WO2019069553A1 - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
WO2019069553A1
WO2019069553A1 PCT/JP2018/029362 JP2018029362W WO2019069553A1 WO 2019069553 A1 WO2019069553 A1 WO 2019069553A1 JP 2018029362 W JP2018029362 W JP 2018029362W WO 2019069553 A1 WO2019069553 A1 WO 2019069553A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
less
refractive index
content
Prior art date
Application number
PCT/JP2018/029362
Other languages
French (fr)
Japanese (ja)
Inventor
岩▲崎▼菜那
Original Assignee
株式会社 オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オハラ filed Critical 株式会社 オハラ
Priority to CN201880064137.XA priority Critical patent/CN111183122B/en
Publication of WO2019069553A1 publication Critical patent/WO2019069553A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass and an optical element.
  • Optical systems such as digital cameras and video cameras include blurs called aberrations, though the size is large. Although this aberration is classified into monochromatic aberration and chromatic aberration, in particular, the chromatic aberration strongly depends on the material properties of the lens used in the optical system.
  • the chromatic aberration is corrected by combining a low dispersion convex lens and a high dispersion concave lens, but this combination can only correct the aberration of the red region and the green region, and the aberration of the blue region remains.
  • the aberration in the blue region that can not be eliminated is called a secondary spectrum.
  • the partial dispersion ratio ( ⁇ g, F) is used as an index of optical characteristics to be focused on in optical design.
  • an optical material having a large partial dispersion ratio ( ⁇ g, F) is used for the low dispersion lens, and the partial dispersion ratio ( By using an optical material with a small ⁇ g, F), the secondary spectrum is well corrected.
  • the partial dispersion ratio ( ⁇ g, F) is expressed by the following equation (1).
  • ⁇ g , F (n g -n F ) / (n F -n C ) (1)
  • optical glass there is an approximately linear relationship between a partial dispersion ratio ( ⁇ g, F) representing partial dispersion in a short wavelength range and an Abbe number ( ⁇ d ).
  • the straight line representing this relationship was obtained by plotting the partial dispersion ratio and Abbe number of NSL7 and PBM2 on Cartesian coordinates with partial dispersion ratio ( ⁇ g, F) on the vertical axis and Abbe number ( ⁇ d ) on the horizontal axis. It is represented by a straight line connecting two points and is called a normal line (see FIG. 1).
  • Normal glass which is the standard of the normal line, varies depending on the optical glass manufacturer, but they are defined by almost the same inclination and intercept.
  • NSL7 and PBM2 are optical glasses manufactured by OHARA INC.
  • the Abbe number ( ⁇ d ) of PBM 2 is 36.3
  • the partial dispersion ratio ( ⁇ g, F) is 0.5828
  • the Abbe number ( ⁇ d ) of NSL 7 Is 60.5
  • the partial dispersion ratio ( ⁇ g, F) is 0.5436.
  • a glass having an Abbe number (v d ) of 30 or more and 45 or less is often used as an optical material having a small partial dispersion ratio ( ⁇ g, F) according to needs in optical design.
  • optical elements incorporated in in-vehicle optical devices such as in-vehicle cameras, and optical elements incorporated in optical devices that generate a large amount of heat such as projectors, copiers, laser printers and broadcasting equipment, etc.
  • Use in high temperature environments is increasing. In such a high temperature environment, the temperature at the time of use of the optical element constituting the optical system tends to fluctuate greatly, and the temperature often reaches 100 ° C. or more.
  • the adverse effect on the imaging characteristics and the like of the optical system due to the temperature fluctuation is so large that it can not be ignored, it is required to configure an optical system in which the imaging characteristics and the like are hardly affected even by the temperature fluctuation.
  • the optical element is made of glass in which the refractive index decreases when the temperature rises and the temperature coefficient of the relative refractive index becomes negative.
  • the use of an optical element made of glass in which the refractive index increases when the temperature rises and the temperature coefficient of the relative refractive index is positive corrects the influence of the temperature change on the imaging characteristics, etc. It is preferable at the point which can be done.
  • the glass disclosed in Patent Document 1 has a large content of the BaO component that increases the partial dispersion ratio, and a small content of the Nb 2 O 5 component that decreases the partial dispersion ratio, so the partial dispersion ratio increases. It is not sufficient for use as a lens for correcting the secondary spectrum. In addition, since the transmittance in visible light is deteriorated, it can not be said that sufficient optical characteristics are obtained. Further, the glass disclosed in Patent Document 2 has a large content of the La 2 O 3 component, but the content of the Nb 2 O 5 is small, so the partial dispersion ratio becomes large, and the content of the alkali metal is small. It can not be said that the temperature coefficient of the relative refractive index is small.
  • the present invention has been made in view of the above problems, and the object of the present invention is to obtain a partial dispersion ratio (n d ) and an Abbe number (v d ) within a desired range.
  • An object of the present invention is to obtain an optical glass having a small ⁇ g, F) and a small temperature coefficient of relative refractive index.
  • the inventors of the present invention conducted intensive studies to solve the above problems, and as a result, in the glass containing the SiO 2 component and the Nb 2 O 5 component, the Na 2 O component is contained in the desired range. It has been found that an optical glass having a high refractive index, an Abbe number (high dispersion), a low partial dispersion ratio, and a small temperature coefficient of relative refractive index can be obtained, and the present invention has been completed.
  • Refractive index (n d) and Abbe number ([nu d) is, - satisfies the relation of (0.01 ⁇ ⁇ d +2.01) ⁇ n d ⁇ (-0.01 ⁇ ⁇ d +2.12) Optical glass as described in (1) or (2).
  • a preform material comprising the optical glass according to any one of (1) to (3).
  • An optical element comprising the optical glass according to any one of (1) to (3).
  • the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, has a low partial dispersion ratio, and the temperature coefficient of the relative refractive index to obtain a small optical glass Can.
  • FIG. 7 is a diagram showing a normal line in which the partial dispersion ratio ( ⁇ g, F) is represented on the vertical axis and the Abbe number ( ⁇ d ) is represented on the rectangular coordinate of the horizontal axis. It is a figure which shows the relationship of the partial dispersion ratio ((theta) g, F) and Abbe's number ((nu) d ) about the Example of this application. It is a figure which shows the refractive index ( nd ) and Abbe's number ((nu) d ) relationship about the Example of this application.
  • the optical glass of the present invention contains 15.0 to 45.0% of the SiO 2 component, 10.0 to 40.0% of the Nb 2 O 5 component, and 0 of the Na 2 O component in mass% of the oxide conversion composition. containing ultra-20.0%, the partial dispersion ratio ([theta] g, F) is between the Abbe number ( ⁇ d), (- 0.00162 ⁇ ⁇ d +0.620) ⁇ ( ⁇ g, F) ⁇ ( It is characterized in that the temperature coefficient of the relative refractive index is small, which satisfies the relationship of ⁇ 0.00162 ⁇ ⁇ d +0.657).
  • An optical glass containing a predetermined amount of SiO 2 component and Nb 2 O 5 component and containing Na 2 O, a glass having high refractive index and Abbe number (high dispersion) within a desired range, and low partial dispersion ratio In particular, by containing Na 2 O in excess of 0% to 20.0%, the temperature coefficient of relative refractive index can be reduced while keeping the partial dispersion ratio ( ⁇ g, F) small. Therefore, while having desired high refractive index (n d ) and low Abbe number ( d d ), the partial dispersion ratio ( ⁇ g, F) is small, which is useful for reducing the chromatic aberration of the optical system, and the relative refractive index An optical glass having a small temperature coefficient of
  • Glass composition The composition range of each component which comprises the optical glass of this invention is described below. In the present specification, unless otherwise specified, the contents of the respective components are all represented by mass% relative to the total mass of the glass in the oxide conversion composition.
  • oxide conversion composition is assumed that all oxides, composite salts, metal fluorides, etc. used as raw materials of the glass component of the present invention are decomposed at the time of melting and converted into oxides, It is the composition which described each ingredient contained in glass on the basis of 100 mass% of gross mass of the generated oxide concerned.
  • the SiO 2 component promotes stable glass formation and can lower the liquidus temperature, and thus is an essential component to reduce devitrification (the generation of crystals) which is undesirable as optical glass.
  • the content of the SiO 2 component is preferably 15.0% or more, more preferably 18.0% or more, more preferably 20.0% or more, and still more preferably 25.0% or more.
  • the content of the SiO 2 component is preferably 45.0% or less, more preferably 43.0% or less, still more preferably 41.5% or less, and most preferably 40.0% or less.
  • SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.
  • the Nb 2 O 5 component is an essential component capable of enhancing the refractive index, reducing the Abbe number and the partial dispersion ratio, and enhancing the devitrification resistance.
  • the content of the Nb 2 O 5 component is preferably 10.0% or more, more preferably 12.0% or more, and still more preferably 15.0% or more.
  • the content of Nb 2 O 5 component below 40.0%, thereby reducing the material cost of the glass.
  • the content of the Nb 2 O 5 component is preferably 40.0%, more preferably 38.0% or less, and further preferably 35.0% or less.
  • Nb 2 O 5 or the like can be used as a raw material.
  • the TiO 2 component is an optional component that raises the refractive index, lowers the Abbe number, and increases the devitrification resistance when it is contained in excess of 0%. Therefore, the content of the TiO 2 component is preferably more than 0%, more preferably more than 1.0%, and still more preferably 2.5%. On the other hand, when the content exceeds 20.0%, the partial dispersion ratio is a component that increases. Therefore, by setting the content of the TiO 2 component to 20.0% or less, the coloration of the glass can be reduced and the internal transmittance can be enhanced. Moreover, since it becomes difficult to raise a partial dispersion ratio by this, it can be easy to obtain the desired low partial dispersion ratio near a normal line. Therefore, the content of the TiO 2 component is preferably 20.0% or less, more preferably 15.0% or less, more preferably 12.0% or less, and further preferably less than 10.0%. TiO 2 component can be used such as TiO 2 as a raw material.
  • the K 2 O component is an arbitrary component that increases the thermal expansion coefficient and decreases the temperature coefficient of the relative refractive index. Therefore, the content of the K 2 O component is preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%. On the other hand, by setting the content of the K 2 O component to 10.0% or less, an increase in partial dispersion ratio can be suppressed, and devitrification can be reduced. Therefore, the content of the K 2 O component is preferably 10.0% or less, more preferably less than 8.0%, and still more preferably less than 5.0%.
  • K 2 O component, K 2 CO 3 as a raw material, KNO 3, KF can be used KHF 2, K 2 SiF 6 and the like.
  • the content of the B 2 O 3 component is preferably more than 0%, more preferably more than 0.5%, more preferably more than 1.0%, still more preferably more than 1.5%.
  • the content of the B 2 O 3 component is 15.0% or less, the decrease in the refractive index can be suppressed and the increase in the partial dispersion ratio can be suppressed. Furthermore, the deterioration of the chemical durability of the glass can be improved.
  • the content of the B 2 O 3 component is preferably 15.0% or less, more preferably 14.0% or less, and still more preferably 12.0% or less.
  • the B 2 O 3 component H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 ⁇ 10H 2 O, BPO 4 or the like can be used as a raw material.
  • the Li 2 O component is an optional component which can lower the partial dispersion ratio, improve the transmittance, lower the liquidus temperature, and enhance the meltability of the glass material, when it is contained in excess of 0%. Therefore, the content of the Li 2 O component is preferably more than 0%, more preferably more than 0.5%, more preferably more than 1.0%, and still more preferably more than 1.5%. On the other hand, by making the content of the Li 2 O component 15.0% or less, the decrease in refractive index can be suppressed, and the devitrification due to the excessive content can be reduced. Therefore, the content of the Li 2 O component is preferably 15.0% or less, more preferably 10.0% or less, and even more preferably less than 8.0%. As the Li 2 O component, Li 2 CO 3 , LiNO 3 , LiF or the like can be used as a raw material.
  • the Na 2 O component is an optional component that can lower the partial dispersion ratio, increase the thermal expansion coefficient, and decrease the temperature coefficient of the relative refractive index, when it is contained in excess of 0%. Therefore, the content of the Na 2 O component is preferably more than 0%, more preferably more than 0.5%, and still more preferably more than 1.0%. On the other hand, by setting the content of the Na 2 O component to 20.0% or less, the decrease in refractive index can be suppressed, and the devitrification due to excessive inclusion can be reduced. Therefore, the content of the Na 2 O component is preferably 20.0% or less, more preferably 19.0% or less, and further preferably less than 18.0%. As the Na 2 O component, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like can be used as a raw material.
  • the temperature coefficient of the relative refractive index when the sum (mass sum) of the content of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na and K) is greater than 0 Is an optional component that can reduce Therefore, the sum of Rn 2 O components is preferably at least 0%, more preferably at least 3.0%, and still more preferably at least 5.0%.
  • the upper limit is preferably 30.0% or less, more preferably 28.0% or less, and still more preferably 26.0% or less.
  • the ZrO 2 component is an optional component capable of enhancing the refractive index and Abbe number of the glass, lowering the partial dispersion ratio, and enhancing the devitrification resistance, when it is contained in excess of 0%.
  • the lower limit of the content of the ZrO 2 component is preferably at least 0%, more preferably at least 1.0%, and more preferably at least 3.0%.
  • the content of the ZrO 2 component is 10.0% or less, the devitrification can be reduced and a more homogeneous glass can be easily obtained. Therefore, the content of the ZrO 2 component is preferably 10.0% or less, more preferably 9.0% or less, and more preferably 8.5% or less.
  • ZrO 2 component ZrO 2 , ZrF 4 or the like can be used as a raw material.
  • the MgO component is an optional component that can lower the melting temperature of the glass when it contains more than 0%.
  • the content of the MgO component is 10.0% or less, the devitrification can be reduced while suppressing the decrease in the refractive index. Therefore, the content of the MgO component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
  • MgO component MgO, MgCO 3 , MgF 2 or the like can be used as a raw material.
  • the CaO component is an optional component capable of reducing Abbe's number, reducing devitrification and improving the meltability of the glass material while reducing the material cost of the glass when the CaO content is more than 0%. Therefore, the content of the CaO component is preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%. On the other hand, by setting the content of the CaO component to 10.0% or less, it is possible to suppress the decrease in refractive index, the increase in Abbe number, and the increase in partial dispersion ratio, and the devitrification can be reduced. Therefore, the upper limit of the content of the CaO component is preferably 10.0% or less, more preferably less than 8.0%, and still more preferably less than 6.0%.
  • the CaO component is CaCO 3 , CaF 2 or the like as a raw material Can be used.
  • the SrO component is an optional component capable of enhancing the refractive index and enhancing the devitrification resistance, when it is contained in excess of 0%.
  • the content of the SrO component is preferably 10.0% or less, more preferably less than 8.0%, still more preferably less than 6.0%, and still more preferably less than 5.0%.
  • Sr (NO 3 ) 2 , SrF 2 or the like can be used as a raw material.
  • the BaO component is an optional component that can increase the refractive index, increase the devitrification resistance, increase the thermal expansion coefficient, and decrease the temperature coefficient of the relative refractive index when the BaO component is contained more than 0%. Therefore, the content of the BaO component is preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%. In particular, by setting the content of the BaO component to 10.0% or less, the decrease in refractive index, the increase in Abbe number, and the increase in partial dispersion ratio can be suppressed, and the devitrification can be reduced. Therefore, the content of the BaO component is preferably 10.0% or less, more preferably less than 9.0%, more preferably less than 8.5%, and still more preferably less than 8.0%. As the BaO component, BaCO 3 , Ba (NO 3 ) 2 or the like can be used as a raw material.
  • the ZnO component is an optional component which is inexpensive, can improve the devitrification resistance, and can lower the glass transition point, when it is contained at more than 0%. Therefore, the content of the ZnO component may be preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%. On the other hand, devitrification and coloring can be reduced by setting the content of the ZnO component to 10.0% or less. Therefore, the content of the ZnO component is preferably 10.0% or less, more preferably 8.0% or less, and more preferably less than 5.5%.
  • the refractive index can be increased and the partial dispersion ratio can be decreased by containing at least one of La 2 O 3 component, Gd 2 O 3 component, Y 2 O 3 component and Yb 2 O 3 component by more than 0%. It is an ingredient.
  • the content of each of the La 2 O 3 component, the Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component to 10.0% or less, the increase in Abbe number can be suppressed, and the loss occurs.
  • the permeability can be reduced and the material cost can be reduced.
  • the content of each of the La 2 O 3 component, the Gd 2 O 3 component, the Y 2 O 3 component and the Yb 2 O 3 component is preferably 10.0% or less, more preferably 8.0% or less, and further preferably Preferably, the upper limit is less than 7.0%.
  • the La 2 O 3 component, the Gd 2 O 3 component, the Y 2 O 3 component and the Yb 2 O 3 component are, as raw materials, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (where X is any integer), Y 2 O 3 , YF 3 , Gd 2 O 3 , GdF 3 , Yb 2 O 3 or the like can be used.
  • the Ta 2 O 5 component is an optional component capable of enhancing the refractive index, lowering the Abbe number and the partial dispersion ratio, and enhancing the devitrification resistance, when the Ta 2 O 5 component is contained.
  • the content of the Ta 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%. .
  • the Ta 2 O 5 component may not be contained.
  • Ta 2 O 5 component Ta 2 O 5 or the like can be used as a raw material.
  • the WO 3 component is an optional component capable of enhancing the refractive index to lower the Abbe number, enhancing the devitrification resistance, and enhancing the meltability of the glass material, when the WO 3 component is contained.
  • the content of the WO 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • WO 3 components it is possible to use WO 3 or the like as a raw material.
  • the P 2 O 5 component is an optional component that can enhance the stability of the glass when it contains more than 0%.
  • the content of the P 2 O 5 component is 10.0% or less, devitrification due to the excessive content of the P 2 O 5 component can be reduced. Therefore, the content of the P 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
  • Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 and the like can be used as raw materials.
  • the GeO 2 component is an optional component that can increase the refractive index and reduce the devitrification when it contains more than 0%.
  • the content of the GeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
  • the GeO 2 component can use GeO 2 etc. as a raw material.
  • the Al 2 O 3 component and the Ga 2 O 3 component are optional components that can increase the refractive index and improve the devitrification resistance when containing at least either of them in excess of 0%.
  • the content of each of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
  • Al 2 O 3 component and the Ga 2 O 3 component Al 2 O 3 , Al (OH) 3 , AlF 3 , Ga 2 O 3 , Ga (OH) 3 or the like can be used as raw materials.
  • the Bi 2 O 3 component is an optional component which can increase the refractive index to lower the Abbe number and lower the glass transition point, when the content is more than 0%.
  • the content of the Bi 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • Bi 2 O 3 component can be used Bi 2 O 3 and the like as raw materials.
  • the TeO 2 component is an optional component that can increase the refractive index, lower the partial dispersion ratio, and lower the glass transition point, when it is contained in excess of 0%.
  • the content of the TeO 2 component is preferably 5.0% or less, more preferably less than 3.0%, and still more preferably less than 1.0%.
  • TeO 2 or the like can be used as a raw material.
  • the SnO 2 component is an optional component capable of clarifying (defoaming) the melted glass when it contains more than 0%, and increasing the visible light transmittance of the glass.
  • the content of the SnO 2 component is preferably 1.0% or less, more preferably less than 0.5%, and still more preferably less than 0.1%.
  • SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
  • the Sb 2 O 3 component promotes degassing of the glass when it contains more than 0%, and is a component to clarify the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Sb 2 O 3 component with respect to the total mass of the glass can be made to be 1.0% or less, thereby making it difficult to cause excessive foaming at the time of melting the glass, and the Sb 2 O 3 component is a melting facility (especially Pt Etc. can be difficult to be alloyed.
  • the upper limit of the content of the Sb 2 O 3 component to the total glass mass of the oxide conversion composition is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
  • Sb 2 O 3 component can be used Sb 2 O 3, Sb 2 O 5, Na 2 H 2 Sb 2 O 7 ⁇ 5 H 2 O and the like as raw materials.
  • the components for clarifying and degassing the glass are not limited to the above-mentioned Sb 2 O 3 components, and known clarifiers and defoamers in the field of glass production can be used, or a combination thereof. .
  • the mass sum of ZrO 2 and Li 2 O is preferably 5.0% or more. Thereby, glass with a small partial dispersion ratio can be obtained. Accordingly, the lower limit of the mass sum (ZrO 2 + Li 2 O) is 5.0% or more, more preferably 7.0% or more, and still more preferably 8.0% or more. On the other hand, the sum of mass (ZrO 2 + Li 2 O) is preferably 20.0% or less. Thereby, the devitrification by excess content can be reduced and the devitrification at the time of reheat press can be suppressed. Therefore, the content is preferably 20.0% or less, more preferably 18.0% or less, and further preferably 16.0% or less.
  • the mass sum of ZrO 2 and Nb 2 O 5 is preferably 18.0% or more. Thereby, it is possible to obtain a glass having a small partial dispersion ratio and a good transmittance. Accordingly, the lower limit of the mass sum ZrO 2 + Nb 2 O 5 is preferably 18.0% or more, more preferably 19.0% or more, and still more preferably 21.1% or more. On the other hand, the mass sum ZrO 2 + Nb 2 O 5 is preferably 45.0% or less. Thereby, the devitrification by excess content can be reduced and the devitrification at the time of reheat press can be suppressed. Therefore, the content is preferably 45.0% or less, more preferably 44.0% or less, more preferably 43.0% or less, and still more preferably 42.0% or less.
  • the mass ratio BaO / (MgO + CaO + SrO + BaO) is preferably more than 0, more preferably 0.05 or more, and still more preferably 0.09 or more.
  • the mass ratio BaO / (MgO + CaO + SrO + BaO) is preferably 0.90 or less.
  • the ratio of Li 2 O to the mass sum of Li 2 O, Na 2 O and K 2 O is preferably 0.01 or more. Thereby, glass with a small partial dispersion ratio can be obtained. Therefore, the mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is preferably 0.01 or more, more preferably 0.02 or more, and still more preferably 0.03 or more. On the other hand, the ratio of Li 2 O to the mass sum of Li 2 O, Na 2 O and K 2 O is preferably 1.00 or less. Thereby, the viscosity is not too low, and a glass that is easy to form can be obtained. Therefore, it is preferably 1.00 or less, more preferably 0.90 or less, and still more preferably 0.70 or less.
  • the content of the RO component is preferably more than 0%, more preferably more than 0.5%, still more preferably more than 1.5%.
  • the total content of RO components is preferably less than 15.0%.
  • the total (mass sum) of the content of the Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb) is preferably less than 10.0%.
  • Ln is one or more selected from the group consisting of La, Gd, Y, Yb
  • the mass sum of the Ln 2 O 3 component is preferably less than 10.0%, more preferably 8.5% or less, and still more preferably 7.0% or less.
  • each transition metal component such as Ti, Zr, Nb, W, La, Gd, Y, Yb, Lu excluding V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo is independent.
  • the glass be substantially free of light, because the glass is colored even when contained in a small amount in a complex or causes absorption at a specific wavelength in the visible range. .
  • lead compounds and As 2 O 3 or the like arsenic compound such as PbO because environmental load is highly components, it does not substantially contained, i.e., it is desirable not to contain any except inevitable contamination.
  • Th, Cd, Tl, Os, Be, and Se components tend to refrain from use as harmful chemical substances in recent years, and they are not only used in glass manufacturing processes but also in processing processes and disposal after productization. All environmental measures are needed. Therefore, when emphasizing environmental impact, it is preferable not to contain these substantially.
  • the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted, and then a gold crucible and a platinum crucible , Put in a platinum alloy crucible or iridium crucible, melt for 3 to 5 hours in a temperature range of 1000 to 1400 ° C, stir and homogenize, perform bubble breakage, etc., and then lower to a temperature of 900 to 1200 ° C and then finish stirring. It is produced by removing the cord, casting in a mold and annealing.
  • the optical glass of the present invention has a high refractive index and an Abbe number in a predetermined range.
  • the refractive index (n d ) of the optical glass of the present invention is preferably 1.65 or more, more preferably 1.67 or more, and still more preferably 1.68 or more.
  • the upper limit of the refractive index is preferably 1.80 or less, more preferably 1.79 or less, and more preferably 1.78 or less.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 25.0, more preferably 27.0, still more preferably 29.0.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 40.0, more preferably 39.0, still more preferably 38.0.
  • the optical glass of the present invention having such refractive index and Abbe number is useful for optical design, and the optical system can be miniaturized while achieving particularly high imaging characteristics etc. You can spread the degree.
  • the optical glass of the present invention is a refractive index (n d) and Abbe number ([nu d) is, (- 0.01 ⁇ ⁇ d +2.01 ) ⁇ n d ⁇ (-0.01 ⁇ ⁇ d +2 It is preferable to satisfy the relationship of .12).
  • the glass composition specified in the present invention refractive index (n d) and Abbe number ([nu d) is even satisfy this relationship, obtain a stable glass.
  • refractive index (n d) and Abbe number ([nu d) is, it is preferable to satisfy n d ⁇ (-0.01 ⁇ ⁇ d +2.01) relations, n d ⁇ It is more preferable to satisfy the relationship of ( ⁇ 0.01 ⁇ ⁇ d +2.03).
  • the refractive index (n) and the Abbe number (v d ) preferably satisfy the relationship of n d ⁇ ( ⁇ 0.01 ⁇ v d +2.12), n d ⁇ It is more preferable to satisfy the relationship of ( ⁇ 0.01 ⁇ ⁇ d +2.11).
  • the optical glass of the present invention has a low partial dispersion ratio ( ⁇ g, F). More specifically, the partial dispersion ratio of the optical glass of the present invention ([theta] g, F) is between the Abbe number ( ⁇ d), (- 0.00162 ⁇ ⁇ d +0.620) ⁇ ( ⁇ g, F It is preferable to satisfy the following relationship: ⁇ ( ⁇ 0.00162 ⁇ v d +0.657).
  • the partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) preferably satisfy the relationship of ⁇ g, F ⁇ ( ⁇ 0.00162 ⁇ ⁇ d +0.620), It is more preferable to satisfy the relationship of ⁇ g, F ⁇ ( ⁇ 0.00162 ⁇ ⁇ d +0.630).
  • the partial dispersion ratio ( ⁇ g, F) and the Abbe number (( d ) preferably satisfy the relationship of ⁇ g, F ⁇ ( ⁇ 0.00162 ⁇ d d + 0.657) It is more preferable to satisfy the relationship of ⁇ g, F ⁇ ( ⁇ 0.00162 ⁇ v d +0.650).
  • an optical glass having a low partial dispersion ratio ( ⁇ g, F) can be obtained, and the optical element formed of this optical glass can be used to reduce the chromatic aberration of the optical system.
  • the partial dispersion ratio ( ⁇ g, F) of a general glass is higher than that of the normal line, and the abscissa axis represents the Abbe number (v d ) and the ordinate axis
  • the relationship between the general glass partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) when taking the partial dispersion ratio ( ⁇ g, F) is represented by a curve with a larger slope than the normal line .
  • the temperature coefficient (dn / dT) of the relative refractive index takes a low value. More specifically, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably + 6.0 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , more preferably + 5.5 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , more preferably The upper limit value may be + 5.0 ⁇ 10 ⁇ 6 ° C. ⁇ 1, and the upper limit value or a lower value (negative side) may be taken.
  • the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably -2.0 x 10 -6 ° C -1 , more preferably -1.0 x 10 -6 ° C -1 , still more preferably-
  • the lower limit value may be 0.5 ⁇ 10 ⁇ 6 ° C. ⁇ 1 and the lower limit value or a value higher than that lower limit (plus side) can be taken.
  • n d refractive index
  • ⁇ d Abbe number
  • the temperature coefficient of the relative refractive index of the optical glass of the present invention is the temperature coefficient of the refractive index (589.29 nm) in air at the same temperature as the optical glass, and when the temperature is changed from 40 ° C. to 60 ° C. It is represented by the amount of change per 1 ° C. (° C. ⁇ 1 ).
  • the optical glass of the present invention preferably has an average linear thermal expansion coefficient ⁇ at 100 to 300 ° C. of 75 (10 ⁇ 7 ° C. ⁇ 1 ) or more. That is, the average linear thermal expansion coefficient ⁇ of the optical glass of the present invention at 100 to 300 ° C is preferably 75 (10 -7 ° C -1 ) or more, more preferably 80 (10 -7 ° C -1 ) or more, more preferably The lower limit is 85 (10 -7 ° C -1 ) or more. Generally, when the average linear thermal expansion coefficient ⁇ is large, the glass is likely to be cracked during processing, so it is desirable that the value of the average linear thermal expansion coefficient ⁇ be as small as possible.
  • the value of the glass material and the average linear thermal expansion coefficient ⁇ are the same or approximate Is desirable.
  • the glass having a refractive index (n d ) of 1.65 or more and an Abbe number ( ⁇ d ) of 25 or more and 40 or less the glass material having a large average linear thermal expansion coefficient ⁇ is small, and the low refractive index When used in combination with a low dispersion glass material, it is more useful to have a large average linear thermal expansion coefficient ⁇ as in the present invention.
  • a glass molded body can be produced from the produced optical glass, for example, by means of mold press molding such as reheat press molding and precision press molding. That is, a preform for mold press molding is produced from optical glass, and the preform is subjected to reheat press molding and then subjected to polishing processing to produce a glass molded body, for example, to polishing processing.
  • the glass preform can be manufactured by performing precision press molding on the preform.
  • the means to produce a glass forming body is not limited to these means.
  • the glass molded body produced in this manner is useful for various optical elements, and among them, it is particularly preferable to use it for applications of optical elements such as lenses and prisms. This reduces color bleeding due to chromatic aberration in the transmitted light of the optical system in which the optical element is provided. Therefore, when this optical element is used for a camera, the object to be photographed can be expressed more accurately, and when this optical element is used for a projector, a desired image can be projected with higher definition.
  • the glasses of the examples and comparative examples all have high purity, which are used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphoric acid compounds and the like respectively corresponding to the raw materials of the respective components.
  • Raw materials are selected, weighed and uniformly mixed so that the proportions of the compositions of the respective examples and comparative examples shown in the table are obtained, and then a stone crucible (a platinum crucible or an alumina crucible is used depending on the melting property of glass)
  • the solution is placed in an electric furnace and melted in an electric furnace for 0.5 to 5 hours in a temperature range of 1100
  • the temperature was lowered to 1000 to 1200 ° C. to stir and homogenize, and then cast into a mold and gradually cooled to produce a glass.
  • the refractive index (n d ), Abbe number ( ⁇ d ) and partial dispersion ratio ( ⁇ g, F) of the glasses of Examples and Comparative Examples were measured based on Japan Optical Glass Industrial Standard JOGIS 01-2003.
  • the temperature coefficient (dn / dT) of the relative refractive index of the glass of the example and the comparative example is the method described in Japan Optical Glass Industry Standard JOGIS 18-2008 “Method of measuring the temperature coefficient of the refractive index of optical glass”.
  • the value of the temperature coefficient of relative refractive index at 40-60 ° C. was measured by interferometry for light of wavelength 589.29 nm.
  • the average linear thermal expansion coefficient (100-300 ° C.) of the glass of the example and the comparative example is the temperature and the elongation of the sample according to the Japan Optical Glass Industrial Standard JOGIS 08-2003 “Method of measuring the thermal expansion of optical glass”. It calculated
  • the optical glass of the embodiment of the present invention has a refractive index (n d ) of 1.65 or more, more specifically 1.67 or more, and the refractive index (n d ) of 1.80 or less. , was within the desired range.
  • the optical glasses according to the examples of the present invention each have an Abbe number (v d ) of 25 or more, more specifically 29 or more, and the Abbe number (v d ) of 40 or less. It was inside.
  • the optical glass of the embodiment of the present invention has a partial dispersion ratio ( ⁇ g, F) and an Abbe number ( ⁇ d ) of ( ⁇ 0.00162 ⁇ ⁇ d +0.620) ⁇ ( ⁇ g, F) ( ⁇ 0.00162 ⁇ ⁇ d +0.657), and more specifically, ( ⁇ 0.00162 ⁇ ⁇ d + 0.650) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 0.00162 ⁇ ⁇ d)
  • the relationship of +0.630 was satisfied. That is, the relationship between the partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) for the glass of the example of the present application is as shown in FIG.
  • the optical glass of the comparative example did not satisfy the relationship of ( ⁇ 0.00162 ⁇ v d +0.620) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 0.00162 ⁇ v d +0.657).
  • the optical glass of the embodiment of the present invention has a refractive index (n d ) and an Abbe number ( ⁇ d ) of ( ⁇ 0.01 ⁇ ⁇ d +2.01) ⁇ n d ⁇ ( ⁇ 0.01 ⁇ ) It satisfies the relationship of d d + 2.12), and more specifically satisfies the relationship of ( ⁇ 0.01 ⁇ ⁇ d +2.03) ⁇ n d ⁇ ( ⁇ 0.01 ⁇ ⁇ d + 2.11)
  • the relationship between the refractive index (n d ) and the Abbe number (v d ) for the glass of the example of the present application is as shown in FIG.
  • all the optical glasses of the examples have temperature coefficients of relative refractive index within the range of + 6.0 ⁇ 10 ⁇ 6 to ⁇ 0.5 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ). , was within the desired range.
  • the optical glass of the present invention had an average linear thermal expansion coefficient ⁇ at 100 to 300 ° C. of 80 (10 ⁇ 7 ° C. ⁇ 1 or more).
  • a glass block was formed using the optical glass of the embodiment of the present invention, and this glass block was ground and polished to be processed into a lens and a prism shape. As a result, it could be stably processed into various lens and prism shapes.

Abstract

Provided is an optical glass which has a low partial dispersion ratio (θg, F) while having a refractive index (nd) and an Abbe number (νd) in a desired range. This optical glass comprises, in mass%, 15.0 to 45.0% of a SiO2 component, 10.0 to 40.0% of a Nb2O5 component, over 0 to 20.0% of a Na2O component, 5.0 to 20.0% of a mass sum (ZrO2+Li2O), and 0.90 or less of a mass ratio (BaO/MgO+CaO+SrO+BaO), wherein the partial dispersion ratio (θ g, F) satisfies the relationship (-0.00162×νd+0.620)≤(θg, F)≤(-0.00162×νd+0.657) with the Abbe number (νd), and the temperature coefficient (40 to 60°C) of the relative refractive index (589.29 nm) is in a range of +6.0×10-6 to -5.0×10-6(°C-1).

Description

光学ガラス、プリフォーム及び光学素子Optical glass, preform and optical element
 本発明は、光学ガラス及び光学素子に関する。 The present invention relates to an optical glass and an optical element.
 デジタルカメラやビデオカメラ等の光学系は、その大小はあるが、収差と呼ばれるにじみを含んでいる。この収差は単色収差と色収差に分類されるが、特に色収差は、光学系に使用されるレンズの材料特性に強く依存している。 Optical systems such as digital cameras and video cameras include blurs called aberrations, though the size is large. Although this aberration is classified into monochromatic aberration and chromatic aberration, in particular, the chromatic aberration strongly depends on the material properties of the lens used in the optical system.
 一般に色収差は、低分散の凸レンズと高分散の凹レンズとを組み合わせて補正されるが、この組み合わせでは赤色領域と緑色領域の収差の補正しかできず、青色領域の収差が残る。この除去しきれない青色領域の収差を二次スペクトルと呼ぶ。二次スペクトルを補正するには、青色領域のg線(435.835nm)の動向を加味した光学設計を行う必要がある。このとき、光学設計で着目される光学特性の指標として、部分分散比(θg,F)が用いられている。上述の低分散のレンズと高分散のレンズとを組み合わせた光学系では、低分散側のレンズに部分分散比(θg,F)の大きい光学材料を用い、高分散側のレンズに部分分散比(θg,F)の小さい光学材料を用いることで、二次スペクトルが良好に補正される。 In general, the chromatic aberration is corrected by combining a low dispersion convex lens and a high dispersion concave lens, but this combination can only correct the aberration of the red region and the green region, and the aberration of the blue region remains. The aberration in the blue region that can not be eliminated is called a secondary spectrum. In order to correct the secondary spectrum, it is necessary to carry out optical design in which the trend of g-line (435. 835 nm) in the blue region is taken into consideration. At this time, the partial dispersion ratio (θg, F) is used as an index of optical characteristics to be focused on in optical design. In an optical system combining the above-described low dispersion lens and high dispersion lens, an optical material having a large partial dispersion ratio (θg, F) is used for the low dispersion lens, and the partial dispersion ratio ( By using an optical material with a small θg, F), the secondary spectrum is well corrected.
 部分分散比(θg,F)は、下式(1)により示される。
θg,F=(n-n)/(n-n)・・・・・・(1)
The partial dispersion ratio (θg, F) is expressed by the following equation (1).
θ g , F = (n g -n F ) / (n F -n C ) (1)
 光学ガラスには、短波長域の部分分散性を表す部分分散比(θg,F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比(θg,F)を縦軸に、アッベ数(ν)を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比及びアッベ数をプロットした2点を結ぶ直線で表され、ノーマルラインと呼ばれている(図1参照)。ノーマルラインの基準となるノーマルガラスは光学ガラスメーカー毎によっても異なるが、各社ともほぼ同等の傾きと切片で定義している。(NSL7とPBM2は株式会社オハラ社製の光学ガラスであり、PBM2のアッベ数(ν)は36.3、部分分散比(θg,F)は0.5828、NSL7のアッベ数(ν)は60.5、部分分散比(θg,F)は0.5436である。) In optical glass, there is an approximately linear relationship between a partial dispersion ratio (θg, F) representing partial dispersion in a short wavelength range and an Abbe number (ν d ). The straight line representing this relationship was obtained by plotting the partial dispersion ratio and Abbe number of NSL7 and PBM2 on Cartesian coordinates with partial dispersion ratio (θg, F) on the vertical axis and Abbe number (ν d ) on the horizontal axis. It is represented by a straight line connecting two points and is called a normal line (see FIG. 1). Normal glass, which is the standard of the normal line, varies depending on the optical glass manufacturer, but they are defined by almost the same inclination and intercept. (NSL7 and PBM2 are optical glasses manufactured by OHARA INC., And the Abbe number (ν d ) of PBM 2 is 36.3, the partial dispersion ratio (θg, F) is 0.5828, and the Abbe number (ν d ) of NSL 7 Is 60.5, and the partial dispersion ratio (θg, F) is 0.5436.)
 近年、光学設計におけるニーズにより、部分分散比(θg,F)の小さい光学材料として30以上45以下のアッベ数(ν)を有するガラスが用いられることが多い。 In recent years, a glass having an Abbe number (v d ) of 30 or more and 45 or less is often used as an optical material having a small partial dispersion ratio (θg, F) according to needs in optical design.
 また、近年では車載カメラ等の車載用光学機器に組み込まれる光学素子や、プロジェクタ、コピー機、レーザプリンタ及び放送用機材等のような多くの熱を発生する光学機器に組み込まれる光学素子では、より高温の環境での使用が増えている。このような高温の環境では、光学系を構成する光学素子の使用時の温度が大きく変動し易く、その温度が100℃以上に達する場合も多い。このとき、温度変動による光学系の結像特性等への悪影響が無視できないほど大きくなるため、温度変動によっても結像特性等に影響が生じ難い光学系を構成することが求められている。 Also, in recent years, optical elements incorporated in in-vehicle optical devices such as in-vehicle cameras, and optical elements incorporated in optical devices that generate a large amount of heat such as projectors, copiers, laser printers and broadcasting equipment, etc. Use in high temperature environments is increasing. In such a high temperature environment, the temperature at the time of use of the optical element constituting the optical system tends to fluctuate greatly, and the temperature often reaches 100 ° C. or more. At this time, since the adverse effect on the imaging characteristics and the like of the optical system due to the temperature fluctuation is so large that it can not be ignored, it is required to configure an optical system in which the imaging characteristics and the like are hardly affected even by the temperature fluctuation.
 温度変動による結像特性等への影響が生じ難い光学系を構成するにあたっては、温度が上昇したときに屈折率が低くなり、相対屈折率の温度係数がマイナスとなるガラスから構成される光学素子と、温度が高くなったときに屈折率が高くなり、相対屈折率の温度係数がプラスとなるガラスから構成される光学素子を併用することが、温度変化による結像特性等への影響を補正できる点で好ましい。 When constructing an optical system in which the influence of temperature fluctuations on the imaging characteristics and the like does not easily occur, the optical element is made of glass in which the refractive index decreases when the temperature rises and the temperature coefficient of the relative refractive index becomes negative. The use of an optical element made of glass in which the refractive index increases when the temperature rises and the temperature coefficient of the relative refractive index is positive corrects the influence of the temperature change on the imaging characteristics, etc. It is preferable at the point which can be done.
 一方で、部分分散比(θg,F)の小さい光学材料において、様々な優れた光学的性質を得るために含有される成分(例えば、Nb成分、La成分など)や、アルカリ金属の含有量が少ないことにより、相対屈折率の温度係数が大きくなる傾向がある。このような光学ガラスとしては、特許文献1~2に示されるガラス組成物が知られている。
さらに、近年使用される車載用レンズや交換レンズなど、様々な環境下で使用されることが多いため、部分分散比(θg,F)が小さく、かつ相対屈折率の温度係数が小さい光学ガラスが求められている。
On the other hand, in an optical material having a small partial dispersion ratio (θg, F), a component (eg, Nb 2 O 5 component, La 2 O 3 component, etc.) contained to obtain various excellent optical properties, Due to the low content of alkali metal, the temperature coefficient of the relative refractive index tends to increase. As such optical glass, the glass compositions shown in Patent Documents 1 and 2 are known.
Furthermore, since it is often used under various environments such as in-vehicle lenses and interchangeable lenses used in recent years, optical glass with a small partial dispersion ratio (θg, F) and a small temperature coefficient of relative refractive index It has been demanded.
特開2013-245140号公報JP, 2013-245140, A 昭和58-125637号公報Showa 58-125637
 しかし、特許文献1で開示されたガラスは、部分分散比を大きくするBaO成分の含有量が多く、部分分散比を小さくするNb成分の含有量が少ないため、部分分散比が大きくなってしまい、前記二次スペクトルを補正するレンズとして使用するには十分でない。また、可視光における透過率が悪化するため、十分な光学特性を得ているものとはいえない。また、特許文献2で開示されたガラスは、La成分の含有量が多いが、Nbの含有量が少ない為部分分散比が大きくなってしまい、アルカリ金属の含有量が少なく相対屈折率の温度係数が小さいとはいえない。 However, the glass disclosed in Patent Document 1 has a large content of the BaO component that increases the partial dispersion ratio, and a small content of the Nb 2 O 5 component that decreases the partial dispersion ratio, so the partial dispersion ratio increases. It is not sufficient for use as a lens for correcting the secondary spectrum. In addition, since the transmittance in visible light is deteriorated, it can not be said that sufficient optical characteristics are obtained. Further, the glass disclosed in Patent Document 2 has a large content of the La 2 O 3 component, but the content of the Nb 2 O 5 is small, so the partial dispersion ratio becomes large, and the content of the alkali metal is small. It can not be said that the temperature coefficient of the relative refractive index is small.
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、部分分散比(θg,F)の小さく、かつ相対屈折率の温度係数が小さい光学ガラスを得ることにある。 The present invention has been made in view of the above problems, and the object of the present invention is to obtain a partial dispersion ratio (n d ) and an Abbe number (v d ) within a desired range. An object of the present invention is to obtain an optical glass having a small θg, F) and a small temperature coefficient of relative refractive index.
 本発明者は、上記課題を解決するために鋭意試験研究を重ねた結果、SiO成分及びNb成分を含有するガラスにおいて、NaO成分を含有させることにより、所望の範囲内の高い屈折率やアッベ数(高い分散)と、低い部分分散比を有し、かつ相対屈折率の温度係数が小さい光学ガラスを得られることを見出し、本発明を完成するに至った。 The inventors of the present invention conducted intensive studies to solve the above problems, and as a result, in the glass containing the SiO 2 component and the Nb 2 O 5 component, the Na 2 O component is contained in the desired range. It has been found that an optical glass having a high refractive index, an Abbe number (high dispersion), a low partial dispersion ratio, and a small temperature coefficient of relative refractive index can be obtained, and the present invention has been completed.
(1)質量%で、
SiO成分    15.0~45.0%
Nb成分    10.0~40.0%
NaO成分    0超~20.0%
質量和(ZrO+LiO)を5.0~20.0%、
質量比(BaO/MgO+CaO+SrO+BaO)を0.90以下
含有し、
部分分散比(θg,F)がアッベ数(ν)との間で、
(-0.00162×ν+0.620)≦(θg,F)≦(-0.00162×ν+0.657)の関係を満たし、相対屈折率(589.29nm)の温度係数(40~60℃)が+6.0×10-6~-5.0×10-6(℃-1)の範囲内にある光学ガラス。
(1) mass%,
SiO 2 component 15.0 to 45.0%
Nb 2 O 5 component 10.0 to 40.0%
Na 2 O ingredient more than 0 ~ 20.0%
5.0 to 20.0% by mass (ZrO 2 + Li 2 O),
Containing a mass ratio (BaO / MgO + CaO + SrO + BaO) of 0.90 or less,
The partial dispersion ratio (θg, F) is between the Abbe number (ν d ),
The temperature coefficient (40 to 100) of the relative refractive index (589.29 nm) is satisfied, which satisfies the relationship of (−0.00162 × ν d +0.620) ≦ (θg, F) ≦ (−0.00162 × ν d + 0.657) Optical glass having a temperature of 60 ° C. in the range of + 6.0 × 10 −6 to −5.0 × 10 −6 (° C. −1 ).
(2)質量比(LiO/LiO+NaO+KO)が1.00以下であることを特徴とする(1)記載の光学ガラス。 (2) The optical glass according to (1), which has a mass ratio (Li 2 O / Li 2 O + Na 2 O + K 2 O) of 1.00 or less.
(3)屈折率(n)及びアッベ数(ν)が、(-0.01×ν+2.01)≦n≦(-0.01×ν+2.12)の関係を満たす(1)又は(2)記載の光学ガラス。 (3) Refractive index (n d) and Abbe number ([nu d) is, - satisfies the relation of (0.01 × ν d +2.01) ≦ n d ≦ (-0.01 × ν d +2.12) Optical glass as described in (1) or (2).
(4)(1)から(3)のいずれか記載の光学ガラスからなるプリフォーム材。 (4) A preform material comprising the optical glass according to any one of (1) to (3).
(5)(1)から(3)のいずれか記載の光学ガラスからなる光学素子。 (5) An optical element comprising the optical glass according to any one of (1) to (3).
(6)(5)に記載の光学素子を備える光学機器。 (6) An optical apparatus comprising the optical element according to (5).
 本発明によれば、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、低い部分分散比を有し、かつ相対屈折率の温度係数が小さい光学ガラスを得ることができる。 According to the present invention, the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, has a low partial dispersion ratio, and the temperature coefficient of the relative refractive index to obtain a small optical glass Can.
部分分散比(θg,F)が縦軸でアッベ数(ν)が横軸の直交座標に表されるノーマルラインを示す図である。FIG. 7 is a diagram showing a normal line in which the partial dispersion ratio (θg, F) is represented on the vertical axis and the Abbe number (部分d ) is represented on the rectangular coordinate of the horizontal axis. 本願の実施例についての部分分散比(θg,F)とアッベ数(ν)の関係を示す図である。It is a figure which shows the relationship of the partial dispersion ratio ((theta) g, F) and Abbe's number ((nu) d ) about the Example of this application. 本願の実施例についての屈折率(n)とアッベ数(ν)の関係を示す図である。It is a figure which shows the refractive index ( nd ) and Abbe's number ((nu) d ) relationship about the Example of this application.
 本発明の光学ガラスは、酸化物換算組成の質量%で、SiO成分を15.0~45.0%、Nb成分を10.0~40.0%、NaO成分を0超~20.0%を含有し、部分分散比(θg,F)がアッベ数(ν)との間で、(-0.00162×ν+0.620)≦(θg,F)≦(-0.00162×ν+0.657)の関係を満たし、相対屈折率の温度係数が小さいことを特徴とする。
 SiO成分、Nb成分を所定量含有し、NaOを含有する光学ガラスにおいて、所望の範囲内の高い屈折率やアッベ数(高い分散)と、低い部分分散比を有するガラスを得ることができ、特に、NaOを0超~20.0%含有することにより、部分分散比(θg,F)を小さく保ったまま、相対屈折率の温度係数を低減させることができる。
 そのため、所望の高い屈折率(n)及び低いアッベ数(ν)を有しながら、部分分散比(θg,F)が小さく、光学系の色収差の低減に有用であり、かつ相対屈折率の温度係数が小さい光学ガラスを得ることができる。
The optical glass of the present invention contains 15.0 to 45.0% of the SiO 2 component, 10.0 to 40.0% of the Nb 2 O 5 component, and 0 of the Na 2 O component in mass% of the oxide conversion composition. containing ultra-20.0%, the partial dispersion ratio ([theta] g, F) is between the Abbe number (ν d), (- 0.00162 × ν d +0.620) ≦ (θg, F) ≦ ( It is characterized in that the temperature coefficient of the relative refractive index is small, which satisfies the relationship of −0.00162 × がd +0.657).
An optical glass containing a predetermined amount of SiO 2 component and Nb 2 O 5 component and containing Na 2 O, a glass having high refractive index and Abbe number (high dispersion) within a desired range, and low partial dispersion ratio In particular, by containing Na 2 O in excess of 0% to 20.0%, the temperature coefficient of relative refractive index can be reduced while keeping the partial dispersion ratio (θg, F) small.
Therefore, while having desired high refractive index (n d ) and low Abbe number ( d d ), the partial dispersion ratio (θg, F) is small, which is useful for reducing the chromatic aberration of the optical system, and the relative refractive index An optical glass having a small temperature coefficient of
 以下、本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, although the embodiment of the optical glass of the present invention will be described in detail, the present invention is not limited to the following embodiment at all, and can be implemented with appropriate modifications within the scope of the object of the present invention . In addition, about the location which description overlaps, description may be abbreviate | omitted suitably, but the meaning of invention is not limited.
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中で特に断りがない場合、各成分の含有量は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass composition]
The composition range of each component which comprises the optical glass of this invention is described below. In the present specification, unless otherwise specified, the contents of the respective components are all represented by mass% relative to the total mass of the glass in the oxide conversion composition. Here, “oxide conversion composition” is assumed that all oxides, composite salts, metal fluorides, etc. used as raw materials of the glass component of the present invention are decomposed at the time of melting and converted into oxides, It is the composition which described each ingredient contained in glass on the basis of 100 mass% of gross mass of the generated oxide concerned.
<必須成分、任意成分について>
 SiO成分は、安定なガラス形成を促し、液相温度を下げることができるため、光学ガラスとして好ましくない失透(結晶物の発生)を低減する必須成分である。
 特に、SiO成分の含有量を15.0%以上にすることで、部分分散比を大幅に高めることなく、耐失透性に優れたガラスを得られる。また、失透や着色を低減できる。従って、SiO成分の含有量は、好ましくは15.0%以上、より好ましくは18.0%以上、より好ましくは20.0%以上、さらに好ましくは25.0%以上を下限とする。
 他方で、SiO成分の含有量を45.0%以下にすることで、屈折率が低下し難くなることで所望の高屈折率を得易くでき、且つ、部分分散比の上昇を抑えられる。また、これによりガラス原料の熔解性の低下を抑えられる。従って、SiO成分の含有量は、好ましくは45.0%以下、より好ましくは43.0%以下、さらに好ましくは41.5%以下、最も好ましくは40.0%以下を上限とする。
 SiO成分は、原料としてSiO、KSiF、NaSiF等を用いることができる。
<Required Component, Optional Component>
The SiO 2 component promotes stable glass formation and can lower the liquidus temperature, and thus is an essential component to reduce devitrification (the generation of crystals) which is undesirable as optical glass.
In particular, by setting the content of the SiO 2 component to 15.0% or more, a glass excellent in devitrification resistance can be obtained without significantly increasing the partial dispersion ratio. In addition, devitrification and coloring can be reduced. Therefore, the content of the SiO 2 component is preferably 15.0% or more, more preferably 18.0% or more, more preferably 20.0% or more, and still more preferably 25.0% or more.
On the other hand, by making the content of the SiO 2 component 45.0% or less, it is possible to easily obtain a desired high refractive index by making the refractive index difficult to reduce, and it is possible to suppress an increase in the partial dispersion ratio. Further, this can suppress the decrease in the meltability of the glass material. Therefore, the content of the SiO 2 component is preferably 45.0% or less, more preferably 43.0% or less, still more preferably 41.5% or less, and most preferably 40.0% or less.
As the SiO 2 component, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.
 Nb成分は、屈折率を高め、且つアッベ数及び部分分散比を低くでき、且つ耐失透性を高められる必須成分である。
 特に、Nb成分の含有量を10.0%以上にすることで、目的の光学恒数まで屈折率を高くして本発明の範囲の成分内で調整することで異常分散性を小さくすることができる。従って、Nb成分の含有量は、好ましくは10.0%以上、より好ましくは12.0%以上、さらに好ましくは15.0%以上を下限とする。
 他方で、Nb成分の含有量を40.0%以下にすることで、ガラスの材料コストを低減できる。また、ガラス製造時における熔解温度の上昇を抑制し、且つNb成分の過剰な含有による失透を低減できる。さらに、ガラスの化学的耐久性の悪化も改善させることができる。従って、Nb成分の含有量は、好ましくは40.0%、より好ましくは38.0%以下、さらに好ましくは35.0%以下を上限とする。
 Nb成分は、原料としてNb等を用いることができる。
The Nb 2 O 5 component is an essential component capable of enhancing the refractive index, reducing the Abbe number and the partial dispersion ratio, and enhancing the devitrification resistance.
In particular, by making the content of the Nb 2 O 5 component 10.0% or more, the refractive index is increased to the target optical constant and the anomalous dispersion is reduced by adjusting within the component of the range of the present invention can do. Therefore, the content of the Nb 2 O 5 component is preferably 10.0% or more, more preferably 12.0% or more, and still more preferably 15.0% or more.
On the other hand, by the content of Nb 2 O 5 component below 40.0%, thereby reducing the material cost of the glass. In addition, it is possible to suppress the rise of the melting temperature at the time of glass production, and to reduce the devitrification due to the excessive content of the Nb 2 O 5 component. Furthermore, the deterioration of the chemical durability of the glass can also be improved. Therefore, the content of the Nb 2 O 5 component is preferably 40.0%, more preferably 38.0% or less, and further preferably 35.0% or less.
For the Nb 2 O 5 component, Nb 2 O 5 or the like can be used as a raw material.
 TiO成分は、0%超含有する場合に、屈折率を高め、アッベ数を低くし、且つ耐失透性を高める任意成分である。従って、TiO成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは2.5%とする。
 一方で、20.0%を超えて含有する場合には、部分分散比が大きくなる成分である。 従って、TiO成分の含有量を20.0%以下にすることで、ガラスの着色を低減でき、内部透過率を高められる。また、これにより部分分散比が上昇し難くなるため、ノーマルラインに近い所望の低い部分分散比を得易くできる。従って、TiO成分の含有量は、好ましくは20.0%以下、より好ましくは15.0%以下、より好ましくは12.0%以下、さらに好ましくは10.0%未満を上限とする。
 TiO成分は、原料としてTiO等を用いることができる。
The TiO 2 component is an optional component that raises the refractive index, lowers the Abbe number, and increases the devitrification resistance when it is contained in excess of 0%. Therefore, the content of the TiO 2 component is preferably more than 0%, more preferably more than 1.0%, and still more preferably 2.5%.
On the other hand, when the content exceeds 20.0%, the partial dispersion ratio is a component that increases. Therefore, by setting the content of the TiO 2 component to 20.0% or less, the coloration of the glass can be reduced and the internal transmittance can be enhanced. Moreover, since it becomes difficult to raise a partial dispersion ratio by this, it can be easy to obtain the desired low partial dispersion ratio near a normal line. Therefore, the content of the TiO 2 component is preferably 20.0% or less, more preferably 15.0% or less, more preferably 12.0% or less, and further preferably less than 10.0%.
TiO 2 component can be used such as TiO 2 as a raw material.
 KO成分は、熱膨張係数を大きくし、相対屈折率の温度係数を小さくする任意成分である。
 従って、KO成分の含有量は、好ましくは0%超、より好ましくは0.3%超、さらに好ましくは0.5%超を下限とする。
 他方で、KO成分の含有量を10.0%以下にすることで、部分分散比の上昇を抑えられ、失透を低減できる。従って、KO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%未満、さらに好ましくは5.0%未満を上限とする。
 KO成分は、原料としてKCO、KNO、KF、KHF、KSiF等を用いることができる。
The K 2 O component is an arbitrary component that increases the thermal expansion coefficient and decreases the temperature coefficient of the relative refractive index.
Therefore, the content of the K 2 O component is preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%.
On the other hand, by setting the content of the K 2 O component to 10.0% or less, an increase in partial dispersion ratio can be suppressed, and devitrification can be reduced. Therefore, the content of the K 2 O component is preferably 10.0% or less, more preferably less than 8.0%, and still more preferably less than 5.0%.
K 2 O component, K 2 CO 3 as a raw material, KNO 3, KF, can be used KHF 2, K 2 SiF 6 and the like.
 B成分は、0%超含有する場合に、安定なガラス形成を促し、また液相温度を下げることができるため、耐失透性を高められ、且つガラス原料の熔解性を高められる任意成分である。従って、B成分の含有量は、好ましくは0%超、より好ましくは0.5超%超、より好ましくは1.0%超、さらに好ましくは1.5%超を下限としてもよい。
 他方で、B成分の含有量を15.0%以下にすることで、屈折率の低下を抑えられ、且つ部分分散比の上昇を抑えられる。さらにガラスの化学的耐久性の悪化を改善させることができる。従って、B成分の含有量は、好ましくは15.0%以下、より好ましくは14.0%以下、さらに好ましくは12.0%以下を上限とする。
 B成分は、原料としてHBO、Na、Na・10HO、BPO等を用いることができる。
When the B 2 O 3 content is more than 0%, it promotes stable glass formation and can lower the liquidus temperature, so that the devitrification resistance can be enhanced and the meltability of the glass material can be enhanced. It is an optional component. Therefore, the content of the B 2 O 3 component is preferably more than 0%, more preferably more than 0.5%, more preferably more than 1.0%, still more preferably more than 1.5%. .
On the other hand, by setting the content of the B 2 O 3 component to 15.0% or less, the decrease in the refractive index can be suppressed and the increase in the partial dispersion ratio can be suppressed. Furthermore, the deterioration of the chemical durability of the glass can be improved. Therefore, the content of the B 2 O 3 component is preferably 15.0% or less, more preferably 14.0% or less, and still more preferably 12.0% or less.
As the B 2 O 3 component, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 · 10H 2 O, BPO 4 or the like can be used as a raw material.
 LiO成分は、0%超含有する場合に、部分分散比を低くでき、透過率を改善し、液相温度を下げることができ、且つガラス原料の熔解性を高められる任意成分である。従って、LiO成分の含有量は、好ましくは0%超、より好ましくは0.5%超、より好ましくは1.0%超、さらに好ましくは1.5%超を下限としてもよい。
 他方で、LiO成分の含有量を15.0%以下にすることで、屈折率の低下を抑えられ、且つ過剰な含有による失透を低減できる。
 従って、LiO成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%以下、さらに好ましくは8.0%未満とする。
LiO成分は、原料としてLiCO、LiNO、LiF等を用いることができる。
The Li 2 O component is an optional component which can lower the partial dispersion ratio, improve the transmittance, lower the liquidus temperature, and enhance the meltability of the glass material, when it is contained in excess of 0%. Therefore, the content of the Li 2 O component is preferably more than 0%, more preferably more than 0.5%, more preferably more than 1.0%, and still more preferably more than 1.5%.
On the other hand, by making the content of the Li 2 O component 15.0% or less, the decrease in refractive index can be suppressed, and the devitrification due to the excessive content can be reduced.
Therefore, the content of the Li 2 O component is preferably 15.0% or less, more preferably 10.0% or less, and even more preferably less than 8.0%.
As the Li 2 O component, Li 2 CO 3 , LiNO 3 , LiF or the like can be used as a raw material.
 NaO成分は、0%超含有する場合に、部分分散比を低くでき、熱膨張係数を大きくし、且つ相対屈折率の温度係数を小さくする任意成分である。従って、NaO成分の含有量は、好ましくは0%超、より好ましくは0.5%超、さらに好ましくは1.0%超を下限としてもよい。
 他方で、NaO成分の含有量を20.0%以下にすることで、屈折率の低下を抑えられ、且つ過剰な含有による失透を低減できる。
 従って、NaO成分の含有量は、好ましくは20.0%以下、より好ましくは19.0%以下、さらに好ましくは18.0%未満とする。
 NaO成分は、原料としてNaCO、NaNO、NaF、NaSiF等を用いることができる。
The Na 2 O component is an optional component that can lower the partial dispersion ratio, increase the thermal expansion coefficient, and decrease the temperature coefficient of the relative refractive index, when it is contained in excess of 0%. Therefore, the content of the Na 2 O component is preferably more than 0%, more preferably more than 0.5%, and still more preferably more than 1.0%.
On the other hand, by setting the content of the Na 2 O component to 20.0% or less, the decrease in refractive index can be suppressed, and the devitrification due to excessive inclusion can be reduced.
Therefore, the content of the Na 2 O component is preferably 20.0% or less, more preferably 19.0% or less, and further preferably less than 18.0%.
As the Na 2 O component, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like can be used as a raw material.
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和(質量和)は、0超含有する場合に、相対屈折率の温度係数を小さくすることができる任意成分である。従って、RnO成分の和は、好ましくは0%超、より好ましくは3.0%超、さらに好ましくは5.0%超を下限とする。
 他方で、RnO成分の含有量の和を30.0%以下とすることで、ガラス中の粘性を固くして、成形性を改善することができる。従って、好ましくは30.0%以下、より好ましくは28.0%以下、さらに好ましくは26.0%以下を上限とする。
The temperature coefficient of the relative refractive index when the sum (mass sum) of the content of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na and K) is greater than 0 Is an optional component that can reduce Therefore, the sum of Rn 2 O components is preferably at least 0%, more preferably at least 3.0%, and still more preferably at least 5.0%.
On the other hand, by setting the sum of the content of the Rn 2 O component to 30.0% or less, the viscosity in the glass can be hardened to improve the formability. Accordingly, the upper limit is preferably 30.0% or less, more preferably 28.0% or less, and still more preferably 26.0% or less.
 ZrO成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高め、部分分散比を低くし、且つ耐失透性を高めることができる任意成分である。また、失透や着色を低減できる。従って、ZrO成分の含有量は、好ましくは0%超、より好ましくは1.0%超、より好ましくは3.0%超を下限としてもよい。
 他方で、ZrO成分の含有量を10.0%以下にすることで、失透を低減でき、且つ、より均質なガラスを得易くできる。従って、ZrO成分の含有量は、好ましくは10.0%以下、より好ましくは9.0%以下、より好ましくは8.5%以下を上限とする。
 ZrO成分は、原料としてZrO、ZrF等を用いることができる。
The ZrO 2 component is an optional component capable of enhancing the refractive index and Abbe number of the glass, lowering the partial dispersion ratio, and enhancing the devitrification resistance, when it is contained in excess of 0%. In addition, devitrification and coloring can be reduced. Therefore, the lower limit of the content of the ZrO 2 component is preferably at least 0%, more preferably at least 1.0%, and more preferably at least 3.0%.
On the other hand, when the content of the ZrO 2 component is 10.0% or less, the devitrification can be reduced and a more homogeneous glass can be easily obtained. Therefore, the content of the ZrO 2 component is preferably 10.0% or less, more preferably 9.0% or less, and more preferably 8.5% or less.
As the ZrO 2 component, ZrO 2 , ZrF 4 or the like can be used as a raw material.
 MgO成分は、0%超含有する場合に、ガラスの熔解温度を低くできる任意成分である。
 他方で、MgO成分の含有量を10.0%以下にすることで、屈折率の低下を抑制しつつ、失透を低減できる。従って、MgO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満を下限とする。
 MgO成分は、原料としてMgO、MgCO、MgF等を用いることができる。
The MgO component is an optional component that can lower the melting temperature of the glass when it contains more than 0%.
On the other hand, when the content of the MgO component is 10.0% or less, the devitrification can be reduced while suppressing the decrease in the refractive index. Therefore, the content of the MgO component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
As the MgO component, MgO, MgCO 3 , MgF 2 or the like can be used as a raw material.
 CaO成分は、0%超含有する場合に、ガラスの材料コストを低減しつつ、アッベ数を低くでき、失透を低減でき、且つ、ガラス原料の熔解性を高められる任意成分である。従って、CaO成分の含有量は、好ましくは0%超、より好ましくは0.3%超、さらに好ましくは0.5%超を下限とする。
 他方で、CaO成分の含有量を10.0%以下にすることで、屈折率の低下やアッベ数の上昇、部分分散比の上昇を抑えられ、且つ失透を低減できる。従って、CaO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%未満、さらに好ましくは6.0%未満を上限とする
 CaO成分は、原料としてCaCO、CaF等を用いることができる。
The CaO component is an optional component capable of reducing Abbe's number, reducing devitrification and improving the meltability of the glass material while reducing the material cost of the glass when the CaO content is more than 0%. Therefore, the content of the CaO component is preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%.
On the other hand, by setting the content of the CaO component to 10.0% or less, it is possible to suppress the decrease in refractive index, the increase in Abbe number, and the increase in partial dispersion ratio, and the devitrification can be reduced. Therefore, the upper limit of the content of the CaO component is preferably 10.0% or less, more preferably less than 8.0%, and still more preferably less than 6.0%. The CaO component is CaCO 3 , CaF 2 or the like as a raw material Can be used.
 SrO成分は、0%超含有する場合に、屈折率を高められ、且つ耐失透性を高められる任意成分である。
 特に、SrO成分の含有量を10.0%以下にすることで、化学的耐久性の悪化を抑えられる。従って、SrO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%未満、さらに好ましくは6.0%未満、さらに好ましくは5.0%未満を上限とするする。
 SrO成分は、原料としてSr(NO、SrF等を用いることができる。
The SrO component is an optional component capable of enhancing the refractive index and enhancing the devitrification resistance, when it is contained in excess of 0%.
In particular, by setting the content of the SrO component to 10.0% or less, the deterioration of the chemical durability can be suppressed. Therefore, the content of the SrO component is preferably 10.0% or less, more preferably less than 8.0%, still more preferably less than 6.0%, and still more preferably less than 5.0%.
As the SrO component, Sr (NO 3 ) 2 , SrF 2 or the like can be used as a raw material.
 BaO成分は、0%超含有する場合に、屈折率を高められ、耐失透性を高められ、熱膨張係数を大きくし、相対屈折率の温度係数を小さくする任意成分である。従って、BaO成分の含有量は、好ましくは0%超、より好ましくは0.3%超、さらに好ましくは0.5%超を下限とする。
 特に、BaO成分の含有量を10.0%以下にすることで、屈折率の低下やアッベ数の上昇、部分分散比の上昇を抑えられ、且つ失透を低減できる。従って、BaO成分の含有量は、好ましくは10.0%以下、より好ましくは9.0%未満、より好ましくは8.5%未満、さらに好ましくは8.0%未満を上限とする。
 BaO成分は、原料としてBaCO、Ba(NO等を用いることができる。
The BaO component is an optional component that can increase the refractive index, increase the devitrification resistance, increase the thermal expansion coefficient, and decrease the temperature coefficient of the relative refractive index when the BaO component is contained more than 0%. Therefore, the content of the BaO component is preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%.
In particular, by setting the content of the BaO component to 10.0% or less, the decrease in refractive index, the increase in Abbe number, and the increase in partial dispersion ratio can be suppressed, and the devitrification can be reduced. Therefore, the content of the BaO component is preferably 10.0% or less, more preferably less than 9.0%, more preferably less than 8.5%, and still more preferably less than 8.0%.
As the BaO component, BaCO 3 , Ba (NO 3 ) 2 or the like can be used as a raw material.
 ZnO成分は、0%超含有する場合に、安価であり且つ耐失透性を向上させることができ、かつガラス転移点を下げられる任意成分である。従って、ZnO成分の含有量は、好ましくは0%超、より好ましくは0.3%超、さらに好ましくは0.5%超としてもよい。
 他方で、ZnO成分の含有量を10.0%以下にすることで、失透や着色を低減することができる。従って、ZnO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、より好ましくは5.5%未満を上限とする。
The ZnO component is an optional component which is inexpensive, can improve the devitrification resistance, and can lower the glass transition point, when it is contained at more than 0%. Therefore, the content of the ZnO component may be preferably more than 0%, more preferably more than 0.3%, and still more preferably more than 0.5%.
On the other hand, devitrification and coloring can be reduced by setting the content of the ZnO component to 10.0% or less. Therefore, the content of the ZnO component is preferably 10.0% or less, more preferably 8.0% or less, and more preferably less than 5.5%.
 La成分、Gd成分、Y成分及びYb成分は、少なくともいずれかを0%超含有することで、屈折率を高め、且つ部分分散比を小さくできる任意成分である。
 特に、La成分、Gd成分、Y成分及びYb成分のそれぞれの含有量を10.0%以下にすることで、アッベ数の上昇を抑えられ、失透を低減でき、且つ材料コストを低減できる。従って、La成分、Gd成分、Y成分及びYb成分のそれぞれの含有量は、好ましくは10.0%以下、さらに好ましくは8.0%以下、さらに好ましくは7.0%未満を上限とする。
 La成分、Gd成分、Y成分及びYb成分は、原料としてLa、La(NO・XHO(Xは任意の整数)、Y、YF、Gd、GdF、Yb等を用いることができる。
The refractive index can be increased and the partial dispersion ratio can be decreased by containing at least one of La 2 O 3 component, Gd 2 O 3 component, Y 2 O 3 component and Yb 2 O 3 component by more than 0%. It is an ingredient.
In particular, by setting the content of each of the La 2 O 3 component, the Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component to 10.0% or less, the increase in Abbe number can be suppressed, and the loss occurs. The permeability can be reduced and the material cost can be reduced. Therefore, the content of each of the La 2 O 3 component, the Gd 2 O 3 component, the Y 2 O 3 component and the Yb 2 O 3 component is preferably 10.0% or less, more preferably 8.0% or less, and further preferably Preferably, the upper limit is less than 7.0%.
The La 2 O 3 component, the Gd 2 O 3 component, the Y 2 O 3 component and the Yb 2 O 3 component are, as raw materials, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (where X is any integer), Y 2 O 3 , YF 3 , Gd 2 O 3 , GdF 3 , Yb 2 O 3 or the like can be used.
 Ta成分は、0%超含有する場合に、屈折率を高め、アッベ数及び部分分散比を下げ、且つ耐失透性を高められる任意成分である。
 他方で、Ta成分の含有量を10.0%以下にすることで、希少鉱物資源であるTa成分の使用量が減り、且つガラスがより低温で熔解し易くなるため、ガラスの生産コストを低減できる。また、これによりTa成分の過剰な含有によるガラスの失透を低減できる。従って、Ta成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満を上限とする。特にガラスの材料コストを低減させる観点では、Ta成分を含有しなくてもよい。
 Ta成分は、原料としてTa等を用いることができる。
The Ta 2 O 5 component is an optional component capable of enhancing the refractive index, lowering the Abbe number and the partial dispersion ratio, and enhancing the devitrification resistance, when the Ta 2 O 5 component is contained.
On the other hand, by setting the content of the Ta 2 O 5 component to 10.0% or less, the amount of use of the Ta 2 O 5 component, which is a rare mineral resource, is reduced, and the glass is easily melted at a lower temperature. The production cost of glass can be reduced. This also can reduce the devitrification of the glass due to excessive content of Ta 2 O 5 component. Therefore, the content of the Ta 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%. . In particular, in view of reducing the material cost of glass, the Ta 2 O 5 component may not be contained.
As the Ta 2 O 5 component, Ta 2 O 5 or the like can be used as a raw material.
 WO成分は、0%超含有する場合に、屈折率を高めてアッベ数を低くし、耐失透性を高め、且つガラス原料の熔解性を高められる任意成分である。
 他方で、WO成分の含有量を10.0%以下にすることで、ガラスの部分分散比を上昇し難くでき、且つ、ガラスの着色を低減して内部透過率を高められる。従って、WO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満を上限とする。
 WO成分は、原料としてWO等を用いることができる。
The WO 3 component is an optional component capable of enhancing the refractive index to lower the Abbe number, enhancing the devitrification resistance, and enhancing the meltability of the glass material, when the WO 3 component is contained.
On the other hand, by setting the content of the WO 3 component to 10.0% or less, the partial dispersion ratio of the glass can be hardly increased, and the coloration of the glass can be reduced to increase the internal transmittance. Therefore, the content of the WO 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
WO 3 components, it is possible to use WO 3 or the like as a raw material.
 P成分は、0%超含有する場合に、ガラスの安定性を高められる任意成分である。
 一方で、P成分の含有量を10.0%以下にすることで、P成分の過剰な含有による失透を低減できる。従って、P成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 P成分は、原料としてAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いることができる。
The P 2 O 5 component is an optional component that can enhance the stability of the glass when it contains more than 0%.
On the other hand, when the content of the P 2 O 5 component is 10.0% or less, devitrification due to the excessive content of the P 2 O 5 component can be reduced. Therefore, the content of the P 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
As the P 2 O 5 component, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 and the like can be used as raw materials.
 GeO成分は、0%超含有する場合に、屈折率を高め、且つ失透を低減できる任意成分である。
 他方で、GeO成分の含有量を10.0%以下にすることで、高価なGeO成分の使用量が低減されるため、ガラスの材料コストを低減できる。従って、GeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 GeO成分は、原料としてGeO等を用いることができる。
The GeO 2 component is an optional component that can increase the refractive index and reduce the devitrification when it contains more than 0%.
On the other hand, by setting the content of the GeO 2 component to 10.0% or less, the amount of use of the expensive GeO 2 component is reduced, so that the material cost of the glass can be reduced. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
The GeO 2 component can use GeO 2 etc. as a raw material.
 Al成分及びGa成分は、少なくともいずれかを0%超含有する場合に、屈折率を高め、且つ耐失透性を向上できる任意成分である。
 他方で、Al成分及びGa成分のそれぞれの含有量を10.0%以下にすることで、Al成分やGa成分の過剰な含有による失透を低減できる。従って、Al成分及びGa成分のそれぞれの含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
 Al成分及びGa成分は、原料としてAl、Al(OH)、AlF、Ga、Ga(OH)等を用いることができる。
The Al 2 O 3 component and the Ga 2 O 3 component are optional components that can increase the refractive index and improve the devitrification resistance when containing at least either of them in excess of 0%.
On the other hand, by the respective content of the Al 2 O 3 component and Ga 2 O 3 component to 10.0% or less, reduce the devitrification due to excessive content of Al 2 O 3 component and the Ga 2 O 3 component it can. Therefore, the content of each of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, and still more preferably less than 3.0%.
As the Al 2 O 3 component and the Ga 2 O 3 component, Al 2 O 3 , Al (OH) 3 , AlF 3 , Ga 2 O 3 , Ga (OH) 3 or the like can be used as raw materials.
 Bi成分は、0%超含有する場合に、屈折率を高めてアッベ数を低くでき、且つガラス転移点を低くできる任意成分である。
 他方で、Bi成分の含有量を10.0%以下にすることで、部分分散比を上昇し難くでき、且つ、ガラスの着色を低減して内部透過率を高めることができる。従って、Bi成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
 Bi成分は、原料としてBi等を用いることができる。
The Bi 2 O 3 component is an optional component which can increase the refractive index to lower the Abbe number and lower the glass transition point, when the content is more than 0%.
On the other hand, by setting the content of the Bi 2 O 3 component to 10.0% or less, it is possible to make it difficult to increase the partial dispersion ratio, and it is possible to reduce the coloration of the glass and to increase the internal transmittance. Therefore, the content of the Bi 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
Bi 2 O 3 component can be used Bi 2 O 3 and the like as raw materials.
 TeO成分は、0%超含有する場合に、屈折率を高め、部分分散比を低くでき、且つガラス転移点を低くできる任意成分である。
 他方で、TeO成分の含有量を5.0%以下にすることで、ガラスの着色を低減して内部透過率を高めることができる。また、高価なTeO成分の使用を低減することで、より材料コストの安いガラスを得られる。従って、TeO成分の含有量は、好ましくは5.0%以下、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
 TeO成分は、原料としてTeO等を用いることができる。
The TeO 2 component is an optional component that can increase the refractive index, lower the partial dispersion ratio, and lower the glass transition point, when it is contained in excess of 0%.
On the other hand, by setting the content of the TeO 2 component to 5.0% or less, it is possible to reduce the coloration of the glass and to increase the internal transmittance. In addition, by reducing the use of the expensive TeO 2 component, it is possible to obtain glass with lower material cost. Therefore, the content of the TeO 2 component is preferably 5.0% or less, more preferably less than 3.0%, and still more preferably less than 1.0%.
As the TeO 2 component, TeO 2 or the like can be used as a raw material.
 SnO成分は、0%超含有する場合に、熔解したガラスを清澄(脱泡)でき、且つガラスの可視光透過率を高められる任意成分である。
 一方で、SnO成分の含有量を1.0%以下にすることで、溶融ガラスの還元によるガラスの着色や、ガラスの失透を生じ難くすることができる。また、SnO成分と溶解設備(特にPt等の貴金属)との合金化が低減されるため、溶解設備の長寿命化を図ることができる。従って、SnO成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%未満、さらに好ましくは0.1%未満とする。
 SnO成分は、原料としてSnO、SnO、SnF、SnF等を用いることができる。
The SnO 2 component is an optional component capable of clarifying (defoaming) the melted glass when it contains more than 0%, and increasing the visible light transmittance of the glass.
On the other hand, by setting the content of the SnO 2 component to 1.0% or less, it is possible to make it difficult to cause coloring of the glass due to reduction of the molten glass and devitrification of the glass. Moreover, since the alloying of the SnO 2 component and the melting facility (in particular, noble metals such as Pt) is reduced, the lifetime of the melting facility can be extended. Therefore, the content of the SnO 2 component is preferably 1.0% or less, more preferably less than 0.5%, and still more preferably less than 0.1%.
As the SnO 2 component, SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
 Sb成分は、0%超含有する場合にガラスの脱泡を促進し、ガラスを清澄する成分であり、本発明の光学ガラス中の任意成分である。Sb成分は、ガラス全質量に対する含有量を1.0%以下にすることで、ガラス溶融時における過度の発泡を生じ難くすることができ、Sb成分が溶解設備(特にPt等の貴金属)と合金化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有率は、好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.6%以下を上限とする。
 Sb成分は、原料としてSb、Sb、NaSbO等を用いることができる。
The Sb 2 O 3 component promotes degassing of the glass when it contains more than 0%, and is a component to clarify the glass, and is an optional component in the optical glass of the present invention. The content of the Sb 2 O 3 component with respect to the total mass of the glass can be made to be 1.0% or less, thereby making it difficult to cause excessive foaming at the time of melting the glass, and the Sb 2 O 3 component is a melting facility (especially Pt Etc. can be difficult to be alloyed. Accordingly, the upper limit of the content of the Sb 2 O 3 component to the total glass mass of the oxide conversion composition is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less. .
Sb 2 O 3 component can be used Sb 2 O 3, Sb 2 O 5, Na 2 H 2 Sb 2 O 7 · 5 H 2 O and the like as raw materials.
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。 The components for clarifying and degassing the glass are not limited to the above-mentioned Sb 2 O 3 components, and known clarifiers and defoamers in the field of glass production can be used, or a combination thereof. .
 ZrOとLiOの質量和は5.0%以上が好ましい。これにより、部分分散比の小さいガラスを得ることができる。従って、質量和(ZrO+LiO)は、5.0%以上、より好ましくは7.0%以上、さらに好ましくは8.0%以上を下限とする。
 一方で、質量和(ZrO+LiO)は20.0%以下が好ましい。これにより、過剰な含有による失透を低減でき、リヒートプレス時の失透を抑えることができる。従って、好ましくは20.0%以下、より好ましくは18.0%以下、さらに好ましくは16.0%以下とする。
The mass sum of ZrO 2 and Li 2 O is preferably 5.0% or more. Thereby, glass with a small partial dispersion ratio can be obtained. Accordingly, the lower limit of the mass sum (ZrO 2 + Li 2 O) is 5.0% or more, more preferably 7.0% or more, and still more preferably 8.0% or more.
On the other hand, the sum of mass (ZrO 2 + Li 2 O) is preferably 20.0% or less. Thereby, the devitrification by excess content can be reduced and the devitrification at the time of reheat press can be suppressed. Therefore, the content is preferably 20.0% or less, more preferably 18.0% or less, and further preferably 16.0% or less.
 ZrOとNb5の質量和は18.0%以上が好ましい。これにより、部分分散比の小さく、透過率の良いガラスを得ることができる。従って、質量和ZrO+Nbは、好ましくは、18.0%以上、より好ましくは19.0%以上、さらに好ましくは21.1%以上を下限とする。
 一方で、質量和ZrO+Nbは、45.0%以下が好ましい。これにより、過剰な含有による失透を低減でき、リヒートプレス時の失透を抑えることができる。従って、好ましくは45.0%以下、より好ましくは44.0%以下、より好ましくは43.0%以下、さらに好ましくは42.0%以下とする。
The mass sum of ZrO 2 and Nb 2 O 5 is preferably 18.0% or more. Thereby, it is possible to obtain a glass having a small partial dispersion ratio and a good transmittance. Accordingly, the lower limit of the mass sum ZrO 2 + Nb 2 O 5 is preferably 18.0% or more, more preferably 19.0% or more, and still more preferably 21.1% or more.
On the other hand, the mass sum ZrO 2 + Nb 2 O 5 is preferably 45.0% or less. Thereby, the devitrification by excess content can be reduced and the devitrification at the time of reheat press can be suppressed. Therefore, the content is preferably 45.0% or less, more preferably 44.0% or less, more preferably 43.0% or less, and still more preferably 42.0% or less.
 MgO、CaO、SrO、BaOの質量和に対するBaOの比は0超である場合に、所望の屈折率および分散を得ることができる。従って、質量比BaO/(MgO+CaO+SrO+BaO)は、好ましくは0超、より好ましくは0.05以上、さらに好ましくは0.09以上とする。
 一方で、質量比BaO/(MgO+CaO+SrO+BaO)は、0.90以下が好ましい。これにより、部分分散比が小さく、比重の軽いガラスを得ることができる。
従って好ましくは0.90以下、より好ましくは0.85以下、さらに好ましくは0.80以下とする。
When the ratio of BaO to the mass sum of MgO, CaO, SrO and BaO is more than 0, the desired refractive index and dispersion can be obtained. Therefore, the mass ratio BaO / (MgO + CaO + SrO + BaO) is preferably more than 0, more preferably 0.05 or more, and still more preferably 0.09 or more.
On the other hand, the mass ratio BaO / (MgO + CaO + SrO + BaO) is preferably 0.90 or less. Thereby, it is possible to obtain a glass having a small partial dispersion ratio and a low specific gravity.
Therefore, it is preferably 0.90 or less, more preferably 0.85 or less, and still more preferably 0.80 or less.
 LiO、NaOおよびKOの質量和に対するLiOの比は0.01以上が好ましい。これにより部分分散比の小さいガラスを得ることができる。従って、質量比LiO/(LiO+NaO+KO)は、好ましくは0.01以上、より好ましくは0.02以上、さらに好ましくは0.03以上とする。
 一方でLiO、NaOおよびKOの質量和に対するLiOの比は1.00以下が好ましい。これにより、粘性が低くなりすぎず、成形しやすいガラスが得られる。従って好ましくは1.00以下、より好ましくは0.90以下、更に好ましくは0.70以下とする。
The ratio of Li 2 O to the mass sum of Li 2 O, Na 2 O and K 2 O is preferably 0.01 or more. Thereby, glass with a small partial dispersion ratio can be obtained. Therefore, the mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is preferably 0.01 or more, more preferably 0.02 or more, and still more preferably 0.03 or more.
On the other hand, the ratio of Li 2 O to the mass sum of Li 2 O, Na 2 O and K 2 O is preferably 1.00 or less. Thereby, the viscosity is not too low, and a glass that is easy to form can be obtained. Therefore, it is preferably 1.00 or less, more preferably 0.90 or less, and still more preferably 0.70 or less.
 RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の合計(質量和)は、0%超を超える場合、所望の屈折率や分散を調整することができる。従って、RO成分の含有量は、好ましくは0%超、より好ましくは0.5%超、さらに好ましくは1.5%超を下限とする。
 一方で、RO成分の含有量の合計は、15.0%未満が好ましい。これにより、RO成分の過剰な含有による、ガラスの屈折率の低下や耐失透性の低下を抑えられる。従って、RO成分の質量和は、好ましくは15.0%未満、より好ましくは14.0%以下、さらに好ましくは13.0%以下を上限とする。
When the total (mass sum) of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) exceeds 0%, the desired refractive index or dispersion Can be adjusted. Therefore, the content of the RO component is preferably more than 0%, more preferably more than 0.5%, still more preferably more than 1.5%.
On the other hand, the total content of RO components is preferably less than 15.0%. Thereby, the fall of the refractive index of glass and the fall of devitrification resistance by excess content of RO component can be suppressed. Therefore, the mass sum of the RO component is preferably less than 15.0%, more preferably 14.0% or less, and further preferably 13.0% or less.
 Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の含有量の合計(質量和)は、10.0%未満が好ましい。これにより、Ln成分の過剰な含有による、ガラスの屈折率の低下や耐失透性の低下を抑えられる。従って、Ln成分の質量和は、好ましくは10.0%未満、より好ましくは8.5%以下、さらに好ましくは7.0%以下を上限とする。 The total (mass sum) of the content of the Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb) is preferably less than 10.0%. Thus, due to excessive content of Ln 2 O 3 component is suppressed and decline in devitrification of the refractive index of the glass. Therefore, the mass sum of the Ln 2 O 3 component is preferably less than 10.0%, more preferably 8.5% or less, and still more preferably 7.0% or less.
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<About ingredients that should not be contained>
Next, the components which should not be contained in the optical glass of the present invention and the components which should not be contained are described.
 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加できる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 Other components can be added as needed as long as the properties of the glass of the present invention are not impaired. However, each transition metal component such as Ti, Zr, Nb, W, La, Gd, Y, Yb, Lu excluding V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo is independent. In the case of an optical glass using a wavelength in the visible range, it is preferable that the glass be substantially free of light, because the glass is colored even when contained in a small amount in a complex or causes absorption at a specific wavelength in the visible range. .
 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。 Further, lead compounds and As 2 O 3 or the like arsenic compound such as PbO, because environmental load is highly components, it does not substantially contained, i.e., it is desirable not to contain any except inevitable contamination.
 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。 Furthermore, Th, Cd, Tl, Os, Be, and Se components tend to refrain from use as harmful chemical substances in recent years, and they are not only used in glass manufacturing processes but also in processing processes and disposal after productization. All environmental measures are needed. Therefore, when emphasizing environmental impact, it is preferable not to contain these substantially.
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗溶融した後、金坩堝、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて1000~1400℃の温度範囲で3~5時間溶融し、攪拌均質化して泡切れ等を行った後、900~1200℃の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込んで徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted, and then a gold crucible and a platinum crucible , Put in a platinum alloy crucible or iridium crucible, melt for 3 to 5 hours in a temperature range of 1000 to 1400 ° C, stir and homogenize, perform bubble breakage, etc., and then lower to a temperature of 900 to 1200 ° C and then finish stirring. It is produced by removing the cord, casting in a mold and annealing.
<物性>
 本発明の光学ガラスは、高い屈折率と所定の範囲のアッベ数を有する。
 本発明の光学ガラスの屈折率(n)は、好ましくは1.65以上、より好ましくは1.67以上、さらに好ましくは1.68以上を下限とする。この屈折率の上限は、好ましくは1.80以下、より好ましくは1.79以下、より好ましくは1.78以下を上限とする。
 本発明の光学ガラスのアッベ数(ν)は、好ましくは25.0、より好ましくは27.0、さらに好ましくは29.0を下限とする。他方で、本発明の光学ガラスのアッベ数(ν)は、好ましくは40.0、より好ましくは39.0、さらに好ましくは38.0を上限とする。
 このような屈折率及びアッベ数を有する本発明の光学ガラスは光学設計上有用であり、特に高い結像特性等を図りながらも、光学系の小型化を図ることができるため、光学設計の自由度を広げることができる。
<Physical properties>
The optical glass of the present invention has a high refractive index and an Abbe number in a predetermined range.
The refractive index (n d ) of the optical glass of the present invention is preferably 1.65 or more, more preferably 1.67 or more, and still more preferably 1.68 or more. The upper limit of the refractive index is preferably 1.80 or less, more preferably 1.79 or less, and more preferably 1.78 or less.
The Abbe number (ν d ) of the optical glass of the present invention is preferably 25.0, more preferably 27.0, still more preferably 29.0. On the other hand, the Abbe number (ν d ) of the optical glass of the present invention is preferably 40.0, more preferably 39.0, still more preferably 38.0.
The optical glass of the present invention having such refractive index and Abbe number is useful for optical design, and the optical system can be miniaturized while achieving particularly high imaging characteristics etc. You can spread the degree.
 ここで、本発明の光学ガラスは、屈折率(n)及びアッベ数(ν)が、(-0.01×ν+2.01)≦n≦(-0.01×ν+2.12)の関係を満たすことが好ましい。本発明で特定される組成のガラスでは、屈折率(n)及びアッベ数(ν)がこの関係を満たすものであっても、安定なガラスを得られる。
 従って、本発明の光学ガラスでは、屈折率(n)及びアッベ数(ν)が、n≧(-0.01×ν+2.01)の関係を満たすことが好ましく、n≧(-0.01×ν+2.03)の関係を満たすことがより好ましい。
 他方で、本発明の光学ガラスでは、屈折率(n)及びアッベ数(ν)が、n≦(-0.01×ν+2.12)の関係を満たすことが好ましく、n≦(-0.01×ν+2.11)の関係を満たすことがより好ましい。
Here, the optical glass of the present invention is a refractive index (n d) and Abbe number ([nu d) is, (- 0.01 × ν d +2.01 ) ≦ n d ≦ (-0.01 × ν d +2 It is preferable to satisfy the relationship of .12). The glass composition specified in the present invention refractive index (n d) and Abbe number ([nu d) is even satisfy this relationship, obtain a stable glass.
Accordingly, in the optical glass of the present invention refractive index (n d) and Abbe number ([nu d) is, it is preferable to satisfy n d ≧ (-0.01 × ν d +2.01) relations, n d ≧ It is more preferable to satisfy the relationship of (−0.01 × ν d +2.03).
On the other hand, in the optical glass of the present invention, the refractive index (n) and the Abbe number (v d ) preferably satisfy the relationship of n d ≦ (−0.01 × v d +2.12), n d ≦ It is more preferable to satisfy the relationship of (−0.01 × ν d +2.11).
 本発明の光学ガラスは、低い部分分散比(θg,F)を有する。
 より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、(-0.00162×ν+0.620)≦(θg,F)≦(-0.00162×ν+0.657)の関係を満たすことが好ましい。
 従って、本発明の光学ガラスでは、部分分散比(θg,F)及びアッベ数(ν)が、θg,F≧(-0.00162×ν+0.620)の関係を満たすことが好ましく、θg,F≧(-0.00162×ν+0.630)の関係を満たすことがより好ましい。
 他方で、本発明の光学ガラスでは、部分分散比(θg,F)及びアッベ数(ν)が、θg,F≦(-0.00162×ν+0.657)の関係を満たすことが好ましく、θg,F≦(-0.00162×ν+0.650 )の関係を満たすことがより好ましい。
 これにより、低い部分分散比(θg,F)を有する光学ガラスが得られるため、この光学ガラスから形成される光学素子を、光学系の色収差の低減に役立てられる。
The optical glass of the present invention has a low partial dispersion ratio (θg, F).
More specifically, the partial dispersion ratio of the optical glass of the present invention ([theta] g, F) is between the Abbe number (ν d), (- 0.00162 × ν d +0.620) ≦ (θg, F It is preferable to satisfy the following relationship: ≦ (−0.00162 × v d +0.657).
Therefore, in the optical glass of the present invention, the partial dispersion ratio (θg, F) and the Abbe number (ν d ) preferably satisfy the relationship of θg, Fθ (−0.00162 × ν d +0.620), It is more preferable to satisfy the relationship of θg, F ≧ (−0.00162 × ν d +0.630).
On the other hand, in the optical glass of the present invention, the partial dispersion ratio (θg, F) and the Abbe number (( d ) preferably satisfy the relationship of θg, F ≦ (−0.00162 × d d + 0.657) It is more preferable to satisfy the relationship of θ g, F ≦ (−0.00162 × v d +0.650).
As a result, an optical glass having a low partial dispersion ratio (θg, F) can be obtained, and the optical element formed of this optical glass can be used to reduce the chromatic aberration of the optical system.
 なお、特にアッベ数(ν)が小さい領域では、一般的なガラスの部分分散比(θg,F)はノーマルラインよりも高い値にあり、横軸にアッベ数(ν)、縦軸に部分分散比(θg,F)を取ったときの、一般的なガラスの部分分散比(θg,F)とアッベ数(ν)の関係は、ノーマルラインよりも傾きの大きな曲線で表される。上述の部分分散比(θg,F)及びアッベ数(ν)の関係式では、ノーマルラインよりも傾きの大きな直線を使ってこれらの関係を規定することで、一般的なガラスよりも部分分散比(θg,F)の小さなガラスを得られることを表している。 In particular, in a region where the Abbe number (v d ) is small, the partial dispersion ratio (θg, F) of a general glass is higher than that of the normal line, and the abscissa axis represents the Abbe number (v d ) and the ordinate axis The relationship between the general glass partial dispersion ratio (θg, F) and the Abbe number (ν d ) when taking the partial dispersion ratio (θg, F) is represented by a curve with a larger slope than the normal line . In the above-mentioned partial dispersion ratio (θg, F) and Abbe's number () d ) relations, partial straight line with a larger slope than that of the normal line is used to define these relations to make partial dispersions more than general glasses. It indicates that a small glass of ratio (θg, F) can be obtained.
 なお本発明の光学ガラスは、相対屈折率の温度係数(dn/dT)が低い値をとる。
 より具体的には、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは+6.0×10-6-1、より好ましくは+5.5×10-6-1、さらに好ましくは+5.0×10-6-1を上限値とし、この上限値又はそれよりも低い(マイナス側)の値をとりうる。
 他方で、本発明の光学ガラスの相対屈折率の温度係数は、好ましくは-2.0×10-6-1、より好ましくは-1.0×10-6-1、さらに好ましくは-0.5×10-6-1を下限値とし、この下限値又はそれよりも高い(プラス側)の値をとりうる。
 このうち、1.65以上の屈折率(n)を有し、かつ20以上35以下のアッベ数(ν)を有するガラスとして、相対屈折率の温度係数の低いガラスは多く存在しておらず、温度変化による結像のずれ等の補正の選択肢を広げられ、その補正をより容易にできる。したがって、このような範囲の相対屈折率の温度係数にすることで、温度変化による結像のずれ等の補正に寄与することができる。
 本発明の光学ガラスの相対屈折率の温度係数は、光学ガラスと同一温度の空気中における屈折率(589.29nm)の温度係数のことであり、40℃から60℃に温度を変化させた際の、1℃当たりの変化量(℃-1)で表される。
In the optical glass of the present invention, the temperature coefficient (dn / dT) of the relative refractive index takes a low value.
More specifically, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably + 6.0 × 10 −6 ° C. −1 , more preferably + 5.5 × 10 −6 ° C. −1 , more preferably The upper limit value may be + 5.0 × 10 −6 ° C. −1, and the upper limit value or a lower value (negative side) may be taken.
On the other hand, the temperature coefficient of the relative refractive index of the optical glass of the present invention is preferably -2.0 x 10 -6 ° C -1 , more preferably -1.0 x 10 -6 ° C -1 , still more preferably- The lower limit value may be 0.5 × 10 −6 ° C. −1 and the lower limit value or a value higher than that lower limit (plus side) can be taken.
Among these, as a glass having a refractive index (n d ) of 1.65 or more and an Abbe number (ν d ) of 20 or more and 35 or less, many glasses having a low temperature coefficient of relative refractive index are present. In addition, it is possible to expand the options of correction such as imaging shift due to temperature change and make the correction easier. Therefore, by setting the temperature coefficient of the relative refractive index in such a range, it is possible to contribute to the correction of the image shift due to the temperature change and the like.
The temperature coefficient of the relative refractive index of the optical glass of the present invention is the temperature coefficient of the refractive index (589.29 nm) in air at the same temperature as the optical glass, and when the temperature is changed from 40 ° C. to 60 ° C. It is represented by the amount of change per 1 ° C. (° C. −1 ).
 本発明の光学ガラスは、100~300℃における平均線熱膨張係数αが75(10-7-1)以上であることが好ましい。すなわち、本発明の光学ガラスの100~300℃における平均線熱膨張係数αは、好ましくは75(10-7-1)以上、より好ましくは80(10-7-1)以上、より好ましくは85(10-7-1)以上を下限とする。
一般的に、平均線熱膨張係数αが大きいとガラスを加工する際に割れが生じやすくなるため、平均線熱膨張係数αの値は小さいほうが望ましい。一方で、相対屈折率の温度係数が低く、かつ平均線熱膨張係数αの値が大きい硝材と組み合わせて接合する観点においては、当該硝材と平均線熱膨張係数αの値が同一又は近似であることが望ましい。
 このうち、1.65以上の屈折率(n)を有し、かつ25以上40以下のアッベ数(ν)を有するガラスでは、平均線熱膨張係数αが大きい硝材が少なく、低屈折率低分散硝材と組み合わせて使用する場合に、本発明のように平均線熱膨張係数αが大きい値を有する方が有用である。
The optical glass of the present invention preferably has an average linear thermal expansion coefficient α at 100 to 300 ° C. of 75 (10 −7 ° C. −1 ) or more. That is, the average linear thermal expansion coefficient α of the optical glass of the present invention at 100 to 300 ° C is preferably 75 (10 -7 ° C -1 ) or more, more preferably 80 (10 -7 ° C -1 ) or more, more preferably The lower limit is 85 (10 -7 ° C -1 ) or more.
Generally, when the average linear thermal expansion coefficient α is large, the glass is likely to be cracked during processing, so it is desirable that the value of the average linear thermal expansion coefficient α be as small as possible. On the other hand, from the viewpoint of joining in combination with a glass material having a low relative refractive index temperature coefficient and a large value of the average linear thermal expansion coefficient α, the value of the glass material and the average linear thermal expansion coefficient α are the same or approximate Is desirable.
Among these, in the glass having a refractive index (n d ) of 1.65 or more and an Abbe number (ν d ) of 25 or more and 40 or less, the glass material having a large average linear thermal expansion coefficient α is small, and the low refractive index When used in combination with a low dispersion glass material, it is more useful to have a large average linear thermal expansion coefficient α as in the present invention.
[プリフォーム及び光学素子]
 作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製できる。すなわち、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、例えば研磨加工を行って作製したプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりできる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Preform and Optical Element]
A glass molded body can be produced from the produced optical glass, for example, by means of mold press molding such as reheat press molding and precision press molding. That is, a preform for mold press molding is produced from optical glass, and the preform is subjected to reheat press molding and then subjected to polishing processing to produce a glass molded body, for example, to polishing processing. The glass preform can be manufactured by performing precision press molding on the preform. In addition, the means to produce a glass forming body is not limited to these means.
 このようにして作製されるガラス成形体は、様々な光学素子に有用であるが、その中でも特に、レンズやプリズム等の光学素子の用途に用いることが好ましい。これにより、光学素子が設けられる光学系の透過光における、色収差による色のにじみが低減される。そのため、この光学素子をカメラに用いた場合は撮影対象物をより正確に表現でき、この光学素子をプロジェクタに用いた場合は所望の映像をより高精彩に投影できる。 The glass molded body produced in this manner is useful for various optical elements, and among them, it is particularly preferable to use it for applications of optical elements such as lenses and prisms. This reduces color bleeding due to chromatic aberration in the transmitted light of the optical system in which the optical element is provided. Therefore, when this optical element is used for a camera, the object to be photographed can be expressed more accurately, and when this optical element is used for a projector, a desired image can be projected with higher definition.
 本発明の実施例(No.1~No.13)及び比較例の組成、並びに、屈折率(n)、アッベ数(ν)、部分分散比(θg,F)、平均線熱膨張係数(100-300℃)、ガラスの相対屈折率の温度係数(dn/dT)を表1~表2に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例にのみ限定されるものではない。 Composition of Examples (No. 1 to No. 13) of the present invention and Comparative Examples, and refractive index (n d ), Abbe number (( d ), partial dispersion ratio (θ g, F), average linear thermal expansion coefficient The temperature coefficient (dn / dT) of the relative refractive index of glass (100-300 ° C.) is shown in Tables 1 and 2. The following examples are for the purpose of illustration only, and are not limited to these examples.
 実施例及び比較例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度の原料を選定し、表に示した各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、石製坩堝(ガラスの溶融性によっては白金坩堝、アルミナ坩堝を用いても構わない)に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1400℃の温度範囲で0.5~5時間熔解した後、白金坩堝に移して攪拌均質化して泡切れ等を行った後、1000~1200℃に温度を下げて攪拌均質化してから金型に鋳込み、徐冷してガラスを作製した。 The glasses of the examples and comparative examples all have high purity, which are used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphoric acid compounds and the like respectively corresponding to the raw materials of the respective components. Raw materials are selected, weighed and uniformly mixed so that the proportions of the compositions of the respective examples and comparative examples shown in the table are obtained, and then a stone crucible (a platinum crucible or an alumina crucible is used depending on the melting property of glass) The solution is placed in an electric furnace and melted in an electric furnace for 0.5 to 5 hours in a temperature range of 1100 Then, the temperature was lowered to 1000 to 1200 ° C. to stir and homogenize, and then cast into a mold and gradually cooled to produce a glass.
 実施例及び比較例のガラスの屈折率(n)、アッベ数(ν)及び部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。 The refractive index (n d ), Abbe number (ν d ) and partial dispersion ratio (θg, F) of the glasses of Examples and Comparative Examples were measured based on Japan Optical Glass Industrial Standard JOGIS 01-2003.
 実施例及び比較例のガラスの相対屈折率の温度係数(dn/dT)は、日本光学硝子工業会規格JOGIS18-2008「光学ガラスの屈折率の温度係数の測定方法」に記載された方法のうち干渉法により、波長589.29nmの光についての、40~60℃における相対屈折率の温度係数の値を測定した。 The temperature coefficient (dn / dT) of the relative refractive index of the glass of the example and the comparative example is the method described in Japan Optical Glass Industry Standard JOGIS 18-2008 “Method of measuring the temperature coefficient of the refractive index of optical glass”. The value of the temperature coefficient of relative refractive index at 40-60 ° C. was measured by interferometry for light of wavelength 589.29 nm.
 また、実施例及び比較例のガラスの平均線熱膨張係数(100-300℃)は、日本光学硝子工業会規格JOGIS08-2003「光学ガラスの熱膨張の測定方法」に従い、温度と試料の伸びとの関係を測定することで得られる熱膨張曲線より求めた。


















Further, the average linear thermal expansion coefficient (100-300 ° C.) of the glass of the example and the comparative example is the temperature and the elongation of the sample according to the Japan Optical Glass Industrial Standard JOGIS 08-2003 “Method of measuring the thermal expansion of optical glass”. It calculated | required from the thermal expansion curve obtained by measuring the relationship of.


















Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001











Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002











 本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.65以上、より詳細には1.67以上であるとともに、この屈折率(n)は1.80以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が25以上、より詳細には29以上であるとともに、このアッベ数(ν)は40以下であり、所望の範囲内であった。
The optical glass of the embodiment of the present invention has a refractive index (n d ) of 1.65 or more, more specifically 1.67 or more, and the refractive index (n d ) of 1.80 or less. , Was within the desired range.
In addition, the optical glasses according to the examples of the present invention each have an Abbe number (v d ) of 25 or more, more specifically 29 or more, and the Abbe number (v d ) of 40 or less. It was inside.
 これらの表のとおり、本発明の実施例の光学ガラスは、部分分散比(θg,F)及びアッベ数(ν)が、(-0.00162×ν+0.620)≦(θg,F)≦(-0.00162×ν+0.657)の関係を満たしており、より詳細には(-0.00162×νd+0.650)≦(θg,F)≦(-0.00162×ν+0.630)の関係を満たしていた。すなわち、本願の実施例のガラスについての部分分散比(θg,F)とアッベ数(ν)の関係は、図2に示されるようになった。
 一方で、比較例の光学ガラスは、(-0.00162×ν+0.620)≦(θg,F)≦(-0.00162×ν+0.657)の関係を満たしていなかった。
As shown in these tables, the optical glass of the embodiment of the present invention has a partial dispersion ratio (θg, F) and an Abbe number (ν d ) of (−0.00162 × ν d +0.620) ≦ (θg, F) (−0.00162 × ν d +0.657), and more specifically, (−0.00162 × νd + 0.650) ≦ (θg, F) ≦ (−0.00162 × ν d) The relationship of +0.630 was satisfied. That is, the relationship between the partial dispersion ratio (θg, F) and the Abbe number (ν d ) for the glass of the example of the present application is as shown in FIG.
On the other hand, the optical glass of the comparative example did not satisfy the relationship of (−0.00162 × v d +0.620) ≦ (θg, F) ≦ (−0.00162 × v d +0.657).
加えて、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が、(-0.01×ν+2.01)≦n≦(-0.01×ν+2.12)の関係を満たしており、より詳細には(-0.01×ν+2.03)≦n≦(-0.01×ν+2.11)の関係を満たしていた。すなわち、本願の実施例のガラスについての屈折率(n)及びアッベ数(ν)の関係は、図3に示されるようになった。 In addition, the optical glass of the embodiment of the present invention has a refractive index (n d ) and an Abbe number (ν d ) of (−0.01 × ν d +2.01) ≦ n d ≦ (−0.01 ×) It satisfies the relationship of d d + 2.12), and more specifically satisfies the relationship of (−0.01 × ν d +2.03) ≦ n d ≦ (−0.01 × ν d + 2.11) The That is, the relationship between the refractive index (n d ) and the Abbe number (v d ) for the glass of the example of the present application is as shown in FIG.
 表に表されるように、実施例の光学ガラスは、いずれも相対屈折率の温度係数が+6.0×10-6~-0.5×10-6(℃-1)の範囲内にあり、所望の範囲内であった。 As shown in the table, all the optical glasses of the examples have temperature coefficients of relative refractive index within the range of + 6.0 × 10 −6 to −0.5 × 10 −6 (° C. −1 ). , Was within the desired range.
 加えて、本発明の光学ガラスは、100~300℃における平均線熱膨張係数αが80(10-7-1)以上であった。 In addition, the optical glass of the present invention had an average linear thermal expansion coefficient α at 100 to 300 ° C. of 80 (10 −7 ° C. −1 or more).
 さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。 Furthermore, a glass block was formed using the optical glass of the embodiment of the present invention, and this glass block was ground and polished to be processed into a lens and a prism shape. As a result, it could be stably processed into various lens and prism shapes.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, the present embodiment is for the purpose of illustration only, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (6)

  1. 質量%で、
    SiO成分    15.0~45.0%
    Nb成分    10.0~40.0%
    NaO成分    0超~20.0%
    質量和(ZrO+LiO)を5.0~20.0%、
    質量比(BaO/MgO+CaO+SrO+BaO)を0.90以下
    含有し、
    部分分散比(θg,F)がアッベ数(ν)との間で、
    (-0.00162×ν+0.620)≦(θg,F)≦(-0.00162×ν+0.657)の関係を満たし、相対屈折率(589.29nm)の温度係数(40~60℃)が+6.0×10-6~-5.0×10-6(℃-1)の範囲内にある光学ガラス。
    In mass%,
    SiO 2 component 15.0 to 45.0%
    Nb 2 O 5 component 10.0 to 40.0%
    Na 2 O ingredient more than 0 ~ 20.0%
    5.0 to 20.0% by mass (ZrO 2 + Li 2 O),
    Containing a mass ratio (BaO / MgO + CaO + SrO + BaO) of 0.90 or less,
    The partial dispersion ratio (θg, F) is between the Abbe number (ν d ),
    The temperature coefficient (40 to 100) of the relative refractive index (589.29 nm) is satisfied, which satisfies the relationship of (−0.00162 × ν d +0.620) ≦ (θg, F) ≦ (−0.00162 × ν d + 0.657) Optical glass having a temperature of 60 ° C. in the range of + 6.0 × 10 −6 to −5.0 × 10 −6 (° C. −1 ).
  2. 質量比(LiO/LiO+NaO+KO)が1.00以下であることを特徴とする請求項1記載の光学ガラス。 The weight ratio (Li 2 O / Li 2 O + Na 2 O + K 2 O) according to claim 1 optical glass, wherein a is 1.00 or less.
  3. 屈折率(n)及びアッベ数(ν)が、(-0.01×ν+2.01)≦n≦(-0.01×ν+2.12)の関係を満たす請求項1又は2記載の光学ガラス。 Refractive index (n d) and Abbe number ([nu d) is, (- 0.01 × ν d +2.01 ) satisfies the relationship of ≦ n d ≦ (-0.01 × ν d +2.12) according to claim 1 Or 2 optical glass.
  4.  請求項1から3のいずれか記載の光学ガラスからなるプリフォーム材。 A preform material comprising the optical glass according to any one of claims 1 to 3.
  5.  請求項1から3のいずれか記載の光学ガラスからなる光学素子。 An optical element comprising the optical glass according to any one of claims 1 to 3.
  6.  請求項5に記載の光学素子を備える光学機器。 An optical apparatus comprising the optical element according to claim 5.
PCT/JP2018/029362 2017-10-02 2018-08-06 Optical glass, preform, and optical element WO2019069553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880064137.XA CN111183122B (en) 2017-10-02 2018-08-06 Optical glass, preform, and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017192732A JP7126341B2 (en) 2017-10-02 2017-10-02 Optical glass, preforms and optical elements
JP2017-192732 2017-10-02

Publications (1)

Publication Number Publication Date
WO2019069553A1 true WO2019069553A1 (en) 2019-04-11

Family

ID=65994494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029362 WO2019069553A1 (en) 2017-10-02 2018-08-06 Optical glass, preform, and optical element

Country Status (3)

Country Link
JP (1) JP7126341B2 (en)
CN (1) CN111183122B (en)
WO (1) WO2019069553A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204194A (en) * 2019-06-28 2019-09-06 成都光明光电股份有限公司 A kind of optical glass and its gas preform, element and instrument
CN111039567A (en) * 2019-12-31 2020-04-21 湖北新华光信息材料有限公司 Fluorophosphate optical glass and application thereof, preparation method of fluorophosphate optical glass lens and fluorophosphate optical glass lens
WO2021090589A1 (en) * 2019-11-07 2021-05-14 株式会社 オハラ Optical glass, preform, and optical element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125511B (en) * 2020-09-28 2022-04-12 成都光明光电股份有限公司 Optical glass
CN112142324B (en) * 2020-09-28 2022-04-15 成都光明光电股份有限公司 Optical glass, glass preform and optical element
CN112142321B (en) * 2020-09-28 2022-04-15 成都光明光电股份有限公司 Optical glass, optical element and optical instrument
CN115677209A (en) * 2022-10-18 2023-02-03 成都光明光电股份有限公司 Special dispersion optical glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106611A (en) * 2005-10-11 2007-04-26 Ohara Inc Optical glass
JP2016088758A (en) * 2014-10-29 2016-05-23 株式会社オハラ Optical glass, preform and optical element
JP2017105703A (en) * 2015-12-07 2017-06-15 株式会社オハラ Optical glass, preform and optical element
JP2017154963A (en) * 2016-02-29 2017-09-07 株式会社オハラ Optical glass, preform and optical element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113604B2 (en) * 1997-03-25 2000-12-04 株式会社オハラ Optical glass with negative anomalous dispersion
CN1099388C (en) * 1998-02-10 2003-01-22 株式会社小原 Optical glass having negative abnormal dispersion
DE102006052787B4 (en) * 2005-12-23 2017-06-22 Schott Ag Optical glass
JP5357429B2 (en) * 2008-01-31 2013-12-04 Hoya株式会社 Optical glass, glass material for press molding, optical element and method for producing the same, and method for producing optical element blank
CN104926110B (en) * 2015-06-23 2019-04-16 成都光明光电股份有限公司 Optical glass and optical element
CN106830677A (en) * 2015-12-07 2017-06-13 株式会社小原 A kind of optical glass, prefabricated component and optical element
JP6937540B2 (en) * 2015-12-25 2021-09-22 株式会社オハラ Optical glass, preforms and optics
CN106915901A (en) * 2015-12-25 2017-07-04 株式会社小原 A kind of optical glass, prefabricated component and optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106611A (en) * 2005-10-11 2007-04-26 Ohara Inc Optical glass
JP2016088758A (en) * 2014-10-29 2016-05-23 株式会社オハラ Optical glass, preform and optical element
JP2017105703A (en) * 2015-12-07 2017-06-15 株式会社オハラ Optical glass, preform and optical element
JP2017154963A (en) * 2016-02-29 2017-09-07 株式会社オハラ Optical glass, preform and optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204194A (en) * 2019-06-28 2019-09-06 成都光明光电股份有限公司 A kind of optical glass and its gas preform, element and instrument
WO2021090589A1 (en) * 2019-11-07 2021-05-14 株式会社 オハラ Optical glass, preform, and optical element
CN111039567A (en) * 2019-12-31 2020-04-21 湖北新华光信息材料有限公司 Fluorophosphate optical glass and application thereof, preparation method of fluorophosphate optical glass lens and fluorophosphate optical glass lens
CN111039567B (en) * 2019-12-31 2022-05-03 湖北新华光信息材料有限公司 Fluorophosphate optical glass and application thereof, preparation method of fluorophosphate optical glass lens and fluorophosphate optical glass lens

Also Published As

Publication number Publication date
JP7126341B2 (en) 2022-08-26
JP2019064876A (en) 2019-04-25
CN111183122B (en) 2022-05-27
CN111183122A (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP7126341B2 (en) Optical glass, preforms and optical elements
CN108117257B (en) Optical glass, preform and optical element
TWI765099B (en) Optical Glass, Preforms, and Optical Components
WO2014034623A1 (en) Optical glass, preform, and optical element
TW201718420A (en) Optical glass, preform, and optical element
JP6727692B2 (en) Optical glass, preforms and optical elements
JP2020019711A (en) Optical glass, preform and optical element
TW202313501A (en) Optical glass, preform, and optical element
TW201422554A (en) Optical glass, preform, and optical component
JP2022167990A (en) Optical glass, preform and optical element
JP5863745B2 (en) Optical glass, preform and optical element
JP6775874B2 (en) Optical glass, preforms and optics
JP6937540B2 (en) Optical glass, preforms and optics
WO2019155755A1 (en) Optical glass, preform, and optical element
JP2019172556A (en) Optical glass, preform, and optical element
JP2012206891A (en) Optical glass, perform, and optical device
JP5748613B2 (en) Optical glass, preform and optical element
JP7462713B2 (en) Optical glass, preforms and optical elements
JP6675772B2 (en) Optical glass, preform and optical element
JP5748614B2 (en) Optical glass, preform and optical element
WO2019021689A1 (en) Optical glass, preform, and optical element
JP2012206892A (en) Optical glass, perform, and optical device
JP6091196B2 (en) Optical glass, preform and optical element
JP6629179B2 (en) Optical glass, preform and optical element
CN110642512A (en) Optical glass, prefabricated member and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864900

Country of ref document: EP

Kind code of ref document: A1