WO2021090589A1 - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
WO2021090589A1
WO2021090589A1 PCT/JP2020/035528 JP2020035528W WO2021090589A1 WO 2021090589 A1 WO2021090589 A1 WO 2021090589A1 JP 2020035528 W JP2020035528 W JP 2020035528W WO 2021090589 A1 WO2021090589 A1 WO 2021090589A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
less
glass
optical
content
Prior art date
Application number
PCT/JP2020/035528
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木健介
Original Assignee
株式会社 オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オハラ filed Critical 株式会社 オハラ
Priority to CN202080075029.XA priority Critical patent/CN114599617A/en
Publication of WO2021090589A1 publication Critical patent/WO2021090589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to optical glass and optical elements.
  • Optical systems such as digital cameras and video cameras, although they are large and small, contain bleeding called aberrations. This aberration is classified into monochromatic aberration and chromatic aberration, and in particular, chromatic aberration strongly depends on the material characteristics of the lens used in the optical system.
  • chromatic aberration is corrected by combining a low-dispersion convex lens and a high-dispersion concave lens, but this combination can only correct aberrations in the red region and the green region, and aberrations in the blue region remain.
  • This aberration in the blue region that cannot be completely removed is called a quadratic spectrum.
  • the partial dispersion ratio ( ⁇ g, F) is used as an index of the optical characteristics attracting attention in the optical design.
  • an optical material having a large partial dispersion ratio ( ⁇ g, F) is used for the low-dispersion side lens, and a partial dispersion ratio (partial dispersion ratio) is used for the high-dispersion side lens.
  • ⁇ g, F partial dispersion ratio
  • the partial dispersion ratio ( ⁇ g, F) is expressed by the following equation (1).
  • ⁇ g, F (n g -n F) / (n F -n C) ⁇ (1)
  • optical glass there is a substantially linear relationship between the partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d), which represent the partial dispersibility in the short wavelength region.
  • the straight line representing this relationship is a plot of the partial dispersion ratio and Abbe number of NSL7 and PBM2 on Cartesian coordinates with the partial dispersion ratio ( ⁇ g, F) on the vertical axis and the Abbe number ( ⁇ d) on the horizontal axis. It is represented by a straight line connecting two points and is called a normal line.
  • the normal glass which is the standard of the normal line, differs depending on the optical glass manufacturer, but each company defines it with almost the same inclination and section (NSL7 and PBM2 are optical glasses manufactured by O'Hara Co., Ltd., and Abbe of PBM2.
  • the number ( ⁇ d ) is 36.3
  • the partial dispersion ratio ( ⁇ g, F) is 0.5828
  • the Abbe number ( ⁇ d ) of NSL7 is 60.5
  • the partial dispersion ratio ( ⁇ g, F) is 0.5436. .).
  • Examples of a method for producing an optical element from optical glass include a method of obtaining a shape of an optical element by grinding and polishing a gob or a glass block formed of the optical glass, and a gob or glass formed of the optical glass.
  • a method of obtaining the shape of an optical element by (precision mold press molding) is known. Regardless of the method, it is required that stable glass can be obtained when forming a gob or a glass block from a molten glass raw material.
  • the stability devitrification resistance
  • the glass of Patent Document 1 With the glass of Patent Document 1, it is difficult to obtain a glass having a small partial dispersion ratio ( ⁇ g, F), and the devitrification property tends to deteriorate.
  • the glass of Patent Document 2 has a common problem of reducing the partial dispersion ratio ( ⁇ g, F), it contains the Ta 2 O 5 component as an essential component, so that the manufacturing cost is high and the glass is melted. The moldability is not good due to the poor property.
  • the present invention has been made in view of the above problems, and an object of the present invention is that the partial dispersion ratio ( ⁇ g, F) is within a desired range, the devitrification resistance is high, and reheat press molding is performed.
  • the purpose is to obtain optical glass having good properties.
  • the liquidus temperature is 1150 ° C. or lower, and an optical glass having good reheat press moldability is obtained.
  • the present inventor has a relationship between the contents of the Ln 2 O 3 component and the Li O 2 component in the glass containing the SiO 2 component and the Nb 2 O 5 component.
  • oxide equivalent composition 10.0 to 35.0% of SiO 2 component Nb 2 O 5 component 10.0-40.0%
  • the ZrO 2 component from 1.0 to 15.0%, Li 2 O component 1.0 to 15.0% It contains 1.0 to 20.0% of Ln 2 O 3 component (in the formula, Ln is one or more selected from the group consisting of La, Y, Gd, and Yb).
  • the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is 0.35 or more, and The mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.50 or more, and The partial dispersion ratio ( ⁇ g, F) is between the Abbe number ( ⁇ d ) and (-0.00162 x ⁇ d +0.624) ⁇ ( ⁇ g, F) ⁇ (-0.00162 x ⁇ d +0.654). ) Satisfying the relationship.
  • refractive index (n d) is from 1.70000 to 1.80000
  • the optical glass according the Abbe number ([nu d) is from 30.00 to 40.00 (1) to (3).
  • An optical device including the optical element according to any one of (6) and (7).
  • an optical glass having a low partial dispersion ratio ( ⁇ g, F), a low liquidus temperature, and good reheat press moldability.
  • optical glass of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention. It should be noted that the description may be omitted as appropriate for the parts where the explanations are duplicated, but the gist of the invention is not limited.
  • each component constituting the optical glass of the present invention The composition range of each component constituting the optical glass of the present invention is described below. Unless otherwise specified in the present specification, the content of each component shall be expressed as a mass% of the total mass of the glass in the oxide conversion composition.
  • the "oxide-equivalent composition” is based on the assumption that the oxides, composite salts, metal fluorides, etc. used as raw materials for the glass constituents of the present invention are all decomposed at the time of melting and changed to oxides. It is a composition which describes each component contained in a glass, assuming that the total mass of the produced oxide is 100 mass%.
  • the SiO 2 component is an essential component that promotes stable glass formation and reduces devitrification (generation of crystals) that is unfavorable for optical glass.
  • the content of the SiO 2 component is preferably 10.0% or more, more preferably 13.0% or more, still more preferably 15.0% or more, still more preferably 18.0% or more, and most preferably 20.
  • the lower limit is 0% or more.
  • the content of the SiO 2 component is preferably 35.0% or less, more preferably 33.0% or less, and most preferably 31.0% or less.
  • the Nb 2 O 5 component is an essential component capable of increasing the refractive index and decreasing the Abbe number.
  • the refractive index can be increased by setting the content of the Nb 2 O 5 component to 10.0% or more. Therefore, the content of the Nb 2 O 5 component is preferably 10.0% or more, more preferably 12.0% or more, still more preferably 15.0% or more, still more preferably 20.0% or more, most preferably.
  • the lower limit is 23.0% or more.
  • the content of the Nb 2 O 5 component is preferably 40.0% or less, thermal stability can be obtained and the material cost of the glass can be reduced. Further, the devitrification of the glass can be reduced. Therefore, the content of the Nb 2 O 5 component is preferably 40.0% or less, more preferably 38.0% or less, still more preferably 36.0% or less, and most preferably 34.0% or less. ..
  • the ZrO 2 component increases the refractive index of the glass and the Abbe number, which is an essential component that can reduce the partial dispersion ratio.
  • the content of the ZrO 2 component is preferably 1.0% or more, more preferably 2.0% or more, more preferably 3.0% or more, more preferably 5.0% or more, and most preferably 6.
  • the lower limit may be 0% or more.
  • the content of the ZrO 2 component is preferably 15.0% or less, more preferably 12.0 percent or less, 11.0% and more preferably less, more preferably 10.0% or less, and most preferably 9.
  • the upper limit is 0% or less.
  • the Li 2 O component is an essential component capable of reducing the partial dispersion ratio.
  • the content of the Li 2 O component may be preferably 1.0% or more, more preferably 1.5% or more, further preferably 2.0% or more, and most preferably 2.5% or more as the lower limit. ..
  • the content of the Li 2 O component is preferably 15.0% or less, more preferably 12.0% or less, still more preferably 10.0% or less, still more preferably 9.0% or less, and most preferably 8.
  • the upper limit is 0.0% or less.
  • the B 2 O 3 component is an optional component that promotes stable glass formation, can lower the liquidus temperature, enhances devitrification resistance, and enhances the meltability of the glass raw material.
  • the content of the B 2 O 3 component is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, still more preferably 0.2% or more, and most preferably 0.3%. The above may be the lower limit.
  • the content of the B 2 O 3 component to 20.0% or less, the decrease in the refractive index can be suppressed and the increase in the partial dispersion ratio can be suppressed.
  • the content of the B 2 O 3 component is preferably 20.0% or less, more preferably 18.0% or less, more preferably 16.0% or less, more preferably 14.0% or less, still more preferably.
  • the upper limit is 12.0% or less, most preferably 11.0% or less.
  • the SiO 2 component is preferably contained in a larger amount than the B 2 O 3 component. If the B 2 O 3 component is larger than the SiO 2 component, the partial dispersion ratio will increase. Therefore, by containing the SiO 2 component more than the B 2 O 3 component, the partial dispersion ratio is lowered while stabilizing the glass. be able to.
  • the La 2 O 3 component is a component that can reduce the partial dispersion ratio while reducing devitrification, and when it is contained, it has an effect different from that of other rare earths that are easily devitrified.
  • the content of the La 2 O 3 component is preferably 0% or more, more preferably 1.0% or more, more preferably 2.0% or more, still more preferably 3.0% or more, still more preferably 4.
  • the lower limit is 0% or more, most preferably 5.0% or more.
  • the content of the La 2 O 3 component is preferably 20.0% or less, more preferably 19.0% or less, further preferably 17.0% or less, and most preferably 16.0% or less. ..
  • the Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component are optional components that can increase the refractive index and reduce the partial dispersion ratio by containing at least any one of more than 0%.
  • the liquidus temperature drops and the glass is devitrified.
  • the content of each of the Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component can be reduced and coloring can be reduced.
  • the content of each of the Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0%.
  • the upper limit is most preferably 3.0% or less.
  • the Na 2 O component and the K 2 O component are optional components that increase the meltability of the glass raw material and reduce the coloring when the content exceeds 0%.
  • the contents of the Na 2 O component and the K 2 O component are preferably 10.0% or less, more preferably 8.0% or less, still more preferably 7.0% or less, still more preferably 6.0% or less.
  • the upper limit is 5.0% or less.
  • the MgO component is an optional component that can improve the meltability and lower the liquidus temperature, but if it is contained in a large amount, the glass will be devitrified. On the other hand, devitrification can be reduced by reducing the content of the MgO component to 10.0% or less. Therefore, the content of the MgO component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0% or less, still more preferably 3.0% or less, and most preferably 2.0. The upper limit is%.
  • the CaO component is an optional component that can improve the stability of the glass.
  • the meltability can be enhanced by setting the content of the CaO component to 0% or more. Therefore, the content of the CaO component is preferably 0% or more, more preferably 0.1% or more, still more preferably 0.5% or more, still more preferably 1.0% or more, and most preferably 2.0% or more. Is the lower limit.
  • the content of the CaO component is preferably 20.0% or less, more preferably 17.0% or less, still more preferably 14.0% or less, still more preferably 12.0% or less, and most preferably 10.0%.
  • the upper limit is% or less.
  • the SrO component is an optional component that can improve the stability of the glass.
  • the content of the SrO component is preferably 20.0% or less, more preferably 17.0% or less, still more preferably 14.0% or less, still more preferably 12.0% or less, and most preferably 10.0%.
  • the upper limit is% or less.
  • the BaO component is an optional component that can improve the stability of the glass.
  • the content of the BaO component is preferably 20.0% or less, more preferably 17.0% or less, still more preferably 14.0% or less, still more preferably 12.0% or less, and most preferably 10.0%.
  • the upper limit is% or less.
  • the TiO 2 component is an optional component that increases the refractive index and decreases the Abbe number.
  • the partial dispersion ratio becomes large.
  • the content of the TiO 2 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 2.0% or less.
  • the ZnO component is an optional component that is inexpensive and can be adjusted to the high dispersion side.
  • the ZnO component when the ZnO component is contained in a large amount, the partial dispersion ratio becomes large.
  • the content of the ZnO component is preferably 10.0% or less, more preferably 5.0% or less, further preferably less than 3.0%, and most preferably 1.0% or less.
  • the Ta 2 O 5 component is an optional component capable of increasing the refractive index, lowering the Abbe number and the partial dispersion ratio, and increasing the devitrification resistance.
  • the content of the Ta 2 O 5 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. ..
  • the WO 3 component is an optional component that can increase the refractive index, reduce the Abbe number, and enhance the meltability of the glass raw material.
  • the content of the WO 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less.
  • the P 2 O 5 component is an optional component that can enhance the stability of the glass.
  • the content of the P 2 O 5 component is preferably 10.0% or less, more preferably 5.0% or less, still more preferably 3.0% or less, still more preferably less than 2.0%, and most preferably.
  • the upper limit is 1.0% or less.
  • the GeO 2 component is an optional component that can increase the refractive index and reduce devitrification.
  • the content of the GeO 2 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less.
  • the Al 2 O 3 component is an optional component capable of increasing the refractive index and improving the devitrification resistance.
  • the content of the Al 2 O 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. ..
  • the Ga 2 O 3 component is an optional component capable of increasing the refractive index and improving the devitrification resistance.
  • the content of Ga 2 O 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. ..
  • the Bi 2 O 3 component is an optional component that can increase the refractive index, reduce the Abbe number, and lower the glass transition point.
  • the content of the Bi 2 O 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. ..
  • the TeO 2 component is an optional component capable of increasing the refractive index, lowering the partial dispersion ratio, and lowering the glass transition point.
  • the content of the TeO 2 component is preferably 10.0% or less, more preferably 5.0% or less, still more preferably 3.0%, and most preferably 1.0% or less.
  • SnO 2 is an optional component that can clarify (defoam) the molten glass and increase the visible light transmittance of the glass.
  • the SnO 2 content is preferably 1.0% or less, more preferably 0.5% or less, and further preferably 0.1% or less.
  • the Sb 2 O 3 component is a component that promotes defoaming of the glass and clarifies the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Sb 2 O 3 component is a melting facility (particularly Pt). It can be made difficult to alloy with precious metals such as. Therefore, the content of the Sb 2 O 3 component with respect to the total mass of the glass in the oxide conversion composition is preferably 1.0% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and most preferably.
  • the upper limit is 0.1% or less.
  • the component that clarifies and defoams the glass is not limited to the above Sb 2 O 3 component, and a clarifying agent, a defoaming agent, or a combination thereof known in the field of glass production can be used. ..
  • the Ln 2 O 3 component (in the formula, Ln is one or more selected from the group consisting of La, Y, Gd, and Yb) is contained when the sum of the contents (mass sum) is 1.0% or more.
  • the partial dispersion ratio can be reduced while increasing the refractive index. Therefore, the lower limit of the sum of the Ln 2 O 3 components is preferably 1.0% or more, more preferably 3.0% or more, still more preferably 5.0% or more, and most preferably 7.0% or more.
  • the upper limit is preferably 20.0% or less, more preferably 18.0% or less, further preferably 17.0% or less, and most preferably 16.0% or less.
  • the Rn 2 O component (in the formula, Rn is one or more selected from the group consisting of Li, Na, and K) is contained in the glass when the sum of the contents (mass sum) is 1.0% or more. Stability can be improved. Therefore, the lower limit of the sum of the Rn 2 O components is preferably 1.0% or more, more preferably 2.5% or more, still more preferably 3.0% or more, and most preferably 3.5% or more. On the other hand, when the sum of the contents (mass sum) of the Rn 2 O components is 15.0% or less, the decrease in the refractive index can be suppressed and the devitrification due to the excessive content can be reduced. Therefore, the upper limit is preferably 15.0% or less, more preferably 14.0% or less, further preferably 13.0% or less, and most preferably 12.0% or less.
  • the sum of the contents of the RO component (in the formula, R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 5.0% or more, the low temperature meltability is improved. Can be done. Therefore, the lower limit of the sum of the contents of the RO components is preferably 5.0%, more preferably 5.3% or more, further preferably 5.8% or more, and most preferably 6.0% or more. On the other hand, the sum of the contents of the RO components is preferably 20.0% or less because the decrease in devitrification resistance due to the excessive content can be suppressed. Therefore, the mass sum of the RO components is preferably 20.0% or less, more preferably 19.0% or less, still more preferably 18.0% or less, and most preferably 16.0% or less.
  • the mass sum BaO + CaO + SrO is 5.0% or more, the low temperature meltability can be improved. Therefore, the lower limit of the mass sum BaO + CaO + SrO is preferably 5.0% or more, more preferably 5.3% or more, further preferably 5.8% or more, and most preferably 6.0% or more.
  • the mass sum BaO + CaO + SrO is preferably 20.0% or less, more preferably 19.0% or less, still more preferably 18.0% or less, and most preferably 16.0% or less.
  • the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 preferably has a lower limit of 0.35 or more, more preferably 0.36 or more, still more preferably 0.38 or more, and most preferably 0.40 or more.
  • the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is preferably 1.00 or less in order to suppress an increase in the liquidus temperature. Therefore, the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is preferably 1.00 or less, more preferably 0.90 or less, still more preferably 0.88 or less, and most preferably 0.85 or less. To do.
  • the mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.50 or more, the effect of the LiO 2 component acting on the reduction of the partial dispersion ratio is most effectively exhibited, and the meltability is improved. It is possible to suppress devitrification while raising it. Therefore, the mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is preferably 0.50 or more, more preferably 0.52 or more, still more preferably 0.54 or more, and most preferably 0.55 or more. The lower limit.
  • the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is 3.50 or more, the liquidus temperature can be lowered while suppressing devitrification. Therefore, the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is preferably 3.50 or more, more preferably 3.55 or more, still more preferably more than 3.58, and most preferably 3. The lower limit is 60 or more. On the other hand, when the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is 12.0 or less, the Abbe number ( ⁇ d ) can be maintained.
  • the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is preferably 12.0 or less, more preferably 11.80 or less, still more preferably 11.50 or less, and most preferably 11.
  • the upper limit is 20 or less.
  • the mass ratio (ZnO + TiO 2 + P 2 O 5 ) / (ZrO 2 + La 2 O 3 + LiO 2 ) is less than 0.15, the partial dispersion ratio increases due to the ZnO component, TiO 2 component, and P 2 O 5 component. Can be suppressed. Therefore, the mass ratio (ZnO + TiO 2 + P 2 O 5 ) / (ZrO 2 + La 2 O 3 + LiO 2 ) is preferably less than 0.15, more preferably 0.12 or less, still more preferably 0.10 or less, most preferably 0.10 or less. The upper limit is 0.08 or less.
  • each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb and Lu, is used alone.
  • the glass is colored and has a property of causing absorption at a specific wavelength in the visible region. Therefore, it is preferable that the glass is substantially not contained, especially in optical glass using a wavelength in the visible region. ..
  • lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components having a high environmental load, it is desirable that they are not substantially contained, that is, they are not contained at all except for unavoidable contamination.
  • each component of Th, Cd, Tl, Os, Be, and Se has tended to refrain from being used as a harmful chemical substance in recent years, and is used not only in the glass manufacturing process but also in the processing process and disposal after commercialization. Up to this point, environmental measures are required. Therefore, when the environmental impact is important, it is preferable that these are not substantially contained.
  • the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted, and then a gold crucible and a platinum crucible. , Platinum alloy crucible or iridium crucible, melt in a temperature range of 1000 to 1400 ° C for 2 to 5 hours, homogenize with stirring to break bubbles, etc., then lower to a temperature of 950 to 1250 ° C and then finish stirring. It is produced by removing the crucible, casting it into a mold, and slowly cooling it.
  • the optical glass of the present invention has a refractive index ( nd ) and an Abbe number ( ⁇ d ) in a predetermined range.
  • Refractive index of the optical glass of the present invention (n d) is preferably 1.70000 or more, more preferably 1.73000 or more, more preferably the lower limit or more 1.75000.
  • the upper limit of the refractive index is preferably 1.80000 or less, more preferably 1.79000 or less.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 30.00 or more, more preferably 32.00 or more, and further preferably 33.00 or more as the lower limit.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 40.00 or less, more preferably 38.00 or less, still more preferably 37.00 or less.
  • the optical glass of the present invention having such a refractive index and Abbe number is useful in optical design, and the optical system can be miniaturized while achieving particularly high imaging characteristics, so that the optical design is free. You can increase the degree.
  • the optical glass of the present invention has a low partial dispersion ratio ( ⁇ g, F). More specifically, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is not particularly limited, but may be preferably 0.560 or more, more preferably 0.565 or more. On the other hand, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is preferably 0.600 or less, more preferably 0.595 or less, still more preferably 0.593 or less. Further, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is preferably ( ⁇ 0.00162 ⁇ ⁇ d +0.624) ⁇ ( ⁇ g, F) ⁇ in relation to the Abbe number ( ⁇ d).
  • the optical glass of the present invention has a lower partial dispersion ratio ( ⁇ g, F) than the conventionally known glass containing a large amount of SiO 2 component and Nb 2 O 5 component. Therefore, the optical element formed from this optical glass can be preferably used for correcting chromatic aberration.
  • the lower limit of the partial dispersion ratio ( ⁇ g, F) in relation to the Abbe number ( ⁇ d ) of the optical glass of the present invention is not particularly limited, but is preferably ( ⁇ 0.00162 ⁇ ⁇ d +0.624). As described above, it may be more preferably ( ⁇ 0.00162 ⁇ ⁇ d +0.627) or more, and even more preferably ( ⁇ 0.00162 ⁇ ⁇ d +0.630) or more.
  • the upper limit of the partial dispersion ratio ( ⁇ g, F) in relation to the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably ( ⁇ 0.00162 ⁇ ⁇ d +0.654) or less, more preferably. It is (-0.00162 x ⁇ d +0.651) or less, more preferably (-0.00162 x ⁇ d +0.648) or less.
  • the optical glass of the present invention has a high visible light transmittance, particularly a light transmittance on the short wavelength side of visible light, and thus less coloring.
  • the optical glass of the present invention has a wavelength ( ⁇ 80 ) showing a spectral transmittance of 80% in a sample having a thickness of 10 mm, preferably 420 nm or less, more preferably 417 nm or less, still more preferably.
  • the upper limit is 410 nm or less.
  • the shortest wavelength ( ⁇ 5 ) showing a spectral transmittance of 5% in a sample having a thickness of 10 mm is preferably 345 nm or less, more preferably 343 nm or less, still more preferably 342 nm or less. ..
  • this optical glass can be preferably used for an optical element such as a lens that transmits light.
  • the optical glass of the present invention preferably has high devitrification resistance, and more specifically, has a low liquidus temperature. That is, the liquidus temperature of the optical glass of the present invention is preferably 1150 ° C. or lower, more preferably 1148 ° C. or lower, and further preferably 1145 ° C. or lower.
  • the liquidus temperature of the optical glass of the present invention is preferably 1150 ° C. or lower, more preferably 1148 ° C. or lower, and further preferably 1145 ° C. or lower.
  • a glass molded body can be produced by using a mold press molding means such as reheat press molding or precision press molding. That is, a preform for mold press molding is produced from optical glass, and after reheat press molding is performed on this preform, polishing is performed to produce a glass molded product, or for example, polishing is performed to produce the preform.
  • a glass molded body can be produced by performing precision press molding on the preform. The means for producing the glass molded body is not limited to these means.
  • the glass molded body produced in this way is useful for various optical elements, but it is particularly preferable to use it for applications of optical elements such as lenses and prisms.
  • optical elements such as lenses and prisms.
  • color bleeding due to chromatic aberration in the transmitted light of the optical system provided with the optical element is reduced. Therefore, when this optical element is used in a camera, an object to be photographed can be expressed more accurately, and when this optical element is used in a projector, a desired image can be projected with higher definition.
  • the glasses of Examples and Comparative Examples are of high purity, which are used for ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc., which correspond to each component as a raw material. After selecting the raw materials, weighing them so as to have the composition ratios of each of the examples and comparative examples shown in the table and mixing them uniformly, a stone crucible (depending on the meltability of the glass, a platinum crucible or an alumina crucible is used. It does not matter), and after melting in an electric furnace in a temperature range of 1100 to 1400 ° C.
  • ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc.
  • the glass composition for 0.5 to 5 hours depending on the degree of difficulty of melting the glass composition, it is transferred to a platinum crucible and stirred to homogenize to break bubbles, etc. After that, the temperature was lowered to 1000 to 1200 ° C., the mixture was stirred and homogenized, cast into a mold, and slowly cooled to prepare glass.
  • refractive index of the glass of the Examples and Comparative Examples is, JIS B 7071-2: Measured in accordance with V-block method specified in 2018 did.
  • refractive index (n d) is indicated by the measured value for the helium lamp d line (587.56 nm).
  • These refractive index (n d), Abbe number ([nu d) and partial dispersion ratio ([theta] g, F) is obtained by making measurements on glass obtained by the annealing cooling rate to -25 ° C. / hr ..
  • the transmittance of the glass of Examples and Comparative Examples was measured according to the Japan Optical Glass Industry Association standard JOBIS02-2003.
  • the presence or absence and degree of coloring of the glass were determined by measuring the transmittance of the glass.
  • a face-to-face parallel polished product having a thickness of 10 ⁇ 0.1 mm is measured for a spectral transmittance of 200 to 800 nm according to JISZ8722, and wavelengths ( ⁇ 80 , ⁇ ) showing spectral transmittances of 80% and 5%. 5 ) was requested.
  • crushed glass samples were placed on a platinum plate at 10 mm intervals, held in a furnace with a temperature gradient of 800 ° C. to 1200 ° C. for 30 minutes, and then taken out. After cooling, the presence or absence of crystals in the glass sample was measured by observing with a microscope at a magnification of 80 times. At this time, as a sample, optical glass was pulverized into granules having a diameter of about 2 mm.
  • the optical glasses of Examples of the present invention are both refractive index (n d) with at 1.70000 or more, were within the desired range is at 1.80000 or less.
  • the optical glasses of the examples of the present invention all had an Abbe number ( ⁇ d ) of 30.00 or more and 40.00 or less, which were within a desired range.
  • the optical glasses of Examples of the present invention As represented in the table, the optical glasses of Examples of the present invention, the Abbe number ([nu d) and partial dispersion ratio ([theta] g, F) relationship of (-0.00162 ⁇ ⁇ d +0.624) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 0.00162 ⁇ ⁇ d +0.654) was satisfied.
  • the optical glass of the embodiment of the present invention had a liquid phase temperature of 1150 ° C. or lower. Further, it is presumed that the optical glass of the embodiment of the present invention has high reheat press moldability because the liquidus temperature is low.
  • all of the optical glasses of the examples have a wavelength ( ⁇ 80 ) showing a spectral transmittance of 80% or less of 420 nm and a wavelength ( ⁇ 5 ) showing a spectral transmittance of 5% of 345 nm. It was below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention provides optical glass that has high devitrification resistance and good reheat press moldability while having a partial dispersion ratio (θg, F) within a desired range. The optical glass contains, in mass% in terms of oxides, 10.0-35.0% of SiO2 components, 10.0-40.0% of Nb2O5 components, 1.0-15.0% of ZrO2 components, 1.0-15.0% of Li2O components, and 1.0-20.0% of Ln2O3 components (where Ln is at least one selected from the group consisting of La, Y, Gd, and Yb), wherein the mass ratio (Li2O+La2O3)/SiO2 is 0.35 or higher, the mass ratio Li2O/(Li2O+Na2O+K2O) is 0.50 or higher, and the partial dispersion ratio (θg, F) and the Abbe number (νd) satisfy the following relation: (-0.00162×νd+0.624)≤(θg, F)≤(-0.00162×νd+0.654).

Description

光学ガラス、プリフォーム及び光学素子Optical glass, preforms and optics
 本発明は、光学ガラス及び光学素子に関する。 The present invention relates to optical glass and optical elements.
 デジタルカメラやビデオカメラ等の光学系は、その大小はあるが、収差と呼ばれるにじみを含んでいる。この収差は単色収差と色収差に分類されるが、特に色収差は、光学系に使用されるレンズの材料特性に強く依存している。 Optical systems such as digital cameras and video cameras, although they are large and small, contain bleeding called aberrations. This aberration is classified into monochromatic aberration and chromatic aberration, and in particular, chromatic aberration strongly depends on the material characteristics of the lens used in the optical system.
 一般に色収差は、低分散の凸レンズと高分散の凹レンズとを組み合わせて補正されるが、この組み合わせでは赤色領域と緑色領域の収差の補正しかできず、青色領域の収差が残る。この除去しきれない青色領域の収差を二次スペクトルと呼ぶ。二次スペクトルを補正するには、青色領域のg線(435.835nm)の動向を加味した光学設計を行う必要がある。このとき、光学設計で着目される光学特性の指標として、部分分散比(θg,F)が用いられている。上述の低分散のレンズと高分散のレンズとを組み合わせた光学系では、低分散側のレンズに部分分散比(θg,F)の大きい光学材料を用い、高分散側のレンズに部分分散比(θg,F)の小さい光学材料を用いることで、二次スペクトルが良好に補正される。
 近年光学設計において、部分分散比(θg,F)の小さいガラスのニーズが高まっている。
Generally, chromatic aberration is corrected by combining a low-dispersion convex lens and a high-dispersion concave lens, but this combination can only correct aberrations in the red region and the green region, and aberrations in the blue region remain. This aberration in the blue region that cannot be completely removed is called a quadratic spectrum. In order to correct the secondary spectrum, it is necessary to carry out an optical design that takes into account the trend of the g-line (435.835 nm) in the blue region. At this time, the partial dispersion ratio (θg, F) is used as an index of the optical characteristics attracting attention in the optical design. In the optical system combining the above-mentioned low-dispersion lens and high-dispersion lens, an optical material having a large partial dispersion ratio (θg, F) is used for the low-dispersion side lens, and a partial dispersion ratio (partial dispersion ratio) is used for the high-dispersion side lens. By using an optical material having a small θg, F), the secondary spectrum is satisfactorily corrected.
In recent years, in optical design, there is an increasing need for glass having a small partial dispersion ratio (θg, F).
 部分分散比(θg,F)は、下式(1)により示される。
θg,F=(n-n)/(n-n)・・・・・・(1)
The partial dispersion ratio (θg, F) is expressed by the following equation (1).
θg, F = (n g -n F) / (n F -n C) ······ (1)
 光学ガラスには、短波長域の部分分散性を表す部分分散比(θg,F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比(θg,F)を縦軸に、アッベ数(ν)を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比及びアッベ数をプロットした2点を結ぶ直線で表され、ノーマルラインと呼ばれている。ノーマルラインの基準となるノーマルガラスは光学ガラスメーカー毎によっても異なるが、各社ともほぼ同等の傾きと切片で定義している(NSL7とPBM2は株式会社オハラ社製の光学ガラスであり、PBM2のアッベ数(ν)は36.3、部分分散比(θg,F)は0.5828、NSL7のアッベ数(ν)は60.5、部分分散比(θg,F)は0.5436である。)。 In optical glass, there is a substantially linear relationship between the partial dispersion ratio (θg, F) and the Abbe number (ν d), which represent the partial dispersibility in the short wavelength region. The straight line representing this relationship is a plot of the partial dispersion ratio and Abbe number of NSL7 and PBM2 on Cartesian coordinates with the partial dispersion ratio (θg, F) on the vertical axis and the Abbe number (ν d) on the horizontal axis. It is represented by a straight line connecting two points and is called a normal line. The normal glass, which is the standard of the normal line, differs depending on the optical glass manufacturer, but each company defines it with almost the same inclination and section (NSL7 and PBM2 are optical glasses manufactured by O'Hara Co., Ltd., and Abbe of PBM2. The number (ν d ) is 36.3, the partial dispersion ratio (θg, F) is 0.5828, the Abbe number (ν d ) of NSL7 is 60.5, and the partial dispersion ratio (θg, F) is 0.5436. .).
 光学ガラスから光学素子を作製する方法としては、例えば、光学ガラスから形成されたゴブ又はガラスブロックに対して研削及び研磨を行って光学素子の形状を得る方法、光学ガラスから形成されたゴブ又はガラスブロックを再加熱して成形(リヒートプレス成形)して得られたガラス成形体を研削及び研磨する方法、及び、ゴブ又はガラスブロックから得られたプリフォーム材を超精密加工された金型で成形(精密モールドプレス成形)して光学素子の形状を得る方法が知られている。いずれの方法であっても、熔融したガラス原料からゴブ又はガラスブロックを形成する際に、安定なガラスが得られることが求められる。ここで、得られるゴブ又はガラスブロックを構成するガラスの失透に対する安定性(耐失透性)が低下してガラスの内部に結晶が発生した場合、もはや光学素子として好適なガラスを得ることができない。 Examples of a method for producing an optical element from optical glass include a method of obtaining a shape of an optical element by grinding and polishing a gob or a glass block formed of the optical glass, and a gob or glass formed of the optical glass. A method of grinding and polishing a glass molded body obtained by reheating a block and molding (reheat press molding), and molding a preform material obtained from a gob or a glass block with an ultra-precision machined mold. A method of obtaining the shape of an optical element by (precision mold press molding) is known. Regardless of the method, it is required that stable glass can be obtained when forming a gob or a glass block from a molten glass raw material. Here, when the stability (devitrification resistance) of the glass constituting the obtained gob or glass block against devitrification is lowered and crystals are generated inside the glass, it is possible to obtain a glass suitable as an optical element. Can not.
特開2006-248897号公報Japanese Unexamined Patent Publication No. 2006-248897 特開2012-240909号公報Japanese Unexamined Patent Publication No. 2012-240909
 特許文献1のガラスは、小さい部分分散比(θg,F)のガラスを得ることが困難であり、また失透性が悪化しやすい。
 特許文献2のガラスは、部分分散比(θg,F)を小さくするという課題は共通しているものの、Ta成分を必須成分として含有しているため、製造コストが高いうえに、熔融性が悪いため、成形性が良好ではない。
With the glass of Patent Document 1, it is difficult to obtain a glass having a small partial dispersion ratio (θg, F), and the devitrification property tends to deteriorate.
Although the glass of Patent Document 2 has a common problem of reducing the partial dispersion ratio (θg, F), it contains the Ta 2 O 5 component as an essential component, so that the manufacturing cost is high and the glass is melted. The moldability is not good due to the poor property.
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは部分分散比(θg,F)が所望の範囲内にありながら、耐失透性が高く、リヒートプレス成形性が良好な光学ガラスを得ることにある。 The present invention has been made in view of the above problems, and an object of the present invention is that the partial dispersion ratio (θg, F) is within a desired range, the devitrification resistance is high, and reheat press molding is performed. The purpose is to obtain optical glass having good properties.
 より具体的には、部分分散比(θg,F)がアッベ数(ν)との間で、(-0.00162×ν+0.624≦(θg,F)≦(-0.00162×ν+0.654)を満たし、かつ液相温度が1150℃以下であり、リヒートプレス成形性が良好な光学ガラスを得ることにある。 More specifically, when the partial dispersion ratio (θg, F) is with the Abbe number (ν d ), (−0.00162 × ν d + 0.624 ≦ (θg, F) ≦ (−0.00162 ×). Ν d +0.654) is satisfied, the liquidus temperature is 1150 ° C. or lower, and an optical glass having good reheat press moldability is obtained.
 本発明者は、上記課題を解決するために鋭意試験研究を重ねた結果、SiO成分及び、Nb成分を含有するガラスにおいて、Ln成分及びLiO成分の含有率の関係を調整することにより、低い部分分散比、耐失透性が高く、並びに良好なリヒートプレス特性を両立し得る光学ガラスを製造し得ることを見出し、本発明を完成するに至った。 As a result of intensive test and research to solve the above problems, the present inventor has a relationship between the contents of the Ln 2 O 3 component and the Li O 2 component in the glass containing the SiO 2 component and the Nb 2 O 5 component. By adjusting the above, it has been found that an optical glass having a low partial dispersion ratio, high devitrification resistance, and good reheat press characteristics can be produced, and the present invention has been completed.
(1)酸化物換算組成の質量%で、
SiO成分を10.0~35.0%
Nb成分を10.0~40.0%
ZrO成分を1.0~15.0%、
LiO成分を1.0~15.0%
Ln成分(式中、LnはLa、Y、Gd、Ybからなる群より選択される1種以上)を1.0~20.0% 含有し、
質量比(LiO+La)/SiOが0.35以上であり、
質量比LiO/(LiO+NaO+KO)が0.50以上であり、
部分分散比(θg,F)がアッベ数(ν)との間で、(-0.00162×ν+0.624)≦(θg,F)≦(-0.00162×ν+0.654)の関係を満たす光学ガラス。
(1) By mass% of oxide equivalent composition,
10.0 to 35.0% of SiO 2 component
Nb 2 O 5 component 10.0-40.0%
The ZrO 2 component from 1.0 to 15.0%,
Li 2 O component 1.0 to 15.0%
It contains 1.0 to 20.0% of Ln 2 O 3 component (in the formula, Ln is one or more selected from the group consisting of La, Y, Gd, and Yb).
The mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is 0.35 or more, and
The mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.50 or more, and
The partial dispersion ratio (θg, F) is between the Abbe number (ν d ) and (-0.00162 x ν d +0.624) ≤ (θg, F) ≤ (-0.00162 x ν d +0.654). ) Satisfying the relationship.
(2)酸化物換算組成の質量%で、
成分  0~20.0%、
La成分 0~20.0%
CaO成分  0~20.0%、
SrO成分  0~20.0%、
BaO成分  0~20.0%、
NaO成分 0~10.0%、
含有する(1)に記載の光学ガラス。
(2) By mass% of oxide equivalent composition,
B 2 O 3 component 0-20.0%,
La 2 O 3 component 0-20.0%
CaO component 0-20.0%,
SrO component 0-20.0%,
BaO component 0-20.0%,
Na 2 O component 0 to 10.0%,
The optical glass according to (1) contained.
(3)SiO成分をB成分より多く含有し、
質量比(ZnO+TiO+P)/(ZrO+La+LiO)が0.15未満であり、
質量和BaO+CaO+SrOが5.0~20.0%である、
(1)又は(2)いずれかに記載の光学ガラス。
(3) Containing more SiO 2 component than B 2 O 3 component,
The mass ratio (ZnO + TiO 2 + P 2 O 5 ) / (ZrO 2 + La 2 O 3 + LiO 2 ) is less than 0.15.
The sum of mass BaO + CaO + SrO is 5.0 to 20.0%.
The optical glass according to either (1) or (2).
(4)屈折率(n)が1.70000~1.80000であり、アッベ数(ν)が30.00~40.00である(1)から(3)に記載の光学ガラス。 (4) refractive index (n d) is from 1.70000 to 1.80000, the optical glass according the Abbe number ([nu d) is from 30.00 to 40.00 (1) to (3).
(5)液相温度が1150℃以下の(1)から(4)に記載の光学ガラス。 (5) The optical glass according to (1) to (4), wherein the liquidus temperature is 1150 ° C. or lower.
(6)(1)から(5)のいずれか記載の光学ガラスからなる光学素子。 (6) An optical element made of the optical glass according to any one of (1) to (5).
(7)(1)から(5)のいずれか記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。 (7) A preform for polishing and / or precision press molding made of the optical glass according to any one of (1) to (5).
(8)(6)又は(7)のいずれか記載の光学素子を備える光学機器。 (8) An optical device including the optical element according to any one of (6) and (7).
 本発明によれば、低い部分分散比(θg,F)を有し、液相温度が低く、且つリヒートプレス成形性が良好な光学ガラスを得ることができる。 According to the present invention, it is possible to obtain an optical glass having a low partial dispersion ratio (θg, F), a low liquidus temperature, and good reheat press moldability.
本願の実施例のガラスについての部分分散比(θg,F)とアッベ数(ν  )の関係を示す図である。It is a figure which shows the relationship between the partial dispersion ratio (θg, F) and the Abbe number (ν d) about the glass of the Example of this application.
 本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 The embodiment of the optical glass of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention. It should be noted that the description may be omitted as appropriate for the parts where the explanations are duplicated, but the gist of the invention is not limited.
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中で特に断りがない場合、各成分の含有量は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass component]
The composition range of each component constituting the optical glass of the present invention is described below. Unless otherwise specified in the present specification, the content of each component shall be expressed as a mass% of the total mass of the glass in the oxide conversion composition. Here, the "oxide-equivalent composition" is based on the assumption that the oxides, composite salts, metal fluorides, etc. used as raw materials for the glass constituents of the present invention are all decomposed at the time of melting and changed to oxides. It is a composition which describes each component contained in a glass, assuming that the total mass of the produced oxide is 100 mass%.
<必須成分、任意成分について>
 SiO成分は、安定なガラス形成を促し、光学ガラスとして好ましくない失透(結晶物の発生)を低減する必須成分である。
 特に、SiO成分の含有量を10.0%以上にすることで、部分分散比を大幅に高めることなく、耐失透性に優れたガラスを得られる。また、液相温度を低減することができる。従って、SiO成分の含有量は、好ましくは10.0%以上、より好ましくは13.0%以上、さらに好ましくは15.0%以上、さらに好ましくは18.0%以上、最も好ましくは20.0%以上を下限とする。
 他方で、SiO成分の含有量を35.0%以下にすることで、部分分散比の上昇を抑えられる。従って、SiO成分の含有量は、好ましくは35.0%以下、より好ましくは33.0%以下、最も好ましくは31.0%以下を上限とする。
<About essential ingredients and optional ingredients>
The SiO 2 component is an essential component that promotes stable glass formation and reduces devitrification (generation of crystals) that is unfavorable for optical glass.
In particular, by setting the content of the SiO 2 component to 10.0% or more, a glass having excellent devitrification resistance can be obtained without significantly increasing the partial dispersion ratio. Moreover, the liquidus temperature can be reduced. Therefore, the content of the SiO 2 component is preferably 10.0% or more, more preferably 13.0% or more, still more preferably 15.0% or more, still more preferably 18.0% or more, and most preferably 20. The lower limit is 0% or more.
On the other hand, by reducing the content of the SiO 2 component to 35.0% or less, an increase in the partial dispersion ratio can be suppressed. Therefore, the content of the SiO 2 component is preferably 35.0% or less, more preferably 33.0% or less, and most preferably 31.0% or less.
 Nb成分は、屈折率を高め、アッベ数を低くできる必須成分である。
 特に、Nb成分の含有量を10.0%以上にすることで、屈折率を高めることができる。従って、Nb成分の含有量は、好ましくは10.0%以上、より好ましくは12.0%以上、さらに好ましくは15.0%以上、さらに好ましくは20.0%以上、最も好ましくは23.0%以上を下限とする。
 他方で、Nb成分の含有量を40.0%以下にすることで、熱的安定性が得られ、ガラスの材料コストを低減できる。さらに、ガラスの失透を低減させることができる。従って、Nb成分の含有量は、好ましくは40.0%以下、より好ましくは38.0%以下、さらに好ましくは36.0%以下、最も好ましくは34.0%以下を上限とする。
The Nb 2 O 5 component is an essential component capable of increasing the refractive index and decreasing the Abbe number.
In particular, the refractive index can be increased by setting the content of the Nb 2 O 5 component to 10.0% or more. Therefore, the content of the Nb 2 O 5 component is preferably 10.0% or more, more preferably 12.0% or more, still more preferably 15.0% or more, still more preferably 20.0% or more, most preferably. The lower limit is 23.0% or more.
On the other hand, by setting the content of the Nb 2 O 5 component to 40.0% or less, thermal stability can be obtained and the material cost of the glass can be reduced. Further, the devitrification of the glass can be reduced. Therefore, the content of the Nb 2 O 5 component is preferably 40.0% or less, more preferably 38.0% or less, still more preferably 36.0% or less, and most preferably 34.0% or less. ..
 ZrO成分は、ガラスの屈折率及びアッベ数を高め、部分分散比を小さくできる必須成分である。
 特に、ZrO成分の含有量を1.0%以上にすることで、部分分散比を下げつつ、安定したガラスを得ることができる。従って、ZrO成分の含有量は、好ましくは1.0%以上、より好ましくは2.0%以上、さらに好ましくは3.0%以上、さらに好ましくは5.0%以上、最も好ましくは6.0%以上を下限としてもよい。
 他方で、ZrO成分の含有量を15.0%以下にすることで、失透を低減でき、且つ、より均質なガラスを得易くできる。従って、ZrO成分の含有量は、好ましくは15.0%以下、より好ましくは12.0%以下、より好ましくは11.0%以下、さらに好ましくは10.0%以下、最も好ましくは9.0%以下を上限とする。
ZrO 2 component increases the refractive index of the glass and the Abbe number, which is an essential component that can reduce the partial dispersion ratio.
In particular, by setting the content of the ZrO 2 component above 1.0%, while lowering the partial dispersion ratio, it is possible to obtain a stable glass. Therefore, the content of the ZrO 2 component is preferably 1.0% or more, more preferably 2.0% or more, more preferably 3.0% or more, more preferably 5.0% or more, and most preferably 6. The lower limit may be 0% or more.
On the other hand, by the content of the ZrO 2 component below 15.0%, it is possible to reduce the devitrification and can be easy to obtain a more homogeneous glass. Therefore, the content of the ZrO 2 component is preferably 15.0% or less, more preferably 12.0 percent or less, 11.0% and more preferably less, more preferably 10.0% or less, and most preferably 9. The upper limit is 0% or less.
 LiO成分は、他のアルカリ金属と異なり、部分分散比を小さくできる必須成分である。
 特に、LiO成分の含有量を1.0%以上にすることで、ガラスの熔融性を上げつつ、部分分散比を小さくできる。従って、LiO成分の含有量は、好ましくは1.0%以上、より好ましくは1.5%以上、さらに好ましくは2.0%以上、最も好ましくは2.5%以上を下限としてもよい。
 他方で、LiO成分の含有量を15.0%以下にすることで、且つ過剰な含有による失透を低減でき、リヒートプレスの失透性も低減できる。
 従って、LiO成分の含有量は、好ましくは15.0%以下、より好ましくは12.0%以下、さらに好ましくは10.0%以下、さらに好ましくは9.0%以下、最も好ましくは8.0%以下を上限とする。
Unlike other alkali metals, the Li 2 O component is an essential component capable of reducing the partial dispersion ratio.
In particular, by setting the content of the Li 2 O component to 1.0% or more, the meltability of the glass can be increased and the partial dispersion ratio can be reduced. Therefore, the content of the Li 2 O component may be preferably 1.0% or more, more preferably 1.5% or more, further preferably 2.0% or more, and most preferably 2.5% or more as the lower limit. ..
On the other hand, by reducing the content of the Li 2 O component to 15.0% or less, devitrification due to excessive content can be reduced, and devitrification of the reheat press can also be reduced.
Therefore, the content of the Li 2 O component is preferably 15.0% or less, more preferably 12.0% or less, still more preferably 10.0% or less, still more preferably 9.0% or less, and most preferably 8. The upper limit is 0.0% or less.
 B成分は、安定なガラス形成を促し、また液相温度を下げることができ、耐失透性を高められ、且つガラス原料の熔解性を高められる任意成分である。
 特に、B成分の含有量を0%以上にすることで、液相温度の上昇を抑えることができる。従って、B成分の含有量は、好ましくは0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.2%以上、最も好ましくは0.3%以上を下限としてもよい。
 他方で、B成分の含有量を20.0%以下にすることで、屈折率の低下を抑えられ、且つ部分分散比の上昇を抑えられる。従って、B成分の含有量は、好ましくは20.0%以下、より好ましくは18.0%以下、より好ましくは16.0%以下、より好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは11.0%以下を上限とする。
The B 2 O 3 component is an optional component that promotes stable glass formation, can lower the liquidus temperature, enhances devitrification resistance, and enhances the meltability of the glass raw material.
In particular, by setting the content of the B 2 O 3 component to 0% or more, it is possible to suppress an increase in the liquidus temperature. Therefore, the content of the B 2 O 3 component is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, still more preferably 0.2% or more, and most preferably 0.3%. The above may be the lower limit.
On the other hand, by setting the content of the B 2 O 3 component to 20.0% or less, the decrease in the refractive index can be suppressed and the increase in the partial dispersion ratio can be suppressed. Therefore, the content of the B 2 O 3 component is preferably 20.0% or less, more preferably 18.0% or less, more preferably 16.0% or less, more preferably 14.0% or less, still more preferably. The upper limit is 12.0% or less, most preferably 11.0% or less.
 SiO成分は、B成分より多く含有していることが好ましい。B成分がSiO成分より多いと、部分分散比が上昇してしまうため、SiO成分をB成分より多く含有することによって、ガラスを安定化させながら部分分散比を下げることができる。 The SiO 2 component is preferably contained in a larger amount than the B 2 O 3 component. If the B 2 O 3 component is larger than the SiO 2 component, the partial dispersion ratio will increase. Therefore, by containing the SiO 2 component more than the B 2 O 3 component, the partial dispersion ratio is lowered while stabilizing the glass. be able to.
 La成分は、失透を低減させながら、部分分散比を小さくできる成分であり、含有させることで失透しやすくなる他の希土類とは異なった効果を奏する。
 特に、La成分の含有量を0%以上にすることで、屈折率を高め、本発明の範囲の成分内で調整することで異常分散性を小さくすることができる。従って、La成分の含有量は、好ましくは0%以上、より好ましくは1.0%以上、より好ましくは2.0%以上、さらに好ましくは3.0%以上、さらに好ましくは4.0%以上、最も好ましくは5.0%以上を下限とする。
 他方で、La成分の含有量を20.0%以下にすることで、アッベ数の上昇を抑えられ、失透を低減でき、且つ着色を低減できる。従って、La成分の含有量は、好ましくは20.0%以下、より好ましくは19.0%以下、さらに好ましくは17.0%以下、最も好ましくは16.0%以下を上限とする。
The La 2 O 3 component is a component that can reduce the partial dispersion ratio while reducing devitrification, and when it is contained, it has an effect different from that of other rare earths that are easily devitrified.
In particular, by setting the content of the La 2 O 3 component to 0% or more, the refractive index can be increased, and by adjusting within the range of the components of the present invention, the anomalous dispersibility can be reduced. Therefore, the content of the La 2 O 3 component is preferably 0% or more, more preferably 1.0% or more, more preferably 2.0% or more, still more preferably 3.0% or more, still more preferably 4. The lower limit is 0% or more, most preferably 5.0% or more.
On the other hand, by setting the content of the La 2 O 3 component to 20.0% or less, an increase in the Abbe number can be suppressed, devitrification can be reduced, and coloring can be reduced. Therefore, the content of the La 2 O 3 component is preferably 20.0% or less, more preferably 19.0% or less, further preferably 17.0% or less, and most preferably 16.0% or less. ..
 Gd成分、Y成分及びYb成分は、少なくとも0%超いずれかを含有することで、屈折率を高め、且つ部分分散比を小さくできる任意成分である。
 一方で、Gd成分、Y成分及びYb成分は、多量に含有すると、液相温度が下がり、ガラスを失透させてしまう。
 特に、Gd成分、Y成分及びYb成分のそれぞれの含有量を10.0%以下にすることで、失透を低減でき、且つ着色を低減できる。従って、Gd成分、Y成分及びYb成分のそれぞれの含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%以下、最も好ましくは3.0%以下を上限とする。
The Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component are optional components that can increase the refractive index and reduce the partial dispersion ratio by containing at least any one of more than 0%.
On the other hand, if a large amount of Gd 2 O 3 component, Y 2 O 3 component and Yb 2 O 3 component is contained, the liquidus temperature drops and the glass is devitrified.
In particular, by setting the content of each of the Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component to 10.0% or less, devitrification can be reduced and coloring can be reduced. Therefore, the content of each of the Gd 2 O 3 component, the Y 2 O 3 component, and the Yb 2 O 3 component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0%. Hereinafter, the upper limit is most preferably 3.0% or less.
 NaO成分及びKO成分は、0%超含有する場合に、ガラス原料の熔融性を高められ、着色を低減する任意成分である。
 一方で、NaO成分及びKO成分は、多量に含有すると、ガラスの安定性が悪くなり、耐失透性を下げてしまう。
 他方で、NaO成分及びKO成分の含有量を10.0%以下にすることで、失透を低減できる。従って、NaO成分及びKO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは7.0%以下、さらに好ましくは6.0%以下、最も好ましくは5.0%以下を上限とする。
The Na 2 O component and the K 2 O component are optional components that increase the meltability of the glass raw material and reduce the coloring when the content exceeds 0%.
On the other hand, if a large amount of Na 2 O component and K 2 O component is contained, the stability of the glass is deteriorated and the devitrification resistance is lowered.
On the other hand, devitrification can be reduced by reducing the contents of the Na 2 O component and the K 2 O component to 10.0% or less. Therefore, the contents of the Na 2 O component and the K 2 O component are preferably 10.0% or less, more preferably 8.0% or less, still more preferably 7.0% or less, still more preferably 6.0% or less. Most preferably, the upper limit is 5.0% or less.
 MgO成分は、熔融性を改善し、液相温度を下げることができる任意成分であるが、多量に含有することで、ガラスが失透してしまう。
 他方で、MgO成分の含有量を10.0%以下にすることで、失透を低減できる。従って、MgO成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは2.0%を上限とする。
The MgO component is an optional component that can improve the meltability and lower the liquidus temperature, but if it is contained in a large amount, the glass will be devitrified.
On the other hand, devitrification can be reduced by reducing the content of the MgO component to 10.0% or less. Therefore, the content of the MgO component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0% or less, still more preferably 3.0% or less, and most preferably 2.0. The upper limit is%.
 CaO成分は、ガラスの安定性を向上することができる任意成分である。
 特に、CaO成分の含有量は、0%以上にすることで熔融性を高めることができる。従って、CaO成分の含有量は、好ましくは0%以上、より好ましくは0.1%以上、さらに好ましくは0.5%以上、さらに好ましくは1.0%以上、最も好ましくは2.0%以上を下限とする。
 他方で、CaO成分の含有量を20.0%以下にすることで、プレス成形性が良好となり、且つ部分分散比の上昇を抑えられる。従って、CaO成分の含有量は、好ましくは20.0%以下、より好ましくは17.0%以下、さらに好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは10.0%以下を上限とする。
The CaO component is an optional component that can improve the stability of the glass.
In particular, the meltability can be enhanced by setting the content of the CaO component to 0% or more. Therefore, the content of the CaO component is preferably 0% or more, more preferably 0.1% or more, still more preferably 0.5% or more, still more preferably 1.0% or more, and most preferably 2.0% or more. Is the lower limit.
On the other hand, by setting the content of the CaO component to 20.0% or less, the press moldability is improved and the increase in the partial dispersion ratio can be suppressed. Therefore, the content of the CaO component is preferably 20.0% or less, more preferably 17.0% or less, still more preferably 14.0% or less, still more preferably 12.0% or less, and most preferably 10.0%. The upper limit is% or less.
 SrO成分は、ガラスの安定性を向上することができる任意成分である。
 他方で、SrO成分の含有量を20.0%以下にすることで、プレス成形性が良好となり、且つ部分分散比の上昇を抑えられる。従って、SrO成分の含有量は、好ましくは20.0%以下、より好ましくは17.0%以下、さらに好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは10.0%以下を上限とする。
The SrO component is an optional component that can improve the stability of the glass.
On the other hand, by setting the content of the SrO component to 20.0% or less, the press moldability is improved and the increase in the partial dispersion ratio can be suppressed. Therefore, the content of the SrO component is preferably 20.0% or less, more preferably 17.0% or less, still more preferably 14.0% or less, still more preferably 12.0% or less, and most preferably 10.0%. The upper limit is% or less.
 BaO成分は、ガラスの安定性を向上することができる任意成分である。
 他方で、BaO成分の含有量を20.0%以下にすることで、プレス成形性が良好となり、且つ部分分散比の上昇を抑えられる。従って、BaO成分の含有量は、好ましくは20.0%以下、より好ましくは17.0%以下、さらに好ましくは14.0%以下、さらに好ましくは12.0%以下、最も好ましくは10.0%以下を上限とする。
The BaO component is an optional component that can improve the stability of the glass.
On the other hand, by setting the content of the BaO component to 20.0% or less, the press moldability is improved and the increase in the partial dispersion ratio can be suppressed. Therefore, the content of the BaO component is preferably 20.0% or less, more preferably 17.0% or less, still more preferably 14.0% or less, still more preferably 12.0% or less, and most preferably 10.0%. The upper limit is% or less.
 TiO成分は、屈折率を高め、アッベ数を低くする任意成分である。一方で、TiO成分は、多量に含有すると部分分散比が大きくなる。
 特に、TiO成分の含有量を10.0%以下にすることで、部分分散比の上昇を抑えつつ、アッベ数を低くすることができる。従って、TiO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは2.0%以下を上限とする。
The TiO 2 component is an optional component that increases the refractive index and decreases the Abbe number. On the other hand, when the TiO 2 component is contained in a large amount, the partial dispersion ratio becomes large.
In particular, by setting the content of the TiO 2 component to 10.0% or less, it is possible to reduce the Abbe number while suppressing an increase in the partial dispersion ratio. Therefore, the content of the TiO 2 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 2.0% or less.
 ZnO成分は、安価であり且つ高分散側へ調整することができる任意成分である。一方で、ZnO成分は、多量に含有すると部分分散比が大きくなる。
 特に、ZnO成分の含有量を10.0%以下にすることで、失透や着色を低減することができる。従って、ZnO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%未満、最も好ましくは1.0%以下を上限とする。
The ZnO component is an optional component that is inexpensive and can be adjusted to the high dispersion side. On the other hand, when the ZnO component is contained in a large amount, the partial dispersion ratio becomes large.
In particular, by reducing the content of the ZnO component to 10.0% or less, devitrification and coloring can be reduced. Therefore, the content of the ZnO component is preferably 10.0% or less, more preferably 5.0% or less, further preferably less than 3.0%, and most preferably 1.0% or less.
 Ta成分は、屈折率を高め、アッベ数及び部分分散比を下げ、且つ耐失透性を高められる任意成分である。
 特に、Ta成分の含有量を10.0%以下にすることで、希少鉱物資源であるTa成分の使用量が減り、且つガラスがより低温で熔解し易くなるため、ガラスの生産コストを低減できる。また、これによりTa成分の過剰な含有によるガラスの失透を低減できる。従って、Ta成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。特に、ガラスの材料コストを低減させる観点では、Ta成分を含有しなくてもよい。
The Ta 2 O 5 component is an optional component capable of increasing the refractive index, lowering the Abbe number and the partial dispersion ratio, and increasing the devitrification resistance.
In particular, by reducing the content of the Ta 2 O 5 component to 10.0% or less, the amount of the Ta 2 O 5 component, which is a rare mineral resource, is reduced, and the glass is easily melted at a lower temperature. Production cost can be reduced. Further, this can reduce the devitrification of the glass due to the excessive content of the Ta 2 O 5 component. Therefore, the content of the Ta 2 O 5 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. .. In particular, from the viewpoint of reducing the material cost of glass, it is not necessary to contain the Ta 2 O 5 component.
 WO成分は、屈折率を高めてアッベ数を低くし且つガラス原料の熔解性を高められる任意成分である。WO成分の含有量を10.0%以下にすることで、ガラスの部分分散比を上昇し難くでき、且つ、ガラスの着色を低減して内部透過率を高められる。従って、WO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。 The WO 3 component is an optional component that can increase the refractive index, reduce the Abbe number, and enhance the meltability of the glass raw material. By setting the content of the WO 3 component to 10.0% or less, it is possible to make it difficult to increase the partial dispersion ratio of the glass, and it is possible to reduce the coloring of the glass and increase the internal transmittance. Therefore, the content of the WO 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less.
 P成分は、ガラスの安定性を高められる任意成分である。
 他方で、P成分の含有量を10.0%以下にすることで、P成分の過剰な含有による部分分散比の上昇を低減できる。従って、P成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、さらに好ましくは2.0%未満、最も好ましくは1.0%以下を上限とする。
The P 2 O 5 component is an optional component that can enhance the stability of the glass.
On the other hand, by setting the content of the P 2 O 5 component to 10.0% or less, the increase in the partial dispersion ratio due to the excessive content of the P 2 O 5 component can be reduced. Therefore, the content of the P 2 O 5 component is preferably 10.0% or less, more preferably 5.0% or less, still more preferably 3.0% or less, still more preferably less than 2.0%, and most preferably. The upper limit is 1.0% or less.
 GeO成分は、屈折率を高め、且つ失透を低減できる任意成分である。GeO成分の含有量を10.0%以下にすることで、高価なGeO成分の使用量が低減されるため、ガラスの材料コストを低減できる。従って、GeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。 The GeO 2 component is an optional component that can increase the refractive index and reduce devitrification. By reducing the content of the GeO 2 component to 10.0% or less, the amount of the expensive GeO 2 component used can be reduced, so that the material cost of the glass can be reduced. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less.
 Al成分は、屈折率を高め、且つ耐失透性を向上できる任意成分である。
 他方で、Al成分の含有量を10.0%以下にすることで、Al成分の過剰な含有による失透を低減できる。従って、Al成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。
The Al 2 O 3 component is an optional component capable of increasing the refractive index and improving the devitrification resistance.
On the other hand, by the content of the Al 2 O 3 component to 10.0% or less, it can be reduced devitrification due to excessive content of Al 2 O 3 component. Therefore, the content of the Al 2 O 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. ..
 Ga成分は、屈折率を高め、且つ耐失透性を向上できる任意成分である。
 他方で、Ga成分の含有量を10.0%以下にすることで、Ga成分の過剰な含有による失透を低減できる。従って、Ga成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。
The Ga 2 O 3 component is an optional component capable of increasing the refractive index and improving the devitrification resistance.
On the other hand, by the content of Ga 2 O 3 component to 10.0% or less, it can be reduced devitrification due to excessive content of Ga 2 O 3 component. Therefore, the content of the Ga 2 O 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. ..
 Bi成分は、屈折率を高めてアッベ数を低くでき、且つガラス転移点を低くできる任意成分である。Bi成分の含有量を10.0%以下にすることで、部分分散比を上昇し難くでき、且つ、ガラスの着色を低減して内部透過率を高めることができる。従って、Bi成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、最も好ましくは1.0%以下を上限とする。 The Bi 2 O 3 component is an optional component that can increase the refractive index, reduce the Abbe number, and lower the glass transition point. By setting the content of the Bi 2 O 3 component to 10.0% or less, it is possible to make it difficult to increase the partial dispersion ratio, and it is possible to reduce the coloring of the glass and increase the internal transmittance. Therefore, the content of the Bi 2 O 3 component is preferably 10.0% or less, more preferably 5.0% or less, further preferably 3.0% or less, and most preferably 1.0% or less. ..
 TeO成分は、屈折率を高め、部分分散比を低くでき、且つガラス転移点を低くできる任意成分である。TeO成分の含有量を10.0%以下にすることで、ガラスの着色を低減して内部透過率を高めることができる。また、高価なTeO成分の使用を低減することで、より材料コストの安いガラスを得られる。従って、TeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%、最も好ましくは1.0%以下を上限とする。特に、ガラスの材料コストを低減させる観点では、TeO成分を含有しなくてもよい。 The TeO 2 component is an optional component capable of increasing the refractive index, lowering the partial dispersion ratio, and lowering the glass transition point. By setting the content of the TeO 2 component to 10.0% or less, the coloring of the glass can be reduced and the internal transmittance can be increased. Further, by reducing the use of the expensive TeO 2 component, a glass having a lower material cost can be obtained. Therefore, the content of the TeO 2 component is preferably 10.0% or less, more preferably 5.0% or less, still more preferably 3.0%, and most preferably 1.0% or less. In particular, from the viewpoint of reducing the material cost of glass, it is not necessary to contain the TeO 2 component.
 SnOは、熔解したガラスを清澄(脱泡)でき、且つガラスの可視光透過率を高められる任意成分である。SnOの含有量を1.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を生じ難くすることができる。また、SnOと熔解設備(特にPt等の貴金属)との合金化が低減されるため、熔解設備の長寿命化を図ることができる。従って、SnOの含有量は、好ましくは1.0%以下、より好ましくは0.5%以下、さらに好ましくは0.1%以下を上限とする。 SnO 2 is an optional component that can clarify (defoam) the molten glass and increase the visible light transmittance of the glass. By setting the SnO 2 content to 1.0% or less, it is possible to prevent the glass from being colored or devitrified by the reduction of the molten glass. Further, since the alloying of SnO 2 and the melting equipment (particularly noble metal such as Pt) is reduced, the life of the melting equipment can be extended. Therefore, the SnO 2 content is preferably 1.0% or less, more preferably 0.5% or less, and further preferably 0.1% or less.
 Sb成分は、ガラスの脱泡を促進し、ガラスを清澄する成分であり、本発明の光学ガラス中の任意成分である。Sb成分は、ガラス全質量に対する含有量を1.0%以下にすることで、ガラス熔融時における過度の発泡を生じ難くすることができ、Sb成分が熔解設備(特にPt等の貴金属)と合金化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%以下、さらに好ましくは0.3%以下、最も好ましくは0.1%以下を上限とする。 The Sb 2 O 3 component is a component that promotes defoaming of the glass and clarifies the glass, and is an optional component in the optical glass of the present invention. By setting the content of the Sb 2 O 3 component to 1.0% or less of the total mass of the glass, it is possible to prevent excessive foaming during glass melting, and the Sb 2 O 3 component is a melting facility (particularly Pt). It can be made difficult to alloy with precious metals such as. Therefore, the content of the Sb 2 O 3 component with respect to the total mass of the glass in the oxide conversion composition is preferably 1.0% or less, more preferably 0.5% or less, still more preferably 0.3% or less, and most preferably. The upper limit is 0.1% or less.
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。 The component that clarifies and defoams the glass is not limited to the above Sb 2 O 3 component, and a clarifying agent, a defoaming agent, or a combination thereof known in the field of glass production can be used. ..
 Ln成分(式中、LnはLa、Y、Gd、Ybからなる群より選択される1種以上)は、含有量の和(質量和)が、1.0%以上含有する場合に、屈折率を高めながら、部分分散比を小さくすることができる。従って、Ln成分の和は、好ましくは1.0%以上、より好ましくは3.0%以上、さらに好ましくは5.0%以上、最も好ましくは7.0%以上を下限とする。
 他方で、Ln成分の含有量の和(質量和)は、20.0%以下とすることで、過剰な含有による失透を低減できる。従って、好ましくは20.0%以下、より好ましくは18.0%以下、さらに好ましくは17.0%以下、最も好ましくは16.0%以下を上限とする。
The Ln 2 O 3 component (in the formula, Ln is one or more selected from the group consisting of La, Y, Gd, and Yb) is contained when the sum of the contents (mass sum) is 1.0% or more. , The partial dispersion ratio can be reduced while increasing the refractive index. Therefore, the lower limit of the sum of the Ln 2 O 3 components is preferably 1.0% or more, more preferably 3.0% or more, still more preferably 5.0% or more, and most preferably 7.0% or more.
On the other hand, by setting the sum (mass sum) of the contents of the Ln 2 O 3 components to 20.0% or less, devitrification due to excessive content can be reduced. Therefore, the upper limit is preferably 20.0% or less, more preferably 18.0% or less, further preferably 17.0% or less, and most preferably 16.0% or less.
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)は、含有量の和(質量和)が、1.0%以上含有する場合に、ガラスの安定性を向上することができる。従って、RnO成分の和は、好ましくは1.0%以上、より好ましくは2.5%以上、さらに好ましくは3.0%以上、最も好ましくは3.5%以上を下限とする。
 他方で、RnO成分の含有量の和(質量和)は、15.0%以下とすることで、屈折率の低下を抑えられ、且つ過剰な含有による失透を低減できる。従って、好ましくは15.0%以下、より好ましくは14.0%以下、さらに好ましくは13.0%以下、最も好ましくは12.0%以下を上限とする。
The Rn 2 O component (in the formula, Rn is one or more selected from the group consisting of Li, Na, and K) is contained in the glass when the sum of the contents (mass sum) is 1.0% or more. Stability can be improved. Therefore, the lower limit of the sum of the Rn 2 O components is preferably 1.0% or more, more preferably 2.5% or more, still more preferably 3.0% or more, and most preferably 3.5% or more.
On the other hand, when the sum of the contents (mass sum) of the Rn 2 O components is 15.0% or less, the decrease in the refractive index can be suppressed and the devitrification due to the excessive content can be reduced. Therefore, the upper limit is preferably 15.0% or less, more preferably 14.0% or less, further preferably 13.0% or less, and most preferably 12.0% or less.
 RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和は、5.0%以上とする場合に、低温熔融性を向上させることができる。従って、RO成分の含有量の和は、好ましくは5.0%、より好ましくは5.3%以上、さらに好ましくは5.8%以上、最も好ましくは6.0%以上を下限とする。
 一方で、RO成分の含有量の和は、過剰な含有による耐失透性の低下を抑えられるために、20.0%以下が好ましい。従って、RO成分の質量和は、好ましくは20.0%以下、より好ましくは19.0%以下、さらに好ましくは18.0%以下、最も好ましくは16.0%以下を上限とする。
When the sum of the contents of the RO component (in the formula, R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 5.0% or more, the low temperature meltability is improved. Can be done. Therefore, the lower limit of the sum of the contents of the RO components is preferably 5.0%, more preferably 5.3% or more, further preferably 5.8% or more, and most preferably 6.0% or more.
On the other hand, the sum of the contents of the RO components is preferably 20.0% or less because the decrease in devitrification resistance due to the excessive content can be suppressed. Therefore, the mass sum of the RO components is preferably 20.0% or less, more preferably 19.0% or less, still more preferably 18.0% or less, and most preferably 16.0% or less.
 質量和BaO+CaO+SrOは、5.0%以上とする場合に、低温熔融性を向上させることができる。従って、質量和BaO+CaO+SrOは、好ましくは5.0%以上、より好ましくは5.3%以上、さらに好ましくは5.8%以上、最も好ましくは6.0%以上を下限とする。
 一方で、質量和BaO+CaO+SrOは、過剰に含有させると、屈折率や分散を大きくしてしまい、所望の光学特性を得ることが難しくなり、且つ失透性を悪化させてしまうため、20.0%以下が好ましい。従って、質量和BaO+CaO+SrOは、好ましくは20.0%以下、より好ましくは19.0%以下、さらに好ましくは18.0%以下、最も好ましくは16.0%以下を上限とする。
When the mass sum BaO + CaO + SrO is 5.0% or more, the low temperature meltability can be improved. Therefore, the lower limit of the mass sum BaO + CaO + SrO is preferably 5.0% or more, more preferably 5.3% or more, further preferably 5.8% or more, and most preferably 6.0% or more.
On the other hand, if the sum of mass BaO + CaO + SrO is excessively contained, the refractive index and dispersion will be increased, it will be difficult to obtain desired optical characteristics, and the devitrification property will be deteriorated. The following is preferable. Therefore, the mass sum BaO + CaO + SrO is preferably 20.0% or less, more preferably 19.0% or less, still more preferably 18.0% or less, and most preferably 16.0% or less.
 質量比(LiO+La)/SiOは、0.35以上とする場合に、ガラスを安定させつつ、部分分散比を下げることができる。従って、質量比(LiO+La)/SiOは、好ましくは0.35以上、より好ましくは0.36以上、さらに好ましくは0.38以上、最も好ましくは0.40以上を下限とする。
 一方で、質量比(LiO+La)/SiOは、液相温度の上昇を抑えるためには、1.00以下が好ましい。従って、質量比(LiO+La)/SiOは、好ましくは1.00以下、より好ましくは0.90以下、さらに好ましくは0.88以下、最も好ましくは0.85以下を上限とする。
When the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is 0.35 or more, the partial dispersion ratio can be lowered while stabilizing the glass. Therefore, the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 preferably has a lower limit of 0.35 or more, more preferably 0.36 or more, still more preferably 0.38 or more, and most preferably 0.40 or more. To do.
On the other hand, the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is preferably 1.00 or less in order to suppress an increase in the liquidus temperature. Therefore, the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is preferably 1.00 or less, more preferably 0.90 or less, still more preferably 0.88 or less, and most preferably 0.85 or less. To do.
 質量比LiO/(LiO+NaO+KO)は、0.50以上とする場合に、部分分散比の低下に作用するLiO成分の効果を最も効果的に発揮し、熔融性を上昇させながら、失透を抑えることができる。従って、質量比LiO/(LiO+NaO+KO)は、好ましくは0.50以上、より好ましくは0.52以上、さらに好ましくは0.54以上、最も好ましくは0.55以上を下限とする。 When the mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.50 or more, the effect of the LiO 2 component acting on the reduction of the partial dispersion ratio is most effectively exhibited, and the meltability is improved. It is possible to suppress devitrification while raising it. Therefore, the mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is preferably 0.50 or more, more preferably 0.52 or more, still more preferably 0.54 or more, and most preferably 0.55 or more. The lower limit.
 質量比(SiO+B+Ln)/RnOは、3.50以上とする場合に、失透を抑制しつつ、液相温度を下げることができる。従って、質量比(SiO+B+Ln)/RnOは、好ましくは3.50以上、より好ましくは3.55以上、さらに好ましくは3.58超、最も好ましくは3.60以上を下限とする。
 一方で、質量比(SiO+B+Ln)/RnOは、12.0以下とする場合に、アッベ数(ν)を維持することができる。従って、質量比(SiO+B+Ln)/RnOは、好ましくは12.0以下、より好ましくは11.80以下、さらに好ましくは11.50以下、最も好ましくは11.20以下を上限とする。
When the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is 3.50 or more, the liquidus temperature can be lowered while suppressing devitrification. Therefore, the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is preferably 3.50 or more, more preferably 3.55 or more, still more preferably more than 3.58, and most preferably 3. The lower limit is 60 or more.
On the other hand, when the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is 12.0 or less, the Abbe number (ν d ) can be maintained. Therefore, the mass ratio (SiO 2 + B 2 O 3 + Ln 2 O 3 ) / Rn 2 O is preferably 12.0 or less, more preferably 11.80 or less, still more preferably 11.50 or less, and most preferably 11. The upper limit is 20 or less.
 質量比(ZnO+TiO+P)/(ZrO+La+LiO)は、0.15未満とする場合に、ZnO成分、TiO成分及びP成分による部分分散比の上昇を抑えることができる。従って、質量比(ZnO+TiO+P)/(ZrO+La+LiO)は、好ましくは0.15未満、より好ましくは0.12以下、さらに好ましくは0.10以下、最も好ましくは0.08以下を上限とする。 When the mass ratio (ZnO + TiO 2 + P 2 O 5 ) / (ZrO 2 + La 2 O 3 + LiO 2 ) is less than 0.15, the partial dispersion ratio increases due to the ZnO component, TiO 2 component, and P 2 O 5 component. Can be suppressed. Therefore, the mass ratio (ZnO + TiO 2 + P 2 O 5 ) / (ZrO 2 + La 2 O 3 + LiO 2 ) is preferably less than 0.15, more preferably 0.12 or less, still more preferably 0.10 or less, most preferably 0.10 or less. The upper limit is 0.08 or less.
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<Ingredients that should not be included>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferable to be contained will be described.
 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加できる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 Other components can be added as needed within a range that does not impair the characteristics of the glass of the present invention. However, each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb and Lu, is used alone. Alternatively, even if it is compounded and contained in a small amount, the glass is colored and has a property of causing absorption at a specific wavelength in the visible region. Therefore, it is preferable that the glass is substantially not contained, especially in optical glass using a wavelength in the visible region. ..
 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。 Further, since lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components having a high environmental load, it is desirable that they are not substantially contained, that is, they are not contained at all except for unavoidable contamination.
 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物質として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。 Furthermore, each component of Th, Cd, Tl, Os, Be, and Se has tended to refrain from being used as a harmful chemical substance in recent years, and is used not only in the glass manufacturing process but also in the processing process and disposal after commercialization. Up to this point, environmental measures are required. Therefore, when the environmental impact is important, it is preferable that these are not substantially contained.
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗熔融した後、金坩堝、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて1000~1400℃の温度範囲で2~5時間熔融し、攪拌均質化して泡切れ等を行った後、950~1250℃の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込んで徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted, and then a gold crucible and a platinum crucible. , Platinum alloy crucible or iridium crucible, melt in a temperature range of 1000 to 1400 ° C for 2 to 5 hours, homogenize with stirring to break bubbles, etc., then lower to a temperature of 950 to 1250 ° C and then finish stirring. It is produced by removing the crucible, casting it into a mold, and slowly cooling it.
<物性>
 本発明の光学ガラスは、所定の範囲の屈折率(n)とアッベ数(ν)を有する。
 本発明の光学ガラスの屈折率(n)は、好ましくは1.70000以上、より好ましくは1.73000以上、さらに好ましくは1.75000以上を下限とする。この屈折率の上限は、好ましくは1.80000以下、より好ましくは1.79000以下を上限とする。
 本発明の光学ガラスのアッベ数(ν)は、好ましくは30.00以上、より好ましくは32.00以上、さらに好ましくは33.00以上を下限とする。他方で、本発明の光学ガラスのアッベ数(ν)は、好ましくは40.00以下、より好ましくは38.00以下、さらに好ましくは37.00以下を上限とする。
 このような屈折率及びアッベ数を有する本発明の光学ガラスは光学設計上有用であり、特に高い結像特性等を図りながらも、光学系の小型化を図ることができるため、光学設計の自由度を広げることができる。
<Physical characteristics>
The optical glass of the present invention has a refractive index ( nd ) and an Abbe number (ν d ) in a predetermined range.
Refractive index of the optical glass of the present invention (n d) is preferably 1.70000 or more, more preferably 1.73000 or more, more preferably the lower limit or more 1.75000. The upper limit of the refractive index is preferably 1.80000 or less, more preferably 1.79000 or less.
The Abbe number (ν d ) of the optical glass of the present invention is preferably 30.00 or more, more preferably 32.00 or more, and further preferably 33.00 or more as the lower limit. On the other hand, the Abbe number (ν d ) of the optical glass of the present invention is preferably 40.00 or less, more preferably 38.00 or less, still more preferably 37.00 or less.
The optical glass of the present invention having such a refractive index and Abbe number is useful in optical design, and the optical system can be miniaturized while achieving particularly high imaging characteristics, so that the optical design is free. You can increase the degree.
 本発明の光学ガラスは、低い部分分散比(θg,F)を有する。
 より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、下限は特に限定されないが、好ましくは0.560以上、より好ましくは0.565以上であってもよい。他方で、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは0.600以下、より好ましくは0.595以下、さらに好ましくは0.593以下を上限とする。また、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との関係において、好ましくは(-0.00162×ν+0.624)≦(θg,F)≦(-0.00162×ν+0.654)の関係を満たす。
 このように、本発明の光学ガラスでは、SiO成分及びNb成分を多く含有する従来公知のガラスよりも低い部分分散比(θg,F)を有する。そのため、この光学ガラスから形成される光学素子を、色収差の補正に好ましく用いることができる。
The optical glass of the present invention has a low partial dispersion ratio (θg, F).
More specifically, the partial dispersion ratio (θg, F) of the optical glass of the present invention is not particularly limited, but may be preferably 0.560 or more, more preferably 0.565 or more. On the other hand, the partial dispersion ratio (θg, F) of the optical glass of the present invention is preferably 0.600 or less, more preferably 0.595 or less, still more preferably 0.593 or less. Further, the partial dispersion ratio (θg, F) of the optical glass of the present invention is preferably (−0.00162 × ν d +0.624) ≦ (θg, F) ≦ in relation to the Abbe number (ν d). The relationship (-0.00162 x ν d +0.654) is satisfied.
As described above, the optical glass of the present invention has a lower partial dispersion ratio (θg, F) than the conventionally known glass containing a large amount of SiO 2 component and Nb 2 O 5 component. Therefore, the optical element formed from this optical glass can be preferably used for correcting chromatic aberration.
 ここで、本発明の光学ガラスのアッベ数(ν)との関係における部分分散比(θg,F)は、下限は特に限定されないが、好ましくは(-0.00162×ν+0.624)以上、より好ましくは(-0.00162×ν+0.627)以上、さらに好ましくは(-0.00162×ν+0.630)以上であってもよい。他方で、本発明の光学ガラスのアッベ数(ν)との関係における部分分散比(θg,F)の上限は、好ましくは(-0.00162×ν+0.654)以下、より好ましくは(-0.00162×ν+0.651)以下、さらに好ましくは(-0.00162×ν+0.648)以下とする。 Here, the lower limit of the partial dispersion ratio (θg, F) in relation to the Abbe number (ν d ) of the optical glass of the present invention is not particularly limited, but is preferably (−0.00162 × ν d +0.624). As described above, it may be more preferably (−0.00162 × ν d +0.627) or more, and even more preferably (−0.00162 × ν d +0.630) or more. On the other hand, the upper limit of the partial dispersion ratio (θg, F) in relation to the Abbe number (ν d ) of the optical glass of the present invention is preferably (−0.00162 × ν d +0.654) or less, more preferably. It is (-0.00162 x ν d +0.651) or less, more preferably (-0.00162 x ν d +0.648) or less.
本発明の光学ガラスは、可視光透過率、特に可視光のうち短波長側の光の透過率が高く
、それにより着色が少ないことが好ましい。
 特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分
光透過率80%を示す波長(λ80)は、好ましくは420nm以下、より好ましくは417nm以下、さらに好ましくは410nm以下を上限とする。
 また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ)は、好ましくは345nm以下、より好ましくは343nm以下、さらに好ましくは342nm以下を上限とする。
 これらにより、ガラスの吸収端が紫外領域の近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。
It is preferable that the optical glass of the present invention has a high visible light transmittance, particularly a light transmittance on the short wavelength side of visible light, and thus less coloring.
In particular, the optical glass of the present invention has a wavelength (λ 80 ) showing a spectral transmittance of 80% in a sample having a thickness of 10 mm, preferably 420 nm or less, more preferably 417 nm or less, still more preferably. The upper limit is 410 nm or less.
Further, in the optical glass of the present invention, the shortest wavelength (λ 5 ) showing a spectral transmittance of 5% in a sample having a thickness of 10 mm is preferably 345 nm or less, more preferably 343 nm or less, still more preferably 342 nm or less. ..
As a result, the absorbing edge of the glass becomes near the ultraviolet region, and the transparency of the glass with respect to visible light is enhanced. Therefore, this optical glass can be preferably used for an optical element such as a lens that transmits light.
 本発明の光学ガラスは、耐失透性が高いこと、より具体的には、低い液相温度を有することが好ましい。
 すなわち、本発明の光学ガラスの液相温度は、好ましくは1150℃以下、より好ましくは1148℃以下、さらに好ましくは1145℃以下を上限とする。これにより、より低い温度で熔融ガラスを流出しても、作製されたガラスの結晶化が低減されるため、特に熔融状態からガラスを成形したときの失透を低減でき、ガラスを用いた光学素子の光学特性への影響を低減できる。また、ガラスの熔解温度を低くしてもガラスを成形できるため、ガラスの成形時に消費するエネルギーを抑えることで、ガラスの製造コストを低減できる。
The optical glass of the present invention preferably has high devitrification resistance, and more specifically, has a low liquidus temperature.
That is, the liquidus temperature of the optical glass of the present invention is preferably 1150 ° C. or lower, more preferably 1148 ° C. or lower, and further preferably 1145 ° C. or lower. As a result, even if the molten glass flows out at a lower temperature, the crystallization of the produced glass is reduced, so that devitrification can be reduced especially when the glass is molded from the molten state, and the optical element using the glass. The effect on the optical characteristics of the glass can be reduced. Further, since the glass can be molded even if the melting temperature of the glass is lowered, the manufacturing cost of the glass can be reduced by suppressing the energy consumed during the molding of the glass.
[プリフォーム及び光学素子]
 作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製できる。すなわち、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、例えば研磨加工を行って作製したプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりできる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Preforms and optics]
From the produced optical glass, a glass molded body can be produced by using a mold press molding means such as reheat press molding or precision press molding. That is, a preform for mold press molding is produced from optical glass, and after reheat press molding is performed on this preform, polishing is performed to produce a glass molded product, or for example, polishing is performed to produce the preform. A glass molded body can be produced by performing precision press molding on the preform. The means for producing the glass molded body is not limited to these means.
 このようにして作製されるガラス成形体は、様々な光学素子に有用であるが、その中でも特に、レンズやプリズム等の光学素子の用途に用いることが好ましい。これにより、光学素子が設けられる光学系の透過光における、色収差による色のにじみが低減される。そのため、この光学素子をカメラに用いた場合は撮影対象物をより正確に表現でき、この光学素子をプロジェクタに用いた場合は所望の映像をより高精彩に投影できる。 The glass molded body produced in this way is useful for various optical elements, but it is particularly preferable to use it for applications of optical elements such as lenses and prisms. As a result, color bleeding due to chromatic aberration in the transmitted light of the optical system provided with the optical element is reduced. Therefore, when this optical element is used in a camera, an object to be photographed can be expressed more accurately, and when this optical element is used in a projector, a desired image can be projected with higher definition.
 本発明の実施例(No.1~No.20)及び比較例Aの組成、並びに、屈折率(n)、アッベ数(ν)、部分分散比(θg,F)、液相温度、透過率λ及びλ80の結果を表1~表2に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例にのみ限定されるものではない。 Compositions of Examples (No.1 ~ No.20) and Comparative Example A of the present invention, and a refractive index (n d), Abbe number ([nu d), the partial dispersion ratio ([theta] g, F), the liquidus temperature, The results of the transmittances λ 5 and λ 80 are shown in Tables 1 and 2. The following examples are for purposes of illustration only, and are not limited to these examples.
 実施例及び比較例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度の原料を選定し、表に示した各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、石製坩堝(ガラスの熔融性によっては白金坩堝、アルミナ坩堝を用いても構わない)に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1400℃の温度範囲で0.5~5時間熔解した後、白金坩堝に移して攪拌均質化して泡切れ等を行った後、1000~1200℃に温度を下げて攪拌均質化してから金型に鋳込み、徐冷してガラスを作製した。 The glasses of Examples and Comparative Examples are of high purity, which are used for ordinary optical glass such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc., which correspond to each component as a raw material. After selecting the raw materials, weighing them so as to have the composition ratios of each of the examples and comparative examples shown in the table and mixing them uniformly, a stone crucible (depending on the meltability of the glass, a platinum crucible or an alumina crucible is used. It does not matter), and after melting in an electric furnace in a temperature range of 1100 to 1400 ° C. for 0.5 to 5 hours depending on the degree of difficulty of melting the glass composition, it is transferred to a platinum crucible and stirred to homogenize to break bubbles, etc. After that, the temperature was lowered to 1000 to 1200 ° C., the mixture was stirred and homogenized, cast into a mold, and slowly cooled to prepare glass.
 実施例及び比較例のガラスの屈折率(n)、アッベ数(ν)及び部分分散比(θg,F)は、JIS B 7071-2:2018に規定されるVブロック法に準じて測定した。ここで、屈折率(n)は、ヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、ヘリウムランプのd線に対する屈折率(n)と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。また、部分分散比(θg,F)は、Hgランプのg線に対する屈折率(n)と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、部分分散比(θg,F)=(n-n)/(n-n)の式から算出した。これらの屈折率(n)、アッベ数(ν)及び部分分散比(θg,F)は、徐冷降温速度を-25℃/hrにして得られたガラスについて測定を行うことで求めた。 The refractive index of the glass of the Examples and Comparative Examples (n d), Abbe number ([nu d) and partial dispersion ratio ([theta] g, F) is, JIS B 7071-2: Measured in accordance with V-block method specified in 2018 did. Here refractive index (n d) is indicated by the measured value for the helium lamp d line (587.56 nm). The Abbe number ([nu d) is the refractive index at the d-line of a helium lamp and (n d), to the refractive index with respect to hydrogen lamp F line (486.13nm) (n F), C line (656.27 nm) It was calculated from the formula of Abbe number (ν d ) = [(n d -1) / (n F − n C )] using the value of the refractive index (n C). The partial dispersion ratio ([theta] g, F) is the refractive index for the g-line of Hg lamp and (n g), the refractive index with respect to hydrogen lamp F line (486.13nm) (n F), C line (656.27 nm ) With respect to the value of the refractive index (n C ), it was calculated from the formula of partial dispersion ratio (θ g, F) = (ng − n F ) / (n F − n C). These refractive index (n d), Abbe number ([nu d) and partial dispersion ratio ([theta] g, F) is obtained by making measurements on glass obtained by the annealing cooling rate to -25 ° C. / hr ..
 そして、測定により得られたアッベ数(ν)及び部分分散比(θg,F)の値から、関係式(θg,F)=-a×ν+bにおける、傾きaが0.00162のときの切片bを求めた。 Then, from the value of the obtained Abbe number obtained by measuring ([nu d) and partial dispersion ratio ([theta] g, F), equation (θg, F) = - in a 2 × ν d + b 2 , gradient a 2 is 0. The intercept b 2 at the time of 00162 was obtained.
 実施例及び比較例のガラスの透過率は、日本光学硝子工業会規格JOGIS02-2003に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、分光透過率が80%及び5%を示す波長(λ80、λ)を求めた。
 
The transmittance of the glass of Examples and Comparative Examples was measured according to the Japan Optical Glass Industry Association standard JOBIS02-2003. In the present invention, the presence or absence and degree of coloring of the glass were determined by measuring the transmittance of the glass. Specifically, a face-to-face parallel polished product having a thickness of 10 ± 0.1 mm is measured for a spectral transmittance of 200 to 800 nm according to JISZ8722, and wavelengths (λ 80 , λ) showing spectral transmittances of 80% and 5%. 5 ) was requested.
 実施例及び比較例のガラスの液相温度は、粉砕したガラス試料を10mm間隔で白金板上に載せ、これを800℃から1200℃の温度傾斜のついた炉内で30分間保持した後で取り出し、冷却後にガラス試料中の結晶の有無を倍率80倍の顕微鏡にて観察することで測定した。この際、サンプルとして光学ガラスを直径2mm程度の粒状に粉砕した。 For the liquidus temperature of the glass of Examples and Comparative Examples, crushed glass samples were placed on a platinum plate at 10 mm intervals, held in a furnace with a temperature gradient of 800 ° C. to 1200 ° C. for 30 minutes, and then taken out. After cooling, the presence or absence of crystals in the glass sample was measured by observing with a microscope at a magnification of 80 times. At this time, as a sample, optical glass was pulverized into granules having a diameter of about 2 mm.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表に表されるように、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.70000以上であるとともに、1.80000以下であり所望の範囲内であった。
また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が30.00以上であるとともに40.00以下であり所望の範囲内であった。
As represented in the table, the optical glasses of Examples of the present invention are both refractive index (n d) with at 1.70000 or more, were within the desired range is at 1.80000 or less.
In addition, the optical glasses of the examples of the present invention all had an Abbe number (ν d ) of 30.00 or more and 40.00 or less, which were within a desired range.
 表に表されるように、本発明の実施例の光学ガラスは、アッベ数(ν)及び部分分散比(θg,F)の関係式 (-0.00162×ν+0.624)≦(θg,F)≦(-0.00162×ν+0.654)を満たしていた。 As represented in the table, the optical glasses of Examples of the present invention, the Abbe number ([nu d) and partial dispersion ratio ([theta] g, F) relationship of (-0.00162 × ν d +0.624) ≦ ( θg, F) ≦ (−0.00162 × ν d +0.654) was satisfied.
 表に表されるように、本発明の実施例の光学ガラスは、液相温度が1150℃以下であった。また、本発明の実施例の光学ガラスは、液相温度が低いため、高いリヒートプレス成形性を有することが推察される。 As shown in the table, the optical glass of the embodiment of the present invention had a liquid phase temperature of 1150 ° C. or lower. Further, it is presumed that the optical glass of the embodiment of the present invention has high reheat press moldability because the liquidus temperature is low.
 表に表されるように、実施例の光学ガラスは、いずれも分光透過率80%を示す波長(λ80)が420nm以下であり、かつ分光透過率5%を示す波長(λ)が345nm以下だった。 As shown in the table, all of the optical glasses of the examples have a wavelength (λ 80 ) showing a spectral transmittance of 80% or less of 420 nm and a wavelength (λ 5 ) showing a spectral transmittance of 5% of 345 nm. It was below.
 比較例Aのガラスは、質量比(LiO+La)/SiOが0.35未満のため、激しく失透し、ガラス化しなかった。 Since the mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 of the glass of Comparative Example A was less than 0.35, the glass was severely devitrified and did not vitrify.
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。
 
この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の開示(明細書、図面、クレームを含む)を全てここに援用する。
Although the present invention has been described in detail above for the purpose of exemplification, the present embodiment is merely for the purpose of exemplification, and many modifications can be made by those skilled in the art without departing from the idea and scope of the present invention. Will be understood.

All disclosures (including specifications, drawings, claims) of the documents described in this specification and the Japanese application specification which is the basis of the Paris priority of the present application are incorporated herein by reference.

Claims (8)

  1.  酸化物換算組成の質量%で、
    SiO成分を10.0~35.0%、
    Nb成分を10.0~40.0%、
    ZrO成分を1.0~15.0%、
    LiO成分を1.0~15.0%、
    Ln成分(式中、LnはLa、Y、Gd、Ybからなる群より選択される1種以上)を1.0~20.0%、
    含有し、
    質量比(LiO+La)/SiOが0.35以上であり、
    質量比LiO/(LiO+NaO+KO)が0.50以上であり、
    部分分散比(θg,F)がアッベ数(ν)との間で、(-0.00162×ν+0.624≦(θg,F)≦(-0.00162×ν+0.654)の関係を満たす光学ガラス。
    By mass% of oxide equivalent composition,
    SiO 2 component 10.0 to 35.0%,
    Nb 2 O 5 component 10.0-40.0%,
    The ZrO 2 component from 1.0 to 15.0%,
    Li 2 O component 1.0 to 15.0%,
    Ln 2 O 3 component (in the formula, Ln is one or more selected from the group consisting of La, Y, Gd, Yb) is 1.0 to 20.0%.
    Contains,
    The mass ratio (Li 2 O + La 2 O 3 ) / SiO 2 is 0.35 or more, and
    The mass ratio Li 2 O / (Li 2 O + Na 2 O + K 2 O) is 0.50 or more, and
    Partial dispersion ratio ([theta] g, F) is between the Abbe number (ν d), (- 0.00162 × ν d + 0.624 ≦ (θg, F) ≦ (-0.00162 × ν d +0.654) Optical glass that satisfies the relationship.
  2.  酸化物換算組成の質量%で、
    成分  0~20.0%、
    La成分 0~20.0%、
    CaO成分  0~20.0%、
    SrO成分  0~20.0%、
    BaO成分  0~20.0%、
    NaO成分 0~10.0%、
    含有する請求項1に記載の光学ガラス。
    By mass% of oxide equivalent composition,
    B 2 O 3 component 0-20.0%,
    La 2 O 3 component 0-20.0%,
    CaO component 0-20.0%,
    SrO component 0-20.0%,
    BaO component 0-20.0%,
    Na 2 O component 0 to 10.0%,
    The optical glass according to claim 1.
  3.  SiO成分をB成分より多く含有し、
    質量比(ZnO+TiO+P)/(ZrO+La+LiO)が0.15未満であり、
    質量和BaO+CaO+SrOが5.0~20.0%である、
    請求項1又は2いずれかに記載の光学ガラス。
    Containing more SiO 2 component than B 2 O 3 component,
    The mass ratio (ZnO + TiO 2 + P 2 O 5 ) / (ZrO 2 + La 2 O 3 + LiO 2 ) is less than 0.15.
    The sum of mass BaO + CaO + SrO is 5.0 to 20.0%.
    The optical glass according to claim 1 or 2.
  4.  屈折率(n)が1.70000~1.80000であり、アッベ数(ν)が30.00~40.00である請求項1から3に記載の光学ガラス。 Refractive index (n d) is from 1.70000 to 1.80000, an Abbe's number ([nu d) is 30.00 to 40.00 in the optical glass according to claims 1 to 3.
  5.  液相温度が1150℃以下の請求項1から4に記載の光学ガラス。 The optical glass according to claims 1 to 4, wherein the liquidus temperature is 1150 ° C. or less.
  6.  請求項1から5のいずれか記載の光学ガラスからなる光学素子。 An optical element made of the optical glass according to any one of claims 1 to 5.
  7.  請求項1から5のいずれか記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。 A preform for polishing and / or precision press molding made of the optical glass according to any one of claims 1 to 5.
  8.  請求項6又は7のいずれか記載の光学素子を備える光学機器。 An optical device including the optical element according to any one of claims 6 or 7.
PCT/JP2020/035528 2019-11-07 2020-09-18 Optical glass, preform, and optical element WO2021090589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080075029.XA CN114599617A (en) 2019-11-07 2020-09-18 Optical glass, preform, and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-202690 2019-11-07
JP2019202690A JP7517805B2 (en) 2019-11-07 2019-11-07 Optical glass, preforms and optical elements

Publications (1)

Publication Number Publication Date
WO2021090589A1 true WO2021090589A1 (en) 2021-05-14

Family

ID=75849877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035528 WO2021090589A1 (en) 2019-11-07 2020-09-18 Optical glass, preform, and optical element

Country Status (4)

Country Link
JP (1) JP7517805B2 (en)
CN (1) CN114599617A (en)
TW (1) TW202124310A (en)
WO (1) WO2021090589A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016830A (en) * 1998-04-30 2000-01-18 Hoya Corp Optical glass and optical product
JP2004519402A (en) * 2001-03-13 2004-07-02 コーニング インコーポレイテッド Ophthalmic segment glass with high nD
JP2006137628A (en) * 2004-11-11 2006-06-01 Hoya Corp Optical glass, glass material for press molding and its manufacturing method, and optical component and its manufacturing method
JP2006219365A (en) * 2005-01-17 2006-08-24 Ohara Inc Glass
JP2014080317A (en) * 2012-10-16 2014-05-08 Ohara Inc Optical glass, preform and optical element
JP2017007933A (en) * 2015-06-23 2017-01-12 成都光明光▲電▼股▲分▼有限公司 Optical glass and optical element
WO2019069553A1 (en) * 2017-10-02 2019-04-11 株式会社 オハラ Optical glass, preform, and optical element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950048A (en) * 1982-09-16 1984-03-22 Ohara Inc Optical glass
JP2007007933A (en) * 2005-06-29 2007-01-18 Kyocera Corp Method for correcting optical printing head, optical printing head and image forming apparatus
JP5095564B2 (en) * 2007-09-25 2012-12-12 Hoya株式会社 Mold, method for manufacturing glass molded body using the mold, and method for manufacturing optical element
JP2012206893A (en) * 2011-03-29 2012-10-25 Ohara Inc Optical glass, perform, and optical device
CN104876440B (en) * 2015-05-13 2018-05-22 湖北新华光信息材料有限公司 Optical glass
JP6937540B2 (en) * 2015-12-25 2021-09-22 株式会社オハラ Optical glass, preforms and optics
WO2018051754A1 (en) 2016-09-14 2018-03-22 旭硝子株式会社 Tempered lens and method for manufacturing tempered lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016830A (en) * 1998-04-30 2000-01-18 Hoya Corp Optical glass and optical product
JP2004519402A (en) * 2001-03-13 2004-07-02 コーニング インコーポレイテッド Ophthalmic segment glass with high nD
JP2006137628A (en) * 2004-11-11 2006-06-01 Hoya Corp Optical glass, glass material for press molding and its manufacturing method, and optical component and its manufacturing method
JP2006219365A (en) * 2005-01-17 2006-08-24 Ohara Inc Glass
JP2014080317A (en) * 2012-10-16 2014-05-08 Ohara Inc Optical glass, preform and optical element
JP2017007933A (en) * 2015-06-23 2017-01-12 成都光明光▲電▼股▲分▼有限公司 Optical glass and optical element
WO2019069553A1 (en) * 2017-10-02 2019-04-11 株式会社 オハラ Optical glass, preform, and optical element

Also Published As

Publication number Publication date
JP7517805B2 (en) 2024-07-17
JP2021075417A (en) 2021-05-20
TW202124310A (en) 2021-07-01
CN114599617A (en) 2022-06-07

Similar Documents

Publication Publication Date Title
JP6740422B2 (en) Optical glass and optical element
JP7528313B2 (en) Optical glass, preforms and optical elements
JP7089844B2 (en) Optical glass, preforms and optical elements
JP6096502B2 (en) Optical glass and optical element
JP7427068B2 (en) Optical glass, preforms and optical elements
WO2012099168A1 (en) Optical glass, preform, and optical element
JP6727692B2 (en) Optical glass, preforms and optical elements
WO2014034623A1 (en) Optical glass, preform, and optical element
WO2013094619A1 (en) Optical glass and optical element
JP6076594B2 (en) Optical glass, preform and optical element
TWI777931B (en) Optical glass, preforms and optical components
JP2020019711A (en) Optical glass, preform and optical element
JP2022167990A (en) Optical glass, preform and optical element
JP6991667B2 (en) Optical glass, preforms and optics
JP6937540B2 (en) Optical glass, preforms and optics
JP6860268B2 (en) Optical glass, preforms and optics
JP7064283B2 (en) Optical glass, preforms and optical elements
JP7064282B2 (en) Optical glass, preforms and optical elements
JP6804264B2 (en) Optical glass, preforms and optics
JPWO2019031095A1 (en) Optical glass, optical element and optical equipment
JP6675772B2 (en) Optical glass, preform and optical element
WO2020235223A1 (en) Optical glass, preform, and optical element
WO2021090589A1 (en) Optical glass, preform, and optical element
TW201726573A (en) Optical glass, preform and optical element having an index of refraction (nd) and abbe number ([nu]d) in a desired range and a smaller partial dispersion ratio ([theta]g,F)
JP7126350B2 (en) Optical glass, optical elements and preforms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885287

Country of ref document: EP

Kind code of ref document: A1