WO2019065917A1 - Moving-image compression device, electronic apparatus, and moving-image compression program - Google Patents

Moving-image compression device, electronic apparatus, and moving-image compression program Download PDF

Info

Publication number
WO2019065917A1
WO2019065917A1 PCT/JP2018/036131 JP2018036131W WO2019065917A1 WO 2019065917 A1 WO2019065917 A1 WO 2019065917A1 JP 2018036131 W JP2018036131 W JP 2018036131W WO 2019065917 A1 WO2019065917 A1 WO 2019065917A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
unit
resolution
imaging
image area
Prior art date
Application number
PCT/JP2018/036131
Other languages
French (fr)
Japanese (ja)
Inventor
大作 小宮
直樹 關口
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2019065917A1 publication Critical patent/WO2019065917A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a video compression apparatus, an electronic device, and a video compression program.
  • an electronic device provided with an imaging device (hereinafter, referred to as a stacked imaging device) in which a back side illumination type imaging chip and a signal processing chip are stacked (see Patent Document 1).
  • the stacked imaging device is stacked such that the back side illumination type imaging chip and the signal processing chip are connected via the microbumps in each predetermined area.
  • frames imaged at a plurality of resolutions are output, such moving image compression of the frames is not conventionally considered.
  • a moving picture compression apparatus is a moving picture compression apparatus that compresses moving picture data including a plurality of frames generated from an output of an imaging device having a plurality of imaging areas in which different resolutions can be set.
  • a prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames;
  • a setting unit configured to set, a prediction unit configured to predict the prediction target image area based on a prediction processing unit set by the setting unit, and a code encoding the prediction target frame using a prediction result by the prediction unit
  • a conversion unit is a conversion unit.
  • An electronic device which is one aspect of the technology disclosed in the present application, includes an imaging device having a plurality of imaging regions in which different resolutions can be set, and the plurality of frames generated from the output of the imaging device in the prediction target frame.
  • a setting unit configured to set a prediction processing unit for predicting the prediction target image region based on the resolution of a prediction target image region among a plurality of image regions corresponding to a plurality of imaging regions; and the prediction set by the setting unit
  • a prediction unit that predicts the prediction target image area based on a processing unit, and an encoding unit that encodes the prediction target frame using a prediction result of the prediction unit.
  • a moving picture compression program causes a processor to compress moving picture data including a plurality of frames generated from an output of an imaging element having a plurality of imaging areas in which different resolutions can be set.
  • the moving image compression program wherein the processor is configured to, based on a resolution of a prediction target image area in a plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames, the prediction target image
  • FIG. 1 is a cross-sectional view of a stacked imaging device.
  • FIG. 2 is a diagram for explaining the pixel array of the imaging chip.
  • FIG. 3 is a circuit diagram of the imaging chip.
  • FIG. 4 is a block diagram showing an example of the functional configuration of the imaging device.
  • FIG. 5 is an explanatory view showing an example of the block configuration of the electronic device.
  • FIG. 6 is an explanatory view showing a configuration example of a moving image file.
  • FIG. 7 is an explanatory view showing the relationship between the imaging plane and the subject image.
  • FIG. 8 is an explanatory view showing a specific configuration example of a moving image file.
  • FIG. 9 is an explanatory view showing an example of imaging on an imaging plane in which different resolutions are set.
  • FIG. 9 is an explanatory view showing an example of imaging on an imaging plane in which different resolutions are set.
  • FIG. 10 is an explanatory view showing a prediction example of 16 ⁇ 16 prediction.
  • FIG. 11 is an explanatory view showing a prediction example of 4 ⁇ 4 prediction.
  • FIG. 12 is a block diagram showing a configuration example of the control unit shown in FIG.
  • FIG. 13 is a block diagram showing a configuration example of the compression unit.
  • FIG. 14 is a flowchart illustrating an example of a preprocessing procedure by the preprocessing unit.
  • FIG. 15 is a flowchart illustrating an example of an image processing procedure by the image processing unit.
  • FIG. 16 is a flowchart of an example of the intra-frame prediction processing procedure by the intra-frame prediction processing unit.
  • the layered imaging device is described in Japanese Patent Application No. 2012-139026 filed by the applicant of the present application.
  • the electronic device is, for example, an imaging device such as a digital camera or a digital video camera.
  • FIG. 1 is a cross-sectional view of a stacked imaging device 100.
  • FIG. A stacked imaging device (hereinafter simply referred to as “imaging device”) 100 processes a back-illuminated imaging chip (hereinafter simply referred to as “imaging chip”) 113 that outputs a pixel signal corresponding to incident light, and the pixel signal.
  • imaging chip a back-illuminated imaging chip
  • a signal processing chip 111 and a memory chip 112 for storing pixel signals are provided.
  • the imaging chip 113, the signal processing chip 111, and the memory chip 112 are stacked and electrically connected to each other by the bump 109 having conductivity such as Cu.
  • incident light is mainly incident in the Z-axis plus direction indicated by a white arrow.
  • the surface on which incident light is incident is referred to as the back surface.
  • the left direction in the drawing, which is orthogonal to the Z axis is taken as the plus direction of the X axis
  • the near direction in the drawing, which is orthogonal to the Z axis and the X axis is taken as the plus direction.
  • coordinate axes are displayed so that the orientation of each figure can be known with reference to the coordinate axes in FIG.
  • the imaging chip 113 is a backside illuminated MOS (Metal Oxide Semiconductor) image sensor.
  • the PD (photodiode) layer 106 is disposed on the back side of the wiring layer 108.
  • the PD layer 106 is two-dimensionally arranged, and includes a plurality of PDs 104 which store charges corresponding to incident light, and a transistor 105 provided corresponding to the PDs 104.
  • a color filter 102 is provided on the incident side of incident light in the PD layer 106 via a passivation film 103.
  • the color filter 102 has a plurality of types that transmit different wavelength regions, and has a specific arrangement corresponding to each of the PDs 104. The arrangement of the color filters 102 will be described later.
  • the combination of the color filter 102, the PD 104, and the transistor 105 forms one pixel.
  • a microlens 101 is provided on the color filter 102 on the incident side of the incident light corresponding to each pixel.
  • the microlenses 101 condense incident light toward the corresponding PDs 104.
  • the wiring layer 108 has a wiring 107 for transmitting the pixel signal from the PD layer 106 to the signal processing chip 111.
  • the wiring 107 may be a multilayer, and passive elements and active elements may be provided.
  • a plurality of bumps 109 are disposed on the surface of the wiring layer 108.
  • the plurality of bumps 109 are aligned with the plurality of bumps 109 provided on the opposite surface of the signal processing chip 111, and the imaging chip 113 and the signal processing chip 111 are aligned by pressure or the like.
  • the bumps 109 are joined to be electrically connected.
  • a plurality of bumps 109 are disposed on the surfaces facing each other of the signal processing chip 111 and the memory chip 112. These bumps 109 are aligned with each other, and the signal processing chip 111 and the memory chip 112 are pressurized or the like, whereby the aligned bumps 109 are joined and electrically connected.
  • the bonding between the bumps 109 is not limited to Cu bump bonding by solid phase diffusion, and micro bump bonding by solder melting may be employed. Also, for example, about one bump 109 may be provided for one block described later. Therefore, the size of the bumps 109 may be larger than the pitch of the PDs 104. Further, in the peripheral area other than the pixel area in which the pixels are arranged, bumps larger than the bumps 109 corresponding to the pixel area may be provided.
  • the signal processing chip 111 has TSVs (silicon through electrodes) 110 which mutually connect circuits respectively provided on the front and back surfaces.
  • the TSVs 110 are preferably provided in the peripheral area.
  • the TSV 110 may also be provided in the peripheral area of the imaging chip 113 and the memory chip 112.
  • FIG. 2 is a diagram for explaining the pixel arrangement of the imaging chip 113.
  • FIG. 2 is a diagram for explaining the pixel arrangement of the imaging chip 113.
  • FIG. In particular, a state in which the imaging chip 113 is observed from the back surface side is shown.
  • (A) is a top view which shows typically the imaging surface 200 which is the back surface of the imaging chip 113
  • (b) is the top view which expanded the partial area 200a of the imaging surface 200.
  • Each of the pixels 201 has a color filter (not shown).
  • the color filter consists of three types of red (R), green (G), and blue (B), and the notation “R”, “G”, and “B” in (b) is a color filter that the pixel 201 has Represents the type of As shown in (b), on the imaging surface 200 of the imaging element 100, the pixels 201 provided with such color filters are arranged according to a so-called Bayer arrangement.
  • the pixel 201 having a red filter photoelectrically converts light in the red wavelength band of incident light and outputs a light reception signal (photoelectric conversion signal).
  • the pixel 201 having a green filter photoelectrically converts light in the green wavelength band among incident light and outputs a light reception signal.
  • the pixel 201 having a blue filter photoelectrically converts light in the blue wavelength band among incident light and outputs a light reception signal.
  • the image sensor 100 is configured to be individually controllable for each unit group 202 including a total of four pixels 201 of adjacent 2 pixels ⁇ 2 pixels. For example, when charge storage is started simultaneously for two unit groups 202 different from each other, charge readout is performed 1/30 seconds after charge storage start in one unit group 202, that is, light reception signals are read, In the unit group 202, charge readout is performed 1/15 seconds after the start of charge accumulation. In other words, the imaging device 100 can set different exposure times (charge accumulation time, so-called shutter speed) for each unit group 202 in one imaging.
  • the imaging device 100 can make the amplification factor (so-called ISO sensitivity) of an imaging signal different for each unit group 202 besides the above-described exposure time.
  • the imaging device 100 can change the timing to start the charge accumulation and the timing to read out the light reception signal for each unit group 202. That is, the imaging element 100 can change the frame rate at the time of moving image capturing for each unit group 202.
  • the imaging device 100 is configured to be able to make the imaging conditions such as the exposure time, the amplification factor, the frame rate, and the resolution different for each unit group 202.
  • a reading line (not shown) for reading an imaging signal from a photoelectric conversion unit (not shown) of the pixel 201 is provided for each unit group 202, and the imaging signal can be read independently for each unit group 202.
  • the exposure time (shutter speed) can be made different for each unit group 202.
  • an amplification circuit (not shown) for amplifying an imaging signal generated by the photoelectrically converted charge is provided independently for each unit group 202, and the amplification factor by the amplification circuit can be controlled independently for each amplification circuit.
  • the amplification factor (ISO sensitivity) of the signal can be made different for each unit group 202.
  • the imaging conditions that can be varied for each unit group 202 include frame rate, gain, resolution (thinning rate), number of added rows or number of added columns for adding pixel signals, charge The storage time or number of storage, the number of bits for digitization, and the like.
  • the control parameter may be a parameter in image processing after acquisition of an image signal from a pixel.
  • a liquid crystal panel having sections that can be controlled independently for each unit group 202 (one section corresponds to one unit group 202) is provided in the imaging element 100, and a light reduction filter that can be turned on and off If it is used, it becomes possible to control the brightness (aperture value) for each unit group 202.
  • the number of pixels 201 constituting the unit group 202 may not be the 2 ⁇ 2 four pixels described above.
  • the unit group 202 may have at least one pixel 201, and conversely, may have more than four pixels 201.
  • FIG. 3 is a circuit diagram of the imaging chip 113. As shown in FIG. In FIG. 3, a rectangle surrounded by a dotted line representatively represents a circuit corresponding to one pixel 201. In addition, a rectangle surrounded by an alternate long and short dash line corresponds to one unit group 202 (202-1 to 202-4). Note that at least a part of each of the transistors described below corresponds to the transistor 105 in FIG.
  • the reset transistor 303 of the pixel 201 is turned on / off in unit group 202 units.
  • the transfer transistor 302 of the pixel 201 is also turned on / off in unit group 202 units.
  • reset wirings 300-1 for turning on / off the four reset transistors 303 corresponding to the upper left unit group 202-1 are provided, and four corresponding to the unit group 202-1 are provided.
  • a TX wire 307-1 for supplying a transfer pulse to the transfer transistor 302 is also provided.
  • a reset wiring 300-3 for turning on / off the four reset transistors 303 corresponding to the lower left unit group 202-3 is provided separately from the reset wiring 300-1.
  • a TX wiring 307-3 for supplying transfer pulses to the four transfer transistors 302 corresponding to the unit group 202-3 is provided separately from the TX wiring 307-1.
  • the reset wiring 300-2 and TX wiring 307-2 and the reset wiring 300-4 and TX wiring 307-4 are respectively unit groups It is provided in 202.
  • the 16 PDs 104 corresponding to each pixel 201 are connected to the corresponding transfer transistors 302, respectively.
  • a transfer pulse is supplied to the gate of each transfer transistor 302 via the TX wiring of each unit group 202.
  • the drain of each transfer transistor 302 is connected to the source of the corresponding reset transistor 303, and a so-called floating diffusion FD between the drain of the transfer transistor 302 and the source of the reset transistor 303 is connected to the gate of the corresponding amplification transistor 304.
  • Ru is
  • the drains of the reset transistors 303 are commonly connected to a Vdd wiring 310 to which a power supply voltage is supplied.
  • a reset pulse is supplied to the gate of each reset transistor 303 via the reset wiring of each unit group 202.
  • the drains of the respective amplification transistors 304 are commonly connected to a Vdd wiring 310 to which a power supply voltage is supplied.
  • the source of each amplification transistor 304 is connected to the drain of the corresponding selection transistor 305.
  • the gate of each selection transistor 305 is connected to a decoder wiring 308 to which a selection pulse is supplied.
  • the decoder wiring 308 is provided independently for each of the 16 selection transistors 305.
  • the source of each selection transistor 305 is connected to the common output wiring 309.
  • the load current source 311 supplies a current to the output wiring 309. That is, the output wiring 309 for the selection transistor 305 is formed by a source follower.
  • the load current source 311 may be provided on the imaging chip 113 side or may be provided on the signal processing chip 111 side.
  • each PD 104 converts incident light to be received into charge and accumulates it. Thereafter, when the transfer pulse is applied again in a state where the reset pulse is not applied, the accumulated charge is transferred to the floating diffusion FD, and the potential of the floating diffusion FD becomes a signal potential after charge accumulation from the reset potential. .
  • the reset wiring and the TX wiring are common. That is, the reset pulse and the transfer pulse are simultaneously applied to four pixels in the unit group 202, respectively. Therefore, all the pixels 201 forming a certain unit group 202 start charge accumulation at the same timing, and end charge accumulation at the same timing. However, pixel signals corresponding to the accumulated charges are selectively output from the output wiring 309 by sequentially applying selection pulses to the respective selection transistors 305.
  • the charge accumulation start timing can be controlled for each unit group 202.
  • different unit groups 202 can be imaged at different timings.
  • FIG. 4 is a block diagram showing a functional configuration example of the imaging device 100.
  • the analog multiplexer 411 selects 16 PDs 104 forming the unit group 202 in order, and outputs the respective pixel signals to the output wiring 309 provided corresponding to the unit group 202.
  • the multiplexer 411 is formed on the imaging chip 113 together with the PD 104.
  • the pixel signal output via the multiplexer 411 is subjected to CDS and A / A by the signal processing circuit 412 for performing correlated double sampling (CDS) and analog / digital (A / D) conversion, which is formed in the signal processing chip 111. D conversion is performed.
  • the A / D converted pixel signals are delivered to the demultiplexer 413 and stored in the pixel memory 414 corresponding to each pixel.
  • the demultiplexer 413 and the pixel memory 414 are formed in the memory chip 112.
  • the arithmetic circuit 415 processes the pixel signal stored in the pixel memory 414 and delivers it to the image processing unit in the subsequent stage.
  • the arithmetic circuit 415 may be provided in the signal processing chip 111 or in the memory chip 112.
  • FIG. 4 shows the connection of four unit groups 202, in reality, these units exist for each of the four unit groups 202 and operate in parallel.
  • the arithmetic circuit 415 may not be present for every four unit groups 202.
  • one arithmetic circuit 415 sequentially refers to the values of the pixel memory 414 corresponding to each of the four unit groups 202. It may be processed.
  • the output wirings 309 are provided corresponding to each of the unit groups 202. Since the imaging element 100 has the imaging chip 113, the signal processing chip 111, and the memory chip 112 stacked, by using the electrical connection between the chips using the bumps 109 for the output wiring 309, each chip is made in the surface direction The wiring can be routed without increasing the size.
  • FIG. 5 is an explanatory view showing an example of the block configuration of the electronic device.
  • the electronic device 500 is, for example, a lens-integrated camera.
  • the electronic device 500 includes an imaging optical system 501, an imaging element 100, a control unit 502, a liquid crystal monitor 503, a memory card 504, an operation unit 505, a DRAM 506, a flash memory 507, and a recording unit 508.
  • the control unit 502 includes a compression unit that compresses moving image data as described later. Therefore, the configuration including at least the control unit 502 in the electronic device 500 is a moving image compression apparatus.
  • the imaging optical system 501 is composed of a plurality of lenses, and forms an object image on the imaging surface 200 of the imaging element 100.
  • the imaging optical system 501 is illustrated as a single lens for the sake of convenience.
  • the imaging device 100 is, for example, an imaging device such as a complementary metal oxide semiconductor (CMOS) or a charge coupled device (CCD), captures an object image formed by the imaging optical system 501, and outputs an imaging signal.
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the control unit 502 is an electronic circuit that controls each unit of the electronic device 500, and includes a processor and its peripheral circuits.
  • a predetermined control program is written in advance in the flash memory 507, which is a non-volatile storage medium.
  • the control unit 502 controls each unit by reading a control program from the flash memory 507 and executing it.
  • This control program uses a DRAM 506 which is a volatile storage medium as a work area.
  • the liquid crystal monitor 503 is a display device using a liquid crystal panel.
  • the control unit 502 causes the imaging device 100 to repeatedly capture a subject image at predetermined intervals (for example, 1/60 second). Then, the image pickup signal output from the image pickup element 100 is subjected to various image processing to create a so-called through image, which is displayed on the liquid crystal monitor 503. In addition to the above-described through image, a setting screen for setting an imaging condition is displayed on the liquid crystal monitor 503, for example.
  • the control unit 502 creates an image file to be described later based on the imaging signal output from the imaging element 100, and records the image file on a memory card 504, which is a portable recording medium.
  • the operation unit 505 includes various operation members such as a push button, and outputs an operation signal to the control unit 502 in response to the operation of the operation members.
  • the recording unit 508 is, for example, a microphone, converts environmental sound into an audio signal, and inputs the audio signal to the control unit 502.
  • the control unit 502 may record the moving image file in a recording medium (not shown) built in the electronic device 500 such as a hard disk instead of recording the moving image file in the memory card 504 which is a portable recording medium.
  • FIG. 6 is an explanatory view showing a configuration example of a moving image file.
  • the moving image file 600 is generated during compression processing in a compression unit 902 described later in the control unit 502, and is stored in the memory card 504, the DRAM 506, or the flash memory 507.
  • the moving image file 600 is composed of two blocks of a header portion 601 and a data portion 602.
  • the header unit 601 is a block located at the beginning of the moving image file 600.
  • a file basic information area 611, a mask area 612, and an imaging information area 613 are stored in the order described above.
  • the size and offset of each part (header section 601, data section 602, mask area 612, imaging information area 613, etc.) in the moving image file 600 are recorded.
  • the mask area 612 imaging condition information, mask information, and the like described later are recorded.
  • the imaging information area 613 information related to imaging such as a model name of the electronic device 500 or information of the imaging optical system 501 (for example, information regarding optical characteristics such as aberration) is recorded.
  • the data unit 602 is a block located behind the header unit 601, and stores image information, audio information, and the like.
  • FIG. 7 is an explanatory view showing the relationship between the imaging plane and the subject image.
  • (A) schematically shows an imaging surface 200 (imaging range) of the imaging element 100 and a subject image 701.
  • the control unit 502 captures a subject image 701 once before capturing in (c).
  • the imaging of (a) may also be performed, for example, for creating a live view image (so-called through image).
  • the control unit 502 executes predetermined image analysis processing on the subject image 701 obtained by the imaging in (a).
  • the image analysis process is a process of detecting the main subject area and the background area by, for example, a known subject detection technology (a technology for calculating a feature amount and detecting a range in which a predetermined subject is present).
  • a known subject detection technology a technology for calculating a feature amount and detecting a range in which a predetermined subject is present.
  • the imaging surface 200 is divided into a main subject region 702 in which a main subject is present and a background region 703 in which a background is present.
  • the main subject area 702 may have a shape along the outer shape of the subject image 701. That is, the main subject region 702 may be set so as to include as little as possible other than the subject image 701.
  • the control unit 502 sets different imaging conditions for each unit group 202 in the main subject region 702 and each unit group 202 in the background region 703. For example, in the former unit group 202, a shutter speed faster than that of the latter unit group 202 is set. In this way, in the imaging of (c) taken after the imaging of (a), image blurring is less likely to occur in the main subject region 702.
  • the control unit 502 makes the ISO relatively higher for each unit group 202 of the former. Set the sensitivity or set a slow shutter speed. Further, the control unit 502 sets a relatively low ISO sensitivity or sets a high shutter speed to each of the latter unit groups 202. In this way, in the imaging of (c), it is possible to prevent blackout of the main subject region 702 in a backlit state and overexposure of the background region 703 having a large amount of light.
  • the image analysis process may be different from the process of detecting the main subject area 702 and the background area 703 described above. For example, processing may be performed to detect a portion where the brightness is equal to or more than a predetermined level (a portion that is too bright) or a portion where the brightness is less than a predetermined level (a too dark portion).
  • the control unit 502 causes the exposure value (Ev value) to be lower for the unit group 202 included in the former region than for the unit group 202 included in the other region.
  • Shutter speed and ISO sensitivity are examples of the exposure value (Ev value) to be lower for the unit group 202 included in the former region than for the unit group 202 included in the other region.
  • control unit 502 sets the shutter speed and the ISO sensitivity so that the exposure value (Ev value) of the unit group 202 included in the latter region is higher than that of the unit group 202 included in the other region. . By doing this, the dynamic range of the image obtained by the imaging of (c) can be expanded beyond the original dynamic range of the imaging device 100.
  • FIG. 7 shows an example of the mask information 704 corresponding to the imaging surface 200 shown in (a). “1” is stored at the position of the unit group 202 belonging to the main subject area 702, and “2” is stored at the position of the unit group 202 belonging to the background area 703.
  • the control unit 502 executes an image analysis process on the image data of the first frame to detect the main subject area 702 and the background area 703.
  • the frame obtained by the imaging in (a) is divided into the main subject area 702 and the background area 703 as shown in (c).
  • the control unit 502 sets different imaging conditions for each unit group 202 in the main subject area 702 and each unit group 202 in the background area 703, performs imaging in (c), and creates image data. .
  • An example of the mask information 704 at this time is shown in (d).
  • the mask information 704 of (b) corresponding to the imaging result of (a) and the mask information 704 of (d) corresponding to the imaging result of (c) imaging is performed at different times (the time difference is Therefore, for example, when the subject is moving or when the user moves the electronic device 500, the two mask information 704 have different contents.
  • the mask information 704 is dynamic information that changes as time passes. Therefore, in a certain unit group 202, different imaging conditions are set for each frame.
  • FIG. 8 is an explanatory view showing a specific configuration example of the moving image file 600. As shown in FIG. In the mask area 612, identification information 801, imaging condition information 802, and mask information 704 are recorded in the order described above.
  • the identification information 801 indicates that the moving image file 600 is created by the multi-imaging condition moving image pickup function.
  • the multi-imaging condition moving image imaging function is a function of shooting a moving image with the imaging element 100 in which a plurality of imaging conditions are set.
  • the imaging condition information 802 is information indicating what use (purpose, role) exists in the unit group 202. For example, as described above, when the imaging plane 200 (FIG. 7A) is divided into the main subject area 702 and the background area 703, each unit group 202 belongs to the main subject area 702, or It belongs to the area 703.
  • the imaging condition information 802 uses the unit group 202, for example, “moving image shooting of main subject area at resolution A” and “moving image shooting of background area at resolution B” Is information that represents the unique number assigned to each of these uses. For example, the number 1 is assigned to "use moving image of main subject area at resolution A” and the number 2 is assigned to "use moving image at background B to resolution B".
  • the mask information 704 is information representing the use (purpose, role) of each unit group 202.
  • the mask information 704 is “information represented by a number assigned to the imaging condition information 802 in the form of a two-dimensional map in accordance with the position of the unit group 202”. That is, when the two-dimensional array of unit groups 202 is specified by two integers x and y at two-dimensional coordinates (x, y), the use of the unit group 202 at the position of (x, y) is It is expressed by the number existing at the position (x, y) of the mask information 704.
  • the unit group 202 located at the coordinates (3, 5) is “image main subject area” It can be seen that the application has been given. In other words, it can be understood that the unit group 202 located at the coordinates (3, 5) belongs to the main subject region 702.
  • the mask information 704 is dynamic information that changes for each frame, it is recorded during compression processing for each frame, that is, for each data block Bi described later (not shown).
  • Data blocks B1 to Bn are stored as moving image data in the order of imaging for each frame F (F1 to Fn).
  • Data block Bi (i is an integer of 1 ⁇ i ⁇ n) includes mask information 704, image information 811, Tv value map 812, Sv value map 813, Bv value map 814, and Av value information 815, Audio information 816 and additional information 817 are included.
  • the image information 811 is information obtained by recording an image pickup signal output from the image pickup element 100 by the image pickup of FIG. 7C in a form before performing various image processing, and is so-called RAW image data.
  • the Tv value map 812 is information in which a Tv value representing a shutter speed set for each unit group 202 is represented in the form of a two-dimensional map in accordance with the position of the unit group 202.
  • the shutter speed set to the unit group 202 located at the coordinates (x, y) can be determined by examining the Tv value stored at the coordinates (x, y) of the Tv value map 812.
  • the Sv value map 813 is information in which the Sv value representing the ISO sensitivity set for each unit group 202 is expressed in the form of a two-dimensional map, similarly to the Tv value map 812.
  • the Bv value map 814 is a Tv value map 812 for the subject brightness measured for each unit group 202 at the time of imaging in FIG. 7C, that is, the Bv value representing the brightness of the subject light incident on each unit group 202. And is information expressed in the form of a two-dimensional map.
  • the Av value information 815 is information representing the aperture value at the time of imaging in (c) of FIG. 7. Unlike the Tv value, the Sv value, and the Bv value, the Av value is not a value that exists for each unit group 202. Therefore, unlike the Tv value, the Sv value, and the Bv value, only a single value of the Av value is stored, and the information is not information obtained by mapping a plurality of values in a two-dimensional manner.
  • the audio information 816 is divided into information of one frame, easily multiplexed with the data block Bi, and stored in the data unit 602 so as to facilitate moving image reproduction.
  • the audio information 816 may be multiplexed not for one frame but for a predetermined number of frames. Note that the voice information 816 does not necessarily have to be included.
  • the additional information 817 is information representing, in the form of a two-dimensional map, the resolution set for each unit group 202 at the time of imaging in (c) of FIG. 7.
  • the additional information 817 may be held in the frame F, but may be held in a cache memory of the processor 1001 described later. In particular, when performing compression processing in real time, it is preferable to use a cache memory from the viewpoint of high-speed processing.
  • control unit 502 performs image pickup with such a moving image pickup function, and thereby, the image information 811 generated by the image pickup element 100 in which the image pickup condition can be set for each unit group 202, and A moving image file 600 associated with data relating to the imaging conditions (imaging condition information 802, mask information 704, Tv value map 812, Sv value map 813, Bv value map 814, etc.) is recorded in the memory card 504.
  • the moving picture compression apparatus of the present embodiment compresses moving picture data including a plurality of frames generated from the output of the imaging device 100.
  • the imaging element 100 has a plurality of imaging areas in which different resolutions can be set. Specifically, for example, according to the above setting, the imaging element 100 includes a first imaging area for imaging an object at a first resolution and a second imaging area for imaging an object at a second resolution different from the first resolution. Have.
  • the video compression apparatus applies different intra-frame prediction for each resolution to compress a frame.
  • the low resolution image area in the frame can be significantly compressed compared to the high resolution image area, and the load on the compression processing can be reduced.
  • FIG. 9 is an explanatory view showing an imaging example on the imaging plane 200 in which different resolutions are set.
  • two types of resolutions A and B are set on the imaging surface 200 as an example.
  • Resolution A is higher than resolution B.
  • the imaging device outputs 16 ⁇ 16 pixels of the imaging region 901A of resolution A in an image region 910A of 16 ⁇ 16 pixels.
  • the imaging device 100 thins out the 16 ⁇ 16 pixels of the imaging region 901B of the resolution B and outputs the thinned image in the image region 910b of 1 ⁇ 1 pixel.
  • the resolutions A and B are not limited to the above, and the resolution A may be higher than the resolution B.
  • the moving picture compression apparatus divides a block of 16 ⁇ 16 pixels into 16 blocks of 4 ⁇ 4 pixels in the image area 910A of resolution A in the frame F output from the imaging device 100, X4 Perform prediction. Since each of the 16 blocks is 4 ⁇ 4 pixels, 4 ⁇ 4 pixels are the prediction processing unit in 4 ⁇ 4 prediction.
  • the moving picture compression apparatus copies the image area 910b of one pixel output to the defect area 910c for the image area 910b of resolution B in the frame F output from the imaging element 100 and After generating an image area 910B to be a block, so-called 16 ⁇ 16 prediction is performed. Since the block generated by copying in this way is one block of 16 ⁇ 16 pixels, in 16 ⁇ 16 prediction, 16 ⁇ 16 pixels become a prediction processing unit.
  • scanning is performed rightward (white thick arrow) from the upper left block of frame F, and when reaching the right end block, it is shifted downward by one block and scanned from the left end block to the right end block (Raster scan).
  • the moving image compression apparatus compresses the image area of resolution B as compared to the image area of resolution A. Rate can be improved. That is, rather than 4 ⁇ 4 prediction of the entire image area of the frame F, it is possible to improve the compression rate and reduce the processing load of the compression process.
  • the image area 910A and the image area 910B may be hereinafter referred to as a block 910A and a block 910B, respectively.
  • FIG. 10 is an explanatory view showing a prediction example of 16 ⁇ 16 prediction.
  • A shows mode 0 (vertical prediction),
  • (b) shows mode 1 (horizontal prediction),
  • (c) shows mode 2 (average value prediction), and
  • (d) shows mode 3 (planar prediction).
  • a block of 16 ⁇ 16 pixels to be predicted is referred to as a target block 1000.
  • (A) Mode 0 is applied when there is a predicted block of the same resolution adjacent to the target block 1000 and no predicted block of the same resolution adjacent to the left.
  • (B) Mode 1 is applied when there is a predicted block of the same resolution adjacent to the left of the target block 1000 and there is no predicted block of the same resolution adjacent to the top.
  • (C) Mode 2 is applied when there is a predicted block of the same resolution adjacent above and to the left of the target block 1000.
  • Mode 3 is also applied when there is a predicted block of the same resolution adjacent above and to the left of the target block 1000. Which one of the mode 2 and the mode 3 is to be applied may be set in advance, or may be set by the user operating the operation unit 505.
  • FIG. 11 is an explanatory view showing a prediction example of 4 ⁇ 4 prediction.
  • A mode 0 (vertical prediction), (b) mode 1 (horizontal prediction), (c) mode 2 (average value prediction), (d) mode 3 (diagonal left lower prediction), (e) Mode 4 (diagonal lower right prediction), (f) mode 5 (vertical right prediction), (g) mode 6 (horizontal lower prediction), (h) mode 7 (vertical left prediction), (i) mode 8 (horizontal upper prediction) is shown.
  • a block of 4 ⁇ 4 pixels to be predicted is referred to as a target block 1100.
  • (A) Mode 0 is applied when there is a predicted block of the same resolution adjacent to the target block 1100 and no predicted block of the same resolution adjacent to the left.
  • Mode 1 and (i) Mode 8 is applied when there is a predicted block of the same resolution adjacent to the left of the target block 1100 and there is no predicted block of the same resolution adjacent above. Ru. Which one of the mode 1 and the mode 8 is applied may be set in advance, or may be set by the user operating the operation unit 505.
  • (C) mode 2, (e) mode 4, (f) mode 5 and (g) mode 6 are applied when there is a predicted block of the same resolution adjacent to the top and left of the target block 1100 .
  • Which one of mode 2, mode 4, mode 5 and mode 6 is to be applied may be set in advance, or may be set by the user operating the operation unit 505.
  • (D) Mode 3 and (h) Mode 7 are applied when there is a predicted block of the same resolution adjacent on the upper and upper right of the target block 1100. Which one of the mode 3 and the mode 7 is to be applied may be set in advance, or may be set by the user operating the operation unit 505.
  • FIG. 12 is a block diagram showing a configuration example of the control unit 502 shown in FIG.
  • the control unit 502 includes a preprocessing unit 1210, an image processing unit 1220, an acquisition unit 1230, and a compression unit 1240, and is configured by a processor 1201, a memory 1202, an integrated circuit 1203, and a bus 1204 connecting these. Be done.
  • the preprocessing unit 1210, the image processing unit 1220, the acquisition unit 1230, and the compression unit 1240 may be realized by causing the processor 1201 to execute a program stored in the memory 1202, and may be realized by an application specific integrated circuit (ASIC) or an FPGA (FPGA). It may be realized by an integrated circuit 1203 such as a field-programmable gate array). Also, the processor 1201 may use the memory 1202 as a work area. The integrated circuit 1203 may use the memory 1202 as a buffer that temporarily holds various data including image data.
  • ASIC application specific integrated circuit
  • FPGA FPGA
  • the processor 1201 may use the memory 1202 as a work area.
  • the integrated circuit 1203 may use the memory 1202 as a buffer that temporarily holds various data including image data.
  • the preprocessing unit 1210 executes preprocessing of image processing by the image processing unit 1220 on moving image data including a plurality of frames F from the imaging element 100. Specifically, for example, when moving image data (here, a set of RAW image data) is input from the imaging device 100, the preprocessing unit 1210 uses a known object detection technology to identify a specific subject such as a main subject. To detect.
  • moving image data here, a set of RAW image data
  • the preprocessing unit 1210 resolves the imaging area of the imaging element 100 which images the specific subject.
  • the image is output to the image sensor 100 so as to be A.
  • the imaging area of the specific subject is set to the resolution A, and the other imaging areas are set to the resolution B.
  • the preprocessing unit 1210 calculates, for example, the motion vector of the specific subject from the difference between the imaging area where the specific subject in the input frame is detected and the imaging area where the specific subject in the input completed frame is detected. It is possible to detect and specify an imaging region of a specific subject in the next input frame.
  • the preprocessing unit 900 outputs, to the imaging element 100, an instruction to change the identified imaging area to the resolution A.
  • the imaging area of the specific subject is set to the resolution A, and the other imaging areas are set to the resolution B.
  • the image processing unit 1220 performs image processing such as demosaicing processing, white balance adjustment, noise reduction, and debayering on the moving image data input from the imaging element 100. Specifically, for example, the image processing unit 1220 executes known image processing such as demosaicing processing and white balance adjustment. Further, as described with reference to FIG. 9, the image processing unit 1220 copies the image data of the image area 910 b output from the pixel of resolution B to generate the image area 910 B of resolution B.
  • the acquisition unit 1230 holds the moving image data output from the image processing unit 1220 in the memory 1202, and outputs a plurality of frames F included in the moving image data one frame at a time in chronological order to the compression unit 1240 at a predetermined timing.
  • the compression unit 1240 compresses the moving image data input from the acquisition unit 1230. Specifically, for example, compression section 1240 compresses frame F by inter-frame prediction and intra-frame prediction, for example. In the inter-frame prediction, the compression unit 1240 compresses the frame F by hybrid coding combining entropy coding with motion compensation inter-frame prediction (Motion Compensation: MC) and discrete cosine transform (DCT). . In intra-frame prediction, as shown in FIGS. 9 to 11, the compression unit 1240 compresses the image areas 910A and 910B of the resolution for each resolution.
  • inter-frame prediction the compression unit 1240 compresses the image areas 910A and 910B of the resolution for each resolution.
  • MC motion compensation inter-frame prediction
  • DCT discrete cosine transform
  • control unit 502 may execute compression processing of moving image data from the imaging element 100 in real time processing, or may execute it in batch processing.
  • control unit 502 temporarily stores moving image data from the imaging device 100, the pre-processing unit 1210, or the image processing unit 1220 in the memory card 504, the DRAM 506, or the flash memory 507, and automatically or by user operation.
  • moving image data may be read out and the compression unit 1240 may execute compression processing.
  • FIG. 13 is a block diagram showing a configuration example of the compression unit 1240.
  • the compression unit 1240 compresses the frame F by, for example, inter-frame prediction and intra-frame prediction.
  • the compression unit 1240 includes a subtraction unit 1301, a DCT unit 1302, a quantization unit 1303, an entropy coding unit 1304, a code amount control unit 1305, an inverse quantization unit 1306, an inverse DCT unit 1307, and a generation unit.
  • a frame memory 1309, a motion detection unit 1310, a motion compensation unit 1311, a determination unit 1320, and an intra-frame prediction processing unit 1330 are included.
  • the subtractor unit 1301 to the motion compensation unit 1311 and the determination unit 1320 have the same configuration as the existing compressor.
  • the DCT unit 1302, the quantization unit 1303, the entropy coding unit 1304, and the code amount control unit 1305 are referred to as a coding unit 1340.
  • the subtracting unit 1301 subtracts the prediction frame from the motion compensating unit 1311 that predicts the input frame from the input frame, and outputs difference data.
  • the DCT unit 1302 performs discrete cosine transform on the difference data from the subtracting unit 1301.
  • the quantization unit 1303 quantizes the discrete cosine transformed difference data.
  • the entropy coding unit 1304 entropy codes the quantized difference data, and also entropy codes the motion vector from the motion detection unit 1310.
  • the code amount control unit 1305 controls the quantization by the quantization unit 1303.
  • the inverse quantization unit 1306 inversely quantizes the difference data quantized by the quantization unit 1303 to obtain discrete cosine transformed difference data.
  • the inverse DCT unit 1307 inverse discrete cosine transforms the dequantized difference data.
  • the generation unit 1308 adds the inverse discrete cosine transformed difference data and the prediction frame from the motion compensation unit 1311 to generate a reference frame to which a frame input temporally after the input frame refers. .
  • the frame memory 1309 holds the reference frame obtained from the generation unit 1308.
  • the motion detection unit 1310 detects a motion vector by block matching, for example, using the input frame and the reference frame.
  • the motion compensation unit 1311 generates a predicted frame using the reference frame and the motion vector. Specifically, for example, the motion compensation unit 1311 performs motion compensation using a specific reference frame and a motion vector among the plurality of reference frames stored in the frame memory 1309.
  • the reference frame By making the reference frame a specific reference frame, it is possible to suppress high-load motion compensation using another reference frame other than the specific reference frame. Also, by setting a specific reference frame as one reference frame obtained from the temporally previous frame of the input frame, heavy processing of motion compensation is avoided, and processing load on motion compensation is reduced. Can be
  • the inter-frame prediction is realized by the subtraction unit 1301, the inverse quantization unit 1306, the inverse DCT unit 1307, the generation unit 1308, the frame memory 1309, the motion detection unit 1310, and the motion compensation unit 1311 described above.
  • the determination unit 1320 uses the input frame and the difference data from the subtraction unit 1301 to determine which of intra-frame prediction and inter-frame prediction is more efficient to select, thereby performing intra-frame prediction and intra-frame prediction. Select one of the inter-frame predictions. If intra-frame prediction is selected, the determination unit 1320 outputs the input frame to the intra-frame prediction processing unit 1330. Further, the determination unit 1320 may select intra-frame prediction at the insertion timing of the I picture. On the other hand, when inter-frame prediction is selected, determination section 1320 outputs differential data to DCT section 1302.
  • the intraframe prediction processing unit 1330 performs intraframe prediction of an input frame.
  • the in-frame prediction processing unit 1330 includes a setting unit 1331 and a prediction unit 1332.
  • the setting unit 1331 sets a prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames. Do.
  • the prediction target frame is an input frame which is input to the compression unit 1240 and is a target of compression processing.
  • the imaging area is an area of pixels having a predetermined number of pixels in the imaging device 100. For example, in the example of FIG. 9, 16 ⁇ 16 pixels are taken as one imaging area. The size of the imaging area is not limited to 16 ⁇ 16 pixels, and may be an integral multiple of the unit group 202 (in this example, 4 ⁇ 4 pixels as an example). In the example of FIG. 9, the number of imaging areas 901A of resolution A is four, and the number of imaging areas 901B of resolution B is twenty-one.
  • the image area is an area of pixel data in the frame F corresponding to the imaging area. That is, the subject imaged in the imaging area is expressed as image data (set of pixel data) in the image area.
  • the image area 910A of resolution A corresponds to the imaging area 901A
  • the image area 910B of resolution B corresponds to the imaging area 901B.
  • the number of image areas 910A of resolution A is four
  • the number of image areas 910B of resolution B is twenty-one.
  • the prediction target image area is an image area which has not been predicted yet and is to be currently predicted among the plurality of image areas in the frame F.
  • any prediction of 4 ⁇ 4 prediction and 16 ⁇ 16 prediction is scanned from the upper left block of frame F to the right, and when it reaches the right end block, it is shifted downward by one block to the right end block from the left end block A raster scan is applied which is scanned to.
  • an image area having the same resolution as the prediction target image area and having the same resolution located on the left side, or an image area having the same resolution image area in the row above the prediction target image area has already been predicted (the above-described predicted block) It becomes. Since intra-frame prediction is performed, it is preferable that the prediction target image region and the predicted image region be closer. For example, the most preferable image region as a predicted image region is an adjacent image region of a prediction target image region.
  • the prediction processing unit is a processing unit for predicting a prediction target image area, and is the target blocks 1000 and 1100 shown in FIG. 10 and FIG.
  • a 16 ⁇ 16 pixel prediction target area is divided into 16 blocks. Since each of the 16 blocks is 4 ⁇ 4 pixels, 4 ⁇ 4 pixels are the prediction processing unit in 4 ⁇ 4 prediction.
  • a 16 ⁇ 16 pixel prediction target area is one block. Since this block is 16 ⁇ 16 pixels, in 16 ⁇ 16 prediction, 16 ⁇ 16 pixels become a prediction processing unit. That is, the higher the resolution, the smaller the prediction processing unit, and the lower the resolution, the larger the prediction processing unit.
  • the prediction unit 1332 predicts a prediction target image region based on the prediction processing unit set by the setting unit 1331. Specifically, for example, when the prediction processing unit is 16 ⁇ 16 pixels, the prediction unit 1332 performs 16 ⁇ 16 prediction as shown in FIG. 10, and the prediction processing unit is 4 ⁇ 4 pixels. In the case, as shown in FIG. 11, 4 ⁇ 4 prediction is performed.
  • the prediction unit 1332 outputs the prediction result to the DCT unit 1302 of the coding unit 1340. The output may be output as it is.
  • FIG. 14 is a flowchart illustrating an example of a preprocessing procedure by the preprocessing unit 1210.
  • the resolution B is set in advance in the imaging device 100, and an example in which the image area of the resolution A is tracked by the subject detection technology of the preprocessing unit 1210 and fed back to the imaging device 100 will be described.
  • the image areas of resolutions A and B may be fixed at all times.
  • the preprocessing unit 1210 waits for the input of the frame F constituting the moving image data (step S1401: No), and when the frame F is input (step S1401: Yes), the detection unit detects a specific subject such as a main subject. It is determined whether or not it is (step S1402). When the specific subject is not detected (step S1402: No), the process proceeds to step S1401.
  • the preprocessing unit 1210 compares the temporally previous frame (for example, a reference frame) with the input frame to detect a motion vector, An image area of resolution A in the next input frame is predicted and output to the imaging device 100 (step S1403), and the process proceeds to step S1401. Thereby, the imaging device 100 sets the resolution of the unit group 202 constituting the imaging area corresponding to the predicted image area to the resolution A, sets the resolution of the remaining unit groups 202 to the resolution B, and sets the object. Take an image.
  • the temporally previous frame for example, a reference frame
  • An image area of resolution A in the next input frame is predicted and output to the imaging device 100 (step S1403), and the process proceeds to step S1401.
  • the imaging device 100 sets the resolution of the unit group 202 constituting the imaging area corresponding to the predicted image area to the resolution A, sets the resolution of the remaining unit groups 202 to the resolution B, and sets the object. Take an image.
  • step S1401: No the input of all the frames constituting the moving image data is completed.
  • FIG. 15 is a flowchart showing an example of the image processing procedure by the image processing unit 1220.
  • the process of copying the image data of the image area 910b of the resolution B described above will be described.
  • the image processing unit 1220 determines whether there is an unselected block in the frame (step S1502).
  • the block is an image area of 16 ⁇ 16 pixels as an example. Unselected blocks are blocks that have not been selected in step S1503.
  • the image processing unit 1220 selects one unselected block (step S1503).
  • the selected block is referred to as a selected block.
  • the image processing unit 1220 determines whether the resolution of the selected block is the resolution B (step S1504). Specifically, for example, the image processing unit 1220 refers to the information of the resolution set in each unit group 202 of the imaging device 100 in the pre-processing unit 1210 to determine the resolution of the selected block by specifying.
  • step S1504 If the resolution of the selected block is not the resolution B (step S1504: NO), the image processing unit 1220 returns to step S1502. On the other hand, if the resolution of the selected block is the resolution B (step S1504: YES), the image processing unit 1220 duplicates the inside of the selected block with the image data of the image area 910b to generate a block 910B (step S1505) , And return to step S1502.
  • step S1502 If there is no unselected block in step S1502 (step S1502: NO), the process returns to step S1501.
  • step S1501: No the frame F is not input (step S1501: No) and the input of all the frames constituting the moving image data is completed, the series of processing is ended.
  • FIG. 16 is a flowchart of an example of the intra-frame prediction processing procedure by the intra-frame prediction processing unit 1330. If the frame F is input (step S1601: YES), the intra-frame prediction processing unit 1330 determines, by the setting unit 1331, whether there is an unselected block in the frame (step S1602).
  • the block is an image area of 16 ⁇ 16 pixels as an example. If there is an unselected block (step S1602: YES), the intra-frame prediction processing unit 1330 selects one unselected block using the setting unit 1331 (step S1603), and determines the resolution of the selected block (step S1604) . Specifically, for example, the image processing unit 1220 refers to the information of the resolution set in each unit group 202 of the imaging device 100 in the pre-processing unit 1210 to determine the resolution of the selected block by specifying.
  • the intra-frame prediction processing unit 1330 sets the prediction processing unit of the selected block to 4 ⁇ 4 pixels by the setting unit 1331 (step S1605).
  • the intra-frame prediction processing unit 1330 causes the prediction unit 1332 to divide the selected block in the set prediction processing unit (step S1606).
  • the selected block of 16 ⁇ 16 pixels is divided into 16 blocks of 4 ⁇ 4 pixels (hereinafter referred to as divided blocks).
  • the intra-frame prediction processing unit 1330 determines, with the prediction unit 1332, whether there is an undivided selected block (step S1607). If there is an unselected divided block (step S1608: YES), the intra-frame prediction processing unit 1330 causes the prediction unit 1332 to select one unselected divided block (step S1608). Then, the intra-frame prediction processing unit 1330 causes the prediction unit 1332 to determine the prediction mode of the selected divided block (step S1609). Specifically, for example, as shown in FIG. 11, the intra-frame prediction processing unit 1330 determines applicable prediction modes from a plurality of prediction modes 0 to 9 by the prediction unit 1332.
  • the intra-frame prediction processing unit 1330 generates a prediction block for predicting the selected divided block in the prediction mode determined by the prediction unit 1332 (step S1610).
  • the generated prediction block is the prediction result of the prediction unit 1332.
  • the process returns to step S1607. If there is no unselected divided block in step S1607 (step S1607: NO), the process returns to step S1602.
  • the intra-frame prediction processing unit 1330 sets the prediction processing unit of the selected block to 16 ⁇ 16 pixels by the setting unit 1331. (Step S1611).
  • the intra-frame prediction processing unit 1330 causes the prediction unit 1332 to determine the prediction mode of the selected divided block (step S1612). Specifically, for example, as shown in FIG. 10, the intra-frame prediction processing unit 1330 determines an applicable prediction mode from the plurality of prediction modes 0 to 3 by the prediction unit 1332.
  • the intra-frame prediction processing unit 1330 generates a prediction block for predicting the selected divided block in the prediction mode determined by the prediction unit 1332 (step S1613).
  • the generated prediction block is the prediction result of the prediction unit 1332.
  • the process returns to step S1602. If there is no unselected divided block in step S1607 (step S1607: NO), the process returns to step S1602.
  • step S1602 If there is no unselected block in step S1602 (step S1602: NO), the process returns to step S1601. If the frame F is not input in step S1601 (step S1601: NO) and input of all the frames constituting the moving image data is completed, the series of processing ends.
  • the frame predicted by the intraframe prediction processing unit 1330 is output to the coding unit 1340.
  • the above-described moving picture compression apparatus is a moving picture compression apparatus that compresses moving picture data including a plurality of frames generated from the output of the imaging device 100 having a plurality of imaging areas in which different resolutions can be set.
  • the video compression apparatus includes a setting unit 1331, a prediction unit 1332 and an encoding unit 1340.
  • the setting unit 1331 selects a prediction target image area based on the resolution of the prediction target image area (for example, blocks 910A and 910B) in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames.
  • the prediction processing unit (for example, 4x4 pixels, 16x16 pixels) which predicts is set.
  • the prediction unit 1332 predicts a prediction target image region based on the prediction processing unit set by the setting unit 1331.
  • the encoding unit 1340 encodes a prediction target frame using the prediction result of the prediction unit 1332.
  • the setting unit 1331 sets the resolution (for example, resolution A) of the prediction target image area (for example, block 910A) to another image area other than the prediction target image area. If the resolution is higher than the resolution (for example, the block 910B) (for example, resolution B), the prediction processing unit for predicting the prediction target image area is more than the prediction processing unit for predicting another image area (for example, 16 ⁇ 16 pixels) Is set to a smaller prediction processing unit (for example, 4 ⁇ 4 pixels).
  • the setting unit 1331 sets the resolution (for example, resolution B) of the prediction target image area (for example, block 910B) to another image area other than the prediction target image area. If the resolution (for example, the resolution A) of the block 910A is lower than the resolution (for example, resolution A), the unit of prediction processing for predicting the prediction target image area is Set to a large prediction processing unit (for example, 16 ⁇ 16 pixels).
  • the setting unit 1331 uses the image area predicted by the prediction unit 1332 in the prediction target frame based on the position of the prediction processing unit in the prediction target frame.
  • a specific prediction mode to be applied to the prediction processing unit is set, and the prediction unit 1332 predicts a prediction target image region by applying the specific prediction mode to the prediction processing unit.
  • the setting unit 1331 sets a specific prediction mode to be applied to the prediction processing unit based on the resolution of the predicted image area.
  • the resolution of the predicted image area is the same resolution as the resolution of the unit of prediction processing.
  • this enables intra-frame prediction to be performed between image areas of the same resolution, and consistent compression processing can be realized. For example, if both the predicted image area and the prediction target image area have resolution A, 4 ⁇ 4 prediction is performed, and if both the predicted image area and the prediction target image area have resolution B, 16 ⁇ 16 prediction is performed. Is executed.
  • the prediction target image area is resolution A and the resolution of the predicted image area is resolution B
  • the resolution prediction mode leads to a reduction in prediction accuracy. Therefore, the prediction accuracy can be improved.
  • the prediction accuracy can be improved.
  • the resolution of the prediction target image area is resolution B and the resolution of the predicted image area is resolution A
  • the resolution refers to the predicted image area with fine resolution.
  • the prediction target image area is resolution B and the resolution of the predicted image area is resolution A
  • the resolution prediction mode leads to a reduction in prediction accuracy. Therefore, the prediction accuracy can be improved.
  • the setting unit 1331 uses the adjacent area of the prediction processing unit as the predicted image area.
  • the image processing unit 1220 receives image data (for example, image data of the image area 910b) from the corresponding imaging area in each of the plurality of frames. As for the missing area 910c which has not been output, a plurality of frames are output by duplicating based on the image data. Then, the setting unit 1331 selects a prediction target based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames output from the image processing unit 1220 Set a prediction processing unit for predicting an image area.
  • image data for example, image data of the image area 910b
  • the missing area 910c which has not been output
  • a plurality of frames are output by duplicating based on the image data.
  • the setting unit 1331 selects a prediction target based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames output from the image processing unit 1220
  • the electronic device described above includes the imaging device 100 having a plurality of imaging regions in which different resolutions can be set, a setting unit 1331, a prediction unit 1332, and an encoding unit 1340.
  • the imaging element 100 has a plurality of imaging areas in which different resolutions can be set.
  • the setting unit 1331 sets a prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames. Do.
  • the prediction unit 1332 predicts a prediction target image region based on the prediction processing unit set by the setting unit 1331.
  • the encoding unit 1340 encodes a prediction target frame using the prediction result of the prediction unit 1332.
  • the electronic device 500 capable of optimizing compression processing according to the resolution can be realized.
  • Examples of the electronic device 500 described above include a digital camera, a digital video camera, a smartphone, a tablet, a surveillance camera, a drive recorder, and a drone.
  • the above-described moving picture compression program causes moving picture compression that causes the processor 1201 to compress moving picture data including a plurality of frames generated from the output of the imaging device 100 having a plurality of imaging areas in which different resolutions can be set. It is a program.
  • the moving picture compression program causes the processor 1201 to predict the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames.
  • An encoding process for encoding a frame to be predicted using a prediction process for predicting an image area to be predicted based on a setting process for setting a prediction process unit and a unit area set by the setting process Execute the processing.
  • the moving picture compression program may be recorded on a portable recording medium such as a CD-ROM, a DVD-ROM, a flash memory, or a memory card 504. Also, the moving picture compression program may be recorded in a moving picture compression apparatus or a server that can be downloaded to the electronic device 500.
  • Reference Signs List 100 imaging device, 200 imaging plane, 202 unit group, 500 electronic device, 502 control unit, 600 moving image file, 1210 pre-processing unit, 1220 image processing unit, 1230 acquisition unit, 1240 compression unit, 1310 motion detection unit, 1311 motion compensation Unit, 1320 determination unit, 1330 intraframe prediction processing unit, 1331 setting unit, 1332 prediction unit, 1340 encoding unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Studio Devices (AREA)

Abstract

A moving-image compression device for compressing moving-image data that includes a plurality of frames generated from the output of an imaging element having a plurality of imaging regions in which different resolutions are settable. A setting unit for setting, on the basis of the resolution of an image region to be predicted in a plurality of image regions corresponding to the plurality of imaging regions in a frame to be predicted among the plurality of frames, a prediction processing unit in which unit the image region to be predicted is predicted. A prediction unit for predicting the image region to be predicted, on the basis of the prediction processing unit that was set by the setting unit. An encoding unit for encoding the frame to be predicted, using the result of prediction by the prediction unit.

Description

動画圧縮装置、電子機器、および動画圧縮プログラムVideo compression apparatus, electronic device, and video compression program 参照による取り込みCapture by reference
 本出願は、平成29年(2017年)9月29日に出願された日本出願である特願2017-192109の優先権を主張し、その内容を参照することにより、本出願に取り込む。 This application claims priority to Japanese Patent Application No. 2017-192109, which is a Japanese application filed on Sep. 29, 2017, and is incorporated into the present application by reference to the contents thereof.
 本発明は、動画圧縮装置、電子機器、および動画圧縮プログラムに関する。 The present invention relates to a video compression apparatus, an electronic device, and a video compression program.
 裏面照射型撮像チップと信号処理チップとが積層された撮像素子(以下、積層型撮像素子という)を備えた電子機器が提案されている(特許文献1参照)。積層型撮像素子は、裏面照射型撮像チップと信号処理チップとが、所定の領域ごとにマイクロバンプを介して接続されるように積層されている。しかしながら、積層型撮像素子において複数の解像度を撮像領域内に設定可能である場合、複数の解像度で撮像されたフレームが出力されるため、そのようなフレームの動画圧縮は従来考慮されていない。 There has been proposed an electronic device provided with an imaging device (hereinafter, referred to as a stacked imaging device) in which a back side illumination type imaging chip and a signal processing chip are stacked (see Patent Document 1). The stacked imaging device is stacked such that the back side illumination type imaging chip and the signal processing chip are connected via the microbumps in each predetermined area. However, when it is possible to set a plurality of resolutions in the imaging region in the layered imaging element, since frames imaged at a plurality of resolutions are output, such moving image compression of the frames is not conventionally considered.
特開2006-49361号公報Unexamined-Japanese-Patent No. 2006-49361
 本願において開示される技術の一側面となる動画圧縮装置は、異なる解像度が設定可能な複数の撮像領域を有する撮像素子の出力から生成された複数のフレームを含む動画データを圧縮する動画圧縮装置であって、前記複数のフレームのうち予測対象フレームにおける前記複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、前記予測対象画像領域を予測する予測処理単位を設定する設定部と、前記設定部によって設定された予測処理単位に基づいて、前記予測対象画像領域を予測する予測部と、前記予測部による予測結果を用いて前記予測対象フレームを符号化する符号化部と、を有する。 A moving picture compression apparatus according to one aspect of the technology disclosed in the present application is a moving picture compression apparatus that compresses moving picture data including a plurality of frames generated from an output of an imaging device having a plurality of imaging areas in which different resolutions can be set. A prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames; A setting unit configured to set, a prediction unit configured to predict the prediction target image area based on a prediction processing unit set by the setting unit, and a code encoding the prediction target frame using a prediction result by the prediction unit And a conversion unit.
 本願において開示される技術の一側面となる電子機器は、異なる解像度が設定可能な複数の撮像領域を有する撮像素子と、前記撮像素子の出力から生成された複数のフレームのうち予測対象フレームにおける前記複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、前記予測対象画像領域を予測する予測処理単位を設定する設定部と、前記設定部によって設定された予測処理単位に基づいて、前記予測対象画像領域を予測する予測部と、前記予測部による予測結果を用いて前記予測対象フレームを符号化する符号化部と、を有する。 An electronic device, which is one aspect of the technology disclosed in the present application, includes an imaging device having a plurality of imaging regions in which different resolutions can be set, and the plurality of frames generated from the output of the imaging device in the prediction target frame. A setting unit configured to set a prediction processing unit for predicting the prediction target image region based on the resolution of a prediction target image region among a plurality of image regions corresponding to a plurality of imaging regions; and the prediction set by the setting unit A prediction unit that predicts the prediction target image area based on a processing unit, and an encoding unit that encodes the prediction target frame using a prediction result of the prediction unit.
 本願において開示される技術の一側面となる動画圧縮プログラムは、異なる解像度が設定可能な複数の撮像領域を有する撮像素子の出力から生成された複数のフレームを含む動画データの圧縮をプロセッサに実行させる動画圧縮プログラムであって、前記プロセッサに、前記複数のフレームのうち予測対象フレームにおける前記複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、前記予測対象画像領域を予測する予測処理単位を設定する設定処理と、前記設定処理によって設定された単位領域に基づいて、前記予測対象画像領域を予測する予測処理と、前記予測処理による予測結果を用いて前記予測対象フレームを符号化する符号化処理と、を実行させる。 A moving picture compression program according to an aspect of the technology disclosed in the present application causes a processor to compress moving picture data including a plurality of frames generated from an output of an imaging element having a plurality of imaging areas in which different resolutions can be set. The moving image compression program, wherein the processor is configured to, based on a resolution of a prediction target image area in a plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames, the prediction target image A setting process for setting a prediction process unit for predicting an area; a prediction process for predicting the prediction target image area based on the unit area set by the setting process; and the prediction using the prediction result by the prediction process And an encoding process of encoding the target frame.
図1は、積層型撮像素子の断面図である。FIG. 1 is a cross-sectional view of a stacked imaging device. 図2は、撮像チップの画素配列を説明する図である。FIG. 2 is a diagram for explaining the pixel array of the imaging chip. 図3は、撮像チップの回路図である。FIG. 3 is a circuit diagram of the imaging chip. 図4は、撮像素子の機能的構成例を示すブロック図である。FIG. 4 is a block diagram showing an example of the functional configuration of the imaging device. 図5は、電子機器のブロック構成例を示す説明図である。FIG. 5 is an explanatory view showing an example of the block configuration of the electronic device. 図6は、動画ファイルの構成例を示す説明図である。FIG. 6 is an explanatory view showing a configuration example of a moving image file. 図7は、撮像面と被写体像との関係を示す説明図である。FIG. 7 is an explanatory view showing the relationship between the imaging plane and the subject image. 図8は、動画ファイルの具体的な構成例に示す説明図である。FIG. 8 is an explanatory view showing a specific configuration example of a moving image file. 図9は、異なる解像度が設定された撮像面での撮像例を示す説明図である。FIG. 9 is an explanatory view showing an example of imaging on an imaging plane in which different resolutions are set. 図10は、16×16予測の予測例を示す説明図である。FIG. 10 is an explanatory view showing a prediction example of 16 × 16 prediction. 図11は、4×4予測の予測例を示す説明図である。FIG. 11 is an explanatory view showing a prediction example of 4 × 4 prediction. 図12は、図5に示した制御部の構成例を示すブロック図である。FIG. 12 is a block diagram showing a configuration example of the control unit shown in FIG. 図13は、圧縮部の構成例を示すブロック図である。FIG. 13 is a block diagram showing a configuration example of the compression unit. 図14は、前処理部による前処理手順例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of a preprocessing procedure by the preprocessing unit. 図15は、画像処理部による画像処理手順例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of an image processing procedure by the image processing unit. 図16は、フレーム内予測処理部によるフレーム内予測処理手順例を示すフローチャートである。FIG. 16 is a flowchart of an example of the intra-frame prediction processing procedure by the intra-frame prediction processing unit.
 <撮像素子の構成例>
 初めに、電子機器に搭載する積層型撮像素子について説明する。なお、この積層型撮像素子は、本願出願人が先に出願した特願2012-139026号に記載されているものである。電子機器は、たとえば、デジタルカメラやデジタルビデオカメラなどの撮像装置である。
<Configuration Example of Imaging Element>
First, a stacked imaging device mounted on an electronic device will be described. The layered imaging device is described in Japanese Patent Application No. 2012-139026 filed by the applicant of the present application. The electronic device is, for example, an imaging device such as a digital camera or a digital video camera.
 図1は、積層型撮像素子100の断面図である。積層型撮像素子(以下、単に、「撮像素子」)100は、入射光に対応した画素信号を出力する裏面照射型撮像チップ(以下、単に、「撮像チップ」)113と、画素信号を処理する信号処理チップ111と、画素信号を記憶するメモリチップ112とを備える。これら撮像チップ113、信号処理チップ111およびメモリチップ112は積層されており、Cuなどの導電性を有するバンプ109により互いに電気的に接続される。 FIG. 1 is a cross-sectional view of a stacked imaging device 100. FIG. A stacked imaging device (hereinafter simply referred to as “imaging device”) 100 processes a back-illuminated imaging chip (hereinafter simply referred to as “imaging chip”) 113 that outputs a pixel signal corresponding to incident light, and the pixel signal. A signal processing chip 111 and a memory chip 112 for storing pixel signals are provided. The imaging chip 113, the signal processing chip 111, and the memory chip 112 are stacked and electrically connected to each other by the bump 109 having conductivity such as Cu.
 なお、図1に示すように、入射光は主に白抜き矢印で示すZ軸プラス方向へ向かって入射する。本実施形態においては、撮像チップ113において、入射光が入射する側の面を裏面と称する。また、座標軸に示すように、Z軸に直交する紙面左方向をX軸プラス方向、Z軸およびX軸に直交する紙面手前方向をY軸プラス方向とする。以降のいくつかの図においては、図1の座標軸を基準として、それぞれの図の向きがわかるように座標軸を表示する。 As shown in FIG. 1, incident light is mainly incident in the Z-axis plus direction indicated by a white arrow. In the present embodiment, in the imaging chip 113, the surface on which incident light is incident is referred to as the back surface. Further, as indicated by the coordinate axes, the left direction in the drawing, which is orthogonal to the Z axis, is taken as the plus direction of the X axis, and the near direction in the drawing, which is orthogonal to the Z axis and the X axis, is taken as the plus direction. In the following several figures, coordinate axes are displayed so that the orientation of each figure can be known with reference to the coordinate axes in FIG.
 撮像チップ113の一例は、裏面照射型のMOS(Metal Oxide Semiconductor)イメージセンサである。PD(フォトダイオード)層106は、配線層108の裏面側に配されている。PD層106は、二次元的に配され、入射光に応じた電荷を蓄積する複数のPD104、および、PD104に対応して設けられたトランジスタ105を有する。 One example of the imaging chip 113 is a backside illuminated MOS (Metal Oxide Semiconductor) image sensor. The PD (photodiode) layer 106 is disposed on the back side of the wiring layer 108. The PD layer 106 is two-dimensionally arranged, and includes a plurality of PDs 104 which store charges corresponding to incident light, and a transistor 105 provided corresponding to the PDs 104.
 PD層106における入射光の入射側にはパッシベーション膜103を介してカラーフィルタ102が設けられる。カラーフィルタ102は、互いに異なる波長領域を透過する複数の種類を有しており、PD104のそれぞれに対応して特定の配列を有している。カラーフィルタ102の配列については後述する。カラーフィルタ102、PD104およびトランジスタ105の組が、一つの画素を形成する。 A color filter 102 is provided on the incident side of incident light in the PD layer 106 via a passivation film 103. The color filter 102 has a plurality of types that transmit different wavelength regions, and has a specific arrangement corresponding to each of the PDs 104. The arrangement of the color filters 102 will be described later. The combination of the color filter 102, the PD 104, and the transistor 105 forms one pixel.
 カラーフィルタ102における入射光の入射側には、それぞれの画素に対応して、マイクロレンズ101が設けられる。マイクロレンズ101は、対応するPD104へ向けて入射光を集光する。 A microlens 101 is provided on the color filter 102 on the incident side of the incident light corresponding to each pixel. The microlenses 101 condense incident light toward the corresponding PDs 104.
 配線層108は、PD層106からの画素信号を信号処理チップ111に伝送する配線107を有する。配線107は多層であってもよく、また、受動素子および能動素子が設けられてもよい。 The wiring layer 108 has a wiring 107 for transmitting the pixel signal from the PD layer 106 to the signal processing chip 111. The wiring 107 may be a multilayer, and passive elements and active elements may be provided.
 配線層108の表面には複数のバンプ109が配される。当該複数のバンプ109が信号処理チップ111の対向する面に設けられた複数のバンプ109と位置合わせされて、撮像チップ113と信号処理チップ111とが加圧などされることにより、位置合わせされたバンプ109同士が接合されて、電気的に接続される。 A plurality of bumps 109 are disposed on the surface of the wiring layer 108. The plurality of bumps 109 are aligned with the plurality of bumps 109 provided on the opposite surface of the signal processing chip 111, and the imaging chip 113 and the signal processing chip 111 are aligned by pressure or the like. The bumps 109 are joined to be electrically connected.
 同様に、信号処理チップ111およびメモリチップ112の互いに対向する面には、複数のバンプ109が配される。これらのバンプ109が互いに位置合わせされて、信号処理チップ111とメモリチップ112とが加圧などされることにより、位置合わせされたバンプ109同士が接合されて、電気的に接続される。 Similarly, a plurality of bumps 109 are disposed on the surfaces facing each other of the signal processing chip 111 and the memory chip 112. These bumps 109 are aligned with each other, and the signal processing chip 111 and the memory chip 112 are pressurized or the like, whereby the aligned bumps 109 are joined and electrically connected.
 なお、バンプ109間の接合には、固相拡散によるCuバンプ接合に限らず、はんだ溶融によるマイクロバンプ結合を採用してもよい。また、バンプ109は、たとえば、後述する一つのブロックに対して一つ程度設ければよい。したがって、バンプ109の大きさは、PD104のピッチよりも大きくてもよい。また、画素が配列された画素領域以外の周辺領域において、画素領域に対応するバンプ109よりも大きなバンプを併せて設けてもよい。 The bonding between the bumps 109 is not limited to Cu bump bonding by solid phase diffusion, and micro bump bonding by solder melting may be employed. Also, for example, about one bump 109 may be provided for one block described later. Therefore, the size of the bumps 109 may be larger than the pitch of the PDs 104. Further, in the peripheral area other than the pixel area in which the pixels are arranged, bumps larger than the bumps 109 corresponding to the pixel area may be provided.
 信号処理チップ111は、表裏面にそれぞれ設けられた回路を互いに接続するTSV(シリコン貫通電極)110を有する。TSV110は、周辺領域に設けられることが好ましい。また、TSV110は、撮像チップ113の周辺領域、メモリチップ112にも設けられてよい。 The signal processing chip 111 has TSVs (silicon through electrodes) 110 which mutually connect circuits respectively provided on the front and back surfaces. The TSVs 110 are preferably provided in the peripheral area. The TSV 110 may also be provided in the peripheral area of the imaging chip 113 and the memory chip 112.
 図2は、撮像チップ113の画素配列を説明する図である。特に、撮像チップ113を裏面側から観察した様子を示す。(a)は、撮像チップ113の裏面である撮像面200を模式的に示す平面図であり、(b)は、撮像面200の一部領域200aを拡大した平面図である。(b)に示すように、撮像面200には、画素201が二次元状に多数配列されている。 FIG. 2 is a diagram for explaining the pixel arrangement of the imaging chip 113. As shown in FIG. In particular, a state in which the imaging chip 113 is observed from the back surface side is shown. (A) is a top view which shows typically the imaging surface 200 which is the back surface of the imaging chip 113, (b) is the top view which expanded the partial area 200a of the imaging surface 200. FIG. As shown in (b), a large number of pixels 201 are two-dimensionally arranged on the imaging surface 200.
 画素201は、それぞれ不図示の色フィルタを有している。色フィルタは、赤(R)、緑(G)、青(B)の3種類からなり、(b)における「R」、「G」、および「B」という表記は、画素201が有する色フィルタの種類を表している。(b)に示すように、撮像素子100の撮像面200には、このような各色フィルタを備えた画素201が、いわゆるベイヤー配列に従って配列されている。 Each of the pixels 201 has a color filter (not shown). The color filter consists of three types of red (R), green (G), and blue (B), and the notation “R”, “G”, and “B” in (b) is a color filter that the pixel 201 has Represents the type of As shown in (b), on the imaging surface 200 of the imaging element 100, the pixels 201 provided with such color filters are arranged according to a so-called Bayer arrangement.
 赤フィルタを有する画素201は、入射光のうち、赤色の波長帯の光を光電変換して受光信号(光電変換信号)を出力する。同様に、緑フィルタを有する画素201は、入射光のうち、緑色の波長帯の光を光電変換して受光信号を出力する。また、青フィルタを有する画素201は、入射光のうち、青色の波長帯の光を光電変換して受光信号を出力する。 The pixel 201 having a red filter photoelectrically converts light in the red wavelength band of incident light and outputs a light reception signal (photoelectric conversion signal). Similarly, the pixel 201 having a green filter photoelectrically converts light in the green wavelength band among incident light and outputs a light reception signal. Further, the pixel 201 having a blue filter photoelectrically converts light in the blue wavelength band among incident light and outputs a light reception signal.
 撮像素子100は、隣接する2画素×2画素の計4つの画素201から成る単位グループ202ごとに、個別に制御可能に構成されている。たとえば、互いに異なる2つの単位グループ202について、同時に電荷蓄積が開始されたときに、一方の単位グループ202では電荷蓄積開始から1/30秒後に電荷の読み出し、すなわち受光信号の読み出しが行われ、他方の単位グループ202では電荷蓄積開始から1/15秒後に電荷の読み出しが行われる。換言すると、撮像素子100は、1回の撮像において、単位グループ202ごとに異なる露光時間(電荷蓄積時間であり、いわゆるシャッタースピード)を設定することができる。 The image sensor 100 is configured to be individually controllable for each unit group 202 including a total of four pixels 201 of adjacent 2 pixels × 2 pixels. For example, when charge storage is started simultaneously for two unit groups 202 different from each other, charge readout is performed 1/30 seconds after charge storage start in one unit group 202, that is, light reception signals are read, In the unit group 202, charge readout is performed 1/15 seconds after the start of charge accumulation. In other words, the imaging device 100 can set different exposure times (charge accumulation time, so-called shutter speed) for each unit group 202 in one imaging.
 撮像素子100は、上述した露光時間以外にも、撮像信号の増幅率(いわゆるISO感度)を単位グループ202ごとに異ならせることが可能である。撮像素子100は、電荷蓄積を開始するタイミングや受光信号を読み出すタイミングを単位グループ202ごとに変化させることができる。すなわち、撮像素子100は、動画撮像時のフレームレートを単位グループ202ごとに変化させることができる。 The imaging device 100 can make the amplification factor (so-called ISO sensitivity) of an imaging signal different for each unit group 202 besides the above-described exposure time. The imaging device 100 can change the timing to start the charge accumulation and the timing to read out the light reception signal for each unit group 202. That is, the imaging element 100 can change the frame rate at the time of moving image capturing for each unit group 202.
 以上をまとめると、撮像素子100は、単位グループ202ごとに、露光時間、増幅率、フレームレート、解像度などの撮像条件を異ならせることが可能に構成されている。たとえば、画素201が有する不図示の光電変換部から撮像信号を読み出すための不図示の読み出し線が、単位グループ202ごとに設けられ、単位グループ202ごとに独立して撮像信号を読み出し可能に構成すれば、単位グループ202ごとに露光時間(シャッタースピード)を異ならせることができる。 To summarize the above, the imaging device 100 is configured to be able to make the imaging conditions such as the exposure time, the amplification factor, the frame rate, and the resolution different for each unit group 202. For example, a reading line (not shown) for reading an imaging signal from a photoelectric conversion unit (not shown) of the pixel 201 is provided for each unit group 202, and the imaging signal can be read independently for each unit group 202. For example, the exposure time (shutter speed) can be made different for each unit group 202.
 また、光電変換された電荷により生成された撮像信号を増幅する不図示の増幅回路を単位グループ202ごとに独立して設け、増幅回路による増幅率を増幅回路ごとに独立して制御可能に構成すれば、単位グループ202ごとに信号の増幅率(ISO感度)を異ならせることができる。 Further, an amplification circuit (not shown) for amplifying an imaging signal generated by the photoelectrically converted charge is provided independently for each unit group 202, and the amplification factor by the amplification circuit can be controlled independently for each amplification circuit. For example, the amplification factor (ISO sensitivity) of the signal can be made different for each unit group 202.
 また、単位グループ202ごとに異ならせることが可能な撮像条件は、上述した撮像条件のほか、フレームレート、ゲイン、解像度(間引き率)、画素信号を加算する加算行数または加算列数、電荷の蓄積時間または蓄積回数、デジタル化のビット数などである。さらに、制御パラメータは、画素からの画像信号取得後の画像処理におけるパラメータであってもよい。 In addition to the imaging conditions described above, the imaging conditions that can be varied for each unit group 202 include frame rate, gain, resolution (thinning rate), number of added rows or number of added columns for adding pixel signals, charge The storage time or number of storage, the number of bits for digitization, and the like. Furthermore, the control parameter may be a parameter in image processing after acquisition of an image signal from a pixel.
 また、撮像条件は、たとえば、単位グループ202ごとに独立して制御可能な区画(1区画が1つの単位グループ202に対応する)を有する液晶パネルを撮像素子100に設け、オンオフ可能な減光フィルタとして利用すれば、単位グループ202ごとに明るさ(絞り値)を制御することが可能になる。 Further, for the imaging condition, for example, a liquid crystal panel having sections that can be controlled independently for each unit group 202 (one section corresponds to one unit group 202) is provided in the imaging element 100, and a light reduction filter that can be turned on and off If it is used, it becomes possible to control the brightness (aperture value) for each unit group 202.
 なお、単位グループ202を構成する画素201の数は、上述した2×2の4画素でなくてもよい。単位グループ202は、少なくとも1個の画素201を有していればよいし、逆に、4個より多くの画素201を有していてもよい。 The number of pixels 201 constituting the unit group 202 may not be the 2 × 2 four pixels described above. The unit group 202 may have at least one pixel 201, and conversely, may have more than four pixels 201.
 図3は、撮像チップ113の回路図である。図3において、代表的に点線で囲む矩形が、1つの画素201に対応する回路を表す。また、一点鎖線で囲む矩形が1つの単位グループ202(202-1~202-4)に対応する。なお、以下に説明する各トランジスタの少なくとも一部は、図1のトランジスタ105に対応する。 FIG. 3 is a circuit diagram of the imaging chip 113. As shown in FIG. In FIG. 3, a rectangle surrounded by a dotted line representatively represents a circuit corresponding to one pixel 201. In addition, a rectangle surrounded by an alternate long and short dash line corresponds to one unit group 202 (202-1 to 202-4). Note that at least a part of each of the transistors described below corresponds to the transistor 105 in FIG.
 上述したように、画素201のリセットトランジスタ303は、単位グループ202単位でオン/オフされる。また、画素201の転送トランジスタ302も、単位グループ202単位でオン/オフされる。図3に示す例において、左上単位グループ202-1に対応する4つのリセットトランジスタ303をオン/オフするためのリセット配線300-1が設けられており、同単位グループ202-1に対応する4つの転送トランジスタ302に転送パルスを供給するためのTX配線307-1も設けられる。 As described above, the reset transistor 303 of the pixel 201 is turned on / off in unit group 202 units. In addition, the transfer transistor 302 of the pixel 201 is also turned on / off in unit group 202 units. In the example shown in FIG. 3, reset wirings 300-1 for turning on / off the four reset transistors 303 corresponding to the upper left unit group 202-1 are provided, and four corresponding to the unit group 202-1 are provided. A TX wire 307-1 for supplying a transfer pulse to the transfer transistor 302 is also provided.
 同様に、左下単位グループ202-3に対応する4つのリセットトランジスタ303をオン/オフするためのリセット配線300-3が、上記リセット配線300-1とは別個に設けられる。また、同単位グループ202-3に対応する4つの転送トランジスタ302に転送パルスを供給するためのTX配線307-3が、上記TX配線307-1と別個に設けられる。 Similarly, a reset wiring 300-3 for turning on / off the four reset transistors 303 corresponding to the lower left unit group 202-3 is provided separately from the reset wiring 300-1. Also, a TX wiring 307-3 for supplying transfer pulses to the four transfer transistors 302 corresponding to the unit group 202-3 is provided separately from the TX wiring 307-1.
 右上単位グループ202-2や右下単位グループ202-4についても同様に、それぞれリセット配線300-2とTX配線307-2、およびリセット配線300-4とTX配線307-4が、それぞれの単位グループ202に設けられている。 Similarly, for the upper right unit group 202-2 and the lower right unit group 202-4, the reset wiring 300-2 and TX wiring 307-2 and the reset wiring 300-4 and TX wiring 307-4 are respectively unit groups It is provided in 202.
 各画素201に対応する16個のPD104は、それぞれ対応する転送トランジスタ302に接続される。各転送トランジスタ302のゲートには、上記単位グループ202ごとのTX配線を介して転送パルスが供給される。各転送トランジスタ302のドレインは、対応するリセットトランジスタ303のソースに接続されるとともに、転送トランジスタ302のドレインとリセットトランジスタ303のソース間のいわゆるフローティングディフュージョンFDが、対応する増幅トランジスタ304のゲートに接続される。 The 16 PDs 104 corresponding to each pixel 201 are connected to the corresponding transfer transistors 302, respectively. A transfer pulse is supplied to the gate of each transfer transistor 302 via the TX wiring of each unit group 202. The drain of each transfer transistor 302 is connected to the source of the corresponding reset transistor 303, and a so-called floating diffusion FD between the drain of the transfer transistor 302 and the source of the reset transistor 303 is connected to the gate of the corresponding amplification transistor 304. Ru.
 各リセットトランジスタ303のドレインは、電源電圧が供給されるVdd配線310に共通に接続される。各リセットトランジスタ303のゲートには、上記単位グループ202ごとのリセット配線を介してリセットパルスが供給される。 The drains of the reset transistors 303 are commonly connected to a Vdd wiring 310 to which a power supply voltage is supplied. A reset pulse is supplied to the gate of each reset transistor 303 via the reset wiring of each unit group 202.
 各増幅トランジスタ304のドレインは、電源電圧が供給されるVdd配線310に共通に接続される。また、各増幅トランジスタ304のソースは、対応する選択トランジスタ305のドレインに接続される。各選択トランジスタ305のゲートには、選択パルスが供給されるデコーダ配線308に接続される。デコーダ配線308は、16個の選択トランジスタ305に対してそれぞれ独立に設けられる。 The drains of the respective amplification transistors 304 are commonly connected to a Vdd wiring 310 to which a power supply voltage is supplied. The source of each amplification transistor 304 is connected to the drain of the corresponding selection transistor 305. The gate of each selection transistor 305 is connected to a decoder wiring 308 to which a selection pulse is supplied. The decoder wiring 308 is provided independently for each of the 16 selection transistors 305.
 そして、各々の選択トランジスタ305のソースは、共通の出力配線309に接続される。負荷電流源311は、出力配線309に電流を供給する。すなわち、選択トランジスタ305に対する出力配線309は、ソースフォロアにより形成される。なお、負荷電流源311は、撮像チップ113側に設けてもよいし、信号処理チップ111側に設けてもよい。 The source of each selection transistor 305 is connected to the common output wiring 309. The load current source 311 supplies a current to the output wiring 309. That is, the output wiring 309 for the selection transistor 305 is formed by a source follower. The load current source 311 may be provided on the imaging chip 113 side or may be provided on the signal processing chip 111 side.
 ここで、電荷の蓄積開始から蓄積終了後の画素出力までの流れを説明する。上記単位グループ202ごとのリセット配線を通じてリセットパルスがリセットトランジスタ303に印加され、同時に上記単位グループ202(202-1~202-4)ごとのTX配線を通じて転送パルスが転送トランジスタ302に印加されると、上記単位グループ202ごとに、PD104およびフローティングディフュージョンFDの電位がリセットされる。 Here, the flow from the charge accumulation start to the pixel output after the charge end will be described. When a reset pulse is applied to the reset transistor 303 through the reset wiring of each unit group 202 and a transfer pulse is applied to the transfer transistor 302 through the TX wiring of each of the unit groups 202 (202-1 to 202-4), The potentials of the PD 104 and the floating diffusion FD are reset for each unit group 202.
 各PD104は、転送パルスの印加が解除されると、受光する入射光を電荷に変換して蓄積する。その後、リセットパルスが印加されていない状態で再び転送パルスが印加されると、蓄積された電荷はフローティングディフュージョンFDへ転送され、フローティングディフュージョンFDの電位は、リセット電位から電荷蓄積後の信号電位になる。 When the application of the transfer pulse is released, each PD 104 converts incident light to be received into charge and accumulates it. Thereafter, when the transfer pulse is applied again in a state where the reset pulse is not applied, the accumulated charge is transferred to the floating diffusion FD, and the potential of the floating diffusion FD becomes a signal potential after charge accumulation from the reset potential. .
 そして、デコーダ配線308を通じて選択パルスが選択トランジスタ305に印加されると、フローティングディフュージョンFDの信号電位の変動が、増幅トランジスタ304および選択トランジスタ305を介して出力配線309に伝わる。これにより、リセット電位と信号電位とに対応する画素信号は、単位画素から出力配線309に出力される。 Then, when a selection pulse is applied to the selection transistor 305 through the decoder wiring 308, a change in signal potential of the floating diffusion FD is transmitted to the output wiring 309 through the amplification transistor 304 and the selection transistor 305. Thus, the pixel signal corresponding to the reset potential and the signal potential is output from the unit pixel to the output wiring 309.
 上述したように、単位グループ202を形成する4画素に対して、リセット配線とTX配線が共通である。すなわち、リセットパルスと転送パルスはそれぞれ、同単位グループ202内の4画素に対して同時に印加される。したがって、ある単位グループ202を形成するすべての画素201は、同一のタイミングで電荷蓄積を開始し、同一のタイミングで電荷蓄積を終了する。ただし、蓄積された電荷に対応する画素信号は、それぞれの選択トランジスタ305に選択パルスが順次印加されることにより、選択的に出力配線309から出力される。 As described above, for the four pixels forming the unit group 202, the reset wiring and the TX wiring are common. That is, the reset pulse and the transfer pulse are simultaneously applied to four pixels in the unit group 202, respectively. Therefore, all the pixels 201 forming a certain unit group 202 start charge accumulation at the same timing, and end charge accumulation at the same timing. However, pixel signals corresponding to the accumulated charges are selectively output from the output wiring 309 by sequentially applying selection pulses to the respective selection transistors 305.
 このように、単位グループ202ごとに電荷蓄積開始タイミングを制御することができる。換言すると、異なる単位グループ202間では、異なったタイミングで撮像することができる。 Thus, the charge accumulation start timing can be controlled for each unit group 202. In other words, different unit groups 202 can be imaged at different timings.
 図4は、撮像素子100の機能的構成例を示すブロック図である。アナログのマルチプレクサ411は、単位グループ202を形成する16個のPD104を順番に選択して、それぞれの画素信号を当該単位グループ202に対応して設けられた出力配線309へ出力させる。マルチプレクサ411は、PD104と共に、撮像チップ113に形成される。 FIG. 4 is a block diagram showing a functional configuration example of the imaging device 100. As shown in FIG. The analog multiplexer 411 selects 16 PDs 104 forming the unit group 202 in order, and outputs the respective pixel signals to the output wiring 309 provided corresponding to the unit group 202. The multiplexer 411 is formed on the imaging chip 113 together with the PD 104.
 マルチプレクサ411を介して出力された画素信号は、信号処理チップ111に形成された、相関二重サンプリング(CDS)・アナログ/デジタル(A/D)変換を行う信号処理回路412により、CDSおよびA/D変換が行われる。A/D変換された画素信号は、デマルチプレクサ413に引き渡され、それぞれの画素に対応する画素メモリ414に格納される。デマルチプレクサ413および画素メモリ414は、メモリチップ112に形成される。 The pixel signal output via the multiplexer 411 is subjected to CDS and A / A by the signal processing circuit 412 for performing correlated double sampling (CDS) and analog / digital (A / D) conversion, which is formed in the signal processing chip 111. D conversion is performed. The A / D converted pixel signals are delivered to the demultiplexer 413 and stored in the pixel memory 414 corresponding to each pixel. The demultiplexer 413 and the pixel memory 414 are formed in the memory chip 112.
 演算回路415は、画素メモリ414に格納された画素信号を処理して後段の画像処理部に引き渡す。演算回路415は、信号処理チップ111に設けられてもよいし、メモリチップ112に設けられてもよい。なお、図4では4つの単位グループ202の分の接続を示すが、実際にはこれらが4つの単位グループ202ごとに存在して、並列で動作する。 The arithmetic circuit 415 processes the pixel signal stored in the pixel memory 414 and delivers it to the image processing unit in the subsequent stage. The arithmetic circuit 415 may be provided in the signal processing chip 111 or in the memory chip 112. Although FIG. 4 shows the connection of four unit groups 202, in reality, these units exist for each of the four unit groups 202 and operate in parallel.
 ただし、演算回路415は4つの単位グループ202ごとに存在しなくてもよく、たとえば、一つの演算回路415がそれぞれの4つの単位グループ202に対応する画素メモリ414の値を順に参照しながらシーケンシャルに処理してもよい。 However, the arithmetic circuit 415 may not be present for every four unit groups 202. For example, one arithmetic circuit 415 sequentially refers to the values of the pixel memory 414 corresponding to each of the four unit groups 202. It may be processed.
 上記の通り、単位グループ202のそれぞれに対応して出力配線309が設けられている。撮像素子100は撮像チップ113、信号処理チップ111およびメモリチップ112を積層しているので、これら出力配線309にバンプ109を用いたチップ間の電気的接続を用いることにより、各チップを面方向に大きくすることなく配線を引き回すことができる。 As described above, the output wirings 309 are provided corresponding to each of the unit groups 202. Since the imaging element 100 has the imaging chip 113, the signal processing chip 111, and the memory chip 112 stacked, by using the electrical connection between the chips using the bumps 109 for the output wiring 309, each chip is made in the surface direction The wiring can be routed without increasing the size.
 <電子機器のブロック構成例>
 図5は、電子機器のブロック構成例を示す説明図である。電子機器500は、たとえば、レンズ一体型のカメラである。電子機器500は、撮像光学系501と、撮像素子100と、制御部502と、液晶モニタ503と、メモリカード504と、操作部505と、DRAM506と、フラッシュメモリ507と、録音部508とを備える。制御部502は、後述するように動画データを圧縮する圧縮部を含む。したがって、電子機器500のうち、少なくとも制御部502を含む構成が動画圧縮装置となる。
<Example of block configuration of electronic device>
FIG. 5 is an explanatory view showing an example of the block configuration of the electronic device. The electronic device 500 is, for example, a lens-integrated camera. The electronic device 500 includes an imaging optical system 501, an imaging element 100, a control unit 502, a liquid crystal monitor 503, a memory card 504, an operation unit 505, a DRAM 506, a flash memory 507, and a recording unit 508. . The control unit 502 includes a compression unit that compresses moving image data as described later. Therefore, the configuration including at least the control unit 502 in the electronic device 500 is a moving image compression apparatus.
 撮像光学系501は、複数のレンズから構成され、撮像素子100の撮像面200に被写体像を結像させる。なお、図5では、便宜上、撮像光学系501を1枚のレンズとして図示している。 The imaging optical system 501 is composed of a plurality of lenses, and forms an object image on the imaging surface 200 of the imaging element 100. In FIG. 5, the imaging optical system 501 is illustrated as a single lens for the sake of convenience.
 撮像素子100は、たとえば、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などの撮像素子であり、撮像光学系501により結像された被写体像を撮像して撮像信号を出力する。制御部502は、電子機器500の各部を制御する電子回路であり、プロセッサとその周辺回路とから構成される。 The imaging device 100 is, for example, an imaging device such as a complementary metal oxide semiconductor (CMOS) or a charge coupled device (CCD), captures an object image formed by the imaging optical system 501, and outputs an imaging signal. The control unit 502 is an electronic circuit that controls each unit of the electronic device 500, and includes a processor and its peripheral circuits.
 不揮発性の記憶媒体であるフラッシュメモリ507には、予め所定の制御プログラムが書き込まれている。制御部502は、フラッシュメモリ507から制御プログラムを読み込んで実行することにより、各部の制御を行う。この制御プログラムは、揮発性の記憶媒体であるDRAM506を作業用領域として使用する。 A predetermined control program is written in advance in the flash memory 507, which is a non-volatile storage medium. The control unit 502 controls each unit by reading a control program from the flash memory 507 and executing it. This control program uses a DRAM 506 which is a volatile storage medium as a work area.
 液晶モニタ503は、液晶パネルを利用した表示装置である。制御部502は、所定周期(たとえば60分の1秒)ごとに撮像素子100に繰り返し被写体像を撮像させる。そして、撮像素子100から出力された撮像信号に種々の画像処理を施していわゆるスルー画を作成し、液晶モニタ503に表示する。液晶モニタ503には、上記のスルー画以外に、たとえば撮像条件を設定する設定画面などが表示される。 The liquid crystal monitor 503 is a display device using a liquid crystal panel. The control unit 502 causes the imaging device 100 to repeatedly capture a subject image at predetermined intervals (for example, 1/60 second). Then, the image pickup signal output from the image pickup element 100 is subjected to various image processing to create a so-called through image, which is displayed on the liquid crystal monitor 503. In addition to the above-described through image, a setting screen for setting an imaging condition is displayed on the liquid crystal monitor 503, for example.
 制御部502は、撮像素子100から出力された撮像信号に基づき、後述する画像ファイルを作成し、可搬性の記録媒体であるメモリカード504に画像ファイルを記録する。操作部505は、プッシュボタンなどの種々の操作部材を有し、それら操作部材が操作されたことに応じて制御部502に操作信号を出力する。 The control unit 502 creates an image file to be described later based on the imaging signal output from the imaging element 100, and records the image file on a memory card 504, which is a portable recording medium. The operation unit 505 includes various operation members such as a push button, and outputs an operation signal to the control unit 502 in response to the operation of the operation members.
 録音部508は、たとえば、マイクロフォンにより構成され、環境音を音声信号に変換して制御部502に入力する。なお、制御部502は、可搬性の記録媒体であるメモリカード504に動画ファイルを記録するのではなく、ハードディスクのような電子機器500に内蔵された不図示の記録媒体に記録してもよい。 The recording unit 508 is, for example, a microphone, converts environmental sound into an audio signal, and inputs the audio signal to the control unit 502. The control unit 502 may record the moving image file in a recording medium (not shown) built in the electronic device 500 such as a hard disk instead of recording the moving image file in the memory card 504 which is a portable recording medium.
 <動画ファイルの構成例>
 図6は、動画ファイルの構成例を示す説明図である。動画ファイル600は、制御部502内の後述する圧縮部902での圧縮処理中に生成され、メモリカード504、DRAM506、またはフラッシュメモリ507に格納される。動画ファイル600は、ヘッダ部601およびデータ部602の2つのブロックにより構成される。ヘッダ部601は、動画ファイル600の先頭に位置するブロックである。ヘッダ部601には、ファイル基本情報領域611と、マスク領域612と、撮像情報領域613とが、以上に述べた順序で格納されている。
<Example of movie file configuration>
FIG. 6 is an explanatory view showing a configuration example of a moving image file. The moving image file 600 is generated during compression processing in a compression unit 902 described later in the control unit 502, and is stored in the memory card 504, the DRAM 506, or the flash memory 507. The moving image file 600 is composed of two blocks of a header portion 601 and a data portion 602. The header unit 601 is a block located at the beginning of the moving image file 600. In the header portion 601, a file basic information area 611, a mask area 612, and an imaging information area 613 are stored in the order described above.
 ファイル基本情報領域611には、たとえば、動画ファイル600内の各部(ヘッダ部601、データ部602、マスク領域612、撮像情報領域613など)のサイズやオフセットが記録される。マスク領域612には、後述する撮像条件情報やマスク情報などが記録される。撮像情報領域613には、たとえば電子機器500の機種名や撮像光学系501の情報(たとえば収差などの光学特性に関する情報)など、撮像に関する情報が記録される。データ部602は、ヘッダ部601の後ろに位置するブロックであり、画像情報や音声情報などが記録される。 In the file basic information area 611, for example, the size and offset of each part (header section 601, data section 602, mask area 612, imaging information area 613, etc.) in the moving image file 600 are recorded. In the mask area 612, imaging condition information, mask information, and the like described later are recorded. In the imaging information area 613, information related to imaging such as a model name of the electronic device 500 or information of the imaging optical system 501 (for example, information regarding optical characteristics such as aberration) is recorded. The data unit 602 is a block located behind the header unit 601, and stores image information, audio information, and the like.
 <撮像面と被写体像との関係>
 図7は、撮像面と被写体像との関係を示す説明図である。(a)は、撮像素子100の撮像面200(撮像範囲)と被写体像701とを模式的に示す。(a)において、制御部502は、(c)の撮像前に、一度、被写体像701を撮像する。(a)の撮像は、たとえばライブビュー画像(いわゆるスルー画)の作成のために行われる撮像を兼ねていてもよい。
<Relationship between imaging plane and subject image>
FIG. 7 is an explanatory view showing the relationship between the imaging plane and the subject image. (A) schematically shows an imaging surface 200 (imaging range) of the imaging element 100 and a subject image 701. In (a), the control unit 502 captures a subject image 701 once before capturing in (c). The imaging of (a) may also be performed, for example, for creating a live view image (so-called through image).
 制御部502は、(a)の撮像により得られた被写体像701に対して、所定の画像解析処理を実行する。画像解析処理は、たとえば周知の被写体検出技術(特徴量を演算して所定の被写体が存在する範囲を検出する技術)により、主要被写体領域と背景領域とを検出する処理である。画像解析処理によって、撮像面200は、主要被写体が存在する主要被写体領域702と、背景が存在する背景領域703とに分割される。 The control unit 502 executes predetermined image analysis processing on the subject image 701 obtained by the imaging in (a). The image analysis process is a process of detecting the main subject area and the background area by, for example, a known subject detection technology (a technology for calculating a feature amount and detecting a range in which a predetermined subject is present). By the image analysis processing, the imaging surface 200 is divided into a main subject region 702 in which a main subject is present and a background region 703 in which a background is present.
 なお、(a)では、被写体像701を大まかに含む領域を主要被写体領域702として図示しているが、主要被写体領域702は、被写体像701の外形に沿った形状であってもよい。つまり、被写体像701以外のものをできるだけ含まないように主要被写体領域702を設定してもよい。 Although the area roughly including the subject image 701 is illustrated as the main subject area 702 in (a), the main subject area 702 may have a shape along the outer shape of the subject image 701. That is, the main subject region 702 may be set so as to include as little as possible other than the subject image 701.
 制御部502は、主要被写体領域702内の各単位グループ202と、背景領域703内の各単位グループ202とで、異なる撮像条件を設定する。たとえば、前者の各単位グループ202には、後者の各単位グループ202に比べて高速なシャッタースピードを設定する。このようにすると、(a)の撮像の次に撮像される(c)の撮像において、主要被写体領域702では像ぶれが発生しにくくなる。 The control unit 502 sets different imaging conditions for each unit group 202 in the main subject region 702 and each unit group 202 in the background region 703. For example, in the former unit group 202, a shutter speed faster than that of the latter unit group 202 is set. In this way, in the imaging of (c) taken after the imaging of (a), image blurring is less likely to occur in the main subject region 702.
 また、制御部502は、背景領域703に存在する太陽などの光源の影響で、主要被写体領域702が逆光状態となっている場合には、前者の各単位グループ202に、相対的に高めのISO感度を設定したり、低速なシャッタースピードを設定する。また、制御部502は、後者の各単位グループ202に、相対的に低めのISO感度を設定したり、高速なシャッタースピードを設定したりする。このようにすると、(c)の撮像において、逆光状態の主要被写体領域702の黒つぶれや、光量の大きい背景領域703の白飛びを防止することができる。 Further, when the main subject area 702 is in a backlit state due to the light source such as the sun present in the background area 703, the control unit 502 makes the ISO relatively higher for each unit group 202 of the former. Set the sensitivity or set a slow shutter speed. Further, the control unit 502 sets a relatively low ISO sensitivity or sets a high shutter speed to each of the latter unit groups 202. In this way, in the imaging of (c), it is possible to prevent blackout of the main subject region 702 in a backlit state and overexposure of the background region 703 having a large amount of light.
 なお、画像解析処理は、上述した主要被写体領域702と背景領域703とを検出する処理とは異なる処理であってもよい。たとえば、撮像面200全体のうち、明るさが一定以上の部分(明るすぎる部分)や明るさが一定未満の部分(暗すぎる部分)を検出する処理であってもよい。画像解析処理をこのような処理とした場合、制御部502は、前者の領域に含まれる単位グループ202について、露出値(Ev値)が他の領域に含まれる単位グループ202よりも低くなるように、シャッタースピードやISO感度を設定する。 The image analysis process may be different from the process of detecting the main subject area 702 and the background area 703 described above. For example, processing may be performed to detect a portion where the brightness is equal to or more than a predetermined level (a portion that is too bright) or a portion where the brightness is less than a predetermined level (a too dark portion). When the image analysis processing is such processing, the control unit 502 causes the exposure value (Ev value) to be lower for the unit group 202 included in the former region than for the unit group 202 included in the other region. , Shutter speed and ISO sensitivity.
 また、制御部502は、後者の領域に含まれる単位グループ202については、露出値(Ev値)が他の領域に含まれる単位グループ202よりも高くなるように、シャッタースピードやISO感度を設定する。このようにすることで、(c)の撮像により得られる画像のダイナミックレンジを、撮像素子100の本来のダイナミックレンジよりも広げることができる。 Further, the control unit 502 sets the shutter speed and the ISO sensitivity so that the exposure value (Ev value) of the unit group 202 included in the latter region is higher than that of the unit group 202 included in the other region. . By doing this, the dynamic range of the image obtained by the imaging of (c) can be expanded beyond the original dynamic range of the imaging device 100.
 図7の(b)は、(a)に示した撮像面200に対応するマスク情報704の一例を示す。主要被写体領域702に属する単位グループ202の位置には「1」が、背景領域703に属する単位グループ202の位置には「2」がそれぞれ格納されている。 (B) of FIG. 7 shows an example of the mask information 704 corresponding to the imaging surface 200 shown in (a). “1” is stored at the position of the unit group 202 belonging to the main subject area 702, and “2” is stored at the position of the unit group 202 belonging to the background area 703.
 制御部502は、1フレーム目の画像データに対して、画像解析処理を実行し、主要被写体領域702と背景領域703とを検出する。これにより、(a)の撮像によるフレームは、(c)に示すように、主要被写体領域702と背景領域703とに分割される。制御部502は、主要被写体領域702内の各単位グループ202と、背景領域703内の各単位グループ202とで、異なる撮像条件を設定して、(c)の撮像を行い、画像データを作成する。このときのマスク情報704の例を、(d)に示す。 The control unit 502 executes an image analysis process on the image data of the first frame to detect the main subject area 702 and the background area 703. As a result, the frame obtained by the imaging in (a) is divided into the main subject area 702 and the background area 703 as shown in (c). The control unit 502 sets different imaging conditions for each unit group 202 in the main subject area 702 and each unit group 202 in the background area 703, performs imaging in (c), and creates image data. . An example of the mask information 704 at this time is shown in (d).
 (a)の撮像の結果に対応する(b)のマスク情報704と、(c)の撮像の結果に対応する(d)のマスク情報704とでは、異なる時刻に撮像を行っている(時間差がある)ため、たとえば、被写体が移動している場合や、ユーザが電子機器500を動かした場合に、これら2つのマスク情報704が異なる内容になる。換言すると、マスク情報704は、時間経過に伴い変化する動的情報である。従って、ある単位グループ202において、フレームごとに異なる撮像条件が設定されることになる。 In the mask information 704 of (b) corresponding to the imaging result of (a) and the mask information 704 of (d) corresponding to the imaging result of (c), imaging is performed at different times (the time difference is Therefore, for example, when the subject is moving or when the user moves the electronic device 500, the two mask information 704 have different contents. In other words, the mask information 704 is dynamic information that changes as time passes. Therefore, in a certain unit group 202, different imaging conditions are set for each frame.
 <動画ファイルの具体例>
 図8は、動画ファイル600の具体的な構成例に示す説明図である。マスク領域612には、識別情報801と、撮像条件情報802と、マスク情報704が、以上に述べた順序で記録される。
<Specific example of video file>
FIG. 8 is an explanatory view showing a specific configuration example of the moving image file 600. As shown in FIG. In the mask area 612, identification information 801, imaging condition information 802, and mask information 704 are recorded in the order described above.
 識別情報801は、この動画ファイル600がマルチ撮像条件動画撮像機能によって作成されたものである旨を表す。マルチ撮像条件動画撮像機能とは、複数の撮像条件が設定された撮像素子100で動画撮影する機能である。 The identification information 801 indicates that the moving image file 600 is created by the multi-imaging condition moving image pickup function. The multi-imaging condition moving image imaging function is a function of shooting a moving image with the imaging element 100 in which a plurality of imaging conditions are set.
 撮像条件情報802は、単位グループ202にどのような用途(目的、役割)が存在するかを表す情報である。たとえば、上述したように、撮像面200(図7(a))を主要被写体領域702と背景領域703とに分割する場合、各々の単位グループ202は、主要被写体領域702に属するか、または、背景領域703に属するかのいずれかである。 The imaging condition information 802 is information indicating what use (purpose, role) exists in the unit group 202. For example, as described above, when the imaging plane 200 (FIG. 7A) is divided into the main subject area 702 and the background area 703, each unit group 202 belongs to the main subject area 702, or It belongs to the area 703.
 つまり、撮像条件情報802は、この動画ファイル600の作成に際し、単位グループ202にたとえば「主要被写体領域を解像度Aで動画撮像する」、「背景領域を解像度Bで動画撮像する」という2種類の用途が存在したこと、並びに、これらの用途ごとに割り当てられた一意な番号を表す情報である。たとえば、1という番号が「主要被写体領域を解像度Aで動画撮像する」用途を、2という番号が「背景領域を解像度Bで動画撮像する」用途にそれぞれ割り当てられる。 That is, when creating the moving image file 600, the imaging condition information 802 uses the unit group 202, for example, “moving image shooting of main subject area at resolution A” and “moving image shooting of background area at resolution B” Is information that represents the unique number assigned to each of these uses. For example, the number 1 is assigned to "use moving image of main subject area at resolution A" and the number 2 is assigned to "use moving image at background B to resolution B".
 マスク情報704は、各々の単位グループ202の用途(目的、役割)を表す情報である。マスク情報704を、「撮像条件情報802に割り当てられた番号を、単位グループ202の位置に合わせて二次元マップの形で表現した情報」としている。つまり、二次元状に配列された単位グループ202を2つの整数x、yによる二次元座標(x、y)で特定するとき、(x、y)の位置に存在する単位グループ202の用途は、マスク情報704の(x、y)の位置に存在する番号により表現される。 The mask information 704 is information representing the use (purpose, role) of each unit group 202. The mask information 704 is “information represented by a number assigned to the imaging condition information 802 in the form of a two-dimensional map in accordance with the position of the unit group 202”. That is, when the two-dimensional array of unit groups 202 is specified by two integers x and y at two-dimensional coordinates (x, y), the use of the unit group 202 at the position of (x, y) is It is expressed by the number existing at the position (x, y) of the mask information 704.
 たとえば、マスク情報704の座標(3,5)の位置に「1」という番号が入っていた場合、座標(3,5)に位置する単位グループ202には、「主要被写体領域を撮像する」という用途が与えられたことがわかる。換言すると、座標(3,5)に位置する単位グループ202は、主要被写体領域702に属することがわかる。 For example, if the position of coordinates (3, 5) of the mask information 704 contains a number “1”, the unit group 202 located at the coordinates (3, 5) is “image main subject area” It can be seen that the application has been given. In other words, it can be understood that the unit group 202 located at the coordinates (3, 5) belongs to the main subject region 702.
 なお、マスク情報704はフレームごとに変化する動的情報なので、フレームごと、すなわち、後述するデータブロックBiごとに圧縮処理中に記録される(不図示)。 Since the mask information 704 is dynamic information that changes for each frame, it is recorded during compression processing for each frame, that is, for each data block Bi described later (not shown).
 データ部602には、フレームF(F1~Fn)ごとにデータブロックB1~Bnが撮像順に動画データとして格納される。データブロックBi(iは1≦i≦nの整数)は、マスク情報704と、画像情報811と、Tv値マップ812と、Sv値マップ813と、Bv値マップ814と、Av値情報815と、音声情報816と、付加情報817とを含む。 In the data unit 602, data blocks B1 to Bn are stored as moving image data in the order of imaging for each frame F (F1 to Fn). Data block Bi (i is an integer of 1 ≦ i ≦ n) includes mask information 704, image information 811, Tv value map 812, Sv value map 813, Bv value map 814, and Av value information 815, Audio information 816 and additional information 817 are included.
 画像情報811は、図7の(c)の撮像により撮像素子100から出力された撮像信号を、種々の画像処理を施す前の形で記録した情報であり、いわゆるRAW画像データである。 The image information 811 is information obtained by recording an image pickup signal output from the image pickup element 100 by the image pickup of FIG. 7C in a form before performing various image processing, and is so-called RAW image data.
 Tv値マップ812は、単位グループ202ごとに設定されたシャッタースピードを表すTv値を、単位グループ202の位置に合わせて二次元マップの形で表現した情報である。たとえば座標(x、y)に位置する単位グループ202に設定されたシャッタースピードは、Tv値マップ812の座標(x、y)に格納されているTv値を調べることで判別可能である。 The Tv value map 812 is information in which a Tv value representing a shutter speed set for each unit group 202 is represented in the form of a two-dimensional map in accordance with the position of the unit group 202. For example, the shutter speed set to the unit group 202 located at the coordinates (x, y) can be determined by examining the Tv value stored at the coordinates (x, y) of the Tv value map 812.
 Sv値マップ813は、単位グループ202ごとに設定されたISO感度を表すSv値を、Tv値マップ812と同様に二次元マップの形で表現した情報である。 The Sv value map 813 is information in which the Sv value representing the ISO sensitivity set for each unit group 202 is expressed in the form of a two-dimensional map, similarly to the Tv value map 812.
 Bv値マップ814は、図7の(c)の撮像に際して単位グループ202ごとに測定された被写体輝度、すなわち、各々の単位グループ202に入射した被写体光の輝度を表すBv値を、Tv値マップ812と同様に二次元マップの形で表現した情報である。 The Bv value map 814 is a Tv value map 812 for the subject brightness measured for each unit group 202 at the time of imaging in FIG. 7C, that is, the Bv value representing the brightness of the subject light incident on each unit group 202. And is information expressed in the form of a two-dimensional map.
 Av値情報815は、図7の(c)の撮像時の絞り値を表す情報である。Av値は、Tv値、Sv値、Bv値とは異なり、単位グループ202ごとに存在する値ではない。従って、Tv値、Sv値、Bv値とは違い、Av値は単一の値のみが格納され、複数の値を二次元状にマップした情報とはなっていない。 The Av value information 815 is information representing the aperture value at the time of imaging in (c) of FIG. 7. Unlike the Tv value, the Sv value, and the Bv value, the Av value is not a value that exists for each unit group 202. Therefore, unlike the Tv value, the Sv value, and the Bv value, only a single value of the Av value is stored, and the information is not information obtained by mapping a plurality of values in a two-dimensional manner.
 音声情報816は、動画再生を行いやすいように、1フレーム分の情報ごとに分割され、データブロックBiと多重化されてデータ部602に格納されている。なお、音声情報816の多重化は、1フレーム分でなく、所定数のフレーム分ごとに行ってもよい。なお、音声情報816は、必ずしも含まれている必要はない。 The audio information 816 is divided into information of one frame, easily multiplexed with the data block Bi, and stored in the data unit 602 so as to facilitate moving image reproduction. The audio information 816 may be multiplexed not for one frame but for a predetermined number of frames. Note that the voice information 816 does not necessarily have to be included.
 付加情報817は、図7の(c)の撮像に際して単位グループ202ごとに設定された解像度を二次元マップの形で表現した情報である。なお、付加情報817については、フレームFに保持させてもよいが、後述するプロセッサ1001のキャッシュメモリに保持してもよい。特にリアルタイムで圧縮処理を実行する場合は、高速処理の観点からキャッシュメモリを利用するのが好ましい。 The additional information 817 is information representing, in the form of a two-dimensional map, the resolution set for each unit group 202 at the time of imaging in (c) of FIG. 7. The additional information 817 may be held in the frame F, but may be held in a cache memory of the processor 1001 described later. In particular, when performing compression processing in real time, it is preferable to use a cache memory from the viewpoint of high-speed processing.
 以上のように、制御部502は、このような動画撮像機能による撮像を行うことにより、単位グループ202ごとに撮像条件が設定可能な撮像素子100により生成された画像情報811と、単位グループ202ごとの撮像条件に関するデータ(撮像条件情報802、マスク情報704、Tv値マップ812、Sv値マップ813、Bv値マップ814など)とが関連付けられた動画ファイル600を、メモリカード504に記録する。 As described above, the control unit 502 performs image pickup with such a moving image pickup function, and thereby, the image information 811 generated by the image pickup element 100 in which the image pickup condition can be set for each unit group 202, and A moving image file 600 associated with data relating to the imaging conditions (imaging condition information 802, mask information 704, Tv value map 812, Sv value map 813, Bv value map 814, etc.) is recorded in the memory card 504.
 <異なる解像度が設定された撮像面200での撮像例>
 つぎに、異なる解像度が設定された撮像面200での撮像例について説明する。本実施例の動画圧縮装置は、撮像素子100の出力から生成された複数のフレームを含む動画データを圧縮する。撮像素子100は、異なる解像度が設定可能な複数の撮像領域を有する。具体的には、たとえば、撮像素子100は、上記設定により、第1解像度で被写体を撮像する第1撮像領域と、第1解像度と異なる第2解像度で被写体を撮像する第2撮像領域と、を有する。
<Imaging Example on Imaging Surface 200 with Different Resolutions Set>
Next, an imaging example on the imaging surface 200 in which different resolutions are set will be described. The moving picture compression apparatus of the present embodiment compresses moving picture data including a plurality of frames generated from the output of the imaging device 100. The imaging element 100 has a plurality of imaging areas in which different resolutions can be set. Specifically, for example, according to the above setting, the imaging element 100 includes a first imaging area for imaging an object at a first resolution and a second imaging area for imaging an object at a second resolution different from the first resolution. Have.
 このように、本実施例では、撮像面200に異なる解像度の撮像領域が設定されるため、出力されるフレームも異なる解像度で表現される。したがって、動画圧縮装置は、解像度ごとに異なるフレーム内予測を適用して、フレームを圧縮する。これにより、フレーム内の低解像度の画像領域については、高解像度の画像領域に比べて大幅な圧縮が可能となり、圧縮処理の負荷低減を図ることができる。 As described above, in the present embodiment, since imaging regions of different resolutions are set in the imaging surface 200, the frames to be output are also expressed with different resolutions. Therefore, the video compression apparatus applies different intra-frame prediction for each resolution to compress a frame. As a result, the low resolution image area in the frame can be significantly compressed compared to the high resolution image area, and the load on the compression processing can be reduced.
 図9は、異なる解像度が設定された撮像面200での撮像例を示す説明図である。図9では、一例として、撮像面200に2種類の解像度A,Bが設定されるものとする。解像度Aは解像度Bよりも高解像度とする。たとえば、解像度Aの場合、撮像素子は、解像度Aの撮像領域901Aについては、その16×16画素を、16×16画素の画像領域910Aで出力する。一方、解像度Bの場合、撮像素子100は、解像度Bの撮像領域901Bについては、その16×16画素を間引きして、1×1画素の画像領域910bで出力する。なお、解像度A,Bについては、上記限定されず、解像度Aが解像度Bよりも高解像度であればよい。 FIG. 9 is an explanatory view showing an imaging example on the imaging plane 200 in which different resolutions are set. In FIG. 9, two types of resolutions A and B are set on the imaging surface 200 as an example. Resolution A is higher than resolution B. For example, in the case of resolution A, the imaging device outputs 16 × 16 pixels of the imaging region 901A of resolution A in an image region 910A of 16 × 16 pixels. On the other hand, in the case of the resolution B, the imaging device 100 thins out the 16 × 16 pixels of the imaging region 901B of the resolution B and outputs the thinned image in the image region 910b of 1 × 1 pixel. The resolutions A and B are not limited to the above, and the resolution A may be higher than the resolution B.
 動画圧縮装置は、撮像素子100から出力されたフレームFのうち、解像度Aの画像領域910Aについては、16×16画素のブロックを、4×4画素の16個のブロックに分割して、いわゆる4×4予測を実行する。16個のブロックの各々は4×4画素であるため、4×4予測では、4×4画素が予測処理単位となる。 The moving picture compression apparatus divides a block of 16 × 16 pixels into 16 blocks of 4 × 4 pixels in the image area 910A of resolution A in the frame F output from the imaging device 100, X4 Perform prediction. Since each of the 16 blocks is 4 × 4 pixels, 4 × 4 pixels are the prediction processing unit in 4 × 4 prediction.
 また、動画圧縮装置は、撮像素子100から出力されたフレームFのうち、解像度Bの画像領域910bについては、出力された1画素の画像領域910bを欠損領域910cにコピーして16×16画素のブロックとなる画像領域910Bを生成した上で、いわゆる16×16予測を実行する。このようにコピーで生成されたブロックは、16×16画素の1個のブロックであるため、16×16予測では、16×16画素が予測処理単位となる。 Also, the moving picture compression apparatus copies the image area 910b of one pixel output to the defect area 910c for the image area 910b of resolution B in the frame F output from the imaging element 100 and After generating an image area 910B to be a block, so-called 16 × 16 prediction is performed. Since the block generated by copying in this way is one block of 16 × 16 pixels, in 16 × 16 prediction, 16 × 16 pixels become a prediction processing unit.
 なお、いずれの予測も、フレームFの左上ブロックから右方向(白い太矢印)に走査され、右端ブロックに到達すると、1ブロック下方にシフトして、左端ブロックから右端ブロックに走査されるものとする(ラスタスキャン)。 In both predictions, scanning is performed rightward (white thick arrow) from the upper left block of frame F, and when reaching the right end block, it is shifted downward by one block and scanned from the left end block to the right end block (Raster scan).
 16×16予測は、4×4予測に比べて、予測方向の符号化に必要なビット数が少ないため、動画圧縮装置は、解像度Bの画像領域については、解像度Aの画像領域に比べて圧縮率の向上を図ることができる。すなわち、フレームFの全画像領域を4×4予測するよりも、圧縮率の向上および圧縮処理の処理負荷低減を図ることができる。なお、画像領域910Aおよび画像領域910Bについては、以降、それぞれ、ブロック910A、ブロック910Bと称する場合がある。 Since the 16 × 16 prediction requires fewer bits for encoding in the prediction direction than the 4 × 4 prediction, the moving image compression apparatus compresses the image area of resolution B as compared to the image area of resolution A. Rate can be improved. That is, rather than 4 × 4 prediction of the entire image area of the frame F, it is possible to improve the compression rate and reduce the processing load of the compression process. The image area 910A and the image area 910B may be hereinafter referred to as a block 910A and a block 910B, respectively.
 図10は、16×16予測の予測例を示す説明図である。(a)はモード0(垂直予測)、(b)はモード1(水平予測)、(c)はモード2(平均値予測)、(d)はモード3(平面予測)を示す。予測対象となる16×16画素のブロックを対象ブロック1000と称す。 FIG. 10 is an explanatory view showing a prediction example of 16 × 16 prediction. (A) shows mode 0 (vertical prediction), (b) shows mode 1 (horizontal prediction), (c) shows mode 2 (average value prediction), and (d) shows mode 3 (planar prediction). A block of 16 × 16 pixels to be predicted is referred to as a target block 1000.
 (a)モード0は、対象ブロック1000の上に隣接する同一解像度の予測済みブロックが存在し、かつ、左に隣接する同一解像度の予測済みブロックが存在しない場合に適用される。 (A) Mode 0 is applied when there is a predicted block of the same resolution adjacent to the target block 1000 and no predicted block of the same resolution adjacent to the left.
 (b)モード1は、対象ブロック1000の左に隣接する同一解像度の予測済みブロックが存在し、かつ、上に隣接する同一解像度の予測済みブロックが存在しない場合に適用される。 (B) Mode 1 is applied when there is a predicted block of the same resolution adjacent to the left of the target block 1000 and there is no predicted block of the same resolution adjacent to the top.
 (c)モード2は、対象ブロック1000の上および左に隣接する同一解像度の予測済みブロックが存在する場合に適用される。 (C) Mode 2 is applied when there is a predicted block of the same resolution adjacent above and to the left of the target block 1000.
 (d)モード3も、対象ブロック1000の上および左に隣接する同一解像度の予測済みブロックが存在する場合に適用される。モード2およびモード3のいずれを適用するかは、あらかじめ設定されていてもよく、ユーザが操作部505を操作することにより設定してもよい。 (D) Mode 3 is also applied when there is a predicted block of the same resolution adjacent above and to the left of the target block 1000. Which one of the mode 2 and the mode 3 is to be applied may be set in advance, or may be set by the user operating the operation unit 505.
 図11は、4×4予測の予測例を示す説明図である。(a)はモード0(垂直予測)、(b)はモード1(水平予測)、(c)はモード2(平均値予測)、(d)はモード3(斜め左下予測)、(e)はモード4(斜め右下予測)、(f)はモード5(垂直右予測)、(g)はモード6(水平下予測)、(h)はモード7(垂直左予測)、(i)はモード8(水平上予測)を示す。予測対象となる4×4画素のブロックを対象ブロック1100と称す。 FIG. 11 is an explanatory view showing a prediction example of 4 × 4 prediction. (A) mode 0 (vertical prediction), (b) mode 1 (horizontal prediction), (c) mode 2 (average value prediction), (d) mode 3 (diagonal left lower prediction), (e) Mode 4 (diagonal lower right prediction), (f) mode 5 (vertical right prediction), (g) mode 6 (horizontal lower prediction), (h) mode 7 (vertical left prediction), (i) mode 8 (horizontal upper prediction) is shown. A block of 4 × 4 pixels to be predicted is referred to as a target block 1100.
 (a)モード0は、対象ブロック1100の上に隣接する同一解像度の予測済みブロックが存在し、かつ、左に隣接する同一解像度の予測済みブロックが存在しない場合に適用される。 (A) Mode 0 is applied when there is a predicted block of the same resolution adjacent to the target block 1100 and no predicted block of the same resolution adjacent to the left.
 (b)モード1および(i)モード8は、対象ブロック1100の左に隣接する同一解像度の予測済みブロックが存在し、かつ、上に隣接する同一解像度の予測済みブロックが存在しない場合に適用される。モード1およびモード8のいずれを適用するかは、あらかじめ設定されていてもよく、ユーザが操作部505を操作することにより設定してもよい。 (B) Mode 1 and (i) Mode 8 is applied when there is a predicted block of the same resolution adjacent to the left of the target block 1100 and there is no predicted block of the same resolution adjacent above. Ru. Which one of the mode 1 and the mode 8 is applied may be set in advance, or may be set by the user operating the operation unit 505.
 (c)モード2、(e)モード4、(f)モード5、および(g)モード6は、対象ブロック1100の上および左に隣接する同一解像度の予測済みブロックが存在する場合に適用される。モード2、モード4、モード5およびモード6のいずれを適用するかは、あらかじめ設定されていてもよく、ユーザが操作部505を操作することにより設定してもよい。 (C) mode 2, (e) mode 4, (f) mode 5 and (g) mode 6 are applied when there is a predicted block of the same resolution adjacent to the top and left of the target block 1100 . Which one of mode 2, mode 4, mode 5 and mode 6 is to be applied may be set in advance, or may be set by the user operating the operation unit 505.
 (d)モード3および(h)モード7は、対象ブロック1100の上および右上に隣接する同一解像度の予測済みブロックが存在する場合に適用される。モード3およびモード7のいずれを適用するかは、あらかじめ設定されていてもよく、ユーザが操作部505を操作することにより設定してもよい。 (D) Mode 3 and (h) Mode 7 are applied when there is a predicted block of the same resolution adjacent on the upper and upper right of the target block 1100. Which one of the mode 3 and the mode 7 is to be applied may be set in advance, or may be set by the user operating the operation unit 505.
 <制御部502の構成例>
 図12は、図5に示した制御部502の構成例を示すブロック図である。制御部502は、前処理部1210と、画像処理部1220と、取得部1230と、圧縮部1240と、を有し、プロセッサ1201、メモリ1202、集積回路1203、およびこれらを接続するバス1204により構成される。
<Configuration Example of Control Unit 502>
FIG. 12 is a block diagram showing a configuration example of the control unit 502 shown in FIG. The control unit 502 includes a preprocessing unit 1210, an image processing unit 1220, an acquisition unit 1230, and a compression unit 1240, and is configured by a processor 1201, a memory 1202, an integrated circuit 1203, and a bus 1204 connecting these. Be done.
 前処理部1210、画像処理部1220、取得部1230および圧縮部1240は、メモリ1202に記憶されたプログラムをプロセッサ1201に実行させることにより実現してもよく、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)などの集積回路1203により実現してもよい。また、プロセッサ1201は、メモリ1202をワークエリアとして利用してもよい。また、集積回路1203は、メモリ1202を、画像データを含む各種データを一時的に保持するバッファとして利用してもよい。 The preprocessing unit 1210, the image processing unit 1220, the acquisition unit 1230, and the compression unit 1240 may be realized by causing the processor 1201 to execute a program stored in the memory 1202, and may be realized by an application specific integrated circuit (ASIC) or an FPGA (FPGA). It may be realized by an integrated circuit 1203 such as a field-programmable gate array). Also, the processor 1201 may use the memory 1202 as a work area. The integrated circuit 1203 may use the memory 1202 as a buffer that temporarily holds various data including image data.
 前処理部1210は、撮像素子100からの複数のフレームFを含む動画データについて画像処理部1220による画像処理の前処理を実行する。具体的には、たとえば、前処理部1210は、撮像素子100から動画データ(ここでは、RAW画像データの集合)が入力されると、周知の被写体検出技術により、主要被写体のような特定被写体を検出する。 The preprocessing unit 1210 executes preprocessing of image processing by the image processing unit 1220 on moving image data including a plurality of frames F from the imaging element 100. Specifically, for example, when moving image data (here, a set of RAW image data) is input from the imaging device 100, the preprocessing unit 1210 uses a known object detection technology to identify a specific subject such as a main subject. To detect.
 たとえば、撮像面200全域にわたって解像度Bが設定されている場合、主要被写体などの特定被写体が検出されて撮像されると、前処理部1210は、特定被写体を撮像した撮像素子100の撮像領域を解像度Aにするように撮像素子100に出力する。これにより、当該特定被写体の撮像領域が解像度Aに設定され、それ以外の撮像領域が解像度Bに設定される。 For example, in the case where resolution B is set over the entire imaging surface 200, when a specific subject such as a main subject is detected and imaged, the preprocessing unit 1210 resolves the imaging area of the imaging element 100 which images the specific subject. The image is output to the image sensor 100 so as to be A. As a result, the imaging area of the specific subject is set to the resolution A, and the other imaging areas are set to the resolution B.
 また、前処理部1210は、具体的には、たとえば、入力フレームでの特定被写体が検出された撮像領域と入力済みフレームの特定被写体が検出された撮像領域との差分から特定被写体の動きベクトルを検出して、次の入力フレームでの特定被写体の撮像領域を特定してもよい。この場合、前処理部900は、特定した撮像領域について解像度Aに変更する指示を撮像素子100に出力する。これにより、当該特定被写体の撮像領域が解像度Aに設定され、それ以外の撮像領域が解像度Bに設定される。 Further, specifically, the preprocessing unit 1210 calculates, for example, the motion vector of the specific subject from the difference between the imaging area where the specific subject in the input frame is detected and the imaging area where the specific subject in the input completed frame is detected. It is possible to detect and specify an imaging region of a specific subject in the next input frame. In this case, the preprocessing unit 900 outputs, to the imaging element 100, an instruction to change the identified imaging area to the resolution A. As a result, the imaging area of the specific subject is set to the resolution A, and the other imaging areas are set to the resolution B.
 画像処理部1220は、撮像素子100から入力された動画データについてデモザイク処理やホワイトバランス調整、ノイズリダクション、ディベイヤなどの画像処理を実行する。具体的には、たとえば、画像処理部1220は、デモザイク処理やホワイトバランス調整など既知の画像処理を実行する。また、画像処理部1220は、図9で説明したように、解像度Bの画素から出力された画像領域910bの画像データをコピーして、解像度Bの画像領域910Bを生成する。 The image processing unit 1220 performs image processing such as demosaicing processing, white balance adjustment, noise reduction, and debayering on the moving image data input from the imaging element 100. Specifically, for example, the image processing unit 1220 executes known image processing such as demosaicing processing and white balance adjustment. Further, as described with reference to FIG. 9, the image processing unit 1220 copies the image data of the image area 910 b output from the pixel of resolution B to generate the image area 910 B of resolution B.
 取得部1230は、画像処理部1220から出力された動画データをメモリ1202に保持して、所定のタイミングで動画データに含まれる複数のフレームFを時系列順に1フレームずつ圧縮部1240に出力する。 The acquisition unit 1230 holds the moving image data output from the image processing unit 1220 in the memory 1202, and outputs a plurality of frames F included in the moving image data one frame at a time in chronological order to the compression unit 1240 at a predetermined timing.
 圧縮部1240は、取得部1230から入力された動画データを圧縮する。具体的には、たとえば、圧縮部1240は、たとえば、フレーム間予測およびフレーム内予測によりフレームFを圧縮する。フレーム間予測では、圧縮部1240は、動き補償フレーム間予測(Motion Compensation:MC)と離散コサイン変換(Discrete Cosine Transform:DCT)とに、エントロピー符号化を組み合わせたハイブリッド符号化によってフレームFを圧縮する。フレーム内予測では、圧縮部1240は、図9~図11に示したように、解像度ごとに当該解像度の画像領域910A,910Bを圧縮する。 The compression unit 1240 compresses the moving image data input from the acquisition unit 1230. Specifically, for example, compression section 1240 compresses frame F by inter-frame prediction and intra-frame prediction, for example. In the inter-frame prediction, the compression unit 1240 compresses the frame F by hybrid coding combining entropy coding with motion compensation inter-frame prediction (Motion Compensation: MC) and discrete cosine transform (DCT). . In intra-frame prediction, as shown in FIGS. 9 to 11, the compression unit 1240 compresses the image areas 910A and 910B of the resolution for each resolution.
 なお、制御部502は、撮像素子100からの動画データの圧縮処理をリアルタイム処理で実行してもよいが、バッチ処理で実行してもよい。たとえば、制御部502は、撮像素子100、前処理部1210、または画像処理部1220からの動画データを一旦メモリカード504、DRAM506、またはフラッシュメモリ507に格納しておき、自動的にまたはユーザ操作によるトリガがあった場合に、動画データを読み出して、圧縮部1240に圧縮処理を実行させてもよい。 Note that the control unit 502 may execute compression processing of moving image data from the imaging element 100 in real time processing, or may execute it in batch processing. For example, the control unit 502 temporarily stores moving image data from the imaging device 100, the pre-processing unit 1210, or the image processing unit 1220 in the memory card 504, the DRAM 506, or the flash memory 507, and automatically or by user operation. When there is a trigger, moving image data may be read out and the compression unit 1240 may execute compression processing.
 <圧縮部1240の構成例>
 図13は、圧縮部1240の構成例を示すブロック図である。上述したように、圧縮部1240は、たとえば、フレーム間予測およびフレーム内予測によりフレームFを圧縮する。
<Configuration Example of Compression Unit 1240>
FIG. 13 is a block diagram showing a configuration example of the compression unit 1240. As described above, the compression unit 1240 compresses the frame F by, for example, inter-frame prediction and intra-frame prediction.
 圧縮部1240は、減算部1301と、DCT部1302と、量子化部1303と、エントロピー符号化部1304と、符号量制御部1305と、逆量子化部1306と、逆DCT部1307と、生成部1308と、フレームメモリ1309と、動き検出部1310と、動き補償部1311と、判定部1320と、フレーム内予測処理部1330と、を有する。減算部1301~動き補償部1311、判定部1320は、既存の圧縮器と同様な構成である。また、DCT部1302、量子化部1303、エントロピー符号化部1304、および符号量制御部1305を、符号化部1340とする。 The compression unit 1240 includes a subtraction unit 1301, a DCT unit 1302, a quantization unit 1303, an entropy coding unit 1304, a code amount control unit 1305, an inverse quantization unit 1306, an inverse DCT unit 1307, and a generation unit. A frame memory 1309, a motion detection unit 1310, a motion compensation unit 1311, a determination unit 1320, and an intra-frame prediction processing unit 1330 are included. The subtractor unit 1301 to the motion compensation unit 1311 and the determination unit 1320 have the same configuration as the existing compressor. Further, the DCT unit 1302, the quantization unit 1303, the entropy coding unit 1304, and the code amount control unit 1305 are referred to as a coding unit 1340.
 減算部1301は、入力フレームから、当該入力フレームを予測する動き補償部1311からの予測フレームを減算して差分データを出力する。DCT部1302は、減算部1301からの差分データを離散コサイン変換する。 The subtracting unit 1301 subtracts the prediction frame from the motion compensating unit 1311 that predicts the input frame from the input frame, and outputs difference data. The DCT unit 1302 performs discrete cosine transform on the difference data from the subtracting unit 1301.
 量子化部1303は、離散コサイン変換された差分データを量子化する。エントロピー符号化部1304は、量子化された差分データをエントロピー符号化し、また、動き検出部1310からの動きベクトルもエントロピー符号化する。 The quantization unit 1303 quantizes the discrete cosine transformed difference data. The entropy coding unit 1304 entropy codes the quantized difference data, and also entropy codes the motion vector from the motion detection unit 1310.
 符号量制御部1305は、量子化部1303による量子化を制御する。逆量子化部1306は、量子化部1303で量子化された差分データを逆量子化して、離散コサイン変換された差分データにする。逆DCT部1307は、逆量子化された差分データを逆離散コサイン変換する。 The code amount control unit 1305 controls the quantization by the quantization unit 1303. The inverse quantization unit 1306 inversely quantizes the difference data quantized by the quantization unit 1303 to obtain discrete cosine transformed difference data. The inverse DCT unit 1307 inverse discrete cosine transforms the dequantized difference data.
 生成部1308は、逆離散コサイン変換された差分データと、動き補償部1311からの予測フレームとを加算して、当該入力フレームよりも時間的に後に入力されるフレームが参照する参照フレームを生成する。フレームメモリ1309は、生成部1308から得られた参照フレームを保持する。 The generation unit 1308 adds the inverse discrete cosine transformed difference data and the prediction frame from the motion compensation unit 1311 to generate a reference frame to which a frame input temporally after the input frame refers. . The frame memory 1309 holds the reference frame obtained from the generation unit 1308.
 動き検出部1310は、入力フレームと参照フレームとを用いて、たとえば、ブロックマッチングにより動きベクトルを検出する。動き補償部1311は、参照フレームと動きベクトルとを用いて、予測フレームを生成する。具体的には、たとえば、動き補償部1311は、フレームメモリ1309に保持された複数の参照フレームのうち特定の参照フレームと動きベクトルとを用いて、動き補償を実行する。 The motion detection unit 1310 detects a motion vector by block matching, for example, using the input frame and the reference frame. The motion compensation unit 1311 generates a predicted frame using the reference frame and the motion vector. Specifically, for example, the motion compensation unit 1311 performs motion compensation using a specific reference frame and a motion vector among the plurality of reference frames stored in the frame memory 1309.
 参照フレームを特定の参照フレームとすることにより、特定の参照フレーム以外の他の参照フレームをも用いた高負荷の動き補償を抑制することができる。また、特定の参照フレームを、入力フレームの時間的に1つ前のフレームから得られた1枚の参照フレームとすることにより、高負荷な動き補償を回避して、動き補償の処理負荷の低減を図ることができる。 By making the reference frame a specific reference frame, it is possible to suppress high-load motion compensation using another reference frame other than the specific reference frame. Also, by setting a specific reference frame as one reference frame obtained from the temporally previous frame of the input frame, heavy processing of motion compensation is avoided, and processing load on motion compensation is reduced. Can be
 上述した減算部1301、逆量子化部1306、逆DCT部1307、生成部1308、フレームメモリ1309、動き検出部1310、および動き補償部1311により、フレーム間予測が実現される。 The inter-frame prediction is realized by the subtraction unit 1301, the inverse quantization unit 1306, the inverse DCT unit 1307, the generation unit 1308, the frame memory 1309, the motion detection unit 1310, and the motion compensation unit 1311 described above.
 判定部1320は、入力フレームと、減算部1301からの差分データと、を用いて、フレーム内予測およびフレーム間予測のいずれを選択した方が効率的であるかを判定して、フレーム内予測およびフレーム間予測のいずれか一方の予測を選択する。フレーム内予測が選択された場合、判定部1320は、入力フレームをフレーム内予測処理部1330に出力する。また、判定部1320は、Iピクチャの挿入タイミングでフレーム内予測を選択してもよい。一方、フレーム間予測が選択された場合、判定部1320は、差分データをDCT部1302に出力する。 The determination unit 1320 uses the input frame and the difference data from the subtraction unit 1301 to determine which of intra-frame prediction and inter-frame prediction is more efficient to select, thereby performing intra-frame prediction and intra-frame prediction. Select one of the inter-frame predictions. If intra-frame prediction is selected, the determination unit 1320 outputs the input frame to the intra-frame prediction processing unit 1330. Further, the determination unit 1320 may select intra-frame prediction at the insertion timing of the I picture. On the other hand, when inter-frame prediction is selected, determination section 1320 outputs differential data to DCT section 1302.
 フレーム内予測処理部1330は、入力フレームをフレーム内予測する。フレーム内予測処理部1330は、設定部1331と、予測部1332と、を有する。設定部1331は、複数のフレームのうち予測対象フレームにおける複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、予測対象画像領域を予測する予測処理単位を設定する。 The intraframe prediction processing unit 1330 performs intraframe prediction of an input frame. The in-frame prediction processing unit 1330 includes a setting unit 1331 and a prediction unit 1332. The setting unit 1331 sets a prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames. Do.
 予測対象フレームとは、圧縮部1240に入力されて圧縮処理の対象となる入力フレームである。撮像領域とは、撮像素子100における所定画素数の画素の領域であり、たとえば、図9の例では、16×16画素を1つの撮像領域とする。なお、撮像領域の大きさは、16×16画素に限らず、単位グループ202(本例では、一例として4×4画素)の整数倍であればよい。図9の例では、解像度Aの撮像領域901Aは4個であり、解像度Bの撮像領域901Bは、21個である。 The prediction target frame is an input frame which is input to the compression unit 1240 and is a target of compression processing. The imaging area is an area of pixels having a predetermined number of pixels in the imaging device 100. For example, in the example of FIG. 9, 16 × 16 pixels are taken as one imaging area. The size of the imaging area is not limited to 16 × 16 pixels, and may be an integral multiple of the unit group 202 (in this example, 4 × 4 pixels as an example). In the example of FIG. 9, the number of imaging areas 901A of resolution A is four, and the number of imaging areas 901B of resolution B is twenty-one.
 画像領域は、撮像領域に対応するフレームFにおける画素データの領域である。すなわち、撮像領域で撮像された被写体が、画像領域で画像データ(画素データの集合)として表現される。図9の例では、解像度Aの画像領域910Aは、撮像領域901Aに対応し、解像度Bの画像領域910Bは、撮像領域901Bに対応する。図9の例では、解像度Aの画像領域910Aは4個であり、解像度Bの画像領域910Bは、21個である。 The image area is an area of pixel data in the frame F corresponding to the imaging area. That is, the subject imaged in the imaging area is expressed as image data (set of pixel data) in the image area. In the example of FIG. 9, the image area 910A of resolution A corresponds to the imaging area 901A, and the image area 910B of resolution B corresponds to the imaging area 901B. In the example of FIG. 9, the number of image areas 910A of resolution A is four, and the number of image areas 910B of resolution B is twenty-one.
 予測対象画像領域は、フレームF内の複数の画像領域のうち、まだ予測されておらず、今回予測対象となる画像領域である。本例では、4×4予測および16×16予測のいずれの予測も、フレームFの左上ブロックから右方向に走査され、右端ブロックに到達すると、1ブロック下方にシフトして、左端ブロックから右端ブロックに走査されるラスタスキャンが適用される。 The prediction target image area is an image area which has not been predicted yet and is to be currently predicted among the plurality of image areas in the frame F. In this example, any prediction of 4 × 4 prediction and 16 × 16 prediction is scanned from the upper left block of frame F to the right, and when it reaches the right end block, it is shifted downward by one block to the right end block from the left end block A raster scan is applied which is scanned to.
 したがって、予測対象画像領域と同一行でかつ左側に位置する同一解像度の画像領域や、予測対象画像領域よりも上の行の同一解像度の画像領域が予測済みの画像領域(上述した予測済みブロック)となる。フレーム内予測であるため、予測対象画像領域と予測済みの画像領域は、近い方が好ましい。たとえば、予測済みの画像領域として最も好ましいのは、予測対象画像領域の隣接画像領域である。 Therefore, an image area having the same resolution as the prediction target image area and having the same resolution located on the left side, or an image area having the same resolution image area in the row above the prediction target image area has already been predicted (the above-described predicted block) It becomes. Since intra-frame prediction is performed, it is preferable that the prediction target image region and the predicted image region be closer. For example, the most preferable image region as a predicted image region is an adjacent image region of a prediction target image region.
 予測処理単位は、予測対象画像領域を予測する処理単位であり、図10および図11に示した対象ブロック1000,1100である。4×4予測の場合、16×16画素の予測対象領域が16個のブロックに分割される。16個のブロックの各々は4×4画素であるため、4×4予測では、4×4画素が予測処理単位となる。16×16予測の場合、16×16画素の予測対象領域は1個のブロックである。このブロックは16×16画素であるため、16×16予測では、16×16画素が予測処理単位となる。すなわち、解像度が高くなるほど予測処理単位が小さくなり、解像度が低くなるほど予測処理単位が大きくなる。 The prediction processing unit is a processing unit for predicting a prediction target image area, and is the target blocks 1000 and 1100 shown in FIG. 10 and FIG. In the case of 4 × 4 prediction, a 16 × 16 pixel prediction target area is divided into 16 blocks. Since each of the 16 blocks is 4 × 4 pixels, 4 × 4 pixels are the prediction processing unit in 4 × 4 prediction. In the case of 16 × 16 prediction, a 16 × 16 pixel prediction target area is one block. Since this block is 16 × 16 pixels, in 16 × 16 prediction, 16 × 16 pixels become a prediction processing unit. That is, the higher the resolution, the smaller the prediction processing unit, and the lower the resolution, the larger the prediction processing unit.
 予測部1332は、設定部1331によって設定された予測処理単位に基づいて、予測対象画像領域を予測する。具体的には、たとえば、予測部1332は、予測処理単位が16×16画素である場合、図10に示したように、16×16予測を実行し、予測処理単位が4×4画素である場合、図11に示したように、4×4予測を実行する。予測部1332は、予測結果を符号化部1340のDCT部1302に出力する。なお、そのまま外部に出力してもよい。 The prediction unit 1332 predicts a prediction target image region based on the prediction processing unit set by the setting unit 1331. Specifically, for example, when the prediction processing unit is 16 × 16 pixels, the prediction unit 1332 performs 16 × 16 prediction as shown in FIG. 10, and the prediction processing unit is 4 × 4 pixels. In the case, as shown in FIG. 11, 4 × 4 prediction is performed. The prediction unit 1332 outputs the prediction result to the DCT unit 1302 of the coding unit 1340. The output may be output as it is.
 <前処理手順例>
 図14は、前処理部1210による前処理手順例を示すフローチャートである。図14では、撮像素子100には、あらかじめ解像度Bが設定されており、前処理部1210の被写体検出技術により解像度Aの画像領域を追尾して、撮像素子100にフィードバックする例を説明する。なお、解像度A,Bの画像領域は、常時固定でもよい。
<Example of pre-processing procedure>
FIG. 14 is a flowchart illustrating an example of a preprocessing procedure by the preprocessing unit 1210. In FIG. 14, the resolution B is set in advance in the imaging device 100, and an example in which the image area of the resolution A is tracked by the subject detection technology of the preprocessing unit 1210 and fed back to the imaging device 100 will be described. The image areas of resolutions A and B may be fixed at all times.
 前処理部1210は、動画データを構成するフレームFの入力を待ち受け(ステップS1401:No)、フレームFが入力された場合(ステップS1401:Yes)、検出部により主要被写体などの特定被写体が検出されたか否かを判断する(ステップS1402)。特定被写体が検出されていない場合(ステップS1402:No)、ステップS1401に移行する。 The preprocessing unit 1210 waits for the input of the frame F constituting the moving image data (step S1401: No), and when the frame F is input (step S1401: Yes), the detection unit detects a specific subject such as a main subject. It is determined whether or not it is (step S1402). When the specific subject is not detected (step S1402: No), the process proceeds to step S1401.
 一方、特定被写体が検出された場合(ステップS1402:Yes)、前処理部1210は、時間的に1つ前のフレーム(たとえば、参照フレーム)と入力フレームとを比較して動きベクトルを検出し、次の入力フレームでの解像度Aの画像領域を予測し、撮像素子100に出力し(ステップS1403)、ステップS1401に移行する。これにより、撮像素子100は、予測された画像領域に対応する撮像領域を構成する単位グループ202の解像度を解像度Aに設定し、残余の単位グループ202の解像度を解像度Bに設定して、被写体を撮像する。 On the other hand, when the specific subject is detected (step S1402: YES), the preprocessing unit 1210 compares the temporally previous frame (for example, a reference frame) with the input frame to detect a motion vector, An image area of resolution A in the next input frame is predicted and output to the imaging device 100 (step S1403), and the process proceeds to step S1401. Thereby, the imaging device 100 sets the resolution of the unit group 202 constituting the imaging area corresponding to the predicted image area to the resolution A, sets the resolution of the remaining unit groups 202 to the resolution B, and sets the object. Take an image.
 そして、ステップS1401に戻る。フレームが入力されず(ステップS1401:No)、動画データを構成する全フレームの入力が終了した場合、一連の処理を終了する。 Then, the process returns to step S1401. When the frame is not input (step S1401: No) and the input of all the frames constituting the moving image data is completed, the series of processing is ended.
 <画像処理手順例>
 図15は、画像処理部1220による画像処理手順例を示すフローチャートである。図15では、上述した解像度Bの画像領域910bの画像データを複製する処理に着目して説明する。画像処理部1220は、フレームFが入力された場合(ステップS1501:Yes)、フレームに未選択ブロックがあるか否かを判断する(ステップS1502)。ブロックは、例として16×16画素の画像領域とする。未選択ブロックは、ステップS1503でまだ選択されていないブロックである。
<Example of image processing procedure>
FIG. 15 is a flowchart showing an example of the image processing procedure by the image processing unit 1220. In FIG. 15, the process of copying the image data of the image area 910b of the resolution B described above will be described. If the frame F is input (step S1501: YES), the image processing unit 1220 determines whether there is an unselected block in the frame (step S1502). The block is an image area of 16 × 16 pixels as an example. Unselected blocks are blocks that have not been selected in step S1503.
 未選択ブロックがある場合(ステップS1502:Yes)、画像処理部1220は、未選択ブロックを1つ選択する(ステップS1503)。選択されたブロックを選択ブロックと称す。画像処理部1220は、選択ブロックの解像度が解像度Bであるか否かを判断する(ステップS1504)。具体的には、たとえば、画像処理部1220は、前処理部1210において撮像素子100の各単位グループ202に設定した解像度の情報を参照して、選択ブロックの解像度を特定することにより判断する。 If there is an unselected block (step S1502: YES), the image processing unit 1220 selects one unselected block (step S1503). The selected block is referred to as a selected block. The image processing unit 1220 determines whether the resolution of the selected block is the resolution B (step S1504). Specifically, for example, the image processing unit 1220 refers to the information of the resolution set in each unit group 202 of the imaging device 100 in the pre-processing unit 1210 to determine the resolution of the selected block by specifying.
 画像処理部1220は、選択ブロックの解像度が解像度Bでない場合(ステップS1504:No)、ステップS1502に戻る。一方、画像処理部1220は、選択ブロックの解像度が解像度Bである場合(ステップS1504:Yes)、選択ブロック内を画像領域910bの画像データで複製して、ブロック910Bを生成して(ステップS1505)、ステップS1502に戻る。 If the resolution of the selected block is not the resolution B (step S1504: NO), the image processing unit 1220 returns to step S1502. On the other hand, if the resolution of the selected block is the resolution B (step S1504: YES), the image processing unit 1220 duplicates the inside of the selected block with the image data of the image area 910b to generate a block 910B (step S1505) , And return to step S1502.
 ステップS1502において、未選択ブロックがない場合(ステップS1502:No)、ステップS1501に戻る。フレームFが入力されず(ステップS1501:No)、動画データを構成する全フレームの入力が終了した場合、一連の処理を終了する。 If there is no unselected block in step S1502 (step S1502: NO), the process returns to step S1501. When the frame F is not input (step S1501: No) and the input of all the frames constituting the moving image data is completed, the series of processing is ended.
 <フレーム内予測処理手順例>
 図16は、フレーム内予測処理部1330によるフレーム内予測処理手順例を示すフローチャートである。フレーム内予測処理部1330は、フレームFが入力された場合(ステップS1601:Yes)、設定部1331により、フレームに未選択ブロックがあるか否かを判断する(ステップS1602)。
<Example of intraframe prediction processing procedure>
FIG. 16 is a flowchart of an example of the intra-frame prediction processing procedure by the intra-frame prediction processing unit 1330. If the frame F is input (step S1601: YES), the intra-frame prediction processing unit 1330 determines, by the setting unit 1331, whether there is an unselected block in the frame (step S1602).
 ブロックは、例として16×16画素の画像領域とする。未選択ブロックがある場合(ステップS1602:Yes)、フレーム内予測処理部1330は、設定部1331により、未選択ブロックを1つ選択し(ステップS1603)、選択ブロックの解像度を判断する(ステップS1604)。具体的には、たとえば、画像処理部1220は、前処理部1210において撮像素子100の各単位グループ202に設定した解像度の情報を参照して、選択ブロックの解像度を特定することにより判断する。 The block is an image area of 16 × 16 pixels as an example. If there is an unselected block (step S1602: YES), the intra-frame prediction processing unit 1330 selects one unselected block using the setting unit 1331 (step S1603), and determines the resolution of the selected block (step S1604) . Specifically, for example, the image processing unit 1220 refers to the information of the resolution set in each unit group 202 of the imaging device 100 in the pre-processing unit 1210 to determine the resolution of the selected block by specifying.
 選択ブロックの解像度が解像度Aである場合(ステップS1604:A)、フレーム内予測処理部1330は、設定部1331により、選択ブロックの予測処理単位を4×4画素に設定する(ステップS1605)。フレーム内予測処理部1330は、予測部1332により、設定した予測処理単位で選択ブロックを分割する(ステップS1606)。この場合、16×16画素の選択ブロックは、4×4画素の16個のブロック(以下、分割ブロック)に分割される。 If the resolution of the selected block is resolution A (step S1604: A), the intra-frame prediction processing unit 1330 sets the prediction processing unit of the selected block to 4 × 4 pixels by the setting unit 1331 (step S1605). The intra-frame prediction processing unit 1330 causes the prediction unit 1332 to divide the selected block in the set prediction processing unit (step S1606). In this case, the selected block of 16 × 16 pixels is divided into 16 blocks of 4 × 4 pixels (hereinafter referred to as divided blocks).
 フレーム内予測処理部1330は、予測部1332により、未分割選択ブロックがあるか否かを判断する(ステップS1607)。未選択分割ブロックがある場合(ステップS1608:Yes)、フレーム内予測処理部1330は、予測部1332により、未選択分割ブロックを1つ選択する(ステップS1608)。そして、フレーム内予測処理部1330は、予測部1332により、選択分割ブロックの予測モードを決定する(ステップS1609)。具体的には、たとえば、図11に示したように、フレーム内予測処理部1330は、予測部1332により、複数の予測モード0~9から適用可能な予測モードを決定する。 The intra-frame prediction processing unit 1330 determines, with the prediction unit 1332, whether there is an undivided selected block (step S1607). If there is an unselected divided block (step S1608: YES), the intra-frame prediction processing unit 1330 causes the prediction unit 1332 to select one unselected divided block (step S1608). Then, the intra-frame prediction processing unit 1330 causes the prediction unit 1332 to determine the prediction mode of the selected divided block (step S1609). Specifically, for example, as shown in FIG. 11, the intra-frame prediction processing unit 1330 determines applicable prediction modes from a plurality of prediction modes 0 to 9 by the prediction unit 1332.
 そして、フレーム内予測処理部1330は、予測部1332により、決定した予測モードで、選択分割ブロックを予測する予測ブロックを生成する(ステップS1610)。生成された予測ブロックが予測部1332の予測結果である。このあと、ステップS1607に戻る。ステップS1607において、未選択分割ブロックがない場合(ステップS1607:No)、ステップS1602に戻る。 Then, the intra-frame prediction processing unit 1330 generates a prediction block for predicting the selected divided block in the prediction mode determined by the prediction unit 1332 (step S1610). The generated prediction block is the prediction result of the prediction unit 1332. Thereafter, the process returns to step S1607. If there is no unselected divided block in step S1607 (step S1607: NO), the process returns to step S1602.
 また、ステップS1604において、選択ブロックの解像度が解像度Bである場合(ステップS1604:B)、フレーム内予測処理部1330は、設定部1331により、選択ブロックの予測処理単位を16×16画素に設定する(ステップS1611)。フレーム内予測処理部1330は、予測部1332により、選択分割ブロックの予測モードを決定する(ステップS1612)。具体的には、たとえば、図10に示したように、フレーム内予測処理部1330は、予測部1332により、複数の予測モード0~3から適用可能な予測モードを決定する。 When the resolution of the selected block is resolution B in step S1604 (step S1604: B), the intra-frame prediction processing unit 1330 sets the prediction processing unit of the selected block to 16 × 16 pixels by the setting unit 1331. (Step S1611). The intra-frame prediction processing unit 1330 causes the prediction unit 1332 to determine the prediction mode of the selected divided block (step S1612). Specifically, for example, as shown in FIG. 10, the intra-frame prediction processing unit 1330 determines an applicable prediction mode from the plurality of prediction modes 0 to 3 by the prediction unit 1332.
 そして、フレーム内予測処理部1330は、予測部1332により、決定した予測モードで、選択分割ブロックを予測する予測ブロックを生成する(ステップS1613)。生成された予測ブロックが予測部1332の予測結果である。このあと、ステップS1602に戻る。ステップS1607において、未選択分割ブロックがない場合(ステップS1607:No)、ステップS1602に戻る。 Then, the intra-frame prediction processing unit 1330 generates a prediction block for predicting the selected divided block in the prediction mode determined by the prediction unit 1332 (step S1613). The generated prediction block is the prediction result of the prediction unit 1332. Thereafter, the process returns to step S1602. If there is no unselected divided block in step S1607 (step S1607: NO), the process returns to step S1602.
 ステップS1602において、未選択ブロックがない場合(ステップS1602:No)、ステップS1601に戻る。ステップS1601において、フレームFが入力されず(ステップS1601:No)、動画データを構成する全フレームの入力が終了した場合、一連の処理を終了する。フレーム内予測処理部1330での予測後のフレームは、符号化部1340に出力される。 If there is no unselected block in step S1602 (step S1602: NO), the process returns to step S1601. If the frame F is not input in step S1601 (step S1601: NO) and input of all the frames constituting the moving image data is completed, the series of processing ends. The frame predicted by the intraframe prediction processing unit 1330 is output to the coding unit 1340.
(1)このように、上述した動画圧縮装置は、異なる解像度が設定可能な複数の撮像領域を有する撮像素子100の出力から生成された複数のフレームを含む動画データを圧縮する動画圧縮装置である。この動画圧縮装置は、設定部1331と予測部1332と符号化部1340とを有する。 (1) As described above, the above-described moving picture compression apparatus is a moving picture compression apparatus that compresses moving picture data including a plurality of frames generated from the output of the imaging device 100 having a plurality of imaging areas in which different resolutions can be set. . The video compression apparatus includes a setting unit 1331, a prediction unit 1332 and an encoding unit 1340.
 設定部1331は、複数のフレームのうち予測対象フレームにおける複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域(たとえば、ブロック910A,910B)の解像度に基づいて、予測対象画像領域を予測する予測処理単位(たとえば、4×4画素、16×16画素)を設定する。予測部1332は、設定部1331によって設定された予測処理単位に基づいて、予測対象画像領域を予測する。符号化部1340は、予測部1332による予測結果を用いて予測対象フレームを符号化する。 The setting unit 1331 selects a prediction target image area based on the resolution of the prediction target image area (for example, blocks 910A and 910B) in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames. The prediction processing unit (for example, 4x4 pixels, 16x16 pixels) which predicts is set. The prediction unit 1332 predicts a prediction target image region based on the prediction processing unit set by the setting unit 1331. The encoding unit 1340 encodes a prediction target frame using the prediction result of the prediction unit 1332.
 これにより、フレーム内予測において、解像度の相違にしたがった予測を部分的に行うことができ、解像度に応じた圧縮処理の最適化を図ることができる。 As a result, in intra-frame prediction, it is possible to partially perform prediction according to the difference in resolution, and it is possible to optimize compression processing according to the resolution.
(2)また、上記(1)の動画圧縮装置では、設定部1331は、予測対象画像領域(たとえば、ブロック910A)の解像度(たとえば、解像度A)が、予測対象画像領域以外の他の画像領域(たとえば、ブロック910B)の解像度(たとえば、解像度B)よりも高い場合、予測対象画像領域を予測する予測処理単位を、他の画像領域を予測する予測処理単位(たとえば、16×16画素)よりも小さい予測処理単位(たとえば、4×4画素)に設定する。 (2) Further, in the moving picture compression apparatus according to (1), the setting unit 1331 sets the resolution (for example, resolution A) of the prediction target image area (for example, block 910A) to another image area other than the prediction target image area. If the resolution is higher than the resolution (for example, the block 910B) (for example, resolution B), the prediction processing unit for predicting the prediction target image area is more than the prediction processing unit for predicting another image area (for example, 16 × 16 pixels) Is set to a smaller prediction processing unit (for example, 4 × 4 pixels).
 これにより、フレームF内の高解像度の画像領域については、低解像度での符号化を適用する必要がなく、低解像度の画像領域に比べて、複雑な画像であっても効率のよい予測結果を得ることができる。 As a result, it is not necessary to apply low-resolution encoding to the high-resolution image area in the frame F, and even if the image is complex compared to the low-resolution image area, efficient prediction results are obtained. You can get it.
(3)また、上記(1)の動画圧縮装置では、設定部1331は、予測対象画像領域(たとえば、ブロック910B)の解像度(たとえば、解像度B)が、予測対象画像領域以外の他の画像領域(たとえば、ブロック910A)の解像度(たとえば、解像度A)よりも低い場合、予測対象画像領域を予測する予測処理単位を、他の画像領域を予測する予測処理単位(たとえば、4×4画素)よりも大きい予測処理単位(たとえば、16×16画素)に設定する。 (3) Further, in the moving picture compression apparatus of (1), the setting unit 1331 sets the resolution (for example, resolution B) of the prediction target image area (for example, block 910B) to another image area other than the prediction target image area. If the resolution (for example, the resolution A) of the block 910A is lower than the resolution (for example, resolution A), the unit of prediction processing for predicting the prediction target image area is Set to a large prediction processing unit (for example, 16 × 16 pixels).
 これにより、フレームF内の低解像度の画像領域については、高解像度での符号化を適用する必要がなく、高解像度の画像領域に比べて大幅な圧縮が可能となり、圧縮処理の負荷低減を図ることができる。 As a result, it is not necessary to apply high-resolution encoding to the low-resolution image area in the frame F, which enables significant compression as compared to the high-resolution image area, and reduces the load of compression processing. be able to.
(4)また、上記(1)の動画圧縮装置では、設定部1331は、予測対象フレーム内における予測処理単位の位置に基づいて、予測対象フレーム内で予測部1332によって予測済みの画像領域を用いる複数の予測モードのうち、予測処理単位に適用する特定の予測モードを設定し、予測部1332は、予測処理単位に特定の予測モードを適用することにより、予測対象画像領域を予測する。 (4) Further, in the moving picture compression apparatus according to (1), the setting unit 1331 uses the image area predicted by the prediction unit 1332 in the prediction target frame based on the position of the prediction processing unit in the prediction target frame. Among the plurality of prediction modes, a specific prediction mode to be applied to the prediction processing unit is set, and the prediction unit 1332 predicts a prediction target image region by applying the specific prediction mode to the prediction processing unit.
 これにより、1枚のフレームFに複数の異なる解像度の画像領域が混在する場合でも適切にフレーム内予測を実現することができる。 As a result, even when image areas of different resolutions are mixed in one frame F, intra-frame prediction can be appropriately realized.
(5)また、上記(4)の動画圧縮装置では、設定部1331は、予測済みの画像領域の解像度に基づいて、予測処理単位に適用する特定の予測モードを設定する。 (5) Further, in the moving picture compression apparatus according to (4), the setting unit 1331 sets a specific prediction mode to be applied to the prediction processing unit based on the resolution of the predicted image area.
 これにより、予測済みの画像領域の解像度を用いて、効率的または処理負荷低減可能な圧縮処理を選択的に実現することができる。 As a result, it is possible to selectively realize an efficient or processing load reduction compression processing using the resolution of the predicted image area.
(6)また、上記(5)の動画圧縮装置では、予測済みの画像領域の解像度は、予測処理単位の解像度と同一解像度である。 (6) Further, in the moving picture compression apparatus of (5), the resolution of the predicted image area is the same resolution as the resolution of the unit of prediction processing.
 これにより、これにより、同一解像度の画像領域間でフレーム内予測が可能となり、整合性のとれた圧縮処理を実現することができる。たとえば、予測済みの画像領域および予測対象画像領域がともに解像度Aであれば、4×4予測が実行され、予測済みの画像領域および予測対象画像領域がともに解像度Bであれば、16×16予測が実行される。 As a result, this enables intra-frame prediction to be performed between image areas of the same resolution, and consistent compression processing can be realized. For example, if both the predicted image area and the prediction target image area have resolution A, 4 × 4 prediction is performed, and if both the predicted image area and the prediction target image area have resolution B, 16 × 16 prediction is performed. Is executed.
 換言すれば、予測済みの画像領域および予測対象画像領域の解像度が異なる場合、いずれの予測モードを採用すべきか判断できない。したがって、圧縮処理の効率化を図ることができる。 In other words, when the resolutions of the predicted image area and the prediction target image area are different, it can not be determined which prediction mode should be adopted. Therefore, the compression processing can be made more efficient.
 また、予測対象画像領域の解像度が解像度Aであり、予測済みの画像領域の解像度が解像度Bである場合に、16×16予測を適用すると、予測対象画像領域が高解像度にもかかわらず、低解像度の予測モードの適用により、予測精度の低下を招く。したがって、予測精度の向上を図ることができる。 In addition, when the resolution of the prediction target image area is resolution A and the resolution of the predicted image area is resolution B, when 16 × 16 prediction is applied, the prediction target image area is low despite the high resolution. The application of the resolution prediction mode leads to a reduction in prediction accuracy. Therefore, the prediction accuracy can be improved.
 また、予測対象画像領域の解像度が解像度Aであり、予測済みの画像領域の解像度が解像度Bである場合に、4×4予測を適用すると、解像度が粗い予測済みの画像領域を参照してしまい、予測精度の低下を招く。したがって、予測精度の向上を図ることができる。 In addition, when the resolution of the prediction target image area is resolution A and the resolution of the predicted image area is resolution B, when 4 × 4 prediction is applied, the predicted image area with coarse resolution is referred to. , Cause a decrease in prediction accuracy. Therefore, the prediction accuracy can be improved.
 また、予測対象画像領域の解像度が解像度Bであり、予測済みの画像領域の解像度が解像度Aである場合に、16×16予測を適用すると、解像度が細かい予測済みの画像領域を参照してしまい、予測効率の低下を招く。したがって、予測効率の向上を図ることができる。 In addition, when the resolution of the prediction target image area is resolution B and the resolution of the predicted image area is resolution A, when 16 × 16 prediction is applied, the resolution refers to the predicted image area with fine resolution. , Cause a decrease in prediction efficiency. Therefore, the prediction efficiency can be improved.
 また、予測対象画像領域の解像度が解像度Bであり、予測済みの画像領域の解像度が解像度Aである場合に、4×4予測を適用すると、予測対象画像領域が低解像度にもかかわらず、高解像度の予測モードの適用により、予測精度の低下を招く。したがって、予測精度の向上を図ることができる。 Also, when the resolution of the prediction target image area is resolution B and the resolution of the predicted image area is resolution A, if 4 × 4 prediction is applied, the prediction target image area is high despite the low resolution. The application of the resolution prediction mode leads to a reduction in prediction accuracy. Therefore, the prediction accuracy can be improved.
(7)また、上記(4)の動画圧縮装置では、設定部1331は、予測済みの画像領域として予測処理単位の隣接領域を用いる。 (7) Further, in the moving picture compression apparatus according to (4), the setting unit 1331 uses the adjacent area of the prediction processing unit as the predicted image area.
 これにより、いずれの予測モードにおいても予測精度の向上を図ることができる。 Thereby, the prediction accuracy can be improved in any prediction mode.
(8)また、上記(1)の動画圧縮装置では、画像処理部1220は、複数のフレームの各々の画像領域内で、対応する撮像領域から画像データ(たとえば、画像領域910bの画像データ)が出力されていない欠損領域910cについては、画像データに基づいて複製することにより、複数のフレームを出力する。そして、設定部1331は、画像処理部1220から出力された複数のフレームのうち予測対象フレームにおける複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、予測対象画像領域を予測する予測処理単位を設定する。 (8) Further, in the moving picture compression apparatus according to the above (1), the image processing unit 1220 receives image data (for example, image data of the image area 910b) from the corresponding imaging area in each of the plurality of frames. As for the missing area 910c which has not been output, a plurality of frames are output by duplicating based on the image data. Then, the setting unit 1331 selects a prediction target based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames output from the image processing unit 1220 Set a prediction processing unit for predicting an image area.
 これにより、低解像度の画像領域が復元され、予測モードを適用することができる。 Thereby, the low resolution image area is restored, and the prediction mode can be applied.
(9)また、上述した電子機器は、異なる解像度が設定可能な複数の撮像領域を有する撮像素子100と、設定部1331と、予測部1332と、符号化部1340とを有する。撮像素子100は、異なる解像度が設定可能な複数の撮像領域を有する。設定部1331は、複数のフレームのうち予測対象フレームにおける複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、予測対象画像領域を予測する予測処理単位を設定する。予測部1332は、設定部1331によって設定された予測処理単位に基づいて、予測対象画像領域を予測する。符号化部1340は、予測部1332による予測結果を用いて予測対象フレームを符号化する。 (9) Further, the electronic device described above includes the imaging device 100 having a plurality of imaging regions in which different resolutions can be set, a setting unit 1331, a prediction unit 1332, and an encoding unit 1340. The imaging element 100 has a plurality of imaging areas in which different resolutions can be set. The setting unit 1331 sets a prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames. Do. The prediction unit 1332 predicts a prediction target image region based on the prediction processing unit set by the setting unit 1331. The encoding unit 1340 encodes a prediction target frame using the prediction result of the prediction unit 1332.
 これにより、フレーム内予測において、解像度の相違にしたがった予測を部分的に行うことができ、解像度に応じた圧縮処理の最適化が可能な電子機器500が実現可能である。なお、上述した電子機器500としては、たとえば、デジタルカメラ、デジタルビデオカメラ、スマートフォン、タブレット、監視カメラ、ドライブレコーダ、ドローンなどが挙げられる。 Thereby, in the intra-frame prediction, prediction according to the difference in resolution can be partially performed, and the electronic device 500 capable of optimizing compression processing according to the resolution can be realized. Examples of the electronic device 500 described above include a digital camera, a digital video camera, a smartphone, a tablet, a surveillance camera, a drive recorder, and a drone.
(10)また、上述した動画圧縮プログラムは、異なる解像度が設定可能な複数の撮像領域を有する撮像素子100の出力から生成された複数のフレームを含む動画データの圧縮をプロセッサ1201に実行させる動画圧縮プログラムである。この動画圧縮プログラムは、プロセッサ1201に、複数のフレームのうち予測対象フレームにおける複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、予測対象画像領域を予測する予測処理単位を設定する設定処理と、設定処理によって設定された単位領域に基づいて、予測対象画像領域を予測する予測処理と、予測処理による予測結果を用いて予測対象フレームを符号化する符号化処理と、を実行させる。 (10) Also, the above-described moving picture compression program causes moving picture compression that causes the processor 1201 to compress moving picture data including a plurality of frames generated from the output of the imaging device 100 having a plurality of imaging areas in which different resolutions can be set. It is a program. The moving picture compression program causes the processor 1201 to predict the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames. An encoding process for encoding a frame to be predicted using a prediction process for predicting an image area to be predicted based on a setting process for setting a prediction process unit and a unit area set by the setting process Execute the processing.
 これにより、フレーム内予測において、解像度の相違にしたがった予測を部分的に行うことができ、解像度に応じた圧縮処理の最適化を図ることができる。なお、この動画圧縮プログラムは、CD-ROM,DVD-ROM,フラッシュメモリ,メモリカード504など可搬な記録媒体に記録されていてもよい。また、この動画圧縮プログラムは、動画圧縮装置または電子機器500にダウンロード可能なサーバに記録されていてもよい。 As a result, in intra-frame prediction, it is possible to partially perform prediction according to the difference in resolution, and it is possible to optimize compression processing according to the resolution. The moving picture compression program may be recorded on a portable recording medium such as a CD-ROM, a DVD-ROM, a flash memory, or a memory card 504. Also, the moving picture compression program may be recorded in a moving picture compression apparatus or a server that can be downloaded to the electronic device 500.
100 撮像素子、200 撮像面、202 単位グループ、500 電子機器、502 制御部、600 動画ファイル、1210 前処理部、1220 画像処理部、1230 取得部、1240 圧縮部、1310 動き検出部、1311 動き補償部、1320 判定部、1330 フレーム内予測処理部、1331 設定部、1332 予測部、1340 符号化部 Reference Signs List 100 imaging device, 200 imaging plane, 202 unit group, 500 electronic device, 502 control unit, 600 moving image file, 1210 pre-processing unit, 1220 image processing unit, 1230 acquisition unit, 1240 compression unit, 1310 motion detection unit, 1311 motion compensation Unit, 1320 determination unit, 1330 intraframe prediction processing unit, 1331 setting unit, 1332 prediction unit, 1340 encoding unit

Claims (11)

  1.  異なる解像度が設定可能な複数の撮像領域を有する撮像素子の出力から生成された複数のフレームを含む動画データを圧縮する動画圧縮装置であって、
     前記複数のフレームのうち予測対象フレームにおける前記複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、前記予測対象画像領域を予測する予測処理単位を設定する設定部と、
     前記設定部によって設定された予測処理単位に基づいて、前記予測対象画像領域を予測する予測部と、
     前記予測部による予測結果を用いて前記予測対象フレームを符号化する符号化部と、
     を有する動画圧縮装置。
    A moving image compression apparatus that compresses moving image data including a plurality of frames generated from an output of an imaging device having a plurality of imaging regions in which different resolutions can be set.
    Setting a prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames Department,
    A prediction unit that predicts the prediction target image area based on the prediction processing unit set by the setting unit;
    An encoding unit that encodes the frame to be predicted using a prediction result from the prediction unit;
    A video compression device.
  2.  請求項1に記載の動画圧縮装置であって、
     前記設定部は、前記予測対象画像領域の解像度が、前記予測対象画像領域以外の他の画像領域の解像度よりも高い場合、前記予測対象画像領域を予測する予測処理単位を、前記他の画像領域を予測する予測処理単位よりも小さい予測処理単位に設定する、動画圧縮装置。
    The video compression apparatus according to claim 1, wherein
    The setting unit, when the resolution of the prediction target image area is higher than the resolutions of other image areas other than the prediction target image area, the setting processing unit for predicting the prediction target image area is the other image area A moving picture compression apparatus that sets a prediction processing unit smaller than a prediction processing unit that predicts.
  3.  請求項1に記載の動画圧縮装置であって、
     前記設定部は、前記予測対象画像領域の解像度が、前記予測対象画像領域以外の他の画像領域の解像度よりも低い場合、前記予測対象画像領域を予測する予測処理単位を、前記他の画像領域を予測する予測処理単位よりも大きい予測処理単位に設定する、動画圧縮装置。
    The video compression apparatus according to claim 1, wherein
    The setting unit, when the resolution of the prediction target image area is lower than the resolution of another image area other than the prediction target image area, the setting processing unit for predicting the prediction target image area is the other image area A moving picture compression apparatus that sets a prediction processing unit larger than a prediction processing unit that predicts.
  4.  請求項1に記載の動画圧縮装置であって、
     前記設定部は、前記予測対象フレーム内における前記予測処理単位の位置に基づいて、前記予測対象フレーム内で前記予測部によって予測済みの画像領域を用いる複数の予測モードのうち、前記予測処理単位に適用する特定の予測モードを設定し、
     前記予測部は、前記予測処理単位に前記特定の予測モードを適用することにより、前記予測対象画像領域を予測する、動画圧縮装置。
    The video compression apparatus according to claim 1, wherein
    The setting unit is configured to set the prediction processing unit among the plurality of prediction modes that use an image region predicted by the prediction unit in the prediction target frame based on a position of the prediction processing unit in the prediction target frame. Set the specific prediction mode to apply,
    The prediction unit predicts the prediction target image area by applying the particular prediction mode to the prediction processing unit.
  5.  請求項4に記載の動画圧縮装置であって、
     前記設定部は、前記予測済みの画像領域の解像度に基づいて、前記予測処理単位に適用する特定の予測モードを設定する、動画圧縮装置。
    The video compression apparatus according to claim 4, wherein
    The setting unit sets a specific prediction mode to be applied to the prediction processing unit based on the resolution of the predicted image area.
  6.  請求項5に記載の動画圧縮装置であって、
     前記予測済みの画像領域の解像度は、前記予測処理単位の解像度と同一解像度である、動画圧縮装置。
    The video compression apparatus according to claim 5, wherein
    The moving picture compression apparatus, wherein the resolution of the predicted image area is the same resolution as the resolution of the prediction processing unit.
  7.  請求項4に記載の動画圧縮装置であって、
     前記設定部は、前記予測済みの画像領域として前記予測処理単位の隣接領域を用いる、動画圧縮装置。
    The video compression apparatus according to claim 4, wherein
    The setting unit may use an adjacent area of the unit of prediction processing as the predicted image area.
  8.  請求項1に記載の動画圧縮装置であって、
     前記複数のフレームの各々の前記画像領域内で、対応する前記撮像領域から画像データが出力されていない欠損領域については、前記画像データに基づいて複製することにより、前記複数のフレームを出力する画像処理部を有し、
     前記設定部は、前記画像処理部から出力された前記複数のフレームのうち予測対象フレームにおける前記複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、前記予測対象画像領域を予測する予測処理単位を設定する、動画圧縮装置。
    The video compression apparatus according to claim 1, wherein
    An image for outputting the plurality of frames by copying based on the image data with respect to a defective area in which image data is not output from the corresponding imaging area in the image area of each of the plurality of frames Has a processing unit,
    The setting unit is configured to perform the prediction based on a resolution of a prediction target image area in a plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames output from the image processing unit. A moving picture compression apparatus for setting a prediction processing unit for predicting a target image area.
  9.  異なる解像度が設定可能な複数の撮像領域を有する撮像素子の出力から生成された複数のフレームを含む動画データを圧縮する動画圧縮装置であって、
     前記複数のフレームのうちの対象フレーム内の対象領域の解像度に基づいて、前記対象領域の画像を予測する予測処理単位を設定する設定部と、
     前記設定部によって設定された予測処理単位に基づいて、前記予測対象画像領域を予測する予測部と、
     前記予測部による予測結果を用いて前記予測対象フレームを符号化する符号化部と、
     を有する動画圧縮装置。
    A moving image compression apparatus that compresses moving image data including a plurality of frames generated from an output of an imaging device having a plurality of imaging regions in which different resolutions can be set.
    A setting unit configured to set a prediction processing unit for predicting an image of the target area based on the resolution of the target area in the target frame among the plurality of frames;
    A prediction unit that predicts the prediction target image area based on the prediction processing unit set by the setting unit;
    An encoding unit that encodes the frame to be predicted using a prediction result from the prediction unit;
    A video compression device.
  10.  異なる解像度が設定可能な複数の撮像領域を有する撮像素子と、
     前記撮像素子の出力から生成された複数のフレームのうち予測対象フレームにおける前記複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、前記予測対象画像領域を予測する予測処理単位を設定する設定部と、
     前記設定部によって設定された予測処理単位に基づいて、前記予測対象画像領域を予測する予測部と、
     前記予測部による予測結果を用いて前記予測対象フレームを符号化する符号化部と、
     を有する電子機器。
    An imaging element having a plurality of imaging areas in which different resolutions can be set;
    The prediction target image area is predicted based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames generated from the output of the imaging element A setting unit for setting a prediction processing unit to be
    A prediction unit that predicts the prediction target image area based on the prediction processing unit set by the setting unit;
    An encoding unit that encodes the frame to be predicted using a prediction result from the prediction unit;
    Electronic equipment having.
  11.  異なる解像度が設定可能な複数の撮像領域を有する撮像素子の出力から生成された複数のフレームを含む動画データの圧縮をプロセッサに実行させる動画圧縮プログラムであって、
     前記プロセッサに、
     前記複数のフレームのうち予測対象フレームにおける前記複数の撮像領域に対応する複数の画像領域の中の予測対象画像領域の解像度に基づいて、前記予測対象画像領域を予測する予測処理単位を設定する設定処理と、
     前記設定処理によって設定された単位領域に基づいて、前記予測対象画像領域を予測する予測処理と、
     前記予測処理による予測結果を用いて前記予測対象フレームを符号化する符号化処理と、
     を実行させる動画圧縮プログラム。
    A moving image compression program that causes a processor to execute compression of moving image data including a plurality of frames generated from an output of an imaging device having a plurality of imaging regions in which different resolutions can be set.
    In the processor,
    Setting a prediction processing unit for predicting the prediction target image area based on the resolution of the prediction target image area in the plurality of image areas corresponding to the plurality of imaging areas in the prediction target frame among the plurality of frames Processing and
    Prediction processing for predicting the prediction target image area based on the unit area set by the setting process;
    An encoding process for encoding the frame to be predicted using a prediction result by the prediction process;
    A video compression program that runs
PCT/JP2018/036131 2017-09-29 2018-09-27 Moving-image compression device, electronic apparatus, and moving-image compression program WO2019065917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017192109 2017-09-29
JP2017-192109 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065917A1 true WO2019065917A1 (en) 2019-04-04

Family

ID=65901648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036131 WO2019065917A1 (en) 2017-09-29 2018-09-27 Moving-image compression device, electronic apparatus, and moving-image compression program

Country Status (1)

Country Link
WO (1) WO2019065917A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129163A1 (en) * 2010-04-16 2011-10-20 コニカミノルタホールディングス株式会社 Intra prediction processing method and intra prediction processing program
WO2013164915A1 (en) * 2012-05-02 2013-11-07 株式会社ニコン Imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129163A1 (en) * 2010-04-16 2011-10-20 コニカミノルタホールディングス株式会社 Intra prediction processing method and intra prediction processing program
WO2013164915A1 (en) * 2012-05-02 2013-11-07 株式会社ニコン Imaging device

Similar Documents

Publication Publication Date Title
JPWO2017013806A1 (en) Solid-state imaging device
US11589059B2 (en) Video compression apparatus, electronic apparatus, and video compression program
JPWO2014133076A1 (en) Image sensor and electronic device
JP6282303B2 (en) Imaging device and imaging apparatus
US11785345B2 (en) Electronic device, imaging device, and imaging element for obtaining exposure of each area of image
JP6561428B2 (en) Electronic device, control method, and control program
US20230328274A1 (en) Video compression apparatus and video compression program
JP6513164B2 (en) Imaging device and imaging device
JP6488545B2 (en) Electronics
US20230164329A1 (en) Video compression apparatus, electronic apparatus, and video compression program
WO2019065919A1 (en) Imaging device, image-processing device, moving-image compression device, setting program, image-processing program, and moving-image compression program
US20200137279A1 (en) Image sensor and imaging device
JP6733159B2 (en) Imaging device and imaging device
WO2019065917A1 (en) Moving-image compression device, electronic apparatus, and moving-image compression program
JP7156367B2 (en) Video compression device, decompression device, electronic device, video compression program, and decompression program
WO2019065918A1 (en) Image-processing device, moving-image compression device, image-processing program, and moving-image compression program
JP2020057877A (en) Electronic equipment and setting program
JP2019092220A (en) Electronic device
JP2023067988A (en) Image pickup device
JP2024096158A (en) Image pickup element and image pickup device
JP2019092219A (en) Imaging apparatus, control method of the same, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP