WO2019066565A2 - 서브밴드 그룹에 기초하여 csi 리포팅을 수행하는 방법 및 이를 위한 장치 - Google Patents

서브밴드 그룹에 기초하여 csi 리포팅을 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019066565A2
WO2019066565A2 PCT/KR2018/011549 KR2018011549W WO2019066565A2 WO 2019066565 A2 WO2019066565 A2 WO 2019066565A2 KR 2018011549 W KR2018011549 W KR 2018011549W WO 2019066565 A2 WO2019066565 A2 WO 2019066565A2
Authority
WO
WIPO (PCT)
Prior art keywords
subband
information
reporting
csi
control information
Prior art date
Application number
PCT/KR2018/011549
Other languages
English (en)
French (fr)
Other versions
WO2019066565A3 (ko
Inventor
김형태
염건일
강지원
박해욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/652,347 priority Critical patent/US20200235797A1/en
Publication of WO2019066565A2 publication Critical patent/WO2019066565A2/ko
Publication of WO2019066565A3 publication Critical patent/WO2019066565A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method of performing CSI reporting based on a subband group and a device supporting the CSI reporting.
  • the mobile communication system has been developed to provide voice service while ensuring the user 's activity.
  • the mobile communication system has expanded the area from voice to data service.
  • Due to an explosion of traffic a shortage of resources is caused and users demand a higher speed service. Therefore, a more advanced mobile communication system is required .
  • next-generation mobile communication system largely depend on the acceptance of explosive data traffic, the dramatic increase in the rate per user, the acceptance of a significantly increased number of connected devices, very low end-to-end latency, Should be able to.
  • a dual connectivity a massive multiple input multiple output (MIMO), an in-band full duplex, a non-orthogonal multiple access (NOMA) wideband support, and device networking.
  • MIMO massive multiple input multiple output
  • NOMA non-orthogonal multiple access
  • the present disclosure is directed to providing a method for performing CSI reporting.
  • the present specification is aimed at setting a subband group based on the interval.
  • the present disclosure provides a method for setting a subband based on CSI reporting timing in a wireless communication system.
  • a method for performing CSI reporting in a wireless communication system comprising: receiving information on CSI reporting timing from a base station; Receiving, from a base station, first control information, which is information on a frequency region to be subjected to subband reporting, and second control information, which is information on a maximum number of subbands to be subjected to subband reporting; receiving information on a subband start position for setting a subband group from a base station; Setting an interval between subbands based on the first control information and the second control information; Setting a subband group based on the start position and the interval between the subbands; Performing CSI reporting on the set subband group; And the subband group is a subband for performing CSI reporting in a subband.
  • the method includes receiving information on a subband size to be used for CSI reporting from a base station through higher-layer signaling; And the subband group is determined based on the subband size.
  • the second control information is determined based on the received CSI-reporting timing.
  • the interval is floor (first control information / second control information).
  • the method includes: transmitting capability information of a terminal; Receiving a reference value of SINR or CQI from a base station; measuring an SINR or CQI of the subband; Wherein the step of setting the subband group compares the measured SINR or CQI with the reference value and sets a subband having a reference value or more as a subband group.
  • whether to set a subband group is determined based on the capability of the UE and the received CSI timing.
  • a terminal for performing a method of setting a subband group to perform CSI reporting based on CSI reporting timing in a wireless communication system An RF (Radio Frequency) module; And a processor operatively coupled to the RF module, the processor receiving information about CSI reporting timing from a base station; Receiving, from a base station, first control information, which is information on a frequency region to be subjected to subband reporting, and second control information, which is information on a maximum number of subbands to be subjected to subband reporting; receiving information on a subband start position for setting a subband group from a base station; Setting an interval between subbands based on the first control information and the second control information; Setting a subband group based on the start position and the interval between the subbands; And performs CSI reporting on the set subband group.
  • first control information which is information on a frequency region to be subjected to subband reporting
  • second control information which is information on a maximum number of subbands to be subjected to subband
  • the processor receives information on a subband size to be used for CSI reporting from a base station through higher-layer signaling, and the subband group is determined based on the subband size .
  • the second control information is determined based on the received CSI-reporting timing.
  • the interval is floor (first control information / second control information).
  • the processor transmits the capability information of the terminal; And a subband group setting unit for setting a subband group of the subband group by comparing the measured SINR or CQI with the reference value, .
  • whether to set a subband group is determined based on the capability of the UE and the received CSI timing.
  • the present specification has an effect that CSI reporting can be efficiently performed for short CSI reporting timing by setting a subband group based on CSI reporting timing.
  • FIG. 1 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG 3 illustrates a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 illustrates a structure of a UL subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram showing an example of CSI feedback timing to which the present invention can be applied.
  • FIG. 6 is a diagram illustrating a subband group structure to which the present invention can be applied.
  • FIG. 7 is a flowchart illustrating an operation method of a UE performing CSI-RS reporting to which the present invention can be applied.
  • FIG. 8 is a block diagram of a wireless communication apparatus according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the particular operation described herein as performed by the base station may be performed by an upper node of the base station, as the case may be. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station.
  • a base station (BS) is a fixed station, a Node B, an evolved NodeB (eNB), a base transceiver system (BTS), an access point (AP), a remote radio head (RRH) point (TP), reception point (RP), relay, and the like.
  • a 'terminal' may be fixed or mobile and may be a mobile station (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS) Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC), Machine-to-Machine (M2M), and Device-to-Device (D2D) devices.
  • UE mobile station
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS Subscriber station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • a downlink means communication from a base station to a terminal
  • an uplink means communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal and the receiver may be part of the base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC- single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (evolved UMTS) using E-UTRA, adopting OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the steps or portions of the embodiments of the present invention that are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
  • 3GPP LTE / LTE-A is mainly described, but the technical features of the present invention are not limited thereto.
  • a wireless communication system to which the present invention can be applied is A wireless communication system to which the present invention can be applied.
  • FIG. 1 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a Type 1 radio frame structure applicable to Frequency Division Duplex (FDD) and a Type 2 radio frame structure applicable to TDD (Time Division Duplex).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Type 1 (a) illustrates the structure of a Type 1 radio frame.
  • Type 1 radio frames can be applied to both full duplex and half duplex FDD.
  • a radio frame is composed of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and the subframe i consists of slots 2i and 2i + 1.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and the length of one slot may be 0.5 ms.
  • the uplink transmission and the downlink transmission are classified in the frequency domain. While there is no limit to full-duplex FDD, terminals can not transmit and receive simultaneously in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in the downlink, an OFDM symbol is intended to represent one symbol period. The OFDM symbol may be one SC-FDMA symbol or a symbol interval.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1 (b) shows a type 2 frame structure (frame structure type 2).
  • the uplink-downlink configuration is a rule indicating whether the uplink and the downlink are allocated (or reserved) for all the subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' denotes a subframe for downlink transmission
  • 'U' denotes a subframe for uplink transmission
  • 'S' denotes a downlink pilot (DwPTS)
  • DwPTS downlink pilot
  • a special subframe consisting of three fields: a time slot, a guard interval (GP), and an uplink pilot time slot (UpPTS).
  • the DwPTS is used for initial cell search, synchronization, or channel estimation in the UE.
  • UpPTS is used to synchronize the channel estimation at the base station and the uplink transmission synchronization of the UE.
  • GP is a period for eliminating the interference caused in the uplink due to the multi-path delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink structure can be classified into seven types, and the positions and / or the numbers of the downlink subframe, the special subframe, and the uplink subframe are different for each structure.
  • Switch-point periodicity refers to a period in which the uplink subframe and the downlink subframe are switched in the same manner, and both 5ms or 10ms are supported.
  • the special sub-frame S exists for each half-frame when a 5-ms downlink-uplink switching point has a period, and exists only in the first half-frame when a 5-ms downlink-uplink switching point has a period.
  • the 0th and 5th subframes and the DwPTS are only for downlink transmission.
  • UpPTS and subframes immediately following a subframe subframe are always intervals for uplink transmission.
  • the uplink-downlink configuration is system information, and both the base station and the terminal can know it.
  • the base station can inform the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only the index of the configuration information every time the uplink-downlink configuration information is changed.
  • the configuration information may be transmitted as a kind of downlink control information through a physical downlink control channel (PDCCH) like other scheduling information, and may be transmitted to all terminals in a cell through a broadcast channel as broadcast information .
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration (DwPTS / GP / UpPTS length) of the special subframe.
  • the structure of the radio frame according to the example of FIG. 1 is only one example, and the number of subcarriers included in a radio frame, the number of slots included in a subframe, and the number of OFDM symbols included in a slot are changed variously .
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in a time domain.
  • one downlink slot includes 7 OFDM symbols, and one resource block includes 12 subcarriers in the frequency domain.
  • the present invention is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) contains 12 ⁇ 7 resource elements.
  • the number of resource blocks N DL included in the downlink slot is dependent on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG 3 illustrates a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • a maximum of three OFDM symbols preceding a first slot in a subframe is a control region in which control channels are allocated, and the rest of the OFDM symbols are allocated to a data region (PDSCH) to which a Physical Downlink Shared Channel data region).
  • Examples of the downlink control channel used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is carried in the first OFDM symbol of the subframe and carries information about the number of OFDM symbols (i.e., the size of the control region) used for transmission of control channels in the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgment) / NACK (Not-Acknowledgment) signal for HARQ (Hybrid Automatic Repeat Request).
  • the control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for an arbitrary terminal group.
  • PDCCH includes resource allocation and transmission format (also referred to as downlink grant) of DL-SCH (Downlink Shared Channel), resource allocation information of UL-SCH (also referred to as uplink grant), PCH Resource allocation for an upper-layer control message such as paging information in a paging channel, system information in a DL-SCH, and a random access response transmitted on a PDSCH, A set of transmission power control commands for individual terminals in the group, and activation of VoIP (Voice over IP).
  • the plurality of PDCCHs can be transmitted in the control domain, and the UE can monitor a plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of the radio channel to the PDCCH.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the UE, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (called a Radio Network Temporary Identifier (RNTI)) according to the owner or use of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the unique identifier of the UE e.g., C-RNTI (Cell-RNTI)
  • Cell-RNTI C-RNTI
  • a PDCCH for a paging message a paging indication identifier, e.g., a Paging-RNTI (P-RNTI), may be masked to the CRC.
  • P-RNTI Paging-RNTI
  • SI-RNTI System information RNTI
  • SIB system information block
  • RA-RNTI random access-RNTI
  • the enhanced PDCCH (EPDCCH) carries UE-specific signaling.
  • the EPDCCH is located in a physical resource block (PRB) that is set to be terminal specific.
  • PRB physical resource block
  • the PDCCH can be transmitted in up to three OFDM symbols in the first slot in a subframe, but the EPDCCH can be transmitted in a resource region other than the PDCCH.
  • the time (i.e., symbol) at which the EPDCCH starts in the subframe can be set in the terminal via higher layer signaling (e.g., RRC signaling, etc.).
  • the EPDCCH is a resource allocation (DL) associated with DL-SCH related transport format, resource allocation and HARQ information, UL-SCH related transport format, resource allocation and HARQ information, SL-SCH (Sidelink Shared Channel) and PSCCH Information, and so on. Multiple EPDCCHs may be supported and the terminal may monitor the set of EPCCHs.
  • the EPDCCH may be transmitted using one or more successive advanced CCEs (ECCEs), and the number of ECCEs per EPDCCH may be determined for each EPDCCH format.
  • ECCEs successive advanced CCEs
  • Each ECCE may be composed of a plurality of enhanced resource element groups (EREGs).
  • EREG is used to define the mapping of ECCEs to REs.
  • the UE can monitor a plurality of EPDCCHs. For example, one or two EPDCCH sets may be set in one PRB pair in which the terminal monitors the EPDCCH transmission.
  • Different coding rates can be realized for the EPCCH by merging different numbers of ECCEs.
  • the EPCCH may use localized transmission or distributed transmission, and thus the mapping of the ECCE to the RE in the PRB may vary.
  • FIG. 4 illustrates a structure of a UL subframe in a wireless communication system to which the present invention can be applied.
  • the uplink subframe can be divided into a control region and a data region in the frequency domain.
  • a PUCCH Physical Uplink Control Channel
  • a data area is assigned a physical uplink shared channel (PUSCH) for carrying user data.
  • PUSCH physical uplink shared channel
  • a resource block (RB) pair is allocated to a PUCCH for one UE in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots. It is assumed that the RB pair assigned to the PUCCH is frequency hopped at the slot boundary.
  • the transmitter / receiver performs beamforming based on channel information, CSI, to obtain the multiplexing gain of the MIMO antenna.
  • the base station instructs the UE to assign a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared CHannel (PUSCH) to feedback the downlink CSI to the UE.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared CHannel
  • CSI is roughly divided into three categories: RI (Rank Indicator), PMI (Precision Matrix Index), and CQI (Channel Quality Indication).
  • the RI represents the rank information of the channel, which means the number of streams that the UE receives through the same frequency time resource.
  • this value is determined dominantly by the long term fading of the channel, it is fed back from the UE to the base station with a longer period than the PMI and CQI values.
  • the PMI is a value reflecting the spatial characteristics of the channel, and represents the precoding index of the base station preferred by the UE based on metrics such as SINR.
  • the CQI is a value indicating the strength of a channel, which means a reception SINR that can be obtained when the base station uses the PMI.
  • MU-MIMO multi-user MIMO
  • the MU-MIMO interference channel exists between the UEs multiplexed in the antenna domain, so that the feedback channel accuracy greatly affects not only the UE that has raised the feedback but also the interference of other multiplexing UEs.
  • a codebook may be transformed using a long-term covariance matrix of a channel as follows.
  • the codeword structure is designed to reflect the correlation characteristics of channels using a cross polarized antenna and when the spacing between antennas is narrow (usually when the distance between adjacent antennas is less than half of the signal wavelength).
  • the antenna can be divided into a horizontal antenna group and a vertical antenna group.
  • Each antenna group has a uniform linear array (ULA) antenna characteristic, and two antenna groups are co-located.
  • ULA uniform linear array
  • the correlation between antennas in each group has the same linear phase increment characteristic, and the correlation between antenna groups has a phase rotation characteristic.
  • the codebook is a quantized value of a channel, it is necessary to design a codebook reflecting the characteristics of the channel corresponding to the source. For convenience of explanation, it is confirmed that the channel characteristic is reflected in the codeword satisfying Equation (2) by taking rank 1 codeword made of the above structure as an example.
  • codeword is expressed by a vector of Nt (number of Tx antennas) by 1, and an upper vector And sub-vector And they show the correlation characteristics of horizontal and vertical antenna groups, respectively.
  • May be expressed by a vector having a linear phase increment reflecting the correlation property between antennas of each antenna group, and a DFT matrix may be used as a representative example.
  • One way of interfering coordination is to use a silent subframe (sometimes called ABS) that reduces the transmission power / activity of some physical channels (including the operation of setting it to zero power), and the victim cell considers this Time domain inter-cell interference coordination that schedules the UE is possible.
  • ABS silent subframe
  • the interference level may vary greatly depending on the subframe in the victim cell UE.
  • RRM radio resource management
  • RLM radio link monitoring
  • CSI channel state information
  • restricted RLM and RRM / CSI measurement are defined as below.
  • the time and frequency resources may be used by the UE to report the CSI comprised of CQI, PMI and / or RI controlled by the eNB.
  • the terminal For spatial multiplexing, the terminal must determine the RI corresponding to the number of transmission layers.
  • RI is equal to 1 for transmission diversity.
  • PMI / RI reporting may be performed by the upper layer parameter pmi-RI-Report.
  • the sub- and , The UE may be configured with resource-restricted CSI measurements.
  • CSI reporting can be periodic or aperiodic.
  • the terminal If the terminal is composed of more than one serving cell, it can transmit CSI only in the active serving cell.
  • the UE If the UE is not configured for PUSCH and PUCCH transmission at the same time, the UE must periodically report CSI for the PUCCH in the subframe in which the PUSCH is not allocated, as described later.
  • the UE shall report periodic CSI for the PUSCH of the cerving cell having the minimum servcell index in the PUSCH allocated subframe.
  • the UE should use the same PUCCH-based cyclic CSI reporting format for the PUSCH.
  • the UE If the UE satisfies the specified conditions, it must perform aperiodic CSI reporting via PUSCH.
  • Nonperiodic CQI / PMI reporting RI reporting is only transmitted if the CSI feedback type supports RI reporting.
  • a set of terminal subbands can evaluate CQI reporting corresponding to the entire downlink system bandwidth.
  • the subband is a set of k PRBs, where k is a function of system bandwidth.
  • the last subband of S set is The number of consecutive PRBs may be less than k.
  • the subbands should be indexed starting with the lowest frequency and in order of increasing frequency and not increasing in size.
  • Table 3 shows the structure of the subband size (k) and system bandwith.
  • the serving cell Periodic CSI reporting using any of the following subframes n + k PUSCH.
  • each CSI request field is set to trigger a report and is not scheduled, the serving cell .
  • the CSI request field is 1 bit, the CSI request field is set to 1 and the serving cell A report is triggered.
  • the terminal does not expect to receive more than one aperiodic CSI report request for a given subframe.
  • Table 4 shows a CSI request field for a PDCCH having an uplink DCI format in a search space of a UE.
  • an aperiodic feedback of CSI (channel state information) is generated 4/5 ms after a aperiodic CSI request (ie a reference resource) (ie, the first available UL subframe).
  • the feedback of the CSI is performed in a shorter time (e.g., less than milliseconds) compared to the conventional LTE, in order to prevent the CSI aging effect and to reduce the latency.
  • the base station directly assigns the feedback timing to the UE dynamically.
  • the CSI calculation time refers to the time from the CSI reference resource to the time when the UE derives the CSI assuming the reference resource.
  • the CSI calculation time required by the UE may vary depending on whether the UE calculates CSI for one wideband (or subband) or calculates CSI for a plurality of carrier components / subbands.
  • the present invention proposes a method for the base station to set different feedback timing according to contents (feedback type, bandwidth granularity, and UE calculation capability) to be fed back by the corresponding CSI feedback.
  • the CSI feedback timing defines a time from an aperiodic CSI request to a UL resource in which the UE feeds back the actual CSI.
  • the UL resource allocation for the CSI report is applied / applied to a resource far from the aperiodic CSI request transmission time n, such as k 1 and k 2 shown in FIG. 5.
  • This can be a symbol unit or a subframe unit, and can be defined as a unit such as an absolute time or a mini subframe considered in New RAT.
  • the (aperiodic) CSI request reception point may be replaced with a subframe defined as a reference resource.
  • absolute time means that a given timing can be interpreted as a different unit according to the corresponding timing according to the numerology.
  • a timing value in the subcarrier spacing 15 kHz band may be signaled in k (symbol units).
  • t * k according to the t value of the different carrier spacing (e.g., 15 kHz carrier spacing: k, 30 kHz carrier spacing: k * 2, 60 kHz carrier spacing: k * 4).
  • subcarrier spacing 15kHz band 14 symbols form one subframe in symbol duration T
  • subcarrier spacing 30kHz band 28 symbols in symbol duration T / 2 can form one subframe.
  • k in subcarrier spacing 15kHz band is defined as symbol unit
  • corresponding timing is interpreted as 15kHz: k, 30kHz: 2 * k. If k is defined in subframe unit, the corresponding timing is 15kHz: k, 30kHz: k It can be interpreted.
  • a subband size may be set in a manner similar to N RBs or N subbands by setting a separate subband size to be used in the corresponding CSI reporting through higher-layer signaling such as RRC.
  • the method satisfies the corresponding reporting timing by additionally configuring parameters in addition to wideband reporting, and at the same time, .
  • the terminal may operate by interpreting the reporting as performing subband reporting using a size subband set in place of the existing subband size .
  • the above subband size can be configured to have the same meaning as 1 / N 'for the entire frequency granularity to be reported, such as wideband / partial band / bandwidth part instead of the actual length.
  • the size of the subband is Can be defined as follows. (The size of the last subband consists of the remaining RBs.)
  • the UE performs CSI reporting only for the set subband group and does not perform CSI reporting for the remaining subbands.
  • the base station can set a pattern of a subband to actually calculate / report the CSI to the UE.
  • an N-bit bitmap is defined and RB Or an RRC configuration that sets a subband as a bitmap may be transmitted to the terminal.
  • the base station may set the interval SB P of the subband to the UE through higher-layer signaling such as RRC, and set the group differently according to the value of SB P.
  • SB P 1
  • subband index mod 4
  • the maximum number of subbands SB N to perform subband reporting instead of intervals between subbands can be set through higher-layer signaling such as RRC.
  • CSI reporting can be performed on SB N subbands connected / set at the corresponding reporting timing.
  • the above method refers to a method of redefining the subband size according to the above-described method when a separately defined or signaled subband size is present.
  • the BS can explicitly instruct the subband re-sizing or the subband reporting omitting operation dynamically by the MAC CE or the DCI separately from the aperiodic CSI reporting request.
  • the base station can additionally specify a frequency region to be subjected to CSI reporting in addition to the above-mentioned subband group related signaling.
  • the base station can configure the offset for the corresponding CSI feedback frequency region to the UE through a higher-layer signaling scheme such as RRC.
  • the UE performs reporting of SB N subbands from the specified offset.
  • the BS can set the SINR threshold to the UE by RRC signaling, and the UE calculates / reports CSI only for the subband exceeding the set SINR threshold of the measured subband SINR.
  • the SB N (the maximum number of subbands to be subjected to CSI reporting) may be set to the UE, and the CSI of the upper SB N subbands may be reported based on the SINR of the entire subbands.
  • a subband can be selected based on the CQI instead of the SINR.
  • the CQI threshold is set in place of the SINR threshold in the above method, and the UE reports the CSI for the subband exceeding the corresponding CQI threshold or the CSI for the upper SB N subbands based on the CQI of the entire subband .
  • This method can be used only for cases that do not take much time to calculate CQIs, for example, rank 1/2 port.
  • the CSI subband reporting of SINR or / and CQI threshold in this scheme can be reported to the base station in the form of UE capability in advance.
  • the UE and the BS can determine whether to apply the above technique based on the reported UE capability and the specified timing.
  • FIG. 7 a method of performing CSI-RS reporting proposed in the present specification will be described in more detail with reference to FIG. 7 and FIG. 8.
  • FIG. 8 a method of performing CSI-RS reporting proposed in the present specification will be described in more detail with reference to FIG. 7 and FIG. 8.
  • FIG. 7 is a flowchart illustrating an example of an operation method of a UE performing CSI-RS reporting based on a subband group proposed in the present specification.
  • the terminal receives information on CSI reporting timing from the base station (S710).
  • the terminal receives the first control information and the second control information from the base station (S720).
  • the first control information is information on a frequency region to be subjected to subband reporting
  • the second control information is information on a maximum number of subbands to perform subband reporting.
  • a subband start position for setting a subband group is received from the base station (S730).
  • the interval between the subbands is set based on the first control information and the second control information (S740).
  • a subband group is set based on the start position and the interval (S750).
  • a subband group refers to a subband for performing CSI reporting in a subband.
  • FIG. 8 is a flowchart illustrating an example of a BS operation method for performing CSI-RS reporting based on a subband group proposed in the present specification.
  • the BS transmits information on CSI reporting timing to the MS (S810).
  • the first control information and the second control information are transmitted to the terminal (S820).
  • the first control information and the second control information are the same as the first control information and the second control information described in FIG.
  • the subband start position for setting the subband group is transmitted to the mobile station (S830).
  • the CSI report for the subband group is received from the terminal (S840).
  • the CSI report received in step S840 indicates the CSI reporting value for the subband group according to steps S710 through S760 of FIG.
  • FIG. 9 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present invention.
  • the wireless communication system includes a base station 910 and a plurality of terminals 920 located within a base station 910 area.
  • the base station 910 includes a processor 911, a memory 912, and a radio frequency unit 913.
  • the processor 911 implements the functions, processes and / or methods suggested in FIGS. 1-8 above.
  • the layers of the air interface protocol may be implemented by the processor 911.
  • the memory 912 is connected to the processor 911 and stores various information for driving the processor 911.
  • the RF unit 913 is connected to the processor 911 to transmit and / or receive a radio signal.
  • the terminal 920 includes a processor 921, a memory 922, and an RF unit 923.
  • the processor 921 implements the functions, processes and / or methods suggested in Figs. 1-8 above.
  • the layers of the air interface protocol may be implemented by the processor 921.
  • the memory 922 is coupled to the processor 921 to store various information for driving the processor 921.
  • the RF unit 923 is connected to the processor 921 to transmit and / or receive a radio signal.
  • the memories 912 and 922 may be internal or external to the processors 911 and 921 and may be coupled to the processors 911 and 921 in various well known ways.
  • the base station 910 and / or the terminal 920 may have a single antenna or multiple antennas.
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like for performing the functions or operations described above.
  • the software code can be stored in memory and driven by the processor.
  • the memory is located inside or outside the processor and can exchange data with the processor by various means already known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 CSI 보고 (CSI reporting)를 하는 방법에 있어서, 단말에 의해 수행되는 방법은, CSI reporting timing에 대한 정보를 기지국으로부터 수신하는 단계; 서브밴드 리포팅 (subband reporting)의 대상이 되는 주파수 영역(frequency region)에 대한 정보인 제1 제어정보 및 subband reporting을 수행할 subband 최대 개수에 대한 정보인 제2 제어정보를 기지국으로부터 수신하는 단계; subband group을 설정하기 위한 subband 시작 위치에 대한 정보를 기지국으로부터 수신하는 단계; 제1 제어정보 및 제2 제어정보에 기초하여 subband 사이 간격을 설정하는 단계; 상기 시작 위치 및 상기 subband 사이 간격에 기초하여 subband group을 설정하는 단계; 상기 설정된 subband group에 대한 CSI reporting을 수행하는 단계; 를 포함하고, 상기 subband group은 subband 내에서 CSI reporting을 수행할 subband 인 것을 특징으로 한다.

Description

[규칙 제26조에 의한 보정 30.11.2018] 서브밴드 그룹에 기초하여 CSI 리포팅을 수행하는 방법 및 이를 위한 장치
본 명세서는 무선 통신 시스템에 관한 것으로써, 서브밴드(subband)그룹에 기초하여 CSI reporting을 수행하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 CSI reporting을 수행하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 CSI reporting timing에 기초하여, subband 사이 간격을 결정하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 상기 사이 간격에 기초하여 subband group을 설정함에 목적이 있다.
또한, 본 명세서는 상기 subband group에서 CSI reporting을 수행하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 CSI reporting timing에 기초하여 subband를 설정하는 방법을 제공한다.
구체적으로, 무선 통신 시스템에서 CSI 보고 (CSI reporting)를 하는 방법에 있어서, 단말에 의해 수행되는 방법은, CSI reporting timing에 대한 정보를 기지국으로부터 수신하는 단계; 서브밴드 리포팅 (subband reporting)의 대상이 되는 주파수 영역(frequency region)에 대한 정보인 제1 제어정보 및 subband reporting을 수행할 subband 최대 개수에 대한 정보인 제2 제어정보를 기지국으로부터 수신하는 단계; subband group을 설정하기 위한 subband 시작 위치에 대한 정보를 기지국으로부터 수신하는 단계; 제1 제어정보 및 제2 제어정보에 기초하여 subband 사이 간격을 설정하는 단계; 상기 시작 위치 및 상기 subband 사이 간격에 기초하여 subband group을 설정하는 단계; 상기 설정된 subband group에 대한 CSI reporting을 수행하는 단계; 를 포함하고, 상기 subband group은 subband 내에서 CSI reporting을 수행할 subband 인 것을 특징으로 하는 방법인 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 CSI reporting에 사용할 subband size에 대한 정보를 상위 계층 시그널링(higher-layer signaling)을 통해 기지국으로부터 수신하는 단계; 를 더 포함하고, 상기 subband group은 상기 subband size에 기초하여 결정되는 것을 특징으로 한다.
또한, 본 명세서에서, 상기 제2 제어정보는 상기 수신한 CSI-reporting timing에 기초하여 결정되는 것을 특징으로 한다.
또한, 본 명세서에서, 상기 사이 간격은 floor (제1 제어정보/제2 제어정보),인 것을 특징으로 한다.
또한, 본 명세서에서, 상기 방법은 단말의 능력 (capability) 정보를 전송하는 단계; SINR 또는 CQI의 기준값을 기지국으로부터 수신하는 단계; subband의 SINR 또는 CQI를 측정하는 단계; 를 더 포함하고, 상기 subband group을 설정하는 단계는, 상기 측정한 SINR 또는 CQI와 상기 기준값을 비교하여 기준값 이상인 subband를 subband group으로 설정하는 것을 특징으로 한다.
또한, 본 명세서에서, subband group을 설정할 것인지 여부는 상기 단말의 능력 및 상기 수신한 CSI timing에 기초하여 결정되는 것을 특징으로 한다.
또한 본 명세서에서, 무선 통신 시스템에서 CSI 보고 타이밍 (CSI reporting timing)에 기초하여, CSI reporting을 수행할 서브밴드 그룹 (subband group)을 설정하는 방법을 수행하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, CSI reporting timing에 대한 정보를 기지국으로부터 수신하고; 서브밴드 리포팅 (subband reporting)의 대상이 되는 주파수 영역(frequency region)에 대한 정보인 제1 제어정보 및 subband reporting을 수행할 subband 최대 개수에 대한 정보인 제2 제어정보를 기지국으로부터 수신하고; subband group을 설정하기 위한 subband 시작 위치에 대한 정보를 기지국으로부터 수신하고; 제1 제어정보 및 제2 제어정보에 기초하여 subband 사이 간격을 설정하고; 상기 시작 위치 및 상기 subband 사이 간격에 기초하여 subband group을 설정하고; 상기 설정된 subband group에 대한 CSI reporting을 수행하는 것을 특징으로 한다.
또한, 본 명세서에서, 상기 프로세서는, CSI reporting에 사용할 subband size에 대한 정보를 상위 계층 시그널링(higher-layer signaling)을 통해 기지국으로부터 수신하고, 상기 subband group은 상기 subband size에 기초하여 결정되는 것을 특징으로 한다.
또한, 본 명세서에서, 상기 제2 제어정보는 상기 수신한 CSI-reporting timing에 기초하여 결정되는 것을 특징으로 한다.
또한, 본 명세서에서, 상기 사이 간격은 floor (제1 제어정보/제2 제어정보),인 것을 특징으로 한다.
또한, 본 명세서에서, 상기 프로세서는, 단말의 능력 (capability) 정보를 전송하고; SINR 또는 CQI의 기준값을 기지국으로부터 수신하고, subband의 SINR 또는 CQI를 측정하고, 상기 subband group의 설정은, 상기 측정한 SINR 또는 CQI와 상기 기준값을 비교하여 기준값 이상인 subband를 subband group으로 설정하는 것을 특징으로 한다.
또한, 본 명세서에서, subband group을 설정할 것인지 여부는 상기 단말의 능력 및 상기 수신한 CSI timing에 기초하여 결정되는 것을 특징으로 한다.
본 명세서는 CSI reporting timing에 기초하여 subband group을 설정함으로써, 짧은 CSI reporting timing에 대해서도 효율적으로 CSI reporting이 가능하다는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 CSI 피드백 타이밍에 대한 예시를 나타낸 도면이다.
도 6은 본 발명이 적용될 수 있는 subband group 구조를 나타낸 도면이다.
도 7은 본 발명이 적용될 수 있는 CSI-RS reporting을 수행하는 단말의 동작 방법을 나타낸 순서도이다.
도 8은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 나타낸 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), remote radio head(RRH), transmission point (TP), reception point (RP), 중계기(relay) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2018011549-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2018011549-appb-T000002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
EPDCCH(enhanced PDCCH)는 단말 특정(UE-specific) 시그널링을 나른다. EPDCCH는 단말 특정하게 설정된 물리 자원 블록(PRB: physical resource block)에 위치한다. 다시 말해, 상술한 바와 같이 PDCCH는 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들에서 전송될 수 있으나, EPDCCH는 PDCCH 이외의 자원 영역에서 전송될 수 있다. 서브프레임 내 EPDCCH가 시작되는 시점(즉, 심볼)은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 단말에 설정될 수 있다.
EPDCCH는 DL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, UL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, SL-SCH(Sidelink Shared Channel) 및 PSCCH(Physical Sidelink Control Channel)과 관련된 자원 할당 정보 등을 나를 수 있다. 다중의 EPDCCH가 지원될 수 있으며, 단말은 EPCCH의 세트를 모니터링할 수 있다.
EPDCCH는 하나 또는 그 이상의 연속된 진보된 CCE(ECCE: enhanced CCE)를 이용하여 전송될 수 있으며, 각 EPDCCH 포맷 별로 단일의 EPDCCH 당 ECCE의 개수가 정해질 수 있다.
각 ECCE는 복수의 자원 요소 그룹(EREG: enhanced resource element group)으로 구성될 수 있다. EREG는 ECCE의 RE에의 매핑을 정의하기 위하여 사용된다. PRB 쌍 별로 16개의 EREG가 존재한다. 각 PRB 쌍 내에서 DMRS를 나르는 RE를 제외하고, 모든 RE는 주파수가 증가하는 순서대로 그 다음 시간이 증가하는 순서대로 0 내지 15까지의 번호가 부여된다.
단말은 복수의 EPDCCH를 모니터링할 수 있다. 예를 들어, 단말이 EPDCCH 전송을 모니터링하는 하나의 PRB 쌍 내 하나 또는 두 개의 EPDCCH 세트가 설정될 수 있다.
서로 다른 개수의 ECCE가 병합됨으로써 EPCCH를 위한 서로 다른 부호화율(coding rate)이 실현될 수 있다. EPCCH는 지역적 전송(localized transmission) 또는 분산적 전송(distributed transmission)을 사용할 수 있으며, 이에 따라 PRB 내 RE에 ECCE의 매핑이 달라질 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
Downlink channel state information (CSI) feedback
현 LTE 표준에서는 채널 정보 없이 운용되는 open-loop MIMO와, closed-loop MIMO 두 가지 송신 방식이 존재한다.
closed-loop MIMO 에서는 MIMO 안테나의 multiplexing gain을 얻기 위해 송/수신 단은 각각 채널 정보 즉 CSI를 바탕으로 beamforming을 수행한다.
기지국은 CSI를 얻기 위해 UE에게 PUCCH(Physical Uplink Control CHannel) 또는 PUSCH(Physical Uplink Shared CHannel)를 할당하여 downlink CSI를 피드백 하도록 명령한다.
CSI는 RI(Rank Indicator), PMI(Precoding Matrix Index), CQI(Channel Quality Indication) 세가지 정보로 크게 분류된다.
먼저, RI는 채널의 rank 정보를 나타내며, UE가 동일 주파수 시간 자원을 통해 수신 하는 stream의 개수를 의미한다.
이 값은 채널의 long term fading에 의해 dominant 하게 결정되므로 PMI, CQI 값 보다 통상 더 긴 주기를 가지고 UE에서 기지국으로 피드백 된다.
다음으로, PMI는 채널의 공간 특성을 반영한 값으로 SINR 등의 metric을 기준으로 UE가 선호하는 기지국의 precoding index를 나타낸다.
다음으로, CQI는 채널의 세기를 나타내는 값으로 통상 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
LTE-A와 같은 보다 진보된 통신 시스템에서는 MU-MIMO (multi-user MIMO)를 이용한 추가적인 multi-user diversity를 얻는 것이 추가되었다.
이를 위해 채널 피드백 관점에서는 보다 높은 accuracy가 요구된다.
그 이유는 MU-MIMO에서는 안테나 domain에서 multiplexing 되는 UE간의 간섭 채널 존재하기 때문에 피드백 채널 accuracy가 피드백을 올린 UE 뿐 아니라 multiplexing 되는 다른 UE의 간섭에도 큰 영향을 미치기 때문이다.
따라서 LTE-A에서는 피드백 채널 accuracy를 높이기 위해 최종 PMI를 long term and/or wideband PMI인 W1와 short term and/or sub-band PMI인 W2 둘로 나누어 설계하는 것이 결정되었다.
두 채널 정보로부터 하나의 최종 PMI를 구성하는 hierarchical codebook transformation 방식의 예시로 아래와 같이 채널의 long-term covariance matrix를 이용하여 codebook을 transform하는 것이 있다.
Figure PCTKR2018011549-appb-M000001
위 수학식 1에서
Figure PCTKR2018011549-appb-I000001
(=short term PMI)는 short-term 채널 정보를 반영하기 위해 만들어진 codebook의 codeword 이며,
Figure PCTKR2018011549-appb-I000002
은 transform된 최종 codebook의 codeword,
Figure PCTKR2018011549-appb-I000003
은 행렬 A의 각 column 별 norm이 1로 normalization된 행렬을 의미한다.
기존 W1과 W2의 구체적인 구조는 다음과 같다.
Figure PCTKR2018011549-appb-M000002
codeword 구조는 cross polarized antenna를 사용하는 하고 안테나 간 간격이 조밀한 경우 (통상 인접 안테나 간 거리가 신호 파장의 반 이하인 경우 해당) 발생하는 채널의 correlation 특성을 반영하여 설계한 구조이다.
Cross polarized 안테나의 경우 안테나를 horizontal antenna group과 vertical antenna group 으로 구분 할 수 있는데, 각 안테나 그룹은 ULA(uniform linear array) 안테나의 특성을 가지며, 두 안테나 그룹은 co-located되어 있다.
따라서 각 그룹의 안테나 간 correlation은 동일한 linear phase increment 특성을 가지며, 안테나 그룹 간 correlation 은 phase rotation된 특성을 갖는다.
Codebook은 결국 채널을 quantization 한 값이기 때문에 source에 해당하는 채널의 특성을 그대로 반영하여 codebook을 설계하는 것이 필요하다. 설명의 편의를 위해 상기 구조로 만든 rank 1 codeword를 예로 들면 이러한 채널 특성이 수학식 2를 만족하는 codeword에 반영되었음을 확인할 수 있다.
Figure PCTKR2018011549-appb-M000003
위 수학식 3에서 codeword는 Nt (Tx 안테나 수) by 1 의 vector로 표현되며 상위 vector
Figure PCTKR2018011549-appb-I000004
와 하위 vector
Figure PCTKR2018011549-appb-I000005
둘로 구조화 되어있고, 각각은 horizontal antenna group과 vertical antenna group의 correlation 특성을 보여준다.
Figure PCTKR2018011549-appb-I000006
는 각 안테나 그룹의 안테나 간 correlation 특성을 반영하여 linear phase increment를 갖는 벡터로 표현하는 것이 유리하며, 대표적인 예로 DFT 행렬을 이용할 수 있다.
또한 CoMP를 위해서도 보다 높은 채널 accuracy가 필요하다.
CoMP JT의 경우 여러 기지국이 특정 UE에게 동일한 데이터를 협력 전송하므로 이론적으로 안테나가 지리적으로 분산되어 있는 MIMO 시스템으로 간주 할 수 있다.
즉, JT에서 MU-MIMO를 하는 경우도 single 셀 MU-MIMO와 마찬가지로 co scheduling 되는 UE간 간섭을 피하기 위해 높은 수준의 채널 accuracy가 요구 되는 것이다.
또한, CoMP CB의 경우 역시 인접 셀이 서빙 셀에게 주는 간섭을 회피하기 위해서 정교한 채널 정보가 요구된다.
Restricted RLM and RRM/CSI measurement
Interference coordination의 한 방법으로 aggressor 셀이 일부 physical channel의 transmission power/activity를 줄이는 (zero power로 설정하는 동작까지 포함) silent subframe(almost blank subframe; ABS라고 불릴 수도 있음)을 사용하고 victim 셀이 이를 고려하여 UE를 scheduling하는 time domain inter-셀 interference coordination이 가능하다.
이 경우 victim 셀 UE의 입장에서는 interference level이 subframe에 따라서 크게 변화할 수 있다.
이 때, 각 subframe에서의 보다 정확한 radio link monitoring(RLM)이나 RSRP/RSRQ 등을 measure하는 radio resource management (RRM) 동작을 수행하거나 link adaptation을 위해서 channel state information(CSI)를 측정하기 위해서, 상기 monitoring/measurement는 균일한 interference 특성을 지니는 subframe의 set들로 제한되어야 한다.
3GPP LTE system에서는 아래와 같이 restricted RLM and RRM/CSI measurement가 정의되었다.
UE procedure for reporting Channel State Information (CSI)
시간과 주파수 자원들은 eNB에 의해 제어되는 CQI, PMI 및/또는 RI로 구성된 CSI를 reporting 하기 위해 UE에 의해 이용될 수 있다.
공간 다중화 (spatial multiplexing)를 위해, 단말은 전송 layer의 개수(number)에 대응하는 RI를 결정하여야 한다.
이 때, 송신 diversity에 대해서 RI는 1과 같다.
단말이 전송 mode 8 또는 9로 설정된 경우, 상위 계층 파라미터 pmi-RI-Report에 의해 PMI/RI reporting을 하거나 하지 않을 수 있다.
서브프레임이
Figure PCTKR2018011549-appb-I000007
Figure PCTKR2018011549-appb-I000008
로 상위 계층에서 구성된 경우, 단말은 resource-restricted CSI measurements로 구성될 수 있다.
이 때, CSI reporting은 주기적이거나 비주기적일 수 있다.
단말이 하나이상의 serving cell로 구성된다면, 활성화된 serving cell에서만 CSI를 전송할 수 있다.
단말이 동시에 PUSCH 및 PUCCH 전송을 위해 구성되지 않는 경우, 후술하는 바와 같이 UE는 PUSCH가 할당되지 않은 서브프레임에서 PUCCH에 대한 CSI를 주기적으로 reporting 해야 한다.
단말이 동시에 PUSCH 및 PUCCH 전송을 위해 구성되지 않는 경우, 단말은 PUSCH 할당 받은 서브프레임에서 최소의 servcellindex를 갖는 cerving cell의 PUSCH에 대한 주기적인 CSI를 reporting해야 한다.
이 때, 단말은 PUSCH에 대해 동일한 PUCCH 기반의 주기적인 CSI reporting format을 사용하여야 한다.
단말은 이 후 명시된 특정 조건을 만족한 경우에는, PUSCH를 통해 비주기적 CSI reporting을 해야 한다.
비주기적 CQI/PMI reporting, RI reporting은 CSI 피드백 유형이 RI reporting을 지원하는 경우에만, 전송된다.
단말 서브밴드(subband)의 set은 다운링크 시스템 대역폭 전체에 해당하는 CQI reporting을 evaluate 할 수 있다.
subband는 k 개의 PRB들로 구성된 set이고, 이 때 k는 system bandwidth의 함수이다.
S set의 마지막 subband는
Figure PCTKR2018011549-appb-I000009
에 따라 연속적인 PRB 개수가 k 보다 적을 수 있다.
Figure PCTKR2018011549-appb-I000010
에 의해 주어진 system bandewidth의 개수는
Figure PCTKR2018011549-appb-I000011
으로 정의 될 있다.
subband들은 최소 주파수에서 시작하여 주파수가 증가하는 순서 및 크기(size)가 증가하지 않는 순으로 index 되어야 한다.
표 3은 서브밴드 크기(k)와 system bandwith의 구성을 나타낸 표이다.
Figure PCTKR2018011549-appb-T000003
Aperiodic CSI reporting using PUSCH
단말은 서브프레임 n에서 decoding을 할 때, serving cell
Figure PCTKR2018011549-appb-I000012
의 서브 프래임 n+k PUSCH를 이용하여 다음 중 어느 하나의 비주기적인 CSI reporting을 수행 할 수 있다.
- an uplink DCI format, or
- a Random Access Response Grant,
각각의 CSI request field가 report를 trigger하도록 설정되고 예약되지 않은 경우 serving cell
Figure PCTKR2018011549-appb-I000013
를 제공하는데 이용된다.
CSI request field가 1bit인 경우, CSI request field가 1로 설정되고, serving cell
Figure PCTKR2018011549-appb-I000014
에 대한 report가 trigger된다.
CSI request filed 크기가 2 bit인 경우, 표 4의 값에 따라 report가 trigger된다.
단말은 주어진 subframe에 대해 하나 이상의 비주기적 CSI report requset를 수신할 것으로 기대하지 않는다.
표 4는 단말의 검색 공간에서 uplink DCI format을 갖는 PDCCH에 대한 CSI request field를 나타낸 것이다.
Figure PCTKR2018011549-appb-T000004
Feedback timing configuration for various CSIs
3GPP LTE에서 CSI (Channel State Information, CSI) 의 비주기적 피드팩(aperiodic feedback)은 aperiodic CSI 요청 (request)이 수신된 서브프레임 (subframe) (i.e reference resource)로부터 4/5ms 후 (혹은 이후 최초의 available UL subframe)에서 이루어질 수 있다.
그러나, CSI aging effect를 방지하고 지연 감소 (latency reduction)를 위해, CSI의 feedback이 기존의 LTE에 비해 짧은 시간 내에(e.g. 밀리 초 (milliseconds)보다 작은) 수행되는 것이 바람직하다.
따라서, 이를 위해 feedback timing을 기지국이 단말에게 직접 dynamic하게 지정해 주는 것이 고려되고 있다.
왜냐하면 특히 CSI 계산 시간 (calculation time)이 경우에 따라 다르게 소요되기 때문이다.
여기서, CSI calculation time은 CSI reference resource로부터 단말이 해당 reference resource를 가정한 CSI를 도출해 내는 데까지의 시간을 의미한다.
예를 들어 단말이 하나의 wideband(or subband)에 대한 CSI를 계산하는지, 혹은 복수개의 carrier component / subband에 대한 CSI를 모두 계산하는지에 따라 단말이 필요한 CSI calculation time이 달라질 수 있다.
따라서, 본 발명에서는 기지국이 해당 CSI feedback이 feedback할 contents(e.g. feedback type, bandwidth granularity, UE calculation capability)에 따라서 다른 feedback timing을 단말에게 설정해 주는 방식을 제안한다.
Feedback contents에 따른 CSI feedback timing 지정
본 명세서에서, CSI feedback timing은 (비주기적 (aperiodic)) CSI request로부터 단말이 실제 CSI를 feedback하는 UL resource까지의 시간으로 정의한다.
즉, 도 5에 나타난 k1, k2와 같이, CSI report를 위한 UL resource allocation이 aperiodic CSI request 전송 시점 n으로부터 얼만큼 떨어져 있는 resource에 해당/적용되는지 지정해 주는 것을 의미한다.
이는 symbol 단위 혹은 subframe 단위가 될 수 있고, 절대적인 시간 혹은 New RAT에서 고려되는 mini subframe과 같은 단위로 정의될 수 있다.
또한 이하에서 (aperiodic) CSI request 수신 시점은 reference resource로 정의된 subframe으로 대체될 수 있다.
상기 절대적인 시간으로 정의된다는 의미는, 주어진 timing이 numerology에 따라 해당 timing에 부합하는 다른 단위로 해석될 수 있음을 의미한다.
예를 들어, 시스템이 15kHz의 t배(t=1, 2, 3쪋)의 서브캐리어 간격 (subcarrier spacing)을 가지는 밴드 (band)를 지원 (support)하고, subcarrier spacing 15kHz band에서의 timing 값이 k(symbol 단위)로 signaling되는 경우가 있을 수 있다.
이 때, 서로 다른 carrier spacing의 t 값에 따라 각각 t * k로 정의(e.g. 15kHz carrier spacing: k, 30kHz carrier spacing: k*2, 60kHz carrier spacing: k*4) 될 수 있다는 의미이다.
만약 각 carrier spacing에서 서로 다른 숫자의 symbol이 하나의 subframe을 구성한다면, 각 carrier spacing을 사용하는 band에서의 해당 symbol의 숫자도 유사하게 고려될 수 있다.
예를 들어, subcarrier spacing 15kHz band에서는 symbol duration T에 14개 symbol이 하나의 subframe을 이루고, subcarrier spacing 30kHz band에서는 symbol duration T/2에 28개 symbol이 하나의 subframe을 이룰 수 있다.
이 때, subcarrier spacing 15kHz band에서의 k가 symbol 단위로 정의되었다면 해당 timing은 15kHz: k, 30kHz: 2*k로 해석되고, k가 subframe 단위로 정의되었다면 해당 timing은 15kHz: k, 30kHz: k로 해석될 수 있다는 의미이다.
이하, 본 명세서에서 제안하는 CSI reporting에 대한 frequency granularity에 따른 group을 정할 때, 상술한 바와 같이 wideband / subband reporting에 따라 group을 구분하는 방식에 대하여 설명한다.
더하여, 본 명세서에서는 설정된 subband의 size에 따라 group을 다르게 정의/설정하는 방법에 대하여 설명한다.
먼저, 서브밴드 크기 (subband size)는 N개 RB, 혹은 N개 subband와 같은 방식으로, 해당 CSI reporting에서 사용할 별도의 subband size를 RRC와 같은 higher-layer signaling을 통해 설정해 줄 수 있다.
이와 같은 방식은 특히 CSI reporting을 위해 적은 시간만이 주어지는 group에 대한 CSI reporting일 경우, wideband reporting 이외에 해당 parameter를 추가로 configure하는 방식을 통해, 해당 reporting timing을 만족하며 동시에 부분적인 subband CSI 정보를 단말로부터 보고받을 수 있다.
혹은 후술할 방식과 같이, 특정 CSI reporting timing(특히 짧은 timing)을 signaling해 주면, 단말은 해당 reporting은 기존의 subband size 대신 설정해 준 size의 subband를 사용한 subband reporting을 수행하는 것으로 해석하여 동작할 수 있다.
동일한 목적을 위해, 상술한 subband size는 실제 길이 대신, wideband/partial band/bandwidth part 등 reporting 대상이 되는 전체 frequency granularity에 대해 1/N'와 같은 의미로 configure해 줄 수 있다.
이는 CSI reporting timing은 CSI 계산을 위한 reporting 대상 subband의 개수에 영향을 크게 받기 때문이다.
예를 들어 전체 frequency region가 총 M개 RB로 정의되어 있을 경우, subband의 크기는
Figure PCTKR2018011549-appb-I000015
와 같이 정의될 수 있다. (마지막 subband의 size는 남는 RB로 구성된다.)
이와 유사하게, CSI reporting의 대상 subband 전체 중 실제 reporting을 수행할 subband group을 설정해 줄 수 있다.
다시 말해, 단말은 설정된 subband group에 대해서만 CSI reporting을 수행하고, 나머지 subband에 대해서는 CSI reporting을 수행하지 않는다.
이를 위해 기지국은 CSI를 실제로 계산/보고할 subband의 pattern을 단말에게 설정해 줄 수 있다.
예를 들어, 만약 wideband/partial band/bandwidth part 등 CSI reporting의 대상이 되는 전체 frequency granularity의 크기가 N RBs 혹은 N subbands일 경우, N-bit의 bitmap이 정의되어, 실제 CSI를 계산/보고할 RB 혹은 subband를 bitmap으로서 설정해 주는 RRC configuration이 단말에게 전송될 수 있다.
좀 더 효과적인 configuration을 위해, 기지국은 subband의 간격 SBP를 RRC와 같은 higher-layer signaling을 통해 단말에게 설정해 주고, 해당 SBP의 값에 따라 group을 다르게 설정할 수 있다.
이는 reporting 대상이 되는 subband의 density로 해석될 수 있고, SBP만큼의 간격을 가지는 comb 형태의 subband들이 해당 subband group에 포함된다.
도 6에 나타난 바와 같이, 예를 들어 SBP=4일 경우, RPF(repetition factor)=4인 comb 형태, 예를 들어 (subband index)mod 4 = 0인 subband에 대해서만 CSI를 계산/보고하는 방식이 될 수 있다.
특히 SBP=1일 경우는 일반적인 subband reporting 방식이므로, 상술한 wideband reporting과 다른 group에 포함할 수 있다.
이 경우, comb에 대한 offset이 동시에 configure 되어, 동일한 SBP로 결정되는 subband group 중 실제로 사용할 subband group을 지정해 줄 수 있다.
혹은 configuration의 편의를 위해, 특정 offset value, e.g., (subband index)mod 4 = 0에 대한 subband group으로 사전에 정의할 수 있다.
이와 유사하게, 원하는 CSI reporting timing을 좀 더 편리하게 조절할 목적으로, subband 사이의 간격 대신 subband reporting을 수행할 subband의 최대 개수 SBN을 RRC와 같은 higher-layer signaling을 통해 설정해 줄 수 있다.
이는 wideband/partial band/bandwidth part 등 CSI reporting의 대상이 되는 전체 frequency granularity에 대해, 동일 spacing을 가지는 SBN개의 subband 에 대해 CSI reporting을 수행하는 방식을 사용한다.
예를 들어 전체 frequency region의 subband 가 총 M개 정의되어 있을 경우, subband 사이의 간격은
Figure PCTKR2018011549-appb-I000016
와 같이 정의될 수 있다.
이와 같은 방식을 사용한다면, CSI reporting에 대해 특정 timing(특히 짧은 timing)을 기지국이 지시할 경우, 해당 reporting timing에 연결/설정된 SBN개의 subband에 대해 CSI reporting을 수행할 수 있다.
또한, subband 사이의 간격을 일정하게 설정함으로 인해, 어느 한 쪽에 치우치지 않고, band 전역에서 균형 있는 채널 추정이 가능하다는 효과가 있다.
상술한 방식은 별도로 정의 혹은 signaling된 subband size가 존재할 때, 해당 subband size를 상술한 방식에 의해 재정의하는 방식을 의미한다.
위와 같은 동작을 좀 더 명확하게 단말에게 지시하기 위해, 기지국은 aperiodic CSI reporting request와 별도로 MAC CE 혹은 DCI로 dynamic하게 상술한 subband re-sizing, 혹은 subband reporting omitting 동작을 명시적으로 지시할 수 있다.
상술한 reporting timing을 만족함과 동시에 특정 지역에 대한 subband reporting을 중점적으로 보고받기 위해, 기지국은 상술한 subband group 관련 signaling 에 더해 CSI reporting의 대상이 되는 frequency region을 추가로 지정해 줄 수 있다.
이는 CSI 계산/보고를 할 subband의 개수를 만족하기 위함과 동시에, 특정 region에 대한 localized CSI feedback을 단말에게 지시하기 위한 방식으로 사용할 수 있다.
이를 위해, 기지국은 해당 CSI feedback frequency region에 대한 offset을 단말에게 RRC와 같은 higher-layer signaling 방식을 통해 configure해 줄 수 있다.
이와 같은 경우, 단말은 지정된 offset부터 SBN개의 subband에 대한 reporting을 수행한다.
CSI reporting을 수행할 subband를 결정하기 위해, 기지국은 단말에게 SINR의 threshold를 RRC signaling 등으로 설정할 수 있고, 단말은 측정한 subband SINR 중 설정된 SINR threshold를 넘는 subband에 대해서만 CSI를 계산/보고한다.
이는 단말로 하여금 subband scheduling의 가능성이 있는 subband에 대해서만 CSI를 계산/보고하도록 하여, CSI의 실제 계산/보고에 드는 시간을 줄이고자 하는 방식이다.
혹은 상술한 SBN(CSI reporting을 수행할 subband의 최대 개수)를 단말에게 설정해 주고, 해당 subband를 전체 subband 중 SINR을 기준으로 상위 SBN개의 subband에 대한 CSI를 보고할 수 있다.
상술한 방식을 좀 더 정확하게 사용하기 위해, SINR 대신 CQI를 기준으로 subband를 선택할 수 있다.
다시 말해, 상술한 방식에서 SINR threshold 대신 CQI threshold를 설정하고, 단말은 해당 CQI threshold를 넘는 subband에 대해 CSI를 보고하거나, 혹은 전체 subband 중 CQI을 기준으로 상위 SBN개의 subband에 대한 CSI를 보고할 수 있다.
이와 같은 방식은 CQI의 계산에 시간이 많이 걸리지 않는 case, 예를 들어 rank 1 / 2 port 등의 case에 한정해서 사용할 수 있다.
본 방식에서의 SINR 혹은/그리고 CQI threshold에 대한 CSI subband reporting 여부는 단말이 UE capability의 형태로 기지국에 사전에 보고할 수 있다.
단말 및 기지국은 보고한 UE capability 및 지정된 timing을 바탕으로 상술한 기술의 적용 여부를 결정할 수 있다.
Semi-persistent CSI reporting의 경우, 상술한 동작을 해당 CSI reporting이 activation된 후 N slot(e.g., N=2)에 대해서 사용할 수 있다.
이는 해당 CSI reporting이 enable된 직후에는 지정된 RS로부터 해당 CSI를 계산할 시간이 부족할 수 있기 때문에, 상술한 방식을 사용하여 CSI reporting에 필요한 시간을 줄이는 것이 바람직하기 때문이다.
위 기술의 실제 적용 시에는 위 기술의 단독 혹은 조합으로 적용될 수 있다.
또한 위 특허는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 제안 방식을 설명하였으나, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템(e.g., UTRA 등), 특히 5G 및 그 후보기술로도 확장 가능하다.
다음으로, 본 명세서에서 제안하는 CSI-RS reporting을 수행하는 방법에 대해 관련 도면 도 7, 도8을 참조하여 더 구체적으로 살펴본다.
도 7은 본 명세서에서 제안하는 subband group에 기초하여 CSI-RS reporting을 수행하는 단말의 동작 방법 일례를 나타낸 순서도이다.
먼저, 단말은 CSI reporting timing에 대한 정보를 기지국으로부터 수신한다(S710).
그리고, 단말은 제1제어정보 및 제2제어정보를 기지국으로부터 수신한다 (S720).
이 때, 제1 제어정보는 서브밴드 리포팅 (subband reporting)의 대상이 되는 주파수 영역(frequency region)에 대한 정보이고, 제2 제어 정보는 subband reporting을 수행할 subband 최대 개수에 대한 정보를 의미한다.
그리고 subband group을 설정하기 위한 subband 시작 위치를 기지국으로부터 수신한다(S730).
그리고 상기 제1 제어정보 및 제2 제어정보에 기초하여 subband 사이 간격을 설정한다(S740).
그리고, 상기 시작 위치 및 상기 사이 간격에 기초하여 subband group을 설정한다(S750).
여기서 subband group이란, subband 내에서 CSI reporting을 수행할 subband를 의미한다.
그리고 상기 설정된 subband group에 대한 CSI reporting을 수행한다(S760).
도 8은 본 명세서에서 제안하는 subband group에 기초하여 CSI-RS reporting을 수행하는 기지국 동작 방법 일례를 나타낸 순서도이다.
먼저, 기지국은 CSI reporting timing에 대한 정보를 단말로 전송한다(S810).
그리고, 제1 제어정보 및 제2 제어정보를 단말로 전송한다(S820).
이 때, 제1 제어정보 및 제2 제어정보는 도 7에서 설명한 제1 제어정보, 제2 제어정보와 동일하다.
그리고 subband group을 설정하기 위한 subband 시작 위치를 단말로 전송한다(S830).
그리고 subband group에 대한 CSI report를 단말로부터 수신한다(S840).
이 때, S840단계에서 수신하는 CSI report는 도 7의 S710 내지 S760 단계에 따른 subband group에 대한 CSI reporting 값을 의미한다.
본 발명이 적용될 수 있는 장치 일반
도 9는 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 9를 참조하면, 무선 통신 시스템은 기지국(910)과 기지국(910) 영역 내에 위치한 다수의 단말(920)을 포함한다.
기지국(910)은 프로세서(processor, 911), 메모리(memory, 912) 및 RF부(radio frequency unit, 913)을 포함한다. 프로세서(911)는 앞서 도 1 내지 도 8에서 제안된 기능, 과정 및/또는 방법을 구현한다.
무선 인터페이스 프로토콜의 계층들은 프로세서(911)에 의해 구현될 수 있다.
메모리(912)는 프로세서(911)와 연결되어, 프로세서(911)를 구동하기 위한 다양한 정보를 저장한다.
RF부(913)는 프로세서(911)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(920)은 프로세서(921), 메모리(922) 및 RF부(923)을 포함한다.
프로세서(921)는 앞서 도 1 내지 도 8에서 제안된 기능, 과정 및/또는 방법을 구현한다.
무선 인터페이스 프로토콜의 계층들은 프로세서(921)에 의해 구현될 수 있다.
메모리(922)는 프로세서(921)와 연결되어, 프로세서(921)를 구동하기 위한 다양한 정보를 저장한다.
RF부(923)는 프로세서(921)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(912, 922)는 프로세서(911, 921) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(911, 921)와 연결될 수 있다.
또한, 기지국(910) 및/또는 단말(920)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 subband group을 설정하는 방안은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서 CSI 보고 (CSI reporting)를 하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    CSI reporting timing에 대한 정보를 기지국으로부터 수신하는 단계;
    서브밴드 리포팅 (subband reporting)의 대상이 되는 주파수 영역(frequency region)에 대한 정보인 제1 제어정보 및 subband reporting을 수행할 subband 최대 개수에 대한 정보인 제2 제어정보를 기지국으로부터 수신하는 단계;
    subband group을 설정하기 위한 subband 시작 위치에 대한 정보를 기지국으로부터 수신하는 단계;
    제1 제어정보 및 제2 제어정보에 기초하여 subband 사이 간격을 설정하는 단계;
    상기 시작 위치 및 상기 subband 사이 간격에 기초하여 subband group을 설정하는 단계;
    상기 설정된 subband group에 대한 CSI reporting을 수행하는 단계;
    를 포함하고,
    상기 subband group은 subband 내에서 CSI reporting을 수행할 subband 인 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    CSI reporting에 사용할 subband size에 대한 정보를 상위 계층 시그널링(higher-layer signaling)을 통해 기지국으로부터 수신하는 단계;
    를 더 포함하고,
    상기 subband group은 상기 subband size에 기초하여 결정되는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 제2 제어정보는 상기 수신한 CSI-reporting timing에 기초하여 결정되는 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 사이 간격은
    floor (제1 제어정보/제2 제어정보),
    인 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    단말의 능력 (capability) 정보를 전송하는 단계;
    SINR 또는 CQI의 기준값을 기지국으로부터 수신하는 단계;
    subband의 SINR 또는 CQI를 측정하는 단계; 를 더 포함하고,
    상기 subband group을 설정하는 단계는,
    상기 측정한 SINR 또는 CQI와 상기 기준값을 비교하여 기준값 이상인 subband를 subband group으로 설정하는 것을 특징으로 하는 방법.
  6. 제 5항에 있어서,
    subband group을 설정할 것인지 여부는
    상기 단말의 능력 및 상기 수신한 CSI timing에 기초하여 결정되는 것을 특징으로 하는 방법.
  7. 무선 통신 시스템에서 CSI 보고 타이밍 (CSI reporting timing)에 기초하여, CSI reporting을 수행할 서브밴드 그룹 (subband group)을 설정하는 방법을 수행하는 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    CSI reporting timing에 대한 정보를 기지국으로부터 수신하고;
    서브밴드 리포팅 (subband reporting)의 대상이 되는 주파수 영역(frequency region)에 대한 정보인 제1 제어정보 및 subband reporting을 수행할 subband 최대 개수에 대한 정보인 제2 제어정보를 기지국으로부터 수신하고;
    subband group을 설정하기 위한 subband 시작 위치에 대한 정보를 기지국으로부터 수신하고;
    제1 제어정보 및 제2 제어정보에 기초하여 subband 사이 간격을 설정하고;
    상기 시작 위치 및 상기 subband 사이 간격에 기초하여 subband group을 설정하고;
    상기 설정된 subband group에 대한 CSI reporting을 수행하는 것을 특징으로 하는 단말.
  8. 제 7항에 있어서,
    상기 프로세서는, CSI reporting에 사용할 subband size에 대한 정보를 상위 계층 시그널링(higher-layer signaling)을 통해 기지국으로부터 수신하고,
    상기 subband group은 상기 subband size에 기초하여 결정되는 것을 특징으로 하는 단말.
  9. 제 7항에 있어서,
    상기 제2 제어정보는 상기 수신한 CSI-reporting timing에 기초하여 결정되는 것을 특징으로 하는 단말.
  10. 제 7항에 있어서,
    상기 사이 간격은
    floor (제1 제어정보/제2 제어정보),
    인 것을 특징으로 하는 단말.
  11. 제 7항에 있어서
    상기 프로세서는,
    단말의 능력 (capability) 정보를 전송하고;
    SINR 또는 CQI의 기준값을 기지국으로부터 수신하고,
    subband의 SINR 또는 CQI를 측정하고,
    상기 subband group의 설정은,
    상기 측정한 SINR 또는 CQI와 상기 기준값을 비교하여 기준값 이상인 subband를 subband group으로 설정하는 것을 특징으로 하는 단말.
  12. 제 11항에 있어서,
    subband group을 설정할 것인지 여부는
    상기 단말의 능력 및 상기 수신한 CSI timing에 기초하여 결정되는 것을 특징으로 하는 단말.
PCT/KR2018/011549 2017-09-29 2018-09-28 서브밴드 그룹에 기초하여 csi 리포팅을 수행하는 방법 및 이를 위한 장치 WO2019066565A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,347 US20200235797A1 (en) 2017-09-29 2018-09-28 Method and apparatus for performing csi reporting on basis of subband group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762565127P 2017-09-29 2017-09-29
US62/565,127 2017-09-29

Publications (2)

Publication Number Publication Date
WO2019066565A2 true WO2019066565A2 (ko) 2019-04-04
WO2019066565A3 WO2019066565A3 (ko) 2019-05-23

Family

ID=65902934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011549 WO2019066565A2 (ko) 2017-09-29 2018-09-28 서브밴드 그룹에 기초하여 csi 리포팅을 수행하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US20200235797A1 (ko)
WO (1) WO2019066565A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022032451A1 (en) * 2020-08-10 2022-02-17 Nokia Shanghai Bell Co., Ltd. Massive terminals grouping for channel state information overhead reduction

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838870B2 (en) * 2018-08-30 2023-12-05 Mediatek Singapore Pte. Ltd. Methods for reducing power consumption of a communication apparatus and a communication apparatus utilizing the same
WO2020150884A1 (en) * 2019-01-22 2020-07-30 Qualcomm Incorporated Csi processing for fine csi granularity
US11831375B2 (en) * 2021-01-13 2023-11-28 Qualcomm Incorporated Sub-band channel state information reporting for ultra-reliable low latency communications
WO2024065610A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Reporting of channel state information subband index capability

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684969B1 (ko) * 2009-07-27 2016-12-09 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US8761062B2 (en) * 2011-01-11 2014-06-24 Texas Instruments Incorporated CSI measurement, reporting and collision-handling
US9572148B2 (en) * 2011-12-07 2017-02-14 Lg Electronics Inc. Method and apparatus for transceiving a downlink control channel in a wireless communication system
US9385852B2 (en) * 2012-05-10 2016-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for CSI reporting
KR102023671B1 (ko) * 2013-11-01 2019-09-20 이노스카이 주식회사 주기적 채널상태정보 보고 방법 및 장치
KR102034592B1 (ko) * 2014-12-24 2019-10-21 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2018038556A1 (ko) * 2016-08-24 2018-03-01 삼성전자 주식회사 이동 통신 시스템에서의 기준 신호 송신을 위한 방법 및 장치
US11108515B2 (en) * 2016-08-24 2021-08-31 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signal in mobile communication system
US10798774B2 (en) * 2017-09-20 2020-10-06 Qualcomm Incorporated Techniques and apparatuses for bandwidth part wake-up signaling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022032451A1 (en) * 2020-08-10 2022-02-17 Nokia Shanghai Bell Co., Ltd. Massive terminals grouping for channel state information overhead reduction

Also Published As

Publication number Publication date
US20200235797A1 (en) 2020-07-23
WO2019066565A3 (ko) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2019194643A1 (ko) 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2018026241A1 (en) Method and apparatus for coordinating multi-point transmission in advanced wireless systems
WO2016021999A1 (ko) D2d 통신에서의 단말의 d2d 신호 송신 방법 및 이를 위한 장치
WO2018056784A1 (ko) 무선 통신 시스템에서 간섭 측정을 위한 방법 및 이를 위한 장치
WO2017171516A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 전송 또는 수신 방법 및 이를 위한 장치
WO2018021865A1 (ko) 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018026230A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016163819A1 (ko) 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016018094A1 (ko) Mimo 기술이 적용된 d2d 통신을 지원하기 위한 방법 및 이를 위한 장치
WO2018147700A1 (ko) 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치
WO2017222329A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016043523A1 (ko) 반송파 집성 기법을 지원하는 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법 및 장치
WO2015167182A1 (en) Method and apparatus for reporting channel state information
WO2012128505A2 (ko) 장치-대-장치 통신 방법 및 장치
WO2016144050A1 (ko) 무선 통신 시스템에서 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2018030714A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2012096532A2 (ko) 무선 통신 시스템에서 채널상태정보 측정 자원 설정 방법 및 장치
WO2019103580A1 (ko) 무선 통신 시스템에서 csi 보고를 수행하기 위한 방법 및 이를 위한 장치
WO2019017753A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2012105766A2 (ko) 무선 통신 시스템에서 셀간 간섭 조정 방법 및 장치
WO2012002673A2 (ko) 무선 통신 시스템에서 채널상태정보 송수신 방법 및 장치
WO2016072712A2 (ko) 채널과 관련된 피드백을 위한 방법 및 이를 위한 장치
WO2019066619A1 (ko) 무선 통신 시스템에서 비주기적 csi를 보고하기 위한 방법 및 이를 위한 장치
WO2019066565A2 (ko) 서브밴드 그룹에 기초하여 csi 리포팅을 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862382

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862382

Country of ref document: EP

Kind code of ref document: A2