WO2019069571A1 - Terminal, base station, transmission method, and reception method - Google Patents

Terminal, base station, transmission method, and reception method Download PDF

Info

Publication number
WO2019069571A1
WO2019069571A1 PCT/JP2018/030936 JP2018030936W WO2019069571A1 WO 2019069571 A1 WO2019069571 A1 WO 2019069571A1 JP 2018030936 W JP2018030936 W JP 2018030936W WO 2019069571 A1 WO2019069571 A1 WO 2019069571A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpc command
transmission power
correction value
terminal
information
Prior art date
Application number
PCT/JP2018/030936
Other languages
French (fr)
Japanese (ja)
Inventor
岩井 敬
智史 高田
翔太郎 眞木
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to US16/643,760 priority Critical patent/US11191030B2/en
Priority to JP2019546562A priority patent/JP7069195B2/en
Publication of WO2019069571A1 publication Critical patent/WO2019069571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • the present disclosure relates to a terminal, a base station, a transmission method, and a reception method.
  • NR New Radio
  • TPC Transmission Power Control
  • UE User Equipment
  • One aspect of the present disclosure contributes to provision of a terminal and a communication method capable of appropriately performing transmission power control.
  • a terminal transmits the uplink channel using the transmission power and a circuit that controls transmission power of the uplink channel using transmission power control information indicating any one of a plurality of candidate values.
  • a transmitter is provided, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
  • a base station is a circuit that generates transmission power control information indicating any one of a plurality of candidate values, which is used to control transmission power of an uplink channel, and transmitted using the transmission power.
  • a receiver for receiving the uplink channel, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
  • a transmission method controls transmission power of an uplink channel using transmission power control information indicating any one of a plurality of candidate values, and transmits the uplink channel using the transmission power.
  • the instruction information for resetting the control value used for the closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
  • a receiving method generates transmission power control information indicating any one of a plurality of candidate values used to control transmission power of an uplink channel, and the uplink transmitted using the transmission power.
  • a channel is received, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
  • transmission power control can be appropriately performed.
  • FIG. 1 shows an example of the TPC command table.
  • FIG. 2 shows an example of the Closed loop correction value reset information.
  • FIG. 3 shows a part of the configuration of the terminal according to the first embodiment.
  • FIG. 4 shows a part of the configuration of the base station according to the first embodiment.
  • FIG. 5 shows the configuration of the terminal according to the first embodiment.
  • FIG. 6 shows the configuration of a base station according to the first embodiment.
  • FIG. 7 shows an operation example of the terminal and base station according to the first embodiment.
  • FIG. 8 shows an example of a TPC command table according to setting example 1 of the first embodiment.
  • FIG. 9 shows an example of a TPC command table according to setting example 2 of the first embodiment.
  • FIG. 10 shows an example of a TPC command table according to the second embodiment.
  • FIG. 11 shows the configuration of a terminal according to the third embodiment.
  • FIG. 12 shows the configuration of a base station according to the third embodiment.
  • FIG. 13 shows an example of switching of the TPC command table according to the third embodiment.
  • FIG. 14 shows an example of a TPC command table after BPL switching according to the third embodiment.
  • FIG. 15 shows the configuration of a terminal according to the fourth embodiment.
  • FIG. 16 shows the configuration of a base station according to the fourth embodiment.
  • FIG. 17 shows an example of the TPC command table according to the fourth embodiment.
  • FIG. 18 shows an example of a TPC command table according to the fourth embodiment.
  • the terminal performs transmission power control of the uplink channel for each CC (Carrier component).
  • Formula (1) shows the definition formula of the transmission power of PUSCH (Physical Uplink Shared Channel) used by LTE (for example, refer nonpatent literature 1).
  • P pusch (i) min ⁇ Pcmax (i), 10 log 10 (M pusch (i)) + P o _ pu s ch + ⁇ ⁇ PL + ⁇ TF (i) + f c (i) ⁇ (1)
  • i indicates subframe number (or slot number)
  • Pcmax (i) maximum transmission of terminal at subframe number i
  • Power [dBm] is shown
  • Po_pusch is previously obtained from a base station (sometimes called “eNB” or “gNB”)
  • the parameter value [dBm] to be set is indicated
  • PL indicates the path loss measured by the terminal [dB]
  • indicates a weighting factor (preset value) indicating the compensation ratio of the path loss
  • the method of calculating the closed loop correction value f c (i) differs depending on the TPC mode. There are “Accumulated mode” and “Absolute mode” in TPC mode, and the application mode is semi-statically set by RRC signaling for each terminal.
  • a correction value ⁇ PUSCH [dB] indicated by a past TPC command (hereinafter sometimes referred to as TPC command information) (hereinafter referred to as “TPC command correction value”
  • TPC command correction value To calculate f c (i).
  • K PUSCH represents the reflection timing of the TPC command correction value.
  • f c (i) is calculated using the TPC command correction value as it is without accumulating the past TPC command correction value, as shown in equation (3).
  • f c (i) ⁇ PUSCH (i-K PUSCH ) (3)
  • TPC Command Correction Value ⁇ TPC command information that indicates PUSCH is included in control information (DCI: Downlink Control Information), and is transmitted from the base station to the terminal using PDCCH (Physical Downlink Control Channel).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the TPC command correction value ⁇ PUSCH, c (also referred to simply as “ ⁇ PUSCH ”) associated with the TPC command information is defined, for example, as shown in FIG. 1 (see Non-Patent Document 1).
  • i indicates the slot number (or mini-slot number)
  • j indicates the open loop parameter number
  • k indicates the RS (Reference Signal) resource number for path loss measurement
  • l indicates the closed loop process Indicates a number.
  • PL (k) indicates the path loss [dB] measured by the terminal using the RS resource number k. That is, the value of path loss changes according to the beam (directivity pattern) applied to the RS resource number k.
  • P o — pu s ((j) and ⁇ (j) are independent parameter values for each open loop parameter number #j.
  • a beam applied to PUSCH a waveform (a cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or a discrete Fourier transform-spread OFDM (DFT)) of PUSCH, an applied numerology (subcarrier interval etc), or
  • CP-OFDM cyclic prefix-orthogonal frequency division multiplexing
  • DFT discrete Fourier transform-spread OFDM
  • different values are set to Po_pusch (j) and ⁇ (j).
  • f c (i, l) is a closed loop correction value of the closed loop process number l.
  • f c (i, l) has an independent value depending on the beam applied to PUSCH, Waveform, Numeric, service type, and the like.
  • the parameters used for PUSCH transmission power calculation change dynamically depending on the beam applied to PUSCH, Waveform, Numeric, service type, and the like.
  • the reset timing of the Closed loop correction value f c (i, l) is indicated dynamically by the base station using DCI Signaling.
  • the optimum value of transmission power does not greatly change, such as beam switching in the same TRP (Transmission and Reception Point, transmission and reception point connected with a base station and an optical fiber).
  • the station does not instruct the terminal to reset the Closed loop correction value f c (i, l).
  • the base station instructs the terminal to reset the Closed loop correction value.
  • FIG. 2 shows a reset flag for Closed loop correction value reset information (DCI) as an example of a method of explicitly notifying reset of the Closed loop correction value f c (i, l).
  • DCI Closed loop correction value reset information
  • Embodiment 1 [Overview of communication system]
  • a communication system according to an embodiment of the present disclosure includes a terminal 100 and a base station 200.
  • FIG. 3 is a block diagram showing a configuration of part of the terminal 100 according to the embodiment of the present disclosure.
  • transmission power control section 105 uses the transmission power control information (TPC command information) indicating any one of a plurality of candidate values to select the transmission power of the uplink channel (for example, PUSCH). Control.
  • the wireless transmission unit 108 transmits the uplink channel at the above transmission power.
  • FIG. 4 is a block diagram showing a configuration of part of the base station 200 according to the embodiment of the present disclosure.
  • scheduling section 205 uses transmission power control information (TPC command information) indicating one of a plurality of candidate values used for transmission power control of the uplink channel (for example, PUSCH).
  • TPC command information transmission power control information
  • the wireless reception unit 202 receives the uplink channel transmitted by the transmission power.
  • instruction information for resetting a control value (Closed loop correction value) used for closed loop control of transmission power is associated with at least one of the plurality of candidate values.
  • FIG. 5 is a block diagram showing a configuration of terminal 100 according to the present embodiment.
  • Terminal 100 transmits PUSCH to base station 200 based on an instruction from base station 200.
  • the terminal 100 includes an antenna 101, a wireless reception unit 102, a demodulation / decoding unit 103, a TPC command control unit 104, a transmission power control unit 105, a data generation unit 106, and an encoding / modulation unit And a wireless transmission unit 108.
  • the wireless reception unit 102 performs reception processing such as down conversion and A / D conversion on the reception signal received via the antenna 101, and outputs the reception signal to the demodulation / decoding unit 103.
  • Demodulation / decoding section 103 demodulates and decodes the received signal input from radio receiving section 102, and based on the decoding result, PUSCH resource information destined for terminal 100 transmitted from base station 200, and transmission power information Extract Demodulation / decoding section 103 outputs the extracted information to transmission power control section 105 and data generation section 106.
  • PUSCH resource information for example, frequency resource information (for example, transmission bandwidth, transmission band position (PRB number or block number etc.), time resource information (for example, slot number for transmitting PUSCH, OFDM symbol number etc.), or , And the PUSCH, etc. are included.
  • the transmission power information includes, for example, parameters used for calculation of PUSCH transmission power shown in equation (4).
  • part of transmission power information may be notified to the terminal 100 as cell common information or semi-static notification information.
  • a part of the transmission power information may be defined in specifications as system common information, for example, and may not be notified from the base station 200 to the terminal 100.
  • the TPC command control unit 104 holds an association (for example, a table (hereinafter, referred to as “TPC command table”) between TPC command information and the TPC command correction value ⁇ PUSCH and outputs the table to the transmission power control unit 105.
  • the TPC command table may be notified from the base station 200 to the terminal 100, or may be defined in specifications. Note that details of the method of setting the TPC command table will be described later.
  • the transmission power control unit 105 calculates the transmission power of the PUSCH based on the PUSCH resource information and the transmission power information input from the demodulation / decoding unit 103. Specifically, the transmission power control unit 105 uses the parameters (Pcmax (i), M pusch (i), P o _ pusch (j), ⁇ (j) used in the transmission power calculation formula (for example, formula (4)). , PL (k), ⁇ TF (i), f c (i, l) etc.
  • the transmission power control unit 105 uses the TPC command correction value ⁇ corresponding to the TPC command information notified this time to the past Closed loop correction value f c (i ⁇ 1, l).
  • a Closed loop correction value f c (i, l) at slot number i is calculated by accumulating PUSCH .
  • the transmission power control unit 105 refers to the TPC command table output from the TPC command control unit 104, and determines the TPC command correction value ⁇ PUSCH corresponding to the TPC command information. Then, transmission power control section 105 outputs information indicating the calculated transmission power of PUSCH to radio transmission section 108.
  • Data generation section 106 generates data to be transmitted by terminal 100 based on the information (for example, MCS instructed from base station 200, information bit size, etc.) input from demodulation / decoding section 103. Data generation section 106 outputs the generated transmission data to encoding / modulation section 107.
  • Encoding / modulation section 107 encodes and modulates the transmission data input from data generation section 106, and outputs the modulated data signal to radio transmission section 108.
  • the wireless transmission unit 108 performs D / A conversion and up-conversion on the signal input from the encoding / modulation unit 107, and the obtained wireless signal is transmitted to the antenna by the transmission power input from the transmission power control unit 105. It transmits to base station 200 from 101.
  • FIG. 6 is a block diagram showing a configuration of base station 200 according to the present embodiment.
  • Base station 200 performs PUSCH scheduling (including transmission power control) for terminal 100.
  • a base station 200 includes an antenna 201, a radio reception unit 202, a demodulation / decoding unit 203, a TPC command control unit 204, a scheduling unit 205, a control information generation unit 206, and an encoding / modulation unit. And a wireless transmission unit 208.
  • the wireless reception unit 202 performs reception processing such as down conversion and A / D conversion on the signal from the terminal 100 received via the antenna 201, and outputs the reception signal to the demodulation / decoding unit 203.
  • the demodulation / decoding unit 203 demodulates and decodes the received signal input from the wireless reception unit 202, and outputs the decoding result (presence or absence of reception error (reception OK or reception NG)) to the scheduling unit 205.
  • the TPC command control unit 204 holds a TPC command table indicating correspondence between TPC command information and TPC command correction value ⁇ PUSCH, and outputs the TPC command table to the scheduling unit 205.
  • the TPC command table held by the TPC command control unit 204 is the same as the table held by the terminal 100 (TPC command control unit 104).
  • the TPC command table may be notified from the base station 200 to the terminal 100, may be defined by specifications, and is uniquely associated between the terminal 100 and the base station 200. The details of the setting method of the TPC command table will be described later.
  • Scheduling section 205 is based on a reference signal (not shown) transmitted by a terminal (including terminal 100) accommodated in base station 200, and transmits to each terminal quality information (eg, received power or received SINR (Signal to Interference and SINR). Estimate the noise ratio). Then, based on the estimated quality information, scheduling section 205 performs scheduling (radio resource allocation, transmission power control, etc.) of the uplink channel including the PUSCH to the accommodating terminal. In addition, when the decoding result input from the demodulation / decoding unit 203 indicates reception NG, the scheduling unit 205 performs PUSCH retransmission control on the corresponding terminal.
  • SINR Signal to Interference and SINR
  • the scheduling unit 205 refers to the TPC command table input from the TPC command control unit 204, and determines (generates) TPC command information based on the difference value between the PUSCH target received power and the actual received power. . Specifically, the scheduling unit 205 selects from the TPC command table the TPC command correction value ⁇ PUSCH closest to the difference value between the target received power of PUSCH and the actual received power, and determines the corresponding TPC command information.
  • the scheduling unit 205 outputs the determined scheduling information (including TPC command information) to the control information generation unit 206.
  • Control information generation section 206 generates a control signal including scheduling information (including TPC command information) for notifying terminal 100 based on an instruction from scheduling section 205, and outputs the control signal to encoding / modulation section 207. .
  • the coding and modulation unit 207 codes and modulates the control signal input from the control information generation unit 206, and outputs the modulated signal to the wireless transmission unit 208.
  • the wireless transmission unit 208 performs transmission processing such as D / A conversion, up conversion, amplification, etc. on the signal input from the encoding / modulation unit 207, and transmits the radio signal obtained by the transmission processing from the antenna 201 to the terminal 100. Send to
  • FIG. 7 is a sequence diagram showing operations of the terminal 100 (FIG. 5) and the base station 200 (FIG. 6).
  • the base station 200 performs transmission power control on the terminal 100, and determines TPC command information used for transmission power control in the terminal 100 (ST101). For example, the base station 200 refers to a TPC command table to be described later, and performs TPC command information (candidate value) corresponding to instruction information for resetting the TPC command correction value ⁇ PUSCH or the Closed loop correction value f c (i, l). Choose Then, base station 200 transmits, to terminal 100, transmission power information including PUSCH resource information and TPC command information determined in ST101 (ST102).
  • the terminal 100 determines the transmission power (for example, refer to Formula (4)) of PUSCH using the transmission power information (TPC command information) notified from the base station 200 in ST102 (ST103). Then, terminal 100 transmits PUSCH to base station 200 based on the PUSCH resource information received in ST 102 and the transmission power determined in ST 103 (ST 104). That is, base station 200 receives, from terminal 100, the PUSCH transmitted with the transmission power based on the TPC command information determined in ST101.
  • TPC command information transmission power information
  • transmission power control using a TPC command is unnecessary at the timing for instructing a reset of the Closed loop correction value f c (i, l). That is, notification of the TPC command correction value ⁇ PUSCH by TPC command information is unnecessary at the timing at which the reset of the Closed loop correction value f c (i, l) is instructed.
  • the TPC command information includes instruction information for resetting the Closed loop correction value f c (i, l). That is, instruction information for resetting the Closed loop correction value f c (i, l) is associated with at least one of the candidate values of the TPC command information. Also, among the candidate value of the TPC command information, Closed loop correction value f c (i, l) to the candidate values other than the candidate value indication information associated Reset is, Closed loop correction value f c (i, The TPC command correction value ⁇ PUSCH for correcting l) is associated with each other.
  • the terminal 100 when the terminal 100 is instructed to reset the Closed loop correction value f c (i, l) by the TPC command information, the terminal 100 resets the Closed loop correction value f c (i, l). On the other hand, when the transmission power control value (TPC command correction value ⁇ PUSCH ) is instructed by the TPC command information, the terminal 100 does not reset the Closed loop correction value f c (i, l).
  • FIG. 8 shows an example of a TPC command table in the case where TPC command information is 2 bits (that is, the same as TPC command information of LTE) according to setting example 1.
  • TPC command table shown in FIG. 8 “1” of the candidate values 0 to 3 of TPC command information is associated with “Reset” of the Closed loop correction value f c (i, l). There is. Further, in the TPC command table shown in FIG. 8, among the candidate values 0 to 3 of the TPC command information, for the candidate values (0, 2, 3) other than “1”, each value of the TPC command correction value ⁇ PUSCH (-1, 1, 3) are associated with each other.
  • the terminal 100 (transmission power control unit 105) resets the Closed loop correction value f c (i, l) when the TPC command information notified from the base station 200 is “1”. On the other hand, when the TPC command information notified from base station 200 is other than “1”, terminal 100 does not reset Closed loop correction value f c (i, l), and performs TPC command correction corresponding to TPC command information.
  • the value ⁇ PUSCH is accumulated in the closed loop correction value f c (i, l) in the past (calculation of equation (2) is performed), and transmission power of PUSCH is calculated (calculation of equation (4) is performed).
  • the closed loop correction value f c (i, l) is reset to the base station without increasing the information amount of the TPC command information as compared to the TPC command information of LTE (for example, see FIG. 1). It is possible to instruct the terminal 100 from 200.
  • FIG. 9 shows an example of the TPC command table when TPC command information is 3 bits according to setting example 2.
  • the 3-bit TPC command information has, for example, the same amount of information as in the case where the Closed loop correction value reset flag information (1 bit) shown in FIG. 2 is added to the TPC command information (2 bits) in LTE shown in FIG. .
  • each value ( ⁇ ⁇ ) of TPC command correction value ⁇ PUSCH 5, -3, -1, 0, 1, 3, 5) are associated with each other.
  • the terminal 100 (transmission power control unit 105) resets the Closed loop correction value f c (i, l) when the TPC command information notified from the base station 200 is “0”. On the other hand, when the TPC command information notified from base station 200 is other than “0”, terminal 100 does not reset Closed loop correction value f c (i, l), and performs TPC command correction corresponding to TPC command information.
  • the value ⁇ PUSCH is accumulated in the closed loop correction value f c (i, l) in the past (calculation of equation (2) is performed), and transmission power of PUSCH is calculated (calculation of equation (4) is performed).
  • TPC command correction value ⁇ PUSCH and Closed using TPC command information Both of the loop correction value f c (i, l) can be instructed to be reset.
  • the TPC command information (2 bits) of LTE shown in FIG. 1 and the Closed loop correction value reset flag information (1 bit) shown in FIG.
  • the TPC command information (3 bits) shown in FIG. 9
  • the number of TPC command correction values ⁇ PUSCH which can be notified increases without increasing the number of bits (3 bits) to be used.
  • the transmission power control performance can be improved by expanding the correction range of the Closed loop correction value f c (i, l) by the TPC command correction value ⁇ PUSCH while suppressing an increase in the overhead of control information, and optimum transmission It is possible to shorten the time to converge on the power.
  • the information instructing reset of Closed loop correction value f c (i, l) is included in the TPC command information notified from base station 200 to terminal 100.
  • base station 200 can efficiently issue a dynamic reset instruction of Closed loop correction value f c (i, l) to terminal 100.
  • a new TPC command correction value can be added in addition to the LTE TPC command information (TPC command correction value) using TPC command information.
  • transmission power control can be performed by appropriately notifying reset of the Closed loop correction value.
  • the terminal and base station according to the present embodiment have the same basic configuration as terminal 100 and base station 200 according to Embodiment 1, and will be described using FIG. 5 and FIG.
  • the present embodiment is different from the first embodiment in the operation (setting of TPC command table) of TPC command control section 104 of terminal 100 and TPC command control section 204 of base station 200.
  • FIG. 10 shows an example of the TPC command table according to the present embodiment.
  • the TPC command table shown in FIG. 10 includes TPC command correction values ⁇ PUSCH in each TPC command mode (absolute mode and accumulated mode). For example, in FIG. 10, each value ( ⁇ 1, 0, 1) of the TPC command correction value ⁇ PUSCH in the Absolute mode is associated with each of the candidate values 0 to 2 of the TPC command information. Further, in FIG. 10, each value (-3, -1, 0, 1, 3) of TPC command correction value ⁇ PUSCH in Accumulated mode is associated with each of candidate values 3 to 7 of TPC command information. ing.
  • the terminal 100 calculates the transmission power of PUSCH based on control information (PUSCH resource information and transmission power information) notified from the base station 200.
  • the terminal 100 obtains a parameter (for example, f c (i, l)) used in the transmission power calculation formula (Formula (2) or Formula (3)) based on the control information as in the first embodiment.
  • the terminal 100 when the TPC command information notified from the base station 200 is any of 3 to 7, the terminal 100 does not reset the Closed loop correction value f c (i, l), but the TPC command.
  • the TPC command correction value [delta] PUSCH corresponding to the information by accumulating the past Closed loop correction value f c (i, l), to calculate a Closed loop correction value f c (i, l) in the slot number i.
  • the terminal 100 resets the closed loop correction value f c (i, l).
  • the terminal 100 uses the TPC command correction value ⁇ PUSCH corresponding to the TPC command information as it is, and uses the slot number.
  • the Closed loop correction value f c (i, l) at i is calculated.
  • the TPC command correction value corresponding to the Accumulated mode and the TPC command correction value corresponding to the Absolute mode are associated with each of the plurality of candidate values of the TPC command information.
  • the instruction information for resetting the Closed loop correction value is associated with a candidate value corresponding to any one of the TPC command correction values in the Absolute mode among a plurality of candidate values of the TPC command information.
  • TPC command correction value ⁇ PUSCH and Closed loop correction using TPC command information Both reset of the value f c (i, l) can be indicated.
  • the reset instruction information for Closed loop correction value f c (i, l) is, Closed loop correction value f c (i, l) in the Accumulated mode reset instruction information of the Absolute Mode It is notified using the same TPC command information as the TPC command correction value.
  • the TPC command correction value in the accumulated mode can be indicated.
  • the TPC command mode (Absolute mode and Accumulated mode) can be switched dynamically using TPC command information.
  • the terminal 100 may switch to the Absolute mode when TPC command information is 0 to 2, and may switch to the Accumulated mode when TPC command information is 3 to 7.
  • TPC command information (2 bits) of LTE shown in FIG. 1 and the Closed loop correction value reset flag information (1 bit) shown in FIG.
  • TPC command information 3 bits shown in FIG. 10
  • notification of a new TPC command correction value ⁇ PUSCH (-3 in the case of FIG. 10) which is not in LTE (FIG. 1) is possible. That is, in FIG. 10, compared with FIG. 1 and FIG. 2, the number of TPC command correction values ⁇ PUSCH that can be notified increases without increasing the number of bits used (3 bits).
  • the transmission power control performance can be improved by expanding the correction range of the Closed loop correction value f c (i, l) by the TPC command correction value ⁇ PUSCH while suppressing an increase in the overhead of control information, and optimum transmission It is possible to shorten the time to converge on the power.
  • the terminal 100 when the terminal 100 is performing transmission power control in the accumulated mode and receives TPC command information corresponding to the reset instruction information, the terminal 100 sets the TPC command information as the TPC command correction value ⁇ PUSCH in the absolute mode . Instead, it may be recognized as a reset instruction of the Closed loop correction value in the Accumulated mode.
  • BPL Beam pair link
  • the path loss estimation error including the beam gain between BPLs or the interference level between BPLs may be significantly different compared to before BPL switching. . Therefore, immediately after BPL switching, transmission power control does not function properly, and a problem arises that the transmission signal does not reach the target SINR (Signal to Interference and Noise Ratio) or interference with other cells becomes large.
  • SINR Signal to Interference and Noise Ratio
  • Non-Patent Document 3 a difference of up to 20 dB is assumed for each beam gain (see, for example, Non-Patent Document 3). Therefore, in the step width of the TPC command correction value similar to LTE, the convergence time for correcting the quality error immediately after the BPL switching becomes long, and the desired signal in the period until the transmission power control value converges to the optimum value. A decrease in power or an increase in interfering power may degrade system performance.
  • a TPC command table having a step width of a TPC command correction value different from the step width of a TPC command correction value used during normal times (a period other than the period immediately after BPL switching) is used.
  • FIG. 11 is a block diagram showing a configuration of terminal 300 according to the present embodiment.
  • the same components as those in Embodiment 1 (FIG. 5) are assigned the same reference numerals and descriptions thereof will be omitted.
  • the addition of the BPL switching determination unit 301 and the operation of the TPC command control unit 302 are different from those of the first embodiment.
  • the BPL switching determination unit 301 uses the beam discrimination information included in the control information input from the demodulation / decoding unit 103 to determine whether or not BPL switching has occurred.
  • the beam discrimination information may be, for example, at least one of an SRI (SRS resource indicator), a CRI (CSI-RS resource indicator), a beam indicator, and the like.
  • SRS resource indicator SRS resource indicator
  • CRI CRI
  • beam indicator CSI-RS resource indicator
  • the beam discrimination information is not limited to the SRI, the CRI, and the beam indicator, and may be a parameter that can determine the presence or absence of BPL switching.
  • the BPL switching determination unit 301 holds the beam discrimination information instructed last time from the base station 400 (described later), and holds the beam discrimination information newly notified from the base station 400, and It may be determined that BPL switching has occurred when different values are indicated by comparison with the beam discrimination information being performed.
  • the method of determining whether or not BPL switching has occurred is not limited to the method using the beam discrimination information, but may be a method using other information such as a transmission power parameter set. Also, the beam discrimination information does not have to be notified by downlink control information (for example, DCI). The partial information of the beam discrimination information may be notified to the terminal 300 as cell common information or semi-static notification information.
  • the BPL switching determination unit 301 outputs, to the TPC command control unit 302, BPL switching information indicating whether or not BPL switching has occurred.
  • the TPC command control unit 302 uses, as a TPC command table indicating correspondence between TPC command information and a TPC command correction value ⁇ PUSCH , a TPC command table (called “post BPL switching TPC command table”) used immediately after BPL switching, , TPL command table (referred to as "normal time TPC command table”) used other than immediately after BPL switching is held.
  • a TPC command table (called “post BPL switching TPC command table”) used immediately after BPL switching
  • TPL command table referred to as "normal time TPC command table” used other than immediately after BPL switching is held.
  • each of a plurality of candidate values of TPC command information is associated with two control values, a TPC command correction value used at normal time and a TPC command correction value used after BPL switching. .
  • the TPC command control unit 302 When the BPL switching information input from the BPL switching determination unit 301 indicates that the BPL switching has occurred, the TPC command control unit 302 outputs the information of the TPC command table after BPL switching to the transmission power control unit 105. On the other hand, when it is indicated that BPL switching is not occurring in the BPL switching information input from BPL switching determination unit 301, TPC command control unit 302 outputs the information of the TPC command table under normal conditions to transmission power control unit 105. Do.
  • FIG. 12 is a block diagram showing a configuration of base station 400 according to the present embodiment.
  • the same components as in the first embodiment (FIG. 6) will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the addition of the BPL control unit 401 and the operation of the TPC command control unit 402 are different from those of the first embodiment.
  • the BPL control unit 401 measures the quality information of each terminal based on the reference signal (not shown) transmitted from the accommodation terminal, which is input from the demodulation / decoding unit 203, and BPL switching is performed based on the quality information. Determine if it is necessary. For example, the BPL control unit 401 determines that BPL switching is necessary when the quality information is inferior, and determines that BPL switching is not necessary when the quality information is satisfactory. The BPL control unit 401 outputs, to the TPC command control unit 402, BPL switching information indicating whether or not BPL switching is necessary.
  • the TPC command control unit 402 Similar to the terminal 300 (TPC command control unit 302), the TPC command control unit 402 holds a TPC command table after BPL switching and a normal time TPC command table. When the BPL switching information input from the BPL control unit 401 indicates that the BPL switching is necessary, the TPC command control unit 402 outputs information of the TPC command table after BPL switching to the scheduling unit 205. On the other hand, when the BPL switching information input from the BPL control unit 401 indicates that the BPL switching is unnecessary, the TPC command control unit 402 outputs the information of the normal TPC command table to the scheduling unit 205.
  • transmission power control (a method of setting a TPC command table) in terminal 300 and base station 400 will be described in detail.
  • terminal 300 and base station 400 count the number of elapsed slots (or elapsed time) from the timing when BPL switching occurs. It is determined whether the number of elapsed slots exceeds a threshold X. Then, the terminal 300 and the base station 400 switch the TPC command table to be used according to the determination result. Specifically, when the number of elapsed slots is within the threshold X, the terminal 300 and the base station 400 use the TPC command table after BPL switching (for example, see FIG. 14) and the number of elapsed slots is greater than the threshold X , Normal use TPC command table (see, for example, FIG. 9).
  • the threshold value X may be defined in a specification, or may be notified from the base station 400 to the terminal 300 by higher layer signaling or the like. Further, the elapsed time is not limited to the number of slots but may be the number of transmissions of PUSCH or the like.
  • the range of the TPC command correction value ⁇ PUSCH notified by TPC command information (0 to 7) in the normal TPC command table shown in FIG. 9 is ⁇ 5 to 5 [dB]
  • FIG. In the TPC command table after BPL switching shown in, the range of the TPC command correction value ⁇ PUSCH notified by the TPC command information (0 to 7) is ⁇ 7 to 7 [dB].
  • TPC command correction value used at normal time and after BPL switching whose step width is wider than TPC command correction value used at normal time for every candidate value of (1 to 7 in FIGS. 9 and 14) TPC command correction values are associated with each other. Further, the step width (see FIG. 14) of the TPC command correction value used after the BPL switching is set wider than the step width of the TPC command correction value used at the normal time.
  • the terminal 300 and the base station 400 immediately after BPL switching, transmission power control using the TPC command correction value ⁇ PUSCH with a wider step width than in normal time is performed. Therefore, the terminal 300 and the base station 400 can increase the step width for correcting the quality error immediately after the BPL switching in which there is a high possibility that the path loss estimation error including the beam gain between the BPLs or the interference level between the BPLs is largely different. The time until the transmission power control value converges to the optimum value can be shortened.
  • Embodiment 4 In this embodiment, as in the third embodiment, a method of setting a TPC command table in consideration of beamforming applied to NR will be described.
  • the applicable beamforming control differs depending on the terminal depending on the capability (antenna configuration, processing capability) of the terminal.
  • a terminal with low capability for beam control for example, a terminal with a small number of antennas
  • a terminal with high capability for beam control for example, a terminal with a large number of antennas
  • the beam gain fluctuation due to the movement of the terminal or the influence of an obstacle around the terminal differs depending on the beam width set for the terminal. Specifically, as the beam width is smaller, the beam gain fluctuation may increase.
  • FIG. 15 is a block diagram showing a configuration of terminal 500 according to the present embodiment.
  • the same components as those in Embodiment 1 (FIG. 5) are assigned the same reference numerals and descriptions thereof will be omitted.
  • the addition of the UE capability setting unit 501 and the operation of the TPC command control unit 502 are different from those of the first embodiment.
  • the UE capability setting unit 501 holds UE capability information defined in the specification according to the antenna configuration, processing capability, and the like of the terminal 500.
  • the UE capability setting unit 501 outputs UE capability information to the TPC command control unit 502.
  • the TPC command control unit 502 associates the TPC command information with the TPC command correction value ⁇ PUSCH based on UE capability information (for example, capability information (for example, beam width information related to beam control)) input from the UE capability setting unit 501. Switch the TPC command table showing
  • FIG. 16 is a block diagram showing a configuration of base station 600 according to the present embodiment.
  • the same components as those in Embodiment 1 (FIG. 6) are assigned the same reference numerals and descriptions thereof will be omitted.
  • the addition of the UE capability setting unit 601 and the operation of the TPC command control unit 602 are different from those of the first embodiment.
  • the UE capability setting unit 601 outputs, to the TPC command control unit 602, UE capability information notified from the accommodation terminal, which is input from the demodulation / decoding unit 203.
  • the TPC command control unit 602 switches the TPC command table used in transmission power control for the terminal 500 based on the UE capability information input from the UE capability setting unit 601. .
  • transmission power control (a method of setting the TPC command table) in terminal 500 and base station 600 will be described in detail.
  • FIG. 17 shows an example of a TPC command table set for a terminal 500 that performs beamforming control with a narrow beam width
  • FIG. 18 is a TPC command table set for a terminal 500 that performs beamforming control with a wide beam width. An example is shown.
  • the TPC command table shown in FIG. 17 While the range of the TPC command correction value ⁇ PUSCH notified by TPC command information (0 to 7) in the TPC command table shown in FIG. 17 is -6 to 6 [dB], the TPC command table shown in FIG. In this case, the range of the TPC command correction value ⁇ PUSCH notified by the TPC command information (0 to 7) is ⁇ 3 to 3 [dB].
  • the TPC command correction value set for the terminal 500 using a narrow beam width and the TPC command correction value set for the terminal 500 using a wide beam width for each value (1 to 7 in FIGS. 17 and 18) are associated.
  • the step width of the TPC command correction value (FIG. 17) set for the terminal 500 using a narrow beam width is set wider than the step width of the TPC command correction value set for the terminal 500 using a wide beam width. It is done.
  • terminal 500 and base station 600 transmit power control using TPC command correction value ⁇ PUSCH with a wider step width than terminal 500 with a narrower beam width than with terminal 500 with a narrower beam width. To be done. Therefore, for the terminal 500 and the base station 600, the transmission power control value converges to the optimum value by widening the step width for correcting the quality error with respect to the terminal 500 where the beam gain fluctuation is likely to be large. Time can be shortened.
  • terminal 500 and base station 600 transmission power control using TPC command correction value ⁇ PUSCH with a narrower step width than terminal 500 with a wider beam width is performed for terminal 500 with a wider beam width. It will be. That is, the terminal 500 and the base station 600 prevent the step 500 for correcting the quality error from unnecessarily widening the terminal 500 with relatively small beam gain fluctuation, and make the transmission power control value accurate to the optimum value. It can be set well.
  • terminal 500 and base station 600 can appropriately select the TPC command correction value ⁇ PUSCH and perform transmission power control based on the UE capability information for each terminal 500.
  • transmission power control can be appropriately performed for each terminal 500 having different capabilities relating to beam control, and system performance is degraded due to a decrease in desired signal power or an increase in interference power. You can prevent.
  • the information used as the switching reference of the TPC command table is not limited to the beam width, and may be information related to the beam width.
  • the TPC command table may be switched according to the number of beams set in the terminal 500. It is considered that the beam width becomes narrower as the number of beams set to the terminal 500 is larger.
  • the TPC command table may be switched according to the reference signal type used for path loss calculation used for transmission power calculation. It is considered that the applied beam width of the reference signal CSI-RS is smaller than that of the SS (Synchronization Signal) block.
  • the TPC command table may be switched according to the transmission carrier frequency. For example, in the millimeter wave band where the carrier frequency is 24 GHz or more, it is considered that the number of antennas is larger and the applied beam width is narrower than the carrier frequency less than 24 GHz.
  • the same effect as that of the present embodiment can be obtained.
  • beam may be defined as follows. (1) Transmission directivity pattern of terminals 100, 300, 500 (including analog beam forming) (2) Reception directivity patterns of base stations 200, 400, 600 (including analog beamforming) (3) Combination of transmission directivity pattern of terminals 100, 300, 500 and reception directivity pattern of base stations 200, 400, 600 (BPL) (4) Precoding Matrix Indicator (PMI) (5) Codebook number
  • transmission power control of PUSCH has been described in the above embodiment, the target of transmission power control is not limited to PUSCH, and the present disclosure can be applied to transmission power control of an uplink channel using a closed loop correction value.
  • the present disclosure can be applied to transmission power control for SRS or PUCCH instead of PUSCH, and similar effects can be obtained.
  • the TPC command tables shown in FIGS. 8-10, 14, 17, and 18 are an example, and the number of candidate values of TPC command information (the number of bits), or TPC command correction associated with TPC command information.
  • the values are not limited to the values shown in FIG. 8-10, FIG. 14, FIG. 17, and FIG.
  • an indirect reset notification may be combined according to reconfiguration of transmission power control parameters similar to LTE. That is, when the terminal includes instruction information for resetting the Closed loop correction value in the TPC command information included in the DCI, and when the transmission power control parameter is re-set from the base station by upper layer notification. This resets the Closed loop correction value. As a result, it is possible to reduce the overhead of control information because it is not necessary to notify reset by DCI after setting parameters.
  • Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or totally It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be configured from individual chips, or may be configured from one chip so as to include some or all of the functional blocks.
  • the LSI may have data inputs and outputs.
  • An LSI may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry, general purpose processors, or dedicated processors is also possible.
  • an FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure connection and setting of circuit cells in the LSI may be used.
  • the present disclosure may be implemented as digital processing or analog processing.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. The application of biotechnology etc. may be possible.
  • a terminal includes: a circuit that controls transmission power of an uplink channel using transmission power control information indicating any one of a plurality of candidate values; and a transmitter that transmits the uplink channel using the transmission power.
  • the instruction information for resetting the control value used for the closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
  • candidate values other than the candidate value associated with the instruction information are associated with correction values for correcting the control value.
  • a first correction value and a second correction value having a step width wider than the first correction value are associated for each candidate value other than the candidate value associated with the instruction information.
  • the first correction value is used within a predetermined period after switching of a beam set to the terminal.
  • the first correction value is used when the beam width set to the terminal is narrow
  • the second correction value is used when the beam width set to the terminal is wide Be done.
  • a correction value for correcting the control value is associated with each of the plurality of candidate values, and the correction value calculates the control value by accumulating past values of the correction value.
  • the instruction information is associated with the candidate value corresponding to any one of the second correction values.
  • the instruction information is associated with the candidate value corresponding to the value with the smallest absolute value among the second correction values.
  • the base station of the present disclosure uses a circuit for generating transmission power control information indicating any one of a plurality of candidate values, which is used to control the transmission power of the uplink channel, and the uplink channel transmitted by the transmission power.
  • a receiver is provided, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
  • the transmission method of the present disclosure controls transmission power of an uplink channel using transmission power control information indicating any one of a plurality of candidate values, transmits the uplink channel with the transmission power, and transmits the plurality of candidates.
  • Instruction information for resetting a control value used for closed loop control of the transmission power is associated with at least one of the values.
  • the reception method of the present disclosure generates transmission power control information indicating any one of a plurality of candidate values used to control transmission power of an uplink channel, and receives the uplink channel transmitted by the transmission power.
  • the instruction information for resetting the control value used for the closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
  • One aspect of the present disclosure is useful for a mobile communication system.

Abstract

Provided is a terminal wherein a transmission power control unit controls the transmission power for an uplink channel (PUSCH) using transmission power control information (TPC command) which indicates any one of a plurality of candidate values. A wireless transmission unit transmits the uplink channel at such transmission power. Instruction information is associated with at least one of the plurality of candidate values, such information being for resetting a control value (Closed loop correction value) used for closed loop control of the transmission power.

Description

端末、基地局、送信方法及び受信方法Terminal, base station, transmission method and reception method
 本開示は、端末、基地局、送信方法及び受信方法に関する。 The present disclosure relates to a terminal, a base station, a transmission method, and a reception method.
 5Gの標準化において、LTE/LTE-Advancedとは必ずしも後方互換性を持たない新しい無線アクセス技術(NR:New Radio)が3GPPで議論されている。 In 5G standardization, a new radio access technology (NR: New Radio) not necessarily backward compatible with LTE / LTE-Advanced is being discussed in 3GPP.
 NR向けの端末(「UE(User Equipment)」と呼ぶこともある)の送信電力制御(TPC:Transmission Power Control)方法の議論では、LTEの送信電力制御方法(例えば、非特許文献1を参照)をベースとしてNR向けのビーム送受信(指向性送受信)等を考慮した機能拡張が検討されている。 In the discussion of the transmission power control (TPC: Transmission Power Control) method of a terminal for NR (sometimes called "UE (User Equipment)"), the transmission power control method of LTE (see, for example, Non-Patent Document 1) The function extension considering the beam transmission / reception (directional transmission / reception) for NR is considered on the basis of.
 しかしながら、NRにおける送信電力制御の方法については十分に検討がなされていない。 However, the method of transmission power control in NR has not been sufficiently studied.
 本開示の一態様は、適切に送信電力制御を行うことができる端末及び通信方法の提供に資する。 One aspect of the present disclosure contributes to provision of a terminal and a communication method capable of appropriately performing transmission power control.
 本開示の一態様に係る端末は、複数の候補値のうち何れか1つを示す送信電力制御情報を用いて上りチャネルの送信電力を制御する回路と、前記送信電力で前記上りチャネルを送信する送信機と、を具備し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 A terminal according to an aspect of the present disclosure transmits the uplink channel using the transmission power and a circuit that controls transmission power of the uplink channel using transmission power control information indicating any one of a plurality of candidate values. A transmitter is provided, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
 本開示の一態様に係る基地局は、上りチャネルの送信電力の制御に用いる、複数の候補値のうち何れか1つを示す送信電力制御情報を生成する回路と、前記送信電力で送信された前記上りチャネルを受信する受信機と、を具備し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 A base station according to an aspect of the present disclosure is a circuit that generates transmission power control information indicating any one of a plurality of candidate values, which is used to control transmission power of an uplink channel, and transmitted using the transmission power. A receiver for receiving the uplink channel, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
 本開示の一態様に係る送信方法は、複数の候補値のうち何れか1つを示す送信電力制御情報を用いて上りチャネルの送信電力を制御し、前記送信電力で前記上りチャネルを送信し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 A transmission method according to an aspect of the present disclosure controls transmission power of an uplink channel using transmission power control information indicating any one of a plurality of candidate values, and transmits the uplink channel using the transmission power. The instruction information for resetting the control value used for the closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
 本開示の一態様に係る受信方法は、上りチャネルの送信電力の制御に用いる、複数の候補値のうち何れか1つを示す送信電力制御情報を生成し、前記送信電力で送信された前記上りチャネルを受信し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 A receiving method according to an aspect of the present disclosure generates transmission power control information indicating any one of a plurality of candidate values used to control transmission power of an uplink channel, and the uplink transmitted using the transmission power. A channel is received, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized by a system, an apparatus, a method, an integrated circuit, a computer program, or a recording medium, and the system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium It may be realized by any combination of
 本開示の一態様によれば、適切に送信電力制御を行うことができる。 According to one aspect of the present disclosure, transmission power control can be appropriately performed.
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 Further advantages and effects of one aspect of the present disclosure are apparent from the specification and the drawings. Such advantages and / or effects may be provided by some embodiments and features described in the specification and drawings, respectively, but need to be all provided to obtain one or more identical features. There is no.
図1は、TPCコマンドテーブルの一例を示す。FIG. 1 shows an example of the TPC command table. 図2は、Closed loop補正値リセット情報の一例を示す。FIG. 2 shows an example of the Closed loop correction value reset information. 図3は、実施の形態1に係る端末の一部の構成を示す。FIG. 3 shows a part of the configuration of the terminal according to the first embodiment. 図4は、実施の形態1に係る基地局の一部の構成を示す。FIG. 4 shows a part of the configuration of the base station according to the first embodiment. 図5は、実施の形態1に係る端末の構成を示す。FIG. 5 shows the configuration of the terminal according to the first embodiment. 図6は、実施の形態1に係る基地局の構成を示す。FIG. 6 shows the configuration of a base station according to the first embodiment. 図7は、実施の形態1に係る端末及び基地局の動作例を示す。FIG. 7 shows an operation example of the terminal and base station according to the first embodiment. 図8は、実施の形態1の設定例1に係るTPCコマンドテーブルの一例を示す。FIG. 8 shows an example of a TPC command table according to setting example 1 of the first embodiment. 図9は、実施の形態1の設定例2に係るTPCコマンドテーブルの一例を示す。FIG. 9 shows an example of a TPC command table according to setting example 2 of the first embodiment. 図10は、実施の形態2に係るTPCコマンドテーブルの一例を示す。FIG. 10 shows an example of a TPC command table according to the second embodiment. 図11は、実施の形態3に係る端末の構成を示す。FIG. 11 shows the configuration of a terminal according to the third embodiment. 図12は、実施の形態3に係る基地局の構成を示す。FIG. 12 shows the configuration of a base station according to the third embodiment. 図13は、実施の形態3に係るTPCコマンドテーブルの切替の一例を示す。FIG. 13 shows an example of switching of the TPC command table according to the third embodiment. 図14は、実施の形態3に係るBPL切替後TPCコマンドテーブルの一例を示す。FIG. 14 shows an example of a TPC command table after BPL switching according to the third embodiment. 図15は、実施の形態4に係る端末の構成を示す。FIG. 15 shows the configuration of a terminal according to the fourth embodiment. 図16は、実施の形態4に係る基地局の構成を示す。FIG. 16 shows the configuration of a base station according to the fourth embodiment. 図17は、実施の形態4に係るTPCコマンドテーブルの一例を示す。FIG. 17 shows an example of the TPC command table according to the fourth embodiment. 図18は、実施の形態4に係るTPCコマンドテーブルの一例を示す。FIG. 18 shows an example of a TPC command table according to the fourth embodiment.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
 LTEでは、端末は、CC(Carrier component)毎に上りチャネルの送信電力制御を行う。式(1)は、LTEで用いられるPUSCH(Physical Uplink Shared Channel)の送信電力の定義式を示す(例えば、非特許文献1を参照)。
 Ppusch(i) = min{Pcmax(i), 10log10 (Mpusch(i))
            + Po_pusch +α・PL +ΔTF(i)+ fc(i) }   (1)
In LTE, the terminal performs transmission power control of the uplink channel for each CC (Carrier component). Formula (1) shows the definition formula of the transmission power of PUSCH (Physical Uplink Shared Channel) used by LTE (for example, refer nonpatent literature 1).
P pusch (i) = min {Pcmax (i), 10 log 10 (M pusch (i))
+ P o _ pu s ch + α · PL + Δ TF (i) + f c (i)} (1)
 式(1)において、iはsubframe番号(又はslot番号)を示し、PPUSCH(i)はsubframe番号=iにおけるPUSCHの送信電力を示し、Pcmax(i)はsubframe番号=iにおける端末の最大送信電力[dBm]を示し、Mpusch(i)はsubframe番号=iにおけるPUSCHの送信帯域幅[PRB]を示し、Po_puschは基地局(「eNB」又は「gNB」と呼ぶこともある)から予め設定されるパラメータ値[dBm]を示し、PLは端末が測定したパスロス(Path Loss)[dB]を示し、αはパスロスの補償割合を示す重み係数(予め設定される値)を示し、ΔTF(i)はsubframe番号=iにおける送信するデータのMCS(Modulation and Coding Scheme)に依存したオフセット[dB]を示し、fc(i)はsubframe番号=iにおけるClosed loop補正値を示す。 In equation (1), i indicates subframe number (or slot number), P PUSCH (i) indicates PUSCH transmission power at subframe number = i, Pcmax (i) maximum transmission of terminal at subframe number = i Power [dBm] is shown, M pusch (i) is PUSCH transmission bandwidth [PRB] at subframe number = i, and Po_pusch is previously obtained from a base station (sometimes called “eNB” or “gNB”) The parameter value [dBm] to be set is indicated, PL indicates the path loss measured by the terminal [dB], and α indicates a weighting factor (preset value) indicating the compensation ratio of the path loss, and Δ TF (i) indicates an offset [dB] depending on MCS (Modulation and Coding Scheme) of data to be transmitted in subframe number = i, and f c (i) indicates a closed loop correction value in subframe number = i.
 ここで、Closed loop補正値fc(i)の算出方法はTPCモードによって異なる。TPCモードには、「Accumulatedモード」及び「Absoluteモード」があり、端末毎に、RRC signalingによって準静的に適用モードが設定される。 Here, the method of calculating the closed loop correction value f c (i) differs depending on the TPC mode. There are "Accumulated mode" and "Absolute mode" in TPC mode, and the application mode is semi-statically set by RRC signaling for each terminal.
 Accumulatedモードは、式(2)に示すように、過去のTPCコマンド(以下では、TPCコマンド情報と呼ぶこともある)で指示された補正値δPUSCH [dB](以降、「TPCコマンド補正値」と呼ぶ)を累積してfc(i)を算出する。なお、式(2)においてKPUSCHはTPCコマンド補正値の反映タイミングを示す。
 f(i) = fc (i - 1) + δPUSCH( i - KPUSCH)   (2)
In the Accumulated mode, as shown in equation (2), a correction value δ PUSCH [dB] indicated by a past TPC command (hereinafter sometimes referred to as TPC command information) (hereinafter referred to as “TPC command correction value” To calculate f c (i). In Equation (2), K PUSCH represents the reflection timing of the TPC command correction value.
f c (i) = f c (i-1) + δ PUSCH (i-K PUSCH ) (2)
 Absoluteモードは、式(3)に示すように、過去のTPCコマンド補正値を累積せずにTPCコマンド補正値をそのまま使用してfc(i)を算出する。
 f(i) =δPUSCH( i - KPUSCH)   (3)
In the Absolute mode, f c (i) is calculated using the TPC command correction value as it is without accumulating the past TPC command correction value, as shown in equation (3).
f c (i) = δ PUSCH (i-K PUSCH ) (3)
 TPCコマンド補正値δPUSCHを指示するTPCコマンド情報は、制御情報(DCI:Downlink Control Information)に含まれ、PDCCH(Physical Downlink Control Channel)を用いて基地局から端末へ送信される。TPCコマンド情報に対応付けられるTPCコマンド補正値δPUSCH,c(単に「δPUSCH」と表すこともある)は、例えば、図1に示すように定義される(非特許文献1参照)。 TPC Command Correction Value δ TPC command information that indicates PUSCH is included in control information (DCI: Downlink Control Information), and is transmitted from the base station to the terminal using PDCCH (Physical Downlink Control Channel). The TPC command correction value δ PUSCH, c (also referred to simply as “δ PUSCH ”) associated with the TPC command information is defined, for example, as shown in FIG. 1 (see Non-Patent Document 1).
 また、LTEでは、Accumulatedモード時に式(1)に示すパラメータPo_puschが再設定される場合に、Closed loop補正値がリセットされる(fc(i) = 0とする)。つまり、LTEでは、パラメータの再設定に応じた間接的なリセット通知が規定されている。 Further, in LTE, when the parameter Po_pusch shown in the equation (1) is reset in the accumulated mode, the closed loop correction value is reset (set f c (i) = 0). That is, in LTE, an indirect reset notification according to parameter reconfiguration is defined.
 一方、NRでは、式(4)に示すPUSCHの送信電力式が検討されている(例えば、非特許文献2を参照)。
 Ppusch(i) = min{Pcmax(i), 10log10 (Mpusch(i)) + Po_pusch(j)
              +α(j)・PL(k) +ΔTF(i)+ fc(i, l) }   (4)
On the other hand, in NR, a transmission power equation of PUSCH shown in equation (4) is studied (see, for example, non-patent document 2).
P pusch (i) = min {Pcmax (i), 10 log 10 (M pusch (i)) + P o _ pusch (j)
+ α (j) · PL (k) + Δ TF (i) + f c (i, l)} (4)
 式(4)において、iはslot番号(又はmini-slot番号)を示し、jはopen loopパラメータ番号を示し、kはパスロス測定用のRS(Reference Signal)リソース番号を示し、lはclosed loopプロセス番号を示す。 In equation (4), i indicates the slot number (or mini-slot number), j indicates the open loop parameter number, k indicates the RS (Reference Signal) resource number for path loss measurement, and l indicates the closed loop process Indicates a number.
 また、PL(k)は、RSリソース番号kを用いて端末が測定したパスロス[dB]を示す。すなわち、RSリソース番号kに適用されるビーム(指向性パターン)に応じてパスロスの値が変わる。 Also, PL (k) indicates the path loss [dB] measured by the terminal using the RS resource number k. That is, the value of path loss changes according to the beam (directivity pattern) applied to the RS resource number k.
 また、Po_pusch(j)及びα(j)は、open loopパラメータ番号#j毎に独立したパラメータ値である。例えば、PUSCHに適用するビーム、PUSCHのWaveform (CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)又はDFT-S-OFDM(Descrete Fourier Transform - Spread OFDM))、適用するNumerology(サブキャリ間隔等)、又は、サービス種別(eMBB(enhamced Mobile Broadband)、URLLC(Ultra-Reliable and Low Latency Communications)等)等によって、Po_pusch(j)及びα(j)には異なる値が設定される。 Also, P o — pu s ((j) and α (j) are independent parameter values for each open loop parameter number #j. For example, a beam applied to PUSCH, a waveform (a cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or a discrete Fourier transform-spread OFDM (DFT)) of PUSCH, an applied numerology (subcarrier interval etc), or Depending on the service type (eMBB (Enhamced Mobile Broadband), URLLC (Ultra-Reliable and Low Latency Communications), etc.), different values are set to Po_pusch (j) and α (j).
 また、fc(i, l)は、closed loopプロセス番号lのClosed loop補正値である。例えば、PUSCHに適用するビーム、Waveform、Numerology、サービス種別等によって、fc(i, l)は独立した値を有する。 Further, f c (i, l) is a closed loop correction value of the closed loop process number l. For example, f c (i, l) has an independent value depending on the beam applied to PUSCH, Waveform, Numeric, service type, and the like.
 上記のように、NRでは、PUSCHに適用するビーム、Waveform、Numerology、サービス種別等によって、PUSCHの送信電力算出に用いるパラメータが動的に変わる。 As described above, in NR, the parameters used for PUSCH transmission power calculation change dynamically depending on the beam applied to PUSCH, Waveform, Numeric, service type, and the like.
 このようなNRのPUSCHの送信電力制御においては、LTEのPUSCH送信電力制御と同様に、PUSCHのビーム、Waveform等に伴うパラメータの変更に応じてClosed loop補正値fc(i, l)をリセットする方法(つまり、fc(i, l) = 0にする方法)では効率が悪く、性能劣化を招くことが懸念される。また、Closed loop補正値fc(i, l)のリセット後に送信電力制御値が最適値に収束するまでの期間は、所望信号電力の低下又は与干渉電力の増加により、システム性能が劣化する可能性がある。 In such PU PUSCH transmission power control, the closed loop correction value f c (i, l) is reset according to the change of parameters associated with the PUSCH beam, waveform, etc., similarly to the PUSCH transmission power control of LTE. It is feared that the efficiency of the method (ie, the method of setting f c (i, l) = 0) is poor and performance degradation may occur. Also, during the period until the transmission power control value converges to the optimum value after resetting the Closed loop correction value f c (i, l), the system performance may be degraded due to a decrease in desired signal power or an increase in interference power. There is sex.
 このため、NRでは、Closed loop補正値fc(i, l)の明示的なリセット通知方法について検討する必要がある。 Therefore, in NR, it is necessary to consider an explicit reset notification method of the Closed loop correction value f c (i, l).
 例えば、Closed loop補正値fc(i, l)のリセットタイミングは、基地局によってDCI Signalingを用いて動的に指示することが考えられる。また、例えば、同一のTRP(Transmission and Reception Point、基地局と光ファイバなどで接続される送受信ポイント)内のビーム切替のように送信電力の最適値が大きく変わらないと想定される環境では、基地局はClosed loop補正値fc(i, l)のリセットを端末に指示しない。一方、異なるTRP間のビーム切替のように送信電力値の最適値が大きく変わる可能性がある環境では、基地局はClosed loop補正値のリセットを端末に指示する。 For example, it is conceivable that the reset timing of the Closed loop correction value f c (i, l) is indicated dynamically by the base station using DCI Signaling. Also, for example, in an environment where it is assumed that the optimum value of transmission power does not greatly change, such as beam switching in the same TRP (Transmission and Reception Point, transmission and reception point connected with a base station and an optical fiber). The station does not instruct the terminal to reset the Closed loop correction value f c (i, l). On the other hand, in an environment where there is a possibility that the optimum value of the transmission power value may greatly change, such as beam switching between different TRPs, the base station instructs the terminal to reset the Closed loop correction value.
 図2は、Closed loop補正値fc(i, l)のリセットを明示的に通知する方法の一例として、Closed loop補正値リセット情報(DCI)に対するリセットフラグを示す。しかしながら、図2に示すように、Closed loop補正値のリセットフラグを新たに追加すると、単純にDCIの情報量が1bit増加し、オーバーヘッドが増加してしまう。 FIG. 2 shows a reset flag for Closed loop correction value reset information (DCI) as an example of a method of explicitly notifying reset of the Closed loop correction value f c (i, l). However, as shown in FIG. 2, when the closed loop correction value reset flag is newly added, the amount of information of DCI is simply increased by 1 bit, and the overhead is increased.
 このように、NRにおけるClosed loop補正値の明示的なリセット通知方法については十分に検討されていない。そこで、本開示の一態様では、Closed loop補正値のリセットを適切に通知する方法について説明する。 Thus, the explicit reset notification method of the Closed loop correction value in NR has not been sufficiently studied. Thus, in one aspect of the present disclosure, a method for appropriately notifying reset of a Closed loop correction value will be described.
 (実施の形態1)
 [通信システムの概要]
 本開示の一実施の形態に係る通信システムは、端末100及び基地局200を備える。
Embodiment 1
[Overview of communication system]
A communication system according to an embodiment of the present disclosure includes a terminal 100 and a base station 200.
 図3は本開示の実施の形態に係る端末100の一部の構成を示すブロック図である。図3に示す端末100において、送信電力制御部105は、複数の候補値のうち何れか1つを示す送信電力制御情報(TPCコマンド情報)を用いて上りチャネル(例えば、PUSCH)の送信電力を制御する。無線送信部108は、上記送信電力で上りチャネルを送信する。 FIG. 3 is a block diagram showing a configuration of part of the terminal 100 according to the embodiment of the present disclosure. In terminal 100 shown in FIG. 3, transmission power control section 105 uses the transmission power control information (TPC command information) indicating any one of a plurality of candidate values to select the transmission power of the uplink channel (for example, PUSCH). Control. The wireless transmission unit 108 transmits the uplink channel at the above transmission power.
 図4は本開示の実施の形態に係る基地局200の一部の構成を示すブロック図である。図4に示す基地局200において、スケジューリング部205は、上りチャネル(例えば、PUSCH)の送信電力制御に用いる、複数の候補値のうち何れか1つを示す送信電力制御情報(TPCコマンド情報)を生成する。無線受信部202は、上記送信電力で送信された上りチャネルを受信する。 FIG. 4 is a block diagram showing a configuration of part of the base station 200 according to the embodiment of the present disclosure. In base station 200 shown in FIG. 4, scheduling section 205 uses transmission power control information (TPC command information) indicating one of a plurality of candidate values used for transmission power control of the uplink channel (for example, PUSCH). Generate The wireless reception unit 202 receives the uplink channel transmitted by the transmission power.
 ここで、上記複数の候補値のうち少なくとも1つには、送信電力の閉ループ制御(Closed loop制御)に用いる制御値(Closed loop補正値)をリセットする指示情報が対応付けられる。 Here, instruction information for resetting a control value (Closed loop correction value) used for closed loop control of transmission power is associated with at least one of the plurality of candidate values.
 [端末の構成]
 図5は、本実施の形態に係る端末100の構成を示すブロック図である。端末100は、基地局200の指示に基づいてPUSCHを基地局200へ送信する。
[Terminal configuration]
FIG. 5 is a block diagram showing a configuration of terminal 100 according to the present embodiment. Terminal 100 transmits PUSCH to base station 200 based on an instruction from base station 200.
 図5において、端末100は、アンテナ101と、無線受信部102と、復調・復号部103と、TPCコマンド制御部104と、送信電力制御部105と、データ生成部106と、符号化・変調部107と、無線送信部108と、を有する。 In FIG. 5, the terminal 100 includes an antenna 101, a wireless reception unit 102, a demodulation / decoding unit 103, a TPC command control unit 104, a transmission power control unit 105, a data generation unit 106, and an encoding / modulation unit And a wireless transmission unit 108.
 無線受信部102は、アンテナ101を介して受信した受信信号に対して、ダウンコンバート、A/D変換等の受信処理を施し、受信信号を復調・復号部103へ出力する。 The wireless reception unit 102 performs reception processing such as down conversion and A / D conversion on the reception signal received via the antenna 101, and outputs the reception signal to the demodulation / decoding unit 103.
 復調・復号部103は、無線受信部102から入力される受信信号に対して復調及び復号を行い、復号結果から、基地局200から送信された端末100宛てのPUSCHリソース情報、及び、送信電力情報を抽出する。復調・復号部103は、抽出した情報を送信電力制御部105及びデータ生成部106に出力する。 Demodulation / decoding section 103 demodulates and decodes the received signal input from radio receiving section 102, and based on the decoding result, PUSCH resource information destined for terminal 100 transmitted from base station 200, and transmission power information Extract Demodulation / decoding section 103 outputs the extracted information to transmission power control section 105 and data generation section 106.
 PUSCHリソース情報には、例えば、周波数リソース情報(例えば、送信帯域幅、送信帯域位置(PRB番号又はブロック番号等)、時間リソース情報(例えば、PUSCHを送信するslot番号、OFDMシンボル番号等)、又は、PUSCHに対するMCS等が含まれる。 As PUSCH resource information, for example, frequency resource information (for example, transmission bandwidth, transmission band position (PRB number or block number etc.), time resource information (for example, slot number for transmitting PUSCH, OFDM symbol number etc.), or , And the PUSCH, etc. are included.
 また、送信電力情報には、TPCコマンド情報に加え、例えば、式(4)に示すPUSCH送信電力の算出に用いられるパラメータ等が含まれる。 In addition to the TPC command information, the transmission power information includes, for example, parameters used for calculation of PUSCH transmission power shown in equation (4).
 なお、全てのPUSCHリソース情報又は送信電力情報が端末100に対して同時に通知される必要はない。例えば、送信電力情報の一部の情報はセル共通情報として、又は、準静的な通知情報として端末100に通知されてもよい。また、送信電力情報の一部の情報は、例えば、システム共通情報としてスペックで規定され、基地局200から端末100に通知されなくてもよい。 In addition, it is not necessary to simultaneously notify all the PUSCH resource information or the transmission power information to the terminal 100. For example, part of transmission power information may be notified to the terminal 100 as cell common information or semi-static notification information. Also, a part of the transmission power information may be defined in specifications as system common information, for example, and may not be notified from the base station 200 to the terminal 100.
 TPCコマンド制御部104は、TPCコマンド情報と、TPCコマンド補正値δPUSCHとの対応付け(例えば、テーブル(以下、「TPCコマンドテーブル」と呼ぶ)を保持し、送信電力制御部105へ出力する。TPCコマンドテーブルは、基地局200から端末100へ通知されてもよく、スペックで規定されてもよい。なお、TPCコマンドテーブルの設定方法の詳細については後述する。 The TPC command control unit 104 holds an association (for example, a table (hereinafter, referred to as “TPC command table”) between TPC command information and the TPC command correction value δ PUSCH and outputs the table to the transmission power control unit 105. The TPC command table may be notified from the base station 200 to the terminal 100, or may be defined in specifications. Note that details of the method of setting the TPC command table will be described later.
 送信電力制御部105は、復調・復号部103から入力されるPUSCHリソース情報及び送信電力情報に基づいて、PUSCHの送信電力を計算する。具体的には、送信電力制御部105は、送信電力算出式(例えば、式(4))において用いられるパラメータ(Pcmax(i), Mpusch(i), Po_pusch(j), α(j), PL(k), ΔTF(i), fc(i, l) 等)を求める。 The transmission power control unit 105 calculates the transmission power of the PUSCH based on the PUSCH resource information and the transmission power information input from the demodulation / decoding unit 103. Specifically, the transmission power control unit 105 uses the parameters (Pcmax (i), M pusch (i), P o _ pusch (j), α (j) used in the transmission power calculation formula (for example, formula (4)). , PL (k), Δ TF (i), f c (i, l) etc.
 ここで、TPCモードがAccumulatedモードの場合、送信電力制御部105は、過去のClosed loop補正値fc(i-1, l)に、今回通知されたTPCコマンド情報に対応するTPCコマンド補正値δPUSCHを累積することにより、スロット番号iにおけるClosed loop補正値fc(i, l)を算出する。この際、送信電力制御部105は、TPCコマンド制御部104から出力されたTPCコマンドテーブルを参照して、TPCコマンド情報に対応するTPCコマンド補正値δPUSCHを決定する。そして、送信電力制御部105は、算出したPUSCHの送信電力を示す情報を無線送信部108へ出力する。 Here, when the TPC mode is the Accumulated mode, the transmission power control unit 105 uses the TPC command correction value δ corresponding to the TPC command information notified this time to the past Closed loop correction value f c (i−1, l). A Closed loop correction value f c (i, l) at slot number i is calculated by accumulating PUSCH . At this time, the transmission power control unit 105 refers to the TPC command table output from the TPC command control unit 104, and determines the TPC command correction value δ PUSCH corresponding to the TPC command information. Then, transmission power control section 105 outputs information indicating the calculated transmission power of PUSCH to radio transmission section 108.
 データ生成部106は、復調・復号部103から入力される情報(例えば、基地局200から指示されるMCS、情報ビットサイズ等)に基づいて、端末100が送信するデータを生成する。データ生成部106は、生成した送信データを符号化・変調部107へ出力する。 Data generation section 106 generates data to be transmitted by terminal 100 based on the information (for example, MCS instructed from base station 200, information bit size, etc.) input from demodulation / decoding section 103. Data generation section 106 outputs the generated transmission data to encoding / modulation section 107.
 符号化・変調部107は、データ生成部106から入力される送信データを符号化及び変調し、変調後のデータ信号を無線送信部108に出力する。 Encoding / modulation section 107 encodes and modulates the transmission data input from data generation section 106, and outputs the modulated data signal to radio transmission section 108.
 無線送信部108は、符号化・変調部107から入力される信号に対してD/A変換、アップコンバートを施し、得られた無線信号を、送信電力制御部105から入力される送信電力でアンテナ101から基地局200へ送信する。 The wireless transmission unit 108 performs D / A conversion and up-conversion on the signal input from the encoding / modulation unit 107, and the obtained wireless signal is transmitted to the antenna by the transmission power input from the transmission power control unit 105. It transmits to base station 200 from 101.
 [基地局の構成]
 図6は、本実施の形態に係る基地局200の構成を示すブロック図である。基地局200は、端末100に対してPUSCHのスケジューリング(送信電力制御を含む)を行う。
[Base station configuration]
FIG. 6 is a block diagram showing a configuration of base station 200 according to the present embodiment. Base station 200 performs PUSCH scheduling (including transmission power control) for terminal 100.
 図6において、基地局200は、アンテナ201と、無線受信部202と、復調・復号部203と、TPCコマンド制御部204と、スケジューリング部205と、制御情報生成部206と、符号化・変調部207と、無線送信部208とを有する。 In FIG. 6, a base station 200 includes an antenna 201, a radio reception unit 202, a demodulation / decoding unit 203, a TPC command control unit 204, a scheduling unit 205, a control information generation unit 206, and an encoding / modulation unit. And a wireless transmission unit 208.
 無線受信部202は、アンテナ201を介して受信した端末100からの信号に対してダウンコンバート、A/D変換等の受信処理を施し、受信信号を復調・復号部203へ出力する。 The wireless reception unit 202 performs reception processing such as down conversion and A / D conversion on the signal from the terminal 100 received via the antenna 201, and outputs the reception signal to the demodulation / decoding unit 203.
 復調・復号部203は、無線受信部202から入力される受信信号を復調及び復号し、復号結果(受信誤りの有無(受信OK又は受信NG))をスケジューリング部205へ出力する。 The demodulation / decoding unit 203 demodulates and decodes the received signal input from the wireless reception unit 202, and outputs the decoding result (presence or absence of reception error (reception OK or reception NG)) to the scheduling unit 205.
 TPCコマンド制御部204は、TPCコマンド情報と、TPCコマンド補正値δPUSCHとの対応付けを示すTPCコマンドテーブルを保持し、スケジューリング部205へ出力する。TPCコマンド制御部204が保持するTPCコマンドテーブルは、端末100(TPCコマンド制御部104)が保持するテーブルと同一である。TPCコマンドテーブルは、基地局200から端末100へ通知されてもよく、スペックで規定されてもよく、端末100と基地局200との間で一意に対応付けられている。なお、TPCコマンドテーブルの設定方法の詳細については後述する。 The TPC command control unit 204 holds a TPC command table indicating correspondence between TPC command information and TPC command correction value δ PUSCH, and outputs the TPC command table to the scheduling unit 205. The TPC command table held by the TPC command control unit 204 is the same as the table held by the terminal 100 (TPC command control unit 104). The TPC command table may be notified from the base station 200 to the terminal 100, may be defined by specifications, and is uniquely associated between the terminal 100 and the base station 200. The details of the setting method of the TPC command table will be described later.
 スケジューリング部205は、基地局200に収容される端末(端末100を含む)が送信する参照信号(図示せず)に基づいて各端末の品質情報(例えば、受信電力又は受信SINR(Signal to Interference and Noise Ratio)等)を推定する。そして、スケジューリング部205は、推定した品質情報に基づいて、収容端末に対して、PUSCHを含む上りチャネルのスケジューリング(無線リソース割当、又は、送信電力制御等)を行う。また、スケジューリング部205は、復調・復号部203から入力される復号結果が受信NGの場合、該当する端末に対してPUSCHの再送制御を行う。 Scheduling section 205 is based on a reference signal (not shown) transmitted by a terminal (including terminal 100) accommodated in base station 200, and transmits to each terminal quality information (eg, received power or received SINR (Signal to Interference and SINR). Estimate the noise ratio). Then, based on the estimated quality information, scheduling section 205 performs scheduling (radio resource allocation, transmission power control, etc.) of the uplink channel including the PUSCH to the accommodating terminal. In addition, when the decoding result input from the demodulation / decoding unit 203 indicates reception NG, the scheduling unit 205 performs PUSCH retransmission control on the corresponding terminal.
 また、スケジューリング部205は、TPCコマンド制御部204から入力されるTPCコマンドテーブルを参照して、PUSCHの目標受信電力と実際の受信電力との差分値に基づいてTPCコマンド情報を決定(生成)する。具体的には、スケジューリング部205は、PUSCHの目標受信電力と実際の受信電力との差分値に最も近いTPCコマンド補正値δPUSCHをTPCコマンドテーブルから選択し、対応するTPCコマンド情報を決定する。 Also, the scheduling unit 205 refers to the TPC command table input from the TPC command control unit 204, and determines (generates) TPC command information based on the difference value between the PUSCH target received power and the actual received power. . Specifically, the scheduling unit 205 selects from the TPC command table the TPC command correction value δ PUSCH closest to the difference value between the target received power of PUSCH and the actual received power, and determines the corresponding TPC command information.
 スケジューリング部205は、決定したスケジューリング情報(TPCコマンド情報を含む)を制御情報生成部206に出力する。 The scheduling unit 205 outputs the determined scheduling information (including TPC command information) to the control information generation unit 206.
 制御情報生成部206は、スケジューリング部205からの指示に基づいて、端末100に通知するためのスケジューリング情報(TPCコマンド情報を含む)を含む制御信号を生成し、符号化・変調部207へ出力する。 Control information generation section 206 generates a control signal including scheduling information (including TPC command information) for notifying terminal 100 based on an instruction from scheduling section 205, and outputs the control signal to encoding / modulation section 207. .
 符号化・変調部207は、制御情報生成部206から入力される制御信号を符号化及び変調し、変調後の信号を無線送信部208へ出力する。 The coding and modulation unit 207 codes and modulates the control signal input from the control information generation unit 206, and outputs the modulated signal to the wireless transmission unit 208.
 無線送信部208は、符号化・変調部207から入力される信号に対してD/A変換、アップコンバート、増幅等の送信処理を施し、送信処理により得られた無線信号をアンテナ201から端末100へ送信する。 The wireless transmission unit 208 performs transmission processing such as D / A conversion, up conversion, amplification, etc. on the signal input from the encoding / modulation unit 207, and transmits the radio signal obtained by the transmission processing from the antenna 201 to the terminal 100. Send to
 [端末100及び基地局200の動作]
 以上の構成を有する端末100及び基地局200における動作について詳細に説明する。
[Operation of terminal 100 and base station 200]
The operations in terminal 100 and base station 200 having the above configuration will be described in detail.
 図7は端末100(図5)及び基地局200(図6)の動作を示すシーケンス図である。 FIG. 7 is a sequence diagram showing operations of the terminal 100 (FIG. 5) and the base station 200 (FIG. 6).
 基地局200は、端末100に対する送信電力制御を行い、端末100において送信電力制御に用いるTPCコマンド情報を決定する(ST101)。例えば、基地局200は、後述するTPCコマンドテーブルを参照して、TPCコマンド補正値δPUSCH又はClosed loop補正値fc(i, l)をリセットする指示情報に対応するTPCコマンド情報(候補値)を選択する。そして、基地局200は、PUSCHリソース情報、及び、ST101で決定したTPCコマンド情報を含む送信電力情報を端末100へ送信する(ST102)。 The base station 200 performs transmission power control on the terminal 100, and determines TPC command information used for transmission power control in the terminal 100 (ST101). For example, the base station 200 refers to a TPC command table to be described later, and performs TPC command information (candidate value) corresponding to instruction information for resetting the TPC command correction value δ PUSCH or the Closed loop correction value f c (i, l). Choose Then, base station 200 transmits, to terminal 100, transmission power information including PUSCH resource information and TPC command information determined in ST101 (ST102).
 端末100は、ST102において基地局200から通知される送信電力情報(TPCコマンド情報)を用いて、PUSCHの送信電力(例えば、式(4)を参照)を決定する(ST103)。そして、端末100は、ST102で受信したPUSCHリソース情報、及び、ST103で決定した送信電力に基づいて、PUSCHを基地局200へ送信する(ST104)。すなわち、基地局200は、ST101で決定したTPCコマンド情報に基づく送信電力で送信されたPUSCHを端末100から受信する。 The terminal 100 determines the transmission power (for example, refer to Formula (4)) of PUSCH using the transmission power information (TPC command information) notified from the base station 200 in ST102 (ST103). Then, terminal 100 transmits PUSCH to base station 200 based on the PUSCH resource information received in ST 102 and the transmission power determined in ST 103 (ST 104). That is, base station 200 receives, from terminal 100, the PUSCH transmitted with the transmission power based on the TPC command information determined in ST101.
 [TPCコマンドテーブルの設定]
 次に、端末100のTPCコマンド制御部104及び基地局200のTPCコマンド制御部204が保持するTPCコマンドテーブルの設定方法について詳細に説明する。
[TPC command table settings]
Next, the method of setting the TPC command table held by the TPC command control unit 104 of the terminal 100 and the TPC command control unit 204 of the base station 200 will be described in detail.
 ここで、Closed loop補正値fc(i, l)のリセットを指示するタイミングでは、TPCコマンド(LTEと同様のTPCコマンド)を用いた送信電力制御は不要である。すなわち、Closed loop補正値fc(i, l)のリセットを指示するタイミングでは、TPCコマンド情報によるTPCコマンド補正値δPUSCHの通知は不要である。 Here, transmission power control using a TPC command (a TPC command similar to LTE) is unnecessary at the timing for instructing a reset of the Closed loop correction value f c (i, l). That is, notification of the TPC command correction value δ PUSCH by TPC command information is unnecessary at the timing at which the reset of the Closed loop correction value f c (i, l) is instructed.
 そこで、本実施の形態では、TPCコマンド情報に、Closed loop補正値fc(i, l)をリセットする指示情報を含める。すなわち、TPCコマンド情報の候補値のうち少なくとも1つには、Closed loop補正値fc(i, l)をリセットする指示情報が対応付けられる。また、TPCコマンド情報の候補値のうち、Closed loop補正値fc(i, l)をリセットする指示情報が対応付けられた候補値以外の候補値には、Closed loop補正値fc(i, l)を補正するTPCコマンド補正値δPUSCHがそれぞれ対応付けられる。 Therefore, in the present embodiment, the TPC command information includes instruction information for resetting the Closed loop correction value f c (i, l). That is, instruction information for resetting the Closed loop correction value f c (i, l) is associated with at least one of the candidate values of the TPC command information. Also, among the candidate value of the TPC command information, Closed loop correction value f c (i, l) to the candidate values other than the candidate value indication information associated Reset is, Closed loop correction value f c (i, The TPC command correction value δ PUSCH for correcting l) is associated with each other.
 すなわち、端末100は、TPCコマンド情報によってClosed loop補正値fc(i, l)のリセットが指示された場合には、Closed loop補正値fc(i, l)をリセットする。一方、端末100は、TPCコマンド情報によって送信電力制御値(TPCコマンド補正値δPUSCH)が指示された場合にはClosed loop補正値fc(i, l)をリセットしない。 That is, when the terminal 100 is instructed to reset the Closed loop correction value f c (i, l) by the TPC command information, the terminal 100 resets the Closed loop correction value f c (i, l). On the other hand, when the transmission power control value (TPC command correction value δ PUSCH ) is instructed by the TPC command information, the terminal 100 does not reset the Closed loop correction value f c (i, l).
 以下、TPCコマンドテーブルの設定例1,2について説明する。 Hereinafter, setting examples 1 and 2 of the TPC command table will be described.
 <設定例1:TPCコマンド情報が2bitsの場合>
 図8は、設定例1に係る、TPCコマンド情報が2bits(つまり、LTEのTPCコマンド情報と同様)の場合のTPCコマンドテーブルの一例を示す。
<Setting example 1: When TPC command information is 2 bits>
FIG. 8 shows an example of a TPC command table in the case where TPC command information is 2 bits (that is, the same as TPC command information of LTE) according to setting example 1.
 図8に示すTPCコマンドテーブルでは、TPCコマンド情報の候補値0~3のうち、「1」には、Closed loop補正値fc(i, l)の「リセット(Reset)」が対応付けられている。また、図8に示すTPCコマンドテーブルでは、TPCコマンド情報の候補値0~3のうち、「1」以外の候補値(0,2,3)に対して、TPCコマンド補正値δPUSCHの各値(-1,1,3)がそれぞれ対応付けられている。 In the TPC command table shown in FIG. 8, “1” of the candidate values 0 to 3 of TPC command information is associated with “Reset” of the Closed loop correction value f c (i, l). There is. Further, in the TPC command table shown in FIG. 8, among the candidate values 0 to 3 of the TPC command information, for the candidate values (0, 2, 3) other than “1”, each value of the TPC command correction value δ PUSCH (-1, 1, 3) are associated with each other.
 端末100(送信電力制御部105)は、基地局200から通知されるTPCコマンド情報が「1」の場合、Closed loop補正値fc(i, l)をリセットする。一方、端末100は、基地局200から通知されるTPCコマンド情報が「1」以外の場合、Closed loop補正値fc(i, l)をリセットせずに、TPCコマンド情報に対応するTPCコマンド補正値δPUSCHを、過去のClosed loop補正値fc(i, l)に累積し(式(2)の計算を行う)、PUSCHの送信電力を算出する(式(4)の計算を行う)。 The terminal 100 (transmission power control unit 105) resets the Closed loop correction value f c (i, l) when the TPC command information notified from the base station 200 is “1”. On the other hand, when the TPC command information notified from base station 200 is other than “1”, terminal 100 does not reset Closed loop correction value f c (i, l), and performs TPC command correction corresponding to TPC command information. The value δ PUSCH is accumulated in the closed loop correction value f c (i, l) in the past (calculation of equation (2) is performed), and transmission power of PUSCH is calculated (calculation of equation (4) is performed).
 設定例1により、LTEのTPCコマンド情報(例えば、図1を参照)と比較して、TPCコマンド情報の情報量を増やすことなく、Closed loop補正値fc(i, l)のリセットを基地局200から端末100へ指示することができる。 According to setting example 1, the closed loop correction value f c (i, l) is reset to the base station without increasing the information amount of the TPC command information as compared to the TPC command information of LTE (for example, see FIG. 1). It is possible to instruct the terminal 100 from 200.
 なお、図8に示すTPCコマンド情報「1」では、LTEでは指示可能である制御値(図8の場合、TPCコマンド補正値δPUSCH=0に相当)の指示ができず、送信電力制御の収束時間が長くなる可能性がある。しかし、図8に示すように、TPCコマンド補正値δPUSCH=-1~3の範囲のうち、絶対値が最も小さいTPCコマンド補正値δPUSCH=0の代わりに、リセットの指示が割り当てられることで、Closed loop補正値の変動幅(補正範囲)が制限されることを防ぎ、送信電力制御の収束時間の増加を防ぐことができる。 Note that TPC command information "1" shown in FIG. 8 can not indicate a control value that can be instructed in LTE (corresponding to TPC command correction value δ PUSCH = 0 in the case of FIG. 8), and convergence of transmission power control The time may be long. However, as shown in FIG. 8, a reset instruction is assigned instead of TPC command correction value δ PUSCH = 0, which has the smallest absolute value within the range of TPC command correction value δ PUSCH = −1 to 3. It is possible to prevent the variation range (correction range) of the Closed loop correction value from being limited, and to prevent an increase in the convergence time of the transmission power control.
 <設定例2:TPCコマンド情報が3bitsの場合>
 図9は、設定例2に係る、TPCコマンド情報が3bitsの場合のTPCコマンドテーブルの一例を示す。なお、3bitsのTPCコマンド情報は、例えば、図1に示すLTEのTPCコマンド情報(2bits)に、図2に示すClosed loop補正値リセットフラグ情報(1bit)を追加した場合と同一の情報量である。
<Setting example 2: When TPC command information is 3 bits>
FIG. 9 shows an example of the TPC command table when TPC command information is 3 bits according to setting example 2. The 3-bit TPC command information has, for example, the same amount of information as in the case where the Closed loop correction value reset flag information (1 bit) shown in FIG. 2 is added to the TPC command information (2 bits) in LTE shown in FIG. .
 図9に示すTPCコマンドテーブルでは、TPCコマンド情報の候補値0~7のうち、「0」には、Closed loop補正値fc(i, l)の「リセット(Reset)」が対応付けられている。また、図9に示すTPCコマンドテーブルでは、TPCコマンド情報の候補値0~7のうち、「0」以外の候補値(1~7)に対して、TPCコマンド補正値δPUSCHの各値(-5,-3,-1,0,1,3,5)がそれぞれ対応付けられている。 In the TPC command table shown in FIG. 9, “0” of candidate values 0 to 7 of TPC command information is associated with “Reset” of Closed loop correction value f c (i, l). There is. Further, in the TPC command table shown in FIG. 9, for candidate values (1 to 7) other than “0” among candidate values 0 to 7 of TPC command information, each value (− −) of TPC command correction value δ PUSCH 5, -3, -1, 0, 1, 3, 5) are associated with each other.
 端末100(送信電力制御部105)は、基地局200から通知されるTPCコマンド情報が「0」の場合、Closed loop補正値fc(i, l)をリセットする。一方、端末100は、基地局200から通知されるTPCコマンド情報が「0」以外の場合、Closed loop補正値fc(i, l)をリセットせずに、TPCコマンド情報に対応するTPCコマンド補正値δPUSCHを、過去のClosed loop補正値fc(i, l)に累積し(式(2)の計算を行う)、PUSCHの送信電力を算出する(式(4)の計算を行う)。 The terminal 100 (transmission power control unit 105) resets the Closed loop correction value f c (i, l) when the TPC command information notified from the base station 200 is “0”. On the other hand, when the TPC command information notified from base station 200 is other than “0”, terminal 100 does not reset Closed loop correction value f c (i, l), and performs TPC command correction corresponding to TPC command information. The value δ PUSCH is accumulated in the closed loop correction value f c (i, l) in the past (calculation of equation (2) is performed), and transmission power of PUSCH is calculated (calculation of equation (4) is performed).
 設定例2により、LTEのTPCコマンド情報(例えば、図1を参照)と比較して、TPCコマンド情報の情報量が1bit増加するものの、TPCコマンド情報を用いて、TPCコマンド補正値δPUSCH及びClosed loop補正値fc(i, l)のリセットの双方を指示することができる。 According to setting example 2, although the information amount of TPC command information increases by 1 bit as compared to LTE TPC command information (for example, see FIG. 1), TPC command correction value δ PUSCH and Closed using TPC command information Both of the loop correction value f c (i, l) can be instructed to be reset.
 また、例えば、TPCコマンド情報及びClosed loop補正値のリセットの双方を通知するために、図1に示すLTEのTPCコマンド情報(2bits)及び図2に示すClosed loop補正値リセットフラグ情報(1bit)を用いる場合(合計3bits)、4通りのTPCコマンド補正値δPUSCH及びClosed loop補正値のリセットの通知が可能となる。これに対して、図9に示すTPCコマンド情報(3bits)では、LTE(図1)にはない新規のTPCコマンド補正値δPUSCH(図9の場合、-5,-3,5)の通知が可能となる。すなわち、図9では、図1及び図2と比較して、使用するビット数(3bits)を増やすこと無く、通知可能なTPCコマンド補正値δPUSCHの数が増加する。これにより、制御情報のオーバーヘッドの増加を抑えつつ、TPCコマンド補正値δPUSCHによるClosed loop補正値fc(i, l)の補正範囲を広げて、送信電力制御の性能を改善でき、最適な送信電力に収束させるまでの時間を短縮できる。 Also, for example, in order to notify both TPC command information and the reset of the Closed loop correction value, the TPC command information (2 bits) of LTE shown in FIG. 1 and the Closed loop correction value reset flag information (1 bit) shown in FIG. When used (3 bits in total), four TPC command correction values δ PUSCH and closed loop correction value reset notification can be made. On the other hand, in the TPC command information (3 bits) shown in FIG. 9, the notification of the new TPC command correction value δ PUSCH (-5, -3, 5 in the case of FIG. 9) not included in the LTE (FIG. 1) It becomes possible. That is, in FIG. 9, compared with FIG. 1 and FIG. 2, the number of TPC command correction values δ PUSCH which can be notified increases without increasing the number of bits (3 bits) to be used. As a result, the transmission power control performance can be improved by expanding the correction range of the Closed loop correction value f c (i, l) by the TPC command correction value δ PUSCH while suppressing an increase in the overhead of control information, and optimum transmission It is possible to shorten the time to converge on the power.
 以上、設定例1、2についてそれぞれ説明した。 The setting examples 1 and 2 have been described above.
 このように、本実施の形態では、Closed loop補正値fc(i, l)のリセットを指示する情報は、基地局200から端末100へ通知されるTPCコマンド情報に含まれる。これにより、本実施の形態では、基地局200は、端末100に対して、Closed loop補正値fc(i, l)の動的なリセット指示を効率的に行うことができる。また、本実施の形態では、TPCコマンド情報を用いて、LTEのTPCコマンド情報(TPCコマンド補正値)に加え、新規のTPCコマンド補正値を追加できる。これにより、本実施の形態によれば、制御情報のオーバーヘッドの増加を抑えつつ、送信電力制御の性能を向上できる。 Thus, in the present embodiment, the information instructing reset of Closed loop correction value f c (i, l) is included in the TPC command information notified from base station 200 to terminal 100. Thereby, in the present embodiment, base station 200 can efficiently issue a dynamic reset instruction of Closed loop correction value f c (i, l) to terminal 100. Further, in the present embodiment, a new TPC command correction value can be added in addition to the LTE TPC command information (TPC command correction value) using TPC command information. Thus, according to the present embodiment, it is possible to improve the performance of transmission power control while suppressing an increase in overhead of control information.
 以上のように、本実施の形態によれば、Closed loop補正値のリセットを適切に通知し、送信電力制御を行うことができる。 As described above, according to the present embodiment, transmission power control can be performed by appropriately notifying reset of the Closed loop correction value.
 (実施の形態2)
 本実施の形態に係る端末及び基地局は、実施の形態1に係る端末100及び基地局200と基本構成が共通するので、図5及び図6を援用して説明する。
Second Embodiment
The terminal and base station according to the present embodiment have the same basic configuration as terminal 100 and base station 200 according to Embodiment 1, and will be described using FIG. 5 and FIG.
 本実施の形態では、端末100のTPCコマンド制御部104及び基地局200のTPCコマンド制御部204の動作(TPCコマンドテーブルの設定)が実施の形態1と異なる。 The present embodiment is different from the first embodiment in the operation (setting of TPC command table) of TPC command control section 104 of terminal 100 and TPC command control section 204 of base station 200.
 図10は、本実施の形態に係るTPCコマンドテーブルの一例を示す。 FIG. 10 shows an example of the TPC command table according to the present embodiment.
 図10に示すTPCコマンドテーブルには、各TPCコマンドモード(Absoluteモード及びAccumulatedモード)のTPCコマンド補正値δPUSCHが含まれる。例えば、図10では、TPCコマンド情報の候補値0~2の各々には、AbsoluteモードのTPCコマンド補正値δPUSCHの各値(-1,0,1)がそれぞれ対応付けられている。また、図10では、TPCコマンド情報の候補値3~7の各々には、AccumulatedモードのTPCコマンド補正値δPUSCHの各値(-3,-1,0,1,3)がそれぞれ対応付けられている。 The TPC command table shown in FIG. 10 includes TPC command correction values δ PUSCH in each TPC command mode (absolute mode and accumulated mode). For example, in FIG. 10, each value (−1, 0, 1) of the TPC command correction value δ PUSCH in the Absolute mode is associated with each of the candidate values 0 to 2 of the TPC command information. Further, in FIG. 10, each value (-3, -1, 0, 1, 3) of TPC command correction value δ PUSCH in Accumulated mode is associated with each of candidate values 3 to 7 of TPC command information. ing.
 さらに、図10では、AbsoluteモードのTPCコマンド補正値δPUSCH=0を指示するTPCコマンド情報の候補値「1」に対して、AccumulatedモードにおけるClosed loop補正値fc(i, l)の「リセット(Reset)」が対応付けられている。 Further, in FIG. 10, with respect to the candidate value “1” of TPC command information indicating the TPC command correction value δ PUSCH = 0 in the Absolute mode, “Reset of Closed loop correction value f c (i, l) in Accumulated mode (Reset) is associated.
 端末100(送信電力制御部105)は、基地局200から通知される制御情報(PUSCHリソース情報及び送信電力情報)に基づいてPUSCHの送信電力を算出する。端末100は、実施の形態1と同様、制御情報に基づいて、送信電力算出式(式(2)又は式(3))に用いるパラメータ(例えば、fc(i, l))を求める。 The terminal 100 (transmission power control unit 105) calculates the transmission power of PUSCH based on control information (PUSCH resource information and transmission power information) notified from the base station 200. The terminal 100 obtains a parameter (for example, f c (i, l)) used in the transmission power calculation formula (Formula (2) or Formula (3)) based on the control information as in the first embodiment.
 例えば、端末100は、Accumulatedモードでは、基地局200から通知されるTPCコマンド情報が3~7の何れかである場合、Closed loop補正値fc(i, l)をリセットせずに、TPCコマンド情報に対応するTPCコマンド補正値δPUSCHを、過去のClosed loop補正値fc(i, l)に累積することにより、slot番号iにおけるClosed loop補正値fc(i, l)を算出する。 For example, in the Accumulated mode, when the TPC command information notified from the base station 200 is any of 3 to 7, the terminal 100 does not reset the Closed loop correction value f c (i, l), but the TPC command. the TPC command correction value [delta] PUSCH corresponding to the information by accumulating the past Closed loop correction value f c (i, l), to calculate a Closed loop correction value f c (i, l) in the slot number i.
 また、端末100は、Accumulatedモードでは、基地局200から通知されるTPCコマンド情報が1である場合、Closed loop補正値fc(i, l)をリセットする。 Also, in the accumulated mode, when the TPC command information notified from the base station 200 is 1, the terminal 100 resets the closed loop correction value f c (i, l).
 一方、端末100は、Absoluteモードでは、基地局200から通知されるTPCコマンド情報が0~2の何れかである場合、TPCコマンド情報に対応するTPCコマンド補正値δPUSCHをそのまま用いて、slot番号iにおけるClosed loop補正値fc(i, l)を算出する。 On the other hand, if the TPC command information notified from the base station 200 is any one of 0 to 2 in the Absolute mode, the terminal 100 uses the TPC command correction value δ PUSCH corresponding to the TPC command information as it is, and uses the slot number. The Closed loop correction value f c (i, l) at i is calculated.
 すなわち、図10に示すTPCコマンドテーブルにおいて、TPCコマンド情報=1は、AbsoluteモードのTPCコマンド補正値δPUSCH=0dB、及び、AccumulatedモードのClosed loop補正値のリセットの双方に対応する。 That is, in the TPC command table shown in FIG. 10, TPC command information = 1 corresponds to both TPC command correction value δ PUSCH = 0 dB in Absolute mode and reset of Closed loop correction value in Accumulated mode.
 ここで、AccumulatedモードにおいてClosed loop補正値をリセットすること(fc(i, l)=0)は、AbsoluteモードにおいてTPCコマンド補正値δPUSCH=0dBに設定することに相当する。すなわち、図10では、Closed loop補正値のリセットに相当するAbsoluteモードのTPCコマンド補正値δPUSCH(=0dB)と同一のTPCコマンド情報に、Closed loop補正値のリセットが対応付けられている。 Here, resetting the closed loop correction value in the accumulated mode (f c (i, l) = 0) corresponds to setting the TPC command correction value δ PUSCH = 0 dB in the absolute mode. That is, in FIG. 10, the reset of the closed loop correction value is associated with the TPC command information identical to the TPC command correction value δ PUSCH (= 0 dB) of the Absolute mode corresponding to the reset of the closed loop correction value.
 このように、本実施の形態では、TPCコマンド情報の複数の候補値の各々には、Accumulatedモードに対応するTPCコマンド補正値、及び、Absoluteモードに対応するTPCコマンド補正値が対応付けられる。また、Closed loop補正値をリセットする指示情報は、TPCコマンド情報の複数の候補値のうち、AbsoluteモードのTPCコマンド補正値の何れかに対応する候補値に対応付けられる。具体的には、AccumulatedモードにおけるClosed loop補正値のリセットの指示と、AbsoluteモードにおけるTPCコマンド補正値δPUSCH=0dB(つまり、fc(i, l)=0)の設定の指示とで、同一のTPCコマンド情報を共有する。 Thus, in the present embodiment, the TPC command correction value corresponding to the Accumulated mode and the TPC command correction value corresponding to the Absolute mode are associated with each of the plurality of candidate values of the TPC command information. Further, the instruction information for resetting the Closed loop correction value is associated with a candidate value corresponding to any one of the TPC command correction values in the Absolute mode among a plurality of candidate values of the TPC command information. Specifically, the instruction for resetting the Closed loop correction value in the Accumulated mode and the instruction for setting the TPC command correction value δ PUSCH = 0 dB (that is, f c (i, l) = 0) in the Absolute mode are the same. Share TPC command information.
 これにより、LTEのTPCコマンド情報(例えば、図1を参照)と比較して、TPCコマンド情報の情報量が1bit増加するものの、TPCコマンド情報を用いて、TPCコマンド補正値δPUSCH及びClosed loop補正値fc(i, l)のリセットの双方を指示することができる。 As a result, although the information amount of TPC command information increases by 1 bit as compared to LTE TPC command information (for example, see FIG. 1), TPC command correction value δ PUSCH and Closed loop correction using TPC command information Both reset of the value f c (i, l) can be indicated.
 また、図10に示すように、Closed loop補正値fc(i, l)のリセットの指示情報は、AccumulatedモードにおけるClosed loop補正値fc(i, l)のリセットの指示情報がAbsoluteモードのTPCコマンド補正値と同一のTPCコマンド情報を用いて通知される。これにより、本実施の形態では、AccumulatedモードのTPCコマンド補正値の全ての値が指示可能となる。 Further, as shown in FIG. 10, the reset instruction information for Closed loop correction value f c (i, l) is, Closed loop correction value f c (i, l) in the Accumulated mode reset instruction information of the Absolute Mode It is notified using the same TPC command information as the TPC command correction value. Thus, in the present embodiment, all the values of the TPC command correction value in the accumulated mode can be indicated.
 さらに、本実施の形態では、TPCコマンド情報を用いて、TPCコマンドモード(Absoluteモード及びAccumulatedモード)の切替を動的に行うことができる。例えば、端末100は、TPCコマンド情報が0~2の場合にAbsoluteモードに切り替え、TPCコマンド情報が3~7の場合にAccumulatedモードに切り替えてもよい。 Furthermore, in the present embodiment, the TPC command mode (Absolute mode and Accumulated mode) can be switched dynamically using TPC command information. For example, the terminal 100 may switch to the Absolute mode when TPC command information is 0 to 2, and may switch to the Accumulated mode when TPC command information is 3 to 7.
 また、例えば、TPCコマンド情報及びClosed loop補正値のリセットの双方を通知するために、図1に示すLTEのTPCコマンド情報(2bits)及び図2に示すClosed loop補正値リセットフラグ情報(1bit)を用いる場合(合計3bits)、4通りのTPCコマンド補正値δPUSCH及びClosed loop補正値のリセットの通知が可能となる。これに対して、図10に示すTPCコマンド情報(3bits)では、LTE(図1)にはない新規のTPCコマンド補正値δPUSCH(図10の場合、-3)の通知が可能となる。すなわち、図10では、図1及び図2と比較して、使用するビット数(3bits)を増やすこと無く、通知可能なTPCコマンド補正値δPUSCHの数が増加する。これにより、制御情報のオーバーヘッドの増加を抑えつつ、TPCコマンド補正値δPUSCHによるClosed loop補正値fc(i, l)の補正範囲を広げて、送信電力制御の性能を改善でき、最適な送信電力に収束させるまでの時間を短縮できる。 Also, for example, in order to notify both TPC command information and the reset of the Closed loop correction value, the TPC command information (2 bits) of LTE shown in FIG. 1 and the Closed loop correction value reset flag information (1 bit) shown in FIG. When used (3 bits in total), four TPC command correction values δ PUSCH and closed loop correction value reset notification can be made. On the other hand, in TPC command information (3 bits) shown in FIG. 10, notification of a new TPC command correction value δ PUSCH (-3 in the case of FIG. 10) which is not in LTE (FIG. 1) is possible. That is, in FIG. 10, compared with FIG. 1 and FIG. 2, the number of TPC command correction values δ PUSCH that can be notified increases without increasing the number of bits used (3 bits). As a result, the transmission power control performance can be improved by expanding the correction range of the Closed loop correction value f c (i, l) by the TPC command correction value δ PUSCH while suppressing an increase in the overhead of control information, and optimum transmission It is possible to shorten the time to converge on the power.
 なお、図10では、AbsoluteモードのTPCコマンド補正値のうち絶対値が最も小さい値(δPUSCH=0)に対応するTPCコマンド情報(1)に、AccumulatedモードのClosed loop補正値をリセットする指示情報を対応付ける場合について説明した。しかし、AccumulatedモードのClosed loop補正値をリセットする指示情報は、AbsoluteモードのδPUSCH=0に限らず、AbsoluteモードのTPCコマンド補正値に対応するTPCコマンド情報(候補値)に対応付けられればよい。例えば、端末100は、Accumulatedモードの送信電力制御を行っている場合に、リセットの指示情報に対応するTPCコマンド情報を受信した場合、当該TPCコマンド情報を、AbsoluteモードのTPCコマンド補正値δPUSCHとしてではなく、AccumulatedモードにおけるClosed loop補正値のリセット指示として認識すればよい。 In FIG. 10, instruction information for resetting the Closed loop correction value in the accumulated mode to TPC command information (1) corresponding to the value (δ PUSCH = 0) having the smallest absolute value among the TPC command correction values in the absolute mode. Explained the case of However, the instruction information for resetting the Closed loop correction value in the Accumulated mode is not limited to δ PUSCH = 0 in the Absolute mode, and may be associated with TPC command information (candidate value) corresponding to the TPC command correction value in the Absolute mode. . For example, when the terminal 100 is performing transmission power control in the accumulated mode and receives TPC command information corresponding to the reset instruction information, the terminal 100 sets the TPC command information as the TPC command correction value δ PUSCH in the absolute mode . Instead, it may be recognized as a reset instruction of the Closed loop correction value in the Accumulated mode.
 (実施の形態3)
 本実施の形態では、NRにおいて適用されるビームフォーミングを考慮したTPCコマンドテーブルの設定方法について説明する。
Third Embodiment
In this embodiment, a method of setting a TPC command table in consideration of beamforming applied to NR will be described.
 NRでは、ビームフォーミングの適用時における送信ビームと受信ビームとのペアは、「BPL(Beam pair link)」と呼ばれる。すなわち、送信ビーム又は受信ビームの何れかが変更された場合は、異なるBPL番号になる。また、制御の簡易化のために、複数のBPLをまとめた「BPL group」と呼ばれる単位でビームフォーミングの制御が行われることが考えられる。 In NR, a pair of transmit beam and receive beam at the time of application of beamforming is called "BPL (Beam pair link)". That is, if either the transmit beam or the receive beam is changed, different BPL numbers will result. In addition, in order to simplify the control, it is conceivable that control of beamforming is performed in a unit called "BPL group" in which a plurality of BPLs are put together.
 ここで、ビームフォーミングの制御のためにBPLが切り替えられた直後は、BPLの切替前と比較して、BPL間のビームゲインを含むパスロス推定誤差又はBPL間の干渉レベルが大きく異なる可能性がある。そのため、BPL切替直後は送信電力制御が正しく機能せずに送信信号がターゲットとするSINR(Signal to Interference and Noise Ratio)に達しなくなる、又は、他セルへの干渉が大きくなる課題が生じる。 Here, immediately after BPL is switched for beamforming control, the path loss estimation error including the beam gain between BPLs or the interference level between BPLs may be significantly different compared to before BPL switching. . Therefore, immediately after BPL switching, transmission power control does not function properly, and a problem arises that the transmission signal does not reach the target SINR (Signal to Interference and Noise Ratio) or interference with other cells becomes large.
 また、ビーム毎の干渉レベルは動的に変動するため、BPL毎に準静的なopen loop制御用パラメータ(α(j)、Po_pusch(j)等)を設定するだけでは、BPL切替直後の品質誤差の補正としては不十分である。よって、基地局から通知されるTPCコマンド情報(TPCコマンド補正値)によるClosed loop制御によってBPL切替直後の品質誤差を補正する必要がある。 In addition, since the interference level for each beam fluctuates dynamically, just setting the quasi-static open loop control parameters (α (j), Po_pusch (j), etc.) for each BPL is immediately after BPL switching. It is insufficient as a correction of quality error. Therefore, it is necessary to correct the quality error immediately after the BPL switching by the closed loop control by TPC command information (TPC command correction value) notified from the base station.
 しかしながら、各ビームゲインは最大20dBの差が想定される(例えば、非特許文献3を参照)。よって、LTEと同様のTPCコマンド補正値のステップ幅では、BPL切替直後の品質誤差を補正するための収束時間が長くなってしまい、送信電力制御値が最適値に収束するまでの期間において所望信号電力の低下又は与干渉電力の増加によりシステム性能が劣化する可能性がある。 However, a difference of up to 20 dB is assumed for each beam gain (see, for example, Non-Patent Document 3). Therefore, in the step width of the TPC command correction value similar to LTE, the convergence time for correcting the quality error immediately after the BPL switching becomes long, and the desired signal in the period until the transmission power control value converges to the optimum value. A decrease in power or an increase in interfering power may degrade system performance.
 そこで、本実施の形態では、BPL切替直後は、通常時(BPL切替直後の期間以外の期間)に用いるTPCコマンド補正値のステップ幅と異なるTPCコマンド補正値のステップ幅を有するTPCコマンドテーブルを使用する。 Therefore, in the present embodiment, immediately after BPL switching, a TPC command table having a step width of a TPC command correction value different from the step width of a TPC command correction value used during normal times (a period other than the period immediately after BPL switching) is used. Do.
 [端末の構成]
 図11は、本実施の形態に係る端末300の構成を示すブロック図である。なお、図11において、実施の形態1(図5)と同様の構成には同一の符号を付し、その説明を省略する。具体的には、図11では、BPL切替判定部301が追加されたこと、及び、TPCコマンド制御部302の動作が実施の形態1と異なる。
[Terminal configuration]
FIG. 11 is a block diagram showing a configuration of terminal 300 according to the present embodiment. In FIG. 11, the same components as those in Embodiment 1 (FIG. 5) are assigned the same reference numerals and descriptions thereof will be omitted. Specifically, in FIG. 11, the addition of the BPL switching determination unit 301 and the operation of the TPC command control unit 302 are different from those of the first embodiment.
 BPL切替判定部301は、復調・復号部103から入力される制御情報に含まれるビーム判別情報を用いて、BPL切替が発生したか否かを判定する。ビーム判別情報は、例えば、SRI(SRS resource indicator)、CRI(CSI-RS resource indicator)又はbeam indicator等のうちの少なくとも1つでもよい。なお、ビーム判別情報は、SRI、CRI及びbeam indicatorに限定されず、BPL切替の有無を判定可能なパラメータであればよい。 The BPL switching determination unit 301 uses the beam discrimination information included in the control information input from the demodulation / decoding unit 103 to determine whether or not BPL switching has occurred. The beam discrimination information may be, for example, at least one of an SRI (SRS resource indicator), a CRI (CSI-RS resource indicator), a beam indicator, and the like. The beam discrimination information is not limited to the SRI, the CRI, and the beam indicator, and may be a parameter that can determine the presence or absence of BPL switching.
 BPL切替の判定方法として、例えば、BPL切替判定部301は、基地局400(後述する)から前回指示されたビーム判別情報を保持し、基地局400から新たに通知されたビーム判別情報と、保持しているビーム判別情報とを比較して、異なる値を示している場合にBPL切替が発生したと判断してもよい。 As a determination method of BPL switching, for example, the BPL switching determination unit 301 holds the beam discrimination information instructed last time from the base station 400 (described later), and holds the beam discrimination information newly notified from the base station 400, and It may be determined that BPL switching has occurred when different values are indicated by comparison with the beam discrimination information being performed.
 なお、BPL切替が発生したか否かの判定方法は、ビーム判別情報を用いる方法に限らず、送信電力パラメータセット(power control parameter set)等の他の情報を用いる方法でもよい。また、ビーム判別情報は、下り制御情報(例えば、DCI)で通知される必要はない。ビーム判別情報の一部の情報は、セル共通情報として、又は、準静的な通知情報として端末300に通知されてもよい。 The method of determining whether or not BPL switching has occurred is not limited to the method using the beam discrimination information, but may be a method using other information such as a transmission power parameter set. Also, the beam discrimination information does not have to be notified by downlink control information (for example, DCI). The partial information of the beam discrimination information may be notified to the terminal 300 as cell common information or semi-static notification information.
 BPL切替判定部301は、BPL切替が発生したか否かを示すBPL切替情報をTPCコマンド制御部302へ出力する。 The BPL switching determination unit 301 outputs, to the TPC command control unit 302, BPL switching information indicating whether or not BPL switching has occurred.
 TPCコマンド制御部302は、TPCコマンド情報とTPCコマンド補正値δPUSCHとの対応付けを示すTPCコマンドテーブルとして、BPL切替直後に用いるTPCコマンドテーブル(「BPL切替後TPCコマンドテーブル」と呼ぶ)、及び、BPL切替直後以外に用いるTPCコマンドテーブル(「通常時TPCコマンドテーブル」と呼ぶ)を、保持する。換言すると、TPCコマンドテーブルにおいて、TPCコマンド情報の複数の候補値の各々には、通常時に用いるTPCコマン補正値、及び、BPL切替後に用いるTPCコマンド補正値の2つの制御値が対応付けられている。 The TPC command control unit 302 uses, as a TPC command table indicating correspondence between TPC command information and a TPC command correction value δ PUSCH , a TPC command table (called “post BPL switching TPC command table”) used immediately after BPL switching, , TPL command table (referred to as "normal time TPC command table") used other than immediately after BPL switching is held. In other words, in the TPC command table, each of a plurality of candidate values of TPC command information is associated with two control values, a TPC command correction value used at normal time and a TPC command correction value used after BPL switching. .
 なお、BPL切替後TPCコマンドテーブル及び通常時TPCコマンドテーブルの詳細については後述する。 The details of the TPC command table after BPL switching and the normal time TPC command table will be described later.
 TPCコマンド制御部302は、BPL切替判定部301から入力されるBPL切替情報においてBPL切替が発生したことが示される場合、BPL切替後TPCコマンドテーブルの情報を送信電力制御部105へ出力する。一方、TPCコマンド制御部302は、BPL切替判定部301から入力されるBPL切替情報においてBPL切替が発生していないことが示される場合、通常時TPCコマンドテーブルの情報を送信電力制御部105へ出力する。 When the BPL switching information input from the BPL switching determination unit 301 indicates that the BPL switching has occurred, the TPC command control unit 302 outputs the information of the TPC command table after BPL switching to the transmission power control unit 105. On the other hand, when it is indicated that BPL switching is not occurring in the BPL switching information input from BPL switching determination unit 301, TPC command control unit 302 outputs the information of the TPC command table under normal conditions to transmission power control unit 105. Do.
 [基地局の構成]
 図12は、本実施の形態に係る基地局400の構成を示すブロック図である。なお、図12において、実施の形態1(図6)と同様の構成には同一の符号を付し、その説明を省略する。具体的には、図12では、BPL制御部401が追加されたこと、及び、TPCコマンド制御部402の動作が実施の形態1と異なる。
[Base station configuration]
FIG. 12 is a block diagram showing a configuration of base station 400 according to the present embodiment. In FIG. 12, the same components as in the first embodiment (FIG. 6) will be assigned the same reference numerals and descriptions thereof will be omitted. Specifically, in FIG. 12, the addition of the BPL control unit 401 and the operation of the TPC command control unit 402 are different from those of the first embodiment.
 BPL制御部401は、復調・復号部203から入力される、収容端末から送信される参照信号(図示せず)に基づいて各端末の品質情報を測定し、品質情報に基づいて、BPL切替が必要か否かを判断する。例えば、BPL制御部401は、品質情報が劣悪である場合、BPL切替が必要と判断し、品質情報が良好である場合、BPL切替が不要と判断する。BPL制御部401は、BPL切替が必要であるか否かを示すBPL切替情報をTPCコマンド制御部402へ出力する。 The BPL control unit 401 measures the quality information of each terminal based on the reference signal (not shown) transmitted from the accommodation terminal, which is input from the demodulation / decoding unit 203, and BPL switching is performed based on the quality information. Determine if it is necessary. For example, the BPL control unit 401 determines that BPL switching is necessary when the quality information is inferior, and determines that BPL switching is not necessary when the quality information is satisfactory. The BPL control unit 401 outputs, to the TPC command control unit 402, BPL switching information indicating whether or not BPL switching is necessary.
 TPCコマンド制御部402は、端末300(TPCコマンド制御部302)と同様、BPL切替後TPCコマンドテーブル及び通常時TPCコマンドテーブルを保持する。TPCコマンド制御部402は、BPL制御部401から入力されるBPL切替情報においてBPL切替が必要であることが示される場合、BPL切替後TPCコマンドテーブルの情報をスケジューリング部205へ出力する。一方、TPCコマンド制御部402は、BPL制御部401から入力されるBPL切替情報においてBPL切替が不要であることが示される場合、通常時TPCコマンドテーブルの情報をスケジューリング部205へ出力する。 Similar to the terminal 300 (TPC command control unit 302), the TPC command control unit 402 holds a TPC command table after BPL switching and a normal time TPC command table. When the BPL switching information input from the BPL control unit 401 indicates that the BPL switching is necessary, the TPC command control unit 402 outputs information of the TPC command table after BPL switching to the scheduling unit 205. On the other hand, when the BPL switching information input from the BPL control unit 401 indicates that the BPL switching is unnecessary, the TPC command control unit 402 outputs the information of the normal TPC command table to the scheduling unit 205.
 次に、端末300及び基地局400における送信電力制御(TPCコマンドテーブルの設定方法)について詳細に説明する。 Next, transmission power control (a method of setting a TPC command table) in terminal 300 and base station 400 will be described in detail.
 例えば、端末300(TPCコマンド制御部302)及び基地局400(TPCコマンド制御部402)は、図13に示すように、BPL切替が発生したタイミングからの経過slot数(又は経過時間)をカウントし、経過slot数が閾値Xを超えるか否かを判定する。そして、端末300及び基地局400は、判定結果に従って、使用するTPCコマンドテーブルを切り替える。具体的には、端末300及び基地局400は、経過slot数が閾値X以内の場合、BPL切替後TPCコマンドテーブル(例えば、図14を参照)を使用し、経過slot数が閾値Xより大きい場合、通常時TPCコマンドテーブル(例えば、図9を参照)を使用する。 For example, as shown in FIG. 13, terminal 300 (TPC command control unit 302) and base station 400 (TPC command control unit 402) count the number of elapsed slots (or elapsed time) from the timing when BPL switching occurs. It is determined whether the number of elapsed slots exceeds a threshold X. Then, the terminal 300 and the base station 400 switch the TPC command table to be used according to the determination result. Specifically, when the number of elapsed slots is within the threshold X, the terminal 300 and the base station 400 use the TPC command table after BPL switching (for example, see FIG. 14) and the number of elapsed slots is greater than the threshold X , Normal use TPC command table (see, for example, FIG. 9).
 なお、閾値Xは、仕様書で定義されてもよく、上位レイヤのシグナリング等によって基地局400から端末300に通知されてもよい。また、経過時間はslot数に限らずPUSCH等の送信回数としてもよい。 The threshold value X may be defined in a specification, or may be notified from the base station 400 to the terminal 300 by higher layer signaling or the like. Further, the elapsed time is not limited to the number of slots but may be the number of transmissions of PUSCH or the like.
 ここで、図9に示す通常時TPCコマンドテーブルにおいてTPCコマンド情報(0~7)によって通知されるTPCコマンド補正値δPUSCHの範囲は-5~5[dB]であるのに対して、図14に示すBPL切替後TPCコマンドテーブルでは、TPCコマンド情報(0~7)によって通知されるTPCコマンド補正値δPUSCHの範囲は-7~7[dB]である。 Here, while the range of the TPC command correction value δ PUSCH notified by TPC command information (0 to 7) in the normal TPC command table shown in FIG. 9 is −5 to 5 [dB], FIG. In the TPC command table after BPL switching shown in, the range of the TPC command correction value δ PUSCH notified by the TPC command information (0 to 7) is −7 to 7 [dB].
 すなわち、本実施の形態に係るTPCコマンドテーブル(例えば、図9及び図14)では、Closed loop補正値のリセットを指示する指示情報が対応付けられた候補値(図9及び図14では0)以外の候補値(図9及び図14では1~7)毎に、通常時に使用されるTPCコマンド補正値、及び、通常時に使用されるTPCコマンド補正値よりもステップ幅が広いBPL切替後に使用されるTPCコマンド補正値、が対応付けられる。また、BPL切替後に使用されるTPCコマンド補正値のステップ幅(図14参照)は、通常時に使用されるTPCコマンド補正値のステップ幅よりも広く設定されている。 That is, in the TPC command table (for example, FIGS. 9 and 14) according to the present embodiment, other than the candidate values (0 in FIGS. 9 and 14) associated with the instruction information instructing the reset of the closed loop correction value. TPC command correction value used at normal time and after BPL switching whose step width is wider than TPC command correction value used at normal time for every candidate value of (1 to 7 in FIGS. 9 and 14) TPC command correction values are associated with each other. Further, the step width (see FIG. 14) of the TPC command correction value used after the BPL switching is set wider than the step width of the TPC command correction value used at the normal time.
 これにより、端末300及び基地局400では、BPL切替直後には、通常時と比較して、ステップ幅がより広いTPCコマンド補正値δPUSCHを用いた送信電力制御が行われる。よって、端末300及び基地局400は、BPL間のビームゲインを含むパスロス推定誤差又はBPL間の干渉レベルが大きく異なる可能性が高いBPL切替直後において、品質誤差を補正するステップ幅を広くすることにより、送信電力制御値が最適値に収束するまでの時間を短くすることができる。 By this means, in the terminal 300 and the base station 400, immediately after BPL switching, transmission power control using the TPC command correction value δ PUSCH with a wider step width than in normal time is performed. Therefore, the terminal 300 and the base station 400 can increase the step width for correcting the quality error immediately after the BPL switching in which there is a high possibility that the path loss estimation error including the beam gain between the BPLs or the interference level between the BPLs is largely different. The time until the transmission power control value converges to the optimum value can be shortened.
 よって、本実施の形態によれば、BPL切替が発生した場合でも、所望信号電力の低下又は与干渉電力の増加によりシステム性能が劣化することを防ぐことができる。 Therefore, according to the present embodiment, even when BPL switching occurs, it is possible to prevent the system performance from deteriorating due to the reduction of the desired signal power or the increase of the interference power.
 (実施の形態4)
 本実施の形態では、実施の形態3と同様、NRにおいて適用されるビームフォーミングを考慮したTPCコマンドテーブルの設定方法について説明する。
Embodiment 4
In this embodiment, as in the third embodiment, a method of setting a TPC command table in consideration of beamforming applied to NR will be described.
 NRでは、端末のCapability(アンテナ構成、処理能力)に応じて適用可能なビームフォーミング制御が端末毎に異なると考えられる。例えば、ビーム制御に関するCapabilityが低い端末(例えば、アンテナ数が少ない端末)は、ビーム制御に関するCapabilityが高い端末(例えば、アンテナ数が多い端末)と比較して、ビーム幅が広くなる。この場合、端末の移動又は端末周辺の障害物の影響によるビームゲインの変動は、端末に設定されるビーム幅に応じて異なると考えられる。具体的には、ビーム幅が狭い端末ほど、ビームゲインの変動が大きくなる可能性がある。 In NR, it is considered that the applicable beamforming control differs depending on the terminal depending on the capability (antenna configuration, processing capability) of the terminal. For example, a terminal with low capability for beam control (for example, a terminal with a small number of antennas) has a wider beam width than a terminal with high capability for beam control (for example, a terminal with a large number of antennas). In this case, it is considered that the beam gain fluctuation due to the movement of the terminal or the influence of an obstacle around the terminal differs depending on the beam width set for the terminal. Specifically, as the beam width is smaller, the beam gain fluctuation may increase.
 また、ビームゲインの変動は、Closed loop制御によって補正可能であるが、ビーム制御に関するCapabilityの異なる端末が同一のTPCコマンドテーブルを使用すると、Closed loop補正値を最適値に追従させるための精度は端末毎に異なってしまう。このため、端末によっては所望信号電力の低下又は与干渉電力の増加によりシステム性能が劣化する可能性がある。 In addition, although variations in beam gain can be corrected by closed loop control, when terminals with different capabilities related to beam control use the same TPC command table, the accuracy for causing the closed loop correction value to follow the optimum value is the terminal It will be different every time. Therefore, depending on the terminal, the system performance may be degraded due to a decrease in desired signal power or an increase in interference power.
 そこで、本実施の形態では、端末のCapabilityに応じて、使用するTPCコマンドテーブルを切り替える場合について説明する。 Therefore, in the present embodiment, the case where the TPC command table to be used is switched according to the capability of the terminal will be described.
 [端末の構成]
 図15は、本実施の形態に係る端末500の構成を示すブロック図である。なお、図15において、実施の形態1(図5)と同様の構成には同一の符号を付し、その説明を省略する。具体的には、図15では、UE capability設定部501が追加されたこと、及び、TPCコマンド制御部502の動作が実施の形態1と異なる。
[Terminal configuration]
FIG. 15 is a block diagram showing a configuration of terminal 500 according to the present embodiment. In FIG. 15, the same components as those in Embodiment 1 (FIG. 5) are assigned the same reference numerals and descriptions thereof will be omitted. Specifically, in FIG. 15, the addition of the UE capability setting unit 501 and the operation of the TPC command control unit 502 are different from those of the first embodiment.
 UE capability設定部501は、端末500のアンテナ構成、処理能力等に応じて仕様で規定されているUE capability情報を保持している。UE capability設定部501は、UE capability情報をTPCコマンド制御部502へ出力する。 The UE capability setting unit 501 holds UE capability information defined in the specification according to the antenna configuration, processing capability, and the like of the terminal 500. The UE capability setting unit 501 outputs UE capability information to the TPC command control unit 502.
 TPCコマンド制御部502は、UE capability設定部501から入力されるUE capability情報(ビーム制御に関するCapability情報(例えば、ビーム幅情報))に基づいて、TPCコマンド情報とTPCコマンド補正値δPUSCHとの対応付けを示すTPCコマンドテーブルを切り替える。 The TPC command control unit 502 associates the TPC command information with the TPC command correction value δ PUSCH based on UE capability information (for example, capability information (for example, beam width information related to beam control)) input from the UE capability setting unit 501. Switch the TPC command table showing
 [基地局の構成]
 図16は、本実施の形態に係る基地局600の構成を示すブロック図である。なお、図16において、実施の形態1(図6)と同様の構成には同一の符号を付し、その説明を省略する。具体的には、図16では、UE capability設定部601が追加されたこと、及び、TPCコマンド制御部602の動作が実施の形態1と異なる。
[Base station configuration]
FIG. 16 is a block diagram showing a configuration of base station 600 according to the present embodiment. In FIG. 16, the same components as those in Embodiment 1 (FIG. 6) are assigned the same reference numerals and descriptions thereof will be omitted. Specifically, in FIG. 16, the addition of the UE capability setting unit 601 and the operation of the TPC command control unit 602 are different from those of the first embodiment.
 UE capability設定部601は、復調・復号部203から入力される、収容端末から通知されるUE capability情報をTPCコマンド制御部602へ出力する。 The UE capability setting unit 601 outputs, to the TPC command control unit 602, UE capability information notified from the accommodation terminal, which is input from the demodulation / decoding unit 203.
 TPCコマンド制御部602は、端末500(TPCコマンド制御部502)と同様、UE capability設定部601から入力されるUE capability情報に基づいて、当該端末500に対する送信電力制御において使用するTPCコマンドテーブルを切り替える。 Similar to the terminal 500 (TPC command control unit 502), the TPC command control unit 602 switches the TPC command table used in transmission power control for the terminal 500 based on the UE capability information input from the UE capability setting unit 601. .
 次に、端末500及び基地局600における送信電力制御(TPCコマンドテーブルの設定方法)について詳細に説明する。 Next, transmission power control (a method of setting the TPC command table) in terminal 500 and base station 600 will be described in detail.
 図17は、ビーム幅が狭いビームフォーミング制御を行う端末500に設定されるTPCコマンドテーブルの一例を示し、図18は、ビーム幅が広いビームフォーミング制御を行う端末500に設定されるTPCコマンドテーブルの一例を示す。 FIG. 17 shows an example of a TPC command table set for a terminal 500 that performs beamforming control with a narrow beam width, and FIG. 18 is a TPC command table set for a terminal 500 that performs beamforming control with a wide beam width. An example is shown.
 図17に示すTPCコマンドテーブルにおいてTPCコマンド情報(0~7)によって通知されるTPCコマンド補正値δPUSCHの範囲は-6~6[dB]であるのに対して、図18に示すTPCコマンドテーブルでは、TPCコマンド情報(0~7)によって通知されるTPCコマンド補正値δPUSCHの範囲は-3~3[dB]である。 While the range of the TPC command correction value δ PUSCH notified by TPC command information (0 to 7) in the TPC command table shown in FIG. 17 is -6 to 6 [dB], the TPC command table shown in FIG. In this case, the range of the TPC command correction value δ PUSCH notified by the TPC command information (0 to 7) is −3 to 3 [dB].
 すなわち、本実施の形態に係るTPCコマンドテーブル(図17及び図18)では、Closed loop補正値のリセットを指示する指示情報が対応付けられた候補値(図17及び図18では0)以外の候補値(図17及び図18では1~7)毎に、狭いビーム幅を使用する端末500に設定されるTPCコマンド補正値と、広いビーム幅を使用する端末500に設定されるTPCコマンド補正値とが対応付けられる。また、狭いビーム幅を使用する端末500に設定されるTPCコマンド補正値のステップ幅(図17)は、広いビーム幅を使用する端末500に設定されるTPCコマンド補正値のステップ幅よりも広く設定されている。 That is, in the TPC command table according to the present embodiment (FIGS. 17 and 18), candidates other than the candidate values (0 in FIGS. 17 and 18) associated with the instruction information instructing reset of the closed loop correction value. The TPC command correction value set for the terminal 500 using a narrow beam width and the TPC command correction value set for the terminal 500 using a wide beam width for each value (1 to 7 in FIGS. 17 and 18) Are associated. Also, the step width of the TPC command correction value (FIG. 17) set for the terminal 500 using a narrow beam width is set wider than the step width of the TPC command correction value set for the terminal 500 using a wide beam width. It is done.
 これにより、端末500及び基地局600では、ビーム幅が狭い端末500に対して、ビーム幅が広い端末500と比較して、ステップ幅がより広いTPCコマンド補正値δPUSCHを用いた送信電力制御が行われる。よって、端末500及び基地局600は、ビームゲインの変動が大きくなる可能性が高い端末500に対して、品質誤差を補正するステップ幅を広くすることにより、送信電力制御値が最適値に収束するまでの時間を短くすることができる。 By this means, terminal 500 and base station 600 transmit power control using TPC command correction value δ PUSCH with a wider step width than terminal 500 with a narrower beam width than with terminal 500 with a narrower beam width. To be done. Therefore, for the terminal 500 and the base station 600, the transmission power control value converges to the optimum value by widening the step width for correcting the quality error with respect to the terminal 500 where the beam gain fluctuation is likely to be large. Time can be shortened.
 一方、端末500及び基地局600では、ビーム幅が広い端末500に対して、ビーム幅が狭い端末500と比較して、ステップ幅がより狭いTPCコマンド補正値δPUSCHを用いた送信電力制御が行われる。すなわち、端末500及び基地局600は、ビームゲインの変動が比較的小さい端末500に対して、品質誤差を補正するステップ幅を不必要に広くすることを防ぎ、送信電力制御値を最適値に精度良く設定することができる。 On the other hand, in terminal 500 and base station 600, transmission power control using TPC command correction value δ PUSCH with a narrower step width than terminal 500 with a wider beam width is performed for terminal 500 with a wider beam width. It will be. That is, the terminal 500 and the base station 600 prevent the step 500 for correcting the quality error from unnecessarily widening the terminal 500 with relatively small beam gain fluctuation, and make the transmission power control value accurate to the optimum value. It can be set well.
 このように、本実施の形態では、端末500及び基地局600は、端末500毎のUE capability情報に基づいて、TPCコマンド補正値δPUSCHを適切に選択して送信電力制御を行うことができる。これにより、本実施の形態によれば、ビーム制御に関するCapabilityが異なる端末500毎に送信電力制御を適切に行うことができ、所望信号電力の低下又は与干渉電力の増加によりシステム性能が劣化することを防ぐことができる。 Thus, in the present embodiment, terminal 500 and base station 600 can appropriately select the TPC command correction value δ PUSCH and perform transmission power control based on the UE capability information for each terminal 500. Thus, according to the present embodiment, transmission power control can be appropriately performed for each terminal 500 having different capabilities relating to beam control, and system performance is degraded due to a decrease in desired signal power or an increase in interference power. You can prevent.
 なお、TPCコマンドテーブルの切替基準となる情報は、ビーム幅に限定されず、ビーム幅と関連する情報であればよい。 The information used as the switching reference of the TPC command table is not limited to the beam width, and may be information related to the beam width.
 例えば、端末500に設定されるビーム数に応じてTPCコマンドテーブルが切り替えられてもよい。端末500に設定されるビーム数が多いほど、ビーム幅が狭くなると考えられる。 For example, the TPC command table may be switched according to the number of beams set in the terminal 500. It is considered that the beam width becomes narrower as the number of beams set to the terminal 500 is larger.
 また、送信電力算出に用いるパスロス計算に用いる参照信号種別に応じてTPCコマンドテーブルが切り替えられてもよい。参照信号がCSI-RSの方が、SS(Synchronization Signal) Blockに比べて適用されるビーム幅が狭くなると考えられる。 Also, the TPC command table may be switched according to the reference signal type used for path loss calculation used for transmission power calculation. It is considered that the applied beam width of the reference signal CSI-RS is smaller than that of the SS (Synchronization Signal) block.
 また、送信キャリア周波数に応じてTPCコマンドテーブルが切り替えられてもよい。例えば、キャリア周波数が24GHz以上のミリ波帯では、24GHz未満のキャリア周波数と比べて、アンテナ数もより多く、適用されるビーム幅が狭くなると考えられる。 Also, the TPC command table may be switched according to the transmission carrier frequency. For example, in the millimeter wave band where the carrier frequency is 24 GHz or more, it is considered that the number of antennas is larger and the applied beam width is narrower than the carrier frequency less than 24 GHz.
 このように、ビーム数、パスロス推定に用いる参照信号種別、あるいは送信キャリア周波数に応じてTPCコマンドテーブルが切り替えられる場合でも、本実施の形態と同様の効果を得ることができる。 As described above, even when the TPC command table is switched according to the number of beams, the type of reference signal used for path loss estimation, or the transmission carrier frequency, the same effect as that of the present embodiment can be obtained.
 以上、本開示の各実施の形態について説明した。 The embodiments of the present disclosure have been described above.
 なお、上述した「ビーム」は以下のように定義されてもよい。
 (1)端末100,300,500の送信指向性パターン(アナログビームフォーミングを含む)
 (2)基地局200,400,600の受信指向性パターン(アナログビームフォーミングを含む)
 (3)端末100,300,500の送信指向性パターンと基地局200,400,600の受信指向性パターンとの組み合わせ(BPL)
 (4)Precoding Matrix Indicator (PMI)
 (5)Codebook番号
In addition, the above-mentioned "beam" may be defined as follows.
(1) Transmission directivity pattern of terminals 100, 300, 500 (including analog beam forming)
(2) Reception directivity patterns of base stations 200, 400, 600 (including analog beamforming)
(3) Combination of transmission directivity pattern of terminals 100, 300, 500 and reception directivity pattern of base stations 200, 400, 600 (BPL)
(4) Precoding Matrix Indicator (PMI)
(5) Codebook number
 また、上記実施の形態では、PUSCHの送信電力制御について説明したが、送信電力制御の対象はPUSCHに限定されず、本開示は、Closed loop補正値を用いる上りチャネルの送信電力制御に適用できる。例えば、本開示は、PUSCHの代わりに、SRS又はPUCCHに対する送信電力制御にも適用でき、同様の効果を得ることができる。 Also, although transmission power control of PUSCH has been described in the above embodiment, the target of transmission power control is not limited to PUSCH, and the present disclosure can be applied to transmission power control of an uplink channel using a closed loop correction value. For example, the present disclosure can be applied to transmission power control for SRS or PUCCH instead of PUSCH, and similar effects can be obtained.
 また、図8-10、図14、図17、図18に示すTPCコマンドテーブルは一例であって、TPCコマンド情報の候補値数(bit数)、又は、TPCコマンド情報に対応付けられるTPCコマンド補正値は、図8-10、図14、図17、図18に示す値に限定されない。 The TPC command tables shown in FIGS. 8-10, 14, 17, and 18 are an example, and the number of candidate values of TPC command information (the number of bits), or TPC command correction associated with TPC command information. The values are not limited to the values shown in FIG. 8-10, FIG. 14, FIG. 17, and FIG.
 また、上記実施の形態で示した明示的なリセット通知に加えて、LTEと同様な送信電力制御用パラメータの再設定に応じた間接的なリセット通知を組み合わせてもよい。つまり、端末は、DCIに含まれるTPCコマンド情報にClosed loop補正値をリセットする指示情報が含まれる場合と、基地局から上位レイヤ通知で送信電力制御用パラメータが再設定される場合のぞれぞれでClosed loop補正値をリセットする。これにより、パラメータの再設定後に、DCIでリセット通知する必要がないので制御情報のオーバーヘッドが低減できる。 Further, in addition to the explicit reset notification described in the above embodiment, an indirect reset notification may be combined according to reconfiguration of transmission power control parameters similar to LTE. That is, when the terminal includes instruction information for resetting the Closed loop correction value in the TPC command information included in the DCI, and when the transmission power control parameter is re-set from the base station by upper layer notification. This resets the Closed loop correction value. As a result, it is possible to reduce the overhead of control information because it is not necessary to notify reset by DCI after setting parameters.
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 The present disclosure can be implemented in software, hardware, or software in conjunction with hardware. Each functional block used in the description of the above embodiment is partially or entirely realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or totally It may be controlled by one LSI or a combination of LSIs. The LSI may be configured from individual chips, or may be configured from one chip so as to include some or all of the functional blocks. The LSI may have data inputs and outputs. An LSI may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration. The method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry, general purpose processors, or dedicated processors is also possible. In addition, an FPGA (Field Programmable Gate Array) that can be programmed after LSI fabrication, or a reconfigurable processor that can reconfigure connection and setting of circuit cells in the LSI may be used. The present disclosure may be implemented as digital processing or analog processing. Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. The application of biotechnology etc. may be possible.
 本開示の端末は、複数の候補値のうち何れか1つを示す送信電力制御情報を用いて上りチャネルの送信電力を制御する回路と、前記送信電力で前記上りチャネルを送信する送信機と、を具備し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 A terminal according to the present disclosure includes: a circuit that controls transmission power of an uplink channel using transmission power control information indicating any one of a plurality of candidate values; and a transmitter that transmits the uplink channel using the transmission power. The instruction information for resetting the control value used for the closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
 本開示の端末において、前記複数の候補値のうち、前記指示情報に対応付けられた候補値以外の候補値には、前記制御値を補正する補正値がそれぞれ対応付けられる。 In the terminal of the present disclosure, among the plurality of candidate values, candidate values other than the candidate value associated with the instruction information are associated with correction values for correcting the control value.
 本開示の端末において、前記指示情報が対応付けられた候補値以外の候補値毎に、第1の補正値、及び、前記第1の補正値よりステップ幅が広い第2の補正値が対応付けられる。 In the terminal of the present disclosure, a first correction value and a second correction value having a step width wider than the first correction value are associated for each candidate value other than the candidate value associated with the instruction information. Be
 本開示の端末において、前記第1の補正値は、前記端末に設定されるビームの切替後からの所定期間内において使用される。 In the terminal of the present disclosure, the first correction value is used within a predetermined period after switching of a beam set to the terminal.
 本開示の端末において、前記第1の補正値は、前記端末に設定されるビーム幅が狭い場合に使用され、前記第2の補正値は、前記端末に設定されるビーム幅が広い場合に使用される。 In the terminal of the present disclosure, the first correction value is used when the beam width set to the terminal is narrow, and the second correction value is used when the beam width set to the terminal is wide Be done.
 本開示の端末において、前記複数の候補値毎に、前記制御値を補正する補正値が対応付けられ、前記補正値は、前記補正値の過去の値を累積して前記制御値を算出する第1のモードに対応する第1の補正値、及び、前記補正値の過去の値を累積せずに前記制御値を算出する第2のモードに対応する第2の補正値の何れかであり、前記指示情報は、前記第2の補正値の何れかに対応する前記候補値に対応付けられる。 In the terminal of the present disclosure, a correction value for correcting the control value is associated with each of the plurality of candidate values, and the correction value calculates the control value by accumulating past values of the correction value. One of a first correction value corresponding to one mode and a second correction value corresponding to a second mode in which the control value is calculated without accumulating past values of the correction value, The instruction information is associated with the candidate value corresponding to any one of the second correction values.
 本開示の端末において、前記指示情報は、前記第2の補正値のうち絶対値が最も小さい値に対応する前記候補値に対応付けられる。 In the terminal of the present disclosure, the instruction information is associated with the candidate value corresponding to the value with the smallest absolute value among the second correction values.
 本開示の基地局は、上りチャネルの送信電力の制御に用いる、複数の候補値のうち何れか1つを示す送信電力制御情報を生成する回路と、前記送信電力で送信された前記上りチャネルを受信する受信機と、を具備し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 The base station of the present disclosure uses a circuit for generating transmission power control information indicating any one of a plurality of candidate values, which is used to control the transmission power of the uplink channel, and the uplink channel transmitted by the transmission power. A receiver is provided, and at least one of the plurality of candidate values is associated with instruction information for resetting a control value used for closed loop control of the transmission power.
 本開示の送信方法は、複数の候補値のうち何れか1つを示す送信電力制御情報を用いて上りチャネルの送信電力を制御し、前記送信電力で前記上りチャネルを送信し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 The transmission method of the present disclosure controls transmission power of an uplink channel using transmission power control information indicating any one of a plurality of candidate values, transmits the uplink channel with the transmission power, and transmits the plurality of candidates. Instruction information for resetting a control value used for closed loop control of the transmission power is associated with at least one of the values.
 本開示の受信方法は、上りチャネルの送信電力の制御に用いる、複数の候補値のうち何れか1つを示す送信電力制御情報を生成し、前記送信電力で送信された前記上りチャネルを受信し、前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる。 The reception method of the present disclosure generates transmission power control information indicating any one of a plurality of candidate values used to control transmission power of an uplink channel, and receives the uplink channel transmitted by the transmission power. The instruction information for resetting the control value used for the closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
 本開示の一態様は、移動通信システムに有用である。 One aspect of the present disclosure is useful for a mobile communication system.
 100,300,500 端末
 101,201 アンテナ
 102,202 無線受信部
 103,203 復調・復号部
 104,204,302,402,502,602 TPCコマンド制御部
 105 送信電力制御部
 106 データ生成部
 107,207 符号化・変調部
 108,208 無線送信部
 200,400,600 基地局
 205 スケジューリング部
 206 制御情報生成部
 301 BPL切替判定部
 401 BPL制御部
 501,601 UE capability設定部
100, 300, 500 Terminal 101, 201 Antenna 102, 202 Radio reception unit 103, 203 Demodulation / decoding unit 104, 204, 302, 402, 502, 602 TPC command control unit 105 Transmission power control unit 106 Data generation unit 107, 207 Coding / modulation unit 108, 208 Radio transmission unit 200, 400, 600 Base station 205 Scheduling unit 206 Control information generation unit 301 BPL switching determination unit 401 BPL control unit 501, 601 UE capability setting unit

Claims (10)

  1.  複数の候補値のうち何れか1つを示す送信電力制御情報を用いて上りチャネルの送信電力を制御する回路と、
     前記送信電力で前記上りチャネルを送信する送信機と、
     を具備し、
     前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる、
     端末。
    A circuit for controlling transmission power of an uplink channel using transmission power control information indicating any one of a plurality of candidate values;
    A transmitter for transmitting the uplink channel at the transmission power;
    Equipped with
    Instruction information for resetting a control value used for closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
    Terminal.
  2.  前記複数の候補値のうち、前記指示情報に対応付けられた候補値以外の候補値には、前記制御値を補正する補正値がそれぞれ対応付けられる、
     請求項1に記載の端末。
    Among the plurality of candidate values, candidate values other than the candidate values associated with the instruction information are associated with correction values for correcting the control value, respectively.
    The terminal according to claim 1.
  3.  前記指示情報が対応付けられた候補値以外の候補値毎に、第1の補正値、及び、前記第1の補正値よりステップ幅が広い第2の補正値が対応付けられる、
     請求項2に記載の端末。
    A first correction value and a second correction value having a step width wider than the first correction value are associated with each candidate value other than the candidate value associated with the instruction information.
    The terminal according to claim 2.
  4.  前記第1の補正値は、前記端末に設定されるビームの切替後からの所定期間内において使用される、
     請求項3に記載の端末。
    The first correction value is used within a predetermined period after switching of the beam set to the terminal.
    The terminal according to claim 3.
  5.  前記第1の補正値は、前記端末に設定されるビーム幅が狭い場合に使用され、前記第2の補正値は、前記端末に設定されるビーム幅が広い場合に使用される、
     請求項3に記載の端末。
    The first correction value is used when the beam width set to the terminal is narrow, and the second correction value is used when the beam width set to the terminal is wide.
    The terminal according to claim 3.
  6.  前記複数の候補値毎に、前記制御値を補正する補正値が対応付けられ、
     前記補正値は、前記補正値の過去の値を累積して前記制御値を算出する第1のモードに対応する第1の補正値、及び、前記補正値の過去の値を累積せずに前記制御値を算出する第2のモードに対応する第2の補正値の何れかであり、
     前記指示情報は、前記第2の補正値の何れかに対応する前記候補値に対応付けられる、
     請求項1に記載の端末。
    A correction value for correcting the control value is associated with each of the plurality of candidate values,
    The correction value may be a first correction value corresponding to a first mode in which the control value is calculated by accumulating past values of the correction value, and the correction value may not accumulate the past value of the correction value. Any of the second correction values corresponding to the second mode for calculating the control value,
    The instruction information is associated with the candidate value corresponding to any of the second correction values.
    The terminal according to claim 1.
  7.  前記指示情報は、前記第2の補正値のうち絶対値が最も小さい値に対応する前記候補値に対応付けられる、
     請求項6に記載の端末。
    The instruction information is associated with the candidate value corresponding to the smallest absolute value of the second correction values.
    The terminal according to claim 6.
  8.  上りチャネルの送信電力の制御に用いる、複数の候補値のうち何れか1つを示す送信電力制御情報を生成する回路と、
     前記送信電力で送信された前記上りチャネルを受信する受信機と、
     を具備し、
     前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる、
     基地局。
    A circuit for generating transmission power control information indicating any one of a plurality of candidate values used for control of transmission power of an uplink channel;
    A receiver for receiving the uplink channel transmitted by the transmission power;
    Equipped with
    Instruction information for resetting a control value used for closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
    base station.
  9.  複数の候補値のうち何れか1つを示す送信電力制御情報を用いて上りチャネルの送信電力を制御し、
     前記送信電力で前記上りチャネルを送信し、
     前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる、
     送信方法。
    Control transmission power of the uplink channel using transmission power control information indicating any one of a plurality of candidate values,
    Transmitting the uplink channel with the transmission power;
    Instruction information for resetting a control value used for closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
    How to send
  10.  上りチャネルの送信電力の制御に用いる、複数の候補値のうち何れか1つを示す送信電力制御情報を生成し、
     前記送信電力で送信された前記上りチャネルを受信し、
     前記複数の候補値のうち少なくとも1つには、前記送信電力の閉ループ制御に用いる制御値をリセットする指示情報が対応付けられる、
     受信方法。
    Generating transmission power control information indicating any one of a plurality of candidate values used for control of transmission power of the uplink channel;
    Receiving the uplink channel transmitted with the transmission power;
    Instruction information for resetting a control value used for closed loop control of the transmission power is associated with at least one of the plurality of candidate values.
    Reception method.
PCT/JP2018/030936 2017-10-06 2018-08-22 Terminal, base station, transmission method, and reception method WO2019069571A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/643,760 US11191030B2 (en) 2017-10-06 2018-08-22 Terminal, base station, transmission method, and reception method
JP2019546562A JP7069195B2 (en) 2017-10-06 2018-08-22 Terminal, base station, transmission method and reception method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017195998 2017-10-06
JP2017-195998 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019069571A1 true WO2019069571A1 (en) 2019-04-11

Family

ID=65994503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030936 WO2019069571A1 (en) 2017-10-06 2018-08-22 Terminal, base station, transmission method, and reception method

Country Status (3)

Country Link
US (1) US11191030B2 (en)
JP (1) JP7069195B2 (en)
WO (1) WO2019069571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230861A1 (en) * 2019-05-15 2020-11-19 株式会社Nttドコモ User equipment and wireless communication method
US20230170976A1 (en) * 2021-11-30 2023-06-01 Qualcomm Incorporated Beam selection and codebook learning based on xr perception

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117693008A (en) * 2022-08-23 2024-03-12 华为技术有限公司 Communication method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133619A (en) * 2014-01-14 2015-07-23 株式会社Nttドコモ User terminal, radio base station and radio communication method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804867B (en) * 2009-06-16 2016-07-27 夏普株式会社 Mobile station apparatus, base station apparatus and wireless communications method
JP6073073B2 (en) 2012-05-10 2017-02-01 シャープ株式会社 Terminal apparatus, base station apparatus, and communication method
JP6968914B2 (en) * 2017-05-04 2021-11-17 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. Terminal sounding methods and devices for this in wireless communication systems
CN108134659B (en) * 2017-08-11 2021-01-15 中兴通讯股份有限公司 Parameter configuration method, power determination method, device and communication node

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133619A (en) * 2014-01-14 2015-07-23 株式会社Nttドコモ User terminal, radio base station and radio communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on power control framework", 3GPP TSG-RAN WG1 MEETING 90BIS RL-1717892, 30 September 2017 (2017-09-30), pages 1 - 5, XP051351985 *
ERICSSON: "NR power control framework", 3GPP TSG-RAN WG1 MEETING #90BIS RL-1718652, 3 October 2017 (2017-10-03), pages 1 - 4, XP051353183 *
MITSUBISHI ELECTRIC: "UL transmission power control", 3GPP TSG-RAN WG1 NR ADHOC #3 RL-1715505, 11 September 2017 (2017-09-11), pages 1 - 3, XP051329049 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230861A1 (en) * 2019-05-15 2020-11-19 株式会社Nttドコモ User equipment and wireless communication method
CN114128358A (en) * 2019-05-15 2022-03-01 株式会社Ntt都科摩 User terminal and wireless communication method
US20230170976A1 (en) * 2021-11-30 2023-06-01 Qualcomm Incorporated Beam selection and codebook learning based on xr perception

Also Published As

Publication number Publication date
US20200280925A1 (en) 2020-09-03
JPWO2019069571A1 (en) 2020-11-19
JP7069195B2 (en) 2022-05-17
US11191030B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
US11129113B2 (en) Terminal apparatus, base station and communication method
US10841882B2 (en) Radio communication base station apparatus and method for controlling transmission power of sounding reference signal
US10779247B2 (en) Communication system, terminal, and base station
US10979984B2 (en) Terminal and communication method
JP7069195B2 (en) Terminal, base station, transmission method and reception method
US20220264482A1 (en) Link-adaptation power backoff
JP7232768B2 (en) Terminal, base station, transmission method and reception method
WO2012093454A1 (en) Transmission device and transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865179

Country of ref document: EP

Kind code of ref document: A1