WO2012093454A1 - Transmission device and transmission method - Google Patents

Transmission device and transmission method Download PDF

Info

Publication number
WO2012093454A1
WO2012093454A1 PCT/JP2011/007216 JP2011007216W WO2012093454A1 WO 2012093454 A1 WO2012093454 A1 WO 2012093454A1 JP 2011007216 W JP2011007216 W JP 2011007216W WO 2012093454 A1 WO2012093454 A1 WO 2012093454A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission power
signal
srs
terminal
Prior art date
Application number
PCT/JP2011/007216
Other languages
French (fr)
Japanese (ja)
Inventor
星野 正幸
岩井 敬
西尾 昭彦
辰輔 高岡
今村 大地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012093454A1 publication Critical patent/WO2012093454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands

Definitions

  • the present invention relates to a transmission device and a transmission method.
  • the uplink In the uplink from the terminal (UE: User Equipment) to the base station (BS (Base Station) or eNB) in the cellular communication system, information transmission using a plurality of antenna ports (multi-antenna) is performed on the transmission / reception side. It is being considered. This is called MIMO (Multiple Input Multiple Output) transmission technology in the uplink.
  • MIMO Multiple Input Multiple Output
  • the uplink MIMO transmission technology is expected to improve performance in terms of both an increase in cell radius by beamforming and an increase in data rate by spatial multiplexing.
  • various signals (uplink signals) transmitted on the uplink channel (uplink channel) of the cellular communication system include, for example, Periodic Sounding Reference Signal (hereinafter referred to as P-SRS), Aperiodic SRS (hereinafter referred to as A-). SRS), a signal transmitted on an uplink control channel (PUCCH: Physical-Uplink-Control-CHannel) (uplink control signal; hereinafter referred to as PUCCH signal), and an uplink data channel (PUSCH: Physical-Uplink-Shared-CHannel) (Uplink data signal; hereinafter referred to as a PUSCH signal).
  • P-SRS is a channel quality measurement reference signal transmitted periodically.
  • A-SRS is a channel quality measurement reference signal transmitted aperiodically in response to an instruction from the base station.
  • the PUCCH is a control channel for transmitting a response signal (ACK / NACK signal) corresponding to a demodulation result of downlink data (link from the base station to the terminal, downlink), downlink channel quality information, or the like. It is.
  • the PUSCH is a data channel for transmitting uplink data (uplink data).
  • the above-described reference signal (P-SRS or A-SRS) and data need to be related to each other.
  • the base station applies frequency resource allocation based on the result of observing the P-SRS transmitted from the terminal, sets the frequency resource used for transmitting the PUSCH signal (uplink data) of the terminal, and Apply precoding control based on Codebook to control the beam in a closed loop.
  • SINR Signal-to-Interference-and-Noise-Ratio
  • the terminal when the number of antenna ports smaller than the number of antenna ports included in the terminal is set for transmission of a certain uplink signal, the terminal has more than the set number of antenna ports under its own responsibility.
  • the uplink signal can be transmitted using the antenna port.
  • the terminal allocates the P-SRS to each physical antenna (Physical antenna) using ImplementationIbased precoding when transmitting P-SRS (for example, using one antenna port 10).
  • ImplementationIbased precoding the operation using only the antenna port that observed a strong signal (signal with good reception quality) based on the observation result of the downlink signal, or the power distribution according to the ratio of the received power The operation to do is mentioned.
  • LTE 3rd Generation Partner Project Long Term Evolution
  • SRS reference signal
  • P CMAX [dBm] indicates the maximum transmission power of the SRS that can be transmitted by the terminal.
  • P SRS_OFFSET [dBm] indicates an offset value (parameter set from the base station) with respect to the transmission power of PUSCH transmitted by the terminal.
  • M SRS indicates the number of frequency resource blocks allocated to the SRS.
  • P O_PUSCH [dBm] indicates an initial value of PUSCH transmission power (a parameter set from the base station).
  • PL represents a path loss level [dB] measured by the terminal.
  • represents a weighting coefficient (a parameter set from the base station) representing a compensation ratio of path loss (PL).
  • f (i) is a subframe #i including a past value of a TPC (Transmission Power Control) command (control value, for example, +3 dB, +1 dB, 0 dB, ⁇ 1 dB) to be closed loop control (closed loop control).
  • TPC Transmission Power Control
  • transmission powers P PUCCH (i) and P PUSCH (i) for the uplink control channel (PUCCH) and uplink data channel (PUSCH) in sub-frame #i are expressed by the following equations (2), (3 ) Respectively.
  • P O_PUCCH [dBm] indicates an initial value of PUCCH transmission power (a parameter set by the base station).
  • h (n CQI , n HARQ ) and ⁇ F_PUCCH (F) indicate parameters set according to the format type and the number of bits of PUCCH.
  • g (i) indicates the cumulative value in subframe #i including the past value of the TPC command to be closed-loop controlled, similarly to f (i) in Expression (1).
  • M PUSCH (i) indicates the number of PUSCH frequency resource blocks allocated in subframe #i.
  • ⁇ TF (i) indicates an offset value that can be set according to the amount of control information when transmitting control information using PUSCH.
  • LTE-Advanced uplink which is an extension of LTE
  • a terminal having a plurality of antenna ports is supported as in the above-described MIMO transmission in the uplink.
  • TPC control uplink signal transmission power control
  • the same value is applied to the parameter and TPC command used in Equation (1) regardless of the antenna port.
  • an error in TPC control an error between a target transmission power set in the terminal and a transmission power actually used by the terminal during transmission. Called.
  • the point to consider regarding the TPC error is that the TPC error becomes larger as the transmission time interval of the upstream signal is longer. Specifically, since the temperature of the terminal PA changes with the passage of time, the amplification characteristics of the PA change with the passage of time. Therefore, the longer the uplink signal transmission time interval, the greater the degree of change in the PA amplification characteristics at the terminal. That is, it is assumed that the TPC error becomes larger as the uplink signal transmission time interval is longer.
  • the TPC error becomes larger as the transmission power change amount (hereinafter referred to as ⁇ P) from the previous transmission (at the time of the previous transmission) is larger.
  • ⁇ P transmission power change amount
  • a terminal in which a multi-stage PA is mounted as an amplifier circuit an increase or decrease in the number of PA stages used when amplifying transmission power increases as ⁇ P increases. That is, the increase / decrease in the number of stages of PA increases as ⁇ P increases, so the error in each stage of PA is added, and the TPC error becomes larger.
  • the transmission power is proportional to the frequency bandwidth of the transmission signal
  • the greater the ⁇ P the greater the increase / decrease in transmission power
  • the change in the frequency position and bandwidth of the transmission signal since the PA amplification characteristic also depends on the frequency (frequency position and bandwidth), the larger the ⁇ P (the greater the increase / decrease in the frequency position and bandwidth), the greater the TPC error.
  • FIG. 2 shows the definition of the allowable range of TPC error when the elapsed time (transmission gap) from the previous uplink signal transmission is longer than 20 ms (transmission gap> 20 ms). That is, as shown in FIG. 2, when the elapsed time is longer than 20 ms, a TPC error within a range of ⁇ 9.0 dB is allowed.
  • FIG. 3 shows the definition of the allowable range of the TPC error when the elapsed time from the previous uplink signal transmission is 20 ms or less (transmission gap ⁇ 20 ms). As shown in FIG. 3, when the elapsed time is within 20 ms, the allowable range of the TPC error is larger as the transmission power change amount (power step) ⁇ P is larger.
  • the base station cannot perform PUSCH frequency resource allocation, MCS selection, and the like with high accuracy, and the system performance deteriorates. Therefore, in order to prevent the degradation of SINR measurement accuracy due to the TPC error, it is conceivable to set the SRS transmission power in consideration of the assumed TPC error of the terminal. That is, the terminal sets the transmission power of the SRS larger than the target transmission power in consideration of the assumed maximum TPC error variation. For example, the terminal increases the value of the offset value P SRS_OFFSET with respect to the PUSCH transmission power shown in Equation (1) by the amount of the assumed maximum TPC error variation.
  • the SRS received SINR (input SINR) in the base station does not fall into a degraded region (for example, 0 dB or less) due to the TPC error. And deterioration of SINR measurement accuracy (channel quality measurement accuracy) can be prevented.
  • a different number of antenna ports can be set for each uplink signal, so that a continuous uplink signal (for example, the uplink signal transmitted immediately before and the uplink signal transmitted this time) Even if the transmission time interval is within 20 ms, the number of antenna ports used when transmitting each uplink signal may be different. Therefore, when a different number of antenna ports is set for each uplink signal and the allowable range of the TPC error is defined in the same manner as in the prior art (for example, FIG. 2 and FIG. 3), the allowable error in transmission power control is defined. In some cases, the uplink signal transmission time interval cannot be properly specified.
  • the terminal has two antenna ports, one antenna port (Port 10) is set for PUCCH signal transmission, and two antenna ports (Port 20, 21) for P-SRS transmission.
  • the PUCCH signal is transmitted at time t1 (previous transmission)
  • the P-SRS is transmitted at time t2 (current transmission)
  • each uplink signal is transmitted from time t1 to time t2.
  • T is up to 20 ms.
  • a case where the elapsed time (transmission time interval) T is 20 ms or less is a case where the TPC error is small, and a case where the elapsed time T is longer than 20 ms is a case where the TPC error is large.
  • the transmission power of the P-SRS transmitted in is not set large (that is, the transmission power of the P-SRS is set small).
  • the set number of antenna ports differs between the PUCCH signal transmitted at time t1 and the P-SRS transmitted at time t2.
  • one antenna port is not used during transmission of the PUCCH signal (that is, during previous transmission). That is, since the terminal does not consider the transmission time interval at the antenna port that was not used at the previous transmission, the TPC error of the PA corresponding to the antenna port becomes large.
  • An object of the present invention is to provide a transmission apparatus and a transmission method capable of preventing deterioration of SINR measurement accuracy due to a TPC error in a base station even when different numbers of antenna ports are set for transmission of each uplink signal. is there.
  • a transmission apparatus includes a control unit that controls transmission power of a signal, and a transmission unit that transmits the signal through at least one antenna port with the controlled transmission power. Then, the control unit controls the transmission power based on a comparison between the number of the at least one antenna port and the number of antenna ports used for the previous transmission.
  • a transmission method is a transmission method that controls transmission power of a signal, and transmits the signal through the at least one antenna port with the controlled transmission power.
  • the transmission power is controlled based on a comparison between the number of one antenna port and the number of antenna ports used for the previous transmission.
  • the present invention even when different numbers of antenna ports are set for transmission of each uplink signal, it is possible to prevent deterioration in SINR measurement accuracy due to TPC errors in the base station.
  • the figure which shows the setting and precoding processing of the number of antenna ports The figure which shows a response
  • change_quantity, and the allowable range of TPC error Diagram for explaining the problems of the prior art
  • the block diagram which shows the structure of the terminal which concerns on Embodiment 1 of this invention.
  • compatibility with the magnitude relationship of the transmission time interval T and antenna port number, and offset correction value which concerns on Embodiment 1 of this invention The block diagram which shows the structure of the terminal which concerns on Embodiment 2 of this invention.
  • 0 in Embodiment 2 of this invention The block diagram which shows the structure of the terminal which concerns on Embodiment 3 of this invention.
  • P-SRS, A-SRS, PUCCH signal, and PUSCH signal will be described as uplink signals, but the uplink signals are not limited to these.
  • the number of antenna ports used for transmission of P-SRS, A-SRS, PUCCH signal, and PUSCH signal is individually set. It is assumed that the number of antenna ports for each uplink signal is set semi-static and does not change for several hundred milliseconds to several seconds. That is, here, the number of antenna ports used for transmission of the uplink signal is specified by the type of the uplink signal.
  • FIG. 5 shows the main configuration of the terminal according to the present embodiment.
  • transmission power control section 109 controls uplink signal transmission power
  • transmission RF sections 111-1 and 111-2 control uplink power with at least one antenna port.
  • the transmission power control unit 109 controls the transmission power based on a comparison between the number of the at least one antenna port and the number of antenna ports used for the previous transmission.
  • FIG. 6 shows the configuration of terminal 100 according to the present embodiment.
  • transmission processing sections 101-1 and 101-2 are provided corresponding to the number of antenna ports that can be used in terminal 100, respectively.
  • the transmission RF units 111-1 and 111-2 are provided according to the number of antennas 112-1 and 112-2 (physical antennas), respectively. That is, here, as shown in FIG. 6, terminal 100 can transmit a signal using a maximum of two antenna ports.
  • terminal 100 includes two PAs corresponding to antennas 112-1 and 112-2, respectively.
  • One antenna port is assumed to be composed of one or a plurality of physical antennas.
  • Each transmission processing unit 101 mainly includes a generation unit 102, a mapping unit 103, an IFFT (InverseInFourier Transform) unit 104, a CP (Cyclic Prefix) addition unit 105, and a transmission power control unit 109.
  • IFFT InverseInFourier Transform
  • CP Cyclic Prefix
  • the generation unit 102 generates an uplink signal transmitted from the terminal 100, and outputs the generated uplink signal to the mapping unit 103.
  • the generation unit 102 when generating P-SRS or A-SRS as a reference signal, the generation unit 102 generates an RS sequence (for example, a ZC (Zadoff-Chu) sequence), and a cyclic shift amount (indicated by the base station) A phase rotation corresponding to CS (Cyclic Shift) amount is given to the RS series.
  • the generation unit 102 when generating the PUCCH signal as the control signal, the generation unit 102 performs channel coding on a CQI (Channel Quality Indicator) report signal or an HARQ (Hybrid Automatic Transmission Request) ACK / NACK signal, etc. And apply modulation. Further, when generating the PUSCH signal as uplink data (data signal), the generation unit 102 uses the transport block size, the coding rate, and the modulation scheme instructed by the base station for the uplink data, respectively. Encode, rate match and modulate.
  • CQI Channel Quality Indicator
  • HARQ Hybrid Automatic Transmission Request
  • Mapping section 103 maps the signal (RS sequence, control signal, or uplink data) input from generation section 102 to the frequency resource based on the frequency resource allocation information instructed from the base station, and outputs it to IFFT section 104 .
  • the IFFT unit 104 performs IFFT processing on the signal input from the mapping unit 103, and outputs the signal after IFFT processing to the CP adding unit 105.
  • CP adding section 105 adds the same signal as the tail part of the signal after IFFT inputted from IFFT section 104 to the head as CP, and outputs the signal after CP addition to transmission power control section 109.
  • the offset setting unit 106 includes a calculation unit 107 and an offset value determination unit 108.
  • the calculation unit 107 of the offset setting unit 106 starts from the transmission time of the uplink signal (PUSCH signal, PUCCH signal, or SRS (P-SRS, A-SRS)) transmitted immediately before (previous transmission) by the terminal 100.
  • the elapsed time of is calculated.
  • the calculation unit 107 also calculates the number of antenna ports used when transmitting the uplink signal transmitted immediately before (previous transmission) at the terminal 100 and the number of antenna ports used when transmitting the uplink signal transmitted this time from the terminal 100. Calculate the magnitude relationship.
  • the calculating unit 107 outputs the calculated relationship between the elapsed time and the number of antenna ports to the offset value determining unit 108.
  • the offset value determination unit 108 of the offset setting unit 106 is used when setting the transmission power of the uplink signal transmitted from the terminal 100 according to the magnitude relationship between the elapsed time input from the calculation unit 107 and the number of antenna ports.
  • An offset value for the transmission power of the uplink signal (hereinafter referred to as a transmission power offset value. For example, P SRS_OFFSET shown in Expression (1)) is set.
  • offset value determination section 108 outputs the transmission power offset value to transmission power control section 109. Details of the transmission power offset value setting process in offset setting section 106 will be described later.
  • Transmission power control section 109 controls the transmission power of the signal (uplink signal) input from CP adding section 105 according to the transmission power offset value input from offset value determination section 108, and pre-transmits the signal after the transmission power control. Output to coding section 110.
  • the precoding unit 110 performs precoding processing on the signals input from the transmission processing units 101-1 and 101-2 (that is, signals corresponding to the respective antenna ports) in the same manner as in FIG. For example, when transmitting a signal using one antenna port, the precoding unit 110 distributes the signal to each physical antenna using Implementation based precoding. In this case, the signal is transmitted by the two antennas 112-1 and 112-2. In addition, a signal that does not support precoding among signals using one antenna port is not subjected to precoding processing. In this case, the signal is transmitted from either one of the two antennas 112-1 and 112-2.
  • the precoding unit 110 performs codebook-based precoding on signals transmitted through a plurality of antenna ports (two antenna ports). Then, precoding section 110 outputs the precoded signal to transmission RF sections 111-1 and 111-2, respectively.
  • the transmission RF unit 111 performs transmission processing such as D / A conversion, up-conversion, and amplification on the signal input from the precoding unit 110, and transmits the signal after the transmission processing from the antenna 112.
  • the uplink signal is transmitted via at least one antenna port with the transmission power controlled by transmission power control section 109.
  • FIG. 7 shows the configuration of base station 200 according to the present embodiment.
  • the reception RF unit 202 receives a signal transmitted from the terminal 100 (FIG. 6) via the antenna 201, and performs reception processing such as down-conversion and A / D conversion on the received signal. I do.
  • the signal transmitted from terminal 100 includes each uplink signal (for example, PUCCH signal, PUSCH signal, or SRS (P-SRS, A-SRS)).
  • reception RF section 202 outputs the signal after reception processing to CP removal section 203.
  • CP removing section 203 removes the CP added to the head of the signal inputted from reception RF section 202 and outputs the signal after CP removal to FFT (Fast Fourier Transform) section 204.
  • FFT Fast Fourier Transform
  • the FFT unit 204 performs an FFT process on the signal input from the CP removal unit 203 to convert the signal into a frequency domain signal, and outputs the frequency domain signal to the demapping unit 205.
  • the demapping unit 205 determines the desired value from the frequency domain signal input from the FFT unit 204. A signal corresponding to the transmission band (frequency resource) of the terminal is extracted. Then, the demapping unit 205 outputs the extracted signal (SRS, PUCCH signal, or PUSCH signal) to the corresponding components of the SRS SINR measurement unit 208, the PUCCH resource detection unit 210, and the PUSCH demodulation unit 212, respectively. To do.
  • the cyclic shift amount setting unit 206 outputs the cyclic shift amount for the desired terminal, which is instructed by the base station 200 to the terminal 100 (desired terminal), to the SRS SINR measurement unit 208.
  • the offset setting unit 207 performs the same processing as the offset setting unit 106 of the terminal 100. That is, the offset setting unit 207 includes the elapsed time from the transmission time of the uplink signal transmitted immediately before (previous transmission) from the terminal 100 (desired terminal), and the number of antenna ports between the previous transmission and the current transmission. The transmission power offset value for each uplink signal is set according to the magnitude relationship. Then, offset setting section 207 outputs the set transmission power offset value to data SINR derivation section 209, PUCCH demodulation section 211, and PUSCH decoding section 213, respectively.
  • SIRS measurement unit for SRS 208 complex-divides the SRS (P-SRS or A-SRS) input from demapping unit 205 and the RS sequence known between transmission and reception to obtain a correlation signal in the frequency domain. . Furthermore, the SNR SINR measurement unit 208 performs an IDFT (Inverse Discrete Fourier Transform) process on the frequency domain correlation signal to calculate a time domain correlation signal (that is, a delay profile). This delay profile includes SRSs (reference signals) of a plurality of terminals. Therefore, the SIRS SINR measurement unit 208 uses the cyclic shift amount of the desired terminal input from the cyclic shift amount setting unit 206 to mask other than the portion corresponding to the cyclic shift amount of the desired terminal in the delay profile. Thus, the SNR SINR measurement value (SRS SINR measurement value) of the desired terminal is calculated. Then, the SRS SINR measurement unit 208 outputs the calculated SRS SINR measurement value to the data SINR deriving unit 209.
  • IDFT Inverse Discrete
  • the data SINR deriving unit 209 uses the SRS SINR measurement value input from the SRS SINR measurement unit 208 and the transmission power offset value input from the offset setting unit 207 to perform uplink data (that is, PUSCH signal). SINR (data SINR measurement value) is derived. Specifically, the data SINR derivation unit 209 derives the data SINR measurement value according to the following equation (4) using the SRS SINR measurement value and the transmission power offset value.
  • the base station 200 performs scheduling (for example, frequency resource allocation and MCS selection) of the terminal 100 using the data SINR measurement value derived by the data SINR deriving unit 209.
  • the PUCCH resource detection unit 210 performs despreading processing on the PUCCH signal input from the demapping unit 205 using the cyclic shift amount and spreading code assigned to the desired terminal, and assigns the PUCCH signal from the desired terminal.
  • the detected PUCCH resource is detected.
  • the PUCCH resource detection unit 210 outputs the PUCCH signal to the PUCCH demodulation unit 211.
  • the PUCCH demodulation unit 211 performs demodulation processing on the PUCCH signal input from the PUCCH resource detection unit 210, and extracts the demodulated PUCCH signal as a PUCCH demodulated signal.
  • the PUSCH demodulation unit 212 performs demodulation processing on the PUSCH signal input from the demapping unit 205 based on the modulation scheme instructed to the desired terminal, and outputs the demodulated PUSCH signal to the PUSCH decoding unit 213.
  • the PUSCH decoding unit 213 performs a decoding process on the PUSCH signal input from the PUSCH demodulating unit 212 based on the coding rate instructed to the desired terminal, and extracts the decoded PUSCH signal as PUSCH decoded data.
  • the case where the elapsed time (transmission time interval) T from the transmission time of the uplink signal transmitted last time to the transmission time of the uplink signal transmitted this time is 20 ms or less is defined as the case where the TPC error is small, and the elapsed time T is 20 ms.
  • a longer case is a case where the TPC error is large.
  • 8A and 8B a case where a PUCCH signal is transmitted at time t1 and P-SRS is transmitted at time t2 after time t1 will be described. 8A and 8B, it is assumed that the elapsed time (transmission time interval) T from time t1 to time t2 is within 20 ms (T ⁇ 20 ms).
  • one antenna port (Port 10) is set for transmission of the PUCCH signal, and two antenna ports (Port 20, 21) are set for transmission of the P-SRS.
  • two antenna ports (Port 20, 21) are set for PUCCH signal transmission, and one antenna port (Port 10) is set for P-SRS transmission.
  • one antenna port is used, at least one of the antennas 112-1 and 112-2 of the terminal 100 is used.
  • the antenna 112- of the terminal 100 is used. Both 1 and 112-2 are used.
  • the calculation unit 107 of the offset setting unit 106 transmits the transmission time of the current upstream signal (P-SRS in FIGS. 8A and 8B) from the transmission time t1 of the previous upstream signal (PUCCH signal in FIGS. 8A and 8B).
  • the calculation unit 107 calculates the magnitude relationship between the number of antenna ports used for transmission at time t1 and the number of antenna ports used for transmission at time t2. That is, the calculation unit 107 compares the number of antenna ports (at least one antenna port) used during the current transmission with the number of antenna ports used for the previous transmission. For example, in FIG. 8A, the calculation unit 107 calculates that the number of antenna ports (one) used at time t1 is smaller than the number of antenna ports (two) used at time t2. On the other hand, in FIG. 8B, the calculation unit 107 calculates that the number of antenna ports (two) used at time t1 is larger than the number of antenna ports (one) used at time t2.
  • Offset value determination unit 108 determines a correction value delta offset.
  • the transmission power P SRS (i) of SRS in sub-frame #i is obtained according to the following equation (5).
  • P CMAX [dBm] represents the maximum transmission power of the SRS that can be transmitted by the terminal 100.
  • P SRS_OFFSET [dBm] indicates a transmission power offset value (a parameter set from base station 200) with respect to the transmission power of PUSCH transmitted by terminal 100.
  • M SRS indicates the number of frequency resource blocks allocated to the SRS.
  • P O_PUSCH [dBm] indicates an initial value of PUSCH transmission power (a parameter set by the base station 200).
  • PL represents a path loss level [dB] measured by the terminal 100.
  • represents a weighting factor (a parameter set from the base station 200) indicating a compensation rate of path loss (PL).
  • f (i) indicates a cumulative value in subframe #i including a past value of a TPC command (control value, for example, +3 dB, +1 dB, 0 dB, ⁇ 1 dB) controlled in a closed loop.
  • the delta offset associated with the calculation unit 107 the elapsed time calculated in (transmission time interval), indicating the correction value of the offset value P SRS_OFFSET.
  • offset value determination section 108 sets correction value ⁇ offset for correcting transmission power offset value P SRS_OFFSET instructed from base station 200 based on transmission time interval T. Then, the offset value determining unit 108 determines the corrected transmission power offset value (P SRS_OFFSET + ⁇ offset ) by adding the correction value ⁇ offset to the transmission power offset value P SRS_OFFSET as shown in the equation (5). .
  • transmission power control section 109 controls transmission power P SRS (i) of SRS according to equation (5) using transmission power offset value (P SRS_OFFSET + ⁇ offset ) input from offset value determination section 108. . That is, the transmission power control section 109 controls the transmission power of the uplink signal by increasing or decreasing the offset value (P SRS_OFFSET + ⁇ offset ) with respect to the transmission power.
  • the number of antenna ports (one) used at time t1 is the antenna used for transmission of the uplink signal transmitted at time t2.
  • the number is smaller than the number of ports (two), the assumed TPC error is large.
  • the offset value determination unit 108 when the transmission time interval T is longer than 20 msec (not shown), or the offset value determination unit 108 has the number of antenna ports used for transmission of the uplink signal transmitted at time t1. If less than the number of antenna ports used for transmission of an uplink signal to be transmitted at time t2 (FIG. 8A), to set the correction value delta offset to 0 dB.
  • the transmission time interval T is within 20 ms, and the number of antenna ports (two) used at time t1 is larger than the number of antenna ports (one) used at time t2. In many cases, the expected TPC error is small.
  • the offset value determination unit 108 has the transmission time interval T within 20 msec, and the number of antenna ports used for transmitting the uplink signal transmitted at time t1 is transmitted at time t2.
  • the correction value ⁇ offset is set to ⁇ 6 dB.
  • the offset value determination unit 108 determines the transmission power offset value (P SRS_OFFSET + ⁇ offset ) by adding the correction value ⁇ offset to the offset value P SRS_OFFSET instructed from the base station 200.
  • the offset setting unit 106 (offset value determining unit 108) also performs transmission power control for the PUCCH and PUSCH according to the following expressions (6) and (7): ) Is added with a transmission power offset value ⁇ offset .
  • terminal 100 compares the number of antenna ports (at least one antenna port) used at the time of the current transmission with the number of antenna ports used for the previous transmission at a predetermined time interval (20 ms in this case) or less. Based on the above, the transmission power of the uplink signal is controlled. Specifically, when the transmission time interval T is short and the number of antenna ports is the same as or decreased from the previous transmission, the offset value determination unit 108 compares the transmission power offset with the other cases. The correction value ⁇ offset is set so that the value (P SRS_OFFSET + ⁇ offset ) becomes smaller.
  • the “when the transmission time interval T is short” is, for example, “when T ⁇ 20 ms”.
  • the above “when the number of antenna ports is the same as or decreased when the previous transmission” is, for example, “when the number of antenna ports used at time t2 ⁇ the number of antenna ports used at time t1”. “Other than that” is, for example, “when T> 20 ms or when the number of antenna ports used at time t1 ⁇ the number of antenna ports used at time t2”.
  • the transmission power control unit 109 when the number of antenna ports (at least one antenna port) used for transmission of the uplink signal transmitted this time is smaller than the number of antenna ports used for the previous transmission, the transmission power control unit 109 The transmission power is controlled so that the transmission power of the signal is reduced. In other words, the transmission power control unit 109, when the antenna port (at least one antenna port) used for transmission of the uplink signal transmitted this time does not include the antenna port that was not used in the previous transmission, The transmission power is controlled so that the transmission power becomes smaller.
  • the terminal 100 can reduce inter-cell interference by suppressing the transmission power of SRS to the minimum necessary.
  • the terminal 100 operates as follows even when the transmission time interval T is within a predetermined threshold (20 ms). That is, when the number of antenna ports used at time t1 is smaller than the number of antenna ports used at time t2, terminal apparatus 100 compares the number of antenna ports used at time t2 with the number of antenna ports used at time t1.
  • the correction value ⁇ offset is set so that the transmission power offset value (P SRS_OFFSET + ⁇ offset ) becomes large.
  • the transmission power control unit 109 when the number of antenna ports (at least one antenna port) used for transmission of the uplink signal transmitted this time is greater than the number of antenna ports used for the previous transmission, the transmission power control unit 109 The transmission power is controlled so that the transmission power of the signal is increased.
  • the transmission power control unit 109 when the antenna port (at least one antenna port) used for transmission of the uplink signal transmitted this time includes an antenna port that was not used in the previous transmission, The transmission power is controlled so as to increase the transmission power.
  • the terminal 100 when the number of antenna ports used for the current transmission increases from the previous transmission, the terminal 100 considers the transmission time interval at the antenna port that was not used during the previous transmission (that is, during the previous transmission). Assuming that it is longer than the transmission time interval at the used antenna port), the transmission power of the uplink signal is set larger. As a result, an increase in the TPC error of the PA corresponding to the port that was not used at the previous transmission can be suppressed.
  • the offset setting unit 207 of the base station 200 determines the transmission time interval of the uplink signal for each terminal 100 and the previous transmission time and the current transmission time for each terminal 100.
  • a transmission power offset correction value ⁇ offset is set based on the magnitude relationship between the number of antenna ports.
  • the terminal varies the transmission power offset value for each uplink signal (PUCCH signal, PUSCH signal, and SRS) according to the transmission condition. Specifically, the terminal is based on the elapsed time from the previous transmission (transmission time interval) and the magnitude relationship between the number of transmission antenna ports used at the previous transmission and the number of transmission antenna ports used at the current transmission. Then, the transmission power offset value is set.
  • a TPC error based on the transmission time interval of the uplink signal using each antenna port can be identified appropriately. Therefore, according to the present embodiment, it is possible to prevent deterioration of SINR measurement accuracy due to a TPC error in the base station even when different numbers of antenna ports are set for transmission of each uplink signal.
  • the terminal can control the transmission power of a channel that is expected to have a small TPC error to the minimum power necessary for obtaining a desired reception quality. Therefore, it is possible to suppress an increase in power consumption of the terminal and reduce inter-cell interference while preventing deterioration of SINR measurement accuracy due to a TPC error in the base station.
  • the correspondence between the magnitude relationship between the elapsed time T and the number of antenna ports shown in FIG. 9 and the correction value ⁇ offset is defined in advance by the system, for transmission power control of the uplink signal Signaling for each transmission becomes unnecessary.
  • the correspondence between the correction value delta offset as a parameter to the terminal, the parameter is relatively long period, or The terminal only needs to be notified once, and signaling for each transmission for uplink signal transmission power control becomes unnecessary. Therefore, in these cases, an increase in signaling overhead required for uplink signal transmission power control can be suppressed.
  • terminal 100 uses the previous antenna (time t1) to transmit another uplink signal (PUSCH signal, PUCCH signal, P-SRS or A-SRS) different from the uplink signal (SRS) transmitted at time t2.
  • PUSCH signal, PUCCH signal, P-SRS or A-SRS another uplink signal
  • SRS uplink signal
  • base station 200 may have a configuration in which a plurality of reception antennas are provided, and components of each reception antenna may be demapped.
  • the SRS SINR measurement unit 208 may synthesize and perform TPC control.
  • the A-SRS is transmitted using control information transmitted from the base station to the terminal using a downlink control channel (PDCCH: Physical-Downlink-Control-CHannel) as a trigger.
  • the PDCCH includes control information (data allocation information) related to PUSCH allocation, and the terminal transmits a PUSCH signal according to the instruction content (frequency resource or the like) from the base station indicated by the control information. That is, the PDCCH includes data allocation information related to PUSCH allocation and also includes a transmission request for A-SRS.
  • the A-SRS triggered by the PDCCH is transmitted after (or simultaneously with) the PUSCH signal transmitted according to the allocation by the PDCCH.
  • a PUSCH signal is transmitted at time t1 and A-SRS is transmitted at time t2 after time t1.
  • the number of antenna ports is defined semi-statically for A-SRS.
  • FIG. 10 shows the configuration of terminal 300 according to the present embodiment.
  • the same components as those in the first embodiment (FIG. 6) are denoted by the same reference numerals, and the description thereof is omitted.
  • PDCCH detection section 301 detects a downlink control channel (PDCCH) as control information (data allocation information) related to PUSCH allocation.
  • PDCCH detection unit 301 detects control information related to PUSCH allocation
  • the PDCCH detection unit 301 outputs a transport block size, a coding rate, and a modulation scheme indicated by the base station, which are indicated in the control information, to the generation unit 102 (see FIG. Frequency resource allocation information is output to the mapping unit 103 (not shown).
  • terminal 300 assumes two formats as the format of control information detected by PDCCH detection section 301 (sometimes referred to as DCI format).
  • the first is control that can include information on the transport block size, coding rate, and modulation scheme while supporting codebook-based precoding as control information corresponding to transmission by a plurality of antenna ports.
  • This is an information format (hereinafter referred to as Format 4 or sometimes referred to as DCIDformat 4).
  • the second is a control information format that does not support precoding as control information corresponding to transmission by a single antenna and includes only one piece of information on a transport block size, a coding rate, and a modulation scheme (hereinafter referred to as “control information format”). , Called Format 0, or sometimes called DCI format 0).
  • the PDCCH detection unit 301 outputs information indicating whether the detected control information corresponds to Format IV4 or Format IV0 to the calculation unit 302 of the offset setting unit 106.
  • the calculation unit 302 of the offset setting unit 106 calculates the elapsed time from the transmission immediately before the uplink signal at the terminal 300, and transmits the uplink signal (PUSCH) transmitted immediately before (previous transmission) at the terminal 300. Signal) and the number of antenna ports used when transmitting the uplink signal (A-SRS) transmitted this time from terminal 300 is calculated.
  • the calculation unit 302 when calculating the magnitude relationship between the number of antenna ports, if the information input from the PDCCH detection unit 301 is Format ⁇ 4, the calculation unit 302 transmits two PUSCH signals transmitted last time. It is determined that the antenna port (that is, the maximum number of antenna ports that can be used in terminal 300) is used. On the other hand, when the information input from PDCCH detection unit 301 is Format 0, calculation unit 302 determines that only one antenna port is used for transmitting the previously transmitted PUSCH signal. As described above, the calculation unit 302 can specify the magnitude relationship between the number of antenna ports used for PUSCH signal transmission and the number of antenna ports used for A-SRS transmission based on the PDCCH format type. it can. Then, the calculating unit 302 outputs the calculated relationship between the elapsed time and the number of antenna ports to the offset value determining unit 303.
  • the offset value determination unit 303 determines the transmission power of the A-SRS according to the elapsed time (transmission time interval) and the size relationship of the number of antenna ports (or the PDCCH format type) input from the calculation unit 302. Set the offset value.
  • FIG. 11 shows the configuration of base station 400 according to the present embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the base station 400 shown in FIG. 10 prepares at least two formats (DCI format) of control information used for PUSCH signal allocation, like the terminal 300 (FIG. 10). That is, the first is the above-described Format 4, and the second is the above-described Format 0.
  • the PDCCH generation unit 401 generates a PDCCH including control information used for PUSCH signal allocation. In addition, the PDCCH generation unit 401 outputs information indicating whether the control information used for PUSCH signal allocation corresponds to Format 4 or Format 0 to the offset setting unit 402.
  • the offset setting unit 402 performs the same processing as the offset setting unit 106 of the terminal 300. That is, the offset setting unit 402 includes an elapsed time from the transmission time of the PUSCH signal transmitted immediately before (previous transmission) from the terminal 300 (desired terminal), and information input from the PDCCH generation unit 401 (PDCCH format type). ) To determine a transmission power offset value for A-SRS. That is, offset setting section 402 determines that two antenna ports (all antenna ports included in terminal 300) have been used for PUSCH transmission when the information input from PDCCH generating section 401 is Format IV4. On the other hand, when the information input from PDCCH generation unit 401 is FormatPU0, offset setting unit 402 determines that only one antenna port is used for PUSCH transmission. Then, offset setting section 402 calculates an offset value for the transmission power of A-SRS based on the determination result of the number of antenna ports used for PUSCH transmission.
  • the data SINR deriving unit 209 uses the A-SRS SINR measurement value input from the SRS SINR measurement unit 208 and the transmission power offset value for the A-SRS input from the offset setting unit 207 to perform uplink data In other words, the SINR (data SINR measurement value) of the PUSCH signal is derived. Specifically, the data SINR deriving unit 209 derives the data SINR measurement value according to the following equation (8) using the A-SRS SINR measurement value and the transmission power offset value.
  • the base station 400 performs scheduling of the terminal 300 (for example, frequency resource allocation and MCS selection) using the data SINR measurement value derived by the data SINR deriving unit 209.
  • TPC error is small
  • a case where the elapsed time T is longer than 20 ms is a case where the TPC error is large.
  • the elapsed time (transmission time interval) T from time t1 to time t2 is assumed to be within 20 ms (T ⁇ 20 ms).
  • PDCCH including control information related to PUSCH signal allocation is transmitted in Format (0 (DCI format 0)
  • PDCCH including control information related to PUSCH signal allocation is Format 4 (DCI format 4).
  • two antenna ports (Ports 20 and 21) are set for A-SRS transmission.
  • the PDCCH detection unit 301 of the terminal 300 outputs information indicating Format 0 to the calculation unit 302 in FIG. 12A, and outputs information indicating Format 4 to the calculation unit 302 in FIG. 12B.
  • the calculation unit 302 uses the number of antenna ports used for transmission at the time t1 (previous transmission) based on information input from the PDCCH detection unit 301 (information indicating Format 0 or Format 4), and time t2.
  • the size relationship with the number of antenna ports used for transmission (current transmission) is calculated. That is, in FIG. 12A, the calculation unit 302 determines that the number of antenna ports used at time t1 is one because Format 0. Therefore, in FIG. 12A, the calculation unit 302 calculates that the number of antenna ports (one) used at time t1 is smaller than the number of antenna ports (two) used at time t2.
  • FIG. 12B the calculation unit 302 determines that the number of antenna ports used at time t1 is two because Format 4. Therefore, in FIG. 12B, the calculation unit 302 calculates that the number of antenna ports (two) used at time t1 is the same as the number of antenna ports (two) used at time t2.
  • the offset value determination unit 303 determines the correction value ⁇ offset based on the magnitude relationship between the transmission time interval T calculated by the calculation unit 107 and the number of antenna ports. In other words, in the present embodiment, offset value determination section 303 adjusts the correction value according to the table shown in FIG. 13 according to the transmission time interval T and the format of control information (data allocation information) related to PUSCH signal allocation. Determine ⁇ offset .
  • the transmission power P SRS (i) of the SRS in sub-frame #i is obtained according to equation (5), as in the first embodiment.
  • PA corresponding to one of the two antennas 112-1 and 112-2 provided in terminal 300 is OFF. Can be. Therefore, the transmission time interval of the signal transmitted using the PA corresponding to one of the two antennas used at time t2 may be longer than (time t2 ⁇ time t1). Therefore, the assumed TPC error is large in FIG. 12A.
  • the offset value determination unit 303 has a transmission time interval T within 20 msec, and allocation information of Format 4 (DCI format 4) (that is, data allocation information for a plurality of antenna ports). Is received, the correction value ⁇ offset is set to ⁇ 6 dB. Also, as shown in FIG. 13, the offset value determination unit 303 performs allocation information for Format 0 (DCI format 0) when the transmission time interval T is longer than 20 msec (that is, data allocation information for a single antenna port). ) Is received, the correction value ⁇ offset is set to 0 dB. Then, the offset value determination unit 108 determines the transmission power offset value (P SRS_OFFSET + ⁇ offset ) by adding the correction value ⁇ offset to the offset value P SRS_OFFSET instructed from the base station 200.
  • P SRS_OFFSET + ⁇ offset the transmission power offset value
  • the transmission power control unit 109 receives the control information including data allocation information for a plurality of antenna ports (when the format type is format ⁇ 4), so that the transmission power of the A-SRS is reduced. To control the transmission power. Thereby, it is possible to set the transmission power of the uplink signal low to the minimum necessary transmission power at which the base station 400 can obtain a desired reception SINR (a reception SINR that does not deteriorate the SINR measurement accuracy). Therefore, it is possible to suppress the power consumption at terminal 300 to the minimum necessary while ensuring the SIRS measurement accuracy (channel quality accuracy) of SRS at base station 400. Further, terminal 300 can reduce inter-cell interference by suppressing the transmission power of SRS to the minimum necessary.
  • the transmission power control unit 109 increases the A-SRS transmission power so that the transmission power of the A-SRS increases. To control the transmission power. Thereby, it is possible to suppress an increase in the TPC error of the PA corresponding to the antenna port that was not used at the previous transmission.
  • the offset setting unit 402 of the base station 400 is a data allocation information indicating the uplink signal transmission time interval for each terminal 300 and the PUSCH signal allocation for each terminal 300.
  • the transmission power offset correction value ⁇ offset is set based on the format type of PDCCH (including the number of antenna ports).
  • the base station 400 needs to know the propagation environment between the terminal 300 and the base station 400 because it needs to perform precoding when transmitting a PUSCH signal using a plurality of antenna ports.
  • the terminal 300 does not allocate the A-SRS or PUSCH signal for a long time (the elapsed time from time t0 to time t1 in FIG. 14)
  • the base station 400 And the base station 400 cannot grasp the propagation environment, and it becomes difficult to apply precoding by closed-loop control.
  • base station 400 cannot specify which of a plurality of precoding examples provided in advance can increase SINR in the current propagation environment. .
  • precoding is applied in a state where the propagation environment is not known in base station 400, there is a concern that the directivity generated by the precoding may decrease SINR.
  • the terminal 300 when the terminal 300 does not allocate an A-SRS or PUSCH signal for a long time (for example, at time t1 shown in FIG. 14), the terminal 300 first loses data loss. In order to minimize this, a PUSCH signal is transmitted through one antenna port based on Format 0 (DCI format 0). In addition, terminal 300 transmits SRS (A-SRS) through a plurality of antenna ports in order to transmit PUSCH signals through a plurality of antenna ports after the next time.
  • A-SRS SRS
  • the base station 400 allocates the PUSCH so that the PUSCH signal is transmitted through one antenna port at time t1, as shown in FIG.
  • a PDCCH Form 0
  • terminal 300 can transmit A-SRS from a plurality of antenna ports at time t2 while minimizing waste associated with transmission of the PUSCH signal at time t1.
  • terminal 300 for example, at time t3 after time t2 in FIG. 14, PUSCH signal transmission using a plurality of antenna ports using an appropriate precoding matrix (that is, PUSCH in Format 4 by base station 400) Signal allocation). Therefore, in the present embodiment, even in the situation shown in FIG. 14, the terminal 300 appropriately controls and controls the transmission power of the A-SRS, so that the base station 400 can perform SINR measurement with suppressed accuracy degradation due to the TPC error. By using the value, it is possible to allocate a PUSCH signal that supports a plurality of antenna ports to the terminal 300.
  • an appropriate precoding matrix that is, PUSCH in Format 4 by base station 400
  • terminal 300 transmits transmission conditions (here, transmission time interval T and PUSCH) between the PUSCH signal transmitted last time at terminal 300 and the A-SRS transmitted this time.
  • the transmission power offset value of A-SRS is set according to the data allocation information format used for signal allocation.
  • terminal 300 can specify the transmission time interval of the uplink signal at each antenna according to the format of the data allocation information. Therefore, according to this embodiment, even when different numbers of antenna ports are set for transmission of each uplink signal, as in Embodiment 1, it is possible to prevent deterioration in SINR measurement accuracy due to TPC errors in the base station. it can.
  • the correspondence between the elapsed time T and the format of the data allocation information included in the PDCCH and the correction value ⁇ offset shown in FIG. Signaling for each transmission for control becomes unnecessary.
  • the correspondence between the correction value delta offset as a parameter to the terminal, the parameter is relatively long It is only necessary to notify the terminal of the period or once, and signaling for each transmission for uplink signal transmission power control becomes unnecessary. Therefore, in these cases, an increase in signaling overhead required for uplink signal transmission power control can be suppressed.
  • control information for example, Format 1A related to allocation of a downlink data signal (PDSCH: Physical-Downlink-Shared-CHannel) may be used. That is, control information related to PDSCH allocation may be used as a trigger for A-SRS.
  • the transmission power is proportional to the frequency bandwidth of the transmission signal
  • the frequency position and bandwidth of the transmission signal change greatly as the transmission power change amount increases. That is, the amount of change in the frequency bandwidth (transmission bandwidth) of the transmission signal can be regarded as the amount of change in transmission power.
  • the terminal in addition to the processing of Embodiment 1 or Embodiment 2, the terminal further determines the transmission bandwidth of the signal transmitted last time and the transmission bandwidth of the signal transmitted this time.
  • the transmission power offset value applied to the uplink signal transmitted this time is set.
  • the signals transmitted at time t1 and time t2 are not limited to the PUSCH signal and the A-SRS.
  • FIG. 15 shows the configuration of terminal 500 according to the present embodiment.
  • the same components as those of the second embodiment (FIG. 10) are denoted by the same reference numerals, and the description thereof is omitted.
  • allocated band information acquisition section 501 manages control information related to an allocated band of an uplink signal transmitted from terminal 500.
  • the allocated band information acquisition unit 501 acquires control information (allocated band information) related to allocation of PUSCH signals (previously transmitted signals) included in the PDCCH, and also receives A-SRS (separately notified from the base station).
  • the allocated bandwidth information included in the information regarding the signal transmitted this time) is acquired.
  • the offset value determination unit 502 of the offset setting unit 106 transmits a transmission time interval between the uplink signal (PUSCH signal) transmitted immediately before (previous transmission) by the terminal 500 and the uplink signal (A-SRS) transmitted this time, A correction value for the transmission power offset value is set according to the size relationship of the number of antenna ports and the ratio of the transmission bandwidth.
  • FIG. 16 shows the configuration of base station 600 according to the present embodiment.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the SRS control information generation unit 601 sets P-SRS and A-SRS transmission bands to be assigned to each terminal 500, and generates SRS control information indicating the set transmission bands. Then, the SRS control information generation unit 601 notifies the generated SRS control information to each terminal 500 (not shown) and outputs it to the offset setting unit 602.
  • the offset setting unit 602 performs the same processing as the offset setting unit 106 of the terminal 500. That is, the offset setting unit 602 is the elapsed time from the transmission time of the PUSCH signal transmitted immediately before (previous transmission) from the terminal 500 (desired terminal), the format of the data allocation information (PDCCH) used for the allocation of the PUSCH signal.
  • a transmission power offset value for the A-SRS is determined according to the type and the SRS control information input from the SRS control information generation unit 601.
  • the data SINR deriving unit 209 derives the data SINR measurement value according to the equation (8) using the A-SRS SINR measurement value and the transmission power offset value, as in the second embodiment. Then, base station 600 performs scheduling (for example, frequency resource allocation and MCS selection) of terminal 500 using the data SINR measurement value derived by data SINR deriving section 209.
  • TPC error is small
  • a case where the elapsed time T is longer than 20 ms is a case where the TPC error is large.
  • the elapsed time (transmission time interval) T from time t1 to time t2 is within 20 ms (T ⁇ 20 ms).
  • the offset value determination unit 502 refers to, for example, FIG. 13 based on the transmission time interval T calculated by the calculation unit 302 and the PDCCH format type (the size relationship of the number of antenna ports). Then, a correction value is determined. For example, in FIG. 17, the offset value determination unit 502 sets the correction value to 0 dB according to FIG. 13 because the format type of PDCCH is Format (0 (DCI format 0).
  • the SRS transmission power P SRS (i) in sub-frame #i is obtained according to equation (5) as in the second embodiment.
  • the offset value determination unit 502 has a small transmission bandwidth ratio ⁇ B (transmission power). Compared to the case where the change amount ⁇ P is small, the correction value ⁇ offset (that is, the transmission power offset value) is increased to increase the transmission power of the A-SRS.
  • terminal 500 sets the transmission power of A-SRS that can be regarded as having a large TPC error due to the amount of change in transmission power.
  • A-SRS that can be regarded as having a large TPC error due to the amount of change in transmission power.
  • terminal 500 uses transmission conditions (transmission time interval T and the format of data allocation information used for PUSCH signal allocation in the first or second embodiment (relationship between the number of antenna ports).
  • the transmission power offset value of A-SRS is set according to the ratio of the transmission bandwidth between the PUSCH signal and A-SRS.
  • terminal 500 can reduce the influence of the TPC error that occurs depending on the transmission power change amount. Therefore, according to the present embodiment, even when different numbers of antenna ports are set for transmission of each uplink signal, in addition to the first and second embodiments, the TPC in the base station is considered in the frequency domain. Degradation of SINR measurement accuracy due to errors can be prevented.
  • the terminal uses a maximum of two antenna ports.
  • the number of antenna ports used by the terminal is not limited to this, and for example, a maximum of four antenna ports may be used.
  • the antenna port in the above embodiment refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • LTE Long Term Evolution
  • Reference signals For example, in LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit in which a base station can transmit different reference signals (Reference signals).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be applied to a mobile communication system or the like.
  • Transmission processing unit 102 Generation unit 103 Mapping unit 104 IFFT unit 105 CP addition unit 106, 207, 402, 602 Offset setting unit 107, 302 Calculation unit 108, 303, 502 Offset value determination unit 109 Transmission power control unit 110 Precoding unit 111 Transmission RF unit 112, 201 Antenna 202 Reception RF unit 203 CP removal unit 204 FFT unit 205 Demapping unit 206 Cyclic shift amount setting unit 208 SRS SINR measurement unit 209 Data SINR derivation unit 210 PUCCH resource detection unit 211 PUCCH demodulation unit 212 PUSCH demodulation unit 213 PUSCH decoding unit 301 PDCCH detection unit 401 PDCCH generation unit 501 allocation band information acquisition unit 601 SRS control information generation unit

Abstract

A transmission device that allows degradation in SINR measurement accuracy due to a TPC error in a base station to be prevented even in an instance in which a different number of antenna ports is set for the transmission of each upstream signal. In this device, a transmission power controller (109) controls the transmission power of a signal. Here, the transmission power controller (109) controls the transmission power on the basis of a comparison between at least one number of antenna ports and the number of antenna ports used in the preceding transmission. Transmission RF units (111-1) and (111-2) transmit the signal through at least one antenna port at the controlled transmission power.

Description

送信装置及び送信方法Transmitting apparatus and transmitting method
 本発明は、送信装置及び送信方法に関する。 The present invention relates to a transmission device and a transmission method.
 セルラー通信システムにおける端末(UE:User Equipment)から基地局(BS(Base Station)又はeNB)に向けた上りリンク(Uplink)において、送受信側で複数のアンテナポート(マルチアンテナ)を用いた情報伝送が検討されている。これは、上りリンクでのMIMO(Multiple Input Multiple Output)伝送技術と呼ばれる。上りリンクでのMIMO伝送技術では、ビームフォーミングによるセル半径の拡大と、空間多重によるデータレートの高速化との両面での性能改善が期待されている。 In the uplink from the terminal (UE: User Equipment) to the base station (BS (Base Station) or eNB) in the cellular communication system, information transmission using a plurality of antenna ports (multi-antenna) is performed on the transmission / reception side. It is being considered. This is called MIMO (Multiple Input Multiple Output) transmission technology in the uplink. The uplink MIMO transmission technology is expected to improve performance in terms of both an increase in cell radius by beamforming and an increase in data rate by spatial multiplexing.
 また、セルラー通信システムの上りリンクのチャネル(上りチャネル)で送信される各種信号(上り信号)には、例えば、Periodic Sounding Reference Signal(以下、P-SRSと呼ぶ)、Aperiodic SRS(以下、A-SRSと呼ぶ)、上り制御チャネル(PUCCH:Physical Uplink Control CHannel)で送信される信号(上り制御信号。以下、PUCCH信号と呼ぶ)、及び、上りデータチャネル(PUSCH:Physical Uplink Shared CHannel)で送信される信号(上りデータ信号。以下、PUSCH信号と呼ぶ)等が挙げられる。P-SRSは、周期的に送信されるチャネル品質測定用参照信号である。A-SRSは、基地局からの指示に応じて非周期的に送信されるチャネル品質測定用参照信号である。また、PUCCHは、下りリンク(基地局から端末に向けたリンク。downlink)のデータの復調結果に対応する応答信号(ACK/NACK信号)又は下りリンクのチャネル品質情報等を送信するための制御チャネルである。PUSCHは、上りリンクのデータ(上りデータ)を送信するためのデータチャネルである。 Further, various signals (uplink signals) transmitted on the uplink channel (uplink channel) of the cellular communication system include, for example, Periodic Sounding Reference Signal (hereinafter referred to as P-SRS), Aperiodic SRS (hereinafter referred to as A-). SRS), a signal transmitted on an uplink control channel (PUCCH: Physical-Uplink-Control-CHannel) (uplink control signal; hereinafter referred to as PUCCH signal), and an uplink data channel (PUSCH: Physical-Uplink-Shared-CHannel) (Uplink data signal; hereinafter referred to as a PUSCH signal). P-SRS is a channel quality measurement reference signal transmitted periodically. A-SRS is a channel quality measurement reference signal transmitted aperiodically in response to an instruction from the base station. Further, the PUCCH is a control channel for transmitting a response signal (ACK / NACK signal) corresponding to a demodulation result of downlink data (link from the base station to the terminal, downlink), downlink channel quality information, or the like. It is. The PUSCH is a data channel for transmitting uplink data (uplink data).
 これらの上り信号に要求される条件はそれぞれ異なる。このため、端末が複数のアンテナポートを備えている場合、各上り信号の送信に何本のアンテナポートを用いるかを設定する際に、アンテナポート数を全てのチャネルについて共通で設定するよりも、各上り信号について個別に設定し、柔軟性を持たせることが望まれる。 Requirement for these upstream signals is different. Therefore, when the terminal has a plurality of antenna ports, when setting how many antenna ports to use for transmission of each uplink signal, rather than setting the number of antenna ports in common for all channels, It is desired to set each uplink signal individually and to have flexibility.
 一方、上述した参照信号(P-SRS又はA-SRS)及びデータ等は互いに関係性を持たせることが必要となる。例えば、基地局は、端末から送信されるP-SRSを観測した結果に基づいて周波数リソース割当を適用し、当該端末のPUSCH信号(上りデータ)の送信に用いる周波数リソースを設定するとともに、規定のCodebookに基づくプリコーディング制御を適用して、閉ループでビームを制御する。これにより、SINR(Signal to Interference and Noise Ratio)増大の効果等が期待できる。 On the other hand, the above-described reference signal (P-SRS or A-SRS) and data need to be related to each other. For example, the base station applies frequency resource allocation based on the result of observing the P-SRS transmitted from the terminal, sets the frequency resource used for transmitting the PUSCH signal (uplink data) of the terminal, and Apply precoding control based on Codebook to control the beam in a closed loop. Thereby, an effect of increasing SINR (Signal-to-Interference-and-Noise-Ratio) can be expected.
 また、或る上り信号の送信に対して、端末の備えるアンテナポート数よりも少ないアンテナポート数が設定される際には、端末は、自身の責任の下、設定されたアンテナポート数よりも多いアンテナポートを用いて当該上り信号を送信することができる。 In addition, when the number of antenna ports smaller than the number of antenna ports included in the terminal is set for transmission of a certain uplink signal, the terminal has more than the set number of antenna ports under its own responsibility. The uplink signal can be transmitted using the antenna port.
 例えば、2アンテナポートを備えた端末に対して、P-SRSの送信に1アンテナポートが設定され、A-SRSの送信に2アンテナポートが設定された場合について説明する。この場合、端末は、図1に示すように、P-SRS(例えば、1アンテナポート10を使用)の送信時に、Implementation based precodingにてP-SRSを各物理アンテナ(Physical antennas)に配分することができる。これにより、各物理アンテナは、システムとしては単一のアンテナポートとして取り扱われるものの、端末の物理アンテナ利用の観点では2本の物理アンテナを活用できることになる。なお、Implementation based precodingの例としては、下りリンクの信号の観測結果に基づいて強い信号(受信品質が良い信号)を観測したアンテナポートのみを用いる動作、又は、受信電力の比率に応じて電力配分する動作が挙げられる。 For example, for a terminal having two antenna ports, a case where one antenna port is set for P-SRS transmission and two antenna ports are set for A-SRS transmission will be described. In this case, as shown in FIG. 1, the terminal allocates the P-SRS to each physical antenna (Physical antenna) using ImplementationIbased precoding when transmitting P-SRS (for example, using one antenna port 10). Can do. Thus, although each physical antenna is handled as a single antenna port as a system, two physical antennas can be used from the viewpoint of using the physical antenna of the terminal. As an example of Implementation based precoding, the operation using only the antenna port that observed a strong signal (signal with good reception quality) based on the observation result of the downlink signal, or the power distribution according to the ratio of the received power The operation to do is mentioned.
 3GPP LTE(3rd Generation Partner Project Long Term Evolution。以下、LTEと呼ぶ)の上りリンクでは、1本のアンテナポートを備える端末のみがサポートされている。例えば、LTEでは、サブフレーム(sub-frame)#iにおける参照信号(SRS)の送信電力PSRS(i)は、非特許文献1に記載のように、次式(1)に従って求められる。
Figure JPOXMLDOC01-appb-M000001
In the uplink of 3GPP LTE (3rd Generation Partner Project Long Term Evolution, hereinafter referred to as LTE), only a terminal having one antenna port is supported. For example, in LTE, the transmission power P SRS (i) of the reference signal (SRS) in sub-frame #i is obtained according to the following equation (1) as described in Non-Patent Document 1.
Figure JPOXMLDOC01-appb-M000001
 式(1)において、PCMAX[dBm]は、端末が送信可能なSRSの最大送信電力を示す。また、PSRS_OFFSET[dBm]は、端末が送信するPUSCHの送信電力に対するオフセット値(基地局から設定されるパラメータ)を示す。また、MSRSは、SRSに割り当てられる周波数リソースブロック数を示す。また、PO_PUSCH[dBm]は、PUSCHの送信電力の初期値(基地局から設定されるパラメータ)を示す。また、PLは、端末が測定したパスロスレベル[dB]を示す。また、αは、パスロス(PL)の補償割合を表す重み係数(基地局から設定されるパラメータ)を示す。また、f(i)は、クローズドループ制御(閉ループ制御)されるTPC(Transmission Power Control)コマンド(制御値。例えば、+3dB、+1dB、0dB、-1dB)の過去の値を含めたサブフレーム#iにおける累計値を示す。 In Expression (1), P CMAX [dBm] indicates the maximum transmission power of the SRS that can be transmitted by the terminal. Moreover, P SRS_OFFSET [dBm] indicates an offset value (parameter set from the base station) with respect to the transmission power of PUSCH transmitted by the terminal. M SRS indicates the number of frequency resource blocks allocated to the SRS. P O_PUSCH [dBm] indicates an initial value of PUSCH transmission power (a parameter set from the base station). PL represents a path loss level [dB] measured by the terminal. Further, α represents a weighting coefficient (a parameter set from the base station) representing a compensation ratio of path loss (PL). Further, f (i) is a subframe #i including a past value of a TPC (Transmission Power Control) command (control value, for example, +3 dB, +1 dB, 0 dB, −1 dB) to be closed loop control (closed loop control). The cumulative value at.
 同様に、サブフレーム(sub-frame)#iにおける上り制御チャネル(PUCCH)及び上りデータチャネル(PUSCH)に対する送信電力PPUCCH(i)及びPPUSCH(i)は、次式(2)、(3)に従ってそれぞれ求められる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Similarly, transmission powers P PUCCH (i) and P PUSCH (i) for the uplink control channel (PUCCH) and uplink data channel (PUSCH) in sub-frame #i are expressed by the following equations (2), (3 ) Respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 式(2)において、PO_PUCCH[dBm]は、PUCCHの送信電力の初期値(基地局から設定されるパラメータ)を示す。また、h(nCQI,nHARQ)及びΔF_PUCCH(F)は、PUCCHのフォーマット種別やビット数に応じて設定されるパラメータを示す。また、g(i)は、式(1)のf(i)と同様に、閉ループ制御されるTPCコマンドの過去の値を含めたサブフレーム#iにおける累計値を示す。また、式(3)において、MPUSCH(i)は、サブフレーム#iにおいて割り当てられたPUSCHの周波数リソースブロック数を示す。また、PO_PUSCH(j)[dBm]及びα(j)は、PUSCHの送信電力の初期値、及び、パスロス(PL)の補償割合を表す重み係数をそれぞれ示し、準固定割当(j=0)及び動的割当(j=1)の種別に応じて個別に基地局から設定されるパラメータである。ΔTF(i)はPUSCHで制御情報を送信する場合に、制御情報量に応じて設定可能なオフセット値を示す。 In Expression (2), P O_PUCCH [dBm] indicates an initial value of PUCCH transmission power (a parameter set by the base station). Further, h (n CQI , n HARQ ) and Δ F_PUCCH (F) indicate parameters set according to the format type and the number of bits of PUCCH. Further, g (i) indicates the cumulative value in subframe #i including the past value of the TPC command to be closed-loop controlled, similarly to f (i) in Expression (1). In Equation (3), M PUSCH (i) indicates the number of PUSCH frequency resource blocks allocated in subframe #i. P O_PUSCH (j) [dBm] and α (j) indicate the initial value of the transmission power of PUSCH and the weighting coefficient indicating the compensation ratio of the path loss (PL), respectively, and are quasi-fixed allocation (j = 0) And parameters set individually from the base station according to the type of dynamic allocation (j = 1). Δ TF (i) indicates an offset value that can be set according to the amount of control information when transmitting control information using PUSCH.
 また、LTEの発展形であるLTE-Advancedの上りリンクでは、前述の上りリンクでのMIMO伝送のように、複数のアンテナポートを備える端末がサポートされている。LTE-Advancedでは、上り信号の送信電力制御(TPC制御)として、アンテナポート間で共通の送信電力制御を行うことが検討されている(例えば、非特許文献2参照)。具体的には、式(1)で用いるパラメータ及びTPCコマンドをアンテナポートに依らず同一の値を適用する。同様に、PUCCH(式(2))及びPUSCH(式(3))についてもアンテナポート間で共通の送信電力制御を適用することが考えられる。これにより、複数のアンテナポートを備える端末における送信電力制御に要するシグナリング量の増加を防止することができる。 Also, in the LTE-Advanced uplink, which is an extension of LTE, a terminal having a plurality of antenna ports is supported as in the above-described MIMO transmission in the uplink. In LTE-Advanced, it is considered to perform common transmission power control between antenna ports as uplink signal transmission power control (TPC control) (see, for example, Non-Patent Document 2). Specifically, the same value is applied to the parameter and TPC command used in Equation (1) regardless of the antenna port. Similarly, it is conceivable to apply common transmission power control between antenna ports for PUCCH (Equation (2)) and PUSCH (Equation (3)). Thereby, it is possible to prevent an increase in the amount of signaling required for transmission power control in a terminal having a plurality of antenna ports.
 一方、端末におけるパワーアンプ(PA:Power Amplifier)の実装の観点から、TPC制御における誤差(端末に設定されたターゲット送信電力と、端末が実際に送信時に用いる送信電力との誤差。以下、TPC誤差と呼ぶ)を考慮する必要がある。TPC誤差に関して考慮すべき点は、上り信号の送信時間間隔が長いほどTPC誤差がより大きくなる点である。具体的には、端末のPAの温度は時間の経過に伴い変化するので、PAの増幅特性は時間の経過と伴に変わってしまう。このため、上り信号の送信時間間隔が長いほど、端末におけるPAの増幅特性の変化度合はより大きくなる。つまり、上り信号の送信時間間隔が長いほど、TPC誤差はより大きくなることが想定される。 On the other hand, from the viewpoint of implementing a power amplifier (PA) in the terminal, an error in TPC control (an error between a target transmission power set in the terminal and a transmission power actually used by the terminal during transmission. Called). The point to consider regarding the TPC error is that the TPC error becomes larger as the transmission time interval of the upstream signal is longer. Specifically, since the temperature of the terminal PA changes with the passage of time, the amplification characteristics of the PA change with the passage of time. Therefore, the longer the uplink signal transmission time interval, the greater the degree of change in the PA amplification characteristics at the terminal. That is, it is assumed that the TPC error becomes larger as the uplink signal transmission time interval is longer.
 TPC誤差に関して考慮すべき他の点は、直前の送信時(前回送信時)からの送信電力変化量(以下、ΔPと表す)が大きいほど、TPC誤差がより大きくなる点である。増幅回路として複数段構成のPAを実装する端末では、ΔPが大きくなると、送信電力を増幅する際に使用されるPAの段数の増減が大きくなる。つまり、ΔPが大きくなるほどPAの段数の増減が大きくなるので、PAの各段における誤差が加算され、TPC誤差はより大きくなってしまう。また、送信電力は送信信号の周波数帯域幅に比例するため、ΔPが大きいほど(送信電力の増減が大きいほど)、送信信号の周波数位置及び帯域幅が大きく変わる。すなわち、PAの増幅特性は周波数(周波数位置及び帯域幅)にも依存するため、ΔPが大きいほど(周波数位置及び帯域幅の増減が大きいほど)、TPC誤差はより大きくなる。 Another point to be considered regarding the TPC error is that the TPC error becomes larger as the transmission power change amount (hereinafter referred to as ΔP) from the previous transmission (at the time of the previous transmission) is larger. In a terminal in which a multi-stage PA is mounted as an amplifier circuit, an increase or decrease in the number of PA stages used when amplifying transmission power increases as ΔP increases. That is, the increase / decrease in the number of stages of PA increases as ΔP increases, so the error in each stage of PA is added, and the TPC error becomes larger. Further, since the transmission power is proportional to the frequency bandwidth of the transmission signal, the greater the ΔP (the greater the increase / decrease in transmission power), the greater the change in the frequency position and bandwidth of the transmission signal. That is, since the PA amplification characteristic also depends on the frequency (frequency position and bandwidth), the larger the ΔP (the greater the increase / decrease in the frequency position and bandwidth), the greater the TPC error.
 なお、LTEでは、SRSの送信時間間隔と送信電力変化量(ΔP)とに依存したTPC誤差の許容範囲が規定されている(例えば、非特許文献3参照)。図2は、前回の上り信号の送信時からの経過時間(transmission gap)が20msより大きい場合(transmission gap > 20ms)のTPC誤差の許容範囲の規定を示す。つまり、図2に示すように、経過時間が20msより大きい場合には±9.0dBの範囲内のTPC誤差が許容される。また、図3は、前回の上り信号の送信時からの経過時間が20ms以下の場合(transmission gap ≦ 20ms)のTPC誤差の許容範囲の規定を示す。図3に示すように、経過時間が20ms以内の場合には送信電力変化量(power step)ΔPが大きいほどTPC誤差の許容範囲が大きくなっている。 In LTE, an allowable range of TPC error depending on the transmission time interval of SRS and the transmission power change amount (ΔP) is defined (for example, see Non-Patent Document 3). FIG. 2 shows the definition of the allowable range of TPC error when the elapsed time (transmission gap) from the previous uplink signal transmission is longer than 20 ms (transmission gap> 20 ms). That is, as shown in FIG. 2, when the elapsed time is longer than 20 ms, a TPC error within a range of ± 9.0 dB is allowed. FIG. 3 shows the definition of the allowable range of the TPC error when the elapsed time from the previous uplink signal transmission is 20 ms or less (transmission gap ≤ 20 ms). As shown in FIG. 3, when the elapsed time is within 20 ms, the allowable range of the TPC error is larger as the transmission power change amount (power step) ΔP is larger.
 ここで、TPC誤差に起因してSRSのSINR測定誤差が劣化すると、基地局では、PUSCHの周波数リソース割当及びMCS選択等を精度良く行うことができず、システム性能が劣化してしまう。そこで、TPC誤差に起因するSINR測定精度の劣化を防止するために、想定される端末のTPC誤差を考慮してSRSの送信電力を設定することが考えられる。つまり、端末は、想定される最大TPC誤差のばらつきを考慮して、SRSの送信電力をターゲット送信電力よりも大きく設定する。例えば、端末は、想定される最大TPC誤差のばらつきの大きさの分だけ、式(1)に示す、PUSCHの送信電力に対するオフセット値PSRS_OFFSETの値を大きくする。これにより、端末のSRSの送信電力制御においてTPC誤差の影響を受けた場合でも、基地局におけるSRSの受信SINR(入力SINR)が、TPC誤差の影響で劣化領域(例えば、0dB以下)にならないようにすることができ、SINR測定精度(チャネル品質の測定精度)の劣化を防止することができる。 Here, if the SNR SINR measurement error deteriorates due to the TPC error, the base station cannot perform PUSCH frequency resource allocation, MCS selection, and the like with high accuracy, and the system performance deteriorates. Therefore, in order to prevent the degradation of SINR measurement accuracy due to the TPC error, it is conceivable to set the SRS transmission power in consideration of the assumed TPC error of the terminal. That is, the terminal sets the transmission power of the SRS larger than the target transmission power in consideration of the assumed maximum TPC error variation. For example, the terminal increases the value of the offset value P SRS_OFFSET with respect to the PUSCH transmission power shown in Equation (1) by the amount of the assumed maximum TPC error variation. As a result, even when the SRS transmission power control of the terminal is affected by the TPC error, the SRS received SINR (input SINR) in the base station does not fall into a degraded region (for example, 0 dB or less) due to the TPC error. And deterioration of SINR measurement accuracy (channel quality measurement accuracy) can be prevented.
 上記従来技術における送信電力制御をMIMO伝送にもそのまま適用すると、以下の課題が生じる。 When the transmission power control in the above prior art is applied to MIMO transmission as it is, the following problems arise.
 具体的には、MIMO伝送時には、上述したように、上り信号毎に異なるアンテナポート数を設定できるので、連続した上り信号(例えば、直前に送信された上り信号と今回送信される上り信号)の送信時間間隔が20ms以内であっても、それぞれの上り信号の送信時に用いられるアンテナポート数が異なる場合がある。よって、上り信号毎に異なるアンテナポート数が設定され、TPC誤差の許容範囲が従来技術(例えば図2及び図3)と同様に定義されると、送信電力制御の際の許容誤差を定義するための上り信号の送信時間間隔を適切に特定できない場合が生じる。 Specifically, during MIMO transmission, as described above, a different number of antenna ports can be set for each uplink signal, so that a continuous uplink signal (for example, the uplink signal transmitted immediately before and the uplink signal transmitted this time) Even if the transmission time interval is within 20 ms, the number of antenna ports used when transmitting each uplink signal may be different. Therefore, when a different number of antenna ports is set for each uplink signal and the allowable range of the TPC error is defined in the same manner as in the prior art (for example, FIG. 2 and FIG. 3), the allowable error in transmission power control is defined. In some cases, the uplink signal transmission time interval cannot be properly specified.
 例えば、図4に示すように、端末が2本のアンテナポートを備え、PUCCH信号の送信に1アンテナポート(Port 10)が設定され、P-SRSの送信に2アンテナポート(Port 20,21)が設定される場合について説明する。また、図4に示すように、時刻t1(前回送信時)にPUCCH信号が送信され、時刻t2(今回送信時)にP-SRSが送信され、各上り信号が送信される時刻t1から時刻t2までの間の経過時間(送信時間間隔)Tが20ms以内であるとする。なお、ここでは、経過時間(送信時間間隔)Tが20ms以下の場合をTPC誤差が小さい場合とし、経過時間Tが20msより長い場合をTPC誤差が大きい場合とする。 For example, as shown in FIG. 4, the terminal has two antenna ports, one antenna port (Port 10) is set for PUCCH signal transmission, and two antenna ports (Port 20, 21) for P-SRS transmission. The case where is set will be described. Also, as shown in FIG. 4, the PUCCH signal is transmitted at time t1 (previous transmission), the P-SRS is transmitted at time t2 (current transmission), and each uplink signal is transmitted from time t1 to time t2. Assume that the elapsed time (transmission time interval) T is up to 20 ms. Here, a case where the elapsed time (transmission time interval) T is 20 ms or less is a case where the TPC error is small, and a case where the elapsed time T is longer than 20 ms is a case where the TPC error is large.
 図4では、送信時間間隔T(=時刻t2-時刻t1)が20ms以内である。よって、従来技術の送信電力設定(例えば、図3)に従うと、TPC誤差の許容範囲は、送信時間間隔が20msより大きい場合(例えば、図2)と比較して小さい値に設定され、時刻t2で送信されるP-SRSの送信電力が大きく設定することはない(つまり、P-SRSの送信電力が小さく設定される)。しかしながら、図4に示すように、時刻t1で送信されたPUCCH信号と、時刻t2で送信されるP-SRSとでは、設定されているアンテナポート数が異なる。そのため、端末が備える2本のアンテナポートのうち、1本のアンテナポートはPUCCH信号の送信時(つまり、前回送信時)には用いられない。つまり、端末では、前回送信時に用いられなかったアンテナポートでの送信時間間隔が考慮されないため、当該アンテナポートに対応するPAのTPC誤差は大きくなってしまう。 In FIG. 4, the transmission time interval T (= time t2−time t1) is within 20 ms. Therefore, according to the transmission power setting of the prior art (for example, FIG. 3), the allowable range of TPC error is set to a smaller value compared to the case where the transmission time interval is larger than 20 ms (for example, FIG. 2), and the time t2 The transmission power of the P-SRS transmitted in is not set large (that is, the transmission power of the P-SRS is set small). However, as shown in FIG. 4, the set number of antenna ports differs between the PUCCH signal transmitted at time t1 and the P-SRS transmitted at time t2. For this reason, of the two antenna ports provided in the terminal, one antenna port is not used during transmission of the PUCCH signal (that is, during previous transmission). That is, since the terminal does not consider the transmission time interval at the antenna port that was not used at the previous transmission, the TPC error of the PA corresponding to the antenna port becomes large.
 本発明の目的は、各上り信号の送信に異なるアンテナポート数が設定される場合でも、基地局におけるTPC誤差によるSINR測定精度の劣化を防止することができる送信装置及び送信方法を提供することである。 An object of the present invention is to provide a transmission apparatus and a transmission method capable of preventing deterioration of SINR measurement accuracy due to a TPC error in a base station even when different numbers of antenna ports are set for transmission of each uplink signal. is there.
 本発明の一態様に係る送信装置は、信号の送信電力を制御する制御部と、制御された前記送信電力で、前記信号を、少なくとも1つのアンテナポートを介して送信する送信部と、を有し、前記制御部は、前記少なくとも1つのアンテナポートの数と、前回の送信に使用したアンテナポートの数との比較に基づいて、前記送信電力を制御する。 A transmission apparatus according to an aspect of the present invention includes a control unit that controls transmission power of a signal, and a transmission unit that transmits the signal through at least one antenna port with the controlled transmission power. Then, the control unit controls the transmission power based on a comparison between the number of the at least one antenna port and the number of antenna ports used for the previous transmission.
 本発明の一態様に係る送信方法は、信号の送信電力を制御し、制御された前記送信電力で、前記信号を、少なくとも1つのアンテナポートを介して送信する、送信方法であって、前記少なくとも1つのアンテナポートの数と、前回の送信に使用したアンテナポートの数との比較に基づいて、前記送信電力を制御する。 A transmission method according to an aspect of the present invention is a transmission method that controls transmission power of a signal, and transmits the signal through the at least one antenna port with the controlled transmission power. The transmission power is controlled based on a comparison between the number of one antenna port and the number of antenna ports used for the previous transmission.
 本発明によれば、各上り信号の送信に異なるアンテナポート数が設定される場合でも、基地局におけるTPC誤差によるSINR測定精度の劣化を防止することができる。 According to the present invention, even when different numbers of antenna ports are set for transmission of each uplink signal, it is possible to prevent deterioration in SINR measurement accuracy due to TPC errors in the base station.
アンテナポート数の設定及びプリコーディング処理を示す図The figure which shows the setting and precoding processing of the number of antenna ports 送信時間間隔とTPC誤差の許容範囲との対応を示す図The figure which shows a response | compatibility with the transmission time interval and the allowable range of TPC error 送信時間間隔と送信電力変化量とTPC誤差の許容範囲との対応を示す図The figure which shows a response | compatibility with a transmission time interval, transmission power variation | change_quantity, and the allowable range of TPC error 従来技術の課題の説明に供する図Diagram for explaining the problems of the prior art 本発明の実施の形態1に係る端末の主要構成を示すブロック図The block diagram which shows the main structures of the terminal which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る送信電力オフセット値の設定例を示す図The figure which shows the example of a setting of the transmission power offset value which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る送信時間間隔T及びアンテナポート数の大小関係とオフセット補正値との対応を示す図The figure which shows the response | compatibility with the magnitude relationship of the transmission time interval T and antenna port number, and offset correction value which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る送信電力オフセット値の設定例を示す図The figure which shows the example of a setting of the transmission power offset value which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る送信時間間隔T及びPDCCHのフォーマット種別とオフセット補正値との対応を示す図The figure which shows the response | compatibility with the format type of the transmission time interval T and PDCCH and offset correction value which concern on Embodiment 2 of this invention. 本発明の実施の形態2におけるDCI format 0を用いたFallbackによる閉ループMIMO制御を示す図The figure which shows the closed-loop MIMO control by Fallback using DCI | format | 0 in Embodiment 2 of this invention 本発明の実施の形態3に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る送信電力オフセット値の設定例を示す図The figure which shows the example of a setting of the transmission power offset value which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る送信帯域幅の比率と追加オフセット量との対応を示す図The figure which shows a response | compatibility with the ratio of the transmission bandwidth which concerns on Embodiment 3 of this invention, and an additional offset amount
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 なお、本発明の各実施の形態では、上り信号として、P-SRS、A-SRS、PUCCH信号及びPUSCH信号について説明するが、上り信号はこれらに限定されない。 In each embodiment of the present invention, P-SRS, A-SRS, PUCCH signal, and PUSCH signal will be described as uplink signals, but the uplink signals are not limited to these.
 また、P-SRS、A-SRS、PUCCH信号、及び、PUSCH信号の送信に用いられるアンテナポート数はそれぞれ個別に設定される。なお、各上り信号に対するアンテナポート数の設定は、semi-staticに行われるとし、数百ミリ秒から数秒の間は変化しないものとする。つまり、ここでは、上り信号の種別によって当該上り信号の送信に用いられるアンテナポート数が特定されるものとする。 Also, the number of antenna ports used for transmission of P-SRS, A-SRS, PUCCH signal, and PUSCH signal is individually set. It is assumed that the number of antenna ports for each uplink signal is set semi-static and does not change for several hundred milliseconds to several seconds. That is, here, the number of antenna ports used for transmission of the uplink signal is specified by the type of the uplink signal.
 (実施の形態1)
 本実施の形態に係る端末の主要構成を図5に示す。図5に示す端末100では、送信電力制御部109が上り信号の送信電力を制御し、送信RF部111-1,111-2が制御された送信電力で、上り信号を、少なくとも1つのアンテナポートを介して送信する。ここで、送信電力制御部109は、上記少なくとも1つのアンテナポートの数と、前回の送信に使用したアンテナポートの数との比較に基づいて、送信電力を制御する。
(Embodiment 1)
FIG. 5 shows the main configuration of the terminal according to the present embodiment. In terminal 100 shown in FIG. 5, transmission power control section 109 controls uplink signal transmission power, and transmission RF sections 111-1 and 111-2 control uplink power with at least one antenna port. To send through. Here, the transmission power control unit 109 controls the transmission power based on a comparison between the number of the at least one antenna port and the number of antenna ports used for the previous transmission.
 本実施の形態に係る端末100の構成を図6に示す。図6に示す端末100において、送信処理部101-1、101-2は、端末100で使用可能なアンテナポート数に対応してそれぞれ備えられる。また、送信RF部111-1及び111-2は、アンテナ112-1及び112-2(物理アンテナ)の数に応じてそれぞれ備えられる。すなわち、ここでは、図6に示すように、端末100は、最大で2アンテナポートを使用して信号を送信することができる。また、端末100には、アンテナ112-1及び112-2のそれぞれに対応した2つのPAを備える。また、1つのアンテナポートは1つ又は複数の物理アンテナで構成されるものとする。 FIG. 6 shows the configuration of terminal 100 according to the present embodiment. In terminal 100 shown in FIG. 6, transmission processing sections 101-1 and 101-2 are provided corresponding to the number of antenna ports that can be used in terminal 100, respectively. Further, the transmission RF units 111-1 and 111-2 are provided according to the number of antennas 112-1 and 112-2 (physical antennas), respectively. That is, here, as shown in FIG. 6, terminal 100 can transmit a signal using a maximum of two antenna ports. In addition, terminal 100 includes two PAs corresponding to antennas 112-1 and 112-2, respectively. One antenna port is assumed to be composed of one or a plurality of physical antennas.
 各送信処理部101は、生成部102と、マッピング部103と、IFFT(Inverse Fast Fourier Transform)部104と、CP(Cyclic Prefix)付加部105と、送信電力制御部109とから主に構成される。 Each transmission processing unit 101 mainly includes a generation unit 102, a mapping unit 103, an IFFT (InverseInFourier Transform) unit 104, a CP (Cyclic Prefix) addition unit 105, and a transmission power control unit 109. .
 生成部102は、端末100から送信される上り信号を生成し、生成した上り信号をマッピング部103に出力する。生成部102は、例えば、参照信号としてP-SRS又はA-SRSを生成する際、RS用系列(例えば、ZC(Zadoff-Chu)系列)を生成し、基地局から指示された巡回シフト量(CS(Cyclic Shift)量)に相当する位相回転をRS用系列に付与する。また、生成部102は、例えば、制御信号としてPUCCH信号を生成する際、制御信号であるCQI(Channel Quality Indicator)報告信号又はHARQ(Hybrid Automatic Retransmission reQuest)用のACK/NACK信号等にチャネル符号化及び変調を施す。また、生成部102は、上りデータ(データ信号)としてPUSCH信号を生成する際、上りデータに対して、基地局から指示されたトランスポートブロックサイズ、符号化率及び変調方式をそれぞれ用いて、チャネル符号化、レートマッチング及び変調を施す。 The generation unit 102 generates an uplink signal transmitted from the terminal 100, and outputs the generated uplink signal to the mapping unit 103. For example, when generating P-SRS or A-SRS as a reference signal, the generation unit 102 generates an RS sequence (for example, a ZC (Zadoff-Chu) sequence), and a cyclic shift amount (indicated by the base station) A phase rotation corresponding to CS (Cyclic Shift) amount is given to the RS series. For example, when generating the PUCCH signal as the control signal, the generation unit 102 performs channel coding on a CQI (Channel Quality Indicator) report signal or an HARQ (Hybrid Automatic Transmission Request) ACK / NACK signal, etc. And apply modulation. Further, when generating the PUSCH signal as uplink data (data signal), the generation unit 102 uses the transport block size, the coding rate, and the modulation scheme instructed by the base station for the uplink data, respectively. Encode, rate match and modulate.
 マッピング部103は、基地局から指示された周波数リソース割当情報に基づいて、生成部102から入力される信号(RS系列、制御信号又は上りデータ)を周波数リソースにマッピングしてIFFT部104に出力する。 Mapping section 103 maps the signal (RS sequence, control signal, or uplink data) input from generation section 102 to the frequency resource based on the frequency resource allocation information instructed from the base station, and outputs it to IFFT section 104 .
 IFFT部104は、マッピング部103から入力される信号にIFFT処理を施し、IFFT処理後の信号をCP付加部105に出力する。 The IFFT unit 104 performs IFFT processing on the signal input from the mapping unit 103, and outputs the signal after IFFT processing to the CP adding unit 105.
 CP付加部105は、IFFT部104から入力されるIFFT後の信号の後尾部分と同じ信号をCPとして先頭に付加し、CP付加後の信号を送信電力制御部109に出力する。 CP adding section 105 adds the same signal as the tail part of the signal after IFFT inputted from IFFT section 104 to the head as CP, and outputs the signal after CP addition to transmission power control section 109.
 オフセット設定部106は、算出部107及びオフセット値決定部108で構成される。 The offset setting unit 106 includes a calculation unit 107 and an offset value determination unit 108.
 具体的には、オフセット設定部106の算出部107は、端末100で直前に送信(前回送信)した上り信号(PUSCH信号、PUCCH信号又はSRS(P-SRS,A-SRS))の送信時刻からの経過時間を算出する。また、算出部107は、端末100で直前に送信(前回送信)した上り信号の送信時に用いられたアンテナポート数と、端末100から今回送信される上り信号の送信時に用いられるアンテナポート数との大小関係を算出する。そして、算出部107は、算出した経過時間及びアンテナポート数の大小関係をオフセット値決定部108に出力する。 Specifically, the calculation unit 107 of the offset setting unit 106 starts from the transmission time of the uplink signal (PUSCH signal, PUCCH signal, or SRS (P-SRS, A-SRS)) transmitted immediately before (previous transmission) by the terminal 100. The elapsed time of is calculated. The calculation unit 107 also calculates the number of antenna ports used when transmitting the uplink signal transmitted immediately before (previous transmission) at the terminal 100 and the number of antenna ports used when transmitting the uplink signal transmitted this time from the terminal 100. Calculate the magnitude relationship. Then, the calculating unit 107 outputs the calculated relationship between the elapsed time and the number of antenna ports to the offset value determining unit 108.
 オフセット設定部106のオフセット値決定部108は、算出部107から入力される経過時間及びアンテナポート数の大小関係に応じて、端末100から送信される上り信号の送信電力を設定する際に用いる、上り信号の送信電力に対するオフセット値(以下、送信電力オフセット値と呼ぶ。例えば、式(1)に示すPSRS_OFFSET)を設定する。そして、オフセット値決定部108は、送信電力オフセット値を送信電力制御部109に出力する。なお、オフセット設定部106における送信電力オフセット値の設定処理の詳細については後述する。 The offset value determination unit 108 of the offset setting unit 106 is used when setting the transmission power of the uplink signal transmitted from the terminal 100 according to the magnitude relationship between the elapsed time input from the calculation unit 107 and the number of antenna ports. An offset value for the transmission power of the uplink signal (hereinafter referred to as a transmission power offset value. For example, P SRS_OFFSET shown in Expression (1)) is set. Then, offset value determination section 108 outputs the transmission power offset value to transmission power control section 109. Details of the transmission power offset value setting process in offset setting section 106 will be described later.
 送信電力制御部109は、オフセット値決定部108から入力される送信電力オフセット値に従って、CP付加部105から入力される信号(上り信号)の送信電力を制御し、送信電力制御後の信号をプリコーディング部110に出力する。 Transmission power control section 109 controls the transmission power of the signal (uplink signal) input from CP adding section 105 according to the transmission power offset value input from offset value determination section 108, and pre-transmits the signal after the transmission power control. Output to coding section 110.
 プリコーディング部110は、各送信処理部101-1及び101-2から入力される信号(つまり、各アンテナポートに対応する信号)に対して、図1と同様にして、プリコーディング処理を施す。例えば、プリコーディング部110は、1つのアンテナポートを使用する信号の送信時に、Implementation based precodingにて当該信号を各物理アンテナに配分する。この場合、信号は2つのアンテナ112-1及び112-2で送信される。また、1つのアンテナポートを使用する信号のうちプリコーディングがサポートされていない信号については、当該信号に対してプリコーディング処理を施さない。この場合、信号は2つのアンテナ112-1及び112-2のいずれか一方から送信される。つまり、1つのアンテナポートを使用する信号の送信時には、端末100が備える2つのアンテナ112-1及び112-2のうち何れか一方(つまり、2つのPAのうち何れか一方)は使用され得ない。また、プリコーディング部110は、複数のアンテナポート(2つのアンテナポート)で送信される信号に対してコードブックベースのプリコーディングを行う。そして、プリコーディング部110は、プリコーディング後の信号を、送信RF部111-1及び111-2にそれぞれ出力する。 The precoding unit 110 performs precoding processing on the signals input from the transmission processing units 101-1 and 101-2 (that is, signals corresponding to the respective antenna ports) in the same manner as in FIG. For example, when transmitting a signal using one antenna port, the precoding unit 110 distributes the signal to each physical antenna using Implementation based precoding. In this case, the signal is transmitted by the two antennas 112-1 and 112-2. In addition, a signal that does not support precoding among signals using one antenna port is not subjected to precoding processing. In this case, the signal is transmitted from either one of the two antennas 112-1 and 112-2. That is, when transmitting a signal using one antenna port, one of the two antennas 112-1 and 112-2 provided in the terminal 100 (that is, one of the two PAs) cannot be used. . In addition, the precoding unit 110 performs codebook-based precoding on signals transmitted through a plurality of antenna ports (two antenna ports). Then, precoding section 110 outputs the precoded signal to transmission RF sections 111-1 and 111-2, respectively.
 送信RF部111は、プリコーディング部110から入力される信号に対し、D/A変換、アップコンバート及び増幅等の送信処理を施し、送信処理後の信号をアンテナ112から送信する。このように、端末100では、送信電力制御部109で制御された送信電力で、上り信号が少なくとも1つのアンテナポートを介して送信される。 The transmission RF unit 111 performs transmission processing such as D / A conversion, up-conversion, and amplification on the signal input from the precoding unit 110, and transmits the signal after the transmission processing from the antenna 112. Thus, in terminal 100, the uplink signal is transmitted via at least one antenna port with the transmission power controlled by transmission power control section 109.
 次に、本実施の形態に係る基地局200の構成を図7に示す。図7に示す基地局200において、受信RF部202は、端末100(図6)から送信された信号をアンテナ201を介して受信し、受信信号に対しダウンコンバート、A/D変換等の受信処理を行う。端末100から送信される信号には各上り信号(例えば、PUCCH信号、PUSCH信号、又は、SRS(P-SRS、A-SRS))が含まれる。そして、受信RF部202は、受信処理後の信号をCP除去部203に出力する。 Next, FIG. 7 shows the configuration of base station 200 according to the present embodiment. In the base station 200 shown in FIG. 7, the reception RF unit 202 receives a signal transmitted from the terminal 100 (FIG. 6) via the antenna 201, and performs reception processing such as down-conversion and A / D conversion on the received signal. I do. The signal transmitted from terminal 100 includes each uplink signal (for example, PUCCH signal, PUSCH signal, or SRS (P-SRS, A-SRS)). Then, reception RF section 202 outputs the signal after reception processing to CP removal section 203.
 CP除去部203は、受信RF部202から入力される信号の先頭に付加されているCPを除去し、CP除去後の信号をFFT(Fast Fourier Transform)部204に出力する。 CP removing section 203 removes the CP added to the head of the signal inputted from reception RF section 202 and outputs the signal after CP removal to FFT (Fast Fourier Transform) section 204.
 FFT部204は、CP除去部203から入力される信号に対してFFT処理を行って周波数領域の信号に変換し、周波数領域の信号をデマッピング部205に出力する。 The FFT unit 204 performs an FFT process on the signal input from the CP removal unit 203 to convert the signal into a frequency domain signal, and outputs the frequency domain signal to the demapping unit 205.
 デマッピング部205は、基地局200が端末100(通信対象である所望端末)に指示した、所望端末向けの周波数リソース割当情報に基づいて、FFT部204から入力される周波数領域の信号から、所望端末の送信帯域(周波数リソース)に対応する信号を抽出する。そして、デマッピング部205は、抽出した信号(SRS、PUCCH信号、又は、PUSCH信号)を、SRS用SINR測定部208、PUCCHリソース検出部210及びPUSCH復調部212のうち対応する構成部にそれぞれ出力する。 Based on the frequency resource allocation information for the desired terminal, which is instructed by the base station 200 to the terminal 100 (the desired terminal that is the communication target), the demapping unit 205 determines the desired value from the frequency domain signal input from the FFT unit 204. A signal corresponding to the transmission band (frequency resource) of the terminal is extracted. Then, the demapping unit 205 outputs the extracted signal (SRS, PUCCH signal, or PUSCH signal) to the corresponding components of the SRS SINR measurement unit 208, the PUCCH resource detection unit 210, and the PUSCH demodulation unit 212, respectively. To do.
 巡回シフト量設定部206は、基地局200が端末100(所望端末)に指示した、所望端末向けの巡回シフト量を、SRS用SINR測定部208に出力する。 The cyclic shift amount setting unit 206 outputs the cyclic shift amount for the desired terminal, which is instructed by the base station 200 to the terminal 100 (desired terminal), to the SRS SINR measurement unit 208.
 オフセット設定部207は、端末100のオフセット設定部106と同様の処理を行う。つまり、オフセット設定部207は、端末100(所望端末)から直前に送信(前回送信)された上り信号の送信時刻からの経過時間、及び、前回送信時と今回送信時との間のアンテナポート数の大小関係に応じて、各上り信号に対する送信電力オフセット値を設定する。そして、オフセット設定部207は、設定した送信電力オフセット値を、データ用SINR導出部209、PUCCH復調部211及びPUSCH復号部213にそれぞれ出力する。 The offset setting unit 207 performs the same processing as the offset setting unit 106 of the terminal 100. That is, the offset setting unit 207 includes the elapsed time from the transmission time of the uplink signal transmitted immediately before (previous transmission) from the terminal 100 (desired terminal), and the number of antenna ports between the previous transmission and the current transmission. The transmission power offset value for each uplink signal is set according to the magnitude relationship. Then, offset setting section 207 outputs the set transmission power offset value to data SINR derivation section 209, PUCCH demodulation section 211, and PUSCH decoding section 213, respectively.
 SRS用SINR測定部208は、デマッピング部205から入力されるSRS(P-SRS又はA-SRS)と、送受信間で既知であるRS用系列とを複素除算して周波数領域の相関信号を求める。更に、SRS用SINR測定部208は、周波数領域の相関信号に対してIDFT(Inverse Discrete Fourier Transform)処理を行い、時間領域の相関信号(つまり、遅延プロファイル)を算出する。この遅延プロファイルには、複数の端末のSRS(参照信号)が含まれている。そこで、SRS用SINR測定部208は、巡回シフト量設定部206から入力される、所望端末の巡回シフト量を用いて、遅延プロファイルのうち、所望端末の巡回シフト量に相当する部分以外をマスクすることにより、所望端末のSRSのSINR測定値(SRS用SINR測定値)を算出する。そして、SRS用SINR測定部208は、算出したSRS用SINR測定値を、データ用SINR導出部209に出力する。 SIRS measurement unit for SRS 208 complex-divides the SRS (P-SRS or A-SRS) input from demapping unit 205 and the RS sequence known between transmission and reception to obtain a correlation signal in the frequency domain. . Furthermore, the SNR SINR measurement unit 208 performs an IDFT (Inverse Discrete Fourier Transform) process on the frequency domain correlation signal to calculate a time domain correlation signal (that is, a delay profile). This delay profile includes SRSs (reference signals) of a plurality of terminals. Therefore, the SIRS SINR measurement unit 208 uses the cyclic shift amount of the desired terminal input from the cyclic shift amount setting unit 206 to mask other than the portion corresponding to the cyclic shift amount of the desired terminal in the delay profile. Thus, the SNR SINR measurement value (SRS SINR measurement value) of the desired terminal is calculated. Then, the SRS SINR measurement unit 208 outputs the calculated SRS SINR measurement value to the data SINR deriving unit 209.
 データ用SINR導出部209は、SRS用SINR測定部208から入力されるSRS用SINR測定値、及び、オフセット設定部207から入力される送信電力オフセット値を用いて、上りデータ(つまり、PUSCH信号)のSINR(データ用SINR測定値)を導出する。具体的には、データ用SINR導出部209は、SRS用SINR測定値及び送信電力オフセット値を用いて、次式(4)に従って、データ用SINR測定値を導出する。
Figure JPOXMLDOC01-appb-M000004
The data SINR deriving unit 209 uses the SRS SINR measurement value input from the SRS SINR measurement unit 208 and the transmission power offset value input from the offset setting unit 207 to perform uplink data (that is, PUSCH signal). SINR (data SINR measurement value) is derived. Specifically, the data SINR derivation unit 209 derives the data SINR measurement value according to the following equation (4) using the SRS SINR measurement value and the transmission power offset value.
Figure JPOXMLDOC01-appb-M000004
 基地局200は、データ用SINR導出部209で導出されたデータ用SINR測定値を用いて、端末100のスケジューリング(例えば、周波数リソース割当及びMCS選択)を行う。 The base station 200 performs scheduling (for example, frequency resource allocation and MCS selection) of the terminal 100 using the data SINR measurement value derived by the data SINR deriving unit 209.
 PUCCHリソース検出部210は、所望端末に割り当てられた巡回シフト量及び拡散符号を用いて、デマッピング部205から入力されるPUCCH信号に対して逆拡散処理を施し、所望端末からのPUCCH信号が割り当てられたPUCCHリソースを検出する。PUCCHリソース検出部210は、所望端末からのPUCCH信号が検出できた場合には、当該PUCCH信号をPUCCH復調部211に出力する。 The PUCCH resource detection unit 210 performs despreading processing on the PUCCH signal input from the demapping unit 205 using the cyclic shift amount and spreading code assigned to the desired terminal, and assigns the PUCCH signal from the desired terminal. The detected PUCCH resource is detected. When the PUCCH signal from the desired terminal can be detected, the PUCCH resource detection unit 210 outputs the PUCCH signal to the PUCCH demodulation unit 211.
 PUCCH復調部211は、PUCCHリソース検出部210から入力されるPUCCH信号に対して復調処理を施し、復調後のPUCCH信号をPUCCH復調信号として取り出す。 The PUCCH demodulation unit 211 performs demodulation processing on the PUCCH signal input from the PUCCH resource detection unit 210, and extracts the demodulated PUCCH signal as a PUCCH demodulated signal.
 PUSCH復調部212は、所望端末に指示した変調方式に基づいて、デマッピング部205から入力されるPUSCH信号に対して復調処理を施し、復調後のPUSCH信号をPUSCH復号部213に出力する。 The PUSCH demodulation unit 212 performs demodulation processing on the PUSCH signal input from the demapping unit 205 based on the modulation scheme instructed to the desired terminal, and outputs the demodulated PUSCH signal to the PUSCH decoding unit 213.
 PUSCH復号部213は、所望端末に指示した符号化率に基づいて、PUSCH復調部212から入力されるPUSCH信号に対して復号処理を施し、復号後のPUSCH信号をPUSCH復号データとして取り出す。 The PUSCH decoding unit 213 performs a decoding process on the PUSCH signal input from the PUSCH demodulating unit 212 based on the coding rate instructed to the desired terminal, and extracts the decoded PUSCH signal as PUSCH decoded data.
 次に、端末100のオフセット設定部106(図6)及び基地局200のオフセット設定部207(図7)における送信電力オフセット値の設定処理の詳細について説明する。 Next, details of transmission power offset value setting processing in the offset setting unit 106 (FIG. 6) of the terminal 100 and the offset setting unit 207 (FIG. 7) of the base station 200 will be described.
 ここでは、前回送信された上り信号の送信時刻から今回送信される上り信号の送信時刻までの経過時間(送信時間間隔)Tが20ms以下の場合をTPC誤差が小さい場合とし、経過時間Tが20msより長い場合をTPC誤差が大きい場合とする。 Here, the case where the elapsed time (transmission time interval) T from the transmission time of the uplink signal transmitted last time to the transmission time of the uplink signal transmitted this time is 20 ms or less is defined as the case where the TPC error is small, and the elapsed time T is 20 ms. A longer case is a case where the TPC error is large.
 また、図8A及び図8Bに示すように、時刻t1でPUCCH信号が送信され、時刻t1よりも後の時刻t2でP-SRSが送信される場合について説明する。図8A及び図8Bでは、時刻t1から時刻t2までの経過時間(送信時間間隔)Tが20ms以内とする(T≦20ms)。 8A and 8B, a case where a PUCCH signal is transmitted at time t1 and P-SRS is transmitted at time t2 after time t1 will be described. 8A and 8B, it is assumed that the elapsed time (transmission time interval) T from time t1 to time t2 is within 20 ms (T ≦ 20 ms).
 また、図8Aでは、PUCCH信号の送信に1アンテナポート(Port 10)が設定され、P-SRSの送信に2アンテナポート(Port 20,21)が設定される。一方、図8Bでは、PUCCH信号の送信に2アンテナポート(Port 20,21)が設定され、P-SRSの送信に1アンテナポート(Port 10)が設定される。なお、1アンテナポートが使用される場合には、端末100のアンテナ112-1,112-2の少なくとも1つのアンテナが使用され、2アンテナポートが使用される場合には、端末100のアンテナ112-1,112-2の双方が使用される。 In FIG. 8A, one antenna port (Port 10) is set for transmission of the PUCCH signal, and two antenna ports (Port 20, 21) are set for transmission of the P-SRS. On the other hand, in FIG. 8B, two antenna ports (Port 20, 21) are set for PUCCH signal transmission, and one antenna port (Port 10) is set for P-SRS transmission. When one antenna port is used, at least one of the antennas 112-1 and 112-2 of the terminal 100 is used. When two antenna ports are used, the antenna 112- of the terminal 100 is used. Both 1 and 112-2 are used.
 オフセット設定部106の算出部107は、直前(前回)の上り信号(図8A及び図8BではPUCCH信号)の送信時刻t1から今回の上り信号(図8A及び図8BではP-SRS)の送信時刻t2までの経過時間(送信時間間隔)T(=時刻t2-時刻t1)を算出する。 The calculation unit 107 of the offset setting unit 106 transmits the transmission time of the current upstream signal (P-SRS in FIGS. 8A and 8B) from the transmission time t1 of the previous upstream signal (PUCCH signal in FIGS. 8A and 8B). An elapsed time (transmission time interval) T (= time t2−time t1) until t2 is calculated.
 また、算出部107は、時刻t1での送信に用いたアンテナポート数と、時刻t2での送信に用いるアンテナポート数との大小関係を算出する。すなわち、算出部107は、今回の送信時に使用されるアンテナポート(少なくとも1つのアンテナポート)の数と、前回の送信に使用したアンテナポートの数とを比較する。例えば、図8Aでは、算出部107は、時刻t1で用いるアンテナポート数(1本)が時刻t2で用いるアンテナポート数(2本)より少ないことを算出する。一方、図8Bでは、算出部107は、時刻t1で用いるアンテナポート数(2本)が時刻t2で用いるアンテナポート数(1本)より多いことを算出する。 Also, the calculation unit 107 calculates the magnitude relationship between the number of antenna ports used for transmission at time t1 and the number of antenna ports used for transmission at time t2. That is, the calculation unit 107 compares the number of antenna ports (at least one antenna port) used during the current transmission with the number of antenna ports used for the previous transmission. For example, in FIG. 8A, the calculation unit 107 calculates that the number of antenna ports (one) used at time t1 is smaller than the number of antenna ports (two) used at time t2. On the other hand, in FIG. 8B, the calculation unit 107 calculates that the number of antenna ports (two) used at time t1 is larger than the number of antenna ports (one) used at time t2.
 オフセット値決定部108は、算出部107で算出された送信時間間隔T及びアンテナポート数の大小関係に基づいて、例えば、図9に示すテーブルに従って、補正値Δoffsetを決定する。ここで、例えば、サブフレーム(sub-frame)#iにおけるSRSの送信電力PSRS(i)は次式(5)に従って求められる。
Figure JPOXMLDOC01-appb-M000005
Offset value determination unit 108, based on the calculated transmission time interval T and the magnitude relationship of the number of antenna ports at the calculator 107, for example, according to the table shown in FIG. 9, determines a correction value delta offset. Here, for example, the transmission power P SRS (i) of SRS in sub-frame #i is obtained according to the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 式(5)において、PCMAX[dBm]は、端末100が送信可能なSRSの最大送信電力を示す。また、PSRS_OFFSET[dBm]は、端末100が送信するPUSCHの送信電力に対する送信電力オフセット値(基地局200から設定されるパラメータ)を示す。また、MSRSは、SRSに割り当てられる周波数リソースブロック数を示す。また、PO_PUSCH[dBm]は、PUSCHの送信電力の初期値(基地局200から設定されるパラメータ)を示す。また、PLは、端末100が測定したパスロスレベル[dB]を示す。また、αは、パスロス(PL)の補償割合を表す重み係数(基地局200から設定されるパラメータ)を示す。また、f(i)は、閉ループ制御されるTPCコマンド(制御値。例えば、+3dB、+1dB、0dB、-1dB)の過去の値を含めたサブフレーム#iにおける累計値を示す。また、式(3)において、Δoffsetは、算出部107で算出された経過時間(送信時間間隔)に対応付けられた、オフセット値PSRS_OFFSETの補正値を示す。 In Expression (5), P CMAX [dBm] represents the maximum transmission power of the SRS that can be transmitted by the terminal 100. P SRS_OFFSET [dBm] indicates a transmission power offset value (a parameter set from base station 200) with respect to the transmission power of PUSCH transmitted by terminal 100. M SRS indicates the number of frequency resource blocks allocated to the SRS. P O_PUSCH [dBm] indicates an initial value of PUSCH transmission power (a parameter set by the base station 200). PL represents a path loss level [dB] measured by the terminal 100. Further, α represents a weighting factor (a parameter set from the base station 200) indicating a compensation rate of path loss (PL). Further, f (i) indicates a cumulative value in subframe #i including a past value of a TPC command (control value, for example, +3 dB, +1 dB, 0 dB, −1 dB) controlled in a closed loop. Further, in the equation (3), the delta offset, associated with the calculation unit 107 the elapsed time calculated in (transmission time interval), indicating the correction value of the offset value P SRS_OFFSET.
 つまり、オフセット値決定部108は、送信時間間隔Tに基づいて、基地局200から指示される送信電力オフセット値PSRS_OFFSETを補正する補正値Δoffsetを設定する。そして、オフセット値決定部108は、式(5)に示すように、送信電力オフセット値PSRS_OFFSETに補正値Δoffsetを加えることにより、補正後の送信電力オフセット値(PSRS_OFFSET+Δoffset)を決定する。 That is, offset value determination section 108 sets correction value Δ offset for correcting transmission power offset value P SRS_OFFSET instructed from base station 200 based on transmission time interval T. Then, the offset value determining unit 108 determines the corrected transmission power offset value (P SRS_OFFSET + Δ offset ) by adding the correction value Δ offset to the transmission power offset value P SRS_OFFSET as shown in the equation (5). .
 そして、送信電力制御部109は、オフセット値決定部108から入力される送信電力オフセット値(PSRS_OFFSET+Δoffset)を用いて、式(5)に従って、SRSの送信電力PSRS(i)を制御する。つまり、送信電力制御部109は、送信電力に対するオフセット値(PSRS_OFFSET+Δoffset)の増減によって、上り信号の送信電力を制御する。 Then, transmission power control section 109 controls transmission power P SRS (i) of SRS according to equation (5) using transmission power offset value (P SRS_OFFSET + Δ offset ) input from offset value determination section 108. . That is, the transmission power control section 109 controls the transmission power of the uplink signal by increasing or decreasing the offset value (P SRS_OFFSET + Δ offset ) with respect to the transmission power.
 ここで、補正値Δoffsetの設定例について説明する。 The following describes configuration examples of a correction value delta offset.
 例えば、図8Aにおいて、時刻t1では、使用されるアンテナポートの数が1つであるので、端末100が備える2本のアンテナ112-1,112-2のうちいずれか一方のアンテナに対応するPAがOFFになり得る。一方、図8Aにおいて、時刻t2では、使用されるアンテナポートの数が2つであるので、端末100が備える2本のアンテナ112-1,112-2に対応する全てのPAで信号が送信される。よって、時刻t2において端末100が備える2本のアンテナのうち、時刻t1でも用いられたアンテナに対応するPAでは、上り信号の送信時間間隔T(=時刻t2-時刻t1)が所定の閾値(20ms)以内となるものの、時刻t1でOFFとなり得るPAでは、上り信号の送信時間間隔Tが所定の閾値(20ms)より長くなる可能性がある。つまり、時刻t2で用いられる2つのアンテナのうち、いずれか一方のアンテナは時刻t1で用いられていない可能性があり、当該アンテナでの上り信号の送信時間間隔Tが、他方のアンテナでの送信時間間隔T(=時刻t2-時刻t1)よりも長いと見なせる。すなわち、時刻t1で用いられていないアンテナに対応するPAでのTPC誤差が大きいと見なせる。 For example, in FIG. 8A, since the number of antenna ports used is one at time t1, PA corresponding to one of the two antennas 112-1 and 112-2 provided in terminal 100 is used. Can be turned off. On the other hand, in FIG. 8A, at time t2, since the number of antenna ports used is two, signals are transmitted by all PAs corresponding to the two antennas 112-1 and 112-2 provided in terminal 100. The Therefore, in the PA corresponding to the antenna used also at time t1 out of the two antennas included in terminal 100 at time t2, the uplink signal transmission time interval T (= time t2−time t1) is a predetermined threshold (20 ms). However, in the PA that can be turned off at time t1, the transmission time interval T of the upstream signal may be longer than a predetermined threshold (20 ms). That is, one of the two antennas used at time t2 may not be used at time t1, and the transmission time interval T of the uplink signal at the antenna is the transmission at the other antenna. It can be considered that it is longer than the time interval T (= time t2−time t1). That is, it can be considered that the TPC error in the PA corresponding to the antenna not used at time t1 is large.
 よって、図8Aに示すように、送信時間間隔Tが20msec以内であっても、時刻t1で使用されたアンテナポート数(1本)が時刻t2で送信される上り信号の送信に使用されるアンテナポート数(2本)よりも少ない場合、想定されるTPC誤差は大きい。 Therefore, as shown in FIG. 8A, even if the transmission time interval T is within 20 msec, the number of antenna ports (one) used at time t1 is the antenna used for transmission of the uplink signal transmitted at time t2. When the number is smaller than the number of ports (two), the assumed TPC error is large.
 また、送信時間間隔Tが20msより長い場合(図示せず)、TPC誤差は大きい。 Also, when the transmission time interval T is longer than 20 ms (not shown), the TPC error is large.
 そこで、図9に示すように、オフセット値決定部108は、送信時間間隔Tが20msecより長い場合(図示せず)、又は、時刻t1で送信された上り信号の送信に用いたアンテナポート数が時刻t2で送信される上り信号の送信に用いるアンテナポート数よりも少ない場合(図8A)、補正値Δoffsetを0dBに設定する。 Therefore, as shown in FIG. 9, when the transmission time interval T is longer than 20 msec (not shown), or the offset value determination unit 108 has the number of antenna ports used for transmission of the uplink signal transmitted at time t1. If less than the number of antenna ports used for transmission of an uplink signal to be transmitted at time t2 (FIG. 8A), to set the correction value delta offset to 0 dB.
 これに対して、図8Bにおいて、時刻t2では、使用されるアンテナポートの数が1つであるので、端末100が備える2本のアンテナ112-1,112-2のうちいずれか一方のアンテナに対応するPAがOFFになり得る。一方、図8Bにおいて、時刻t1では、使用されるアンテナポートの数が2つであるので、端末100が備える2本のアンテナ112-1,112-2に対応する全てのPAで信号が送信される。よって、時刻t2では、いずれのアンテナに対応するPAがOFFとなっても、P-SRSの送信に使用されるアンテナに対応するPAを用いて送信される信号の送信時間間隔T(=時刻t2-時刻t1)は、所定の閾値(20ms)以内となる。つまり、図8Bに示すように、時刻t2で用いられる1つのアンテナは、時刻t1でも必ず用いられており、当該アンテナでの上り信号の送信時間間隔T(=時刻t2-時刻t1)は所定の閾値(20ms)以内であると確実に見なせる。 On the other hand, in FIG. 8B, at time t2, since the number of antenna ports used is one, either one of the two antennas 112-1 and 112-2 provided in terminal 100 is connected. The corresponding PA can be turned off. On the other hand, in FIG. 8B, at time t1, since the number of antenna ports used is two, signals are transmitted by all PAs corresponding to the two antennas 112-1 and 112-2 provided in terminal 100. The Therefore, at time t2, even if the PA corresponding to any antenna is turned OFF, the transmission time interval T (= time t2) of the signal transmitted using the PA corresponding to the antenna used for P-SRS transmission -Time t1) is within a predetermined threshold (20 ms). That is, as shown in FIG. 8B, one antenna used at time t2 is always used at time t1, and the transmission time interval T (= time t2−time t1) of the uplink signal at the antenna is predetermined. It can be reliably regarded as being within the threshold (20 ms).
 よって、図8Bに示すように、送信時間間隔Tが20ms以内であり、かつ、時刻t1で使用されたアンテナポート数(2本)が時刻t2で使用されるアンテナポート数(1本)よりも多い場合、想定されるTPC誤差は小さい。 Therefore, as shown in FIG. 8B, the transmission time interval T is within 20 ms, and the number of antenna ports (two) used at time t1 is larger than the number of antenna ports (one) used at time t2. In many cases, the expected TPC error is small.
 そこで、図9に示すように、オフセット値決定部108は、送信時間間隔Tが20msec以内であり、かつ、時刻t1で送信された上り信号の送信に用いたアンテナポート数が時刻t2で送信される上り信号の送信に用いるアンテナポート数よりも多い場合(図8B)、補正値Δoffsetを-6dBに設定する。 Therefore, as shown in FIG. 9, the offset value determination unit 108 has the transmission time interval T within 20 msec, and the number of antenna ports used for transmitting the uplink signal transmitted at time t1 is transmitted at time t2. When the number of antenna ports is larger than the number of antenna ports used for transmission of the uplink signal (FIG. 8B), the correction value Δ offset is set to −6 dB.
 そして、オフセット値決定部108は、基地局200から指示されたオフセット値PSRS_OFFSETに補正値Δoffsetを加えることで、送信電力オフセット値(PSRS_OFFSET+Δoffset)を決定する。 Then, the offset value determination unit 108 determines the transmission power offset value (P SRS_OFFSET + Δ offset ) by adding the correction value Δ offset to the offset value P SRS_OFFSET instructed from the base station 200.
 また、図8A及び図8Bでは、SRS(P-SRS又はA-SRS)に対する送信電力制御を行う場合について説明した。しかし、オフセット設定部106(オフセット値決定部108)は、PUCCH及びPUSCHに対する送信電力制御についても、次式(6)及び(7)に従って、従来の送信電力を表す式(2)及び式(3)に対して送信電力オフセット値Δoffsetを加える。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Further, in FIG. 8A and FIG. 8B, the case where transmission power control for SRS (P-SRS or A-SRS) is performed has been described. However, the offset setting unit 106 (offset value determining unit 108) also performs transmission power control for the PUCCH and PUSCH according to the following expressions (6) and (7): ) Is added with a transmission power offset value Δoffset .
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 つまり、端末100は、今回の送信時に使用されるアンテナポート(少なくとも1つのアンテナポート)の数と、所定の時間間隔(ここでは20ms)以下の前回の送信に使用したアンテナポートの数との比較に基づいて、上り信号の送信電力を制御する。具体的には、オフセット値決定部108は、送信時間間隔Tが短い場合、かつ、アンテナポート数が前回送信時と同数又は減少する場合には、それ以外の場合と比較して、送信電力オフセット値(PSRS_OFFSET+Δoffset)が小さくなるように補正値Δoffsetを設定する。上記「送信時間間隔Tが短い場合」とは、例えば「T≦20msの場合」である。また、上記「アンテナポート数が前回送信時と同数又は減少する場合」とは、例えば「時刻t2で用いるアンテナポート数≦時刻t1で用いるアンテナポート数の場合」である。また、「それ以外の場合」とは、例えば「T>20msの場合、又は、時刻t1で用いるアンテナポート数<時刻t2で用いるアンテナポート数の場合」である。 That is, terminal 100 compares the number of antenna ports (at least one antenna port) used at the time of the current transmission with the number of antenna ports used for the previous transmission at a predetermined time interval (20 ms in this case) or less. Based on the above, the transmission power of the uplink signal is controlled. Specifically, when the transmission time interval T is short and the number of antenna ports is the same as or decreased from the previous transmission, the offset value determination unit 108 compares the transmission power offset with the other cases. The correction value Δ offset is set so that the value (P SRS_OFFSET + Δ offset ) becomes smaller. The “when the transmission time interval T is short” is, for example, “when T ≦ 20 ms”. In addition, the above “when the number of antenna ports is the same as or decreased when the previous transmission” is, for example, “when the number of antenna ports used at time t2 ≦ the number of antenna ports used at time t1”. “Other than that” is, for example, “when T> 20 ms or when the number of antenna ports used at time t1 <the number of antenna ports used at time t2”.
 すなわち、送信電力制御部109は、今回送信される上り信号の送信に使用されるアンテナポート(少なくとも1つのアンテナポート)の数が、前回の送信に使用したアンテナポートの数よりも少ない場合、上り信号の送信電力が小さくなるように、送信電力を制御する。換言すると、送信電力制御部109は、今回送信される上り信号の送信に使用されるアンテナポート(少なくとも1つのアンテナポート)が、前回の送信において使用されなかったアンテナポートを含まない場合、上り信号の送信電力が小さくなるように、送信電力を制御する。 That is, when the number of antenna ports (at least one antenna port) used for transmission of the uplink signal transmitted this time is smaller than the number of antenna ports used for the previous transmission, the transmission power control unit 109 The transmission power is controlled so that the transmission power of the signal is reduced. In other words, the transmission power control unit 109, when the antenna port (at least one antenna port) used for transmission of the uplink signal transmitted this time does not include the antenna port that was not used in the previous transmission, The transmission power is controlled so that the transmission power becomes smaller.
 これにより、基地局200で所望の受信SINR(SINR測定精度が劣化しない受信SINR)を得ることができる必要最低限の送信電力まで、上り信号の送信電力を低く設定することが可能となる。よって、基地局200でのSRSのSINR測定精度(チャネル品質精度)を確保しつつ、端末100での消費電力を必要最低限に抑えることが可能となる。また、端末100は、SRSの送信電力を必要最低限に抑えることで、セル間干渉を低減することができる。 Thereby, it becomes possible to set the transmission power of the uplink signal low to the minimum necessary transmission power at which the base station 200 can obtain a desired reception SINR (a reception SINR that does not deteriorate the SINR measurement accuracy). Therefore, it is possible to suppress the power consumption at the terminal 100 to the minimum necessary while ensuring the SNR SINR measurement accuracy (channel quality accuracy) at the base station 200. Also, the terminal 100 can reduce inter-cell interference by suppressing the transmission power of SRS to the minimum necessary.
 また、端末100は、送信時間間隔Tが所定の閾値(20ms)以内であっても、以下のように動作する。つまり、端末装置100は、時刻t1で用いるアンテナポート数が時刻t2で用いるアンテナポート数より少ない場合には、時刻t2で用いるアンテナポート数が時刻t1で用いるアンテナポート数以上の場合と比較して、送信電力オフセット値(PSRS_OFFSET+Δoffset)が大きくなるように補正値Δoffsetを設定する。 Further, the terminal 100 operates as follows even when the transmission time interval T is within a predetermined threshold (20 ms). That is, when the number of antenna ports used at time t1 is smaller than the number of antenna ports used at time t2, terminal apparatus 100 compares the number of antenna ports used at time t2 with the number of antenna ports used at time t1. The correction value Δ offset is set so that the transmission power offset value (P SRS_OFFSET + Δ offset ) becomes large.
 すなわち、送信電力制御部109は、今回送信される上り信号の送信に使用されるアンテナポート(少なくとも1つのアンテナポート)の数が、前回の送信に使用したアンテナポートの数よりも多い場合、上り信号の送信電力が大きくなるように、送信電力を制御する。換言すると、送信電力制御部109は、今回送信される上り信号の送信に使用されるアンテナポート(少なくとも1つのアンテナポート)が、前回の送信において使用されなかったアンテナポートを含む場合、上り信号の送信電力が大きくなるように、送信電力を制御する。 That is, when the number of antenna ports (at least one antenna port) used for transmission of the uplink signal transmitted this time is greater than the number of antenna ports used for the previous transmission, the transmission power control unit 109 The transmission power is controlled so that the transmission power of the signal is increased. In other words, the transmission power control unit 109, when the antenna port (at least one antenna port) used for transmission of the uplink signal transmitted this time includes an antenna port that was not used in the previous transmission, The transmission power is controlled so as to increase the transmission power.
 つまり、端末100は、今回の送信で用いるアンテナポート数が前回送信時よりも増加する場合には、前回送信時に用いられなかったアンテナポートでの送信時間間隔を考慮して(つまり、前回送信時に用いられたアンテナポートでの送信時間間隔よりも長いと見なして)、上り信号の送信電力をより大きく設定する。これにより、前回送信時に用いられなかったポートに対応するPAのTPC誤差の増加を抑えることができる。 That is, when the number of antenna ports used for the current transmission increases from the previous transmission, the terminal 100 considers the transmission time interval at the antenna port that was not used during the previous transmission (that is, during the previous transmission). Assuming that it is longer than the transmission time interval at the used antenna port), the transmission power of the uplink signal is set larger. As a result, an increase in the TPC error of the PA corresponding to the port that was not used at the previous transmission can be suppressed.
 また、基地局200のオフセット設定部207は、端末100のオフセット設定部106と同様にして、端末100毎の上り信号の送信時間間隔、及び、端末100毎の前回送信時と今回送信時との間のアンテナポート数の大小関係に基づいて、送信電力オフセット補正値Δoffsetを設定する。 Similarly to the offset setting unit 106 of the terminal 100, the offset setting unit 207 of the base station 200 determines the transmission time interval of the uplink signal for each terminal 100 and the previous transmission time and the current transmission time for each terminal 100. A transmission power offset correction value Δoffset is set based on the magnitude relationship between the number of antenna ports.
 このようにして、本実施の形態によれば、端末は、各上り信号(PUCCH信号、PUSCH信号及びSRS)に対する送信電力オフセット値を、送信条件に応じて異ならせる。具体的には、端末は、前回送信時からの経過時間(送信時間間隔)、及び、前回送信時に用いた送信アンテナポート数と今回送信時に用いた送信アンテナポート数との間の大小関係に基づいて、上記送信電力オフセット値を設定する。 Thus, according to the present embodiment, the terminal varies the transmission power offset value for each uplink signal (PUCCH signal, PUSCH signal, and SRS) according to the transmission condition. Specifically, the terminal is based on the elapsed time from the previous transmission (transmission time interval) and the magnitude relationship between the number of transmission antenna ports used at the previous transmission and the number of transmission antenna ports used at the current transmission. Then, the transmission power offset value is set.
 これにより、複数のアンテナを備える端末(例えばMIMO伝送を行う端末)において、各上り信号に異なるアンテナポート数が設定される場合でも、各アンテナポートを用いた上り信号の送信時間間隔に基づくTPC誤差を適切に特定することができる。よって、本実施の形態によれば、各上り信号の送信に異なるアンテナポート数が設定される場合でも、基地局におけるTPC誤差によるSINR測定精度の劣化を防止することができる。 Accordingly, in a terminal having a plurality of antennas (for example, a terminal that performs MIMO transmission), even when a different number of antenna ports is set for each uplink signal, a TPC error based on the transmission time interval of the uplink signal using each antenna port. Can be identified appropriately. Therefore, according to the present embodiment, it is possible to prevent deterioration of SINR measurement accuracy due to a TPC error in the base station even when different numbers of antenna ports are set for transmission of each uplink signal.
 更に、本実施の形態によれば、端末は、TPC誤差が小さいと予想されるチャネルの送信電力を、所望の受信品質を得るために最低限必要な電力に制御することができる。よって、基地局におけるTPC誤差によるSINR測定精度の劣化を防止しつつ、端末の消費電力の増加を抑えることができ、かつ、セル間干渉を低減することができる。 Furthermore, according to the present embodiment, the terminal can control the transmission power of a channel that is expected to have a small TPC error to the minimum power necessary for obtaining a desired reception quality. Therefore, it is possible to suppress an increase in power consumption of the terminal and reduce inter-cell interference while preventing deterioration of SINR measurement accuracy due to a TPC error in the base station.
 また、本実施の形態では、例えば、図9に示す経過時間T及びアンテナポート数の大小関係と、補正値Δoffsetとの対応付けをシステムで予め定義する場合、上り信号の送信電力制御のための送信毎のシグナリングは不要となる。又は、図9に示す経過時間T及びアンテナポート数の大小関係と、補正値Δoffsetとの対応付けをパラメータとして基地局から端末へ予め通知する場合には、そのパラメータは比較的長い周期、若しくは、1度だけ端末へ通知されればよく、上り信号の送信電力制御のための送信毎のシグナリングは不要となる。よって、これらの場合には、上り信号の送信電力制御に要するシグナリングのオーバーヘッドの増加を抑えることができる。 Further, in this embodiment, for example, when the correspondence between the magnitude relationship between the elapsed time T and the number of antenna ports shown in FIG. 9 and the correction value Δoffset is defined in advance by the system, for transmission power control of the uplink signal Signaling for each transmission becomes unnecessary. Or, in the case of notifying in advance from the base station and the elapsed time T and the magnitude relationship between the number of antenna ports is shown in FIG. 9, the correspondence between the correction value delta offset as a parameter to the terminal, the parameter is relatively long period, or The terminal only needs to be notified once, and signaling for each transmission for uplink signal transmission power control becomes unnecessary. Therefore, in these cases, an increase in signaling overhead required for uplink signal transmission power control can be suppressed.
 なお、本実施の形態では、図8A及び図8Bに示すように、時刻t2でP-SRSを送信し、時刻t1でPUCCHを送信する場合について説明した。しかし、端末100は、時刻t2で送信される上り信号(SRS)とは異なる別の上り信号(PUSCH信号、PUCCH信号、P-SRS又はA-SRS)の送信に前回(時刻t1)使用したアンテナポートの数と、今回(時刻t2)送信される上り信号の送信に使用されるアンテナポートの数との比較に基づいて、上り信号の送信電力を制御する場合でも、本実施の形態と同様の効果を得ることができる。 In the present embodiment, as shown in FIG. 8A and FIG. 8B, the case where P-SRS is transmitted at time t2 and PUCCH is transmitted at time t1 has been described. However, terminal 100 uses the previous antenna (time t1) to transmit another uplink signal (PUSCH signal, PUCCH signal, P-SRS or A-SRS) different from the uplink signal (SRS) transmitted at time t2. Even when the transmission power of the uplink signal is controlled based on the comparison between the number of ports and the number of antenna ports used for transmission of the uplink signal transmitted this time (time t2), the same as in the present embodiment An effect can be obtained.
 また、本実施の形態では、基地局200が単一の受信アンテナを備える構成にて説明したが、基地局200が複数の受信アンテナを備える構成としてもよく、各受信アンテナの成分をデマッピング部205にて取り出した上でSRS用SINR測定部208にて合成し、TPC制御を実施してもよい。 Further, in the present embodiment, the configuration in which base station 200 includes a single reception antenna has been described. However, base station 200 may have a configuration in which a plurality of reception antennas are provided, and components of each reception antenna may be demapped. After being taken out at 205, the SRS SINR measurement unit 208 may synthesize and perform TPC control.
 (実施の形態2)
 本実施の形態では、端末がA-SRSを送信する際の送信電力制御方法について説明する。
(Embodiment 2)
In the present embodiment, a transmission power control method when a terminal transmits an A-SRS will be described.
 A-SRSは、下り制御チャネル(PDCCH:Physical Downlink Control CHannel)を用いて基地局から端末へ送信される制御情報をトリガとして送信される。PDCCHにはPUSCHの割当に関する制御情報(データ割当情報)が含まれ、端末は、当該制御情報に示される基地局からの指示内容(周波数リソース等)に従ってPUSCH信号を送信する。つまり、PDCCHは、PUSCHの割当に関するデータ割当情報を含むとともに、A-SRSに対する送信要求を含む。 The A-SRS is transmitted using control information transmitted from the base station to the terminal using a downlink control channel (PDCCH: Physical-Downlink-Control-CHannel) as a trigger. The PDCCH includes control information (data allocation information) related to PUSCH allocation, and the terminal transmits a PUSCH signal according to the instruction content (frequency resource or the like) from the base station indicated by the control information. That is, the PDCCH includes data allocation information related to PUSCH allocation and also includes a transmission request for A-SRS.
 なお、端末で或るPDCCHを受信した場合には、当該PDCCHをトリガとするA-SRSは、当該PDCCHによる割当に従って送信されるPUSCH信号よりも後(又は同時)に送信されるものとする。 When a terminal receives a PDCCH, the A-SRS triggered by the PDCCH is transmitted after (or simultaneously with) the PUSCH signal transmitted according to the allocation by the PDCCH.
 そこで、本実施の形態では、例えば、時刻t1においてPUSCH信号が送信され、時刻t1よりも後の時刻t2においてA-SRSが送信される場合について説明する。また、本実施の形態では、A-SRSに対してsemi-staticにアンテナポート数が定義されているものとする。 Therefore, in the present embodiment, for example, a case will be described in which a PUSCH signal is transmitted at time t1 and A-SRS is transmitted at time t2 after time t1. In the present embodiment, it is assumed that the number of antenna ports is defined semi-statically for A-SRS.
 本実施の形態に係る端末300の構成を図10に示す。なお、図10において、実施の形態1(図6)と同一の構成要素には同一の符号を付しその説明を省略する。 FIG. 10 shows the configuration of terminal 300 according to the present embodiment. In FIG. 10, the same components as those in the first embodiment (FIG. 6) are denoted by the same reference numerals, and the description thereof is omitted.
 図10に示す端末300において、PDCCH検出部301は、PUSCHの割当に関する制御情報(データ割当情報)として、下り制御チャネル(PDCCH)を検出する。PDCCH検出部301は、PUSCHの割当に関する制御情報を検出すると、当該制御情報に示される、基地局の指示したトランスポートブロックサイズ、符号化率、及び、変調方式を生成部102に出力し(図示せず)、周波数リソース割当情報をマッピング部103に出力する(図示せず)。 In terminal 300 shown in FIG. 10, PDCCH detection section 301 detects a downlink control channel (PDCCH) as control information (data allocation information) related to PUSCH allocation. When the PDCCH detection unit 301 detects control information related to PUSCH allocation, the PDCCH detection unit 301 outputs a transport block size, a coding rate, and a modulation scheme indicated by the base station, which are indicated in the control information, to the generation unit 102 (see FIG. Frequency resource allocation information is output to the mapping unit 103 (not shown).
 ここでは、端末300は、PDCCH検出部301で検出される制御情報のフォーマット(DCI formatと呼ばれることもある)として、2通りのフォーマットを想定している。1つ目は、複数アンテナポートによる送信に対応した制御情報として、コードブックベースのプリコーディング(codebook based precoding)をサポートしつつ、トランスポートブロックサイズ、符号化率及び変調方式の情報を含み得る制御情報のフォーマットである(以下、Format 4と呼ぶ。又は、DCI format 4と呼ばれることもある)。2つ目は、単一アンテナによる送信に対応した制御情報として、プリコーディングをサポートせず、トランスポートブロックサイズ、符号化率及び変調方式の情報を1つだけ含む制御情報のフォーマットである(以下、Format 0と呼ぶ。又は、DCI format 0と呼ばれることもある)。 Here, terminal 300 assumes two formats as the format of control information detected by PDCCH detection section 301 (sometimes referred to as DCI format). The first is control that can include information on the transport block size, coding rate, and modulation scheme while supporting codebook-based precoding as control information corresponding to transmission by a plurality of antenna ports. This is an information format (hereinafter referred to as Format 4 or sometimes referred to as DCIDformat 4). The second is a control information format that does not support precoding as control information corresponding to transmission by a single antenna and includes only one piece of information on a transport block size, a coding rate, and a modulation scheme (hereinafter referred to as “control information format”). , Called Format 0, or sometimes called DCI format 0).
 PDCCH検出部301は、検出した制御情報がFormat 4に対応したものであるか、Format 0に対応したものであるかを示す情報を、オフセット設定部106の算出部302に出力する。 The PDCCH detection unit 301 outputs information indicating whether the detected control information corresponds to Format IV4 or Format IV0 to the calculation unit 302 of the offset setting unit 106.
 オフセット設定部106の算出部302は、実施の形態1と同様、端末300での上り信号の直前の送信からの経過時間を算出し、端末300で直前に送信(前回送信)した上り信号(PUSCH信号)の送信時に用いられたアンテナポート数と、端末300から今回送信される上り信号(A-SRS)の送信時に用いられるアンテナポート数との大小関係を算出する。 Similarly to the first embodiment, the calculation unit 302 of the offset setting unit 106 calculates the elapsed time from the transmission immediately before the uplink signal at the terminal 300, and transmits the uplink signal (PUSCH) transmitted immediately before (previous transmission) at the terminal 300. Signal) and the number of antenna ports used when transmitting the uplink signal (A-SRS) transmitted this time from terminal 300 is calculated.
 ただし、本実施の形態では、算出部302は、アンテナポート数の大小関係を算出する際、PDCCH検出部301から入力される情報がFormat 4であれば、前回送信したPUSCH信号の送信に2つのアンテナポート(つまり、端末300で使用可能な最大アンテナポート数)を用いたと判断する。一方、算出部302は、PDCCH検出部301から入力される情報がFormat 0であれば、前回送信したPUSCH信号の送信に1つのアンテナポートのみを用いたと判断する。このように、算出部302は、PDCCHのフォーマット種別に基づいて、PUSCH信号の送信に用いられたアンテナポート数と、A-SRSの送信に用いられるアンテナポート数との大小関係を特定することができる。そして、算出部302は、算出した経過時間及びアンテナポート数の大小関係をオフセット値決定部303に出力する。 However, in this embodiment, when calculating the magnitude relationship between the number of antenna ports, if the information input from the PDCCH detection unit 301 is Format 算出 4, the calculation unit 302 transmits two PUSCH signals transmitted last time. It is determined that the antenna port (that is, the maximum number of antenna ports that can be used in terminal 300) is used. On the other hand, when the information input from PDCCH detection unit 301 is Format 0, calculation unit 302 determines that only one antenna port is used for transmitting the previously transmitted PUSCH signal. As described above, the calculation unit 302 can specify the magnitude relationship between the number of antenna ports used for PUSCH signal transmission and the number of antenna ports used for A-SRS transmission based on the PDCCH format type. it can. Then, the calculating unit 302 outputs the calculated relationship between the elapsed time and the number of antenna ports to the offset value determining unit 303.
 オフセット値決定部303は、算出部302から入力される、経過時間(送信時間間隔)、及び、アンテナポート数の大小関係(又は、PDCCHのフォーマット種別)に応じて、A-SRSの送信電力に対するオフセット値を設定する。 The offset value determination unit 303 determines the transmission power of the A-SRS according to the elapsed time (transmission time interval) and the size relationship of the number of antenna ports (or the PDCCH format type) input from the calculation unit 302. Set the offset value.
 次に、本実施の形態に係る基地局400の構成を図11に示す。なお、図11において、実施の形態1(図7)と同一の構成要素には同一の符号を付しその説明を省略する。 Next, FIG. 11 shows the configuration of base station 400 according to the present embodiment. In FIG. 11, the same components as those in the first embodiment (FIG. 7) are denoted by the same reference numerals, and the description thereof is omitted.
 図10に示す基地局400は、端末300(図10)と同様、PUSCH信号の割当に用いる制御情報のフォーマット(DCI format)を少なくとも2通り用意する。すなわち、1つ目は前述のFormat 4であり、2つ目は前述のFormat 0である。 The base station 400 shown in FIG. 10 prepares at least two formats (DCI format) of control information used for PUSCH signal allocation, like the terminal 300 (FIG. 10). That is, the first is the above-described Format 4, and the second is the above-described Format 0.
 PDCCH生成部401は、PUSCH信号の割当に用いる制御情報を含むPDCCHを生成する。また、PDCCH生成部401は、PUSCH信号の割当に用いた制御情報がFormat 4に対応したものか、Format 0に対応したものかを示す情報をオフセット設定部402に出力する。 The PDCCH generation unit 401 generates a PDCCH including control information used for PUSCH signal allocation. In addition, the PDCCH generation unit 401 outputs information indicating whether the control information used for PUSCH signal allocation corresponds to Format 4 or Format 0 to the offset setting unit 402.
 オフセット設定部402は、端末300のオフセット設定部106と同様の処理を行う。つまり、オフセット設定部402は、端末300(所望端末)から直前に送信(前回送信)されたPUSCH信号の送信時刻からの経過時間、及び、PDCCH生成部401から入力される情報(PDCCHのフォーマット種別)に応じて、A-SRSに対する送信電力オフセット値を決定する。つまり、オフセット設定部402は、PDCCH生成部401から入力される情報がFormat 4の場合にはPUSCHの送信に2つのアンテナポート(端末300が備える全てのアンテナポート)が用いられたと判断する。一方、オフセット設定部402は、PDCCH生成部401から入力される情報がFormat 0の場合にはPUSCHの送信に1つのアンテナポートのみが用いられたと判断する。そして、オフセット設定部402は、PUSCHの送信に用いられたアンテナポート数の判断結果に基づいて、A-SRSの送信電力に対するオフセット値を算出する。 The offset setting unit 402 performs the same processing as the offset setting unit 106 of the terminal 300. That is, the offset setting unit 402 includes an elapsed time from the transmission time of the PUSCH signal transmitted immediately before (previous transmission) from the terminal 300 (desired terminal), and information input from the PDCCH generation unit 401 (PDCCH format type). ) To determine a transmission power offset value for A-SRS. That is, offset setting section 402 determines that two antenna ports (all antenna ports included in terminal 300) have been used for PUSCH transmission when the information input from PDCCH generating section 401 is Format IV4. On the other hand, when the information input from PDCCH generation unit 401 is FormatPU0, offset setting unit 402 determines that only one antenna port is used for PUSCH transmission. Then, offset setting section 402 calculates an offset value for the transmission power of A-SRS based on the determination result of the number of antenna ports used for PUSCH transmission.
 データ用SINR導出部209は、SRS用SINR測定部208から入力されるA-SRS用SINR測定値、及び、オフセット設定部207から入力されるA-SRSに対する送信電力オフセット値を用いて、上りデータ(つまり、PUSCH信号)のSINR(データ用SINR測定値)を導出する。具体的には、データ用SINR導出部209は、A-SRS用SINR測定値及び送信電力オフセット値を用いて、次式(8)に従って、データ用SINR測定値を導出する。
Figure JPOXMLDOC01-appb-M000008
The data SINR deriving unit 209 uses the A-SRS SINR measurement value input from the SRS SINR measurement unit 208 and the transmission power offset value for the A-SRS input from the offset setting unit 207 to perform uplink data In other words, the SINR (data SINR measurement value) of the PUSCH signal is derived. Specifically, the data SINR deriving unit 209 derives the data SINR measurement value according to the following equation (8) using the A-SRS SINR measurement value and the transmission power offset value.
Figure JPOXMLDOC01-appb-M000008
 基地局400は、データ用SINR導出部209で導出されたデータ用SINR測定値を用いて、端末300のスケジューリング(例えば、周波数リソース割当及びMCS選択)を行う。 The base station 400 performs scheduling of the terminal 300 (for example, frequency resource allocation and MCS selection) using the data SINR measurement value derived by the data SINR deriving unit 209.
 次に、端末300のオフセット設定部106(図10)及び基地局400のオフセット設定部402(図11)における送信電力オフセット値の設定処理の詳細について説明する。 Next, details of transmission power offset value setting processing in offset setting section 106 (FIG. 10) of terminal 300 and offset setting section 402 (FIG. 11) of base station 400 will be described.
 ここでは、実施の形態1と同様、前回送信された上り信号(PUSCH信号)の送信時刻t1から今回送信される上り信号(A-SRS)の送信時刻t2までの経過時間(送信時間間隔)Tが20ms以下の場合をTPC誤差が小さい場合とし、経過時間Tが20msより長い場合をTPC誤差が大きい場合とする。 Here, as in the first embodiment, the elapsed time (transmission time interval) T from the transmission time t1 of the uplink signal (PUSCH signal) transmitted last time to the transmission time t2 of the uplink signal (A-SRS) transmitted this time. Is a case where the TPC error is small, and a case where the elapsed time T is longer than 20 ms is a case where the TPC error is large.
 図12A及び図12Bでは、時刻t1から時刻t2までの経過時間(送信時間間隔)Tが20ms以内とする(T≦20ms)。また、図12Aでは、PUSCH信号の割当に関する制御情報を含むPDCCHがFormat 0(DCI format 0)で送信され、図12Bでは、PUSCH信号の割当に関する制御情報を含むPDCCHがFormat 4(DCI format 4)で送信される。また、図12A及び図12Bでは、A-SRSの送信に2アンテナポート(Port 20,21)が設定される。 12A and 12B, the elapsed time (transmission time interval) T from time t1 to time t2 is assumed to be within 20 ms (T ≦ 20 ms). Also, in FIG. 12A, PDCCH including control information related to PUSCH signal allocation is transmitted in Format (0 (DCI format 0), and in FIG. 12B, PDCCH including control information related to PUSCH signal allocation is Format 4 (DCI format 4). Sent by. 12A and 12B, two antenna ports (Ports 20 and 21) are set for A-SRS transmission.
 よって、端末300のPDCCH検出部301は、図12Aでは、Format 0を示す情報を算出部302に出力し、図12Bでは、Format 4を示す情報を算出部302に出力する。 Therefore, the PDCCH detection unit 301 of the terminal 300 outputs information indicating Format 0 to the calculation unit 302 in FIG. 12A, and outputs information indicating Format 4 to the calculation unit 302 in FIG. 12B.
 算出部302は、PUSCH信号の送信時刻t1からA-SRSの送信時刻t2までの経過時間(送信時間間隔)T(=時刻t2-時刻t1)を算出する。 The calculation unit 302 calculates the elapsed time (transmission time interval) T (= time t2−time t1) from the transmission time t1 of the PUSCH signal to the transmission time t2 of the A-SRS.
 また、算出部302は、PDCCH検出部301から入力される情報(Format 0又はFormat 4を示す情報)に基づいて、時刻t1での送信(前回の送信)に用いたアンテナポート数と、時刻t2での送信(今回の送信)に用いるアンテナポート数との大小関係を算出する。すなわち、図12Aでは、算出部302は、Format 0であるので、時刻t1で用いたアンテナポート数が1本であると判断する。よって、図12Aでは、算出部302は、時刻t1で用いるアンテナポート数(1本)が時刻t2で用いるアンテナポート数(2本)より少ないことを算出する。一方、図12Bでは、算出部302は、Format 4であるので、時刻t1で用いたアンテナポート数が2本であると判断する。よって、図12Bでは、算出部302は、時刻t1で用いるアンテナポート数(2本)が時刻t2で用いるアンテナポート数(2本)と同数であることを算出する。 Further, the calculation unit 302 uses the number of antenna ports used for transmission at the time t1 (previous transmission) based on information input from the PDCCH detection unit 301 (information indicating Format 0 or Format 4), and time t2. The size relationship with the number of antenna ports used for transmission (current transmission) is calculated. That is, in FIG. 12A, the calculation unit 302 determines that the number of antenna ports used at time t1 is one because Format 0. Therefore, in FIG. 12A, the calculation unit 302 calculates that the number of antenna ports (one) used at time t1 is smaller than the number of antenna ports (two) used at time t2. On the other hand, in FIG. 12B, the calculation unit 302 determines that the number of antenna ports used at time t1 is two because Format 4. Therefore, in FIG. 12B, the calculation unit 302 calculates that the number of antenna ports (two) used at time t1 is the same as the number of antenna ports (two) used at time t2.
 オフセット値決定部303は、算出部107で算出された送信時間間隔T及びアンテナポート数の大小関係に基づいて、補正値Δoffsetを決定する。換言すると、本実施の形態では、オフセット値決定部303は、送信時間間隔T、及び、PUSCH信号の割当に関する制御情報(データ割当情報)のフォーマットに応じて、図13に示すテーブルに従って、補正値Δoffsetを決定する。なお、本実施の形態において、例えば、サブフレーム(sub-frame)#iにおけるSRSの送信電力PSRS(i)は、実施の形態1と同様、式(5)に従って求められる。 The offset value determination unit 303 determines the correction value Δ offset based on the magnitude relationship between the transmission time interval T calculated by the calculation unit 107 and the number of antenna ports. In other words, in the present embodiment, offset value determination section 303 adjusts the correction value according to the table shown in FIG. 13 according to the transmission time interval T and the format of control information (data allocation information) related to PUSCH signal allocation. Determine Δoffset . In the present embodiment, for example, the transmission power P SRS (i) of the SRS in sub-frame #i is obtained according to equation (5), as in the first embodiment.
 例えば、図12Aに示すようにFormat 0によるPUSCH信号の割当の場合、時刻t1では、端末300が備える2本のアンテナ112-1,112-2のうちいずれか一方のアンテナに対応するPAがOFFになり得る。よって、時刻t2において用いる2本のアンテナのうちいずれか一方のアンテナに対応するPAを用いて送信される信号の送信時間間隔は、(時刻t2-時刻t1)よりも長くなる可能性がある。よって、図12Aでは想定されるTPC誤差は大きい。 For example, as shown in FIG. 12A, in the case of PUSCH signal allocation by Format 0, at time t1, PA corresponding to one of the two antennas 112-1 and 112-2 provided in terminal 300 is OFF. Can be. Therefore, the transmission time interval of the signal transmitted using the PA corresponding to one of the two antennas used at time t2 may be longer than (time t2−time t1). Therefore, the assumed TPC error is large in FIG. 12A.
 一方、図12Bに示すようにFormat 4によるPUSCH信号の割当の場合、時刻t1では、端末300が備える2本のアンテナ112-1,112-2に対応する全てのPAで信号が送信される。よって、時刻t2において用いる2本のアンテナにそれぞれ対応するPAを用いて送信される信号の送信時間間隔T(=時刻t2-時刻t1)は、所定の閾値(20ms)以内となる。つまり、図12Bでは想定されるTPC誤差は小さい。 On the other hand, as shown in FIG. 12B, in the case of PUSCH signal allocation by Format IV4, at time t1, signals are transmitted by all PAs corresponding to the two antennas 112-1 and 112-2 provided in terminal 300. Therefore, the transmission time interval T (= time t2−time t1) of signals transmitted using the PAs respectively corresponding to the two antennas used at time t2 is within a predetermined threshold (20 ms). That is, in FIG. 12B, the assumed TPC error is small.
 そこで、図13に示すように、オフセット値決定部303は、送信時間間隔Tが20msec以内であり、かつ、Format 4(DCI format 4)の割当情報(つまり、複数のアンテナポートに対するデータ割当情報)を含むPDCCHを受信した場合には、補正値Δoffsetを-6dBに設定する。また、図13に示すように、オフセット値決定部303は、送信時間間隔Tが20msecより長い場合、又は、Format 0(DCI format 0)の割当情報(つまり、単一のアンテナポートに対するデータ割当情報)を含むPDCCHを受信した場合には、補正値Δoffsetを0dBに設定する。そして、オフセット値決定部108は、基地局200から指示されたオフセット値PSRS_OFFSETに補正値Δoffsetを加えることで、送信電力オフセット値(PSRS_OFFSET+Δoffset)を決定する。 Therefore, as shown in FIG. 13, the offset value determination unit 303 has a transmission time interval T within 20 msec, and allocation information of Format 4 (DCI format 4) (that is, data allocation information for a plurality of antenna ports). Is received, the correction value Δ offset is set to −6 dB. Also, as shown in FIG. 13, the offset value determination unit 303 performs allocation information for Format 0 (DCI format 0) when the transmission time interval T is longer than 20 msec (that is, data allocation information for a single antenna port). ) Is received, the correction value Δ offset is set to 0 dB. Then, the offset value determination unit 108 determines the transmission power offset value (P SRS_OFFSET + Δ offset ) by adding the correction value Δ offset to the offset value P SRS_OFFSET instructed from the base station 200.
 つまり、送信電力制御部109は、複数のアンテナポートに対するデータ割当情報を含む制御情報を受けた場合(フォーマット種別がformat 4の場合)、A-SRSの送信電力が小さくなるように、A-SRSの送信電力を制御する。これにより、基地局400で所望の受信SINR(SINR測定精度が劣化しない受信SINR)を得ることができる必要最低限の送信電力まで、上り信号の送信電力を低く設定することが可能となる。よって、基地局400でのSRSのSINR測定精度(チャネル品質精度)を確保しつつ、端末300での消費電力を必要最低限に抑えることが可能となる。また、端末300は、SRSの送信電力を必要最低限に抑えることで、セル間干渉を低減することができる。 That is, the transmission power control unit 109 receives the control information including data allocation information for a plurality of antenna ports (when the format type is format 電力 4), so that the transmission power of the A-SRS is reduced. To control the transmission power. Thereby, it is possible to set the transmission power of the uplink signal low to the minimum necessary transmission power at which the base station 400 can obtain a desired reception SINR (a reception SINR that does not deteriorate the SINR measurement accuracy). Therefore, it is possible to suppress the power consumption at terminal 300 to the minimum necessary while ensuring the SIRS measurement accuracy (channel quality accuracy) of SRS at base station 400. Further, terminal 300 can reduce inter-cell interference by suppressing the transmission power of SRS to the minimum necessary.
 また、送信電力制御部109は、1つのアンテナポートに対するデータ割当情報を含む制御情報を受けた場合(フォーマット種別がformat 0の場合)、A-SRSの送信電力が大きくなるように、A-SRSの送信電力を制御する。これにより、前回送信時に用いられなかったアンテナポートに対応するPAのTPC誤差の増加を抑えることができる。 In addition, when receiving control information including data allocation information for one antenna port (when the format type is format 0), the transmission power control unit 109 increases the A-SRS transmission power so that the transmission power of the A-SRS increases. To control the transmission power. Thereby, it is possible to suppress an increase in the TPC error of the PA corresponding to the antenna port that was not used at the previous transmission.
 また、基地局400のオフセット設定部402は、端末300のオフセット設定部106と同様にして、端末300毎の上り信号の送信時間間隔、及び、端末300毎のPUSCH信号の割当を示すデータ割当情報を含むPDCCHのフォーマット種別(アンテナポート数の大小関係)に基づいて、送信電力オフセット補正値Δoffsetを設定する。 Similarly to the offset setting unit 106 of the terminal 300, the offset setting unit 402 of the base station 400 is a data allocation information indicating the uplink signal transmission time interval for each terminal 300 and the PUSCH signal allocation for each terminal 300. The transmission power offset correction value Δoffset is set based on the format type of PDCCH (including the number of antenna ports).
 ここで、Format 0(DCI format 0)を用いた動作の一例(Format 0を用いたFallbackによる閉ループMIMO制御処理)について説明する。 Here, an example of operation using Format 0 (DCI format 0) (closed-loop MIMO control processing by Fallback using Format 0) will be described.
 例えば、基地局400は、複数のアンテナポートでPUSCH信号を送信する際には、プリコーディングを行う必要があるため、端末300と基地局400との間の伝搬環境を把握する必要がある。一方、図14に示すように、端末300においてA-SRS又はPUSCH信号に対する割当が長時間(図14では時刻t0から時刻t1までの経過時間)にわたり無い場合には、基地局400は、端末300と基地局400との間の伝搬環境を把握できず、閉ループ制御によるプリコーディングの適用が困難になる。具体的には、基地局400は、伝搬環境が分からない場合には、予め備える複数のプリコーディング行例のいずれを適用すれば、現在の伝搬環境においてSINRの増大効果が得られるかを特定できない。また、基地局400において伝搬環境が分からない状態でプリコーディングを適用すると、そのプリコーディングにより生じる指向性がSINRを逆に減少させてしまうことも懸念される。 For example, the base station 400 needs to know the propagation environment between the terminal 300 and the base station 400 because it needs to perform precoding when transmitting a PUSCH signal using a plurality of antenna ports. On the other hand, as shown in FIG. 14, when the terminal 300 does not allocate the A-SRS or PUSCH signal for a long time (the elapsed time from time t0 to time t1 in FIG. 14), the base station 400 And the base station 400 cannot grasp the propagation environment, and it becomes difficult to apply precoding by closed-loop control. Specifically, when the propagation environment is not known, base station 400 cannot specify which of a plurality of precoding examples provided in advance can increase SINR in the current propagation environment. . Moreover, if precoding is applied in a state where the propagation environment is not known in base station 400, there is a concern that the directivity generated by the precoding may decrease SINR.
 よって、図14に示すように、端末300においてA-SRS又はPUSCH信号に対する割当が長時間にわたり無い場合(例えば、図14に示す時刻t1の時点)には、端末300は、まず、データの損失を最小限に抑えるべく、Format 0(DCI format 0)に基づいて1アンテナポートでPUSCH信号を送信する。また、端末300は、次回以降にPUSCH信号の複数のアンテナポートでの送信を行うために、複数のアンテナポートでSRS(A-SRS)を送信する。 Therefore, as shown in FIG. 14, when the terminal 300 does not allocate an A-SRS or PUSCH signal for a long time (for example, at time t1 shown in FIG. 14), the terminal 300 first loses data loss. In order to minimize this, a PUSCH signal is transmitted through one antenna port based on Format 0 (DCI format 0). In addition, terminal 300 transmits SRS (A-SRS) through a plurality of antenna ports in order to transmit PUSCH signals through a plurality of antenna ports after the next time.
 つまり、端末300においてPUSCHに対する割当が長時間にわたって無い場合には、基地局400は、図14に示すように、時刻t1でPUSCH信号が1アンテナポートで送信されるようにPUSCHの割当を行い、かつ、時刻t2で送信されるA-SRSに対するトリガとなるPDCCH(Format 0)を生成する。これにより、端末300では、時刻t1におけるPUSCH信号の送信に関する無駄を最小化しつつ、時刻t2でA-SRSを複数のアンテナポートから送信させることができる。 That is, when the terminal 300 does not allocate the PUSCH for a long time, the base station 400 allocates the PUSCH so that the PUSCH signal is transmitted through one antenna port at time t1, as shown in FIG. In addition, a PDCCH (Format 0) serving as a trigger for the A-SRS transmitted at time t2 is generated. Thereby, terminal 300 can transmit A-SRS from a plurality of antenna ports at time t2 while minimizing waste associated with transmission of the PUSCH signal at time t1.
 よって、端末300では、例えば、図14の時刻t2以降の時刻t3において、適切なプリコーディング行列を用いて複数のアンテナポートを用いたPUSCH信号の送信(つまり、基地局400によるFormat 4でのPUSCH信号の割当)を行うことが可能となる。よって、本実施の形態では、図14に示す状況においても、端末300がA-SRSの送信電力を適切に制御制御することで、基地局400は、TPC誤差による精度の劣化を抑えたSINR測定値を用いて、端末300に対して複数のアンテナポートをサポートするPUSCH信号の割当を行うことが可能となる。 Therefore, in terminal 300, for example, at time t3 after time t2 in FIG. 14, PUSCH signal transmission using a plurality of antenna ports using an appropriate precoding matrix (that is, PUSCH in Format 4 by base station 400) Signal allocation). Therefore, in the present embodiment, even in the situation shown in FIG. 14, the terminal 300 appropriately controls and controls the transmission power of the A-SRS, so that the base station 400 can perform SINR measurement with suppressed accuracy degradation due to the TPC error. By using the value, it is possible to allocate a PUSCH signal that supports a plurality of antenna ports to the terminal 300.
 このように、本実施の形態では、端末300は、端末300で前回送信されたPUSCH信号と、今回送信されるA-SRSとの間の送信条件(ここでは、送信時間間隔T、及び、PUSCH信号の割当に用いたデータ割当情報のフォーマット)に応じて、A-SRSの送信電力オフセット値を設定する。これにより、端末300では、データ割当情報のフォーマットに応じて各アンテナでの上り信号の送信時間間隔を特定することができる。よって、本実施の形態によれば、各上り信号の送信に異なるアンテナポート数が設定される場合でも、実施の形態1と同様、基地局におけるTPC誤差によるSINR測定精度の劣化を防止することができる。 Thus, in this embodiment, terminal 300 transmits transmission conditions (here, transmission time interval T and PUSCH) between the PUSCH signal transmitted last time at terminal 300 and the A-SRS transmitted this time. The transmission power offset value of A-SRS is set according to the data allocation information format used for signal allocation. Thereby, terminal 300 can specify the transmission time interval of the uplink signal at each antenna according to the format of the data allocation information. Therefore, according to this embodiment, even when different numbers of antenna ports are set for transmission of each uplink signal, as in Embodiment 1, it is possible to prevent deterioration in SINR measurement accuracy due to TPC errors in the base station. it can.
 また、本実施の形態では、例えば、図13に示す経過時間T及びPDCCHに含まれるデータ割当情報のフォーマットと、補正値Δoffsetとの対応付けをシステムで予め定義する場合、上り信号の送信電力制御のための送信毎のシグナリングは不要となる。又は、図13に示す経過時間T及びPDCCHに含まれるデータ割当情報のフォーマットと、補正値Δoffsetとの対応付けをパラメータとして基地局から端末へ予め通知する場合には、そのパラメータは比較的長い周期、若しくは、1度だけ端末へ通知されればよく、上り信号の送信電力制御のための送信毎のシグナリングは不要となる。よって、これらの場合には、上り信号の送信電力制御に要するシグナリングのオーバーヘッドの増加を抑えることができる。 Further, in the present embodiment, for example, when the correspondence between the elapsed time T and the format of the data allocation information included in the PDCCH and the correction value Δ offset shown in FIG. Signaling for each transmission for control becomes unnecessary. Or, in the case of notifying in advance from the base station and the format of data allocation information included in the elapsed time T and the PDCCH 13, the correspondence between the correction value delta offset as a parameter to the terminal, the parameter is relatively long It is only necessary to notify the terminal of the period or once, and signaling for each transmission for uplink signal transmission power control becomes unnecessary. Therefore, in these cases, an increase in signaling overhead required for uplink signal transmission power control can be suppressed.
 なお、本実施の形態では、端末が想定する制御情報として、PUSCHの割当(つまり、上りリンクの割当)に関する2種類の制御情報(Format 0及びFormat 4)を用いる場合について説明した。しかし、端末が想定する制御情報としては、これらに限らず、例えば、下りデータ信号(PDSCH:Physical Downlink Shared CHannel)の割当に関する制御情報(例えば、Format 1A)を用いてもよい。つまり、PDSCHの割当に関する制御情報を、A-SRSに対するトリガとしてもよい。この場合、端末は、PUSCHの送信(時刻t1での送信)に用いるアンテナポートを無し(アンテナポート数=0)と判断して、アンテナポート数の大小関係を算出すればよい。 In the present embodiment, the case has been described where two types of control information (Format 0 and Format 4) related to PUSCH allocation (that is, uplink allocation) are used as control information assumed by the terminal. However, the control information assumed by the terminal is not limited thereto, and for example, control information (for example, Format 1A) related to allocation of a downlink data signal (PDSCH: Physical-Downlink-Shared-CHannel) may be used. That is, control information related to PDSCH allocation may be used as a trigger for A-SRS. In this case, the terminal may determine that there is no antenna port (number of antenna ports = 0) used for PUSCH transmission (transmission at time t1), and calculate the magnitude relationship of the number of antenna ports.
 (実施の形態3)
 本実施の形態では、実施の形態1又は実施の形態2の処理に加え、送信電力変化量を考慮して送信電力制御を行う場合について説明する。
(Embodiment 3)
In this embodiment, a case will be described in which transmission power control is performed in consideration of the amount of change in transmission power in addition to the processing of Embodiment 1 or Embodiment 2.
 上述したように、送信電力は送信信号の周波数帯域幅に比例するため、送信電力変化量が大きいほど、送信信号の周波数位置及び帯域幅が大きく変わる。すなわち、送信信号の周波数帯域幅(送信帯域幅)の変化量を、送信電量変化量と見なすことができる。 As described above, since the transmission power is proportional to the frequency bandwidth of the transmission signal, the frequency position and bandwidth of the transmission signal change greatly as the transmission power change amount increases. That is, the amount of change in the frequency bandwidth (transmission bandwidth) of the transmission signal can be regarded as the amount of change in transmission power.
 そこで、本実施の形態では、端末は、実施の形態1又は実施の形態2の処理に加え、更に、前回送信された信号の送信帯域幅と今回送信される信号の送信帯域幅とに基づいて、今回送信する上り信号に適用する送信電力オフセット値を設定する。 Therefore, in this embodiment, in addition to the processing of Embodiment 1 or Embodiment 2, the terminal further determines the transmission bandwidth of the signal transmitted last time and the transmission bandwidth of the signal transmitted this time. The transmission power offset value applied to the uplink signal transmitted this time is set.
 なお、本実施の形態では、実施の形態2と同様、時刻t1においてPUSCH信号が送信され、時刻t1よりも後の時刻t2においてA-SRSが送信される場合について説明する。ただし、本実施の形態において、時刻t1及び時刻t2においてそれぞれ送信される信号は、PUSCH信号及びA-SRSに限らない。 In the present embodiment, as in the second embodiment, a case where a PUSCH signal is transmitted at time t1 and an A-SRS is transmitted at time t2 after time t1 will be described. However, in the present embodiment, the signals transmitted at time t1 and time t2 are not limited to the PUSCH signal and the A-SRS.
 本実施の形態に係る端末500の構成を図15に示す。なお、図15において、実施の形態2(図10)と同一の構成要素には同一の符号を付しその説明を省略する。 FIG. 15 shows the configuration of terminal 500 according to the present embodiment. In FIG. 15, the same components as those of the second embodiment (FIG. 10) are denoted by the same reference numerals, and the description thereof is omitted.
 図15に示す端末500において、割当帯域情報取得部501は、端末500から送信される上り信号の割当帯域に関する制御情報を管理する。例えば、割当帯域情報取得部501は、PDCCHに含まれる、PUSCH信号(前回送信された信号)の割当に関する制御情報(割当帯域情報)を取得するとともに、基地局から別途通知されたA-SRS(今回送信される信号)に関する情報に含まれる割当帯域情報を取得する。また、割当帯域情報取得部501は、PUSCH信号(前回送信された信号)の送信帯域幅BPUSCHと、A-SRS(今回送信される信号)の送信帯域幅BSRSとの比率ΔB(=BSRS/BPUSCH)を算出し、算出した比率をオフセット設定部106のオフセット値決定部502に出力する。 In terminal 500 shown in FIG. 15, allocated band information acquisition section 501 manages control information related to an allocated band of an uplink signal transmitted from terminal 500. For example, the allocated band information acquisition unit 501 acquires control information (allocated band information) related to allocation of PUSCH signals (previously transmitted signals) included in the PDCCH, and also receives A-SRS (separately notified from the base station). The allocated bandwidth information included in the information regarding the signal transmitted this time) is acquired. Further, allocated bandwidth information obtaining unit 501, a transmission bandwidth B PUSCH of PUSCH signal (signal was last transmitted), A-SRS Ratio .DELTA.B (= B the transmission bandwidth B SRS in (current signal to be transmitted) SRS / B PUSCH ) and outputs the calculated ratio to the offset value determination unit 502 of the offset setting unit 106.
 オフセット設定部106のオフセット値決定部502は、端末500で直前に送信(前回送信)した上り信号(PUSCH信号)と今回送信される上り信号(A-SRS)との間における、送信時間間隔、アンテナポート数の大小関係、及び、送信帯域幅の比率に応じて、送信電力オフセット値の補正値を設定する。 The offset value determination unit 502 of the offset setting unit 106 transmits a transmission time interval between the uplink signal (PUSCH signal) transmitted immediately before (previous transmission) by the terminal 500 and the uplink signal (A-SRS) transmitted this time, A correction value for the transmission power offset value is set according to the size relationship of the number of antenna ports and the ratio of the transmission bandwidth.
 次に、本実施の形態に係る基地局600の構成を図16に示す。なお、図16において、実施の形態2(図11)と同一の構成要素には同一の符号を付しその説明を省略する。 Next, FIG. 16 shows the configuration of base station 600 according to the present embodiment. In FIG. 16, the same components as those in the second embodiment (FIG. 11) are denoted by the same reference numerals, and the description thereof is omitted.
 図16に示す基地局600において、SRS制御情報生成部601は、各端末500に割り当てるP-SRS及びA-SRSの送信帯域を設定し、設定した送信帯域を示すSRS制御情報を生成する。そして、SRS制御情報生成部601は、生成したSRS制御情報を、各端末500に通知するとともに(図示せず)、オフセット設定部602に出力する。 In the base station 600 shown in FIG. 16, the SRS control information generation unit 601 sets P-SRS and A-SRS transmission bands to be assigned to each terminal 500, and generates SRS control information indicating the set transmission bands. Then, the SRS control information generation unit 601 notifies the generated SRS control information to each terminal 500 (not shown) and outputs it to the offset setting unit 602.
 オフセット設定部602は、端末500のオフセット設定部106と同様の処理を行う。つまり、オフセット設定部602は、端末500(所望端末)から直前に送信(前回送信)されたPUSCH信号の送信時刻からの経過時間、当該PUSCH信号の割当に用いたデータ割当情報(PDCCH)のフォーマット種別、及び、SRS制御情報生成部601から入力されるSRS制御情報に応じて、A-SRSに対する送信電力オフセット値を決定する。 The offset setting unit 602 performs the same processing as the offset setting unit 106 of the terminal 500. That is, the offset setting unit 602 is the elapsed time from the transmission time of the PUSCH signal transmitted immediately before (previous transmission) from the terminal 500 (desired terminal), the format of the data allocation information (PDCCH) used for the allocation of the PUSCH signal. A transmission power offset value for the A-SRS is determined according to the type and the SRS control information input from the SRS control information generation unit 601.
 データ用SINR導出部209は、実施の形態2と同様、A-SRS用SINR測定値及び送信電力オフセット値を用いて、式(8)に従って、データ用SINR測定値を導出する。そして、基地局600は、データ用SINR導出部209で導出されたデータ用SINR測定値を用いて、端末500のスケジューリング(例えば、周波数リソース割当及びMCS選択)を行う。 The data SINR deriving unit 209 derives the data SINR measurement value according to the equation (8) using the A-SRS SINR measurement value and the transmission power offset value, as in the second embodiment. Then, base station 600 performs scheduling (for example, frequency resource allocation and MCS selection) of terminal 500 using the data SINR measurement value derived by data SINR deriving section 209.
 次に、端末500のオフセット設定部106(図15)及び基地局600のオフセット設定部602(図16)における送信電力オフセット値の設定処理の詳細について説明する。 Next, details of transmission power offset value setting processing in offset setting section 106 (FIG. 15) of terminal 500 and offset setting section 602 (FIG. 16) of base station 600 will be described.
 ここでは、実施の形態1と同様、前回送信された上り信号(PUSCH信号)の送信時刻t1から今回送信される上り信号(A-SRS)の送信時刻t2までの経過時間(送信時間間隔)Tが20ms以下の場合をTPC誤差が小さい場合とし、経過時間Tが20msより長い場合をTPC誤差が大きい場合とする。 Here, as in the first embodiment, the elapsed time (transmission time interval) T from the transmission time t1 of the uplink signal (PUSCH signal) transmitted last time to the transmission time t2 of the uplink signal (A-SRS) transmitted this time. Is a case where the TPC error is small, and a case where the elapsed time T is longer than 20 ms is a case where the TPC error is large.
 図17では、時刻t1から時刻t2までの経過時間(送信時間間隔)Tが20ms以内とする(T≦20ms)。また、図17では、PUSCH信号の割当に関する制御情報を含むPDCCHがFormat 0(DCI format 0)で送信される。つまり、図17では、時刻t1でのPUSCH信号の送信に1アンテナポート(Port 10)が設定される。また、図17では、A-SRSの送信に2アンテナポート(Port 20,21)が設定される。また、図17では、PUSCH信号の送信帯域幅BPUSCHと、A-SRSの送信帯域幅BSRSとの比率ΔB(=BSRS/BPUSCH)=3dB(2倍)とする。 In FIG. 17, it is assumed that the elapsed time (transmission time interval) T from time t1 to time t2 is within 20 ms (T ≦ 20 ms). In FIG. 17, PDCCH including control information related to PUSCH signal allocation is transmitted in Format 0 (DCI format 0). That is, in FIG. 17, one antenna port (Port 10) is set for transmission of the PUSCH signal at time t1. In FIG. 17, two antenna ports (Ports 20 and 21) are set for A-SRS transmission. Further, in FIG. 17, the transmission bandwidth B PUSCH of PUSCH signal, the ratio ΔB (= B SRS / B PUSCH ) of the transmission bandwidth B SRS of A-SRS = a 3 dB (2 times).
 よって、端末500の割当帯域情報取得部501は、図17では、送信帯域幅の比率ΔB(=BSRS/BPUSCH)=2をオフセット設定部106のオフセット値決定部502に出力する。 Therefore, the allocated bandwidth information acquisition unit 501 of the terminal 500 outputs the transmission bandwidth ratio ΔB (= B SRS / B PUSCH ) = 2 to the offset value determination unit 502 of the offset setting unit 106 in FIG.
 オフセット値決定部502は、まず、実施の形態2と同様、算出部302で算出された送信時間間隔T及びPDCCHのフォーマット種別(アンテナポート数の大小関係)に基づいて、例えば、図13を参照して、補正値を決定する。例えば、図17では、オフセット値決定部502は、PDCCHのフォーマット種別がFormat 0(DCI format 0)であるので、図13に従って補正値を0dBと設定する。 First, as in Embodiment 2, the offset value determination unit 502 refers to, for example, FIG. 13 based on the transmission time interval T calculated by the calculation unit 302 and the PDCCH format type (the size relationship of the number of antenna ports). Then, a correction value is determined. For example, in FIG. 17, the offset value determination unit 502 sets the correction value to 0 dB according to FIG. 13 because the format type of PDCCH is Format (0 (DCI format 0).
 次に、オフセット値決定部502は、割当帯域情報取得部501から入力される送信帯域幅の比率ΔBに基づいて、例えば、図18を参照して、設定された上記補正値に対して、オフセット(追加オフセット)を追加する。例えば、図17では、オフセット値決定部502は、比率ΔB=3dBであるので、図18に従って追加オフセット量を+2dBと設定する。そして、オフセット値決定部502は、補正値(0dB)に追加オフセット量(+2dB)を追加して、補正値Δoffset(つまり、(0+2)[dB])を決定する。 Next, based on the transmission bandwidth ratio ΔB input from the allocated bandwidth information acquisition unit 501, the offset value determination unit 502 offsets the set correction value with reference to FIG. (Additional offset) is added. For example, in FIG. 17, the offset value determination unit 502 sets the additional offset amount to +2 dB according to FIG. 18 because the ratio ΔB = 3 dB. Then, the offset value determination unit 502 adds the additional offset amount (+2 dB) to the correction value (0 dB) to determine the correction value Δ offset (that is, (0 + 2) [dB]).
 なお、本実施の形態において、例えば、サブフレーム(sub-frame)#iにおけるSRSの送信電力PSRS(i)は、実施の形態2と同様、式(5)に従って求められる。 In the present embodiment, for example, the SRS transmission power P SRS (i) in sub-frame #i is obtained according to equation (5) as in the second embodiment.
 上述したように、送信帯域幅の比率ΔBが小さい場合、送信電力変化量(ΔP)も小さいため、想定されるTPC誤差は小さい。一方、送信帯域幅の比率ΔBが大きい場合、送信電力変化量(ΔP)も大きいため、想定されるTPC誤差は大きい。 As described above, when the transmission bandwidth ratio ΔB is small, the amount of change in transmission power (ΔP) is also small, so the assumed TPC error is small. On the other hand, when the transmission bandwidth ratio ΔB is large, the amount of transmission power change (ΔP) is also large, so that the assumed TPC error is large.
 よって、図18に示すように、オフセット値決定部502は、送信帯域幅の比率ΔBが大きい場合(送信電力変化量ΔPが大きい場合)には、送信帯域幅の比率ΔBが小さい場合(送信電力変化量ΔPが小さい場合)と比較して、補正値Δoffset(つまり、送信電力オフセット値)を大きくして、A-SRSの送信電力を大きくする。 Therefore, as shown in FIG. 18, when the transmission bandwidth ratio ΔB is large (when the transmission power change amount ΔP is large), the offset value determination unit 502 has a small transmission bandwidth ratio ΔB (transmission power). Compared to the case where the change amount ΔP is small, the correction value Δ offset (that is, the transmission power offset value) is increased to increase the transmission power of the A-SRS.
 つまり、端末500は、送信電力変化量に起因するTPC誤差が大きいと見なせるA-SRSの送信電力を大きく設定する。これにより、基地局600でのA-SRSの受信SINRがTPC誤差の影響で劣化領域(例えば、0dB以下)にならないようにすることができ、SINR測定精度(チャネル品質の測定精度)の劣化を防止することができる。 That is, terminal 500 sets the transmission power of A-SRS that can be regarded as having a large TPC error due to the amount of change in transmission power. As a result, it is possible to prevent the reception SINR of the A-SRS at the base station 600 from becoming a degradation region (for example, 0 dB or less) due to the influence of the TPC error, and to reduce the SINR measurement accuracy (channel quality measurement accuracy). Can be prevented.
 このように、端末500は、実施の実施の形態1又は実施の形態2での送信条件(送信時間間隔T、及び、PUSCH信号の割当に用いたデータ割当情報のフォーマット(アンテナポート数の大小関係))に加えて、PUSCH信号とA-SRSとの間の送信帯域幅の比率に応じて、A-SRSの送信電力オフセット値を設定する。これにより、端末500では、送信電力変化量に依存して生じるTPC誤差の影響を軽減することができる。よって、本実施の形態によれば、各上り信号の送信に異なるアンテナポート数が設定される場合でも、実施の形態1及び実施の形態2に加え、周波数領域を考慮して、基地局におけるTPC誤差によるSINR測定精度の劣化を防止することができる。 As described above, terminal 500 uses transmission conditions (transmission time interval T and the format of data allocation information used for PUSCH signal allocation in the first or second embodiment (relationship between the number of antenna ports). In addition to)), the transmission power offset value of A-SRS is set according to the ratio of the transmission bandwidth between the PUSCH signal and A-SRS. Thereby, terminal 500 can reduce the influence of the TPC error that occurs depending on the transmission power change amount. Therefore, according to the present embodiment, even when different numbers of antenna ports are set for transmission of each uplink signal, in addition to the first and second embodiments, the TPC in the base station is considered in the frequency domain. Degradation of SINR measurement accuracy due to errors can be prevented.
 また、本実施の形態では、例えば、図18に示す割当帯域幅(送信帯域幅)と許容TPC誤差と追加オフセット量との対応付けをシステムで予め定義する場合、上り信号の送信電力制御のための送信毎のシグナリングは不要となる。又は、図18に示す割当帯域幅(送信帯域幅)と許容TPC誤差と追加オフセット量との対応付けをパラメータとして基地局から端末へ予め通知する場合には、そのパラメータは比較的長い周期、若しくは、1度だけ端末へ通知されればよく、上り信号の送信電力制御のための送信毎のシグナリングは不要となる。よって、これらの場合には、上り信号の送信電力制御に要するシグナリングのオーバーヘッドの増加を抑えることができる。 Further, in this embodiment, for example, when the correspondence between the allocated bandwidth (transmission bandwidth), the allowable TPC error, and the additional offset amount shown in FIG. Signaling for each transmission becomes unnecessary. Alternatively, in the case where the association between the allocated bandwidth (transmission bandwidth), the allowable TPC error, and the additional offset amount shown in FIG. The terminal only needs to be notified once, and signaling for each transmission for uplink signal transmission power control becomes unnecessary. Therefore, in these cases, an increase in signaling overhead required for uplink signal transmission power control can be suppressed.
 以上、本発明の各実施の形態について説明した。 The embodiments of the present invention have been described above.
 なお、上記実施の形態では、端末が最大2アンテナポートを用いる場合について説明したが、端末が用いるアンテナポート数はこれに限らず、例えば、最大4アンテナポートを用いてもよい。 In the above embodiment, the case where the terminal uses a maximum of two antenna ports has been described. However, the number of antenna ports used by the terminal is not limited to this, and for example, a maximum of four antenna ports may be used.
 また、上記実施の形態におけるアンテナポートとは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。 In addition, the antenna port in the above embodiment refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
 例えば、LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。 For example, in LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit in which a base station can transmit different reference signals (Reference signals).
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。 Also, the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
 なお、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連係においてソフトウェアでも実現することも可能である。 Note that although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be implemented by software in association with hardware.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2011年1月7日出願の特願2011-001834の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2011-001834 filed on Jan. 7, 2011 is incorporated herein by reference.
 本発明は、移動体通信システム等に適用することができる。 The present invention can be applied to a mobile communication system or the like.
 100,300,500 端末
 200,400,600 基地局
 101 送信処理部
 102 生成部
 103 マッピング部
 104 IFFT部
 105 CP付加部
 106,207,402,602 オフセット設定部
 107,302 算出部
 108,303,502 オフセット値決定部
 109 送信電力制御部
 110 プリコーディング部
 111 送信RF部
 112,201 アンテナ
 202 受信RF部
 203 CP除去部
 204 FFT部
 205 デマッピング部
 206 巡回シフト量設定部
 208 SRS用SINR測定部
 209 データ用SINR導出部
 210 PUCCHリソース検出部
 211 PUCCH復調部
 212 PUSCH復調部
 213 PUSCH復号部
 301 PDCCH検出部
 401 PDCCH生成部
 501 割当帯域情報取得部
 601 SRS制御情報生成部
100, 300, 500 Terminal 200, 400, 600 Base station 101 Transmission processing unit 102 Generation unit 103 Mapping unit 104 IFFT unit 105 CP addition unit 106, 207, 402, 602 Offset setting unit 107, 302 Calculation unit 108, 303, 502 Offset value determination unit 109 Transmission power control unit 110 Precoding unit 111 Transmission RF unit 112, 201 Antenna 202 Reception RF unit 203 CP removal unit 204 FFT unit 205 Demapping unit 206 Cyclic shift amount setting unit 208 SRS SINR measurement unit 209 Data SINR derivation unit 210 PUCCH resource detection unit 211 PUCCH demodulation unit 212 PUSCH demodulation unit 213 PUSCH decoding unit 301 PDCCH detection unit 401 PDCCH generation unit 501 allocation band information acquisition unit 601 SRS control information generation unit

Claims (11)

  1.  信号の送信電力を制御する制御部と、
     制御された前記送信電力で、前記信号を、少なくとも1つのアンテナポートを介して送信する送信部と、
     を有し、
     前記制御部は、前記少なくとも1つのアンテナポートの数と、前回の送信に使用したアンテナポートの数との比較に基づいて、前記送信電力を制御する、
     送信装置。
    A control unit for controlling the transmission power of the signal;
    A transmitter for transmitting the signal via at least one antenna port with the controlled transmission power;
    Have
    The control unit controls the transmission power based on a comparison between the number of the at least one antenna port and the number of antenna ports used for the previous transmission.
    Transmitter device.
  2.  前記制御部は、前記少なくとも1つのアンテナポートの数が、前回の送信に使用したアンテナポートの数よりも多い場合、前記送信電力が大きくなるように制御する、
     請求項1に記載の送信装置。
    The control unit controls the transmission power to be increased when the number of the at least one antenna port is larger than the number of antenna ports used for the previous transmission.
    The transmission device according to claim 1.
  3.  前記制御部は、前記少なくとも1つのアンテナポートの数が、前回の送信に使用したアンテナポートの数よりも少ない場合、前記送信電力を小さくなるように制御する、
     請求項1に記載の送信装置。
    The control unit controls the transmission power to be small when the number of the at least one antenna port is smaller than the number of antenna ports used for the previous transmission;
    The transmission device according to claim 1.
  4.  前記制御部は、前記少なくとも一つのアンテナポートが、前回の送信において使用されなかったアンテナポートを含む場合、前記送信電力が大きくなるように制御する、
     請求項1に記載の送信装置。
    The control unit controls the transmission power to be increased when the at least one antenna port includes an antenna port that has not been used in the previous transmission.
    The transmission device according to claim 1.
  5.  前記制御部は、前記少なくとも一つのアンテナポートが、前回の送信において使用されなかったアンテナポートを含まない場合、前記送信電力が小さくなるように制御する、
     請求項1に記載の送信装置。
    The control unit controls the transmission power to be small when the at least one antenna port does not include an antenna port that was not used in the previous transmission.
    The transmission device according to claim 1.
  6.  前記制御部は、前記送信電力に対するオフセット量の増減によって、前記送信電力を制御する、
     請求項1に記載の送信装置。
    The control unit controls the transmission power by increasing or decreasing an offset amount with respect to the transmission power.
    The transmission device according to claim 1.
  7.  前記制御部は、前記少なくとも1つのアンテナポートの数と、所定の時間間隔以下の前回の送信に使用したアンテナポートの数との比較に基づいて、前記送信電力を制御する、
     請求項1に記載の送信装置。
    The control unit controls the transmission power based on a comparison between the number of the at least one antenna port and the number of antenna ports used for the previous transmission not more than a predetermined time interval.
    The transmission device according to claim 1.
  8.  前記信号は、サウンディング・リファレンス・シグナル(SRS)である、
     請求項1に記載の送信装置。
    The signal is a sounding reference signal (SRS).
    The transmission device according to claim 1.
  9.  前記信号は、周期的又は非周期的に送信されるサウンディング・リファレンス・シグナル(SRS)であり、
     前記制御部は、前記SRSとは異なる、データチャネル、制御チャネル、又は、周期的又は非周期的に送信されるSRSの送信に前回使用したアンテナポートの数と、前記少なくとも1つのアンテナポートの数との比較に基づいて、前記送信電力を制御する、
     請求項1に記載の送信装置。
    The signal is a sounding reference signal (SRS) transmitted periodically or aperiodically,
    The control unit is different from the SRS in the number of antenna ports used last time for transmission of a data channel, a control channel, or SRS transmitted periodically or aperiodically, and the number of the at least one antenna port. Controlling the transmission power based on the comparison with
    The transmission device according to claim 1.
  10.  サウンディング・リファレンス・シグナル(SRS)の送信電力を制御する制御部と、
     制御情報に含まれる送信要求を受けて、制御された前記送信電力で、前記SRSを、少なくとも1つのアンテナポートを介して送信する送信部と、
     を有し、
     前記制御部は、一つのアンテナポートに対するデータ割当情報を含む前記制御情報を受けた場合、前記送信電力が大きくなるように制御し、複数のアンテナポートに対するデータ割当情報を含む前記制御情報を受けた場合、前記送信電力が小さくなるように制御する、
     送信装置。
    A control unit that controls transmission power of the sounding reference signal (SRS);
    A transmission unit that receives the transmission request included in the control information and transmits the SRS through the at least one antenna port with the controlled transmission power;
    Have
    When receiving the control information including data allocation information for one antenna port, the control unit controls the transmission power to increase and receives the control information including data allocation information for a plurality of antenna ports. Control to reduce the transmission power,
    Transmitter device.
  11.  信号の送信電力を制御し、
     制御された前記送信電力で、前記信号を、少なくとも1つのアンテナポートを介して送信する、
     送信方法であって、
     前記少なくとも1つのアンテナポートの数と、前回の送信に使用したアンテナポートの数との比較に基づいて、前記送信電力を制御する、
     送信方法。
    Control the transmission power of the signal,
    Transmitting the signal via at least one antenna port with the controlled transmission power;
    A transmission method,
    Controlling the transmission power based on a comparison between the number of the at least one antenna port and the number of antenna ports used for the previous transmission;
    Transmission method.
PCT/JP2011/007216 2011-01-07 2011-12-22 Transmission device and transmission method WO2012093454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-001834 2011-01-07
JP2011001834 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093454A1 true WO2012093454A1 (en) 2012-07-12

Family

ID=46457323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007216 WO2012093454A1 (en) 2011-01-07 2011-12-22 Transmission device and transmission method

Country Status (1)

Country Link
WO (1) WO2012093454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116093B2 (en) 2017-06-16 2022-08-09 クアルコム,インコーポレイテッド Method and apparatus for power control of sounding reference signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073221A (en) * 2003-08-07 2005-03-17 Matsushita Electric Ind Co Ltd Radio transmitting apparatus and radio transmitting method
WO2010090052A1 (en) * 2009-02-03 2010-08-12 シャープ株式会社 Radio communication system, base station device, mobile station device, and communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073221A (en) * 2003-08-07 2005-03-17 Matsushita Electric Ind Co Ltd Radio transmitting apparatus and radio transmitting method
WO2010090052A1 (en) * 2009-02-03 2010-08-12 シャープ株式会社 Radio communication system, base station device, mobile station device, and communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116093B2 (en) 2017-06-16 2022-08-09 クアルコム,インコーポレイテッド Method and apparatus for power control of sounding reference signals

Similar Documents

Publication Publication Date Title
US11356958B2 (en) Wireless communication device and method for controlling transmission power
US8929232B2 (en) Transmission power control method and mobile station apparatus
US9179427B2 (en) Transmission power dependent imbalance compensation for multi-antenna systems
US20150249963A1 (en) Radio communication apparatuses and radio communication method
US11191030B2 (en) Terminal, base station, transmission method, and reception method
JP7232768B2 (en) Terminal, base station, transmission method and reception method
WO2012093454A1 (en) Transmission device and transmission method
WO2012111266A1 (en) Transmission device and transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP