WO2019066484A1 - 수직 이착륙기 - Google Patents

수직 이착륙기 Download PDF

Info

Publication number
WO2019066484A1
WO2019066484A1 PCT/KR2018/011414 KR2018011414W WO2019066484A1 WO 2019066484 A1 WO2019066484 A1 WO 2019066484A1 KR 2018011414 W KR2018011414 W KR 2018011414W WO 2019066484 A1 WO2019066484 A1 WO 2019066484A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
propellant
power source
propeller
thrust
Prior art date
Application number
PCT/KR2018/011414
Other languages
English (en)
French (fr)
Inventor
홍승일
Original Assignee
홍승일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍승일 filed Critical 홍승일
Priority to US16/651,852 priority Critical patent/US11148800B2/en
Priority to JP2020539664A priority patent/JP2020535079A/ja
Priority to CN201880063363.6A priority patent/CN111148693A/zh
Publication of WO2019066484A1 publication Critical patent/WO2019066484A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0091Accessories not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/04Aircraft not otherwise provided for having multiple fuselages or tail booms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/08Aircraft not otherwise provided for having multiple wings

Definitions

  • the present invention relates to a vertical take-off and landing aircraft, and more particularly, a thrust can be varied not only at the aft end but also at the tail end propulsion body, And the rear propulsion is one, so that the propulsion force of the stern is greater than that of the tail at the time of takeoff, so that the imbalance of the propulsive force between the stern and the tail may occur, .
  • the prior art aircraft includes a wing 320; A tilt-type propulsion unit (420) that is tiltable to provide a variable thrust between a thrust vector direction whose direction is at least generally entirely perpendicular to the aircraft and a thrust vector direction that is generally vertical; And a control unit (1290) configured to issue a control command to the controller (1410) of the tilt type propulsion unit to control acceleration of the aircraft.
  • both the stern and the rear propulsion body can concentrate downward thrust, The thrust is generated in the longitudinal direction only by the propellant of the propeller, and the thrust is not generated because the propeller of the tail is fixed to the flying body.
  • the present invention has been proposed in order to solve the above-mentioned problems. It is an object of the present invention to provide a propulsion system capable of changing the thrust direction not only at the fore end but also at the rear propulsion, And to provide a vertical take-off and landing aircraft capable of eliminating the imbalance in the propulsive force caused by a difference in the number of stern and rear propellants.
  • the present invention further proposes a device capable of canceling the generated torque in order to maintain the advantages of the present invention while solving the problem of a gas having a few number of rotors such as a tri-rotor type.
  • a vertical take-off and landing device includes a flying body F equipped with a main wing 3 and auxiliary wings W1 and W2; A pair of front propulsive bodies (7) mounted on both sides of the flying body (F) and variable in the horizontal and vertical directions; A rear propellant 9 mounted on the auxiliary vanes W1 and W2 provided at the rear of the flying body F and being variable in the horizontal and vertical directions; Front and rear variable parts (11, 13) mounted on the flying body (F) and the auxiliary vanes (W1, W2) to vertically or horizontally vary the forward propellant (7) and the rear propellant (9); And a control unit (50) for controlling the front and rear variable portions (11, 13).
  • a gap adjusting part 50 is further disposed between the pair of front propulsive bodies 7 to move the front variable part 11 in the lateral direction with respect to the flying body, 50) includes a sliding rail (52) disposed at the bottom of the flying body (F) and slidably supporting a pair of forward power sources (27); A driving unit 54 disposed between the pair of forward power sources 27 for pushing or pulling the forward power source 27 and moving the forward power source 27 in the lateral direction; And an interval adjustment module (M3) for interlocking with the controller (60) and controlling the moving distance of the pair of forward power sources (27) by pressing the driving unit (54) according to the flying speed.
  • M3 interval adjustment module
  • variable portion includes a front variable portion 11 for changing the forward propulsion body 7; And a rear variable portion 13 for varying the rear propelling body 9.
  • the front variable portion 11 is mounted on both sides of the interior of the flying body F and is connected to a front variable power source 27);
  • a front variable frame 29 which is connected to the output shaft of the front variable power source and whose other end is connected to the forward propulsion unit 7 to rotate the forward propulsion unit 7 at a predetermined angle to be able to vary in the horizontal direction or the vertical direction
  • the rear variable portion 13 includes a rear variable power source 31 mounted on one of the pair of auxiliary wings W1 and W2 and capable of rotating,
  • the first propeller 9 is connected to the output shaft of the rear variable power source 31 at one end and connected to the rear propeller 9 at the other end to rotate the propeller 9 at a predetermined angle, A frame 33;
  • a second rear variable frame (35) rotatably connected to the other one of the pair of auxiliary wings (W1, W2) at one end and rotatably
  • the control unit 50 may include a front variable control module 52 for controlling the front variable power source; A rear variable control module (54) capable of controlling the rear variable power source; And an arithmetic unit for determining a current rotation angle of the front and rear variable control modules 54 according to an output value received from the rotation angle detection sensor 58 mounted on the front and rear variable frames, 56).
  • the sliding rail 52 includes a lower rail 59 fixedly disposed on the flying body F; And a slider 60 coupled to an upper side of the lower rail 59 and having the forward power source 27 mounted thereon.
  • the rear propellant 9 includes a rear guard 41 integrally connected between the first and second rear variable frames 33 and 35; And a rear propeller assembly (40) mounted in the interior of the rear guard (41) to generate a thrust, wherein the rear propellant (9) is a plurality, and a rear propeller of the first rear propellant
  • the assembly 40a and the rear propeller assembly 40b of the second rear propellant of the plurality of rear propellants 9 can counteract torque generated while rotating in opposite directions.
  • the plurality of rear propellants 40 may be arranged in the form of a series, a parallel, or a mixture of at least a part of series and parallel.
  • the rear propulsion body can change the direction of thrust, so that the thrust of the propeller propeller can be concentrated backward as well as during takeoff and landing.
  • the rear propulsion body is not limited to the role of the load alone in horizontal flight, and can generate thrust.
  • the rear propulsion body By dispersing each propellant into a smaller output propellant, it is possible to reduce the size of each propellant, thereby reducing the air resistance from the front and improving the energy efficiency.
  • the flight stability can be improved.
  • the propulsion force of the stern is greater than that of the posterior at the time of takeoff, so that imbalance of the propulsive force between the stern and the tail may occur.
  • the interval control unit 50 is disposed to appropriately control the interval between the two stern propulsion units according to the flight speed, thereby enabling efficient flight.
  • the present invention can additionally utilize a device capable of canceling the generated torque.
  • FIG. 1 is a perspective view showing a vertical take-off and landing aircraft according to an embodiment of the present invention.
  • FIG. 2 is a bottom perspective view showing a state in which the vertical take-off and landing aircraft shown in FIG. 1 is taking off and landing.
  • FIG. 3 is a view showing a state where the vertical take-off and landing aircraft shown in FIG. 1 is flying.
  • FIG. 4 is a front view showing a front variable portion for varying the forward propellant of the vertical take-off and landing aircraft shown in FIG. 1;
  • FIG. 5 is a front view showing a rear variable portion for varying the rear propellant of the vertical take-off and landing aircraft shown in FIG. 1;
  • FIG. 6 is a plan view of the vertical take-off and landing aircraft shown in FIG.
  • FIG. 7 is a side view of the vertical take-off and landing aircraft shown in Fig.
  • FIG. 8 is a rear view of the vertical take-off and landing aircraft shown in FIG. 1.
  • FIG. 8 is a rear view of the vertical take-off and landing aircraft shown in FIG. 1.
  • FIG. 9 is a block diagram showing a control unit for controlling the variable angle of the forward and backward propellant of the vertical take-off and landing aircraft shown in FIG. 1.
  • FIG. 9 is a block diagram showing a control unit for controlling the variable angle of the forward and backward propellant of the vertical take-off and landing aircraft shown in FIG. 1.
  • FIG. 10 is a block diagram schematically showing the structure of an impulse force correcting unit according to another embodiment of the present invention.
  • FIG 11 is a view showing a state in which the gap between the two aft propellants is adjusted by the gap adjusting unit according to another embodiment of the present invention.
  • FIG. 12 is a view showing a state where a forward power source is seated on the sliding rail shown in FIG.
  • FIGS. 13A and 13B illustrate a vertical take-off and landing aircraft employing a structure for canceling a torque generated by constituting a plurality of rear propellants according to an embodiment of the present invention.
  • Fig. 14 shows an example of a rear propellant for canceling a torque generated in a plurality of configurations applied to the vertical take-off and landing aircraft of Figs. 13A and 13B.
  • the vertical take-off and landing device 1 proposed by the present invention includes a flying body F equipped with a main wing 3 and auxiliary wings W1 and W2; A pair of front propellants 7 mounted on both sides of the flying body F and capable of changing in the horizontal and vertical directions; A rear propellant 9 mounted on the auxiliary vanes W1 and W2 provided at the rear of the flying body F to be variable in the horizontal and vertical directions; Front and rear variable portions 11 and 13 mounted on the flying body F and the auxiliary vanes W1 and W2 to vertically or horizontally vary the forward propellant 7 and the rear propellant 9; A control part (50) for controlling the front and rear variable parts (11, 13); And a propulsive force correcting unit 60 for detecting a propulsive force of the front and rear propellants 7 and 9 to compensate for the propulsive force difference when a difference occurs, thereby enabling stable takeoff.
  • the pair of forward propelling bodies 7 can be mounted on both sides of the flying body F and can be varied. That is, when the vertical take-off and landing aircraft 1 takes off and land, the forward propellant 7 is changed in the direction of the ground to generate a thrust force downward.
  • These forward propellants 7 are mounted on the right and left sides, respectively, and have the same structure.
  • the front propellant 7 includes a front guard 17 integrally mounted on a front variable frame 29 to be described later; And a forward propeller assembly 20 mounted inside the front guard 17 to generate thrust.
  • the forward propellant 7 can also change the direction of the thrust by rotating the front propeller assembly 20 and the front guard 17.
  • the front guard 17 serves to support the front propeller assembly 20, and at the same time, is connected to the flying body F by a front variable frame 29.
  • the front guard 17 has a circular ring shape so that the upper and lower portions are open and the circumferential portion is closed. Accordingly, when thrust is generated from the front mounted propeller assembly 20, the thrust is output through the open position.
  • the front guard 17 plays a role of supporting the front propeller assembly 20 and concentrating thrust in one direction.
  • the front propeller assembly 20 plays a role of generating thrust, and includes a front drive source 21 for generating power for thrust; A front propeller 23 mounted on an output shaft of the front drive source 21 to generate thrust; And a front support frame 25 connecting and fixing the front drive source 21 to the inner circumferential surface of the front guard 17.
  • the front drive source 21 may be any type as long as it can rotate the forward propeller 23 and includes, for example, an engine, a motor, and the like.
  • thrust By connecting the front propeller 23 to the front drive source 21, thrust can be generated by rotating the front propeller 23 when the engine or the motor is driven.
  • the front propellant 7 is mounted on both sides of the airplane body so as to be variable by the front variable portion 11 so that the front propellant 7 can be horizontally or vertically changed during takeoff and landing or during flight.
  • variable portion includes a front variable portion 11 for varying the forward propellant 7;
  • the front variable portion 11 rotatably connects the forward propelling body 7 to the flying body F so that the front propelling body 7 Can be changed in the horizontal direction or the vertical direction.
  • the front variable portion 11 includes a forward power source 27 mounted on both inner sides of the flying body F and capable of rotating, respectively;
  • a front variable frame 29 which is connected to the output shaft of the front power source 27 at one end and connected to the front propulsion body 7 at the other end to rotate the front propulsion body 7 at a certain angle to be able to vary in the horizontal or vertical direction .
  • the forward power source 27 may include any type capable of generating a rotational force, for example, a motor, an engine, or the like.
  • the forward power source 27 is provided with an output shaft and is capable of forward or reverse rotation.
  • the rotational direction of the output shaft can be varied in the forward and reverse directions through the transmission.
  • the output shaft can be variably rotated in the forward and reverse directions by changing the supply direction of the power supply.
  • the front guard 17 and the front propeller assembly 20 can also be varied by varying the output shaft in the horizontal direction or the vertical direction of the front variable frame 29.
  • the rear propelling body 9 is disposed behind the flying body F to generate the thrust in the horizontal or vertical direction.
  • This rear propellant 9 is arranged to be variable by the rear variable portion 13 between the auxiliary vanes W1 and W2 respectively disposed rearward from the pair of main vanes.
  • the rear propellant 9 and the rear variable portion 13 have the same structure as the front propelling body 7 and the front variable portion 11 but have a difference in the structure connected to the auxiliary vanes W1 and W2 The redundant description of the bar is omitted.
  • the rear propellant 9 can be varied horizontally or vertically by being supported by a rear variable portion 13 described later.
  • one end of the rear variable portion 13 is connected to the output shaft of the rear variable power source 31 of the one auxiliary wing W1 and the other end is fixedly connected to the rear propelling body 9,
  • a first rear variable frame 33 which can be rotated horizontally or vertically by rotating the first rear variable frame 9 at a predetermined angle;
  • One end includes a second rear variable frame 35 rotatably connected to the other one of the pair of auxiliary wings W1 and W2 and the other end rotatably connected to the rear propellant 9.
  • the first rear variable frame 33 rotates at a certain angle, so that the rear propelling body 9 can be varied in the horizontal or vertical direction.
  • variable power source includes an engine or a motor, and the rotation angle can be adjusted, so that the direction of the rear propellant 9 can be changed at the time of takeoff and landing, or when changing direction during flight.
  • Both ends of the second rear variable frame 35 are connected to the rear propellant 9 and the auxiliary vanes W1 and W2 by bearings or the like, respectively. Therefore, when the rear propellant 9 is rotated, the second rear variable frame 35 can rotatably support the rear propellant 9.
  • the rear propelling body 9 is rotated by the first rear variable frame.
  • the present invention is not limited to this, and the rear propelling body 9 may be rotated by the second rear variable frame 35.
  • the rear propellant (9) has a rear guard (41) mounted between the first and second rear flexible frames (33, 35); And a rear propeller assembly 40 mounted inside the rear guard 41 to generate thrust.
  • the rear guard 41 serves to support the rear propeller assembly 40 and is rotatably connected to the first and second rear variable frames 33 and 35 at the same time.
  • the rear guard 41 has a circular annular shape so that the upper and lower portions are open and the circumferential portion is closed. Accordingly, when thrust is generated from the rear propeller assembly 40 mounted inside, the thrust is output through the open position.
  • the rear guard 41 plays a role of supporting the rear propeller assembly 40 and concentrating the thrust in one direction.
  • the rear propeller assembly 40 serves to generate thrust, and includes a rear drive source 43 for generating power for thrust; A rear propeller 42 mounted on an output shaft of the rear drive source 43 to generate thrust; And a rear support frame 44 connecting and fixing the rear drive source 43 to the inner circumferential surface of the rear guard 41.
  • the rear drive source 43 may be any type capable of rotating the rear propeller 42, and includes, for example, an engine, a motor, and the like.
  • the rear propeller 42 is connected to the rear drive source 43 so that when the engine or the motor is driven, the thrust can be generated by the rotation of the rear propeller 42.
  • control unit 50 for controlling the front and rear variable units includes a front variable power source 27 of the front variable unit 11 and a rear variable power source 31 of the rear variable unit 13, The rotational angle of the front and rear propellants can be adjusted.
  • control unit 50 includes a front variable control module 52 that can control the forward variable power source 27; A rear variable control module (54) capable of controlling the rear variable power source (31); An operation part 56 for grasping the current rotation angle of the front and rear variable control modules 54 according to the output value received from the rotation angle detection sensor 58 mounted on the front and rear variable frames, .
  • control unit 50 rotates the front and rear variable frames by transmitting signals to the front and rear variable power sources so as to control the thrust direction of the forward and rear propulsive bodies to be directed toward the ground.
  • control unit 50 rotates the front and rear variable frames by transmitting signals to the front and rear variable power sources so that the thrust directions of the forward and rear propulsions are directed backward.
  • the controller 50 can independently control the thrust directions of the forward and rear propellants, if necessary.
  • the forward propellant 7 is variably mounted on both sides of the flying body F and the rear propellant 9 is variably mounted between the pair of auxiliary vanes W1 and W2, Or it is easy to fly.
  • the propulsive force correcting unit 60 can eliminate the instability of the airplane due to the difference in propulsive force generated in the aft propulsion unit 7 and the aft propulsion unit 9.
  • the propulsion force of the stern is larger than the propulsive force of the rear stern during takeoff and landing.
  • the stern of the aircraft can be heard at the top, so that the aircraft can take off and land in a tilted state.
  • a horizontal sensor is attached to each of the two aft propellants, and a horizontal sensor is mounted on the rear propellant, thereby correcting the propulsive force by detecting the inclination of the aircraft due to the difference in propulsion.
  • the propulsive force correcting unit 60 includes a first horizontal sensor S1 mounted on two aft propulsion units for sensing a horizontal inclination; A second horizontal sensor (S2) mounted on one aft propulsion body and sensing a horizontal inclination; A computation module (M1) connected to the first and second horizontal sensors (S1, S2) for detecting a tilting direction by sensing a tilt in a horizontal direction and computing a thrust compensation value of the propulsion mounted in a tilted direction; And an output module (M2) for preventing the inclination by increasing the rotational force by transmitting a signal to the propulsion body in a direction tilted by the inclination difference calculated by the calculation module (M1).
  • the calculation module M1 compares the tilt values transmitted from the respective horizontal sensors and senses the tilted direction.
  • Such an operation module M1 means a circuit element in which data is input and processed by a command, such as a micro processor.
  • the calculation module M1 senses the current number of revolutions of the propulsion mounted in the tilted direction.
  • the current number of revolutions can be detected by sensing the number of revolutions of the revolving shaft mounted on the propellant.
  • the thrusters calculate the thrust to balance the thrusters with the other thrusters.
  • the computation module M1 computes the number of revolutions corresponding to the computed thrust, and transmits the signal to the propellant through the output module M2 to increase the output and rotate the computed number of revolutions.
  • the vertical take-off and landing aircraft of the present invention has two stern propulsion units 7 and one rear propulsion unit 9, the three stern propulsion units 7 are disposed in a triangular shape. Therefore, The propellant 9 is affected.
  • the propulsion body 9 collides with the rear propellant body 9 to partially weaken the propulsive force.
  • the gap adjusting portion 50 is formed by horizontally arranging the front variable portion 11 mounted on each of the two stern propulsion bodies 7, .
  • a sliding rail 52 disposed on the bottom of the body and slidably supporting a pair of forward power sources 27;
  • a driving unit 54 disposed between the pair of front power sources 27 for pushing or pulling the front power source 27 and moving the front power source 27 in the lateral direction;
  • an interval adjusting module M3 for controlling the travel distance of the pair of forward power sources 27 by pressing the driving part 54 according to the flying speed in cooperation with the control part.
  • the sliding rail 52 includes a lower rail 59 fixedly disposed on the moving body; And a slider (60) coupled to the upper side of the lower rail (59) and having a forward power source (27) mounted thereon.
  • the forward power source 27 since the forward power source 27 is fixed to the upper portion of the slider 60, when the external force is applied, the forward power source 27 can move forward or backward along the lateral direction.
  • the driving section 54 is constituted by a pair of pistons 56 connected to the pair of forward power sources 27 and a pair of cylinders 58 driving the pair of pistons 56.
  • the cylinder 58 includes a pneumatic or hydraulic cylinder.
  • the two forward propellants 7 connected to the pair of forward power sources 27 can be appropriately adjusted by advancing or retracting in the lateral direction.
  • the interval adjusting module M3 receives the airspeed signal transmitted from the control unit, and can appropriately control the interval between the two aft propulsion bodies 7 according to the signal.
  • the air current generated by the aft propeller 7 is formed to be long and affects the rear propeller. This effect is minimized by increasing the spacing between the propellants 7.
  • the present invention it is possible to efficiently fly the vertical take-off and landing aircraft by arranging the gap adjusting part 50 in the vertical take-off and landing aircraft so as to appropriately adjust the distance between the two stern propulsion bodies 7 according to the flying speed.
  • a flight body having an odd number of rotors due to the characteristics of a tri-copter may be difficult to control because a reaction torque is generated in a direction opposite to the direction of rotation of the propeller.
  • a tail wing of a helicopter is used.
  • a circular object rotating at a high speed may generate torque at a right angle to the rotation axis, which is called a gyroscope effect, and the gas may become unstable, so that additional control such as a tail blade is required.
  • the present invention intends to further utilize a device capable of canceling the generated torque in order to maintain the advantages of the present invention while solving the problem of a rotor having several rotors such as a tri-rotor type.
  • FIGS. 13A and 13B illustrate a vertical take-off and landing aircraft employing a structure for canceling a torque generated by constituting a plurality of rear propellants according to an embodiment of the present invention, And an example of a rear propellant for canceling out the generated torque constituted by a plurality of applied ones.
  • the rear propellant 9 is comprised of a plurality of rear propeller assemblies 40.
  • rear propeller assemblies 40 there are two rear propeller assemblies 40, it may be implemented with a greater number of rear propeller assemblies 40.
  • the plurality of rear propeller assemblies 40 have a plurality of rear propellers 42 and a plurality of rear driving sources 43.
  • the first rear driving source 43a has a first rear driving source 43a.
  • the second rear propeller 42b has the second rear drive source 43b.
  • the first rear drive source 43a and the second rear drive source 43b rotate in different directions to cancel the generated torque .
  • a plurality of propellers may be provided in parallel and rotated in different directions to generate a torque.
  • Helicopter aircraft, tri-copter, quad-copter, and nuclear-copter aircraft which are usually helicopter airplanes or drones, require only a large runway during takeoff and landing. They fly only with the thrust of the propeller, It can not but make a significant difference from the airplane.
  • the vertical take-off and landing aircraft proposed in the present invention has a variable propeller composed of two forward and two rear propellers, and was invented taking advantage of an airplane and a helicopter.
  • VTOL vertical take-off and landing aircraft
  • US Army which is operated by the US Army, which is represented by a twin vertical take-off and landing aircraft and a gas developed by Korea Aerospace Exploration Agency.
  • the tri-rotor type has fixed propellers and aft propellers, Do not do it the mainstream.
  • the twin-rotor type of VTOL has a reputation for unstable landing and landing operations.
  • the hero of the US military is a typical model, and due to frequent accidents, it is getting a reputation as a widow maker.
  • the present invention has a tilterrot in the rear, which makes it easier to operate more reliably during takeoff and landing.
  • the overall power is kept the same while the size of the front propeller is reduced, thereby reducing the air resistance during flight and facilitating relatively high-speed flight.
  • the present invention is advantageous in terms of power efficiency.
  • embodiments of the present invention can be implemented by various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs) , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to embodiments of the present invention may be implemented in the form of a module, a procedure or a function for performing the functions or operations described above.
  • the software code can be stored in a memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

본 발명은 수직 이착륙기에 관한 것으로, 본 발명의 일 실시예에 따른 수직 이착륙기는, 주날개(3) 및 보조날개(W1,W2)가 장착된 비행동체(F); 상기 비행동체(F)의 양측에 각각 장착되어 수평 및 수직방향으로 가변 가능한 한 쌍의 전방 추진체(7); 상기 비행동체(F)의 후방에 구비된 보조날개(W1,W2)에 장착되어 수평 및 수직방향으로 가변 가능한 후방 추진체(9); 상기 비행동체(F) 및 상기 보조날개(W1,W2)에 장착되어 상기 전방 추진체(7) 및 상기 후방 추진체(9)를 수직 혹은 수평방향으로 가변시키는 전방 및 후방 가변부(11,13); 및 상기 전방 및 후방 가변부(11,13)를 제어하기 위한 제어부(50);를 포함할 수 있다.

Description

수직 이착륙기
본 발명은 수직 이착륙기에 관한 것으로, 보다 상세하게는 선미 뿐만 아니라 후미 추진체도 추력방향을 가변시킬 수 있어서 이착륙 뿐만 아니라 비행시에도 선후미 추진체의 추력을 후방으로 동시에 집중할 수 있으며, 선미의 추진체는 2개이고 후미의 추진체는 1개이므로 이륙시에 선미의 추진력이 후미보다 증가하게 되어 선미와 후미간의 추진력의 불균형이 발생할 수 있음으로 이를 감지하여 선, 후미 추진체의 추진력을 적절하게 제어할 수 있는 수직 이착륙기에 관한 것이다.
산업사회로의 급속한 발전으로 인하여 운송수단으로 비행기를 이용하는 비중이 점차적으로 증대되고 있다.
그러나 수직이착륙이 가능한 헬리콥터를 제외한 기타의 비행기는 일정길이의 활주로를 마련하여야 하므로 이에 따른 용지의 확보에 소용되는 비용이 증가되고 또 비행장까지의 이동시간이 길어 대중화되지 못하고 있는 실정이다.
더욱이, 산악지대가 많은 지역에서는 비행장을 건설하기에 많은 어려움이 있고, 또한 비행기 소음으로 인한 민원의 발생이 발생하고 있다.
따라서, 장소에 큰 영향을 받지 않고 자유롭게 이착륙할 수 있는 비행기에 대한 관심이 증가하고 있다.
이러한 수직 이착륙기는 다양한 형태가 개발되고 있으며, 그 일예가 특허출원 제 10-2015-7006351호에 개시된다.
상기 종래 기술의 항공기는 날개(320); 자신의 방향이 항공기에 대해 적어도 전체적으로 수직인 추력 벡터 방향과 전체적으로 종축방향인 추력 벡터 방향 사이에서 가변적인 추력을 제공하기 위한 틸트식인 틸트식 추진 유닛(420); 및 상기 항공기의 가속을 제어하도록 상기 틸트식 추진 유닛의 컨트롤러(1410)에 제어 명령을 발급하도록 구성된 제어 유닛(1290)으로 구성된다.
이러한 항공기는 이착륙시에는 추력 벡터 방향을 수직으로 제어하고, 비행시에는 종축방향으로 틸팅시키는 방식이다.
그러나, 상기와 같은 종래의 선행기술은 후미 추진체의 추력방향이 하향으로 고정된 구조이므로 이착륙시에는 선미와 후미의 추진체가 모두 추력을 하향으로 집중함으로써 용이하게 이착륙을 할 수 있으나, 비행시에는 선미의 추진체만으로 추력을 종축방향으로 발생시키고 후미의 추진체는 비행동체에 고정된 구조이므로 추력을 발생시킬 수 없는 문제점이 있다.
그리고, 미국특허출원 공개 US2012/0091257호에 제시된 항공기는 선미의 추진체만이 틸팅 가능한 구조이고, 후미의 추진체는 고정된 구조이다.
따라서, 항공기가 이착륙할 때에는 선미와 후미의 추진체가 모두 가동되지만, 이륙후 비행시에는 후미 추진체는 동체에 고정된 구조이므로 전방으로 추력을 발생시키지 못하는 단순 적재물이므로 비행 추력 발생에 기여하는 바가 거의 없다.
따라서, 본 발명은 상기한 문제점을 해결하기 위하여 제안된 것으로서, 본 발명의 목적은 선미 뿐만 아니라 후미 추진체도 추력방향을 가변시킬 수 있어서 이착륙 뿐만 아니라 비행시에도 선후미 추진체의 추력을 후방으로 집중할 수 있으며, 선미와 후미 추진체의 갯수가 다름으로써 발생하는 추진력의 불균형을 해소할 수 있는 수직 이착륙기를 제공하는 것이다.
또한, 본 발명에서는 트라이 로터 방식과 같은 홀 수개의 로터를 가진 기체의 문제점을 해소하하면서, 본 발명의 장점을 그대로 유지하기 위해, 발생하는 토크를 상쇄 할 수 있는 장치를 추가적으로 제안하고자 한다.
즉, 후미 로터와 앞 또는 뒤 또는 옆쪽으로 로터를 하나 더 구비하여, 회전 방향을 반대로 함으로써, 발생되는 토크를 상쇄하는 방법을 제공할 수 있다.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기한 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 수직 이착륙기는, 주날개(3) 및 보조날개(W1,W2)가 장착된 비행동체(F); 상기 비행동체(F)의 양측에 각각 장착되어 수평 및 수직방향으로 가변 가능한 한 쌍의 전방 추진체(7); 상기 비행동체(F)의 후방에 구비된 보조날개(W1,W2)에 장착되어 수평 및 수직방향으로 가변 가능한 후방 추진체(9); 상기 비행동체(F) 및 상기 보조날개(W1,W2)에 장착되어 상기 전방 추진체(7) 및 상기 후방 추진체(9)를 수직 혹은 수평방향으로 가변시키는 전방 및 후방 가변부(11,13); 및 상기 전방 및 후방 가변부(11,13)를 제어하기 위한 제어부(50);를 포함할 수 있다.
또한, 상기 한 쌍의 전방 추진체(7)의 사이에는 간격 조절부(50)가 추가로 배치되어 상기 전방 가변부(11)를 상기 비행동체에 대하여 횡방향으로 각각 이동시키며, 상기 간격 조절부(50)는, 상기 비행동체(F)의 바닥에 배치되어 한 쌍의 전방 동력원(27)을 슬라이딩 가능하게 지지하는 슬라이딩 레일(52); 상기 한 쌍의 전방 동력원(27)의 사이에 배치되어 전방 동력원(27)을 밀거나 당겨서 횡방향으로 이동시키는 구동부(54); 및 상기 제어부(60)와 연동함으로써 비행속도에 따라 상기 구동부(54)를 가압하여 상기 한 쌍의 전방 동력원(27)의 이동거리를 제어하는 간격조절모듈(M3);을 더 포함할 수 있다.
또한, 상기 가변부는 상기 전방 추진체(7)를 가변시키는 전방 가변부(11); 및 상기 후방 추진체(9)를 가변시키는 후방 가변부(13);를 포함하고, 상기 전방 가변부(11)는 상기 비행동체(F)의 내부 양측에 각각 장착되어 회전운동이 가능한 전방 가변 동력원(27); 일단은 상기 전방 가변 동력원의 출력축에 연결되고 타단은 상기 전방 추진체(7)에 연결됨으로써 상기 전방 추진체(7)를 일정 각도로 회전시켜서 수평방향 혹은 수직방향으로 가변시킬 수 있는 전방 가변 프레임(29);을 포함하며, 상기 후방 가변부(13)는 상기 한 쌍의 보조날개(W1,W2)중 일측 보조날개(W1)에 장착되어 회전운동이 가능한 후방 가변 동력원(31); 일단은 상기 후방 가변 동력원(31)의 출력축에 연결되고 타단은 후방 추진체(9)에 연결됨으로써 상기 후방 추진체(9)를 일정 각도로 회전시켜서 수평방향 혹은 수직방향으로 가변시킬 수 있는 제 1후방 가변프레임(33); 및 일단은 상기 한 쌍의 보조날개(W1,W2)중 타측 보조날개(W2)에 회전가능하게 연결되고 타단은 상기 후방 추진체(9)에 회전 가능하게 연결되는 제 2후방 가변프레임(35);을 포함할 수 있다.
또한, 상기 후방 추진체(9)는 상기 제 1 및 제 2후방 가변 프레임(33,35)의 사이에 일체로 연결되는 후방 가드(41); 상기 후방 가드(41)의 내부에 장착되어 추력을 발생시키는 후방 프로펠러 조립체(40);를 포함하고, 상기 후방 프로펠러 조립체(40)는 추력을 위한 동력을 발생시키는 후방 구동원(43); 상기 후방 구동원(43)의 출력축에 장착되어 추력을 발생시키는 후방 프로펠러(42); 및 상기 후방 구동원(43)을 상기 후방 가드(41)의 내주면에 연결하여 고정시키는 후방 지지 프레임(44);을 포함할 수 있다.
또한, 상기 제어부(50)는 상기 전방 가변 동력원을 제어할 수 있는 전방 가변 제어모듈(52); 상기 후방 가변 동력원을 제어할 수 있는 후방 가변 제어모듈(54); 및 상기 전후방 가변 프레임에 장착된 회전각 감지센서(58)로부터 수신된 출력값에 의하여 전방 및 후방 가변 제어모듈(54)의 현재 회전각을 파악하고, 목표 회전각과 비교하여 회전각을 조절하는 연산부(56)를 포함할 수 있다.
또한, 상기 슬라이딩 레일(52)은 상기 비행동체(F)에 고정적으로 배치되는 하부레일(59); 상기 하부레일(59)의 상측에 결합되며 상측에는 상기 전방 동력원(27)이 얹혀지는 슬라이더(Slider;60)로 구성될 수 있다.
또한, 상기 후방 추진체(9)는 제 1 및 제 2후방 가변 프레임(33,35)의 사이에 일체로 연결되는 후방 가드(41)와; 후방 가드(41)의 내부에 장착되어 추력을 발생시키는 후방 프로펠러 조립체(40)를 포함하고, 상기 후방 추진체(9)는 복수이며, 상기 복수의 후방 추진체(9) 중 제 1 후방 추진체의 후방 프로펠러 조립체(40a)와 상기 복수의 후방 추진체(9) 중 제 2 후방 추진체의 후방 프로펠러 조립체(40b)는 서로 반대 방향으로 회전하면서 발생되는 토크를 상쇄할 수 있다.
또한, 상기 복수의 후방 추진체(40)는 직렬, 병렬 또는 직렬 및 병렬 중 적어도 일부가 혼합된 형태로 배치될 수 있다.
첫째, 선미 뿐만 아니라 후미 추진체도 추력방향을 가변시킬 수 있어서 이착륙 뿐만 아니라 비행시에도 선후미 추진체의 추력을 후방으로 집중 할 수 있다.
이와 같이, 순후미 추진체의 추력을 모두 가변가능한 구조로 함으로써 후미 추진체는 수평비행시에는 오로지 적재물의 역할에 한정되지 않고, 추력을 발생시킬 수 있으며, 또한 동일 형태의 비행체일 경우 추력을 3부분으로 분산 시키므로서 각각의 추진체를 보다 작은 출력의 추진체로 구성함으로서 추진체 각각의 크기를 줄일 수 있으므로 전방으로부터의 공기 저항을 줄여 에너지 효율을 높일 수 있으며, 전방 또는 후방의 추진체 어느 한쪽의 고장시라면 급작스런 추락을 방지 할 수 있는 기능을 겸비함으로서 비행 안정성을 높일 수 있는 장점이 있다.
둘째, 선미의 추진체는 2개이고 후미의 추진체는 1개이므로 이륙시에 선미의 추진력이 후미보다 증가하게 되어 선미와 후미간의 추진력의 불균형이 발생할 수 있음으로 이를 감지하여 선, 후미 추진체의 추진력을 적절하게 제어할 수 있는 장점이 있다.
셋째, 간격 조절부(50)를 배치하여 2개의 선미 추진체의 간격을 비행속도에 따라 적절하게 조절함으로써 효율적인 비행이 가능하다.
넷째, 본 발명에서는 트라이 로터 방식과 같은 홀 수개의 로터를 가진 기체의 문제점을 해소하하면서, 본 발명의 장점을 그대로 유지하기 위해, 발생하는 토크를 상쇄 할 수 있는 장치를 추가적으로 이용할 수 있다.
즉, 후미 로터와 앞 또는 뒤 또는 옆쪽으로 로터를 하나 더 구비하여, 회전 방향을 반대로 함으로써, 발생되는 토크를 상쇄하는 방법을 제공할 수 있다.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 수직 [0025] 이착륙기를 보여주는 사시도이다.
도 2는 도 1에 도시된 수직 이착륙기가 이착륙을하고 있는 상태를 보여주는 저면 사시도이다.
도 3은 도 1에 도시된 수직 이착륙기가 비행하고 있는 상태를 보여주는 도면이다.
도 4는 도 1에 도시된 수직 이착륙기의 전방 추진체를 가변시키는 전방 가변부를 보여주는 정면도이다.
도 5는 도 1에 도시된 수직 이착륙기의 후방 추진체를 가변시키는 후방 가변부를 보여주는 정면도이다.
도 6은 도 1에 도시된 수직 이착륙기의 평면도이다.
도 7은 도 1에 도시된 수직 이착륙기의 측면도이다.
도 8은 도 1에 도시된 수직 이착륙기의 후면도이다.
도 9는 도 1에 도시된 수직 이착륙기의 전후진 추진체의 가변각도를 제어하는 제어부를 도시하는 블럭도이다.
도 10은 본 발명의 다른 실시예로서 추진력 보정부의 구조를 개략적으로 보여주는 블럭도이다.
도 11은 본 발명의 또 다른 실시예로서 간격 조절부에 의하여 2개의 선미 추진체간의 간격을 조절하는 상태를 보여주는 도면이다.
도 12는 도 11에 도시된 슬라이딩 레일에 전방 동력원이 안착된 상태를 보여주는 도면이다.
도 13a 및 도 13b는 본 발명의 일 실시예에 따라 후방 추진체를 복수로 구성하여 발생되는 토크를 상쇄하는 구조를 채용한 수직 이착륙기를 도시한 것이다.
도 14는 도 13a 및 도 13b의 수직 이착륙기에 적용되는 복수로 구성되어 발생되는 토크를 상쇄하는 후방 추진체의 일례를 도시한 것이다.
이하, 본 발명의 일 실시예에 따른 수직 이착륙기를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1 내지 도 8에 도시된 바와 같이, 본 발명이 제안하는 수직 이착륙기(1)는 주날개(3) 및 보조날개(W1,W2)가 장착된 비행동체(F)와; 비행동체(F)의 양측에 각각 장착되어 수평 및 수직방향으로 가변가능한 한 쌍의 전방 추진체(7)와; 비행동체(F)의 후방에 구비된 보조날개(W1,W2)에 장착되어 수평 및 수직방향으로 가변 가능한 후방 추진체(9)와; 비행동체(F) 및 보조날개(W1,W2)에 장착되어 전방 추진체(7) 및 후방 추진체(9)를 수직 혹은 수평 방향으로 가변시키는 전후방 가변부(11,13)와; 전방 및 후방 가변부(11,13)를 제어하기 위한 제어부(50)와; 전방 및 후방 추진체(7,9)의 추진력을 감지하여 차이가 발생하는 경우 그 추진력 차이를 보상함으로써 안정적인 이륙이 가능하게 하는 추진력 보정부(60)를 포함한다.
이러한 구조를 갖는 수직 이착륙기(1)에 있어서, 한 쌍의 전방 추진체(7)는 비행동체(F)의 양측에 각각 장착되어 가변될 수 있다. 즉, 수직 이착륙기(1)가 이착륙시에는 전방 추진체(7)가 지면 방향으로 가변됨으로써 하부로 추력을 발생시키고, 비행시에는 전방으로 가변됨으로써 후방으로 추력을 발생시키게 된다.
이러한 전방 추진체(7)는 좌우에 1개씩 각각 장착되고, 그 구조가 서로 동일하므로 이하 하나의 전방 추진체(7)에 의하여 설명한다.
상기 전방 추진체(7)는 후술하는 전방 가변 프레임(29)에 일체로 장착되는 전방 가드(17)와; 전방 가드(17)의 내부에 장착되어 추력을 발생시키는 전방 프로펠러 조립체(20)를 포함한다.
따라서, 전방 추진체(7)는 전방 가변 프레임(29)이 수평방향 혹은 수직방향으로 회전함에 따라 전방 프로펠러 조립체(20) 및 전방 가드(17)도 회전함으로써 추력의 방향도 같이 가변될 수 있다.
보다 상세하게 설명하면, 상기 전방 가드(17)는 전방 프로펠러 조립체(20)를 지지하는 역할을 하며, 동시에 비행동체(F)에 전방 가변 프레임(29)에 의하여 연결된다.
이러한 전방 가드(17)는 원형 고리형상을 가짐으로써 상부 및 하부는 개방된 구조이고, 원주방향은 폐쇄된 구조이다. 따라서, 내부에 장착된 전방 프로펠러 조립체(20)로부터 추력이 발생하면 추력은 개방된 곳을 통하여 출력된다.
결국, 전방 가드(17)는 전방 프로펠러 조립체(20)를 지지하는 역할을 수행하는 동시에, 추력을 일방향으로 집중시키는 역할을 수행한다.
그리고, 전방 프로펠러 조립체(20)는 추력을 발생시키는 역할을 수행하는바, 추력을 위한 동력을 발생시키는 전방 구동원(21)과; 전방 구동원(21)의 출력축에 장착되어 추력을 발생시키는 전방 프로펠러(23)와; 전방 구동원(21)을 전방 가드(17)의 내주면에 연결하여 고정시키는 전방 지지 프레임(25)을 포함한다.
상기 전방 구동원(21)은 전방 프로펠러(23)를 회전시킬 수 있는 형태라면 모두 가능하며, 예를 들면 엔진, 모터 등을 포함한다.
그리고 이러한 전방 구동원(21)에는 전방 프로펠러(23)가 연결됨으로써, 엔진 혹은 모터가 구동하는 경우 전방 프로펠러(23)가 회전함으로써 추력이 발생될 수 있다.
이와 같이 전방 추진체(7)가 비행기 동체의 양측에 전방 가변부(11)에 의하여 각각 가변가능하게 장착되는 바, 이착륙시 혹은 비행시에는 전방 추진체(7)를 수평방향 혹은 수직방향으로 가변시킨다.
즉, 가변부는 전방 추진체(7)를 가변시키는 전방 가변부(11)와; 후방 추진체(9)를 가변시키는 후방 가변부(13)로 구성되는 바, 이러한 전방 가변부(11)는 전방 추진체(7)를 비행동체(F)에 회전 가능하게 연결함으로써 필요시 전방 추진체(7)를 수평방향 혹은 수직방향으로 가변시킬 수 있다.
보다 상세하게 설명하면, 도 4에 도시된 바와 같이, 전방 가변부(11)는 비행동체(F)의 내부 양측에 각각 장착되어 회전운동이 가능한 전방 동력원(27)과; 일단은 전방 동력원(27)의 출력축에 연결되고 타단은 전방 추진체(7)에 연결됨으로써 전방 추진체(7)를 일정 각도로 회전시켜서 수평방향 혹은 수직방향으로 가변시킬 수 있는 전방 가변 프레임(29)을 포함한다.
전방 동력원(27)으로는 회전력을 발생시킬 수 있는 형태이면 모두 포함할 수 있으며, 예를 들면 모터, 엔진 등이다. 이러한 전방 동력원(27)은 출력축이 구비되어 정방향 혹은 역방향 회전이 가능한 구조이다. 예를 들면, 엔진의 경우 변속기를 통하여 출력축의 회전방향을 정역방향으로 가변시킬 수 있다.
또한, 모터의 경우 전원의 공급방향을 변환시킴으로써 출력축을 정역방향으로 가변회전시킬 수 있다.
리고, 출력축은 전방 가변 프레임(29)을 통하여 전방 추진체(7)의 전방 가드(17)에 일체로 연결된다.
따라서, 동력원이 구동하는 경우, 출력축이 전방 가변 프레임(29)을 수평방향 혹은 수직방향으로 가변시킴으로써 전방 가드(17) 및 전방 프로펠러 조립체(20)도 같이 가변 될 수 있다.
한편, 비행동체(F)의 후방에는 후방 추진체(9)가 배치됨으로써 추력을 수평 혹은 수직방향으로 발생시키게 된다.
이러한 후방 추진체(9)는 한 쌍의 주날개에서 후방으로 각각 배치된 보조날개(W1,W2)의 사이에 후방 가변부(13)에 의하여 가변가능하게 배치된다.
상기 후방 추진체(9) 및 후방 가변부(13)는 전방 추진체(7) 및 전방 가변부(11)와 동일한 구조를 갖으며, 다만 보조날개(W1,W2)에 연결되는 구조에 있어서는 차이점이 있는 바, 중복된 설명은 생략한다.
상기 후방 추진체(9)는 후술하는 후방 가변부(13)에 의하여 지지됨으로써 수평 혹은 수직으로 가변될 수 있다.
이러한 후방 가변부(13)는 도 5에 도시된 바와 같이, 일단은 일측 보조날개(W1)의 후방 가변 동력원(31)의 출력축에 연결되고 타단은 후방 추진체(9)에 고정적으로 연결됨으로써 후방 추진체(9)를 일정 각도로 회전시켜서 수평방향 혹은 수직방향으로 가변시킬 수 있는 제 1후방 가변프레임(33)과; 일단은 한 쌍의 보조날개(W1,W2)중 타측 보조날개(W2)에 회전가능하게 연결되고 타단은 후방 추진체(9)에 회전가능하게 연결되는 제 2후방 가변프레임(35)을 포함한다.
따라서, 상기 후방 가변 동력원(31)이 구동하는 경우, 제 1후방 가변프레임(33)이 일정 각도로 회전함으로써 후방 추진체(9)가 수평 혹은 수직방향으로 가변될 수 있다.
이때, 가변 동력원은 엔진 혹은 모터를 포함하며, 회전각도를 조절할 수 있음으로 이착륙시, 혹은 비행시, 방향 전환시에 후방 추진체(9)의 방향을 가변시킬 수 있다.
그리고, 제 2후방 가변프레임(35)은 양단이 후방 추진체(9) 및 보조날개(W1,W2)에 베어링 등에 의하여 각각 연결된다. 따라서, 후방 추진체(9)가 회전하는 경우, 제 2후방 가변프레임(35)은 후방 추진체(9)를 회전가능하게 지지할 수 있다.
상기에서는 제 1후방 가변 프레임에 의하여 후방 추진체(9)가 회전하는 것으로 설명하였지만, 본 발명은 이에 한정되는 것은 아니고 제 2후방 가변프레임(35)에 의하여 후방 추진체(9)가 회전할 수도 있다.
상기 후방 추진체(9)는 제 1 및 제 2후방 가변프레임(33,35)의 사이에 장착되는 후방 가드(41)와; 후방 가드(41)의 내부에 장착되어 추력을 발생시키는 후방 프로펠러 조립체(40)를 포함한다.
상기 후방 가드(41)는 후방 프로펠러 조립체(40)를 지지하는 역할을 하며, 동시에 제 1 및 제 2후방 가변프레임(33,35)에 회전가능하게 연결된다.
이러한 후방 가드(41)는 원형 고리형상을 가짐으로써 상부 및 하부는 개방된 구조이고, 원주방향은 폐쇄된 구조이다. 따라서, 내부에 장착된 후방 프로펠러 조립체(40)로부터 추력이 발생하면 추력은 개방된 곳을 통하여 출력된다.
결국, 후방 가드(41)는 후방 프로펠러 조립체(40)를 지지하는 역할을 수행하는 동시에, 추력을 일방향으로 집중시키는 역할을 수행한다.
그리고, 후방 프로펠러 조립체(40)는 추력을 발생시키는 역할을 수행하는 바, 추력을 위한 동력을 발생시키는 후방 구동원(43)과; 후방 구동원(43)의 출력축에 장착되어 추력을 발생시키는 후방 프로펠러(42)와; 후방 구동원(43)을 후방 가드(41)의 내주면에 연결하여 고정시키는 후방 지지 프레임(44)을 포함한다.
상기 후방 구동원(43)은 후방 프로펠러(42)를 회전시킬 수 있는 형태라면 모두 가능하며, 예를 들면 엔진, 모터 등을 포함한다.
그리고 이러한 후방 구동원(43)에는 후방 프로펠러(42)가 연결됨으로써, 엔진 혹은 모터가 구동하는 경우 후방 프로펠러(42)가 회전함으로써 추력이 발생될 수 있다.
이와 같이 후방 추진체(9)가 한 쌍의 보조날개(W1,W2)의 사이에 후방 가변부(13)에 의하여 각각 가변가능하게 장착되는 바, 이착륙시 혹은 비행시에는 후방 추진체(9)를 수평방향 혹은 수직방향으로 가변시킨다.
한편, 전방 및 후방 가변부를 제어하기 위한 제어부(50)는 도 9에 도시된 바와 같이, 전방 가변부(11)의 전방 가변 동력원(27)과 후방 가변부(13)의 후방 가변 동력원(31)을 제어함으로써 전방 및 후방 추진체의 회전각도를 조절할 수 있다.
즉, 제어부(50)는 전방 가변 동력원(27)을 제어할 수 있는 전방 가변 제어모듈(52)과; 후방 가변 동력원(31)을 제어할 수 있는 후방 가변 제어모듈(54)과; 전후방 가변 프레임에 장착된 회전각 감지센서(58)로부터 수신된 출력값에 의하여 전방 및 후방 가변 제어모듈(54)의 현재 회전각을 파악하고, 목표 회전각과 비교하여 회전각을 조절하는 연산부(56)를 포함한다.
따라서, 이착륙시에는 제어부(50)가 전후방 가변 동력원에 신호를 전송하여 구동시킴으로써 전후방 가변 프레임을 회전시켜서 결국은 전방 및 후방 추진체의 추력 방향이 지면으로 향하도록 제어한다.
비행시에는 제어부(50)가 전후방 가변 동력원에 신호를 전송하여 구동시킴으로써 전후방 가변 프레임을 회전시켜서 결국은 전방 및 후방 추진체의 추력방향이 후방으로 향하도록 제어한다.
이때, 제어부(50)는 필요시 전방 및 후방 추진체의 추력방향을 독립적으로 제어할 수 있다.
상기한 바와 같이, 비행동체(F)의 양측에 전방 추진체(7)가 가변가능하게 장착되고, 한 쌍의 보조날개(W1,W2)의 사이에 후방 추진체(9)가 가변가능하게 장착됨으로써 이착륙 혹은 비행이 용이하다.
한편, 상기 추진력 보정부(60)는 선미 추진체(7)와 후미 추진체(9)에 발생하는 추진력 차이로 인하여 항공기 이착륙시 불안정해지는 것을 해소할 수 있다.
즉, 도 1 및 도 10에 도시된 바와 같이, 선미 추진체(7)는 2개이고, 후미 추진체(9)는 1개이므로 삼각형상을 이루어 배치되므로 이착륙시 선미의 추진력이 후미의 추진력보다 크다.
따라서, 항공기의 선미가 상부로 들릴 수 있어서 결국 항공기가 기울어진 상태로 이착륙을 할 수 있다.
이러한 문제는 선후미의 추진체가 동수인 경우, 예를 들면 선미와 후미 모두 2개씩 인 경우에는 추진력의 차이가 거의 발생하지 않으나, 본 발명과 같이 수평비행시 공기 저항을 줄이기 위하여 선미에는 2개의 추진체를 배치하고, 후미에는 1개의 추진체를 배치하되 선미 2개의 추진체 사이에 위치한 구조는 선미와 후미간의 추진력 차이가 발생하게 된다.
따라서, 2개의 선미 추진체에 수평센서를 각각 장착하고, 후미 추진체에도 수평센서를 장착하여 추진력 차이로 인하여 항공기가 선미에 기울기가 발생하는 경우 이를 감지하여 추진력을 보정할 수 있다.
보다 상세하게 설명하면, 추진력 보정부(60)는 2개의 선미 추진체에 장착되어 수평기울기를 감지하는 제 1수평센서(S1)와; 1개의 후미 추진체에 장착되어 수평 기울기를 감지하는 제 2수평센서(S2)와; 제 1 및 제 2수평센서(S1,S2)와 연결되어 수평으로 기울기를 감지하여 기울어지는 방향을 파악하고, 기울어진 방향에 장착된 추진체의 추진력 보상값을 연산하는 연산모듈(M1)과; 연산모듈(M1)에 의하여 연산된 기울기 차이에 의하여 기울어진 방향의 추진체에 신호를 전송함으로써 회전력을 높혀서 기울어짐을 방지하는 출력모듈(M2)을 포함한다.
상기 제 1 및 제 2수평센서(S1,S2)는 추진체에 각각 장착되어 수평 기울기를 감지하는 바, 다양한 종류의 센서가 적용될 수 있다. 예를 들면, 자이로스코프(gyroscope) 방식의 센서가 가능하다.
그리고, 연산모듈(M1)은 각 수평센서로부터 전송된 기울기값을 비교하여 기울어진 방향을 감지한다. 이러한 연산모듈(M1)은 마이크로 프로세서(Micro processor)와 같이 데이터가 입력되고 명령에 의하여 연산처리되는 회로소자 등으로 의미한다.
따라서, 연산모듈(M1)은 기울어진 방향이 파악되면, 기울어진 방향에 장착된 추진체의 현재 회전수를 감지한다.
현재 회전수는 추진체에 장착된 회전축의 회전수를 센싱함으로써 파악될 수 있다.
이와 같이 기울어진 방향의 추진체의 회전수가 파악되면, 이 회전수에 대응되는 추진력을 연산한다. 이때, 이 추진력은 다른 추진체의 추진력 보다 작은 값이므로 해당 추진체가 다른 추진체와 균형을 이룰 수 있는 추진력을 연산한다.
그리고, 연산모듈(M1)은 연산된 추진력에 상응하는 회전수를 연산하고, 출력모듈(M2)을 통하여 해당 추진체에 신호를 전송함으로써 출력을 높혀서 이 회전수로 회전시킨다.
한편, 본 발명의 수직 이착륙기는 선미 추진체(7)가 2개이고, 후미 추진체(9)는 1개이므로 삼각형상을 이루어 배치되므로 이착륙 뿐만 아니라 비행시에도 2개의 선미 추진체(7)에서 발생한 기류가 후미 추진체(9)에 영향을 미치게 된다.
즉, 2개의 선미 추진체(7)에서 후방으로 분사되는 2개의 기류가 퍼진 상태가 되므로 후미 추진체(9)에 충돌함으로써 추진력을 일부 약화시키게 된다.
특히, 비행속도를 높이는 경우에는 더욱 많은 기류가 후미 추진체(9)에 충돌함으로써 더욱 영향을 미치게 된다.
따라서, 비행속도에 따라 선미 추진체(7)의 간격을 적절하게 조절할 수 있는 간격 조절부(50)를 추가로 장착할 수 있다.
보다 상세하게 설명하면, 도 11 및 도 12에 도시된 바와 같이, 간격 조절부(50)는 2개의 선미 추진체(7)에 각각 장착된 전방 가변부(11)를 비행동체에 대하여 횡방향으로 각각 이동시키는 구조이다.
즉, 동체의 바닥에 배치되어 한 쌍의 전방 동력원(27)을 슬라이딩 가능하게 지지하는 슬라이딩 레일(52)과; 한쌍의 전방 동력원(27)의 사이에 배치되어 전방 동력원(27)을 밀거나 당겨서 횡방향으로 이동시키는 구동부(54)와; 제어부와 연동함으로써 비행속도에 따라 구동부(54)를 가압하여 한 쌍의 전방 동력원(27)의 이동거리를 제어하는 간격조절모듈(M3)을 포함한다.
이러한 구조를 갖는 간격 조절부(50)에 있어서, 슬라이딩 레일(52)은 동체에 고정적으로 배치되는 하부레일(59)과; 하부레일(59)의 상측에 결합되며 상측에는 전방 동력원(27)이 얹혀지는 슬라이더(Slider;60)로 구성된다.
따라서, 전방 동력원(27)은 슬라이더(60)의 상부에 고정된 상태이므로, 외력이 가해지는 경우 전방 동력원(27)은 횡방향을 따라 전진하거나 후진할 수 있다.
그리고, 구동부(54)는 한 쌍의 전방 동력원(27)에 각각 연결되는 한 쌍의 피스톤(56)과, 한 쌍의 피스톤(56)을 구동시키는 한 쌍의 실린더(58)로 구성된다.
이때, 실린더(58)는 공압 혹은 유압 실린더를 포함한다.
따라서, 이러한 실린더(58)가 구동하는 경우 피스톤(56)이 전진하거나 후진함으로써 한 쌍의 전방 동력원(27)을 당기거나 밀게 된다.
결국, 한 쌍의 전방 동력원(27)에 연결된 2개의 전방 추진체(7)는 횡방향으로 전진하거나 후진함으로써 그 간격이 적절하게 조절될 수 있다.
이때, 간격 조절모듈(M3)가 제어부에서 전송되는 비행 속도 신호를 수신하고, 이 신호에 따라 2개 선미 추진체(7)간의 간격을 적절하게 제어할 수 있다.
따라서, 간격 조절모듈(M3)에서 출력된 신호에 의하여 구동부(54)가 구동함으로써 비행 속도가 빠른 경우에는 선미 추진체(7)에서 발생하는 기류가 길게 형성되어 후미 추진체에 영향을 미치게 되므로 2개 선미 추진체(7)간의 간격을 넓게 형성함으로써 이 영향을 최소화하게 된다.
반대로, 비행속도가 느린 경우에는 선미 추진체(7)에서 발생하는 기류가 상대적으로 짧게 형성되어 후미 추진체에 영향을 덜 미치게 되므로 2개 선미 추진체(7)간의 간격을 상대적으로 좁게 형성하게 된다.
이와 같이, 본 발명은 수직 이착륙기에 간격 조절부(50)를 배치하여 2개의 선미 추진체(7)의 간격을 비행속도에 따라 적절하게 조절함으로써 효율적인 비행이 가능하다.
토크 상쇄를 위한 본 발명의 실시예
한편, 전술한 본 발명에서 트라이콥터의 특성 상 홀수개의 로터를 구비한 비행체는 프로펠러 회전 방향의 반대 방향으로 반작용 토크가 발생 하므로 제어가 어려울 수 있다.
이를 위해, 헬리콥터의 꼬리날개가 이용되고 있기도 하다.
또한, 고속 회전하는 원형 물체는 자이로스코프 효과로 일컬어지는 회전축에 직각으로 토크가 발생하여 기체가 불안정해 질 수 있으므로 꼬리날개 등의 추가적인 제어가 필요하게 된다.
따라서 본 발명에서는 트라이 로터 방식과 같은 홀 수개의 로터를 가진 기체의 문제점을 해소하하면서, 본 발명의 장점을 그대로 유지하기 위해, 발생하는 토크를 상쇄 할 수 있는 장치를 추가적으로 이용하고자 한다.
즉, 후미 로터와 앞 또는 뒤 또는 옆쪽으로 로터를 하나 더 구비하여, 회전 방향을 반대로 함으로써, 발생되는 토크를 상쇄하는 방법을 적용하고자 한다.
도 13a 및 도 13b는 본 발명의 일 실시예에 따라 후방 추진체를 복수로 구성하여 발생되는 토크를 상쇄하는 구조를 채용한 수직 이착륙기를 도시한 것이고, 도 14는 도 13a 및 도 13b의 수직 이착륙기에 적용되는 복수로 구성되어 발생되는 토크를 상쇄하는 후방 추진체의 일례를 도시한 것이다.
도 13a, 도 13b 및 도 14를 참조하면, 전방 추진체(7), 전방 및 후방 가변부(11, 13) 등의 구성은 전술한 구성과 동일하므로 명세서의 간명화를 위해 중복 설명은 생략하고, 차별화되는 후방 추진체(9)의 구조에 대해 설명한다.
도 13a, 도 13b 및 도 14를 참조하면, 본 실시예에 따른 후방 추진체(9)는
제 1후방 가변프레임(33)과 제 2후방 가변프레
임(35) 사이의 후방 지지 프레임(44)에 구비된다.
특히, 후방 추진체(9)는 복수의 후방 프로펠러 조립체(40)로 구성된다.
본 도면 및 실시예에서는 후방 프로펠러 조립체(40)가 2개인 것을 가정하여 설명하였으나 더 많은 개수의 후방 프로펠러 조립체(40)로 구현될 수 있다.
따라서 복수의 후방 프로펠러 조립체(40)는 복수의 후방 프로펠러(42)와 복수의 후방 구동원(43)을 갖게 된다.
도 13a, 도 13b 및 도 14를 참조하면, 제 1후방 구동원(43a)는 제 1후방 구동원(43a)을 갖게 된다.
또한, 제 2 후방 프로펠러(42b)는 제 2후방 구동원(43b)을 갖게 된다.
이때, 제 1후방 구동원(43a)과 제 2후방 구동원(43b)의 조작을 통해, 제 1후방 구동원(43a)과 제 2 후방 프로펠러(42b)는 서로 다른 방향으로 회전 함으로써, 발생되는 토크를 상쇄하게 된다.
회전하는 물체의 회전축의 방향이 바뀔 때, 직관적으로 쉽게 이해할 수 없는 신기한 물리적 현상이 발생하는데, 이를 보여주는 대표적인 사례가 자이로스코프이다.
즉, 자이로스코프의 중심축 한쪽 끝을 고정점에 얹은 후에 중심축을 수평으로 유지한 상태에서 가만히 놓게 되면, 관성 바퀴가 회전하지 않을 경우에는 중심축의 반대쪽은 중력에 의해 아래로 떨어지게 된다.
그런데, 관성 바퀴가 회전하고 있을 경우에는 완전히 다른 현상이 일어난다. 중심축이 수평을 유지한 상태에서 고정점을 중심으로 지속적인 원운동을 한다. 이러한 회전 중심축의 운동을 세차운동(precession)이라고 한다.
따라서 본 발명에서는 이러한 자이로스코프의 원리를 기초로, 복수의 프로펠러를 병렬로 구비한 상태에서 서로 다른 방향으로 회전시켜 발생되는 토크가 상새되도록 할 수 있다.
한편, 본 실시예에서는 복수의 후방 프로펠러 조립체(40)가 병렬로 연결되는 것을 가정하여 설명하였음나 본 발명의 내용이 이에 한정되는 것은 아니고, 직렬로 복수로 연결되거나 직렬 및 병렬로 혼합하여 복수로 연결되는 것도 가능하다.
본 발명에 따른 효과
통상의 비행기가 이착륙시 큰 활주로를 필요로 하고 헬리콥터류의 비행기 또는 드론으로 대변되는 헬리콥터류의 트라이콥터, 쿼드콥터, 핵사콥터 등은 오로지 프로펠러의 추력으로만 비행하므로 동력 효율면이나 주행시 속도면에서 비행기형 기체와는 상당한 차이를 보일 수 밖에 없다.
또한 활주로가 필요없는 반면 동력 효율이나 기동력이 현저히 떨어진다.
본 명세서에서 제안하는 수직이착륙기는 가변형 프로펠러가 전방 2개 후방 1개로 구성되어 있어 비행기와 헬리콥터의 장점만을 취하여 발명되었다.
기존의 수직이착륙기(이하 VTOL)는 쌍발 수직이착륙기로 대변되는 미군에서 운용하고 있는 허큘레스란 기체나 한국한공우주국에서 개발한 기체등이 있으며 트라이 로터형은 전방 가변 프로펠러와 후미 프로펠러는 고정형으로 주행 중에는 동작하지 않는 방식이 주류를 이룬다.
쿼드로터형은 다양하게 최근에 많이 개발되고 있다.
이하에서는 본 발명에 따른 수직이착륙기와 다른 방식의 기체의 효과를 상호 분석한다.
(1) 트윈로터 방식의 VTOL 기체와 본 발명의 비교
트윈로터 방식의 VTOL 기체는 이착륙 동작이 불안정하기로 정평이 나있다. 대표적인 일예로 미군의 허큘레스란 기종이 대표적인데 잦은 사고로 인하여 과부제조기라는 오명을 얻고 있다.
또한, 헬리콥터에 비견 될 만큼 큰 프로펠러를 장착하고 있음으로 인하여 고속 주행이 용이하지 않다는 문제점이 있다.
이에 비하여 본 제안하는 발명은 틸트로터를 후방에 구비하므로 인하여 이착륙시 보다 안정적인 동작이 용이하다.
즉, 두바퀴 자전거와 세발자전거에 비견 할 수 있을 것이다.
또한, 후미에 로터를 하나 더 추가하여 전체적인 동력은 같게 유지하면서 전방 프로펠러의 크기를 줄여 비행시 공기 저항을 줄임과 동시에 비교적 고속 비행이 용이하다.
또한, 전후방 로터의 제어체계를 이중화시켰을 때 어느 한쪽의 제어체계가 이상을 일으켰을때도 기존 비행기처럼 활주 착륙이 가능하므로 안정성을 배가 할 수 있다.
(2) 트라이 로터 방식의 VTOL 기체와 본 발명의 비교
기존의 트라이 로터 방식은 후방 로터가 고정형으로 이착륙시 이외 주행 중에는 로드(짐, load)으로써의 역할 밖에 할 수 없으므로 동력 효율 면에서 본 발명이 유리하다.
또한, 트윈로터 방식과 마찬가지로 후방 로터 고정형 VTOL은 전방의 로터 두 개 중 어느 하나가 고장을 일으키면 이착륙은 물론 비행도 경우에 따라서 보장하기 어렵다.
(3) 쿼드 로터 방식의 VTOL 기체와 본 발명의 비교
쿼드로터 방식의 주행성능이나 동력 효율면에서는 차이를 찾을 수 없다.
그러나 본 특허의 가장 핵심적인 내용인 전후방 로터의 제어체계를 이중화시켰을때, 어느 한쪽의 제어체계가 이상을 일으켰을 때 쿼드콥터의 경우 동일하게 제어체계를 이중화 한다고 하더라도 전방 체계가 고장을 일으킬 경우 비행 무게 중심의 변동으로 인하여 본 특허의 트라이로터방식에 비하여 용이하지 않다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.

Claims (8)

  1. 주날개(3) 및 보조날개(W1,W2)가 장착된 비행동체(F);
    상기 비행동체(F)의 양측에 각각 장착되어 수평 및 수직방향으로 가변 가능한 한 쌍의 전방 추진체(7);
    상기 비행동체(F)의 후방에 구비된 보조날개(W1,W2)에 장착되어 수평 및 수직방향으로 가변 가능한 후방 추진체(9);
    상기 비행동체(F) 및 상기 보조날개(W1,W2)에 장착되어 상기 전방 추진체(7) 및 상기 후방 추진체(9)를 수직 혹은 수평방향으로 가변시키는 전방 및 후방 가변부(11,13); 및
    상기 전방 및 후방 가변부(11,13)를 제어하기 위한 제어부(50);를 포함하는 수직 이착륙기.
  2. 제 1항에 있어서,
    상기 한 쌍의 전방 추진체(7)의 사이에는 간격 조절부(50)가 추가로 배치되어 상기 전방 가변부(11)를 상기 비행동체에 대하여 횡방향으로 각각 이동시키며,
    상기 간격 조절부(50)는, 상기 비행동체(F)의 바닥에 배치되어 한 쌍의 전방 동력원(27)을 슬라이딩 가능하게 지지하는 슬라이딩 레일(52); 상기 한 쌍의 전방 동력원(27)의 사이에 배치되어 전방 동력원(27)을 밀거나 당겨서 횡방향으로 이동시키는 구동부(54); 및 상기 제어부(60)와 연동함으로써 비행속도에 따라 상기 구동부(54)를 가압하여 상기 한 쌍의 전방 동력원(27)의 이동거리를 제어하는 간격조절모듈(M3);을 더 포함하는 것을 특징으로 하는 수직 이착륙기.
  3. 제 2항에 있어서,
    상기 가변부는 상기 전방 추진체(7)를 가변시키는 전방 가변부(11); 및 상기 후방 추진체(9)를 가변시키는 후방 가변부(13);를 포함하고,
    상기 전방 가변부(11)는 상기 비행동체(F)의 내부 양측에 각각 장착되어 회전운동이 가능한 전방 가변 동력원(27); 일단은 상기 전방 가변 동력원의 출력축에 연결되고 타단은 상기 전방 추진체(7)에 연결됨으로써 상기 전방 추진체(7)를 일정 각도로 회전시켜서 수평방향 혹은 수직방향으로 가변시킬 수 있는 전방 가변 프레임(29);을 포함하며,
    상기 후방 가변부(13)는 상기 한 쌍의 보조날개(W1,W2)중 일측 보조날개(W1)에 장착되어 회전운동이 가능한 후방 가변 동력원(31); 일단은 상기 후방 가변 동력원(31)의 출력축에 연결되고 타단은 후방 추진체(9)에 연결됨으로써 상기 후방 추진체(9)를 일정 각도로 회전시켜서 수평방향 혹은 수직방향으로 가변시킬 수 있는 제 1후방 가변프레임(33); 및 일단은 상기 한 쌍의 보조날개(W1,W2)중 타측 보조날개(W2)에 회전가능하게 연결되고 타단은 상기 후방 추진체(9)에 회전 가능하게 연결되는 제 2후방 가변프레임(35);을 포함하는 것을 특징으로 하는 수직 이착륙기.
  4. 제 3항에 있어서,
    상기 후방 추진체(9)는 상기 제 1 및 제 2후방 가변 프레임(33,35)의 사이에 일체로 연결되는 후방 가드(41); 상기 후방 가드(41)의 내부에 장착되어 추력을 발생시키는 후방 프로펠러 조립체(40);를 포함하고,
    상기 후방 프로펠러 조립체(40)는 추력을 위한 동력을 발생시키는 후방 구동원(43); 상기 후방 구동원(43)의 출력축에 장착되어 추력을 발생시키는 후방 프로펠러(42); 및 상기 후방 구동원(43)을 상기 후방 가드(41)의 내주면에 연결하여 고정시키는 후방 지지 프레임(44);을 포함하는 것을 특징으로 하는 수직 이착륙기.
  5. 제 3항에 있어서,
    상기 제어부(50)는 상기 전방 가변 동력원을 제어할 수 있는 전방 가변 제어모듈(52); 상기 후방 가변 동력원을 제어할 수 있는 후방 가변 제어모듈(54); 및 상기 전후방 가변 프레임에 장착된 회전각 감지센서(58)로부터 수신된 출력값에 의하여 전방 및 후방 가변 제어모듈(54)의 현재 회전각을 파악하고, 목표 회전각과 비교하여 회전각을 조절하는 연산부(56)를 포함하는 것을 특징으로 하는 수직 이착륙기.
  6. 제 2항에 있어서,
    상기 슬라이딩 레일(52)은 상기 비행동체(F)에 고정적으로 배치되는 하부레일(59); 상기 하부레일(59)의 상측에 결합되며 상측에는 상기 전방 동력원(27)이 얹혀지는 슬라이더(Slider;60)로 구성되는 수직 이착륙기.
  7. 제 3항에 있어서,
    상기 후방 추진체(9)는 제 1 및 제 2후방 가변 프레임(33,35)의 사이에 일체로 연결되는 후방 가드(41)와; 후방 가드(41)의 내부에 장착되어 추력을 발생시키는 후방 프로펠러 조립체(40)를 포함하고,
    상기 후방 추진체(9)는 복수이며,
    상기 복수의 후방 추진체(9) 중 제 1 후방 추진체의 후방 프로펠러 조립체(40a)와
    상기 복수의 후방 추진체(9) 중 제 2 후방 추진체의 후방 프로펠러 조립체(40b)는 서로 반대 방향으로 회전하면서 발생되는 토크를 상쇄하는 것을 특징으로 하는 수직 이착륙기.
  8. 제 7항에 있어서,
    상기 복수의 후방 추진체(40)는 직렬, 병렬 또는 직렬 및 병렬 중 적어도 일부가 혼합된 형태로 배치되는 것을 특징으로 하는 수직 이착륙기.
PCT/KR2018/011414 2017-09-28 2018-09-27 수직 이착륙기 WO2019066484A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/651,852 US11148800B2 (en) 2017-09-28 2018-09-27 Vertical takeoff and landing aircraft
JP2020539664A JP2020535079A (ja) 2017-09-28 2018-09-27 垂直離着陸機
CN201880063363.6A CN111148693A (zh) 2017-09-28 2018-09-27 垂直起降飞行器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170126332A KR101803059B1 (ko) 2017-09-28 2017-09-28 수직 이착륙기
KR10-2017-0126332 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019066484A1 true WO2019066484A1 (ko) 2019-04-04

Family

ID=60812194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011414 WO2019066484A1 (ko) 2017-09-28 2018-09-27 수직 이착륙기

Country Status (5)

Country Link
US (1) US11148800B2 (ko)
JP (1) JP2020535079A (ko)
KR (1) KR101803059B1 (ko)
CN (1) CN111148693A (ko)
WO (1) WO2019066484A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800120A1 (en) * 2019-10-01 2021-04-07 Bell Textron Inc. Rotor assembly
EP3848278A1 (en) * 2019-12-31 2021-07-14 Bell Textron Inc. Stators located aft of duct ring

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298074A (zh) * 2018-03-14 2018-07-20 长沙市云智航科技有限公司 用于载人涵道多旋翼飞行车辆的倾转组件
KR102025886B1 (ko) * 2018-08-07 2019-09-26 국방과학연구소 덕티드 팬
CN109334947A (zh) * 2018-11-06 2019-02-15 西北农林科技大学 一种氦气球无人机及其工作方法
KR102137330B1 (ko) * 2018-12-26 2020-07-23 홍승일 추진체 토크 상쇄가 가능한 수직 이착륙기
USD1009695S1 (en) * 2019-08-16 2024-01-02 Embraer S.A. Unmanned aircraft
US11480072B2 (en) * 2019-12-31 2022-10-25 Textron Innovations Inc. Stator and duct ring structural fittings
USD920213S1 (en) * 2020-01-03 2021-05-25 Bell Textron Inc. Aircraft
USD919548S1 (en) * 2020-01-03 2021-05-18 Bell Textron Inc. Ducted rotor
USD919547S1 (en) * 2020-01-03 2021-05-18 Bell Textron Inc. Aircraft fuselage
USD966170S1 (en) * 2020-10-28 2022-10-11 Manta Aircraft SA Aircraft
TWI783438B (zh) * 2021-04-13 2022-11-11 財團法人金屬工業研究發展中心 固定翼垂直起降飛行器及其自動控制方法
US11827346B1 (en) * 2022-05-04 2023-11-28 Beta Air, Llc Electric aircraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200286578Y1 (ko) * 2002-05-28 2002-08-22 주식회사 금홍팬시 가변형 프로펠러를 이용한 수직이착륙기
KR20030049796A (ko) * 2001-12-17 2003-06-25 한국항공우주연구원 3-팬 방식 수직이착륙 항공기
KR20090101413A (ko) * 2009-08-21 2009-09-28 곽상호 수직이착륙기
JP2016172557A (ja) * 2013-10-30 2016-09-29 優章 荒井 垂直離着陸飛行体
KR20160116748A (ko) * 2015-03-31 2016-10-10 주식회사 샘코 풍향 지향성 무인 수직 이착륙기 및 이의 제어방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2825514A (en) * 1954-02-19 1958-03-04 Ministerio Da Aeronautica Combined airplane-helicopter flying machine
JPH05193583A (ja) * 1992-01-20 1993-08-03 Mitsubishi Heavy Ind Ltd 航空機
WO2008147484A2 (en) * 2007-02-16 2008-12-04 Donald Orval Shaw Modular flying vehicle
US8646720B2 (en) * 2010-05-10 2014-02-11 Donald Orval Shaw Modular flight vehicle with wings
IL199009A (en) 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd aircraft
ITRM20120014A1 (it) * 2012-01-17 2013-07-18 Pavel Miodushevsky Convertiplano da plurimpiego.
US10625852B2 (en) * 2014-03-18 2020-04-21 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
US9714087B2 (en) * 2014-04-05 2017-07-25 Hari Matsuda Winged multi-rotor flying craft with payload accomodating shifting structure and automatic payload delivery
IL233902B (en) * 2014-07-31 2020-07-30 Israel Aerospace Ind Ltd egnition system
CN204750564U (zh) * 2015-05-06 2015-11-11 同济大学 一种y型三旋翼垂直起降无人机
US10562623B1 (en) * 2016-10-21 2020-02-18 Birdseyeview Aerobotics, Llc Remotely controlled VTOL aircraft
US11208207B2 (en) * 2016-10-31 2021-12-28 Textron Innovations Inc. Vertical takeoff and landing (VTOL) aircraft
US10543905B1 (en) * 2019-02-05 2020-01-28 Kitty Hawk Corporation Battery shifting for center of gravity control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049796A (ko) * 2001-12-17 2003-06-25 한국항공우주연구원 3-팬 방식 수직이착륙 항공기
KR200286578Y1 (ko) * 2002-05-28 2002-08-22 주식회사 금홍팬시 가변형 프로펠러를 이용한 수직이착륙기
KR20090101413A (ko) * 2009-08-21 2009-09-28 곽상호 수직이착륙기
JP2016172557A (ja) * 2013-10-30 2016-09-29 優章 荒井 垂直離着陸飛行体
KR20160116748A (ko) * 2015-03-31 2016-10-10 주식회사 샘코 풍향 지향성 무인 수직 이착륙기 및 이의 제어방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800120A1 (en) * 2019-10-01 2021-04-07 Bell Textron Inc. Rotor assembly
US11459088B2 (en) 2019-10-01 2022-10-04 Textron Innovations Inc. Rotor assembly
EP3848278A1 (en) * 2019-12-31 2021-07-14 Bell Textron Inc. Stators located aft of duct ring
US11472533B2 (en) 2019-12-31 2022-10-18 Textron Innovations Inc. Stators located aft of duct ring

Also Published As

Publication number Publication date
KR101803059B1 (ko) 2017-11-29
US20200255135A1 (en) 2020-08-13
CN111148693A (zh) 2020-05-12
US11148800B2 (en) 2021-10-19
JP2020535079A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2019066484A1 (ko) 수직 이착륙기
KR101565979B1 (ko) 무인 비행체
US8256704B2 (en) Vertical/short take-off and landing aircraft
US20170174342A1 (en) Vertical Takeoff Aircraft and Method
US5419514A (en) VTOL aircraft control method
US20030062442A1 (en) VTOL personal aircraft
JP2003137192A (ja) 垂直離着陸機
WO2017018813A1 (ko) 형상의 재구성이 가능한 드론
EP2470426B1 (en) Aircraft having at least two electrical propulsion groups mounted at a rear portion thereof
US20140061368A1 (en) Vertical/short take-off and landing passenger aircraft
WO2019190263A1 (ko) 개량형 하이브리드 드론
US2926868A (en) Aircraft with tiltable jets
SE504023C2 (sv) Flygplanssträva
WO2020145677A1 (ko) 드론
WO2017078330A1 (ko) 비행체
US20210371096A1 (en) Wing and rotor vectoring system for aircraft
WO2019180304A1 (en) A structure construction for an aircraft and aircraft comprising the structure construction
GB2569659A (en) Airborne urban mobility vehicle with VTOL (Vertical Take-Off and Landing) capability
AU2019219790A1 (en) Device and method for improving the pitch control of a fixed-wing aircraft in stall/post-stall regime
WO2020184934A1 (ko) 하이브리드 전기 추진시스템을 이용하는 수직이착륙 항공기
JPH0577789A (ja) 垂直離着陸航空機
US3164337A (en) Jet aircraft with orientable nozzles for vertical or forward movement
RU2701284C1 (ru) Конвертируемый летательный аппарат
CN107406140A (zh) 旋翼机构、转动装置和无人机及其控制系统及操控方法
US3025022A (en) Delta wing heliplane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861550

Country of ref document: EP

Kind code of ref document: A1