WO2019069350A1 - Air bubble generator and air bubble generation method - Google Patents

Air bubble generator and air bubble generation method Download PDF

Info

Publication number
WO2019069350A1
WO2019069350A1 PCT/JP2017/035830 JP2017035830W WO2019069350A1 WO 2019069350 A1 WO2019069350 A1 WO 2019069350A1 JP 2017035830 W JP2017035830 W JP 2017035830W WO 2019069350 A1 WO2019069350 A1 WO 2019069350A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cylindrical portion
containing liquid
bubble generation
generation module
Prior art date
Application number
PCT/JP2017/035830
Other languages
French (fr)
Japanese (ja)
Inventor
東吾 保坂
Original Assignee
Hack Japan ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hack Japan ホールディングス株式会社 filed Critical Hack Japan ホールディングス株式会社
Priority to JP2019547213A priority Critical patent/JPWO2019069350A1/en
Priority to PCT/JP2017/035830 priority patent/WO2019069350A1/en
Publication of WO2019069350A1 publication Critical patent/WO2019069350A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles

Definitions

  • the present invention relates to an air bubble generation device and an air bubble generation method, and more particularly to an air bubble generation device and an air bubble generation method for generating a liquid containing fine air bubbles such as nano bubbles.
  • Patent Document 1 describes a gas-containing liquid generating device having a gas-liquid mixing unit that generates a gas-containing liquid by mixing a gas and a liquid, a gas-containing liquid processing unit, and a bubble generation unit.
  • the gas generating unit includes a housing, an opening and closing member, an elastic member, and a support.
  • the gap between the opening and closing member and the support portion is configured such that the flow of the gas-containing liquid causes the opening and closing member to move downstream, and the elastic force reduces the opening and closing member by moving upstream.
  • the gas generating unit is configured to flow the gas-containing liquid from the inlet to the outlet through the gap. According to Patent Document 1, it is possible to generate a gas-containing liquid containing fine bubbles at a high concentration by the above configuration.
  • an object of the present invention is to provide an air bubble generating device and an air bubble generating method that solve the problem that it is difficult to stably generate fine air bubbles.
  • a bubble generating apparatus which is an embodiment of the present invention is A bubble generating device that generates minute bubbles in a gas-containing liquid in which a gas and a liquid are mixed, A first cylindrical portion in which a plurality of through holes are formed, and an inner diameter thicker than the outer diameter of the first cylindrical portion, covering the first cylindrical portion, the first cylindrical portion And b) a second tubular portion into which the gas-containing liquid discharged from the through hole formed in the inflows into the inside;
  • the second tubular portion has a configuration in which a second through hole through which the gas-containing liquid flows from the inside to the outside of the second tubular portion is formed.
  • the bubble generation method which is another form of the present invention is A bubble generating method performed by a bubble generating device for generating minute bubbles in a gas-containing liquid in which a gas and a liquid are mixed, After flowing into the inside of the first cylindrical portion in which a plurality of through holes are formed, the diameter is thicker than the outer diameter of the first cylindrical portion through the through holes of the first cylindrical portion. After the gas-containing liquid flows to the second cylindrical portion having the inner diameter and covering the first cylindrical portion, the second through hole formed in the second cylindrical portion is used to perform the second operation. The gas-containing liquid flows from the inside to the outside of the cylindrical part of
  • this invention becomes possible to provide the bubble generation apparatus which solves the problem that it is difficult to produce
  • FIG. 1 It is a figure which shows an example of the whole structure of the bubble generation apparatus which concerns on the 1st Embodiment of this invention. It is a figure which shows an example of a structure of the gas-liquid mixing part shown in FIG. It is a figure which shows an example of a structure of the bubble generation part shown in FIG. It is a figure which shows an example of a structure of the partition plate shown in FIG. It is a figure which shows an example of a structure of the bubble generation module shown in FIG. It is a figure which shows an example of a structure of the projection part in the bubble generation module shown in FIG. It is a figure which shows an example of the flow of the gas containing liquid in a gas containing liquid process part in 1st Embodiment.
  • FIG. 1 is a view showing an example of the entire configuration of the air bubble generation device 1.
  • FIG. 2 is a view showing an example of the configuration of the gas-liquid mixing unit 2.
  • FIG. 3 is a diagram showing an example of the configuration of the bubble generation unit 3.
  • FIG. 4 is a view showing an example of the configuration of the partition plate 32.
  • FIG. 5 is a diagram showing an example of the configuration of the bubble generation module 33.
  • FIG. 6 is a view showing an arrangement example of the projections 3321 in the air bubble generation module 33.
  • FIG. 7 is a view showing an example of the flow of the gas-containing liquid in the gas-containing liquid processing unit 31.
  • FIG. 8 and 9 are diagrams showing an example of another configuration of the partition plate 32.
  • FIG. 10 is a diagram showing an example of another configuration of the gas-containing liquid processing unit.
  • the bubble generation device 1 in the present embodiment includes a bubble generation unit 3 having a gas-containing liquid processing unit 31 having a partition plate 32 and a bubble generation module 33, and a throttling unit 34.
  • the partition plate 32 in the present embodiment is a space on the flow path 41 side that functions as an inflow path of the gas containing liquid to the gas containing liquid processing part 31 in the space inside the gas containing liquid processing part 31 It is divided into two spaces of a first space) and a space (second space) on the flow path 42 side functioning as a discharge path of the gas-containing liquid from the gas-containing liquid processing unit 31. Further, through holes 321 for mounting the air bubble generation module 33 are formed in the partition plate 32, and the air bubble generation module 33 is fixed to the partition plate 32 by mounting the air bubble generation module 33 in the through holes 321. You can do it.
  • the gas-containing liquid that has entered the inside of the gas-containing liquid processing unit 31 through the flow path 41 that functions as the inflow path flows in the bubble generation module 33 and then functions as a discharge path. It moves to the space on the side of the passage 42 and flows out of the flow passage 42 to the outside of the gas-containing liquid processing unit 31.
  • FIG. 1 shows an example of the entire configuration of the air bubble generation device 1.
  • the bubble generating device 1 has a gas-liquid mixing unit 2 and a bubble generating unit 3.
  • the gas-liquid mixing unit 2 is supplied with a fluid such as water via a fluid inlet. Moreover, gas, such as air, is supplied to the gas-liquid mixing part 2 via a gas inflow port. The gas-liquid mixing unit 2 mixes the supplied fluid and gas to generate a gas-containing liquid.
  • gas-liquid mixing unit 2 and the bubble generation unit 3 are connected via a flow path.
  • the gas-containing liquid generated by the gas-liquid mixing unit 2 is supplied to the bubble generation unit 3 through the flow path.
  • the bubble generation unit 3 generates nano bubbles in the supplied gas-containing liquid by performing predetermined processing.
  • the nano bubble is a fine bubble having a particle size of 1 micrometer or less in the nanometer (nm) unit, for example, a particle size of about 50 to 500 nm.
  • the nano bubble water which is a gas-containing liquid containing nano bubbles generated by the bubble generation unit 3 is discharged to the outside of the bubble generation device 1 through the discharge port.
  • the bubble generation device 1 may have a configuration other than that exemplified above. For example, by connecting the outlet shown in FIG. 1 to the fluid inlet through the formation tank (not shown) or the like, the bubble-generating apparatus 1 circulates the gas-containing liquid and the nanobubble water inside the bubble-generating apparatus 1. You may configure it.
  • the bubble generation device 1 may be configured to be supplied with a fluid such as water from the outside through the fluid inlet, and configured to discharge nanobubble water to the outside through the outlet. Absent.
  • the air bubble generation device 1 can have various known configurations such as various sensors such as a pressure gauge, and a valve that prevents backflow in the flow path.
  • FIG. 2 shows an example of the configuration of the gas-liquid mixing unit 2.
  • the gas-liquid mixing unit 2 includes an ejector 23 and a pump 25. Further, in the gas-liquid mixing unit 2, a channel 21, a channel 22, a channel 24, and a channel 26 are formed.
  • the channel 21 has a fluid inlet formed at one end, and the ejector 23 is connected to the other end. Further, the ejector 23 is connected to one end of the flow path 24 and the pump 25 is connected to the other end. In addition, one end of the flow path 26 is connected to the pump 25, and the bubble generation unit 3 is connected to the other end of the flow path 26.
  • the flow path 21, the ejector 23, the flow path 24, the pump 25, and the flow path 26 are connected to form a flow path through which a fluid such as water flows. That is, according to the above configuration, the pump 25 sucks fluid such as water via the flow path formed by the flow path 21, the ejector 23, and the flow path 24. Further, the pump 25 discharges the sucked fluid to the flow path 26.
  • the flow passage 22 is connected to the ejector 23.
  • the flow path 22 forms a flow path of gas in which a gas inlet is formed at one end and an ejector 23 is formed at the other end.
  • the ejector 23 is formed with a throttling portion or the like, which is a portion where the inner diameter is smaller than the inner diameter of the flow path 21, the flow path 24 and the like.
  • the ejector 23 supplies a gas such as air supplied via the flow path 22 to the flow path through which the above-mentioned fluid flows by utilizing the Venturi effect.
  • the gas-liquid mixing unit 2 mixes the gas with the fluid to generate the gas-containing liquid by supplying the gas to the flow path in which the fluid flows using the ejector 23.
  • the gas-liquid mixing unit 2 has a configuration for mixing the liquid and the gas to generate the gas-containing liquid.
  • the specific configuration of the gas-liquid mixing unit 2 is not particularly limited.
  • the gas-liquid mixing unit 2 may adopt various known variations.
  • FIG. 3 is a diagram showing an example of the configuration of the bubble generation unit 3.
  • the bubble generation unit 3 has a gas-containing liquid processing unit 31 and a throttling unit 34.
  • the air bubble generation unit 3 passes the throttling unit 34 in which a throttle is formed to narrow the width of the flow path
  • nano bubbles are generated in the gas-containing liquid.
  • a flow passage 41, a flow passage 42 and a flow passage 43 are formed in the bubble generation unit 3.
  • One end of the flow passage 41 is connected to the gas-liquid mixing unit 2, and the other end of the flow passage 41 is connected to the gas-containing liquid processing unit 31. That is, the gas-containing liquid discharged through the flow path 26 is supplied to the gas-containing liquid processing unit 31 through the flow path 41.
  • the flow path 42 is connected to the gas-containing liquid processing unit 31, and the other end of the flow path 42 is connected to the throttling unit 34.
  • the flow path 43 is connected to the narrowed portion 34, and the other end of the flow path 43 is formed with a discharge port.
  • the gas-containing liquid processing unit 31 is supplied with the gas-containing liquid generated in the gas-liquid mixing unit 2 through the flow path 41. Further, the gas-containing liquid discharged from the gas-containing liquid processing unit 31 is supplied to the throttling unit 34 through the flow channel 42, and the gas-containing liquid having passed through the throttling unit 34 is discharged to the outside through the flow channel 43 Be done. That is, the flow path 41 has a function as an inflow path for flowing the gas-containing liquid into the gas-containing liquid processing unit 31, and the flow path 42 serves as a discharge path for discharging the gas from the gas-containing liquid processing unit 31.
  • the flow path 42 has a function as an inflow path for introducing the gas-containing liquid into the throttling portion 34
  • the flow path 43 has a function as a discharge path for discharging the gas from the throttling portion 34 There is.
  • the gas-containing liquid processing unit 31 has, for example, a substantially cylindrical shape having a cavity inside.
  • a partition plate 32 partition member on which the bubble generation module 33 is mounted is fixed. Further, a channel 41 and a channel 42 are formed on the side surface of the gas-containing liquid processing unit 31.
  • the gas-containing liquid processing unit 31 has a cylindrical first cylindrical portion 311 (first housing) having a flange 3111 formed at one end and an end face 3112 formed at the other end. And a second cylindrical portion 312 (second housing) having a cylindrical shape, in which a flange 3121 is formed at one end and an end face 3122 is formed at the other end. Further, the end of the flow passage 41 is connected at a predetermined side surface of the first cylindrical portion 311, and the end of the flow passage 42 is connected at a predetermined predetermined side surface of the second cylindrical portion 312.
  • the gas-containing liquid processing unit 31 sandwiches the outer peripheral side portion of the partition plate 32 described later between the flange 3111 formed in the first cylindrical portion 311 and the flange 3121 formed in the second cylindrical portion 312. It is formed by connecting the first cylindrical portion 311 and the second cylindrical portion 312 by the connecting member 313 in the flexed state.
  • the connecting member 313 is, for example, a nut or a bolt.
  • the connecting member 313 is inserted into the through holes formed in the flange 3111 and the flange 3121 and the fixing through holes 322 formed in the partition plate 32, whereby the first cylindrical portion 311 and the second cylindrical portion are formed. And 312 are linked.
  • the length of the side surface of the second cylindrical portion 312 is longer than the length of the side surface of the first cylindrical portion 311. Further, the flow path 41 formed on the side surface of the first cylindrical portion 311 and the flow path 42 formed on the side surface of the second cylindrical portion 312 are formed, for example, in the vicinity of the flange 3111 and the flange 3121 There is. Due to such a configuration, the length from the end face 3122 of the second cylindrical portion 312 to the flow path 42 in the gas-containing liquid processing unit 31 is the length from the end face 3112 of the first cylindrical portion 311 to the flow path 41 It is longer than the length.
  • the partition plate 32 is a plate-like member having a substantially circular shape in a front view.
  • the partition plate 32 is fixed to the gas-containing liquid processing unit 31 to divide the internal space of the casing constituting the gas-containing liquid processing unit 31 into two spaces.
  • the partition plate 32 discharges the gas-containing liquid
  • the space in the casing constituting the gas-containing liquid processing unit 31 is a first space on the flow path 41 side that functions as an inflow path of the gas-containing liquid. It divides into the 2nd space by the side of the flow path 42 which functions as a path
  • the partition plate 32 is configured such that the space in the gas-containing liquid processing unit 31 is a first space which is a space on the side of the first cylindrical portion 311 and a space which is on the side of the second cylindrical portion 312. Divide into two spaces.
  • the length of the side surface of the second tubular portion is longer than the length of the side surface of the first tubular portion 311. Therefore, the internal space is wider in the second space than in the first space.
  • FIG. 4 shows an example of the configuration of the partition plate 32.
  • the partition plate 32 is formed with a plurality of through holes 321 and a plurality of fixing through holes 322.
  • the partition plate 32 in the partition plate 32, three through holes 321 and eight fixing through holes 322 are formed.
  • the through holes 321 are through holes used when the air bubble generation module 33 is attached to the partition plate 32. That is, the air bubble generation module 33 is attached to the through hole 321.
  • the method of mounting the air bubble generation module 33 in the through hole 321 is not particularly limited, for example, a screw method, welding, or the like may be adopted.
  • the air bubble generation module 33 having an external thread formed on the outer peripheral surface is screwed into an internal thread formed on the inner peripheral surface of the through hole 321 and the air bubble generation module 33 is inserted to a predetermined position and then welded.
  • a combined method of screw and welding may be adopted.
  • the size of the through hole 321 is, for example, about 20 to 30 mm in diameter, but may be a size other than those illustrated. Referring to FIG. 4, the through holes 321 are formed at equal intervals, for example, in the vicinity of the center of the partition plate 32.
  • the fixing through holes 322 are through holes used when the partition plate 32 is fixed to the gas-containing liquid processing unit 31.
  • the connecting member 313 is inserted into the fixing through hole 322.
  • the fixing through holes 322 are formed on the outer peripheral side of the partition plate 32 and at positions corresponding to the formation positions of the through holes formed in the flange 3111 and the flange 3121.
  • the size of the fixing through hole 322 corresponds to the size of the connecting member 313.
  • the number of fixing through holes 322 may be changed according to the number of through holes formed in the flange 3111 and the flange 3121.
  • the partition plate 32 has, for example, the configuration as described above.
  • the partition plate 32 divides the inside of the casing constituting the gas-containing liquid processing unit 31 into the first space and the second space, and is configured to be able to fix the bubble generation module 33.
  • the partition plate 32 is fixed to the gas-containing liquid processing unit 31 using the fixing through holes 322.
  • the air bubble generation module 33 is attached to the through hole 321 formed in the partition plate 32.
  • the bubble generation module 33 is a cylindrical module having a space inside.
  • the inlet to the air bubble generation module 33 is located on the flow path 41 side (in the first space), and the outlet from the air bubble generation module 33 is on the flow path 42 side (second space Is fixed to the partition plate 32 in the state of being located inside). Due to such a state, the gas-containing liquid supplied from the one end of the bubble generation module 33 to the inside of the bubble generation module 33 passes through the inside of the bubble generation module 33, and then the bubble generation module 33.
  • the bubble generation module 33 has a cylindrical shape through which the gas-containing liquid can pass.
  • FIG. 5 shows an example of the configuration of the bubble generation module 33.
  • FIG. 5 (A) shows an example of the configuration of the bubble generation module 33
  • FIGS. 5 (B) and 5 (C) show another example of the configuration of the bubble generation module 33.
  • the air bubble generation module 33 shown in FIG. 5A may be attached to the partition plate 32.
  • the air bubble generation module 33 shown in FIG. 5B or the air bubble generation module 33 shown in FIG. 5C. May be worn.
  • One or a combination of the bubble generation modules 33 shown in FIGS. 5A, 5B, and 5C may be attached to the partition plate 32.
  • the bubble generation module 33 is configured of, for example, a spiral flow channel 331 and a protrusion 332.
  • the spiral flow channel 331 is a flow channel formed in a spiral shape.
  • the gas-containing liquid that has entered the inside of the bubble generation module 33 passes through the spiral flow channel 331 to form a spiral flow.
  • the spiral flow channel 331 may have a configuration other than the spiral flow channel, such as a blade that rotates as long as a spiral flow can be formed.
  • a plurality of protrusions 3321 are formed.
  • the protrusion 3321 is, for example, a screw.
  • the protrusion 3321 is fixed to the air bubble generation module 33 by being screwed into the air bubble generation module 33 having a cylindrical shape.
  • the protrusion 3321 may be welded to the air bubble generation module 33.
  • FIG. 6 shows an example of the positional relationship of the projections 3321 to be screwed in the projections 332.
  • FIG. 6 (A) shows an example of the positional relationship of the projections 3321
  • FIG. 6 (B) shows another example of the positional relationship of the projections 3321.
  • projections 3321 are formed at each position of 0 °, 120 °, and 240 °, for example, with the upper side of FIG. 6A being 0 °.
  • projections 3321 are formed at each of 60 degrees, 180 degrees, and 300 degrees.
  • the protrusion 332 is formed by a plurality of sets of three protrusions 3321 as one set.
  • the protrusion 332 is formed by six sets (that is, 18 protrusions 3321). Further, in the protrusions 332, for example, the protrusions 3321 are formed at the respective positions so that the positional relationship between the protrusions 3321 differs between adjacent sets. Specifically, for example, a set in which the protrusions 3321 are screwed in the positional relationship shown in FIG. 6A, and a set in which the protrusions 3321 are screwed in the positional relationship shown in FIG. The protrusion 332 is configured.
  • the protrusions 3321 may be formed in a positional relationship other than the positional relationship as shown in FIGS. 6A and 6B.
  • the number of protrusions 3321 in one set is not limited to three.
  • the number of the projections 3321 in one set may be one or two, or four or more.
  • the bubble generation module 33 is configured of, for example, the spiral flow channel 331 and the protrusion 332 configured of six sets.
  • the air bubble generation module 33 may adopt various known variations.
  • one or more V-shaped grooves may be formed at places other than the places where the protrusions 3321 are provided.
  • the bubble generation module 33 may have a configuration as shown in FIG. 5 (B).
  • the air bubble generation module 33 is configured of, for example, a spiral channel 331, a protrusion 332, and a throttling portion 333.
  • a part of the protrusion 332 is replaced with the narrowed portion 333 as compared with the case shown in FIG. 5A.
  • the air bubble generation module 33 is configured of, for example, a spiral flow path 331, a protrusion 332 configured by three sets, and a throttling portion 333.
  • the throttling portion 333 is a portion where the inside diameter of the bubble generation module 33 is smaller than that of the protrusion 332. As shown in FIG. 5, the narrowed portion 333 is formed so that the inner diameter gradually narrows toward the downstream side and then gradually increases as the inner diameter proceeds from the first portion to the downstream side.
  • the specific configuration of the diaphragm unit 333 is not particularly limited in the case shown in FIG. 5 (B).
  • the narrowed portion 333 may have a shape other than that illustrated in FIG. 5B as long as the flow path of the gas-containing liquid is narrowed such that the inner diameter is narrowed in the narrowed portion 333.
  • the bubble generation module 33 may have a configuration as shown in FIG. 5 (C).
  • the bubble generation module 33 includes, for example, a spiral flow passage 331 and a protrusion 332.
  • the number of sets constituting the projection 332 is smaller than in the case shown in FIG. 5A. That is, when it shows in FIG.5 (C), the bubble generation module 33 is comprised from the helical flow path 331 and the projection part 332 comprised from three groups, for example.
  • the bubble generation module 33 has, for example, the configuration as described above.
  • the flow of the gas-containing liquid inside the gas-containing liquid processing unit 31 is, for example, as shown in FIG. Referring to FIG. 7, the gas-containing liquid supplied to the inside of the gas-containing liquid processing unit 31 via the flow path 41 flows from the first space to the inside of the bubble generation module 33. Specifically, the gas-containing liquid flows into the spiral channel 331 forming the bubble generation module 33. This creates a helical flow. Further, the gas-containing liquid in which the spiral flow is formed passes through the inside of the bubble generation module 33 while colliding with the projections 3321 formed on the projections 332, and then flows to the second space. At this time, the first space and the second space are separated by the partition plate 32.
  • the gas-containing liquid does not flow from the first space to the second space without passing through the inside of the bubble generation module 33.
  • the gas-containing liquid discharged from the end of the bubble generation module 33 is prevented from advancing by the end face 3122 or the like, and forms turbulent flow in the second space.
  • the gas-containing liquid subjected to the processing by the bubble generation module 33 is discharged from the flow path 42 connected to the vicinity of the partition plate 32 in the second space to the outside of the gas-containing liquid processing unit 31.
  • the flow path 42 is fixed in the vicinity of the partition plate 32 so that the length from the end face 3122 of the second cylindrical portion 312 to the flow path 42 becomes long.
  • the throttling portion 34 is configured such that the gas-containing liquid passes through a portion narrower than the flow path 42, the flow path 43 or the like, for example, the inner diameter is smaller than the inner diameter of the flow path 42 or the flow path 43. That is, the throttling unit 34 is configured to restrict the flow of the gas-containing liquid.
  • the specific configuration of the diaphragm unit 34 is not particularly limited.
  • the throttling portion 34 has, for example, a housing, a sphere and a spring, and the sphere is pushed by the flow of the gas-containing liquid so that the gas-containing liquid flows in the gap formed between the housing and the sphere It does not matter if it has the following configuration.
  • the size of the gap between the housing and the sphere is adjusted by the flow speed of the gas-containing liquid and the force for pushing back the sphere by the spring.
  • the throttling portion 34 may be configured to have a throttling formed so as to narrow the inner diameter toward the downstream.
  • the throttling portion 34 may be configured to be adjustable so that the gas-containing liquid flows in one or a plurality of throttling portions, for example, according to the flow rate of the gas-containing liquid.
  • the throttling unit 34 may have another known configuration.
  • the air bubble generation device 1 in the present embodiment includes the air bubble generation unit 3 including the gas-containing liquid processing unit 31 including the partition plate 32 and the air bubble generation module 33, and the throttling unit 34.
  • the gas-containing liquid that has entered the inside of the gas-containing liquid processing unit 31 via the flow path 41 that functions as the inflow path flows into the air bubble generation module 33 and then functions as a discharge path. It moves to the second space, which is the space on the side of the passage 42, and flows out of the flow passage 42 to the outside of the gas-containing liquid processing unit 31.
  • the gas-containing liquid that has flowed out of the gas-containing liquid processing unit 31 passes through the throttling unit 34.
  • the number of the bubble generation modules 33 connecting the first space and the second space can be easily adjusted by properly using the partition plates 32 having different numbers of through holes 321. . As a result, it is possible to easily adjust the amount of nanobubble water produced.
  • the partition plate 32 provided with only one through hole 321 as shown in FIG. 8 to the gas-containing liquid processing unit 31, the inside of the gas-containing liquid processing unit 31 for only one bubble generation module 33 It can be formed into
  • the partition plate 32 provided with five through holes 321 as shown in FIG. 9 to the gas-containing liquid processing unit 31, the inside of the gas-containing liquid processing unit 31 It can be formed into
  • the number of the through holes 321 formed in the partition plate 32 may be one or more arbitrary number.
  • FIG. 10 shows an example of the gas-containing liquid processing unit 35 that the bubble generating unit 3 can have in place of the gas-containing liquid processing unit 31.
  • the gas-containing liquid processing unit 35 includes a partition plate 32 and a bubble generation module 33.
  • the configurations of the partition plate 32 and the bubble generation module 33 are substantially the same as those described above. Therefore, the detailed description is omitted.
  • the partition plate 32 is fixed by being sandwiched by the gas-containing liquid processing unit 35. Therefore, the fixing through holes 322 are not provided in the partition plate 32. As described above, the fixing through holes 322 may not necessarily be formed in the partition plate 32.
  • the flow passage 41 is connected not to the side surface of the first cylindrical portion 351 but to the end surface having a hemispherical shape.
  • the flow path 41 may be connected to the end face of the first cylindrical portion 351.
  • the flow channel 42 is formed on the side surface of the second cylindrical portion 352. In other words, even in the case where the flow path 41 is connected to the end face, it is desirable that the flow path 42 be connected not to the hemispherical end face of the second cylindrical portion 352 but to the side face near the partition plate 32.
  • the gas-containing liquid can be discharged out of the gas-containing liquid processing unit 35. . This makes it possible to generate nanobubbles in the gas-containing liquid more stably.
  • FIG. 11 is a diagram showing an example of the configuration of the bubble generation module 5.
  • FIG. 12 is a view showing an example of the through hole 511.
  • FIG. 13 is a view showing an example of the flow of the gas-containing liquid in the gas-containing liquid processing unit 31 in the second embodiment.
  • FIG. 14 is a view showing another application example of the bubble generation module 5.
  • the air bubble generation module 5 described in the present embodiment can be attached to the partition plate 32 instead of the air bubble generation module 33.
  • the bubble generation module 33 and the bubble generation module 5 may be attached to the partition plate 32 at the same time.
  • FIG. 11 shows an example of the configuration of the bubble generation module 5 that can be used instead of the bubble generation module 33.
  • the air bubble generation module 5 has an inner diameter larger than the outer diameter of the first cylindrical portion 51 and the first cylindrical portion 51, and the first cylindrical portion 51 is formed in the internal space.
  • the second cylindrical portion 52 to which the first cylindrical portion 51 is fixed that is, to cover the first cylindrical portion 51 in a state in which the second cylindrical portion 52 is inserted.
  • the outer diameter (for example, the outer diameter of the 2nd cylindrical part 52) of the bubble generation module 5 whole is equal to the outer diameter of the bubble generation module 33 whole, for example. Therefore, the air bubble generation module 5 can be attached to the through hole 321 formed in the partition plate 32 instead of the air bubble generation module 33.
  • the first tubular portion 51 has a cylindrical shape in which one end is open and the other end is closed. Further, a plurality of through holes 511 are formed on the side surface of the first cylindrical portion 51.
  • the size of the through hole 511 is, for example, about 1 mm in diameter. The size of the through hole 511 may be other than that illustrated.
  • FIG. 12 shows an example of the positional relationship of the through holes 511 formed on the side surface of the first cylindrical portion 51.
  • FIG. 12A shows an example of the positional relationship of the through holes 511
  • FIG. 12B shows another example of the positional relationship of the through holes 511.
  • FIG. 12C shows another configuration example of the through hole 511.
  • the through holes 511 are provided at each position of 0 degree, 120 degrees, and 240 degrees. It is formed.
  • through holes 511 are formed at each of 60 degrees, 180 degrees, and 300 degrees.
  • the through holes 511 are formed in the first cylindrical portion 51 in a plurality of sets, for example, with the three through holes 511 as one set.
  • the through holes 511 are formed in the respective portions so that the positional relationship between the through holes 511 is different between adjacent sets. Specifically, for example, a pair in which the through holes 511 are formed in the positional relationship shown in FIG. 12A, and a pair in which the through holes 511 are formed in the positional relationship shown in FIG. 12B mutually appear.
  • the first tubular portion 51 is configured.
  • the number of sets of through holes 511 formed in the first cylindrical portion 51 is not particularly limited.
  • one through hole 511 may be previously closed by, for example, a screw or the like.
  • the number of through holes 511 per set is not limited to three.
  • the number of through holes 511 per set may be one or two.
  • the number of through holes 511 per set may be four or more.
  • the second cylindrical portion 52 is configured by connecting a front cylindrical portion 521 having a cylindrical shape and a rear cylindrical portion 522 having a cylindrical shape whose inner diameter is smaller than that of the front cylindrical portion 521.
  • the outer diameter of the front cylindrical portion 521 and the outer diameter of the rear cylindrical portion 522 are equal.
  • the inner diameter of the front tubular portion 521 is larger than the outer diameter of the first tubular portion 51.
  • One end of the front cylindrical portion 521 is an end face on which a through hole for inserting the first cylindrical portion is formed, and the other end of the front cylindrical portion 521 is The rear cylindrical portion 522 is connected.
  • the first cylindrical portion 51 is fixed to the front cylindrical portion 521 in a state in which the first cylindrical portion 51 is inserted into the inside of the front cylindrical portion 521.
  • the inner diameter of the rear cylindrical portion 522 is thinner than the inner diameter of the front cylindrical portion 521 as described above.
  • the inner diameter of the rear cylindrical portion 522 is smaller than the inner diameter of the first cylindrical portion 51.
  • the front cylindrical portion 521 is connected.
  • a through hole 523 is formed at the other end of the rear cylindrical portion 522.
  • the size of the through hole 523 is, for example, about 0.20 mm to 0.36 mm in diameter.
  • a through hole 523 having a size smaller than the size of the through hole 511 is formed.
  • the size of the through hole 523 may be other than the illustrated one.
  • the bubble generation module 5 has, for example, the configuration as described above.
  • the flow of the gas-containing liquid inside the gas-containing liquid processing unit 31 is, for example, as shown in FIG. Referring to FIG. 13, the gas-containing liquid supplied to the inside of the gas-containing liquid processing unit 31 through the flow path 41 flows from the first space into the inside of the bubble generation module 5. Specifically, the gas-containing liquid flows from the open end of the first cylindrical portion 51 forming the bubble generation module 5 to the inside of the bubble generation module 5. Thereafter, the gas-containing liquid flows from the first cylindrical portion 51 to the front cylindrical portion 521 of the second cylindrical portion 52 through the through hole 511.
  • the gas-containing liquid flows from the front cylindrical portion 521 to the rear cylindrical portion 522, and flows to the second space through the through hole 523.
  • the first space and the second space are separated by the partition plate 32. Therefore, the gas-containing liquid does not flow from the first space to the second space without passing through the inside of the bubble generation module 5.
  • the gas-containing liquid discharged from the through hole 523 of the bubble generation module 5 is prevented from advancing by the end face 3122 or the like, and forms a turbulent flow.
  • the gas-containing liquid subjected to the processing by the bubble generation module 5 is discharged from the flow path 42 connected to the vicinity of the partition plate 32 in the second space to the outside of the gas-containing liquid processing unit 31.
  • the flow path 42 is fixed in the vicinity of the partition plate 32 so that the length from the end face 3122 of the second cylindrical portion 312 to the flow path 42 becomes long.
  • sufficient turbulence can be formed in the second space, and a larger amount of nanobubbles can be generated more stably.
  • the bubble generation module 5 can be used instead of the bubble generation module 33. According to such a configuration, it is possible to stably generate very fine air bubbles generated when passing through the through holes 523. That is, by using the bubble generation module 5 described in the present embodiment, it is possible to stably generate finer bubbles.
  • the bubble generation module 5 may have a configuration other than the configuration described above.
  • the bubble generation module 5 may have a protrusion 3321 or the like which the bubble generation module 33 has.
  • the bubble generation part 3 does not need to have the constriction part 34, for example.
  • the second cylindrical portion 52 of the bubble generation module 5 has a configuration in which the front cylindrical portion 521 and the rear cylindrical portion 522 are connected.
  • the second cylindrical portion 52 of the bubble generation module 5 may not have a configuration in which two configurations having different inner diameters are connected.
  • the second cylindrical portion 52 may be configured of the front cylindrical portion 521 and the rear cylindrical portion 522 (that is, one cylindrical portion) having the same inner diameter.
  • the bubble generation module 5 can have other known configurations.
  • the bubble generation module 5 may be used instead of the entire gas-containing liquid processing unit 31. That is, for example, as shown in FIG. 14, the opening side end of the first cylindrical portion 51 can be connected to the flow path 41. Further, the side end portion of the bubble generation module 5 in which the through hole 523 is formed is connected to the flow passage 42 so that the gas-containing water discharged from the bubble generation module 5 flows out to the flow passage 42. You can do it. By comprising in this way, the bubble generation module 5 can be used instead of the gas-containing liquid process part 31 whole.

Abstract

An air bubble generator which generates fine air bubbles in a gas-containing liquid that is obtained by mixing a gas and a liquid with each other, and which is provided with an air bubble generation module that comprises: a first cylindrical part which is provided with a plurality of through holes; and a second cylindrical part which has an inner diameter that is larger than the outer diameter of the first cylindrical part, while covering the first cylindrical part, and into which the gas-containing liquid discharged through the through holes of the first cylindrical part flows. The second cylindrical part is provided with a second through hole through which the gas-containing liquid is discharged from the inside of the second cylindrical part to the outside of the second cylindrical part.

Description

気泡生成装置、気泡生成方法Bubble generation device, bubble generation method
 本発明は、気泡生成装置、気泡生成方法に関し、特に、ナノバブルなどの微細な気泡を含む液体を生成する気泡生成装置、気泡生成方法に関する。 The present invention relates to an air bubble generation device and an air bubble generation method, and more particularly to an air bubble generation device and an air bubble generation method for generating a liquid containing fine air bubbles such as nano bubbles.
 ナノバブルなどの微細な気泡を生成するための技術が知られている。 Techniques for generating fine bubbles such as nanobubbles are known.
 例えば、特許文献1には、気体と液体とを混合して気体含有液を生成する気液混合部と気体含有液処理部と気泡生成部とを有する気体含有液生成装置が記載されている。具体的には、気体生成部は、収容部と、開閉部材と、弾性部材と、支持部と、を備えている。また、開閉部材と支持部との隙間は、気体含有液の流れが開閉部材を下流側に移動させることで拡大し、弾性力が開閉部材を上流側に移動させることで縮小するよう構成されており、気体生成部は、気体含有液を、隙間を介して入口から出口へと流すよう構成されている。特許文献1によると、上記構成により微細な気泡を高濃度に含有する気体含有液を生成することが出来る。 For example, Patent Document 1 describes a gas-containing liquid generating device having a gas-liquid mixing unit that generates a gas-containing liquid by mixing a gas and a liquid, a gas-containing liquid processing unit, and a bubble generation unit. Specifically, the gas generating unit includes a housing, an opening and closing member, an elastic member, and a support. In addition, the gap between the opening and closing member and the support portion is configured such that the flow of the gas-containing liquid causes the opening and closing member to move downstream, and the elastic force reduces the opening and closing member by moving upstream. The gas generating unit is configured to flow the gas-containing liquid from the inlet to the outlet through the gap. According to Patent Document 1, it is possible to generate a gas-containing liquid containing fine bubbles at a high concentration by the above configuration.
特開2016-203109号公報JP, 2016-203109, A
 気泡を用いる用途によっては、より微細な気泡を安定的に生成したい、という要望があった。しかしながら、特許文献1に記載されているような技術では、必ずしも微細な気泡を安定的に生成することが出来ない場合があった。 There has been a demand for stably generating finer bubbles depending on the application using the bubbles. However, with the technology as described in Patent Document 1, it may not always be possible to stably generate fine bubbles.
 このように、微細な気泡を安定的に生成することが難しい、という問題が生じていた。 As such, there has been a problem that it is difficult to stably generate fine bubbles.
 そこで、本発明の目的は、微細な気泡を安定的に生成することが難しい、という問題を解決する気泡生成装置、気泡生成方法を提供することにある。 Therefore, an object of the present invention is to provide an air bubble generating device and an air bubble generating method that solve the problem that it is difficult to stably generate fine air bubbles.
 かかる目的を達成するため本発明の一形態である気泡生成装置は、
 気体と液体とを混合した気体含有液中に微小な気泡を生成する気泡生成装置であって、
 複数の貫通孔が形成された第1の筒状部と、前記第1の筒状部の外径よりも太い内径を有し前記第1の筒状部を覆い、前記第1の筒状部に形成された前記貫通孔から排出された気体含有液が内部に流入する第2の筒状部と、を有する気泡生成モジュールを備え、
 前記第2の筒状部には、当該第2の筒状部の内部から外部へと気体含有液が流れる第2貫通孔が形成されている
 という構成をとる。
In order to achieve such an object, a bubble generating apparatus which is an embodiment of the present invention is
A bubble generating device that generates minute bubbles in a gas-containing liquid in which a gas and a liquid are mixed,
A first cylindrical portion in which a plurality of through holes are formed, and an inner diameter thicker than the outer diameter of the first cylindrical portion, covering the first cylindrical portion, the first cylindrical portion And b) a second tubular portion into which the gas-containing liquid discharged from the through hole formed in the inflows into the inside;
The second tubular portion has a configuration in which a second through hole through which the gas-containing liquid flows from the inside to the outside of the second tubular portion is formed.
 また、本発明の他の形態である気泡生成方法は、
 気体と液体とを混合した気体含有液中に微小な気泡を生成する気泡生成装置により行われる気泡生成方法であって、
 複数の貫通孔が形成された第1の筒状部の内部に流入した後、当該第1の筒状部が有する前記貫通孔を介して、前記第1の筒状部の外径よりも太い内径を有し前記第1の筒状部を覆う第2の筒状部へと気体含有液が流れた後、前記第2の筒状部に形成された第2貫通孔を介して前記第2の筒状部の内部から外部へと気体含有液が流れる
 という構成をとる。
Moreover, the bubble generation method which is another form of the present invention is
A bubble generating method performed by a bubble generating device for generating minute bubbles in a gas-containing liquid in which a gas and a liquid are mixed,
After flowing into the inside of the first cylindrical portion in which a plurality of through holes are formed, the diameter is thicker than the outer diameter of the first cylindrical portion through the through holes of the first cylindrical portion. After the gas-containing liquid flows to the second cylindrical portion having the inner diameter and covering the first cylindrical portion, the second through hole formed in the second cylindrical portion is used to perform the second operation. The gas-containing liquid flows from the inside to the outside of the cylindrical part of
 本発明は、以上のように構成されることにより、微細な気泡を安定的に生成することが難しい、という問題を解決する気泡生成装置、気泡生成方法を提供することが可能となる。 ADVANTAGE OF THE INVENTION this invention becomes possible to provide the bubble generation apparatus which solves the problem that it is difficult to produce | generate a micro bubble stably, and a bubble generation method by being comprised as mentioned above.
本発明の第1の実施形態に係る気泡生成装置の全体の構成の一例を示す図である。It is a figure which shows an example of the whole structure of the bubble generation apparatus which concerns on the 1st Embodiment of this invention. 図1で示す気液混合部の構成の一例を示す図である。It is a figure which shows an example of a structure of the gas-liquid mixing part shown in FIG. 図1で示す気泡生成部の構成の一例を示す図である。It is a figure which shows an example of a structure of the bubble generation part shown in FIG. 図3で示す仕切板の構成の一例を示す図である。It is a figure which shows an example of a structure of the partition plate shown in FIG. 図3で示す気泡生成モジュールの構成の一例を示す図である。It is a figure which shows an example of a structure of the bubble generation module shown in FIG. 図5で示す気泡生成モジュール内の突起部の構成の一例を示す図である。It is a figure which shows an example of a structure of the projection part in the bubble generation module shown in FIG. 第1の実施形態において気体含有液処理部内における気体含有液の流れの一例を示す図である。It is a figure which shows an example of the flow of the gas containing liquid in a gas containing liquid process part in 1st Embodiment. 仕切板の他の構成の一例を示す図である。It is a figure which shows an example of the other structure of a partition plate. 仕切板の他の構成の一例を示す図である。It is a figure which shows an example of the other structure of a partition plate. 気体含有液処理部の他の構成の一例を示す図である。It is a figure which shows an example of the other structure of a gas-containing liquid process part. 第2の実施形態における気泡生成モジュールの構成の一例を示す図である。It is a figure which shows an example of a structure of the bubble generation module in 2nd Embodiment. 図11で示す貫通孔の様子の一例を示す図である。It is a figure which shows an example of the mode of the through-hole shown in FIG. 第2の実施形態において気体含有液処理部内における気体含有液の流れの一例を示す図である。It is a figure which shows an example of the flow of the gas containing liquid in a gas containing liquid process part in 2nd Embodiment. 第2の実施形態における気泡生成モジュールの他の活用例を示す図である。It is a figure which shows the other application example of the bubble generation module in 2nd Embodiment.
[第1の実施形態]
 本発明の第1の実施形態を図1から図10までを参照して説明する。図1は、気泡生成装置1の全体の構成の一例を示す図である。図2は、気液混合部2の構成の一例を示す図である。図3は、気泡生成部3の構成の一例を示す図である。図4は、仕切板32の構成の一例を示す図である。図5は、気泡生成モジュール33の構成の一例を示す図である。図6は、気泡生成モジュール33内の突起3321の配置例を示す図である。図7は、気体含有液処理部31内における気体含有液の流れの一例を示す図である。図8、図9は、仕切板32の他の構成の一例を示す図である。図10は、気体含有液処理部の他の構成の一例を示す図である。
First Embodiment
A first embodiment of the present invention will be described with reference to FIGS. 1 to 10. FIG. 1 is a view showing an example of the entire configuration of the air bubble generation device 1. FIG. 2 is a view showing an example of the configuration of the gas-liquid mixing unit 2. FIG. 3 is a diagram showing an example of the configuration of the bubble generation unit 3. FIG. 4 is a view showing an example of the configuration of the partition plate 32. As shown in FIG. FIG. 5 is a diagram showing an example of the configuration of the bubble generation module 33. As shown in FIG. FIG. 6 is a view showing an arrangement example of the projections 3321 in the air bubble generation module 33. As shown in FIG. FIG. 7 is a view showing an example of the flow of the gas-containing liquid in the gas-containing liquid processing unit 31. As shown in FIG. 8 and 9 are diagrams showing an example of another configuration of the partition plate 32. FIG. FIG. 10 is a diagram showing an example of another configuration of the gas-containing liquid processing unit.
 第1の実施形態では、空気などの気体と水などの液体とを混合した気体含有液中にナノバブルを生成する気泡生成装置1について説明する。本実施形態における気泡生成装置1は、仕切板32と気泡生成モジュール33とを有する気体含有液処理部31と、絞り部34と、を有する気泡生成部3を有している。後述するように、本実施形態における仕切板32は、気体含有液処理部31の内部の空間を、気体含有液処理部31への気体含有液の流入路として機能する流路41側の空間(第1の空間)と、気体含有液処理部31からの気体含有液の排出路として機能する流路42側の空間(第2の空間)と、の2つの空間に分割する。また、仕切板32には、気泡生成モジュール33を装着するための貫通孔321が形成されており、貫通孔321に気泡生成モジュール33を装着することで、仕切板32に気泡生成モジュール33を固定することが出来る。このような構成により、流入路として機能する流路41を介して気体含有液処理部31の内部に侵入した気体含有液は、気泡生成モジュール33の内部を流れた後、排出路として機能する流路42側の空間に移動して、流路42から気体含有液処理部31の外部へと流出する。 In the first embodiment, a bubble generating apparatus 1 that generates nanobubbles in a gas-containing liquid in which a gas such as air and a liquid such as water are mixed will be described. The bubble generation device 1 in the present embodiment includes a bubble generation unit 3 having a gas-containing liquid processing unit 31 having a partition plate 32 and a bubble generation module 33, and a throttling unit 34. As will be described later, the partition plate 32 in the present embodiment is a space on the flow path 41 side that functions as an inflow path of the gas containing liquid to the gas containing liquid processing part 31 in the space inside the gas containing liquid processing part 31 It is divided into two spaces of a first space) and a space (second space) on the flow path 42 side functioning as a discharge path of the gas-containing liquid from the gas-containing liquid processing unit 31. Further, through holes 321 for mounting the air bubble generation module 33 are formed in the partition plate 32, and the air bubble generation module 33 is fixed to the partition plate 32 by mounting the air bubble generation module 33 in the through holes 321. You can do it. With such a configuration, the gas-containing liquid that has entered the inside of the gas-containing liquid processing unit 31 through the flow path 41 that functions as the inflow path flows in the bubble generation module 33 and then functions as a discharge path. It moves to the space on the side of the passage 42 and flows out of the flow passage 42 to the outside of the gas-containing liquid processing unit 31.
 まず、図1を参照して、気泡生成装置1の全体の構成の概要について説明する。図1は、気泡生成装置1の全体の構成の一例を示している。図1を参照すると、気泡生成装置1は、気液混合部2と気泡生成部3とを有している。 First, with reference to FIG. 1, the outline | summary of the whole structure of the bubble generation apparatus 1 is demonstrated. FIG. 1 shows an example of the entire configuration of the air bubble generation device 1. Referring to FIG. 1, the bubble generating device 1 has a gas-liquid mixing unit 2 and a bubble generating unit 3.
 図1で示すように、気液混合部2には、流体流入口を介して水などの流体が供給される。また、気液混合部2には、気体流入口を介して空気などの気体が供給される。気液混合部2は、供給された流体と気体とを混合して気体含有液を生成する。 As shown in FIG. 1, the gas-liquid mixing unit 2 is supplied with a fluid such as water via a fluid inlet. Moreover, gas, such as air, is supplied to the gas-liquid mixing part 2 via a gas inflow port. The gas-liquid mixing unit 2 mixes the supplied fluid and gas to generate a gas-containing liquid.
 また、気液混合部2と気泡生成部3とは、流路を介して連結している。気液混合部2が生成した気体含有液は、上記流路を介して気泡生成部3へと供給される。 Further, the gas-liquid mixing unit 2 and the bubble generation unit 3 are connected via a flow path. The gas-containing liquid generated by the gas-liquid mixing unit 2 is supplied to the bubble generation unit 3 through the flow path.
 気泡生成部3では、所定の処理を行うことにより、供給された気体含有液内にナノバブルを生成する。ナノバブルは、粒径が1マイクロメートル以下のナノメートル(nm)単位となる微細な気泡であり、例えば、粒径50~500nm程度である。気泡生成部3で生成されたナノバブルを含む気体含有液であるナノバブル水は、排出口を介して気泡生成装置1の外部へと排出される。 The bubble generation unit 3 generates nano bubbles in the supplied gas-containing liquid by performing predetermined processing. The nano bubble is a fine bubble having a particle size of 1 micrometer or less in the nanometer (nm) unit, for example, a particle size of about 50 to 500 nm. The nano bubble water which is a gas-containing liquid containing nano bubbles generated by the bubble generation unit 3 is discharged to the outside of the bubble generation device 1 through the discharge port.
 以上が、気泡生成装置1の全体の構成の概要である。 The above is the outline | summary of the whole structure of the bubble generation apparatus 1. FIG.
 なお、上記説明はあくまで例示である。気泡生成装置1は、上記例示した以外の構成を有していても構わない。例えば、気泡生成装置1は、図1で示す排出口と流体流入口とを図示しない清成槽などを介して連結することで、気体含有液やナノバブル水が気泡生成装置1内を循環するよう構成しても構わない。また、例えば、気泡生成装置1は、流体流入口を介して外部から水などの流体が供給されるよう構成するとともに、排出口を介して外部へとナノバブル水を排出するよう構成しても構わない。また、気泡生成装置1は、圧力計などの各種センサや流路における逆流を防止する弁など既知の様々な構成を有することが出来る。 The above description is merely an example. The bubble generation device 1 may have a configuration other than that exemplified above. For example, by connecting the outlet shown in FIG. 1 to the fluid inlet through the formation tank (not shown) or the like, the bubble-generating apparatus 1 circulates the gas-containing liquid and the nanobubble water inside the bubble-generating apparatus 1. You may configure it. In addition, for example, the bubble generation device 1 may be configured to be supplied with a fluid such as water from the outside through the fluid inlet, and configured to discharge nanobubble water to the outside through the outlet. Absent. In addition, the air bubble generation device 1 can have various known configurations such as various sensors such as a pressure gauge, and a valve that prevents backflow in the flow path.
 続いて、気泡生成装置1を構成する各構成の詳細について説明する。まず、図2を参照して、気液混合部2の構成について説明する。 Then, the detail of each structure which comprises the bubble generation apparatus 1 is demonstrated. First, the configuration of the gas-liquid mixing unit 2 will be described with reference to FIG.
 図2は、気液混合部2の構成の一例を示している。図2を参照すると、気液混合部2は、エジェクタ23とポンプ25とを有している。また、気液混合部2には、流路21と流路22と流路24と流路26とが形成されている。 FIG. 2 shows an example of the configuration of the gas-liquid mixing unit 2. Referring to FIG. 2, the gas-liquid mixing unit 2 includes an ejector 23 and a pump 25. Further, in the gas-liquid mixing unit 2, a channel 21, a channel 22, a channel 24, and a channel 26 are formed.
 流路21は一方の端部に流体流入口が形成されており、他方の端部にエジェクタ23が連結されている。また、流路24は、一方の端部にエジェクタ23が連結されており、他方の端部にポンプ25が連結されている。また、ポンプ25には流路26の一方の端部が連結されており、流路26の他方の端部には、気泡生成部3が連結されている。このように、気液混合部2においては、流路21、エジェクタ23、流路24、ポンプ25、流路26が連結されることで、水などの流体が流れる流路が形成されている。つまり、上記構成によると、ポンプ25は、流路21、エジェクタ23、流路24、により形成される流路を介して水などの流体を吸引する。また、ポンプ25は、吸引した流体を流路26に排出する。 The channel 21 has a fluid inlet formed at one end, and the ejector 23 is connected to the other end. Further, the ejector 23 is connected to one end of the flow path 24 and the pump 25 is connected to the other end. In addition, one end of the flow path 26 is connected to the pump 25, and the bubble generation unit 3 is connected to the other end of the flow path 26. As described above, in the gas-liquid mixing unit 2, the flow path 21, the ejector 23, the flow path 24, the pump 25, and the flow path 26 are connected to form a flow path through which a fluid such as water flows. That is, according to the above configuration, the pump 25 sucks fluid such as water via the flow path formed by the flow path 21, the ejector 23, and the flow path 24. Further, the pump 25 discharges the sucked fluid to the flow path 26.
 また、エジェクタ23には流路22が連結されている。流路22は、一方の端部に気体流入口が形成され、他方の端部にエジェクタ23が形成された、気体の流路を形成している。 Further, the flow passage 22 is connected to the ejector 23. The flow path 22 forms a flow path of gas in which a gas inlet is formed at one end and an ejector 23 is formed at the other end.
 エジェクタ23には、流路21や流路24などの内径よりも内径が細くなる箇所である絞り部などが形成されている。エジェクタ23は、ベンチュリ効果を利用することで、流路22を介して供給される空気などの気体を、上述した流体が流れる流路に供給する。このように、エジェクタ23を用いて流体が流れる流路に気体を供給することで、気液混合部2は気体と流体とを混ぜ合わせ気体含有液を生成する。 The ejector 23 is formed with a throttling portion or the like, which is a portion where the inner diameter is smaller than the inner diameter of the flow path 21, the flow path 24 and the like. The ejector 23 supplies a gas such as air supplied via the flow path 22 to the flow path through which the above-mentioned fluid flows by utilizing the Venturi effect. As described above, the gas-liquid mixing unit 2 mixes the gas with the fluid to generate the gas-containing liquid by supplying the gas to the flow path in which the fluid flows using the ejector 23.
 以上のように、気液混合部2は、液体と気体とを混合して気体含有液を生成するための構成を有している。なお、本実施形態においては、気液混合部2の具体的な構成は特に限定しない。気液混合部2は、既知の様々な変形例を採用して構わない。 As described above, the gas-liquid mixing unit 2 has a configuration for mixing the liquid and the gas to generate the gas-containing liquid. In the present embodiment, the specific configuration of the gas-liquid mixing unit 2 is not particularly limited. The gas-liquid mixing unit 2 may adopt various known variations.
 続いて、図3から図10までを参照して、気泡生成部3の構成について説明する。図3は、気泡生成部3の構成の一例を示す図である。図3を参照すると、気泡生成部3は、気体含有液処理部31と絞り部34とを有している。後述するように、気泡生成部3は、気体含有液処理部31で所定の処理を施した後、例えば流路の幅を狭める(内径が細くなる)絞りを形成した、絞り部34を通過させることで、気体含有液内にナノバブルを発生させる。このように、気泡生成部3においては、気体含有液処理部31及び絞り部34において、気体含有液内にナノバブルを発生させる。また、気泡生成部3には、流路41と流路42と流路43とが形成されている。 Subsequently, the configuration of the bubble generation unit 3 will be described with reference to FIGS. 3 to 10. FIG. 3 is a diagram showing an example of the configuration of the bubble generation unit 3. Referring to FIG. 3, the bubble generation unit 3 has a gas-containing liquid processing unit 31 and a throttling unit 34. As described later, after the bubble generation unit 3 performs predetermined processing in the gas-containing liquid processing unit 31, for example, the air bubble generation unit 3 passes the throttling unit 34 in which a throttle is formed to narrow the width of the flow path Thus, nano bubbles are generated in the gas-containing liquid. As described above, in the bubble generating unit 3, nano bubbles are generated in the gas-containing liquid in the gas-containing liquid processing unit 31 and the throttling unit 34. Further, in the bubble generation unit 3, a flow passage 41, a flow passage 42 and a flow passage 43 are formed.
 流路41の一方の端部は気液混合部2と連結しており、流路41の他方の端部は気体含有液処理部31と連結している。つまり、流路26を介して排出された気体含有液は、流路41を介して気体含有液処理部31へと供給される。また、気体含有液処理部31には流路42が連結されており、流路42のうちの他方の端部は絞り部34と連結されている。また、絞り部34には流路43が連結されており、流路43の他方の端部には排出口が形成されている。 One end of the flow passage 41 is connected to the gas-liquid mixing unit 2, and the other end of the flow passage 41 is connected to the gas-containing liquid processing unit 31. That is, the gas-containing liquid discharged through the flow path 26 is supplied to the gas-containing liquid processing unit 31 through the flow path 41. Further, the flow path 42 is connected to the gas-containing liquid processing unit 31, and the other end of the flow path 42 is connected to the throttling unit 34. Further, the flow path 43 is connected to the narrowed portion 34, and the other end of the flow path 43 is formed with a discharge port.
 このような構成のため、気体含有液処理部31には、流路41を介して気液混合部2で生成された気体含有液が供給される。また、気体含有液処理部31を排出された気体含有液は流路42を介して絞り部34に供給され、絞り部34を通過した気体含有液は、流路43を介して外部へと排出される。つまり、流路41は、気体含有液処理部31に気体含有液を流入する流入路しての機能を有しており、流路42は気体含有液処理部31から気体を排出する排出路としての機能を有している。また、流路42は、絞り部34に気体含有液を流入する流入路しての機能を有しており、流路43は絞り部34から気体を排出する排出路としての機能を有している。 With such a configuration, the gas-containing liquid processing unit 31 is supplied with the gas-containing liquid generated in the gas-liquid mixing unit 2 through the flow path 41. Further, the gas-containing liquid discharged from the gas-containing liquid processing unit 31 is supplied to the throttling unit 34 through the flow channel 42, and the gas-containing liquid having passed through the throttling unit 34 is discharged to the outside through the flow channel 43 Be done. That is, the flow path 41 has a function as an inflow path for flowing the gas-containing liquid into the gas-containing liquid processing unit 31, and the flow path 42 serves as a discharge path for discharging the gas from the gas-containing liquid processing unit 31. Have the function of Further, the flow path 42 has a function as an inflow path for introducing the gas-containing liquid into the throttling portion 34, and the flow path 43 has a function as a discharge path for discharging the gas from the throttling portion 34 There is.
 気体含有液処理部31は、例えば、内部に空洞を有する略円柱形状を有している。気体含有液処理部31には、気泡生成モジュール33を装着した仕切板32(仕切り部材)が固定されている。また、気体含有液処理部31の側面には流路41や流路42が形成されている。 The gas-containing liquid processing unit 31 has, for example, a substantially cylindrical shape having a cavity inside. In the gas-containing liquid processing unit 31, a partition plate 32 (partition member) on which the bubble generation module 33 is mounted is fixed. Further, a channel 41 and a channel 42 are formed on the side surface of the gas-containing liquid processing unit 31.
 例えば、気体含有液処理部31は、一方の端部にフランジ3111が形成され他方の端部に端面3112が形成された、円筒形状を有する第1の筒状部311(第1の筐体)と、一方の端部にフランジ3121が形成され他方の端部に端面3122が形成された、円筒形状を有する第2の筒状部312(第2の筐体)とを有している。また、第1の筒状部311の側面所定箇所において流路41の端部が連結されており、第2の筒状部312の側面所定箇所において流路42の端部が連結されている。気体含有液処理部31は、第1の筒状部311に形成されたフランジ3111と第2の筒状部312に形成されたフランジ3121との間に後述する仕切板32の外周側部分を挟み込んだ状態で、連結部材313により第1の筒状部311と第2の筒状部312とを連結することで形成されている。なお、連結部材313は、例えばナットやボルトなどである。連結部材313は、フランジ3111やフランジ3121に形成された貫通孔や仕切板32に形成された固定用貫通孔322に挿通されることで、第1の筒状部311と第2の筒状部312とを連結する。 For example, the gas-containing liquid processing unit 31 has a cylindrical first cylindrical portion 311 (first housing) having a flange 3111 formed at one end and an end face 3112 formed at the other end. And a second cylindrical portion 312 (second housing) having a cylindrical shape, in which a flange 3121 is formed at one end and an end face 3122 is formed at the other end. Further, the end of the flow passage 41 is connected at a predetermined side surface of the first cylindrical portion 311, and the end of the flow passage 42 is connected at a predetermined predetermined side surface of the second cylindrical portion 312. The gas-containing liquid processing unit 31 sandwiches the outer peripheral side portion of the partition plate 32 described later between the flange 3111 formed in the first cylindrical portion 311 and the flange 3121 formed in the second cylindrical portion 312. It is formed by connecting the first cylindrical portion 311 and the second cylindrical portion 312 by the connecting member 313 in the flexed state. The connecting member 313 is, for example, a nut or a bolt. The connecting member 313 is inserted into the through holes formed in the flange 3111 and the flange 3121 and the fixing through holes 322 formed in the partition plate 32, whereby the first cylindrical portion 311 and the second cylindrical portion are formed. And 312 are linked.
 なお、図3で示すように、第2の筒状部312の側面の長さは、第1の筒状部311の側面の長さよりも長くなっている。また、第1の筒状部311の側面に形成された流路41や第2の筒状部312の側面に形成された流路42は、例えば、フランジ3111やフランジ3121の近傍に形成されている。このような構成のため、気体含有液処理部31のうち、第2の筒状部312の端面3122から流路42までの長さは、第1の筒状部311の端面3112から流路41までの長さより長くなっている。 As shown in FIG. 3, the length of the side surface of the second cylindrical portion 312 is longer than the length of the side surface of the first cylindrical portion 311. Further, the flow path 41 formed on the side surface of the first cylindrical portion 311 and the flow path 42 formed on the side surface of the second cylindrical portion 312 are formed, for example, in the vicinity of the flange 3111 and the flange 3121 There is. Due to such a configuration, the length from the end face 3122 of the second cylindrical portion 312 to the flow path 42 in the gas-containing liquid processing unit 31 is the length from the end face 3112 of the first cylindrical portion 311 to the flow path 41 It is longer than the length.
 仕切板32は、正面視で略円形の形状を有する板状の部材である。仕切板32は、気体含有液処理部31に固定されることにより、気体含有液処理部31を構成する筐体の内部空間を2つの空間に仕切る。具体的には、仕切板32は、気体含有液処理部31を構成する筐体内の空間を、気体含有液の流入路として機能する流路41側の第1の空間と、気体含有液の排出路として機能する流路42側の第2の空間と、に仕切る。換言すると、仕切板32は、気体含有液処理部31内の空間を、第1の筒状部311側の空間である第1の空間と、第2の筒状部312側の空間である第2の空間と、に仕切る。なお、上述したように、第2の筒状部の側面の長さは、第1の筒状部311の側面の長さよりも長くなっている。そのため、第1の空間よりも第2の空間の方が内部の空間が広くなっている。 The partition plate 32 is a plate-like member having a substantially circular shape in a front view. The partition plate 32 is fixed to the gas-containing liquid processing unit 31 to divide the internal space of the casing constituting the gas-containing liquid processing unit 31 into two spaces. Specifically, the partition plate 32 discharges the gas-containing liquid, and the space in the casing constituting the gas-containing liquid processing unit 31 is a first space on the flow path 41 side that functions as an inflow path of the gas-containing liquid. It divides into the 2nd space by the side of the flow path 42 which functions as a path | route. In other words, the partition plate 32 is configured such that the space in the gas-containing liquid processing unit 31 is a first space which is a space on the side of the first cylindrical portion 311 and a space which is on the side of the second cylindrical portion 312. Divide into two spaces. As described above, the length of the side surface of the second tubular portion is longer than the length of the side surface of the first tubular portion 311. Therefore, the internal space is wider in the second space than in the first space.
 図4は、仕切板32の構成の一例を示している。図4を参照すると、仕切板32には、複数の貫通孔321と複数の固定用貫通孔322とが形成されている。例えば、図4の場合、仕切板32には、3つの貫通孔321と、8つの固定用貫通孔322と、が形成されている。 FIG. 4 shows an example of the configuration of the partition plate 32. As shown in FIG. Referring to FIG. 4, the partition plate 32 is formed with a plurality of through holes 321 and a plurality of fixing through holes 322. For example, in the case of FIG. 4, in the partition plate 32, three through holes 321 and eight fixing through holes 322 are formed.
 貫通孔321は、気泡生成モジュール33を仕切板32に装着する際に用いる貫通孔である。つまり、貫通孔321には、気泡生成モジュール33が装着される。貫通孔321に気泡生成モジュール33を装着する方法は特に限定しないが、例えば、ネジ式、溶接、などの方法を採用して構わない。または、例えば、貫通孔321の内周面に形成された雌ネジ部に、外周面に雄ネジ部が形成された気泡生成モジュール33をねじ込んで気泡生成モジュール33を所定位置まで挿入した後溶接を行うなど、ネジと溶接の組み合わせた方法を採用しても構わない。貫通孔321の大きさは、例えば、直径約20~30mm程度であるが、例示した以外の大きさであっても構わない。図4を参照すると、貫通孔321は、仕切板32のうち中央付近に例えば等間隔に形成されている。 The through holes 321 are through holes used when the air bubble generation module 33 is attached to the partition plate 32. That is, the air bubble generation module 33 is attached to the through hole 321. Although the method of mounting the air bubble generation module 33 in the through hole 321 is not particularly limited, for example, a screw method, welding, or the like may be adopted. Alternatively, for example, the air bubble generation module 33 having an external thread formed on the outer peripheral surface is screwed into an internal thread formed on the inner peripheral surface of the through hole 321 and the air bubble generation module 33 is inserted to a predetermined position and then welded. For example, a combined method of screw and welding may be adopted. The size of the through hole 321 is, for example, about 20 to 30 mm in diameter, but may be a size other than those illustrated. Referring to FIG. 4, the through holes 321 are formed at equal intervals, for example, in the vicinity of the center of the partition plate 32.
 固定用貫通孔322は、仕切板32を気体含有液処理部31に固定する際に用いる貫通孔である。固定用貫通孔322には、連結部材313が挿通される。固定用貫通孔322は、仕切板32の外周側であって、フランジ3111やフランジ3121に形成された貫通孔の形成位置に応じた位置に形成されている。固定用貫通孔322の大きさは、連結部材313の大きさに応じた大きさとなっている。固定用貫通孔322の数は、フランジ3111やフランジ3121に形成された貫通孔の数に応じて、変更されても構わない。 The fixing through holes 322 are through holes used when the partition plate 32 is fixed to the gas-containing liquid processing unit 31. The connecting member 313 is inserted into the fixing through hole 322. The fixing through holes 322 are formed on the outer peripheral side of the partition plate 32 and at positions corresponding to the formation positions of the through holes formed in the flange 3111 and the flange 3121. The size of the fixing through hole 322 corresponds to the size of the connecting member 313. The number of fixing through holes 322 may be changed according to the number of through holes formed in the flange 3111 and the flange 3121.
 仕切板32は、例えば、上述したような構成を有している。このように、仕切板32は、気体含有液処理部31を構成する筐体の内部を第1の空間と第2の空間とに仕切るとともに、気泡生成モジュール33が固定可能なよう構成されている。上述した構成を有することで、仕切板32は、固定用貫通孔322を用いて気体含有液処理部31に固定されることになる。また、仕切板32に形成された貫通孔321には、気泡生成モジュール33が装着される。 The partition plate 32 has, for example, the configuration as described above. Thus, the partition plate 32 divides the inside of the casing constituting the gas-containing liquid processing unit 31 into the first space and the second space, and is configured to be able to fix the bubble generation module 33. . By having the configuration described above, the partition plate 32 is fixed to the gas-containing liquid processing unit 31 using the fixing through holes 322. In addition, the air bubble generation module 33 is attached to the through hole 321 formed in the partition plate 32.
 気泡生成モジュール33は、内部に空間を有する円筒形状のモジュールである。気泡生成モジュール33は、当該気泡生成モジュール33への流入口が流路41側(第1の空間内)に位置し、当該気泡生成モジュール33からの排出口が流路42側(第2の空間内)に位置する状態で、仕切板32に固定されている。このような状態のため、気泡生成モジュール33のうちの一方の端部から当該気泡生成モジュール33の内部に供給された気体含有液は、気泡生成モジュール33の内部を通過した後、気泡生成モジュール33の他方の端部から外部へと排出される。換言すると、流路41を介して気体含有液処理部31のうちの第1の空間内に供給された気体含有液は、気泡生成モジュール33の内部を通過した後、気体含有液処理部31のうちの第2の空間内に到達する。このように、気泡生成モジュール33は、内部を気体含有液が通過することが可能な円筒形状を有している。 The bubble generation module 33 is a cylindrical module having a space inside. In the air bubble generation module 33, the inlet to the air bubble generation module 33 is located on the flow path 41 side (in the first space), and the outlet from the air bubble generation module 33 is on the flow path 42 side (second space Is fixed to the partition plate 32 in the state of being located inside). Due to such a state, the gas-containing liquid supplied from the one end of the bubble generation module 33 to the inside of the bubble generation module 33 passes through the inside of the bubble generation module 33, and then the bubble generation module 33. It is discharged to the outside from the other end of the In other words, after the gas-containing liquid supplied into the first space of the gas-containing liquid processing unit 31 via the flow path 41 passes through the inside of the bubble generation module 33, the gas-containing liquid processing unit 31 It reaches within our second space. Thus, the bubble generation module 33 has a cylindrical shape through which the gas-containing liquid can pass.
 図5は、気泡生成モジュール33の構成の一例を示している。具体的には、図5(A)は、気泡生成モジュール33の構成の一例を示しており、図5(B)、図5(C)は、気泡生成モジュール33の構成の他の一例を示している。なお、仕切板32には、図5(A)で示す気泡生成モジュール33が装着されても構わないし、図5(B)で示す気泡生成モジュール33や図5(C)で示す気泡生成モジュール33が装着されても構わない。仕切板32には、図5(A)、図5(B)、図5(C)で示す気泡生成モジュール33のうちのいずれか、又は、組み合わせたものを装着しても構わない。 FIG. 5 shows an example of the configuration of the bubble generation module 33. Specifically, FIG. 5 (A) shows an example of the configuration of the bubble generation module 33, and FIGS. 5 (B) and 5 (C) show another example of the configuration of the bubble generation module 33. ing. The air bubble generation module 33 shown in FIG. 5A may be attached to the partition plate 32. The air bubble generation module 33 shown in FIG. 5B or the air bubble generation module 33 shown in FIG. 5C. May be worn. One or a combination of the bubble generation modules 33 shown in FIGS. 5A, 5B, and 5C may be attached to the partition plate 32.
 図5(A)を参照すると、気泡生成モジュール33は、例えば、螺旋流路331と、突起部332と、から構成されている。 Referring to FIG. 5A, the bubble generation module 33 is configured of, for example, a spiral flow channel 331 and a protrusion 332.
 螺旋流路331は、螺旋状に形成された流路である。気泡生成モジュール33の内部に侵入した気体含有液は、螺旋流路331内を通過することで、螺旋流を形成する。なお、螺旋流路331は、螺旋流を形成可能であれば回転する羽根部など螺旋流路以外の構成であっても構わない。 The spiral flow channel 331 is a flow channel formed in a spiral shape. The gas-containing liquid that has entered the inside of the bubble generation module 33 passes through the spiral flow channel 331 to form a spiral flow. The spiral flow channel 331 may have a configuration other than the spiral flow channel, such as a blade that rotates as long as a spiral flow can be formed.
 突起部332内では、複数の突起3321が形成されている。突起3321は、例えばネジである。突起3321は、円筒形状の気泡生成モジュール33にねじ込まれることで、気泡生成モジュール33に固定されている。突起3321は、気泡生成モジュール33に溶接されていても構わない。 In the protrusion 332, a plurality of protrusions 3321 are formed. The protrusion 3321 is, for example, a screw. The protrusion 3321 is fixed to the air bubble generation module 33 by being screwed into the air bubble generation module 33 having a cylindrical shape. The protrusion 3321 may be welded to the air bubble generation module 33.
 図6は、突起部332においてねじ込まれる突起3321の位置関係の一例を示している。具体的には、図6(A)は、突起3321の位置関係の一例を示しており、図6(B)は、突起3321の位置関係の他の一例を示している。図6(A)を参照すると、突起部332においては、図6(A)の上側を0度として、例えば、0度、120度、240度、の各箇所に突起3321が形成されている。また、図6(B)を参照すると、例えば、60度、180度、300度、の各箇所に突起3321が形成されている。このように、突起部332は、3本の突起3321を一組とした、複数の組により形成されている。 FIG. 6 shows an example of the positional relationship of the projections 3321 to be screwed in the projections 332. Specifically, FIG. 6 (A) shows an example of the positional relationship of the projections 3321, and FIG. 6 (B) shows another example of the positional relationship of the projections 3321. Referring to FIG. 6A, in the projection 332, projections 3321 are formed at each position of 0 °, 120 °, and 240 °, for example, with the upper side of FIG. 6A being 0 °. Further, referring to FIG. 6B, for example, projections 3321 are formed at each of 60 degrees, 180 degrees, and 300 degrees. As described above, the protrusion 332 is formed by a plurality of sets of three protrusions 3321 as one set.
 例えば、図5で示す場合、6つの組(つまり、18本の突起3321)により突起部332が形成されている。また、突起部332においては、例えば、隣接する組において突起3321の位置関係が異なるよう各箇所に突起3321が形成されている。具体的には、例えば、図6(A)で示す位置関係で突起3321がねじ込まれた組、図6(B)で示す位置関係で突起3321がねじ込まれた組、が相互に出現するよう、突起部332は構成されている。 For example, in the case shown in FIG. 5, the protrusion 332 is formed by six sets (that is, 18 protrusions 3321). Further, in the protrusions 332, for example, the protrusions 3321 are formed at the respective positions so that the positional relationship between the protrusions 3321 differs between adjacent sets. Specifically, for example, a set in which the protrusions 3321 are screwed in the positional relationship shown in FIG. 6A, and a set in which the protrusions 3321 are screwed in the positional relationship shown in FIG. The protrusion 332 is configured.
 なお、隣接する組において突起3321の位置関係が異なれば、図6(A)や図6(B)で示すような位置関係以外の位置関係で突起3321が形成されていても構わない。また、1つの組における突起3321の数は、3つに限定されない。例えば、1つの組における突起3321の数は、1つまたは2つであっても構わないし、4つ以上であっても構わない。 Note that as long as the positional relationship between the protrusions 3321 is different between adjacent sets, the protrusions 3321 may be formed in a positional relationship other than the positional relationship as shown in FIGS. 6A and 6B. Also, the number of protrusions 3321 in one set is not limited to three. For example, the number of the projections 3321 in one set may be one or two, or four or more.
 以上説明したように、気泡生成モジュール33は、例えば、螺旋流路331と、6つの組から構成される突起部332と、から構成されている。なお、気泡生成モジュール33は、既知の様々な変形例を採用して構わない。たとえば、突起部332においては、突起3321が設けられている箇所以外の箇所に置いて、V状の溝が1つまたは複数形成されていても構わない。 As described above, the bubble generation module 33 is configured of, for example, the spiral flow channel 331 and the protrusion 332 configured of six sets. The air bubble generation module 33 may adopt various known variations. For example, in the protrusion 332, one or more V-shaped grooves may be formed at places other than the places where the protrusions 3321 are provided.
 また、気泡生成モジュール33は、図5(B)で示すような構成を有していても構わない。図5(B)を参照すると、気泡生成モジュール33は、例えば、螺旋流路331と、突起部332と、絞り部333と、から構成されている。図5(B)で示す気泡生成モジュール33の場合、図5(A)で示す場合と比較して、突起部332の一部が絞り部333へと置換されている。換言すると、図5(B)で示す場合、気泡生成モジュール33は、例えば、螺旋流路331と、3つの組から構成される突起部332と、絞り部333と、から構成されている。 Further, the bubble generation module 33 may have a configuration as shown in FIG. 5 (B). Referring to FIG. 5B, the air bubble generation module 33 is configured of, for example, a spiral channel 331, a protrusion 332, and a throttling portion 333. In the case of the air bubble generation module 33 shown in FIG. 5B, a part of the protrusion 332 is replaced with the narrowed portion 333 as compared with the case shown in FIG. 5A. In other words, in the case illustrated in FIG. 5B, the air bubble generation module 33 is configured of, for example, a spiral flow path 331, a protrusion 332 configured by three sets, and a throttling portion 333.
 絞り部333は、気泡生成モジュール33において、突起部332よりも内径が細く形成されている箇所である。絞り部333においては、図5で示すように、下流側に進むにつれて徐々に内径が細くなった後、内径が最初の箇所から下流側に進むにつれて徐々に内径が太くなるよう形成されている。なお、絞り部333の具体的な構成は図5(B)で示す場合に特に限定しない。絞り部333は、当該絞り部333において内径が細くなっているなど気体含有液の流れる流路が狭くなっていれば、図5(B)で例示するような形状以外であっても構わない。 The throttling portion 333 is a portion where the inside diameter of the bubble generation module 33 is smaller than that of the protrusion 332. As shown in FIG. 5, the narrowed portion 333 is formed so that the inner diameter gradually narrows toward the downstream side and then gradually increases as the inner diameter proceeds from the first portion to the downstream side. The specific configuration of the diaphragm unit 333 is not particularly limited in the case shown in FIG. 5 (B). The narrowed portion 333 may have a shape other than that illustrated in FIG. 5B as long as the flow path of the gas-containing liquid is narrowed such that the inner diameter is narrowed in the narrowed portion 333.
 また、気泡生成モジュール33は、図5(C)で示すような構成を有していても構わない。図5(C)を参照すると、気泡生成モジュール33は、例えば、螺旋流路331と、突起部332と、から構成されている。図5(C)で示す場合、図5(A)で示す場合と比較して、突起部332を構成する組の数が少なくなっている。つまり、図5(C)で示す場合、気泡生成モジュール33は、例えば、螺旋流路331と、3つの組から構成される突起部332と、から構成されている。 Further, the bubble generation module 33 may have a configuration as shown in FIG. 5 (C). Referring to FIG. 5C, the bubble generation module 33 includes, for example, a spiral flow passage 331 and a protrusion 332. In the case shown in FIG. 5C, the number of sets constituting the projection 332 is smaller than in the case shown in FIG. 5A. That is, when it shows in FIG.5 (C), the bubble generation module 33 is comprised from the helical flow path 331 and the projection part 332 comprised from three groups, for example.
 気泡生成モジュール33は、例えば、上述したような構成を有している。 The bubble generation module 33 has, for example, the configuration as described above.
 なお、上述したような構成によると、気体含有液処理部31の内部における気体含有液の流れは、例えば、図7で示すようになる。図7を参照すると、流路41を介して気体含有液処理部31の内部へと供給された気体含有液は、第1の空間から気泡生成モジュール33の内部に流れる。具体的には、気泡生成モジュール33を形成する螺旋流路331へと気体含有液が流れる。これにより、螺旋流が形成される。また、螺旋流を形成した気体含有液は、突起部332に形成された突起3321と衝突しながら気泡生成モジュール33の内部を通過し、その後第2の空間へと流れる。この際、第1の空間と第2の空間とは仕切板32により仕切られている。そのため、気泡生成モジュール33の内部を経ずに第1の空間から第2の空間へと気体含有液が流れることはない。また、第2の空間においては、気泡生成モジュール33の端部から排出された気体含有液は、端面3122などにより進行を妨げられ、第2の空間の内部において乱流を形成する。その後、第2の空間のうちの仕切板32近傍に連結された流路42から気体含有液処理部31の外部へと、気泡生成モジュール33による処理を経た気体含有液が排出される。なお、上述したように、第2の筒状部312の端面3122から流路42までの長さが長くなるよう、流路42は仕切板32の近傍に固定されている。このような構成のため、気泡生成モジュール33から排出された気体含有液が乱流を形成することなく直接流路42へと流れることを防ぐ事が出来る。その結果、第2の空間内において十分に乱流を形成することが可能となり、より多量のナノバブルをより安定的に生成することが可能となる。 According to the configuration as described above, the flow of the gas-containing liquid inside the gas-containing liquid processing unit 31 is, for example, as shown in FIG. Referring to FIG. 7, the gas-containing liquid supplied to the inside of the gas-containing liquid processing unit 31 via the flow path 41 flows from the first space to the inside of the bubble generation module 33. Specifically, the gas-containing liquid flows into the spiral channel 331 forming the bubble generation module 33. This creates a helical flow. Further, the gas-containing liquid in which the spiral flow is formed passes through the inside of the bubble generation module 33 while colliding with the projections 3321 formed on the projections 332, and then flows to the second space. At this time, the first space and the second space are separated by the partition plate 32. Therefore, the gas-containing liquid does not flow from the first space to the second space without passing through the inside of the bubble generation module 33. In the second space, the gas-containing liquid discharged from the end of the bubble generation module 33 is prevented from advancing by the end face 3122 or the like, and forms turbulent flow in the second space. Thereafter, the gas-containing liquid subjected to the processing by the bubble generation module 33 is discharged from the flow path 42 connected to the vicinity of the partition plate 32 in the second space to the outside of the gas-containing liquid processing unit 31. As described above, the flow path 42 is fixed in the vicinity of the partition plate 32 so that the length from the end face 3122 of the second cylindrical portion 312 to the flow path 42 becomes long. With such a configuration, it is possible to prevent the gas-containing liquid discharged from the bubble generation module 33 from flowing directly to the flow channel 42 without forming a turbulent flow. As a result, sufficient turbulence can be formed in the second space, and a larger amount of nanobubbles can be generated more stably.
 絞り部34は、流路42や流路43などの内径よりも内径が細いなど、流路42や流路43などよりも狭い箇所を気体含有液が通過するよう構成されている。つまり、絞り部34は、気体含有液の流れを制限するよう構成されている。なお、本実施形態においては、絞り部34の具体的な構成については特に限定しない。絞り部34は、例えば、筐体と球体とバネとを有し、気体含有液の流れにより球体が押されて、筐体と球体との間に形成される隙間を気体含有液が流れるよう調整した構成を有していても構わない。上記構成の場合、筐体と球体との隙間の大きさは、気体含有液の流れの速さとバネにより球体を押し戻す力とにより調整されることになる。また、絞り部34は、下流に向かって内径を細くするよう形成された絞りを有する構成などであっても構わない。絞り部34は、例えば、気体含有液の流量などに応じて、1つまたは複数の絞り部を気体含有液が流れるよう調整可能に構成されていても構わない。絞り部34は、その他既知の構成を有していても構わない。 The throttling portion 34 is configured such that the gas-containing liquid passes through a portion narrower than the flow path 42, the flow path 43 or the like, for example, the inner diameter is smaller than the inner diameter of the flow path 42 or the flow path 43. That is, the throttling unit 34 is configured to restrict the flow of the gas-containing liquid. In the present embodiment, the specific configuration of the diaphragm unit 34 is not particularly limited. The throttling portion 34 has, for example, a housing, a sphere and a spring, and the sphere is pushed by the flow of the gas-containing liquid so that the gas-containing liquid flows in the gap formed between the housing and the sphere It does not matter if it has the following configuration. In the case of the above configuration, the size of the gap between the housing and the sphere is adjusted by the flow speed of the gas-containing liquid and the force for pushing back the sphere by the spring. Further, the throttling portion 34 may be configured to have a throttling formed so as to narrow the inner diameter toward the downstream. The throttling portion 34 may be configured to be adjustable so that the gas-containing liquid flows in one or a plurality of throttling portions, for example, according to the flow rate of the gas-containing liquid. The throttling unit 34 may have another known configuration.
 以上が、気泡生成部3の構成の一例である。 The above is an example of the configuration of the bubble generation unit 3.
 このように、本実施形態における気泡生成装置1は、仕切板32と気泡生成モジュール33とを有する気体含有液処理部31と、絞り部34と、を有する気泡生成部3を有している。このような構成により、流入路として機能する流路41を介して気体含有液処理部31の内部に侵入した気体含有液は、気泡生成モジュール33の内部を通過した後、排出路として機能する流路42側の空間である第2の空間に移動して、流路42から気体含有液処理部31の外部へと流出する。また、気体含有液処理部31を流出した気体含有液は絞り部34を通過する。このように、気泡生成モジュール33、第2の空間、絞り部34、を気体含有液が通過することで、気体含有液の衝突や圧力変動などが生じ、気体含有液内に多量のナノバブルが発生することになる。 As described above, the air bubble generation device 1 in the present embodiment includes the air bubble generation unit 3 including the gas-containing liquid processing unit 31 including the partition plate 32 and the air bubble generation module 33, and the throttling unit 34. With such a configuration, the gas-containing liquid that has entered the inside of the gas-containing liquid processing unit 31 via the flow path 41 that functions as the inflow path flows into the air bubble generation module 33 and then functions as a discharge path. It moves to the second space, which is the space on the side of the passage 42, and flows out of the flow passage 42 to the outside of the gas-containing liquid processing unit 31. The gas-containing liquid that has flowed out of the gas-containing liquid processing unit 31 passes through the throttling unit 34. As described above, when the gas-containing liquid passes through the bubble generation module 33, the second space, and the throttling portion 34, collision of the gas-containing liquid, pressure fluctuation, and the like occur to generate a large amount of nanobubbles in the gas-containing liquid. It will be done.
 また、本実施形態によると、有する貫通孔321の数が異なる仕切板32を使い分けることで、第1の空間と第2の空間とをつなぐ気泡生成モジュール33の数を容易に調整することが出来る。その結果、ナノバブル水の生成量を容易に調整することが可能となる。 Further, according to the present embodiment, the number of the bubble generation modules 33 connecting the first space and the second space can be easily adjusted by properly using the partition plates 32 having different numbers of through holes 321. . As a result, it is possible to easily adjust the amount of nanobubble water produced.
 例えば、図8で示すような1つの貫通孔321のみが設けられた仕切板32を気体含有液処理部31に固定することで、1つの気泡生成モジュール33のみを気体含有液処理部31の内部に形成することが出来る。一方、例えば、図9で示すような5つの貫通孔321が設けられた仕切板32を気体含有液処理部31に固定することで、5つの気泡生成モジュール33を気体含有液処理部31の内部に形成することが出来る。このように、気体含有液処理部31に固定する仕切板32を変更することで、容易にナノバブル水の生成量を調整することが出来る。なお、上述したように、仕切板32に形成される貫通孔321の数は、1つ以上の任意の数であって構わない。 For example, by fixing the partition plate 32 provided with only one through hole 321 as shown in FIG. 8 to the gas-containing liquid processing unit 31, the inside of the gas-containing liquid processing unit 31 for only one bubble generation module 33 It can be formed into On the other hand, for example, by fixing the partition plate 32 provided with five through holes 321 as shown in FIG. 9 to the gas-containing liquid processing unit 31, the inside of the gas-containing liquid processing unit 31 It can be formed into Thus, by changing the partition plate 32 fixed to the gas-containing liquid processing unit 31, it is possible to easily adjust the generation amount of nanobubble water. As described above, the number of the through holes 321 formed in the partition plate 32 may be one or more arbitrary number.
 なお、気体含有液処理部31の内部に形成する気泡生成モジュール33の数に応じて、気体含有液処理部自体の径を変更しても構わない。例えば、図10は、気泡生成部3が気体含有液処理部31の代わりに有することが可能な気体含有液処理部35の一例を示している。 Note that the diameter of the gas-containing liquid processing unit itself may be changed according to the number of the bubble generation modules 33 formed inside the gas-containing liquid processing unit 31. For example, FIG. 10 shows an example of the gas-containing liquid processing unit 35 that the bubble generating unit 3 can have in place of the gas-containing liquid processing unit 31.
 図10を参照すると、気体含有液処理部35は、仕切板32と気泡生成モジュール33とを有している。仕切板32及び気泡生成モジュール33の構成は、概ね上述したものと一緒である。そのため、詳細な説明は省略する。なお、気体含有液処理部35の場合、仕切板32は、気体含有液処理部35により挟み込まれる形で固定されている。そのため、仕切板32には、固定用貫通孔322は設けられていない。このように、仕切板32には、必ずしも固定用貫通孔322が形成されていなくても構わない。 Referring to FIG. 10, the gas-containing liquid processing unit 35 includes a partition plate 32 and a bubble generation module 33. The configurations of the partition plate 32 and the bubble generation module 33 are substantially the same as those described above. Therefore, the detailed description is omitted. In the case of the gas-containing liquid processing unit 35, the partition plate 32 is fixed by being sandwiched by the gas-containing liquid processing unit 35. Therefore, the fixing through holes 322 are not provided in the partition plate 32. As described above, the fixing through holes 322 may not necessarily be formed in the partition plate 32.
 また、図10で示す場合、流路41は第1の筒状部351の側面ではなく半球形状を有する端面に連結されている。このように、気泡生成モジュール33の数が1つ又は2つなどである場合、第1の筒状部351の端面に流路41を連結しても構わない。一方、流路42は第2の筒状部352の側面に形成されている。換言すると、流路41を端面に連結する場合であっても、流路42は第2の筒状部352が有する半球形状の端面ではなく、仕切板32近傍の側面に連結することが望ましい。このように構成することで、気泡生成モジュール33の後の第2の筒状部352の内部において乱流を起こした後、気体含有液処理部35の外に気体含有液を排出することが出来る。これにより、より安定的に気体含有液内にナノバブルを発生させることが可能となる。 Further, in the case shown in FIG. 10, the flow passage 41 is connected not to the side surface of the first cylindrical portion 351 but to the end surface having a hemispherical shape. As described above, when the number of the bubble generation modules 33 is one or two, the flow path 41 may be connected to the end face of the first cylindrical portion 351. On the other hand, the flow channel 42 is formed on the side surface of the second cylindrical portion 352. In other words, even in the case where the flow path 41 is connected to the end face, it is desirable that the flow path 42 be connected not to the hemispherical end face of the second cylindrical portion 352 but to the side face near the partition plate 32. With this configuration, after the turbulent flow occurs in the second cylindrical portion 352 after the bubble generation module 33, the gas-containing liquid can be discharged out of the gas-containing liquid processing unit 35. . This makes it possible to generate nanobubbles in the gas-containing liquid more stably.
[第2の実施形態]
 次に、図11から図14までを参照して、本発明の第2の実施形態について説明する。図11は、気泡生成モジュール5の構成の一例を示す図である。図12は、貫通孔511の様子の一例を示す図である。図13は、第2の実施形態において気体含有液処理部31内における気体含有液の流れの一例を示す図である。図14は、気泡生成モジュール5の他の活用例を示す図である。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIGS. 11 to 14. FIG. 11 is a diagram showing an example of the configuration of the bubble generation module 5. FIG. 12 is a view showing an example of the through hole 511. As shown in FIG. FIG. 13 is a view showing an example of the flow of the gas-containing liquid in the gas-containing liquid processing unit 31 in the second embodiment. FIG. 14 is a view showing another application example of the bubble generation module 5.
 本発明の第2の実施形態では、第1の実施形態において説明した気泡生成モジュール33の別の構成例について説明する。後述するように、本実施形態において説明する気泡生成モジュール5は、気泡生成モジュール33の代わりに仕切板32に装着することが出来る。なお、仕切板32に複数のモジュールを装着可能である場合、仕切板32には、気泡生成モジュール33と気泡生成モジュール5とが同時に装着されても構わない。 In the second embodiment of the present invention, another configuration example of the bubble generation module 33 described in the first embodiment will be described. As will be described later, the air bubble generation module 5 described in the present embodiment can be attached to the partition plate 32 instead of the air bubble generation module 33. When a plurality of modules can be attached to the partition plate 32, the bubble generation module 33 and the bubble generation module 5 may be attached to the partition plate 32 at the same time.
 図11は、気泡生成モジュール33の代わりに用いることが可能な気泡生成モジュール5の構成の一例を示している。図11を参照すると、気泡生成モジュール5は、第1の筒状部51と、第1の筒状部51の外径よりも大きな内径を有し、内部の空間に第1の筒状部51を挿入した状態で第1の筒状部51が固定された(つまり、第1の筒状部51を覆う)第2の筒状部52と、を有している。なお、気泡生成モジュール5全体の外径(例えば、第2の筒状部52の外径)は、例えば、気泡生成モジュール33全体の外径と等しい。そのため、気泡生成モジュール5は、気泡生成モジュール33の代わりに、仕切板32に形成された貫通孔321に装着することが出来る。 FIG. 11 shows an example of the configuration of the bubble generation module 5 that can be used instead of the bubble generation module 33. Referring to FIG. 11, the air bubble generation module 5 has an inner diameter larger than the outer diameter of the first cylindrical portion 51 and the first cylindrical portion 51, and the first cylindrical portion 51 is formed in the internal space. And the second cylindrical portion 52 to which the first cylindrical portion 51 is fixed (that is, to cover the first cylindrical portion 51) in a state in which the second cylindrical portion 52 is inserted. In addition, the outer diameter (for example, the outer diameter of the 2nd cylindrical part 52) of the bubble generation module 5 whole is equal to the outer diameter of the bubble generation module 33 whole, for example. Therefore, the air bubble generation module 5 can be attached to the through hole 321 formed in the partition plate 32 instead of the air bubble generation module 33.
 第1の筒状部51は、一方の端部が開口し他方の端部が閉塞する円筒形状を有している。また、第1の筒状部51の側面には、複数の貫通孔511が形成されている。貫通孔511の大きさは、例えば、直径1mm程度である。なお、貫通孔511の大きさは、例示したもの以外であっても構わない。 The first tubular portion 51 has a cylindrical shape in which one end is open and the other end is closed. Further, a plurality of through holes 511 are formed on the side surface of the first cylindrical portion 51. The size of the through hole 511 is, for example, about 1 mm in diameter. The size of the through hole 511 may be other than that illustrated.
 図12は、第1の筒状部51の側面に形成された貫通孔511の位置関係の一例を示している。具体的には、図12(A)は、貫通孔511の位置関係の一例を示しており、図12(B)は、貫通孔511の位置関係の他の一例を示している。また、図12(C)は、貫通孔511の他の構成例を示している。図12(A)を参照すると、第1の筒状部51においては、図12(A)の上側を0度として、例えば、0度、120度、240度、の各箇所に貫通孔511が形成されている。また、図12(B)を参照すると、例えば、60度、180度、300度、の各箇所に貫通孔511が形成されている。このように、貫通孔511は、例えば、3つの貫通孔511を一組として、複数組、第1の筒状部51に形成されている。 FIG. 12 shows an example of the positional relationship of the through holes 511 formed on the side surface of the first cylindrical portion 51. As shown in FIG. Specifically, FIG. 12A shows an example of the positional relationship of the through holes 511, and FIG. 12B shows another example of the positional relationship of the through holes 511. As shown in FIG. Further, FIG. 12C shows another configuration example of the through hole 511. Referring to FIG. 12A, in the first cylindrical portion 51, with the upper side of FIG. 12A being 0 degree, for example, the through holes 511 are provided at each position of 0 degree, 120 degrees, and 240 degrees. It is formed. Further, referring to FIG. 12B, for example, through holes 511 are formed at each of 60 degrees, 180 degrees, and 300 degrees. Thus, the through holes 511 are formed in the first cylindrical portion 51 in a plurality of sets, for example, with the three through holes 511 as one set.
 なお、第1の筒状部51においては、例えば、隣接する組において貫通孔511の位置関係が異なるよう各箇所に貫通孔511が形成されている。具体的には、例えば、図12(A)で示す位置関係で貫通孔511が形成された組、図12(B)で示す位置関係で貫通孔511が形成された組、が相互に出現するよう、第1の筒状部51は構成されている。なお、本実施形態においては、第1の筒状部51に形成される貫通孔511の組の数は特に限定しない。 In the first cylindrical portion 51, for example, the through holes 511 are formed in the respective portions so that the positional relationship between the through holes 511 is different between adjacent sets. Specifically, for example, a pair in which the through holes 511 are formed in the positional relationship shown in FIG. 12A, and a pair in which the through holes 511 are formed in the positional relationship shown in FIG. 12B mutually appear. Thus, the first tubular portion 51 is configured. In the present embodiment, the number of sets of through holes 511 formed in the first cylindrical portion 51 is not particularly limited.
 また、図12(C)で示すように、同一の組に属する3つの貫通孔511のうち、1つの貫通孔511は、例えばビスなどにより予め塞がれていても構わない。換言すると、1つの組あたりの貫通孔511の数は3つに限定されない。1つの組あたりの貫通孔511の数は、1つ、又は、2つでも構わない。1つの組あたりの貫通孔511の数は、4つ以上の複数でも構わない。 Further, as shown in FIG. 12C, among the three through holes 511 belonging to the same set, one through hole 511 may be previously closed by, for example, a screw or the like. In other words, the number of through holes 511 per set is not limited to three. The number of through holes 511 per set may be one or two. The number of through holes 511 per set may be four or more.
 第2の筒状部52は、円筒形状を有する前筒状部521と前筒状部521よりも内径の細い円筒形状を有する後筒状部522とを連結した構成となっている。なお、図11で示す場合、前筒状部521の外径と後筒状部522の外径とは等しくなっている。 The second cylindrical portion 52 is configured by connecting a front cylindrical portion 521 having a cylindrical shape and a rear cylindrical portion 522 having a cylindrical shape whose inner diameter is smaller than that of the front cylindrical portion 521. In the case shown in FIG. 11, the outer diameter of the front cylindrical portion 521 and the outer diameter of the rear cylindrical portion 522 are equal.
 前筒状部521の内径は、第1の筒状部51の外径よりも太くなっている。前筒状部521のうちの一方の端部は、第1の筒状部を挿入するための貫通孔が形成された端面となっており、前筒状部521のうちの他方の端部では、後筒状部522が連結されている。また、前筒状部521の内部に第1の筒状部51が挿入された状態で、第1の筒状部51は前筒状部521に固定されている。 The inner diameter of the front tubular portion 521 is larger than the outer diameter of the first tubular portion 51. One end of the front cylindrical portion 521 is an end face on which a through hole for inserting the first cylindrical portion is formed, and the other end of the front cylindrical portion 521 is The rear cylindrical portion 522 is connected. In addition, the first cylindrical portion 51 is fixed to the front cylindrical portion 521 in a state in which the first cylindrical portion 51 is inserted into the inside of the front cylindrical portion 521.
 後筒状部522の内径は、上述したように、前筒状部521の内径よりも細くなっている。例えば、後筒状部522の内径は、第1の筒状部51の内径よりも細くなっている。後筒状部522のうちの一方の端部では、上述したように、前筒状部521が連結されている。また、後筒状部522のうちの他方の端部には、貫通孔523が形成されている。貫通孔523の大きさは、例えば、直径0.20mmから0.36mm程度である。このように、後筒状部522のうちの他方の端部には、貫通孔511の大きさよりも小さな大きさを有する貫通孔523が形成されている。なお、貫通孔523の大きさは例示したもの以外であっても構わない。 The inner diameter of the rear cylindrical portion 522 is thinner than the inner diameter of the front cylindrical portion 521 as described above. For example, the inner diameter of the rear cylindrical portion 522 is smaller than the inner diameter of the first cylindrical portion 51. At one end of the rear cylindrical portion 522, as described above, the front cylindrical portion 521 is connected. Further, a through hole 523 is formed at the other end of the rear cylindrical portion 522. The size of the through hole 523 is, for example, about 0.20 mm to 0.36 mm in diameter. Thus, at the other end of the rear cylindrical portion 522, a through hole 523 having a size smaller than the size of the through hole 511 is formed. The size of the through hole 523 may be other than the illustrated one.
 気泡生成モジュール5は、例えば、上述したような構成を有している。上述したような構成によると、気体含有液処理部31の内部における気体含有液の流れは、例えば、図13で示すようになる。図13を参照すると、流路41を介して気体含有液処理部31の内部へと供給された気体含有液は、第1の空間から気泡生成モジュール5の内部に流れる。具体的には、気泡生成モジュール5を形成する第1の筒状部51のうちの開口する側の端部から気泡生成モジュール5の内部へと気体含有液が流れる。その後、気体含有液は、貫通孔511を介して第1の筒状部51から第2の筒状部52の前筒状部521へと流れる。そして、気体含有液は、前筒状部521から後筒状部522へと流れ、貫通孔523を介して第2の空間へと流れる。この際、第1の空間と第2の空間とは仕切板32により仕切られている。そのため、気泡生成モジュール5の内部を経ずに第1の空間から第2の空間へと気体含有液が流れることはない。また、第2の空間においては、気泡生成モジュール5の貫通孔523から排出された気体含有液は、端面3122などにより進行を妨げられ、乱流を形成する。その後、第2の空間のうちの仕切板32近傍に連結された流路42から気体含有液処理部31の外部へと、気泡生成モジュール5による処理を経た気体含有液が排出される。なお、上述したように、第2の筒状部312の端面3122から流路42までの長さが長くなるよう、流路42は仕切板32の近傍に固定されている。このような構成のため、気泡生成モジュール33から排出された気体含有液が乱流を形成することなく直接流路42へと流れることを防ぐ事が出来る。その結果、第2の空間内において十分に乱流を形成することが可能となり、より多量のナノバブルをより安定的に生成することが可能となる。 The bubble generation module 5 has, for example, the configuration as described above. According to the configuration as described above, the flow of the gas-containing liquid inside the gas-containing liquid processing unit 31 is, for example, as shown in FIG. Referring to FIG. 13, the gas-containing liquid supplied to the inside of the gas-containing liquid processing unit 31 through the flow path 41 flows from the first space into the inside of the bubble generation module 5. Specifically, the gas-containing liquid flows from the open end of the first cylindrical portion 51 forming the bubble generation module 5 to the inside of the bubble generation module 5. Thereafter, the gas-containing liquid flows from the first cylindrical portion 51 to the front cylindrical portion 521 of the second cylindrical portion 52 through the through hole 511. Then, the gas-containing liquid flows from the front cylindrical portion 521 to the rear cylindrical portion 522, and flows to the second space through the through hole 523. At this time, the first space and the second space are separated by the partition plate 32. Therefore, the gas-containing liquid does not flow from the first space to the second space without passing through the inside of the bubble generation module 5. In the second space, the gas-containing liquid discharged from the through hole 523 of the bubble generation module 5 is prevented from advancing by the end face 3122 or the like, and forms a turbulent flow. Thereafter, the gas-containing liquid subjected to the processing by the bubble generation module 5 is discharged from the flow path 42 connected to the vicinity of the partition plate 32 in the second space to the outside of the gas-containing liquid processing unit 31. As described above, the flow path 42 is fixed in the vicinity of the partition plate 32 so that the length from the end face 3122 of the second cylindrical portion 312 to the flow path 42 becomes long. With such a configuration, it is possible to prevent the gas-containing liquid discharged from the bubble generation module 33 from flowing directly to the flow channel 42 without forming a turbulent flow. As a result, sufficient turbulence can be formed in the second space, and a larger amount of nanobubbles can be generated more stably.
 このように、気泡生成モジュール5は、気泡生成モジュール33の代わりに用いることが出来る。このような構成によると、貫通孔523を通過する際に生成される非常に微細な気泡を安定的に生成することが出来る。つまり、本実施形態で説明した気泡生成モジュール5を用いることで、より微細な気泡を安定的に生成することが可能となる。 Thus, the bubble generation module 5 can be used instead of the bubble generation module 33. According to such a configuration, it is possible to stably generate very fine air bubbles generated when passing through the through holes 523. That is, by using the bubble generation module 5 described in the present embodiment, it is possible to stably generate finer bubbles.
 なお、気泡生成モジュール5は、上述した構成以外の構成を有していても構わない。例えば、気泡生成モジュール5は、気泡生成モジュール33が有する突起3321などを有していても構わない。また、気泡生成モジュール5を用いる場合、例えば、気泡生成部3が絞り部34を有していなくても構わない。また、本実施形態においては、気泡生成モジュール5の第2の筒状部52は、前筒状部521と後筒状部522とを連結した構成を有するとした。しかしながら、気泡生成モジュール5の第2の筒状部52は、内径の異なる2つの構成を連結した構成を有していなくても構わない。例えば、第2の筒状部52は、内径が等しい前筒状部521や後筒状部522(つまり、一つの筒状部)から構成されていても構わない。気泡生成モジュール5は、その他既知の構成を有することが出来る。 In addition, the bubble generation module 5 may have a configuration other than the configuration described above. For example, the bubble generation module 5 may have a protrusion 3321 or the like which the bubble generation module 33 has. Moreover, when using the bubble generation module 5, the bubble generation part 3 does not need to have the constriction part 34, for example. Further, in the present embodiment, the second cylindrical portion 52 of the bubble generation module 5 has a configuration in which the front cylindrical portion 521 and the rear cylindrical portion 522 are connected. However, the second cylindrical portion 52 of the bubble generation module 5 may not have a configuration in which two configurations having different inner diameters are connected. For example, the second cylindrical portion 52 may be configured of the front cylindrical portion 521 and the rear cylindrical portion 522 (that is, one cylindrical portion) having the same inner diameter. The bubble generation module 5 can have other known configurations.
 また、気泡生成モジュール5は、気体含有液処理部31全体の代わりに用いられても構わない。つまり、例えば図14で示すように、第1の筒状部51のうちの開口側端部と流路41とを連結することが出来る。また、気泡生成モジュール5のうちの貫通孔523が形成されている側端部と流路42とを連結し、気泡生成モジュール5から排出された気体含有水が流路42へと流れ出るように構成することが出来る。このように構成することで、気泡生成モジュール5は、気体含有液処理部31全体の代わりに用いることが出来る。 In addition, the bubble generation module 5 may be used instead of the entire gas-containing liquid processing unit 31. That is, for example, as shown in FIG. 14, the opening side end of the first cylindrical portion 51 can be connected to the flow path 41. Further, the side end portion of the bubble generation module 5 in which the through hole 523 is formed is connected to the flow passage 42 so that the gas-containing water discharged from the bubble generation module 5 flows out to the flow passage 42. You can do it. By comprising in this way, the bubble generation module 5 can be used instead of the gas-containing liquid process part 31 whole.
 以上、上記各実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることが出来る。 As mentioned above, although this invention was demonstrated with reference to said each embodiment, this invention is not limited to embodiment mentioned above. Various modifications that can be understood by those skilled in the art within the scope of the present invention can be made to the configuration and details of the present invention.
1 気泡生成装置
2 気液混合部
21 流路
22 流路
23 エジェクタ
24 流路
25 ポンプ
26 流路
3 気泡生成部
31 気体含有液処理部
311 第1の筒状部
3111 フランジ
3112 端面
312 第2の筒状部
3121 フランジ
3122 端面
313 連結部材
32 仕切板
321 貫通孔
322 固定用貫通孔
33 気泡生成モジュール
331 螺旋流路
332 突起部
3321 突起
333 絞り部
34 絞り部
35 気体含有液処理部
351 第1の筒状部
352 第2の筒状部
41 流路
42 流路
43 流路
5 気泡生成モジュール
51 第1の筒状部
511 貫通孔
52 第2の筒状部
521 前筒状部
522 後筒状部
523 貫通孔
 

 
DESCRIPTION OF SYMBOLS 1 bubble generation apparatus 2 gas-liquid mixing part 21 flow path 22 flow path 23 ejector 24 flow path 25 pump 26 flow path 3 bubble generation part 31 gas containing liquid processing part 311 1st cylindrical part 3111 flange 3112 end face 312 2nd Tubular portion 3121 Flange 3122 End surface 313 Connecting member 32 Partition plate 321 Through hole 322 Fixing through hole 33 Bubble generation module 331 Spiral flow path 332 Protrusion portion 3321 Protrusion 333 Throttling portion 34 Throttling portion 35 Gas-containing liquid processing portion 351 The cylindrical portion 352 The second cylindrical portion 41 The flow passage 42 The flow passage 43 The flow passage 5 The air bubble generation module 51 The first cylindrical portion 511 The through hole 52 The second cylindrical portion 521 The front cylindrical portion 522 The rear cylindrical portion 523 through holes

Claims (5)

  1.  気体と液体とを混合した気体含有液中に微小な気泡を生成する気泡生成装置であって、
     複数の貫通孔が形成された第1の筒状部と、前記第1の筒状部の外径よりも太い内径を有し前記第1の筒状部を覆い、前記第1の筒状部に形成された前記貫通孔から排出された気体含有液が内部に流入する第2の筒状部と、を有する気泡生成モジュールを備え、
     前記第2の筒状部には、当該第2の筒状部の内部から外部へと気体含有液が流れる第2貫通孔が形成されている
     気泡生成装置。
    A bubble generating device that generates minute bubbles in a gas-containing liquid in which a gas and a liquid are mixed,
    A first cylindrical portion in which a plurality of through holes are formed, and an inner diameter thicker than the outer diameter of the first cylindrical portion, covering the first cylindrical portion, the first cylindrical portion And b) a second tubular portion into which the gas-containing liquid discharged from the through hole formed in the inflows into the inside;
    The second through hole in which the gas-containing liquid flows from the inside to the outside of the second cylindrical portion is formed in the second cylindrical portion.
  2.  請求項1に記載の気泡生成装置であって、
     前記第2の筒状部は、前記第1の筒状部の外径よりも太い内径を有し、前記第1の筒状部を覆う前筒状部と、前記前筒状部よりも細い内径を有し、一方の端部で前記前筒状部と連結され他方の端部に前記第2貫通孔が形成された端面を有する後筒状部と、から構成されており、
     前記第1の筒状部に形成された前記貫通孔から排出された気体含有液は、前記前筒状部に流入した後、前記第後筒状部に流入するよう構成されている
     気泡生成装置。
    The bubble generating device according to claim 1, wherein
    The second cylindrical portion has an inner diameter thicker than the outer diameter of the first cylindrical portion, and is thinner than the front cylindrical portion covering the first cylindrical portion and the front cylindrical portion. And a rear cylindrical portion having an inner diameter and having an end face connected to the front cylindrical portion at one end and having the second through hole formed at the other end,
    The gas-containing liquid discharged from the through hole formed in the first cylindrical portion is configured to flow into the second cylindrical portion after flowing into the front cylindrical portion. .
  3.  請求項1又は請求項2に記載された気泡生成装置であって、
     前記第1の筒状部のうちの側面に複数の前記貫通孔が形成されている
     気泡生成装置。
    A bubble generating apparatus according to claim 1 or 2, wherein
    A plurality of the through holes are formed on the side surface of the first cylindrical portion.
  4.  請求項1から請求項3までのいずれかに記載の気泡生成装置であって、
     気体含有液が流入する流入路と、気体含有液を外部に排出する排出路と、を有する筐体と、
     前記筐体の内部を前記流入路側の第1の空間と前記排出路側の第2の空間とに仕切るとともに、前記気泡生成モジュールが固定可能なよう構成されている仕切り部材と、
     を備える
     気泡生成装置。
    A bubble generating apparatus according to any one of claims 1 to 3, wherein
    A housing having an inflow passage into which the gas-containing liquid flows and a discharge passage from which the gas-containing liquid is discharged to the outside;
    A partition member configured to partition the inside of the housing into a first space on the inflow path side and a second space on the discharge path side, and to be capable of fixing the bubble generation module;
    A bubble generating device comprising:
  5.  気体と液体とを混合した気体含有液中に微小な気泡を生成する気泡生成装置により行われる気泡生成方法であって、
     複数の貫通孔が形成された第1の筒状部の内部に流入した後、当該第1の筒状部が有する前記貫通孔を介して、前記第1の筒状部の外径よりも太い内径を有し前記第1の筒状部を覆う第2の筒状部へと気体含有液が流れた後、前記第2の筒状部に形成された第2貫通孔を介して前記第2の筒状部の内部から外部へと気体含有液が流れる
     気泡生成方法。

     
    A bubble generating method performed by a bubble generating device for generating minute bubbles in a gas-containing liquid in which a gas and a liquid are mixed,
    After flowing into the inside of the first cylindrical portion in which a plurality of through holes are formed, the diameter is thicker than the outer diameter of the first cylindrical portion through the through holes of the first cylindrical portion. After the gas-containing liquid flows to the second cylindrical portion having the inner diameter and covering the first cylindrical portion, the second through hole formed in the second cylindrical portion is used to perform the second operation. Gas-containing liquid flows from the inside to the outside of the cylindrical part of the air bubble generation method.

PCT/JP2017/035830 2017-10-02 2017-10-02 Air bubble generator and air bubble generation method WO2019069350A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019547213A JPWO2019069350A1 (en) 2017-10-02 2017-10-02 Bubble generation device, bubble generation method
PCT/JP2017/035830 WO2019069350A1 (en) 2017-10-02 2017-10-02 Air bubble generator and air bubble generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035830 WO2019069350A1 (en) 2017-10-02 2017-10-02 Air bubble generator and air bubble generation method

Publications (1)

Publication Number Publication Date
WO2019069350A1 true WO2019069350A1 (en) 2019-04-11

Family

ID=65995055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035830 WO2019069350A1 (en) 2017-10-02 2017-10-02 Air bubble generator and air bubble generation method

Country Status (2)

Country Link
JP (1) JPWO2019069350A1 (en)
WO (1) WO2019069350A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
WO2011108032A1 (en) * 2010-03-05 2011-09-09 国立大学法人東北大学 Ballast water treatment device, system for rendering ballast water harmless using the device, and method therefor
JP2013166143A (en) * 2012-01-18 2013-08-29 Sigma Technology Kk Method, generating nozzle and generator for generating micro/nanobubble
GB2514202A (en) * 2013-05-16 2014-11-19 Nano Tech Inc Ltd Micro-nanobubble generation systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
WO2011108032A1 (en) * 2010-03-05 2011-09-09 国立大学法人東北大学 Ballast water treatment device, system for rendering ballast water harmless using the device, and method therefor
JP2013166143A (en) * 2012-01-18 2013-08-29 Sigma Technology Kk Method, generating nozzle and generator for generating micro/nanobubble
GB2514202A (en) * 2013-05-16 2014-11-19 Nano Tech Inc Ltd Micro-nanobubble generation systems

Also Published As

Publication number Publication date
JPWO2019069350A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP5038600B2 (en) Microbubble generator
JP4884693B2 (en) Micro bubble generator
US7708453B2 (en) Device for creating hydrodynamic cavitation in fluids
JP2008086868A (en) Microbubble generator
KR101667492B1 (en) Apparatus for generating micro bubbles
EA036231B1 (en) Nano-bubble generator and method of generating nano-bubbles
KR101379239B1 (en) Nano bubble generating system
JP6842249B2 (en) Fine bubble generation nozzle
KR20170104351A (en) Apparatus for generating micro bubbles
WO2019049650A1 (en) Microbubble liquid generator
WO2019069349A1 (en) Bubble generating device and bubble generating method
KR101494080B1 (en) Micro bubble forming device to use ceramic ball
JP5431573B2 (en) Mixer device and gas-liquid supply device
JP2007000848A (en) Method for generating fine bubble
JP6736146B2 (en) Bubble generator
JP2011056436A (en) Fine air bubble generator
JP5285794B1 (en) shower head
WO2019069350A1 (en) Air bubble generator and air bubble generation method
JP2019166493A (en) Fine bubble generation nozzle
JP2016073939A (en) Fine bubble generator
JP2018134588A (en) Microbubble generator
JP6319861B1 (en) Microbubble generator
JP2008289993A (en) Bubble generator
JP2012187505A (en) Microbubble generating mechanism and washing gun
JP6898261B2 (en) Mixer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927985

Country of ref document: EP

Kind code of ref document: A1