nozzle vanes located around the impeller to open and close the nozzles of the turbine.
  • the variable displacement mechanism includes a drive ring that rotates around the rotation axis of the impeller, and a plurality of nozzle link plates that rotate in response to the rotation of the drive ring. One end of the nozzle link plate engages with the drive ring, and the other end is connected to the pivot shaft of the nozzle vane.
  • the variable displacement mechanism includes a drive link plate that is rotated by an external actuator. When the actuator pivots the drive link plate, the drive ring engaged with the drive link plate pivots. And each nozzle link board and each nozzle vane rotate together by rotation of a drive ring.
  • the tip of the nozzle link plate is inserted into a recessed groove provided inside the drive ring at the engagement portion between the drive ring and the nozzle link plate.
  • the inner surface of the recessed groove pushes the tip of the nozzle link plate in the circumferential direction, and the nozzle link plate rotates.
  • a clearance is provided between the recessed groove and the nozzle link plate in order to operate the above mechanism smoothly.
  • the above-mentioned clearance is also a cause of rattling between the drive ring and the nozzle link plate. And, the rattling causes the wear of the recessed groove and the nozzle link plate.
  • the tip of the nozzle link plate is circular, and the clearance is constant regardless of the rotational phase of the nozzle link plate. Therefore, the clearance is constant regardless of the nozzle opening.
  • the actuating pin provided on the drive ring is inserted into a recessed groove provided at the tip of the drive source ring plate. Since the shape of the actuating pin is a polygon having a constant width curve (orbiform curve), the clearance between the groove and the actuating pin is constant regardless of the rotational phase of the drive link plate. That is, the clearance is constant regardless of the nozzle opening.
  • variable displacement mechanism it may be desirable in the predetermined nozzle opening region to prioritize reduction of component wear over the operability of the mechanism.
  • the present disclosure describes a variable displacement mechanism that reduces component wear at a given nozzle opening.
  • a variable displacement mechanism is a variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger, and a drive ring that is rotated by an external driving force. And a nozzle link plate provided on the rotation shaft of the nozzle vane and rotating together with the nozzle vane due to the rotation of the drive ring, and a rotation conversion for converting the rotation of the drive ring to the rotation of the nozzle link plate
  • a rotation conversion unit includes: a main movement element provided on the drive ring; and a driven element provided on the nozzle link plate and fitted with a clearance to the main movement element and pushed and displaced by the main movement element The amount of clearance varies depending on the opening of the nozzle.
  • variable displacement mechanism of the present disclosure it is possible to reduce wear of parts at a predetermined nozzle opening.
  • FIG. 2 is a cross-sectional view of a cross section including the rotational axis of the turbocharger. It is a figure which shows an example of a variable nozzle mechanism part seeing from an axial direction. It is a figure which shows the engaging part of 1st Embodiment seen from the axial direction. It is a figure which shows the shape of a nozzle link board. (A) is a figure which shows an engaging part when a nozzle opening degree is small, (b) is an engaging part when a nozzle opening degree is large. It is a graph which shows the relationship between the nozzle opening degree and the amount of clearances. It is a figure which shows the engaging part of 2nd Embodiment seen from the axial direction.
  • a variable displacement mechanism is a variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger, and a drive ring that is rotated by an external driving force. And a nozzle link plate provided on the rotation shaft of the nozzle vane and rotating together with the nozzle vane due to the rotation of the drive ring, and a rotation conversion for converting the rotation of the drive ring to the rotation of the nozzle link plate
  • a rotation conversion unit includes: a main movement element provided on the drive ring; and a driven element provided on the nozzle link plate and fitted with a clearance to the main movement element and pushed and displaced by the main movement element The amount of clearance varies depending on the opening of the nozzle.
  • the variable displacement mechanism is a variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger, and includes a drive link plate that is rotated by an external driving force, and a drive A drive ring that rotates due to the rotation of the link plate, a transmission mechanism that rotates the nozzle vanes due to the rotation of the drive ring, and a rotation that converts the rotation of the drive link plate to the rotation of the drive ring
  • a rotation conversion unit includes a main movement element provided on the drive link plate, and a driven element provided on the drive ring, fitted with a clearance to the main movement element and pressed and displaced by the main movement element; , And the amount of clearance fluctuates according to the opening of the nozzle.
  • One of the driving and driven elements is a recessed groove having a pair of opposing inner surfaces sandwiching the other element, and the other element has a pair of outer surfaces facing the inner surface of the recessed groove.
  • the force may be transmitted from the main driving element to the driven element by bringing the inner surface into contact with the outer surface facing the inner surface.
  • the pair of outer surfaces When viewed in a direction parallel to the pivot axis of the drive ring, the pair of outer surfaces may be shaped asymmetrically to each other.
  • the inner side surfaces of the recessed groove are planes parallel to each other, and at least one of the outer side surfaces includes a non-arc portion having a shape other than a circular arc when viewed from the direction parallel to the rotation axis of the drive ring It may be
  • the recessed groove includes a width variation portion in which the width of the recessed groove varies in accordance with the position of the recessed groove in the depth direction, and both outer surfaces are viewed from the direction parallel to the rotation axis of the drive ring. It may be an arc.
  • variable capacity mechanism Accordingly, embodiments of a variable capacity mechanism according to the present disclosure will be described in detail with reference to the drawings.
  • FIG. 1 is a cross-sectional view of a cross section including the rotation axis H of the turbocharger 1.
  • the supercharger 1 is a variable displacement supercharger provided with a variable displacement mechanism according to the embodiment.
  • the supercharger 1 is applied to, for example, an internal combustion engine of a ship or a vehicle.
  • the turbocharger 1 includes a turbine 2 and a compressor 3.
  • the turbine 2 includes a turbine housing 4 and a turbine wheel 6 housed in the turbine housing 4.
  • the turbine housing 4 has a scroll passage 16 extending circumferentially around the turbine impeller 6.
  • the compressor 3 includes a compressor housing 5 and a compressor wheel 7 housed in the compressor housing 5.
  • the compressor housing 5 has a scroll passage 17 extending circumferentially around the compressor wheel 7.
  • the turbine wheel 6 is provided at one end of the rotating shaft 14, and the compressor wheel 7 is provided at the other end of the rotating shaft 14.
  • a bearing housing 13 is provided between the turbine housing 4 and the compressor housing 5.
  • the rotating shaft 14 is rotatably supported by the bearing housing 13 via a bearing 15, and the rotating shaft 14, the turbine wheel 6 and the compressor wheel 7 rotate around the rotation axis H as an integral rotating body 12.
  • the turbine housing 4 is provided with an exhaust gas inlet (not shown) and an exhaust gas outlet 10. Exhaust gas discharged from an internal combustion engine (not shown) flows into the turbine housing 4 through the exhaust gas inlet, flows into the turbine wheel 6 through the scroll passage 16, and rotates the turbine wheel 6. Thereafter, the exhaust gas flows out of the turbine housing 4 through the exhaust gas outlet 10.
  • the compressor housing 5 is provided with a suction port 9 and a discharge port (not shown). As described above, when the turbine wheel 6 rotates, the compressor wheel 7 rotates via the rotation shaft 14. The rotating compressor wheel 7 sucks the external air through the suction port 9. This air passes through the compressor wheel 7 and the scroll passage 17 and is compressed and discharged from the discharge port. The compressed air discharged from the discharge port is supplied to the aforementioned internal combustion engine.
  • a movable nozzle vane 21 is provided in a gas inflow path 19 connecting the scroll flow path 16 and the turbine wheel 6.
  • a plurality of nozzle vanes 21 are arranged at equal intervals on a circumference centered on the rotation axis H.
  • Each nozzle vane 21 synchronously pivots around an axis parallel to the rotation axis H.
  • the turbine 2 is provided with a variable nozzle mechanism 20.
  • variable nozzle mechanism 20 when simply referring to “axial direction”, “radial direction”, “circumferential direction”, etc., it means the rotational axis H direction, rotational radial direction, rotational circumferential direction of the turbine wheel 6, respectively. .
  • upstream when saying "upstream”, “downstream” etc., it shall mean the upstream of the exhaust gas in the scroll flow path 16, and the downstream.
  • the side closer to the turbine 2 (left side in FIG. 1) may be simply referred to as “turbine side”, and the side closer to the compressor 3 (right side in FIG. 1) simply referred to as “compressor side”.
  • FIG. 2 is a view of the variable nozzle mechanism 20 as viewed from the axial direction.
  • the back side of the paper is the turbine side
  • the near side of the paper is the compressor.
  • the variable nozzle mechanism unit 20 includes a plurality of (11 in the example of FIG. 2) nozzle vanes 21, a main body 23, a drive link plate 31, a drive ring 33, and a plurality of nozzle link plates 35. .
  • the main body 23 is fixed to the turbine housing 4 (see FIG. 1).
  • the main body portion 23 is provided with a plurality of bearing holes (not shown), and the bearing holes are arranged at equal intervals on a circumference centered on the rotation axis H.
  • Each nozzle vane 21 has an axially extending vane shaft 21a.
  • the vane shaft 21 a is inserted into the bearing hole of the main body 23 from the turbine side, and the tip of the vane shaft 21 a protrudes from the surface of the main body 23 on the compressor side.
  • the main body portion 23 pivotally supports the plurality of nozzle vanes 21, and each nozzle vane 21 is rotatable around an axis parallel to the rotation axis H with the vane shaft 21 a as a rotation axis.
  • the drive ring 33 is in the form of a ring centered on the rotation axis H.
  • the drive ring 33 is held by the main body 23 and is rotatable with respect to the main body 23.
  • the drive ring 33 pivots within a predetermined angular range in both directions around the rotation axis H as indicated by the arrow A.
  • the nozzle link plates 35 exist in the same number as the nozzle vanes 21 and are disposed inside the drive ring 33.
  • the base end of each nozzle link plate 35 is fixed to the tip of each vane shaft 21a.
  • the tip of each nozzle link plate 35 is engaged with the drive ring 33, respectively.
  • the engagement portions 37 between the drive ring 33 and the nozzle link plate 35 exist in the same number as the nozzle vanes 21 and are arranged at equal intervals in the circumferential direction.
  • the base end 31 a of the drive link plate 31 is located radially outward of the vane shafts 21 a and is connected to the actuator 25.
  • the drive link plate 31 is rotatable about an axis parallel to the rotation axis H about the proximal end 31 a by the driving force from the actuator 25.
  • the tip of the drive link plate 31 is engaged with the drive ring 33.
  • the engagement portion 39 between the drive link plate 31 and the drive ring 33 is provided at one position between the engagement portions 37.
  • variable nozzle mechanism 20 the opening degree of the nozzle 22, the rotational phase of the nozzle vane 21, the rotational phase of the nozzle link plate 35, the rotational phase of the drive ring 33, and the drive link plate
  • the rotational phases of 31 correspond to each other on a one-on-one basis.
  • the engagement portion 37 functions as a rotation conversion portion that converts rotation of the drive ring 33 into rotation of the nozzle link plate 35.
  • the engaging portion 37 includes a main moving element 37P (see FIG. 3 and the like) provided on the drive ring 33 and a driven element 37Q (see FIG. 3 and the like) provided on the nozzle link plate 35.
  • the main moving element 37P and the driven element 37Q are fitted with a clearance.
  • the driving force of the drive ring 33 is transmitted to the nozzle link plate 35 by the main driving element 37P pushing the driven element 37Q and displacing it in the circumferential direction with the displacement of the main driving element 37P.
  • the engagement portion 39 functions as a rotation conversion portion that converts rotation of the drive link plate 31 into rotation of the drive ring 33.
  • the engagement portion 39 includes a main moving element 39P (see FIG. 9 and the like) provided on the drive link plate 31 and a driven element 39Q (see FIG. 9 and the like) provided on the drive ring 33.
  • the main moving element 39P and the driven element 39Q are fitted with a clearance.
  • the driving force of the drive link plate 31 is transmitted to the drive ring 33 as the main driving element 39P pushes the driven element 39Q to be displaced in the circumferential direction according to the displacement of the main driving element 39P.
  • FIG. 3 is an enlarged view of the engaging portion 37 of the present embodiment as viewed from the axial direction.
  • words such as “left” and “right” may be used corresponding to the left and right in FIG. 3.
  • the main moving element 37P of the engaging portion 37 is a recessed groove 41 formed in the drive ring 33, and the driven element 37Q is on the tip of the nozzle link plate 35. It is the nozzle link board head 43 formed.
  • the recessed groove 41 is provided inside the drive ring 33.
  • the recessed groove 41 has a pair of inner side surfaces 42a and 42b opposed in the circumferential direction.
  • the inner side surfaces 42 a and 42 b are surfaces of the outer surface of the drive ring 33 that can contact the nozzle link head 43 within the movable range of the variable nozzle mechanism 20.
  • the nozzle link plate head 43 is fitted in the recessed groove 41, and is circumferentially sandwiched between the inner side surfaces 42a and 42b.
  • the nozzle link head 43 has a pair of outer side surfaces 44a and 44b.
  • the outer side surfaces 44 a and 44 b are surfaces of the outer surface of the nozzle link head 43 that can contact the drive ring 33 within the movable range of the variable nozzle mechanism 20.
  • the outer side surface 44a faces the inner side surface 42a, and the outer side surface 44b faces the inner side surface 42b.
  • the clearance between the recessed groove 41 and the nozzle link plate head 43 will be described.
  • the clearance is necessary to ensure the smooth operability of the variable nozzle mechanism 20.
  • the clearance is also a cause of rattling between the drive ring 33 and the nozzle link plate 35. And the said rattling causes the wear of the ditch
  • variable nozzle mechanism 20 If the configuration of the conventional variable nozzle mechanism is adopted, as described above, the amount of clearance is constant regardless of the opening degree of the turbine 2. In this case, a constant operability of the variable nozzle mechanism 20 is ensured in all nozzle opening regions, and a constant wear occurs at the contact portion between the recessed groove 41 and the nozzle link plate head 43. .
  • the amount of clearance in the engagement portion 37 is configured to fluctuate in accordance with the nozzle opening degree of the turbine 2.
  • the clearance is smaller than that of the conventional variable nozzle mechanism.
  • the amount of clearance corresponds to the sum of the gap C1 between the inner side surface 42a and the outer side surface 44a and the gap C2 between the inner side surface 42b and the outer side surface 44b.
  • the clearance is also the amount of circumferential play between the drive ring 33 and the nozzle link plate 35.
  • the outer side surface 44a and the outer side surface 44b seen from the axial direction may be made.
  • the outer side surface 44a and the outer side surface 44b viewed in the axial direction may form an arc having a common center.
  • the inner side surface 42a and the inner side surface 42b are planes parallel to each other.
  • the outer side surface 44 a and the outer side surface 44 b have an asymmetrical shape with respect to one of the rotation radii of the nozzle link plate 35.
  • the outer side surface 44b When viewed from the axial direction, the outer side surface 44b has a shape other than a circular arc while the outer side surface 44b is a circular arc.
  • the outer side surface 44 a has a shape in which a circular arc portion 44 s and a linear portion 44 t are combined as an example of a shape other than the circular arc.
  • the arc portion 44s is formed on the radially outer portion of the outer side surface 44a.
  • the straight portion 44t (non-circular arc portion) is formed at a radially inner portion of the outer side surface 44a.
  • the straight portion 44t is a portion extending in a straight line, and protrudes in the circumferential direction more than a virtual arc 44u obtained by extending the arc portion 44s.
  • the arc portion 44s, the virtual arc 44u, and the outer side surface 44b respectively form an arc having a common center.
  • the detailed expression of the shape of the outer side surfaces 44a and 44b as described above is omitted in FIG.
  • variable nozzle mechanism 20 in the variable nozzle mechanism section 20, in the region where the nozzle opening degree is close to the full opening, the amount of clearance decreases as the full opening is approached. In the other areas, the amount of clearance is constant.
  • the desired relationship between the nozzle opening degree of the turbine 2 and the amount of clearance is intentionally set. It can be set. For example, it is possible to increase the clearance in a certain nozzle opening area to enhance the operability of the mechanism, and reduce the clearance in another nozzle opening area to reduce wear of parts.
  • the opening degree of the nozzle 22 of the turbocharger 1 is fully opened.
  • the wear reduction of the parts of the variable nozzle mechanism 20 is prioritized to reduce the clearance, and in other states, the smooth operability of the variable nozzle mechanism 20 is prioritized and the clearance Setting becomes possible.
  • the linear portion 44t in a linear shape is adopted as a portion other than the arc of the outer side surface 44a. According to this configuration, it is possible to set that the inner side surface 42a of the recessed groove 41 and the linear portion 44t of the nozzle link head 43 contact each other at the surface. In this case, since the contact area between the inner side surface 42a and the straight portion 44t is relatively large, the wear of the component can be efficiently reduced.
  • the configuration in which the outer side surfaces 44a and 44b have a linear portion such as the linear portion 44t is not essential.
  • a curved portion having a larger radius of curvature than the arc portion 44s may be employed.
  • the arc portion 44s and the linear portion 44t be smoothly continuous.
  • the tangent of the arc portion 44s at the boundary with the straight portion 44t coincides with the straight portion 44t when viewed from the axial direction.
  • Second Embodiment In order to change the amount of the clearance according to the opening of the nozzle, the configuration in which the inner side surfaces 42a and 42b of the recessed groove 41 are planes parallel to each other may be avoided. That is, the inner side surfaces 42a and 42b of the recessed groove 41 may be nonparallel to each other.
  • a specific example of the engaging portion 37 in this case will be described as a second embodiment with reference to FIG.
  • symbol is attached
  • words such as “left” and “right” may be used corresponding to the left and right in FIG. 7.
  • the main moving element 37P of the engaging portion 37 is a recessed groove 241 formed in the drive ring 33, and the driven element 37Q is on the tip of the nozzle link plate 35. It is the nozzle link plate head 243 formed.
  • the outer side surfaces 244a and 244b of the nozzle link plate head 243 viewed from the axial direction form a symmetrical circular arc having a common center.
  • the inner side 242 a and the inner side 242 b of the recessed groove 241 are not parallel to each other.
  • the width of the recessed groove 241 fluctuates according to the position of the recessed groove 241 in the depth direction (the radial direction of the drive ring 33).
  • the inner side 242a. 242 b has a shape in which the parallel portion 242 s and the inclined portion 242 t are combined.
  • the opposing parallel parts 242s, 242s are parallel to each other.
  • the inclined portions 242t, 242t are inclined such that the distance between the inclined portions 242t, 242t (width fluctuation portions) becomes closer toward the radially inner side. That is, the width of the recessed groove 241 becomes narrower as it goes radially inward.
  • the nozzle link plate head 243 is positioned between the parallel portions 242s and 242s in the recessed groove 241.
  • the clearance corresponds to the gap between the outer side surfaces 244a and 244b and the parallel portions 242s and 242s.
  • the nozzle link plate head 243 moves in the circumferential direction with a smaller rotation radius than the recessed groove 241. Therefore, the nozzle link head 243 is displaced radially inward relative to the recessed groove 241 in areas where the nozzle opening is small and large, and is located at a shallow position in the recessed groove 241.
  • the clearance corresponds to the gap between the outer side surfaces 244a and 244b and the inclined portions 242t and 242t, and the clearance is relatively narrow.
  • the relationship between the nozzle opening and the amount of clearance is as shown in FIG. That is, in the variable nozzle mechanism section 20 of the present embodiment, the amount of clearance decreases as the nozzle opening degree approaches full opening in a region close to full opening. Further, in a region where the nozzle opening degree is close to full close, the amount of clearance becomes smaller as full close is approached. In the other areas, the amount of clearance is constant.
  • a desired relationship is intentionally set between the nozzle opening of the turbine 2 and the amount of clearance. be able to.
  • the parallel portion 242s and the inclined portion 242t be smoothly continuous.
  • the boundary between the parallel portion 242s and the inclined portion 242t may be rounded as viewed from the axial direction.
  • the inclined portion 242t seen from the axial direction extend linearly, and it may be a curve.
  • the main moving element 39P of the engagement portion 39 is a drive link plate head 343 formed at the tip of the drive link plate 31, and the driven element 39Q is a drive This is a recessed groove 341 formed in the ring 33.
  • the recessed groove 341 is provided inside the drive ring 33.
  • the recessed groove 341 has a pair of inner side surfaces 342a and 342b opposed in the circumferential direction.
  • the inner side surfaces 342 a and 342 b are surfaces of the outer surface of the drive ring 33 that can contact the drive link plate head 343 within the movable range of the variable nozzle mechanism 20.
  • the drive link plate head 343 is fitted in the recessed groove 341 and is circumferentially sandwiched between the inner side surfaces 342a and 342b.
  • the drive link head portion 343 has a pair of outer side surfaces 344a and 344b.
  • the outer side surfaces 344 a and 344 b are surfaces of the outer surface of the drive link plate head 343 that can contact the drive ring 33 within the movable range of the variable nozzle mechanism 20.
  • the outer side 344a faces the inner side 342a, and the outer side 344b faces the inner side 342b.
  • a clearance exists between the recessed groove 341 and the drive link plate head 343.
  • the shapes of the outer side surfaces 44a and 44b (see FIGS. 3 and 4 and the like) of the nozzle link plate head 43 in the first embodiment are applied to the outer side surfaces 344a and 344b described above. That is, the outer side surface 344a has a shape in which the arc portion 44s and the straight portion 44t are combined.
  • the shape of the concave groove 41 (see FIG. 3 etc.) in the first embodiment is applied to the concave groove 341.
  • the inner side 342a and the inner side 342b are planes parallel to each other. The detailed representation of the shape of the outer side surfaces 344a and 344b as described above is omitted in FIG.
  • the amount of the clearance between the recessed groove 341 and the drive link plate head 343 fluctuates according to the nozzle opening degree of the turbine 2 according to the principle similar to the first embodiment.
  • the relationship between the nozzle opening and the amount of clearance is as shown in FIG.
  • the shape of the concave groove 241 in the second embodiment may be applied to the concave groove 341.
  • the inner side surfaces 342a and 342b of the recessed groove 341 have a shape in which the parallel portion 242s and the inclined portion 242t are combined.
  • the outer side surfaces 344a and 344b viewed from the axial direction form a symmetrical circular arc having a common center.
  • the amount of the clearance between the recessed groove 341 and the drive link plate head 343 fluctuates according to the nozzle opening degree of the turbine 2 according to the same principle as the second embodiment.
  • the relationship between the nozzle opening and the amount of clearance is as shown in FIG.
  • variable nozzle mechanism 20A is applicable to the supercharger 1 in place of the variable nozzle mechanism 20 (see FIG. 2 etc.) described above.
  • the engagement portion 37 is configured by the fitting structure of the pin 443 and the concave groove 441.
  • the pin 443 is provided on the drive ring 33 so as to protrude toward the compressor 3 side.
  • the pin 443 is fixed so as not to rotate with respect to the ring-shaped main body of the drive ring 33.
  • the tip of the nozzle link plate 35 is located so as to overlap the drive ring 33 in the axial direction.
  • a recessed groove 441 is formed at the tip of the nozzle link plate 35, and the pin 443 and the recessed groove 441 are fitted.
  • the main moving element 37P of the engaging portion 37 is a pin 443 formed on the drive ring 33, and the following element 37Q is formed on the tip of the nozzle link plate 35. Recessed groove 441.
  • the recessed groove 441 is provided at the tip of the nozzle link plate 35.
  • the recessed groove 441 has a pair of inner side surfaces 442a and 442b opposed in the circumferential direction.
  • the inner side surfaces 442a and 442b are surfaces of the outer surface of the nozzle link plate 35 that can contact the pins 443 within the movable range of the variable nozzle mechanism 20A.
  • the pin 443 is fitted in the recessed groove 441 and is circumferentially sandwiched between the inner side surfaces 442a and 442b.
  • the pin 443 has a pair of outer side surfaces 444a and 444b.
  • the outer side surfaces 444a and 444b are surfaces of the outer surface of the pin 443 that can contact the nozzle link plate 35 within the movable range of the variable nozzle mechanism 20A.
  • the outer side surface 444a faces the inner side surface 442a
  • the outer side surface 444b faces the inner side surface 442b.
  • the shapes of the outer side surfaces 44a and 44b (see FIGS. 3 and 4 and the like) of the nozzle link plate head 43 in the first embodiment are applied to the outer side surfaces 444a and 444b. That is, the outer side surface 444a has a shape in which the arc portion 44s and the straight portion 44t are combined. The arc portion 44s is formed on the radially inner portion of the outer side surface 444a. The straight portion 44t is formed on the radially outer portion of the outer side surface 444a.
  • the shape of the concave groove 41 (see FIG. 3 and the like) in the first embodiment is applied to the concave groove 441.
  • the inner side surface 442a and the inner side surface 442b are planes parallel to each other. The detailed expression of the shapes of the outer side surfaces 444a and 444b as described above is omitted in FIG.
  • the amount of clearance between the recessed groove 441 and the pin 443 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as the first embodiment.
  • the relationship between the nozzle opening and the amount of clearance is as shown in FIG.
  • the shape of the concave groove 241 in the second embodiment may be applied to the concave groove 441.
  • the inner side surfaces 442a and 442b of the recessed groove 441 have a shape in which the parallel portion 242s and the inclined portion 242t are combined.
  • the outer side surfaces 444a and 444b viewed from the axial direction form a symmetrical circular arc having a common center.
  • the amount of clearance between the recessed groove 441 and the pin 443 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as the second embodiment.
  • the relationship between the nozzle opening and the amount of clearance is as shown in FIG.
  • the engagement portion 39 is configured by the fitting structure of the pin 543 and the concave groove 541.
  • the drive ring 33 is provided with a protruding portion 33 a protruding outward in the radial direction.
  • the pin 543 is provided on the overhanging portion 33 a so as to protrude toward the compressor 3 side.
  • the pin 543 is fixed so as not to rotate with respect to the extension 33 a of the drive ring 33.
  • the front end portion of the drive link plate 31 is positioned so as to overlap in the axial direction with respect to the overhanging portion 33a.
  • a recessed groove 541 is formed at the tip of the drive link plate 31, and the pin 543 and the recessed groove 541 are fitted.
  • the main moving element 39 P of the engaging portion 39 is a recessed groove 541 formed at the tip of the drive link plate 31, and the driven element 39 Q is on the drive ring 33. It is a pin 543 formed.
  • the recessed groove 541 is provided at the tip of the drive link plate 31.
  • the recessed groove 541 has a pair of inner side surfaces 542a and 542b opposed in the circumferential direction.
  • the inner side surfaces 542a and 542b are surfaces of the outer surface of the drive link plate 31 that can contact the pins 543 within the movable range of the variable nozzle mechanism 20A.
  • the pin 543 is fitted in the recessed groove 541 and is circumferentially sandwiched between the inner side surfaces 542 a and 542 b.
  • the pin 543 has a pair of outer side surfaces 544a and 544b.
  • the outer side surfaces 544a and 544b are surfaces of the outer surface of the pin 543 that can contact the drive link plate 31 within the movable range of the variable nozzle mechanism 20A.
  • the outer side 544a faces the inner side 542a
  • the outer side 544b faces the inner side 542b.
  • the shape of the outer side surfaces 44a and 44b (see FIG. 3 and FIG. 4 etc.) of the nozzle link plate head 43 in the first embodiment is applied to the above outer side surfaces 544a and 544b. That is, the outer side surface 544a has a shape in which the arc portion 44s and the straight portion 44t are combined. The arc portion 44s is formed on the radially outer portion of the outer side surface 544a. The straight portion 44t is formed on the radially inner portion of the outer side surface 544a.
  • the shape of the concave groove 41 (see FIG. 3 etc.) in the first embodiment is applied to the concave groove 541.
  • the inner side surface 542a and the inner side surface 542b are planes parallel to each other.
  • the detailed expression of the shape of the outer side surfaces 544a and 544b as described above is omitted in FIG.
  • the amount of the clearance between the recessed groove 541 and the pin 543 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as in the first embodiment.
  • the relationship between the nozzle opening and the amount of clearance is as shown in FIG.
  • the shape of the recessed groove 241 (see FIG. 7 and the like) in the second embodiment may be applied to the recessed groove 541.
  • the inner side surfaces 542a and 542b of the recessed groove 541 have a shape in which the parallel portion 242s and the inclined portion 242t are combined.
  • the outer side surfaces 544a and 544b viewed from the axial direction form a symmetrical circular arc having a common center.
  • the amount of clearance between the recessed groove 541 and the pin 543 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as the second embodiment.
  • the relationship between the nozzle opening and the amount of clearance is as shown in FIG.
  • variable capacity mechanism can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art, including the embodiments described above.
  • the relationship between the nozzle opening and the amount of clearance is not limited to those shown in FIGS. 6 and 8, and various relationships can be set.
  • the shape of each component such as the recessed groove, the nozzle link plate, the drive link plate, and the pin is not limited to that of each embodiment. That is, the shape of each component (drive link plate head, nozzle link plate head, pin, groove, etc.) that achieves the desired relationship between the nozzle opening degree and the clearance amount is based on geometrical consideration. It may be designed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

A variable nozzle mechanism part rotates a plurality of nozzle vanes in a turbocharger to change the opening degree of a nozzle. The variable geometry nozzle mechanism unit is provided with: a drive ring that is rotated by an external drive force; a nozzle link plate that is provided to a vane shaft of each nozzle vane and configured to be rotated together with the nozzle vane in response to the rotation of the drive ring; and an engagement section for converting the rotation of the drive ring into the rotation of the nozzle link plate. The engagement section has a driving element provided to the drive ring, and a driven element that is provided to the nozzle link plate, fitted to the driving element with a clearance, and displaced when pushed by the driving element. The amount of the clearance varies depending on the opening degree of the nozzle.

Description

可変容量機構Variable capacity mechanism
 本開示は、可変容量機構に関するものである。 The present disclosure relates to variable capacity mechanisms.
 従来、このような分野の技術として、下記特許文献1又は2に記載の可変容量型過給機が知られている。この過給機は、タービンの容量を可変にする可変容量機構を備えている。可変容量機構は、タービンのノズルを開閉するために、インペラの周囲に配置されたノズルベーンを回動させる。可変容量機構は、インペラの回転軸線周りに回動する駆動リングと、駆動リングの回動に応じてそれぞれ回動する複数のノズルリンク板と、を備えている。ノズルリンク板の一端は駆動リングに係合し、他端はノズルベーンの回動軸に連結されている。更に、可変容量機構は、外部のアクチュエータによって回動する駆動リンク板を備えている。アクチュエータが駆動リンク板を回動させると、駆動リンク板に係合する駆動リングが回動する。そして駆動リングの回動により、各ノズルリンク板と各ノズルベーンとが一緒に回動する。 Conventionally, as a technology in such a field, a variable displacement supercharger described in Patent Document 1 or 2 below is known. This supercharger is provided with a variable displacement mechanism that makes the capacity of the turbine variable. The variable displacement mechanism pivots the nozzle vanes located around the impeller to open and close the nozzles of the turbine. The variable displacement mechanism includes a drive ring that rotates around the rotation axis of the impeller, and a plurality of nozzle link plates that rotate in response to the rotation of the drive ring. One end of the nozzle link plate engages with the drive ring, and the other end is connected to the pivot shaft of the nozzle vane. Furthermore, the variable displacement mechanism includes a drive link plate that is rotated by an external actuator. When the actuator pivots the drive link plate, the drive ring engaged with the drive link plate pivots. And each nozzle link board and each nozzle vane rotate together by rotation of a drive ring.
特開昭59-70032号公報Japanese Patent Application Laid-Open No. 59-70032 特表2016-525640号公報JP-A-2016-525640 gazette
 特許文献1の可変容量機構では、駆動リングとノズルリンク板との係合部で、駆動リングの内側に設けられた凹溝にノズルリンク板の先端部が挿入されている。駆動リングの回動によって、凹溝の内側面がノズルリンク板の先端部を周方向に押し、ノズルリンク板が回動する。上記のような機構を円滑に作動させるために、凹溝とノズルリンク板との間にはクリアランスが設けられている。一方で、上記のクリアランスは、駆動リングとノズルリンク板とのガタツキの原因でもある。そして、ガタツキは、凹溝とノズルリンク板との摩耗の原因となる。ここで、ノズルリンク板の先端部は円形であり、上記クリアランスはノズルリンク板の回動位相に関わらず一定である。従って、上記クリアランスはノズル開度に関わらず一定である。 In the variable displacement mechanism of Patent Document 1, the tip of the nozzle link plate is inserted into a recessed groove provided inside the drive ring at the engagement portion between the drive ring and the nozzle link plate. By the rotation of the drive ring, the inner surface of the recessed groove pushes the tip of the nozzle link plate in the circumferential direction, and the nozzle link plate rotates. A clearance is provided between the recessed groove and the nozzle link plate in order to operate the above mechanism smoothly. On the other hand, the above-mentioned clearance is also a cause of rattling between the drive ring and the nozzle link plate. And, the rattling causes the wear of the recessed groove and the nozzle link plate. Here, the tip of the nozzle link plate is circular, and the clearance is constant regardless of the rotational phase of the nozzle link plate. Therefore, the clearance is constant regardless of the nozzle opening.
 特許文献2の可変容量機構では、駆動リンク板と駆動リングとの係合部で、駆動源リング板の先端に設けられた凹溝に駆動リングに設けられた作動ピンが挿入されている。作動ピンの形状が定幅カーブ(orbiform curve)を有する多角形とされているので、凹溝と作動ピンとの間のクリアランスは駆動リンク板の回動位相に関わらず一定である。すなわち、上記クリアランスはノズル開度に関わらず一定である。 In the variable displacement mechanism of Patent Document 2, at the engagement portion between the drive link plate and the drive ring, the actuating pin provided on the drive ring is inserted into a recessed groove provided at the tip of the drive source ring plate. Since the shape of the actuating pin is a polygon having a constant width curve (orbiform curve), the clearance between the groove and the actuating pin is constant regardless of the rotational phase of the drive link plate. That is, the clearance is constant regardless of the nozzle opening.
 しかしながら、この種の可変容量機構においては、所定のノズル開度域で、機構の作動性よりも部品の摩耗低減を優先することが望まれる場合もある。そこで、本開示は、所定のノズル開度における部品の摩耗を低減する可変容量機構を説明する。 However, in this type of variable displacement mechanism, it may be desirable in the predetermined nozzle opening region to prioritize reduction of component wear over the operability of the mechanism. Thus, the present disclosure describes a variable displacement mechanism that reduces component wear at a given nozzle opening.
 本開示の一態様に係る可変容量機構は、可変容量型過給機の複数のノズルベーンを回動させることによりノズルを開閉する可変容量機構であって、外部からの駆動力によって回動する駆動リングと、ノズルベーンの回動軸に設けられ、駆動リングの回動に起因してノズルベーンと一緒に回動するノズルリンク板と、駆動リングの回動をノズルリンク板の回動に変換する回動変換部と、を備え、回動変換部は、駆動リングに設けられた主動要素と、ノズルリンク板に設けられ主動要素に対しクリアランスをもって嵌合され主動要素に押されて変位する従動要素と、を有し、クリアランスの量がノズルの開度に応じて変動する。 A variable displacement mechanism according to an aspect of the present disclosure is a variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger, and a drive ring that is rotated by an external driving force. And a nozzle link plate provided on the rotation shaft of the nozzle vane and rotating together with the nozzle vane due to the rotation of the drive ring, and a rotation conversion for converting the rotation of the drive ring to the rotation of the nozzle link plate A rotation conversion unit includes: a main movement element provided on the drive ring; and a driven element provided on the nozzle link plate and fitted with a clearance to the main movement element and pushed and displaced by the main movement element The amount of clearance varies depending on the opening of the nozzle.
 本開示の可変容量機構によれば、所定のノズル開度における部品の摩耗を低減することができる。 According to the variable displacement mechanism of the present disclosure, it is possible to reduce wear of parts at a predetermined nozzle opening.
過給機の回転軸線を含む断面を取った断面図である。FIG. 2 is a cross-sectional view of a cross section including the rotational axis of the turbocharger. 可変ノズル機構部の一例を軸方向から見て示す図である。It is a figure which shows an example of a variable nozzle mechanism part seeing from an axial direction. 軸方向から見た第1実施形態の係合部を示す図である。It is a figure which shows the engaging part of 1st Embodiment seen from the axial direction. ノズルリンク板の形状を示す図である。It is a figure which shows the shape of a nozzle link board. (a)はノズル開度が小さいときの係合部、(b)はノズル開度が大きいときの係合部を示す図である。(A) is a figure which shows an engaging part when a nozzle opening degree is small, (b) is an engaging part when a nozzle opening degree is large. ノズル開度とクリアランスの量との関係を示すグラフである。It is a graph which shows the relationship between the nozzle opening degree and the amount of clearances. 軸方向から見た第2実施形態の係合部を示す図である。It is a figure which shows the engaging part of 2nd Embodiment seen from the axial direction. 第2実施形態における、ノズル開度とクリアランスの量との関係を示すグラフである。It is a graph which shows the relation between the nozzle opening and the amount of clearance in a 2nd embodiment. 軸方向から見た第3実施形態の係合部を示す図である。It is a figure which shows the engaging part of 3rd Embodiment seen from the axial direction. 第3実施形態の変形例の係合部を示す図である。It is a figure which shows the engaging part of the modification of 3rd Embodiment. 可変ノズル機構部の他の例を軸方向から見て示す図である。It is a figure which shows the other example of a variable nozzle mechanism part seeing from an axial direction. 軸方向から見た第4実施形態の係合部を示す図である。It is a figure which shows the engaging part of 4th Embodiment seen from the axial direction. 第4実施形態の変形例の係合部を示す図である。It is a figure which shows the engaging part of the modification of 4th Embodiment. 軸方向から見た第5実施形態の係合部を示す図である。It is a figure which shows the engaging part of 5th Embodiment seen from the axial direction. 第5実施形態の変形例の係合部を示す図である。It is a figure which shows the engaging part of the modification of 5th Embodiment.
 本開示の一態様に係る可変容量機構は、可変容量型過給機の複数のノズルベーンを回動させることによりノズルを開閉する可変容量機構であって、外部からの駆動力によって回動する駆動リングと、ノズルベーンの回動軸に設けられ、駆動リングの回動に起因してノズルベーンと一緒に回動するノズルリンク板と、駆動リングの回動をノズルリンク板の回動に変換する回動変換部と、を備え、回動変換部は、駆動リングに設けられた主動要素と、ノズルリンク板に設けられ主動要素に対しクリアランスをもって嵌合され主動要素に押されて変位する従動要素と、を有し、クリアランスの量がノズルの開度に応じて変動する。 A variable displacement mechanism according to an aspect of the present disclosure is a variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger, and a drive ring that is rotated by an external driving force. And a nozzle link plate provided on the rotation shaft of the nozzle vane and rotating together with the nozzle vane due to the rotation of the drive ring, and a rotation conversion for converting the rotation of the drive ring to the rotation of the nozzle link plate A rotation conversion unit includes: a main movement element provided on the drive ring; and a driven element provided on the nozzle link plate and fitted with a clearance to the main movement element and pushed and displaced by the main movement element The amount of clearance varies depending on the opening of the nozzle.
 本開示の可変容量機構は、可変容量型過給機の複数のノズルベーンを回動させることによりノズルを開閉する可変容量機構であって、外部からの駆動力によって回動する駆動リンク板と、駆動リンク板の回動に起因して回動する駆動リングと、駆動リングの回動に起因してノズルベーンを回動させる伝達機構と、駆動リンク板の回動を駆動リングの回動に変換する回動変換部と、を備え、回動変換部は、駆動リンク板に設けられた主動要素と、駆動リングに設けられ主動要素に対しクリアランスをもって嵌合され主動要素に押されて変位する従動要素と、を有し、クリアランスの量がノズルの開度に応じて変動する。 The variable displacement mechanism according to the present disclosure is a variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger, and includes a drive link plate that is rotated by an external driving force, and a drive A drive ring that rotates due to the rotation of the link plate, a transmission mechanism that rotates the nozzle vanes due to the rotation of the drive ring, and a rotation that converts the rotation of the drive link plate to the rotation of the drive ring A rotation conversion unit includes a main movement element provided on the drive link plate, and a driven element provided on the drive ring, fitted with a clearance to the main movement element and pressed and displaced by the main movement element; , And the amount of clearance fluctuates according to the opening of the nozzle.
 主動要素又は従動要素のうち一方の要素は、他方の要素を挟んで対向する一対の内側面を有する凹溝であり、他方の要素は、凹溝の内側面に対面する一対の外側面を有し、内側面と当該内側面に対面する外側面とが接触して主動要素から従動要素へ力が伝達されることとしてもよい。 One of the driving and driven elements is a recessed groove having a pair of opposing inner surfaces sandwiching the other element, and the other element has a pair of outer surfaces facing the inner surface of the recessed groove. Alternatively, the force may be transmitted from the main driving element to the driven element by bringing the inner surface into contact with the outer surface facing the inner surface.
 駆動リングの回動軸線に平行な方向から見たときに、一対の外側面が互いに非対称の形状をなすようにしてもよい。 When viewed in a direction parallel to the pivot axis of the drive ring, the pair of outer surfaces may be shaped asymmetrically to each other.
 凹溝の内側面は互いに平行な平面であり、外側面のうち少なくとも一方は、駆動リングの回動軸線に平行な方向から見たときに、円弧以外の形状をなす非円弧部位を含む、こととしてもよい。 The inner side surfaces of the recessed groove are planes parallel to each other, and at least one of the outer side surfaces includes a non-arc portion having a shape other than a circular arc when viewed from the direction parallel to the rotation axis of the drive ring It may be
 凹溝は、当該凹溝の深さ方向の位置に応じて凹溝の幅が変動する幅変動部位を含み、駆動リングの回動軸線に平行な方向から見たときに、両方の外側面が円弧をなす、こととしてもよい。 The recessed groove includes a width variation portion in which the width of the recessed groove varies in accordance with the position of the recessed groove in the depth direction, and both outer surfaces are viewed from the direction parallel to the rotation axis of the drive ring. It may be an arc.
 以下、図面を参照しつつ本開示に係る可変容量機構の実施形態について詳細に説明する。 Hereinafter, embodiments of a variable capacity mechanism according to the present disclosure will be described in detail with reference to the drawings.
(第1実施形態)
 図1は、過給機1の回転軸線Hを含む断面を取った断面図である。過給機1は、実施形態に係る可変容量機構を備えた可変容量型過給機である。
First Embodiment
FIG. 1 is a cross-sectional view of a cross section including the rotation axis H of the turbocharger 1. The supercharger 1 is a variable displacement supercharger provided with a variable displacement mechanism according to the embodiment.
 過給機1は、例えば、船舶や車両の内燃機関に適用されるものである。図1に示されるように、過給機1は、タービン2とコンプレッサ3とを備えている。タービン2は、タービンハウジング4と、タービンハウジング4に収納されたタービン翼車6と、を備えている。タービンハウジング4は、タービン翼車6の周囲において周方向に延びるスクロール流路16を有している。コンプレッサ3は、コンプレッサハウジング5と、コンプレッサハウジング5に収納されたコンプレッサ翼車7と、を備えている。コンプレッサハウジング5は、コンプレッサ翼車7の周囲において周方向に延びるスクロール流路17を有している。 The supercharger 1 is applied to, for example, an internal combustion engine of a ship or a vehicle. As shown in FIG. 1, the turbocharger 1 includes a turbine 2 and a compressor 3. The turbine 2 includes a turbine housing 4 and a turbine wheel 6 housed in the turbine housing 4. The turbine housing 4 has a scroll passage 16 extending circumferentially around the turbine impeller 6. The compressor 3 includes a compressor housing 5 and a compressor wheel 7 housed in the compressor housing 5. The compressor housing 5 has a scroll passage 17 extending circumferentially around the compressor wheel 7.
 タービン翼車6は回転軸14の一端に設けられており、コンプレッサ翼車7は回転軸14の他端に設けられている。タービンハウジング4とコンプレッサハウジング5との間には、軸受ハウジング13が設けられている。回転軸14は、軸受15を介して軸受ハウジング13に回転可能に支持されており、回転軸14、タービン翼車6及びコンプレッサ翼車7が一体の回転体12として回転軸線H周りに回転する。 The turbine wheel 6 is provided at one end of the rotating shaft 14, and the compressor wheel 7 is provided at the other end of the rotating shaft 14. A bearing housing 13 is provided between the turbine housing 4 and the compressor housing 5. The rotating shaft 14 is rotatably supported by the bearing housing 13 via a bearing 15, and the rotating shaft 14, the turbine wheel 6 and the compressor wheel 7 rotate around the rotation axis H as an integral rotating body 12.
 タービンハウジング4には、排気ガス流入口(図示せず)及び排気ガス流出口10が設けられている。内燃機関(図示せず)から排出された排気ガスが、排気ガス流入口を通じてタービンハウジング4内に流入し、スクロール流路16を通じてタービン翼車6に流入し、タービン翼車6を回転させる。その後、排気ガスは、排気ガス流出口10を通じてタービンハウジング4外に流出する。 The turbine housing 4 is provided with an exhaust gas inlet (not shown) and an exhaust gas outlet 10. Exhaust gas discharged from an internal combustion engine (not shown) flows into the turbine housing 4 through the exhaust gas inlet, flows into the turbine wheel 6 through the scroll passage 16, and rotates the turbine wheel 6. Thereafter, the exhaust gas flows out of the turbine housing 4 through the exhaust gas outlet 10.
 コンプレッサハウジング5には、吸入口9及び吐出口(図示せず)が設けられている。上記のようにタービン翼車6が回転すると、回転軸14を介してコンプレッサ翼車7が回転する。回転するコンプレッサ翼車7は、吸入口9を通じて外部の空気を吸入する。この空気が、コンプレッサ翼車7及びスクロール流路17を通過して圧縮され吐出口から吐出される。吐出口から吐出された圧縮空気は、前述の内燃機関に供給される。 The compressor housing 5 is provided with a suction port 9 and a discharge port (not shown). As described above, when the turbine wheel 6 rotates, the compressor wheel 7 rotates via the rotation shaft 14. The rotating compressor wheel 7 sucks the external air through the suction port 9. This air passes through the compressor wheel 7 and the scroll passage 17 and is compressed and discharged from the discharge port. The compressed air discharged from the discharge port is supplied to the aforementioned internal combustion engine.
 過給機1のタービン2において、スクロール流路16とタービン翼車6とを接続するガス流入路19には、可動のノズルベーン21が設けられている。図2にも示されるように、複数のノズルベーン21が回転軸線Hを中心とする円周上に等間隔に配置されている。各々のノズルベーン21は同期して回転軸線Hに平行な軸線周りに回動する。複数のノズルベーン21が上記のように回動することで、タービン2のノズル22が開閉されガス流路の断面積が調整される。ノズルベーン21を上記のように駆動するために、タービン2は可変ノズル機構部20を備えている。 In the turbine 2 of the turbocharger 1, a movable nozzle vane 21 is provided in a gas inflow path 19 connecting the scroll flow path 16 and the turbine wheel 6. As also shown in FIG. 2, a plurality of nozzle vanes 21 are arranged at equal intervals on a circumference centered on the rotation axis H. Each nozzle vane 21 synchronously pivots around an axis parallel to the rotation axis H. By rotating the plurality of nozzle vanes 21 as described above, the nozzle 22 of the turbine 2 is opened and closed, and the cross-sectional area of the gas flow path is adjusted. In order to drive the nozzle vanes 21 as described above, the turbine 2 is provided with a variable nozzle mechanism 20.
 以下、可変ノズル機構部20について更に詳細に説明する。以下の説明において、単に「軸方向」、「径方向」、「周方向」等と言うときには、それぞれ、タービン翼車6の回転軸線H方向、回転径方向、回転周方向を意味するものとする。また、「上流」、「下流」などと言うときには、スクロール流路16における排気ガスの上流、下流を意味するものとする。また、軸方向において、タービン2に近い側(図1において左側)を単に「タービン側」と言い、コンプレッサ3に近い側(図1において右側)を単に「コンプレッサ側」と言う場合がある。 Hereinafter, the variable nozzle mechanism 20 will be described in more detail. In the following description, when simply referring to “axial direction”, “radial direction”, “circumferential direction”, etc., it means the rotational axis H direction, rotational radial direction, rotational circumferential direction of the turbine wheel 6, respectively. . Moreover, when saying "upstream", "downstream" etc., it shall mean the upstream of the exhaust gas in the scroll flow path 16, and the downstream. Further, in the axial direction, the side closer to the turbine 2 (left side in FIG. 1) may be simply referred to as “turbine side”, and the side closer to the compressor 3 (right side in FIG. 1) simply referred to as “compressor side”.
 図2は、可変ノズル機構部20を軸方向から見て示す図である。図2において、紙面の奥側がタービン側であり、紙面の手前側がコンプレッサ側である。可変ノズル機構部20は、複数(図2の例では11個)のノズルベーン21と、本体部23と、駆動リンク板31と、駆動リング33と、複数のノズルリンク板35と、を備えている。 FIG. 2 is a view of the variable nozzle mechanism 20 as viewed from the axial direction. In FIG. 2, the back side of the paper is the turbine side, and the near side of the paper is the compressor. The variable nozzle mechanism unit 20 includes a plurality of (11 in the example of FIG. 2) nozzle vanes 21, a main body 23, a drive link plate 31, a drive ring 33, and a plurality of nozzle link plates 35. .
 本体部23は、タービンハウジング4(図1参照)に固定される。本体部23には、複数の軸受孔(図示せず)が設けられており、軸受孔は回転軸線Hを中心とする円周上に等間隔に配置されている。各ノズルベーン21は軸方向に延びるベーン軸21aを有している。ベーン軸21aは、本体部23の軸受孔にタービン側から挿通されており、ベーン軸21aの先端は本体部23のコンプレッサ側の面から突出している。この構造により、本体部23は複数のノズルベーン21を軸支しており、各ノズルベーン21は、ベーン軸21aを回動軸として回転軸線Hに平行な軸線周りに回動可能である。 The main body 23 is fixed to the turbine housing 4 (see FIG. 1). The main body portion 23 is provided with a plurality of bearing holes (not shown), and the bearing holes are arranged at equal intervals on a circumference centered on the rotation axis H. Each nozzle vane 21 has an axially extending vane shaft 21a. The vane shaft 21 a is inserted into the bearing hole of the main body 23 from the turbine side, and the tip of the vane shaft 21 a protrudes from the surface of the main body 23 on the compressor side. With this structure, the main body portion 23 pivotally supports the plurality of nozzle vanes 21, and each nozzle vane 21 is rotatable around an axis parallel to the rotation axis H with the vane shaft 21 a as a rotation axis.
 駆動リング33は回転軸線Hを中心とするリング状をなしている。駆動リング33は、本体部23に保持され、本体部23に対して回動可能である。駆動リング33は、矢印Aで示されるように、回転軸線Hを中心として両方向に、所定の角度範囲内で回動する。ノズルリンク板35は、ノズルベーン21と同数存在し、駆動リング33の内側に配置されている。各ノズルリンク板35の基端は各ベーン軸21aの先端に固定されている。各ノズルリンク板35の先端はそれぞれ駆動リング33に係合している。駆動リング33とノズルリンク板35との係合部37は、ノズルベーン21と同数存在しており、周方向に等間隔に配置されている。 The drive ring 33 is in the form of a ring centered on the rotation axis H. The drive ring 33 is held by the main body 23 and is rotatable with respect to the main body 23. The drive ring 33 pivots within a predetermined angular range in both directions around the rotation axis H as indicated by the arrow A. The nozzle link plates 35 exist in the same number as the nozzle vanes 21 and are disposed inside the drive ring 33. The base end of each nozzle link plate 35 is fixed to the tip of each vane shaft 21a. The tip of each nozzle link plate 35 is engaged with the drive ring 33, respectively. The engagement portions 37 between the drive ring 33 and the nozzle link plate 35 exist in the same number as the nozzle vanes 21 and are arranged at equal intervals in the circumferential direction.
 駆動リンク板31の基端部31aは、各ベーン軸21aよりも径方向外側に位置しており、アクチュエータ25に接続されている。駆動リンク板31は、アクチュエータ25からの駆動力によって、基端部31aを中心として回転軸線Hに平行な軸線周りに回動可能である。駆動リンク板31の先端は、駆動リング33に係合している。駆動リンク板31と駆動リング33との係合部39は、係合部37同士の間の位置に1箇所設けられている。 The base end 31 a of the drive link plate 31 is located radially outward of the vane shafts 21 a and is connected to the actuator 25. The drive link plate 31 is rotatable about an axis parallel to the rotation axis H about the proximal end 31 a by the driving force from the actuator 25. The tip of the drive link plate 31 is engaged with the drive ring 33. The engagement portion 39 between the drive link plate 31 and the drive ring 33 is provided at one position between the engagement portions 37.
 アクチュエータ25からの駆動力が駆動リンク板31に伝達されると、駆動リンク板31は、基端部31aを中心として回転軸線Hに平行な軸線周りに回動する。これにより、係合部39において駆動リンク板31から駆動リング33へ駆動力が伝達され、駆動リング33が回転軸線Hを中心として回動する。これにより、各係合部37において、駆動リング33から各ノズルリンク板35へ駆動力が伝達される。そして、各ノズルリンク板35は、各ノズルベーン21と一緒に、ベーン軸21aを回動軸として回動する。これにより、すべてのノズルベーン21が同期して回動し、タービン2のノズル22が開閉される。上記のような可変ノズル機構部20によれば、ノズル22の開度と、ノズルベーン21の回動位相と、ノズルリンク板35の回動位相と、駆動リング33の回動位相と、駆動リンク板31の回動位相と、は互いに一対一で対応している。 When the driving force from the actuator 25 is transmitted to the drive link plate 31, the drive link plate 31 pivots around an axis parallel to the rotation axis H about the proximal end 31a. Thus, the driving force is transmitted from the drive link plate 31 to the drive ring 33 at the engagement portion 39, and the drive ring 33 rotates about the rotation axis H. As a result, the driving force is transmitted from the drive ring 33 to each nozzle link plate 35 in each engaging portion 37. Then, each nozzle link plate 35 rotates together with each nozzle vane 21 with the vane shaft 21 a as a rotation axis. Thereby, all the nozzle vanes 21 rotate in synchronization, and the nozzle 22 of the turbine 2 is opened and closed. According to the variable nozzle mechanism 20 as described above, the opening degree of the nozzle 22, the rotational phase of the nozzle vane 21, the rotational phase of the nozzle link plate 35, the rotational phase of the drive ring 33, and the drive link plate The rotational phases of 31 correspond to each other on a one-on-one basis.
 係合部37は、駆動リング33の回動をノズルリンク板35の回動に変換する回動変換部として機能する。係合部37は、駆動リング33に設けられた主動要素37P(図3等参照)と、ノズルリンク板35に設けられた従動要素37Q(図3等参照)と、を備えている。主動要素37Pと従動要素37Qとはクリアランスをもって嵌合される。主動要素37Pの変位に伴い主動要素37Pが従動要素37Qを押して周方向に変位させることで、駆動リング33の駆動力がノズルリンク板35に伝達される。 The engagement portion 37 functions as a rotation conversion portion that converts rotation of the drive ring 33 into rotation of the nozzle link plate 35. The engaging portion 37 includes a main moving element 37P (see FIG. 3 and the like) provided on the drive ring 33 and a driven element 37Q (see FIG. 3 and the like) provided on the nozzle link plate 35. The main moving element 37P and the driven element 37Q are fitted with a clearance. The driving force of the drive ring 33 is transmitted to the nozzle link plate 35 by the main driving element 37P pushing the driven element 37Q and displacing it in the circumferential direction with the displacement of the main driving element 37P.
 同様に、係合部39は、駆動リンク板31の回動を駆動リング33の回動に変換する回動変換部として機能する。係合部39は、駆動リンク板31に設けられた主動要素39P(図9等参照)と、駆動リング33に設けられた従動要素39Q(図9等参照)と、を備えている。主動要素39Pと従動要素39Qとはクリアランスをもって嵌合される。主動要素39Pの変位に伴い主動要素39Pが従動要素39Qを押して周方向に変位させることで、駆動リンク板31の駆動力が駆動リング33に伝達される。 Similarly, the engagement portion 39 functions as a rotation conversion portion that converts rotation of the drive link plate 31 into rotation of the drive ring 33. The engagement portion 39 includes a main moving element 39P (see FIG. 9 and the like) provided on the drive link plate 31 and a driven element 39Q (see FIG. 9 and the like) provided on the drive ring 33. The main moving element 39P and the driven element 39Q are fitted with a clearance. The driving force of the drive link plate 31 is transmitted to the drive ring 33 as the main driving element 39P pushes the driven element 39Q to be displaced in the circumferential direction according to the displacement of the main driving element 39P.
 係合部37について説明する。図3は、軸方向から見た本実施形態の係合部37を拡大して示す図である。以下の説明では、図3における左右に対応させて「左」、「右」等の語を用いる場合がある。図3に示されるように、本実施形態においては、係合部37の主動要素37Pは、駆動リング33に形成された凹溝41であり、従動要素37Qは、ノズルリンク板35の先端部に形成されたノズルリンク板頭部43である。 The engaging portion 37 will be described. FIG. 3 is an enlarged view of the engaging portion 37 of the present embodiment as viewed from the axial direction. In the following description, words such as “left” and “right” may be used corresponding to the left and right in FIG. 3. As shown in FIG. 3, in the present embodiment, the main moving element 37P of the engaging portion 37 is a recessed groove 41 formed in the drive ring 33, and the driven element 37Q is on the tip of the nozzle link plate 35. It is the nozzle link board head 43 formed.
 凹溝41は駆動リング33の内側に設けられている。凹溝41は、周方向に対向する一対の内側面42a,42bを有している。内側面42a,42bは、駆動リング33の外表面のうち、可変ノズル機構部20の可動範囲内でノズルリンク板頭部43に接触可能な面である。 The recessed groove 41 is provided inside the drive ring 33. The recessed groove 41 has a pair of inner side surfaces 42a and 42b opposed in the circumferential direction. The inner side surfaces 42 a and 42 b are surfaces of the outer surface of the drive ring 33 that can contact the nozzle link head 43 within the movable range of the variable nozzle mechanism 20.
 ノズルリンク板頭部43は、凹溝41内に嵌め込まれ、内側面42a,42bの間に周方向に挟まれて位置している。ノズルリンク板頭部43は、一対の外側面44a,44bを有している。外側面44a,44bは、ノズルリンク板頭部43の外表面のうち、可変ノズル機構部20の可動範囲内で駆動リング33に接触可能な面である。外側面44aは内側面42aに対面し、外側面44bは内側面42bに対面している。凹溝41とノズルリンク板頭部43との間にはクリアランスが存在する。 The nozzle link plate head 43 is fitted in the recessed groove 41, and is circumferentially sandwiched between the inner side surfaces 42a and 42b. The nozzle link head 43 has a pair of outer side surfaces 44a and 44b. The outer side surfaces 44 a and 44 b are surfaces of the outer surface of the nozzle link head 43 that can contact the drive ring 33 within the movable range of the variable nozzle mechanism 20. The outer side surface 44a faces the inner side surface 42a, and the outer side surface 44b faces the inner side surface 42b. There is a clearance between the recessed groove 41 and the nozzle link head 43.
 上記の構造によれば、図3中において、駆動リング33が時計回りに回動したときには、凹溝41の内側面42aがノズルリンク板頭部43の外側面44aに接触し当該外側面44aを右方向に押す。これによりノズルリンク板頭部43が凹溝41に追従して右方向に押し動かされ、ノズルリンク板35がベーン軸21aを中心として時計回りに回動する。その結果、ベーン軸21aを含むノズルベーン21(図2参照)が時計回りに回動し、タービン2のノズル22が開かれる。同様にして、駆動リング33が反時計回りに回動したときには、ノズルベーン21(図2参照)が反時計回りに回動し、タービン2のノズル22が閉じられる。 According to the above structure, when the drive ring 33 is rotated clockwise in FIG. 3, the inner side surface 42a of the recessed groove 41 contacts the outer side surface 44a of the nozzle link plate head 43 and the outer side surface 44a Press in the right direction. As a result, the nozzle link plate head 43 is pushed rightward following the recessed groove 41, and the nozzle link plate 35 is rotated clockwise about the vane shaft 21a. As a result, the nozzle vanes 21 (see FIG. 2) including the vane shaft 21a rotate clockwise, and the nozzles 22 of the turbine 2 are opened. Similarly, when the drive ring 33 pivots counterclockwise, the nozzle vanes 21 (see FIG. 2) pivot counterclockwise, and the nozzles 22 of the turbine 2 are closed.
 次に、凹溝41とノズルリンク板頭部43とのクリアランスについて説明する。クリアランスは、可変ノズル機構部20の円滑な作動性を確保するために必要である。その一方で、クリアランスは、駆動リング33とノズルリンク板35とのガタツキの原因でもある。そして、上記ガタツキは、凹溝41とノズルリンク板頭部43との摩耗の原因となる。 Next, the clearance between the recessed groove 41 and the nozzle link plate head 43 will be described. The clearance is necessary to ensure the smooth operability of the variable nozzle mechanism 20. On the other hand, the clearance is also a cause of rattling between the drive ring 33 and the nozzle link plate 35. And the said rattling causes the wear of the ditch | groove 41 and the nozzle link board head 43. As shown in FIG.
 仮に、従来の可変ノズル機構の構成を採用した場合には、前述のとおり、タービン2のノズル開度に関わらずクリアランスの量は一定である。この場合、すべてのノズル開度域において、可変ノズル機構部20の一定の作動性が確保され、凹溝41とノズルリンク板頭部43との接触部には一定の摩耗が発生することになる。 If the configuration of the conventional variable nozzle mechanism is adopted, as described above, the amount of clearance is constant regardless of the opening degree of the turbine 2. In this case, a constant operability of the variable nozzle mechanism 20 is ensured in all nozzle opening regions, and a constant wear occurs at the contact portion between the recessed groove 41 and the nozzle link plate head 43. .
 これに対し、本実施形態の可変ノズル機構部20では、係合部37におけるクリアランスの量が、タービン2のノズル開度に応じて変動するように構成されている。本実施形態では、従来の可変ノズル機構よりもクリアランスが小さくなる場合が存在するようにしてもよい。なお、クリアランスの量は、内側面42aと外側面44aとの間隙C1と、内側面42bと外側面44bとの間隙C2と、の合計に対応する。また、クリアランスは、駆動リング33とノズルリンク板35との間の周方向の遊びの量でもある。 On the other hand, in the variable nozzle mechanism portion 20 of the present embodiment, the amount of clearance in the engagement portion 37 is configured to fluctuate in accordance with the nozzle opening degree of the turbine 2. In the present embodiment, there may be a case where the clearance is smaller than that of the conventional variable nozzle mechanism. The amount of clearance corresponds to the sum of the gap C1 between the inner side surface 42a and the outer side surface 44a and the gap C2 between the inner side surface 42b and the outer side surface 44b. The clearance is also the amount of circumferential play between the drive ring 33 and the nozzle link plate 35.
 内側面42a,42bが互いに平行な平面である場合において、ノズル開度に関わらずクリアランスの量が一定になるためには、軸方向から見た外側面44aと外側面44bとが、共通する定幅図形(円及びルーロの多角形を含む)の一部ずつをなすようにすればよい。例えば、ノズル開度に関わらずクリアランスの量が一定になるためには、軸方向から見た外側面44aと外側面44bとが、中心が共通する円弧をなすようにすればよい。従って、クリアランスの量がノズル開度に応じて変動するためには、軸方向から見た外側面44aと外側面44bとが、共通する定幅図形の一部ずつをなす、という構成が回避されればよい。 In the case where the inner side surfaces 42a and 42b are planes parallel to each other, in order for the amount of clearance to be constant regardless of the nozzle opening degree, the outer side surface 44a and the outer side surface 44b seen from the axial direction Each part of the width figure (including a circle and a polygon of a roulette) may be made. For example, in order to make the amount of clearance constant regardless of the degree of opening of the nozzle, the outer side surface 44a and the outer side surface 44b viewed in the axial direction may form an arc having a common center. Therefore, in order to vary the amount of clearance according to the degree of opening of the nozzle, a configuration in which the outer side surface 44a and the outer side surface 44b viewed from the axial direction form a part of a common constant width figure is avoided. Just do it.
 上記のような係合部37の具体例について説明する。図3に示されるように、内側面42aと内側面42bとは、互いに平行な平面である。一方、外側面44aと外側面44bとは、ノズルリンク板35の回動半径の1つを基準として、左右非対称な形状をなしている。軸方向から見たときに、外側面44bが円弧であるのに対して、外側面44aは円弧以外の形状をなしている。 A specific example of the engaging portion 37 as described above will be described. As shown in FIG. 3, the inner side surface 42a and the inner side surface 42b are planes parallel to each other. On the other hand, the outer side surface 44 a and the outer side surface 44 b have an asymmetrical shape with respect to one of the rotation radii of the nozzle link plate 35. When viewed from the axial direction, the outer side surface 44b has a shape other than a circular arc while the outer side surface 44b is a circular arc.
 図4にも拡大して示されるように、外側面44aは、円弧以外の形状の一例として、円弧部44sと直線部44tとを合わせた形状をなしている。円弧部44sは外側面44aのうち径方向外側の部分に形成されている。直線部44t(非円弧部位)は外側面44aのうち径方向内側の部分に形成されている。直線部44tは、直線状に延在する部分であり、円弧部44sを延長した仮想円弧44uよりも周方向に張出している。円弧部44sと仮想円弧44uと外側面44bとは、それぞれ、中心が共通する円弧をなす。なお、上述したような外側面44a,44bの形状の詳細な表現は、図2では省略されている。 As also shown enlarged in FIG. 4, the outer side surface 44 a has a shape in which a circular arc portion 44 s and a linear portion 44 t are combined as an example of a shape other than the circular arc. The arc portion 44s is formed on the radially outer portion of the outer side surface 44a. The straight portion 44t (non-circular arc portion) is formed at a radially inner portion of the outer side surface 44a. The straight portion 44t is a portion extending in a straight line, and protrudes in the circumferential direction more than a virtual arc 44u obtained by extending the arc portion 44s. The arc portion 44s, the virtual arc 44u, and the outer side surface 44b respectively form an arc having a common center. The detailed expression of the shape of the outer side surfaces 44a and 44b as described above is omitted in FIG.
 以上のような係合部37による作用効果について説明する。図5(a)に示されるようにノズル開度が小さい領域では、ノズルリンク板頭部43が反時計回りに傾き、外側面44aの円弧部44sが内側面42aに対面する。このとき、内側面42bには円弧をなす外側面44bが対面している。これに対し、図5(b)に示されるようにノズル開度が大きい領域では、ノズルリンク板頭部43が時計回りに傾き、外側面44aの直線部44tが内側面42aに対面する。このときも、内側面42bには円弧をなす外側面44bが対面している。図5(b)の状態でのクリアランスの量は、直線部44tと内側面42aとの間隙と、内側面42bと外側面44bとの間隙と、の合計に対応する。従って、このクリアランスの量は、図5(a)の状態に比較して、仮想円弧44uからの直線部44tの張出し量だけ小さくなる。 The operation and effect of the engaging portion 37 as described above will be described. As shown in FIG. 5A, in the region where the nozzle opening degree is small, the nozzle link head 43 tilts counterclockwise, and the arc portion 44s of the outer side surface 44a faces the inner side surface 42a. At this time, an outer side surface 44b forming an arc faces the inner side surface 42b. On the other hand, as shown in FIG. 5B, in the region where the nozzle opening degree is large, the nozzle link head 43 tilts clockwise, and the linear portion 44t of the outer surface 44a faces the inner surface 42a. Also at this time, an outer side surface 44b forming an arc faces the inner side surface 42b. The amount of clearance in the state of FIG. 5 (b) corresponds to the sum of the gap between the straight portion 44t and the inner surface 42a and the gap between the inner surface 42b and the outer surface 44b. Therefore, the amount of this clearance is smaller than the state of FIG. 5A by the amount of extension of the straight portion 44t from the virtual arc 44u.
 以上のような可変ノズル機構部20において、ノズル開度とクリアランスの量との関係は、図6に示されるようなものになる。すなわち、可変ノズル機構部20では、ノズル開度が全開に近い領域においては、全開に近づくに従ってクリアランスの量が小さくなっていく。その他の領域では、クリアランスの量が一定である。 In the variable nozzle mechanism 20 as described above, the relationship between the nozzle opening and the amount of clearance is as shown in FIG. That is, in the variable nozzle mechanism section 20, in the region where the nozzle opening degree is close to the full opening, the amount of clearance decreases as the full opening is approached. In the other areas, the amount of clearance is constant.
 以上の例のように、ノズルリンク板頭部43の外側面44a,44bの形状を調整することにより、タービン2のノズル開度とクリアランスの量との間に、意図的に所望の関係性を設定することができる。例えば、あるノズル開度域ではクリアランスを大きくして機構の作動性を高め、他のノズル開度域ではクリアランスを小さくして部品の摩耗低減を図る、といった設定が可能になる。 By adjusting the shapes of the outer side surfaces 44a and 44b of the nozzle link plate head 43 as in the above example, the desired relationship between the nozzle opening degree of the turbine 2 and the amount of clearance is intentionally set. It can be set. For example, it is possible to increase the clearance in a certain nozzle opening area to enhance the operability of the mechanism, and reduce the clearance in another nozzle opening area to reduce wear of parts.
 例えば、内燃機関でエグゾーストブレーキが使用されているときには、過給機1のノズル22の開度は全開とされる。エグゾーストブレーキが使用されている状態では、可変ノズル機構部20の部品の摩耗低減が優先されてクリアランスが小さくなり、それ以外の状態では、可変ノズル機構部20の円滑な作動性が優先されてクリアランスが大きくなる、といったような設定が可能になる。 For example, when an exhaust brake is used in an internal combustion engine, the opening degree of the nozzle 22 of the turbocharger 1 is fully opened. In the state where the exhaust brake is used, the wear reduction of the parts of the variable nozzle mechanism 20 is prioritized to reduce the clearance, and in other states, the smooth operability of the variable nozzle mechanism 20 is prioritized and the clearance Setting becomes possible.
 前述のとおり、本実施形態では、外側面44aの円弧以外の部分として、直線状の直線部44tが採用されている。この構成によれば、凹溝41の内側面42aとノズルリンク板頭部43の直線部44tとが面同士で接触するという設定が可能である。この場合、内側面42aと直線部44tと接触面積が比較的大きくなるので、部品の摩耗の低減が効率よく図られる。 As described above, in the present embodiment, the linear portion 44t in a linear shape is adopted as a portion other than the arc of the outer side surface 44a. According to this configuration, it is possible to set that the inner side surface 42a of the recessed groove 41 and the linear portion 44t of the nozzle link head 43 contact each other at the surface. In this case, since the contact area between the inner side surface 42a and the straight portion 44t is relatively large, the wear of the component can be efficiently reduced.
 なお、外側面44a,44bが直線部44tのような直線状の部分を有する構成は必須ではない。例えば、直線部44tの代わりに、円弧部44sよりも曲率半径が大きい曲線部分が採用されてもよい。また、部品の摩耗低減が優先されるノズル開度域には、クリアランスがゼロになるようなノズル開度が存在してもよい。また、可変ノズル機構部20の作動ロバスト性が確保されるために、円弧部44sと直線部44tとが滑らかに連続することが好ましい。例えば、軸方向から見て、直線部44tとの境界における円弧部44sの接線が直線部44tに一致することが好ましい。 The configuration in which the outer side surfaces 44a and 44b have a linear portion such as the linear portion 44t is not essential. For example, instead of the straight portion 44t, a curved portion having a larger radius of curvature than the arc portion 44s may be employed. In addition, in the nozzle opening area where reduction of wear of parts is prioritized, there may be a nozzle opening that makes the clearance zero. Further, in order to ensure the operation robustness of the variable nozzle mechanism portion 20, it is preferable that the arc portion 44s and the linear portion 44t be smoothly continuous. For example, it is preferable that the tangent of the arc portion 44s at the boundary with the straight portion 44t coincides with the straight portion 44t when viewed from the axial direction.
(第2実施形態)
 上記のクリアランスの量がノズル開度に応じて変動するためには、凹溝41の内側面42a,42bが互いに平行な平面であるという構成が回避されてもよい。すなわち、凹溝41の内側面42a,42bが互いに非平行な面であるようにされてもよい。この場合の係合部37の具体例を第2実施形態として図7を参照しながら説明する。本実施形態で第1実施形態と同一又は同等の構成要素については、図面に同一の符号を付して重複する説明を省略する。以下の説明では、図7における左右に対応させて「左」、「右」等の語を用いる場合がある。
Second Embodiment
In order to change the amount of the clearance according to the opening of the nozzle, the configuration in which the inner side surfaces 42a and 42b of the recessed groove 41 are planes parallel to each other may be avoided. That is, the inner side surfaces 42a and 42b of the recessed groove 41 may be nonparallel to each other. A specific example of the engaging portion 37 in this case will be described as a second embodiment with reference to FIG. About the component the same as that of 1st Embodiment by this embodiment, or equivalent, the same code | symbol is attached | subjected to drawing, and the overlapping description is abbreviate | omitted. In the following description, words such as “left” and “right” may be used corresponding to the left and right in FIG. 7.
 図7に示されるように、本実施形態においては、係合部37の主動要素37Pは、駆動リング33に形成された凹溝241であり、従動要素37Qは、ノズルリンク板35の先端部に形成されたノズルリンク板頭部243である。 As shown in FIG. 7, in the present embodiment, the main moving element 37P of the engaging portion 37 is a recessed groove 241 formed in the drive ring 33, and the driven element 37Q is on the tip of the nozzle link plate 35. It is the nozzle link plate head 243 formed.
 軸方向から見たノズルリンク板頭部243の外側面244a,244bは、中心が共通する左右対称の円弧をなしている。その一方、凹溝241の内側面242aと内側面242bとは互いに平行ではない。凹溝241の深さ方向(駆動リング33の径方向)の位置に応じて凹溝241の幅が変動している。具体的には、内側面242a.242bは、平行部242sと傾斜部242tとを合わせた形状をなしている。対向する平行部242s、242sは互いに平行である。傾斜部242t,242t(幅変動部位)は、径方向内側に向かうに従って、互いの距離が近づくように傾斜している。すなわち、径方向内側に向かうに従って、凹溝241の幅が狭くなっている。 The outer side surfaces 244a and 244b of the nozzle link plate head 243 viewed from the axial direction form a symmetrical circular arc having a common center. On the other hand, the inner side 242 a and the inner side 242 b of the recessed groove 241 are not parallel to each other. The width of the recessed groove 241 fluctuates according to the position of the recessed groove 241 in the depth direction (the radial direction of the drive ring 33). Specifically, the inner side 242a. 242 b has a shape in which the parallel portion 242 s and the inclined portion 242 t are combined. The opposing parallel parts 242s, 242s are parallel to each other. The inclined portions 242t, 242t (width fluctuation portions) are inclined such that the distance between the inclined portions 242t, 242t (width fluctuation portions) becomes closer toward the radially inner side. That is, the width of the recessed groove 241 becomes narrower as it goes radially inward.
 以上のような係合部37によれば、次のような現象が発生する。ノズル開度が中程度の領域では、ノズルリンク板頭部243は凹溝241内の平行部242s,242sに挟まれて位置する。この場合、クリアランスは外側面244a,244bと平行部242s,242sとの間隙に対応する。一方、ノズル開度を縮小又は拡大するときには、ノズルリンク板頭部243は凹溝241に比べて小さい回動半径で周方向に移動する。従って、ノズル開度が小さい領域及び大きい領域では、ノズルリンク板頭部243は、凹溝241に対して相対的に径方向内側に変位し、凹溝241内の浅い場所に位置する。この場合、クリアランスは外側面244a,244bと傾斜部242t,242tとの間隙に対応し、クリアランスは比較的狭くなる。 According to the engaging portion 37 as described above, the following phenomenon occurs. In the region where the nozzle opening degree is medium, the nozzle link plate head 243 is positioned between the parallel portions 242s and 242s in the recessed groove 241. In this case, the clearance corresponds to the gap between the outer side surfaces 244a and 244b and the parallel portions 242s and 242s. On the other hand, when the nozzle opening degree is reduced or enlarged, the nozzle link plate head 243 moves in the circumferential direction with a smaller rotation radius than the recessed groove 241. Therefore, the nozzle link head 243 is displaced radially inward relative to the recessed groove 241 in areas where the nozzle opening is small and large, and is located at a shallow position in the recessed groove 241. In this case, the clearance corresponds to the gap between the outer side surfaces 244a and 244b and the inclined portions 242t and 242t, and the clearance is relatively narrow.
 従って、ノズル開度とクリアランスの量との関係は、図8に示されるようなものになる。すなわち、本実施形態の可変ノズル機構部20では、ノズル開度が全開に近い領域において、全開に近づくにつれてクリアランスの量が小さくなっていく。また、ノズル開度が全閉に近い領域において、全閉に近づくにつれてクリアランスの量が小さくなっていく。その他の領域では、クリアランスの量が一定である。 Therefore, the relationship between the nozzle opening and the amount of clearance is as shown in FIG. That is, in the variable nozzle mechanism section 20 of the present embodiment, the amount of clearance decreases as the nozzle opening degree approaches full opening in a region close to full opening. Further, in a region where the nozzle opening degree is close to full close, the amount of clearance becomes smaller as full close is approached. In the other areas, the amount of clearance is constant.
 以上の例のように、凹溝241の内側面242a,242bの形状を調整することによっても、タービン2のノズル開度とクリアランスの量との間に、意図的に所望の関係性を設定することができる。 By adjusting the shapes of the inner side surfaces 242a and 242b of the recessed groove 241 as in the above example, a desired relationship is intentionally set between the nozzle opening of the turbine 2 and the amount of clearance. be able to.
 可変ノズル機構部20の作動ロバスト性が確保されるために、平行部242sと傾斜部242tとが滑らかに連続することが好ましい。例えば、軸方向から見て平行部242sと傾斜部242tとの境界部が丸められた形状をなしてもよい。また、軸方向から見た傾斜部242tが直線的に延在することも必須ではなく、曲線であってもよい。 In order to ensure the operation robustness of the variable nozzle mechanism 20, it is preferable that the parallel portion 242s and the inclined portion 242t be smoothly continuous. For example, the boundary between the parallel portion 242s and the inclined portion 242t may be rounded as viewed from the axial direction. In addition, it is not essential that the inclined portion 242t seen from the axial direction extend linearly, and it may be a curve.
(第3実施形態)
 クリアランスの量がノズル開度に応じて変動する構成は、駆動リンク板31と駆動リング33との係合部39に適用されてもよい。この場合の係合部39の具体例を第3実施形態として図9を参照しながら説明する。本実施形態で第1,第2実施形態と同一又は同等の構成要素については、図面に同一の符号を付して重複する説明を省略する。
Third Embodiment
The configuration in which the amount of clearance varies according to the nozzle opening degree may be applied to the engagement portion 39 between the drive link plate 31 and the drive ring 33. A specific example of the engaging portion 39 in this case will be described as a third embodiment with reference to FIG. About the component the same as that of 1st, 2nd embodiment by this embodiment, or equivalent, the same code | symbol is attached | subjected to drawing, and the overlapping description is abbreviate | omitted.
 図9に示されるように、本実施形態においては、係合部39の主動要素39Pは、駆動リンク板31の先端部に形成された駆動リンク板頭部343であり、従動要素39Qは、駆動リング33に形成された凹溝341である。 As shown in FIG. 9, in the present embodiment, the main moving element 39P of the engagement portion 39 is a drive link plate head 343 formed at the tip of the drive link plate 31, and the driven element 39Q is a drive This is a recessed groove 341 formed in the ring 33.
 凹溝341は駆動リング33の内側に設けられている。凹溝341は、周方向に対向する一対の内側面342a,342bを有している。内側面342a,342bは、駆動リング33の外表面のうち、可変ノズル機構部20の可動範囲内で駆動リンク板頭部343に接触可能な面である。 The recessed groove 341 is provided inside the drive ring 33. The recessed groove 341 has a pair of inner side surfaces 342a and 342b opposed in the circumferential direction. The inner side surfaces 342 a and 342 b are surfaces of the outer surface of the drive ring 33 that can contact the drive link plate head 343 within the movable range of the variable nozzle mechanism 20.
 駆動リンク板頭部343は、凹溝341内に嵌め込まれ、内側面342a,342bの間に周方向に挟まれて位置している。駆動リンク板頭部343は、一対の外側面344a,344bを有している。外側面344a,344bは、駆動リンク板頭部343の外表面のうち、可変ノズル機構部20の可動範囲内で駆動リング33に接触可能な面である。外側面344aは内側面342aに対面し、外側面344bは内側面342bに対面している。凹溝341と駆動リンク板頭部343との間にはクリアランスが存在する。 The drive link plate head 343 is fitted in the recessed groove 341 and is circumferentially sandwiched between the inner side surfaces 342a and 342b. The drive link head portion 343 has a pair of outer side surfaces 344a and 344b. The outer side surfaces 344 a and 344 b are surfaces of the outer surface of the drive link plate head 343 that can contact the drive ring 33 within the movable range of the variable nozzle mechanism 20. The outer side 344a faces the inner side 342a, and the outer side 344b faces the inner side 342b. A clearance exists between the recessed groove 341 and the drive link plate head 343.
 上記の構造によれば、図9中において、駆動リンク板31が時計回りに回動したときには、駆動リンク板頭部343の外側面344bが凹溝341の内側面342bに接触し当該内側面342bを右方向に押す。これにより凹溝341が駆動リンク板頭部343に追従して右方向に押し動かされ、駆動リング33が回転軸線Hを中心として時計回りに回動する。同様にして、駆動リンク板31が反時計回りに回動したときには、駆動リング33が回転軸線Hを中心として反時計回りに回動する。そして、駆動リング33が回動すると、前述のとおり、ノズルリンク板35を含む伝達機構によって駆動力が伝達され、各ノズルベーン21が回動する。 According to the above structure, when the drive link plate 31 is rotated clockwise in FIG. 9, the outer side surface 344b of the drive link plate head 343 contacts the inner side surface 342b of the recessed groove 341 and the inner side surface 342b. Press to the right. As a result, the recessed groove 341 is pushed to the right following the drive link plate head 343 and the drive ring 33 is rotated clockwise about the rotation axis H. Similarly, when the drive link plate 31 rotates counterclockwise, the drive ring 33 rotates counterclockwise around the rotation axis H. Then, when the drive ring 33 rotates, as described above, the driving force is transmitted by the transmission mechanism including the nozzle link plate 35, and the nozzle vanes 21 rotate.
 上記の外側面344a,344bに対して、第1実施形態におけるノズルリンク板頭部43の外側面44a,44b(図3,図4等参照)の形状が適用されている。すなわち、外側面344aは、円弧部44sと直線部44tとを合わせた形状をなしている。一方、凹溝341には、第1実施形態における凹溝41(図3等参照)の形状が適用されている。内側面342aと内側面342bとは、互いに平行な平面である。なお、上述したような外側面344a,344bの形状の詳細な表現は、図2では省略されている。 The shapes of the outer side surfaces 44a and 44b (see FIGS. 3 and 4 and the like) of the nozzle link plate head 43 in the first embodiment are applied to the outer side surfaces 344a and 344b described above. That is, the outer side surface 344a has a shape in which the arc portion 44s and the straight portion 44t are combined. On the other hand, the shape of the concave groove 41 (see FIG. 3 etc.) in the first embodiment is applied to the concave groove 341. The inner side 342a and the inner side 342b are planes parallel to each other. The detailed representation of the shape of the outer side surfaces 344a and 344b as described above is omitted in FIG.
 以上のような係合部39では、第1実施形態と同様の原理によって、凹溝341と駆動リンク板頭部343とのクリアランスの量がタービン2のノズル開度に応じて変動する。ノズル開度とクリアランスの量との関係は、図6に示されるようなものになる。 In the engaging portion 39 as described above, the amount of the clearance between the recessed groove 341 and the drive link plate head 343 fluctuates according to the nozzle opening degree of the turbine 2 according to the principle similar to the first embodiment. The relationship between the nozzle opening and the amount of clearance is as shown in FIG.
 なお、図10に示されるように、凹溝341に対して第2実施形態における凹溝241(図7等参照)の形状が適用されてもよい。この場合、凹溝341の内側面342a,342bは、平行部242sと傾斜部242tとを合わせた形状をなす。一方、軸方向から見た外側面344a,344bは、中心が共通する左右対称の円弧をなす。 Note that, as shown in FIG. 10, the shape of the concave groove 241 (see FIG. 7 and the like) in the second embodiment may be applied to the concave groove 341. In this case, the inner side surfaces 342a and 342b of the recessed groove 341 have a shape in which the parallel portion 242s and the inclined portion 242t are combined. On the other hand, the outer side surfaces 344a and 344b viewed from the axial direction form a symmetrical circular arc having a common center.
 この係合部39では、第2実施形態と同様の原理によって、凹溝341と駆動リンク板頭部343とのクリアランスの量がタービン2のノズル開度に応じて変動する。ノズル開度とクリアランスの量との関係は、図8に示されるようなものになる。 In the engaging portion 39, the amount of the clearance between the recessed groove 341 and the drive link plate head 343 fluctuates according to the nozzle opening degree of the turbine 2 according to the same principle as the second embodiment. The relationship between the nozzle opening and the amount of clearance is as shown in FIG.
(第4実施形態)
 クリアランスの量がノズル開度に応じて変動する構成は、図11に示されるような可変ノズル機構部20Aの係合部37に適用されてもよい。この場合の係合部37の具体例を第3実施形態として図11を参照しながら説明する。本実施形態で第1~第3実施形態と同一又は同等の構成要素については、図面に同一の符号を付して重複する説明を省略する。
Fourth Embodiment
The configuration in which the amount of clearance varies in accordance with the opening degree of the nozzle may be applied to the engaging portion 37 of the variable nozzle mechanism 20A as shown in FIG. A specific example of the engaging portion 37 in this case will be described as a third embodiment with reference to FIG. The same reference numerals as in the first to third embodiments denote the same or corresponding parts in the present embodiment, and a redundant description will be omitted.
 可変ノズル機構部20Aは、前述の可変ノズル機構部20(図2等参照)に代えて過給機1に適用可能である。図12にも拡大して示されるように、本実施形態の可変ノズル機構部20Aでは、ピン443と凹溝441との嵌合構造によって係合部37が構成されている。ピン443は、コンプレッサ3側に突出するように駆動リング33に設けられている。ピン443は、駆動リング33のリング状の本体部に対して回転しないように固定されている。ノズルリンク板35の先端部は、駆動リング33に対して軸方向に重なって位置している。このノズルリンク板35の先端部に凹溝441が形成されており、ピン443と凹溝441とが嵌め合わされている。 The variable nozzle mechanism 20A is applicable to the supercharger 1 in place of the variable nozzle mechanism 20 (see FIG. 2 etc.) described above. As shown in FIG. 12 in an enlarged manner, in the variable nozzle mechanism portion 20A of the present embodiment, the engagement portion 37 is configured by the fitting structure of the pin 443 and the concave groove 441. The pin 443 is provided on the drive ring 33 so as to protrude toward the compressor 3 side. The pin 443 is fixed so as not to rotate with respect to the ring-shaped main body of the drive ring 33. The tip of the nozzle link plate 35 is located so as to overlap the drive ring 33 in the axial direction. A recessed groove 441 is formed at the tip of the nozzle link plate 35, and the pin 443 and the recessed groove 441 are fitted.
 図12に示されるように、本実施形態においては、係合部37の主動要素37Pは、駆動リング33に形成されたピン443であり、従動要素37Qは、ノズルリンク板35の先端部に形成された凹溝441である。 As shown in FIG. 12, in the present embodiment, the main moving element 37P of the engaging portion 37 is a pin 443 formed on the drive ring 33, and the following element 37Q is formed on the tip of the nozzle link plate 35. Recessed groove 441.
 凹溝441はノズルリンク板35の先端部に設けられている。凹溝441は、周方向に対向する一対の内側面442a,442bを有している。内側面442a,442bは、ノズルリンク板35の外表面のうち、可変ノズル機構部20Aの可動範囲内でピン443に接触可能な面である。 The recessed groove 441 is provided at the tip of the nozzle link plate 35. The recessed groove 441 has a pair of inner side surfaces 442a and 442b opposed in the circumferential direction. The inner side surfaces 442a and 442b are surfaces of the outer surface of the nozzle link plate 35 that can contact the pins 443 within the movable range of the variable nozzle mechanism 20A.
 ピン443は、凹溝441内に嵌め込まれ、内側面442a,442bの間に周方向に挟まれて位置している。ピン443は、一対の外側面444a,444bを有している。外側面444a,444bは、ピン443の外表面のうち、可変ノズル機構部20Aの可動範囲内でノズルリンク板35に接触可能な面である。外側面444aは内側面442aに対面し、外側面444bは内側面442bに対面している。凹溝441とピン443との間にはクリアランスが存在する。 The pin 443 is fitted in the recessed groove 441 and is circumferentially sandwiched between the inner side surfaces 442a and 442b. The pin 443 has a pair of outer side surfaces 444a and 444b. The outer side surfaces 444a and 444b are surfaces of the outer surface of the pin 443 that can contact the nozzle link plate 35 within the movable range of the variable nozzle mechanism 20A. The outer side surface 444a faces the inner side surface 442a, and the outer side surface 444b faces the inner side surface 442b. There is a clearance between the recessed groove 441 and the pin 443.
 上記の構造によれば、図12中において、駆動リング33が時計回りに回動したときには、ピン443の外側面444bが凹溝441の内側面442bに接触し当該内側面442bを右方向に押す。これにより凹溝441がピン443に追従して右方向に押し動かされ、ノズルリンク板35がベーン軸21aを中心として時計回りに回動する。その結果、ベーン軸21aを含むノズルベーン21(図11参照)が時計回りに回動し、タービン2のノズル22が開かれる。同様にして、駆動リング33が反時計回りに回動したときには、ノズルベーン21(図11参照)が反時計回りに回動し、タービン2のノズル22が閉じられる。 According to the above structure, when the drive ring 33 rotates clockwise in FIG. 12, the outer surface 444b of the pin 443 contacts the inner surface 442b of the recessed groove 441 and pushes the inner surface 442b rightward. . As a result, the recessed groove 441 is pushed to the right following the pin 443 and the nozzle link plate 35 is rotated clockwise about the vane shaft 21a. As a result, the nozzle vanes 21 (see FIG. 11) including the vane shaft 21a rotate clockwise, and the nozzles 22 of the turbine 2 are opened. Similarly, when the drive ring 33 rotates counterclockwise, the nozzle vanes 21 (see FIG. 11) rotate counterclockwise, and the nozzle 22 of the turbine 2 is closed.
 上記の外側面444a,444bに対して、第1実施形態におけるノズルリンク板頭部43の外側面44a,44b(図3,図4等参照)の形状が適用されている。すなわち、外側面444aは、円弧部44sと直線部44tとを合わせた形状をなしている。円弧部44sは外側面444aのうち径方向内側の部分に形成されている。直線部44tは外側面444aのうち径方向外側の部分に形成されている。一方、凹溝441には、第1実施形態における凹溝41(図3等参照)の形状が適用されている。内側面442aと内側面442bとは、互いに平行な平面である。なお、上述したような外側面444a,444bの形状の詳細な表現は、図11では省略されている。 The shapes of the outer side surfaces 44a and 44b (see FIGS. 3 and 4 and the like) of the nozzle link plate head 43 in the first embodiment are applied to the outer side surfaces 444a and 444b. That is, the outer side surface 444a has a shape in which the arc portion 44s and the straight portion 44t are combined. The arc portion 44s is formed on the radially inner portion of the outer side surface 444a. The straight portion 44t is formed on the radially outer portion of the outer side surface 444a. On the other hand, the shape of the concave groove 41 (see FIG. 3 and the like) in the first embodiment is applied to the concave groove 441. The inner side surface 442a and the inner side surface 442b are planes parallel to each other. The detailed expression of the shapes of the outer side surfaces 444a and 444b as described above is omitted in FIG.
 以上のような係合部37では、第1実施形態と同様の原理によって、凹溝441とピン443とのクリアランスの量がタービン2のノズル開度に応じて変動する。ノズル開度とクリアランスの量との関係は、図6に示されるようなものになる。 In the engaging portion 37 as described above, the amount of clearance between the recessed groove 441 and the pin 443 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as the first embodiment. The relationship between the nozzle opening and the amount of clearance is as shown in FIG.
 なお、図13に示されるように、凹溝441に対して第2実施形態における凹溝241(図7等参照)の形状が適用されてもよい。この場合、凹溝441の内側面442a,442bは、平行部242sと傾斜部242tとを合わせた形状をなす。一方、軸方向から見た外側面444a,444bは、中心が共通する左右対称の円弧をなす。 Note that, as shown in FIG. 13, the shape of the concave groove 241 (see FIG. 7 and the like) in the second embodiment may be applied to the concave groove 441. In this case, the inner side surfaces 442a and 442b of the recessed groove 441 have a shape in which the parallel portion 242s and the inclined portion 242t are combined. On the other hand, the outer side surfaces 444a and 444b viewed from the axial direction form a symmetrical circular arc having a common center.
 この係合部37では、第2実施形態と同様の原理によって、凹溝441とピン443とのクリアランスの量がタービン2のノズル開度に応じて変動する。ノズル開度とクリアランスの量との関係は、図8に示されるようなものになる。 In the engaging portion 37, the amount of clearance between the recessed groove 441 and the pin 443 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as the second embodiment. The relationship between the nozzle opening and the amount of clearance is as shown in FIG.
(第5実施形態)
 クリアランスの量がノズル開度に応じて変動する構成は、可変ノズル機構部20A(図11参照)の係合部39に適用されてもよい。この場合の係合部39の具体例を第5実施形態として図14を参照しながら説明する。本実施形態で第1~第4実施形態と同一又は同等の構成要素については、図面に同一の符号を付して重複する説明を省略する。
Fifth Embodiment
The configuration in which the amount of clearance varies in accordance with the nozzle opening degree may be applied to the engagement portion 39 of the variable nozzle mechanism 20A (see FIG. 11). A specific example of the engaging portion 39 in this case will be described as a fifth embodiment with reference to FIG. About the component the same as that of 1st-4th embodiment by this embodiment, or equivalent, the same code | symbol is attached | subjected to drawing, and the overlapping description is abbreviate | omitted.
 図11に示されるように、可変ノズル機構部20Aでは、ピン543と凹溝541との嵌合構造によって係合部39が構成されている。駆動リング33は、径方向外側に張出した張出部33aを備えている。ピン543は、コンプレッサ3側に突出するように張出部33aに設けられている。ピン543は、駆動リング33の張出部33aに対して回転しないように固定されている。駆動リンク板31の先端部は、張出部33aに対して軸方向に重なって位置している。この駆動リンク板31の先端部に凹溝541が形成されており、ピン543と凹溝541とが嵌め合わされている。 As shown in FIG. 11, in the variable nozzle mechanism 20 </ b> A, the engagement portion 39 is configured by the fitting structure of the pin 543 and the concave groove 541. The drive ring 33 is provided with a protruding portion 33 a protruding outward in the radial direction. The pin 543 is provided on the overhanging portion 33 a so as to protrude toward the compressor 3 side. The pin 543 is fixed so as not to rotate with respect to the extension 33 a of the drive ring 33. The front end portion of the drive link plate 31 is positioned so as to overlap in the axial direction with respect to the overhanging portion 33a. A recessed groove 541 is formed at the tip of the drive link plate 31, and the pin 543 and the recessed groove 541 are fitted.
 図14に示されるように、本実施形態においては、係合部39の主動要素39Pは、駆動リンク板31の先端部に形成された凹溝541であり、従動要素39Qは、駆動リング33に形成されたピン543である。 As shown in FIG. 14, in the present embodiment, the main moving element 39 P of the engaging portion 39 is a recessed groove 541 formed at the tip of the drive link plate 31, and the driven element 39 Q is on the drive ring 33. It is a pin 543 formed.
 凹溝541は駆動リンク板31の先端部に設けられている。凹溝541は、周方向に対向する一対の内側面542a,542bを有している。内側面542a,542bは、駆動リンク板31の外表面のうち、可変ノズル機構部20Aの可動範囲内でピン543に接触可能な面である。 The recessed groove 541 is provided at the tip of the drive link plate 31. The recessed groove 541 has a pair of inner side surfaces 542a and 542b opposed in the circumferential direction. The inner side surfaces 542a and 542b are surfaces of the outer surface of the drive link plate 31 that can contact the pins 543 within the movable range of the variable nozzle mechanism 20A.
 ピン543は、凹溝541内に嵌め込まれ、内側面542a,542bの間に周方向に挟まれて位置している。ピン543は、一対の外側面544a,544bを有している。外側面544a,544bは、ピン543の外表面のうち、可変ノズル機構部20Aの可動範囲内で駆動リンク板31に接触可能な面である。外側面544aは内側面542aに対面し、外側面544bは内側面542bに対面している。凹溝541とピン543との間にはクリアランスが存在する。 The pin 543 is fitted in the recessed groove 541 and is circumferentially sandwiched between the inner side surfaces 542 a and 542 b. The pin 543 has a pair of outer side surfaces 544a and 544b. The outer side surfaces 544a and 544b are surfaces of the outer surface of the pin 543 that can contact the drive link plate 31 within the movable range of the variable nozzle mechanism 20A. The outer side 544a faces the inner side 542a, and the outer side 544b faces the inner side 542b. There is a clearance between the recessed groove 541 and the pin 543.
 上記の構造によれば、図14中において、駆動リンク板31が反時計回りに回動したときには、凹溝541の内側面542aがピン543の外側面544aに接触し当該外側面544aを右方向に押す。これによりピン543が凹溝541に追従して右方向に押し動かされ、駆動リング33が回転軸線Hを中心として時計回りに回動する。同様にして、駆動リンク板31が時計回りに回動したときには、駆動リング33が回転軸線Hを中心として反時計回りに回動する。そして、駆動リング33が回動すると、前述のとおり、ノズルリンク板35を含む伝達機構によって駆動力が伝達され、各ノズルベーン21が回動する。 According to the above structure, when the drive link plate 31 is rotated counterclockwise in FIG. 14, the inner side surface 542a of the recessed groove 541 contacts the outer side surface 544a of the pin 543, and the outer side surface 544a is directed to the right. Press to As a result, the pin 543 is pushed to the right following the recessed groove 541 and the drive ring 33 rotates clockwise about the rotation axis H. Similarly, when the drive link plate 31 pivots clockwise, the drive ring 33 pivots counterclockwise around the rotation axis H. Then, when the drive ring 33 rotates, as described above, the driving force is transmitted by the transmission mechanism including the nozzle link plate 35, and the nozzle vanes 21 rotate.
 上記の外側面544a,544bに対して、第1実施形態におけるノズルリンク板頭部43の外側面44a,44b(図3,図4等参照)の形状が適用されている。すなわち、外側面544aは、円弧部44sと直線部44tとを合わせた形状をなしている。円弧部44sは外側面544aのうち径方向外側の部分に形成されている。直線部44tは外側面544aのうち径方向内側の部分に形成されている。一方、凹溝541には、第1実施形態における凹溝41(図3等参照)の形状が適用されている。内側面542aと内側面542bとは、互いに平行な平面である。なお、上述したような外側面544a,544bの形状の詳細な表現は、図11では省略されている。 The shape of the outer side surfaces 44a and 44b (see FIG. 3 and FIG. 4 etc.) of the nozzle link plate head 43 in the first embodiment is applied to the above outer side surfaces 544a and 544b. That is, the outer side surface 544a has a shape in which the arc portion 44s and the straight portion 44t are combined. The arc portion 44s is formed on the radially outer portion of the outer side surface 544a. The straight portion 44t is formed on the radially inner portion of the outer side surface 544a. On the other hand, the shape of the concave groove 41 (see FIG. 3 etc.) in the first embodiment is applied to the concave groove 541. The inner side surface 542a and the inner side surface 542b are planes parallel to each other. In addition, the detailed expression of the shape of the outer side surfaces 544a and 544b as described above is omitted in FIG.
 以上のような係合部39では、第1実施形態と同様の原理によって、凹溝541とピン543とのクリアランスの量がタービン2のノズル開度に応じて変動する。ノズル開度とクリアランスの量との関係は、図6に示されるようなものになる。 In the engaging portion 39 as described above, the amount of the clearance between the recessed groove 541 and the pin 543 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as in the first embodiment. The relationship between the nozzle opening and the amount of clearance is as shown in FIG.
 なお、図15に示されるように、凹溝541に対して第2実施形態における凹溝241(図7等参照)の形状が適用されてもよい。この場合、凹溝541の内側面542a,542bは、平行部242sと傾斜部242tとを合わせた形状をなす。一方、軸方向から見た外側面544a,544bは、中心が共通する左右対称の円弧をなす。 Note that, as shown in FIG. 15, the shape of the recessed groove 241 (see FIG. 7 and the like) in the second embodiment may be applied to the recessed groove 541. In this case, the inner side surfaces 542a and 542b of the recessed groove 541 have a shape in which the parallel portion 242s and the inclined portion 242t are combined. On the other hand, the outer side surfaces 544a and 544b viewed from the axial direction form a symmetrical circular arc having a common center.
 この係合部39では、第2実施形態と同様の原理によって、凹溝541とピン543とのクリアランスの量がタービン2のノズル開度に応じて変動する。ノズル開度とクリアランスの量との関係は、図8に示されるようなものになる。 In the engaging portion 39, the amount of clearance between the recessed groove 541 and the pin 543 fluctuates according to the nozzle opening degree of the turbine 2 by the same principle as the second embodiment. The relationship between the nozzle opening and the amount of clearance is as shown in FIG.
 本開示に係る可変容量機構は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、実施例の変形例を構成することも可能である。各実施形態の構成を適宜組み合わせて使用してもよい。 The variable capacity mechanism according to the present disclosure can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art, including the embodiments described above. In addition, it is also possible to configure a modification of the embodiment using the technical matters described in the above-described embodiment. You may use combining the structure of each embodiment suitably.
 例えば、ノズル開度とクリアランスの量との関係は、図6や図8に示されるものには限定されず、種々の関係を設定することができる。また、凹溝、ノズルリンク板、駆動リンク板、ピン等の各部品の形状は、各実施形態のものには限定されない。すなわち、ノズル開度とクリアランスの量との所望の関係を実現する各部品(駆動リンク板頭部、ノズルリンク板頭部、ピン、凹溝等)の形状は、幾何学的な考察に基づいて適宜設計されればよい。 For example, the relationship between the nozzle opening and the amount of clearance is not limited to those shown in FIGS. 6 and 8, and various relationships can be set. Further, the shape of each component such as the recessed groove, the nozzle link plate, the drive link plate, and the pin is not limited to that of each embodiment. That is, the shape of each component (drive link plate head, nozzle link plate head, pin, groove, etc.) that achieves the desired relationship between the nozzle opening degree and the clearance amount is based on geometrical consideration. It may be designed appropriately.
1 過給機
20,20A 可変ノズル機構部(可変容量機構)
21 ノズルベーン
21a ベーン軸
22 ノズル
33 駆動リング
35 ノズルリンク板(伝達機構)
37 係合部(回動変換部)
37P 主動要素
37Q 従動要素
39 係合部(回動変換部)
39P 主動要素
39Q 従動要素
41 凹溝
42a,42b 内側面
43 ノズルリンク板頭部
44a,44b 外側面
44t 直線部(非円弧部位)
241 凹溝
242a,242b 内側面
242t 傾斜部(幅変動部位)
243 ノズルリンク板頭部
244a,244b 外側面
341 凹溝
342a,342b 内側面
343 駆動リンク板頭部
344a,344b 外側面
441 凹溝
442a,442b 内側面
443 ピン
444a,444b 外側面
541 凹溝
542a,542b 内側面
543 ピン
544a,544b 外側面
1 Turbocharger 20, 20A variable nozzle mechanism (variable displacement mechanism)
21 nozzle vane 21a vane shaft 22 nozzle 33 drive ring 35 nozzle link plate (transmission mechanism)
37 Engaging part (rotational conversion part)
37P driving element 37Q driven element 39 engaging part (rotational conversion part)
39P driving element 39Q driven element 41 recessed groove 42a, 42b inner side surface 43 nozzle link plate head 44a, 44b outer side surface 44t straight portion (non-arc portion)
241 Concave groove 242a, 242b Inner side 242t Inclined part (width fluctuation part)
243 nozzle link plate head 244a, 244b outer surface 341 recessed groove 342a, 342b inner surface 343 drive link plate head 344a, 344b outer surface 441 recessed groove 442a, 442b inner surface 443 pin 444a, 444b outer surface 541 recessed groove 542a, 542b inner side 543 pin 544a, 544b outer side

Claims (6)

  1.  可変容量型過給機の複数のノズルベーンを回動させることによりノズルを開閉する可変容量機構であって、
     外部からの駆動力によって回動する駆動リングと、
     前記ノズルベーンの回動軸に設けられ、前記駆動リングの回動に起因して前記ノズルベーンと一緒に回動するノズルリンク板と、
     前記駆動リングの回動を前記ノズルリンク板の回動に変換する回動変換部と、を備え、
     前記回動変換部は、
     前記駆動リングに設けられた主動要素と、前記ノズルリンク板に設けられ前記主動要素に対しクリアランスをもって嵌合され前記主動要素に押されて変位する従動要素と、を有し、
     前記クリアランスの量が前記ノズルの開度に応じて変動する、可変容量機構。
    A variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger,
    A drive ring that is rotated by an external driving force,
    A nozzle link plate provided on a rotation shaft of the nozzle vanes and rotating together with the nozzle vanes due to the rotation of the drive ring;
    And a rotation conversion unit that converts rotation of the drive ring into rotation of the nozzle link plate,
    The rotation conversion unit is
    It has a main moving element provided on the drive ring, and a driven element provided on the nozzle link plate, fitted with a clearance to the main moving element, and pressed and displaced by the main moving element.
    The variable displacement mechanism, wherein the amount of the clearance varies according to the opening degree of the nozzle.
  2.  可変容量型過給機の複数のノズルベーンを回動させることによりノズルを開閉する可変容量機構であって、
     外部からの駆動力によって回動する駆動リンク板と、
     前記駆動リンク板の回動に起因して回動する駆動リングと、
     前記駆動リングの回動に起因してノズルベーンを回動させる伝達機構と、
     前記駆動リンク板の回動を前記駆動リングの回動に変換する回動変換部と、を備え、
     前記回動変換部は、
     前記駆動リンク板に設けられた主動要素と、前記駆動リングに設けられ前記主動要素に対しクリアランスをもって嵌合され前記主動要素に押されて変位する従動要素と、を有し、
     前記クリアランスの量が前記ノズルの開度に応じて変動する、可変容量機構。
    A variable displacement mechanism that opens and closes a nozzle by rotating a plurality of nozzle vanes of a variable displacement turbocharger,
    A drive link plate which is rotated by an external driving force,
    A drive ring that pivots due to the pivoting of the drive link plate;
    A transmission mechanism for rotating the nozzle vanes due to the rotation of the drive ring;
    And a rotation conversion unit that converts the rotation of the drive link plate into the rotation of the drive ring.
    The rotation conversion unit is
    It has a main moving element provided on the drive link plate, and a driven element provided on the drive ring, fitted with a clearance to the main moving element, and pressed and displaced by the main moving element.
    The variable displacement mechanism, wherein the amount of the clearance varies according to the opening degree of the nozzle.
  3.  前記主動要素又は前記従動要素のうち一方の要素は、他方の要素を挟んで対向する一対の内側面を有する凹溝であり、
     前記他方の要素は、前記凹溝の前記内側面に対面する一対の外側面を有し、
     前記内側面と当該内側面に対面する外側面とが接触して前記主動要素から前記従動要素へ力が伝達される、請求項1又は2に記載の可変容量機構。
    One of the main driving element and the driven element is a concave groove having a pair of opposing inner surfaces sandwiching the other element,
    The other element has a pair of outer surfaces facing the inner surface of the groove,
    The variable displacement mechanism according to claim 1 or 2, wherein the inner side surface and the outer side surface facing the inner side surface are in contact with each other to transmit a force from the main driving element to the driven element.
  4.  前記駆動リングの回動軸線に平行な方向から見たときに、一対の前記外側面が互いに非対称の形状をなす、請求項3に記載の可変容量機構。 The variable displacement mechanism according to claim 3, wherein the pair of the outer side surfaces have an asymmetrical shape when viewed in a direction parallel to the rotation axis of the drive ring.
  5.  前記凹溝の前記内側面は互いに平行な平面であり、
     前記外側面のうち少なくとも一方は、前記駆動リングの回動軸線に平行な方向から見たときに、円弧以外の形状をなす非円弧部位を含む、請求項3に記載の可変容量機構。
    The inner side surfaces of the recessed groove are planes parallel to each other,
    The variable capacity mechanism according to claim 3, wherein at least one of the outer side surfaces includes a non-circular arc portion having a shape other than a circular arc when viewed from the direction parallel to the rotation axis of the drive ring.
  6.  前記凹溝は、当該凹溝の深さ方向の位置に応じて前記凹溝の幅が変動する幅変動部位を含み、
     前記駆動リングの回動軸線に平行な方向から見たときに、両方の前記外側面が円弧をなす、請求項3に記載の可変容量機構。

     
    The recessed groove includes a width variation portion in which the width of the recessed groove varies in accordance with the position in the depth direction of the recessed groove,
    The variable displacement mechanism according to claim 3, wherein both of the outer side surfaces form an arc when viewed in a direction parallel to the rotation axis of the drive ring.

PCT/JP2018/034487 2017-10-06 2018-09-18 Variable geometry mechanism WO2019069678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196122 2017-10-06
JP2017196122A JP2021008819A (en) 2017-10-06 2017-10-06 Variable displacement mechanism

Publications (1)

Publication Number Publication Date
WO2019069678A1 true WO2019069678A1 (en) 2019-04-11

Family

ID=65994190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034487 WO2019069678A1 (en) 2017-10-06 2018-09-18 Variable geometry mechanism

Country Status (2)

Country Link
JP (1) JP2021008819A (en)
WO (1) WO2019069678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020261417A1 (en) * 2019-06-26 2020-12-30

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970035U (en) * 1982-10-30 1984-05-12 いすゞ自動車株式会社 Variable displacement turbocharger nozzle vane drive device
JPS6013902A (en) * 1983-07-05 1985-01-24 Kawasaki Heavy Ind Ltd Device for controlling and driving stator blade of blast furnace gas energy recovering turbine
DE102007005445A1 (en) * 2007-02-03 2008-08-07 Bayerische Motoren Werke Aktiengesellschaft Exhaust gas turbocharger for internal combustion engine, has flow-control device adjustable by adjusting element, and bolt with larger external radius on side facing guiding side than on another side facing another guiding side
JP2009531587A (en) * 2006-03-30 2009-09-03 ボーグワーナー・インコーポレーテッド Turbocharger
US20110138805A1 (en) * 2009-12-15 2011-06-16 Honeywell International Inc. Conjugate curve profiles for vane arms, main-arms, and unison rings
US20120237339A1 (en) * 2011-03-15 2012-09-20 Thomas Streich Adjustable ring
JP2014224498A (en) * 2013-05-16 2014-12-04 株式会社豊田自動織機 Variable nozzle turbocharger
JP2016525640A (en) * 2013-08-19 2016-08-25 ボーグワーナー インコーポレーテッド Exhaust gas turbocharger
JP2017180462A (en) * 2016-03-28 2017-10-05 株式会社豊田自動織機 Variable nozzle mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970035U (en) * 1982-10-30 1984-05-12 いすゞ自動車株式会社 Variable displacement turbocharger nozzle vane drive device
JPS6013902A (en) * 1983-07-05 1985-01-24 Kawasaki Heavy Ind Ltd Device for controlling and driving stator blade of blast furnace gas energy recovering turbine
JP2009531587A (en) * 2006-03-30 2009-09-03 ボーグワーナー・インコーポレーテッド Turbocharger
DE102007005445A1 (en) * 2007-02-03 2008-08-07 Bayerische Motoren Werke Aktiengesellschaft Exhaust gas turbocharger for internal combustion engine, has flow-control device adjustable by adjusting element, and bolt with larger external radius on side facing guiding side than on another side facing another guiding side
US20110138805A1 (en) * 2009-12-15 2011-06-16 Honeywell International Inc. Conjugate curve profiles for vane arms, main-arms, and unison rings
US20120237339A1 (en) * 2011-03-15 2012-09-20 Thomas Streich Adjustable ring
JP2014224498A (en) * 2013-05-16 2014-12-04 株式会社豊田自動織機 Variable nozzle turbocharger
JP2016525640A (en) * 2013-08-19 2016-08-25 ボーグワーナー インコーポレーテッド Exhaust gas turbocharger
JP2017180462A (en) * 2016-03-28 2017-10-05 株式会社豊田自動織機 Variable nozzle mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020261417A1 (en) * 2019-06-26 2020-12-30
WO2020261417A1 (en) * 2019-06-26 2020-12-30 三菱重工エンジン&ターボチャージャ株式会社 Variable nozzle device and variable capacity-type exhaust turbocharger
JP7155429B2 (en) 2019-06-26 2022-10-18 三菱重工エンジン&ターボチャージャ株式会社 Variable nozzle device and variable capacity exhaust turbocharger

Also Published As

Publication number Publication date
JP2021008819A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
US11460047B2 (en) Throttle mechanism for centrifugal compressor and turbocharger
KR101146641B1 (en) Variable capacity-type exhaust turbo supercharger equipped with variable nozzle mechanism
JP5524010B2 (en) Variable capacity turbine
US6409483B2 (en) Variable-capacity turbine
JP6597689B2 (en) Variable nozzle mechanism
CN210889464U (en) Adjusting mechanism, adjusting component, compressor and supercharging equipment
JP4044392B2 (en) Variable turbocharger
WO2019069678A1 (en) Variable geometry mechanism
JP2013130116A (en) Variable nozzle unit and variable capacity type supercharger
CN113614344A (en) Variable capacity supercharger
EP3225787B1 (en) Turbocharger with variable nozzle mechanism
CN113557354B (en) Variable capacity supercharger
JP4025172B2 (en) Gas turbine equipment
JPH01208501A (en) Variable capacity turbine
WO2023162139A1 (en) Variable nozzle device and variable geometry turbocharger
JP7302738B2 (en) Variable displacement turbocharger
WO2020158406A1 (en) Variable nozzle unit
WO2020261417A1 (en) Variable nozzle device and variable capacity-type exhaust turbocharger
JPS60116830A (en) Driving device of variable nozzle of radial-flow turbine
KR20200042575A (en) Variable geometry turbo charger
JPH0913980A (en) Variable displacement supercharger
CN117529606A (en) Turbine and supercharger
JP2019183797A (en) Variable displacement mechanism
JPS60201006A (en) Variable nozzle of radial turbine
JP2008303829A (en) Variable displacement turbocharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP