WO2011129163A1 - Intra prediction processing method and intra prediction processing program - Google Patents

Intra prediction processing method and intra prediction processing program Download PDF

Info

Publication number
WO2011129163A1
WO2011129163A1 PCT/JP2011/055327 JP2011055327W WO2011129163A1 WO 2011129163 A1 WO2011129163 A1 WO 2011129163A1 JP 2011055327 W JP2011055327 W JP 2011055327W WO 2011129163 A1 WO2011129163 A1 WO 2011129163A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction mode
prediction
processing
image
intra
Prior art date
Application number
PCT/JP2011/055327
Other languages
French (fr)
Japanese (ja)
Inventor
望 倉本
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012510601A priority Critical patent/JP5376049B2/en
Publication of WO2011129163A1 publication Critical patent/WO2011129163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Definitions

  • the present invention relates to an intra prediction processing method and an intra prediction processing program for predicting a corresponding prediction block from an adjacent block according to a prediction mode for a processing target block composed of a plurality of pixels for use in predictive encoding of an input image.
  • prediction encoding techniques such as encoding by intra prediction processing for performing prediction within the same frame and inter prediction encoding for performing prediction between temporally continuous frames are known.
  • H.264 H.264/ MPEG-4 AVC (hereinafter referred to as H.264) encoder is configured as shown in FIG.
  • intra prediction processing unit 2 of the H.264 encoder 1 intra prediction processing for determining a prediction pattern from adjacent blocks is executed.
  • a processing target block composed of a plurality of pixels is set in an input image, and a corresponding prediction block is predicted from an adjacent block, and a prediction encoding process is performed based on this prediction.
  • the image of the processing target block is estimated to be close to the image of the adjacent block, and is predicted from the adjacent block.
  • the plurality of prediction modes mainly indicate in which direction the adjacent block is closer, but it is not known in advance which prediction mode (prediction direction) will improve the prediction accuracy.
  • the intra prediction processing method is known as a process with a large amount of calculation, and therefore, reduction of the calculation amount for determining the prediction mode in the intra prediction processing method has been studied as an important technical problem.
  • Patent Document 1 proposes a method of narrowing down the prediction mode with reference to the prediction mode of an adjacent block that has been encoded by intra prediction processing.
  • the number of prediction mode candidates is limited according to the spatial position of the target block or the position on the time axis, and the amount of calculation for evaluating the prediction mode is reduced.
  • a block that limits the number of prediction mode candidates in a certain block in an image is determined by external input.
  • the number of modes to be limited is also given as an external input and is variable for each block.
  • the candidate prediction mode is determined from the prediction modes of the encoded neighboring blocks with priorities.
  • the intra prediction process for predictive coding has a large amount of calculation, and a method for reducing the process has been proposed.
  • Patent Document 1 and Patent Document 2 have been studied in order to reduce the amount of calculation by narrowing down the number of prediction mode candidates.
  • Patent Documents 1 and 2 have the following problems.
  • the prediction mode itself of the encoded neighboring block that is referred to in order to limit prediction mode candidates is also the prediction mode determined in a limited manner as described above. For this reason, it is not known whether the optimum prediction mode has been determined.
  • the method for limiting the prediction mode candidates depends on the processing contents in the encoded region or the characteristics specific to the input image to be processed. It could not be said that it could narrow down to the optimal prediction mode candidates.
  • the present invention has been made in view of the above technical problems.
  • the object of the present invention is to narrow down the prediction mode candidates to the optimal prediction mode easily and quickly without depending on the prediction mode of the encoded region and the characteristics specific to the processing target image in the predictive encoding process of the input image.
  • the present invention has the following features.
  • the intra prediction processing method includes: a processing block setting step for setting a processing processing block for encoding composed of a plurality of pixels of an input image; and a target block from which adjacent block in which direction.
  • Prediction mode candidates for narrowing down a predetermined number of prediction mode candidates, which are interpolation patterns indicating whether to create a predicted image by interpolation, to a plurality of prediction mode candidates smaller than the predetermined number based on the resolution information of the processing target block From the prediction mode candidates limited in the limiting step and the prediction mode candidate limiting step, the prediction mode that minimizes the cost of prediction encoding is determined as the prediction mode used for prediction encoding, and the prediction encoding process is performed.
  • the prediction image of the processing target block is After form, the intra prediction processing method is characterized in that and a predictive coding step of coding the current block using the predictive image.
  • the intra prediction processing method in the prediction mode candidate limiting step, for the plurality of predetermined prediction mode candidates, based on the direction component of the resolution information corresponding to the direction indicated by each prediction mode candidate.
  • the intra prediction processing method wherein the priority of the prediction mode candidates is determined to narrow down to limited prediction mode candidates.
  • an optical characteristic of an imaging device that captures the input image is used as the resolution information.
  • the intra prediction processing method according to the fourth aspect is the intra prediction processing method according to the third aspect, wherein the optical characteristic of the imaging device is MTF.
  • the resolution information determined by the image processing content in the preprocessing of the input image is used.
  • the intra prediction processing method which concerns on the aspect.
  • the intra prediction processing method which concerns on a 6th aspect hold
  • a prediction mode candidate holding step, and in the prediction mode determination step, the limited prediction mode candidates are set based on information of the prediction mode candidate table held for the same imaging system.
  • An intra prediction processing program includes: a processing block setting step for setting a processing processing block for encoding composed of a plurality of pixels of an input image in a computer; and the processing target block as a neighboring block in any direction From this, the predetermined number of prediction mode candidates, which are interpolation patterns representing how to create a predicted image by interpolation, are narrowed down to a plurality of prediction mode candidates smaller than the predetermined number based on the resolution information of the processing target block.
  • the prediction mode candidate prediction step and the prediction mode candidate limited in the prediction mode candidate limitation step is determined as a prediction mode to be used for prediction encoding, and the prediction mode with the lowest prediction encoding cost is determined, and the prediction code In the prediction mode determination step used for the conversion processing and the prediction mode determined in the prediction mode determination step.
  • the intra prediction processing program is characterized in that and a predictive coding step of coding the current block using the predictive image.
  • the intra prediction processing program according to the eighth aspect is based on the direction component of the resolution information corresponding to the direction indicated by each prediction mode candidate for the plurality of predetermined prediction mode candidates.
  • the intra prediction processing program according to the seventh aspect is characterized by narrowing down to limited prediction mode candidates by determining the priority of the prediction mode candidates.
  • An intra prediction processing program uses, in the prediction mode candidate limiting step, an optical characteristic of an imaging device that captures the input image as the resolution information.
  • An intra prediction processing program uses, in the prediction mode candidate limiting step, an optical characteristic of an imaging device that captures the input image as the resolution information.
  • the intra prediction processing program according to the tenth aspect is the intra prediction processing program according to the ninth aspect, wherein the optical characteristic of the imaging device is MTF.
  • An intra prediction processing program uses the resolution information determined by the image processing content in the preprocessing of the input image in the prediction mode candidate limiting step.
  • An intra prediction processing program according to the above aspect.
  • An intra prediction processing program relates to a prediction mode in which the processing target block position and the prediction mode candidates limited in the prediction mode candidate limiting step are associated with the computer in the input image imaging system.
  • a prediction mode candidate holding step for holding a candidate table is executed, and in the prediction mode determination step, the limited prediction mode candidates are set based on information in the prediction mode candidate table held for the same imaging system.
  • An intra prediction processing program according to any one of the seventh to tenth aspects.
  • the intra prediction processing method and the intra prediction processing program in predictive encoding processing of an input image, based on resolution information at the position of a processing target block in the input image, a plurality of predetermined prediction mode candidates are used. Narrow down to limited prediction mode candidates, and predict prediction blocks corresponding to the processing target block from neighboring blocks.
  • FIG. 1 is a flowchart illustrating an example of a processing procedure of the intra prediction processing method according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration example of an encoder that performs intra prediction processing.
  • FIG. 3 is an explanatory view showing a target image example for explaining the intra prediction process.
  • FIG. 4 is a pattern diagram of the luminance signal intra 4 ⁇ 4 prediction mode.
  • FIG. 5 is a pattern diagram of a luminance signal intra 16 ⁇ 16 prediction mode.
  • FIG. 6 is a pattern diagram of an intra 8 ⁇ 8 prediction mode for color difference signals.
  • FIG. 7 is a flowchart illustrating an example of a prediction mode determination procedure in the intra prediction process.
  • FIG. 8 is a graph showing a typical example of the relationship between MTF and image height.
  • FIG. 9 is a diagram illustrating the frequencies in the sagittal direction and the tangential direction when the arbitrary angle ⁇ is the frequency k.
  • FIG. 10 is a diagram for explaining the outline of the prediction mode candidate limiting step in the form using an optical system (lens) for imaging.
  • FIG. 11 is a diagram for illustrating the position of the processing target block in the target image.
  • FIG. 12 is a diagram illustrating the directionality of the intra 4 ⁇ 4 prediction mode at the point (i, j).
  • FIG. 13 is a diagram for explaining the calculation of the MTF in the d 0 direction.
  • FIG. 14 is a diagram for explaining the calculation of the MTF in the d 1 direction.
  • FIG. 15 is a diagram for explaining the calculation of the MTF in the d 5 direction.
  • FIG. 16 is a diagram illustrating an example in which distortion is corrected by image processing.
  • FIG. 1 is a flowchart illustrating an example of a schematic processing procedure of the intra prediction processing method according to the present embodiment. An example of a schematic processing procedure of the intra prediction processing method according to the present embodiment will be described with reference to FIG.
  • the processing procedure of the intra prediction processing method described below is executed by applying an intra prediction processing program programmed to execute them to an information processing apparatus such as a computer.
  • step S1 sets a processing target block composed of a plurality of pixels in the target image as a block to be subjected to predictive encoding processing by intra prediction of the input image.
  • Step S2 calculates or acquires the direction component of resolution information (for example, MTF) at the set position of the processing target block in the input image.
  • MTF is a Module Transfer Function, details of which will be described later.
  • Step S3 is a prediction mode candidate limiting step, and a prediction mode candidate of a processing target block is determined according to the direction component of the resolution information (hereinafter referred to as MTF) obtained in step S2 from a plurality of predetermined prediction mode candidates. Limit.
  • the prediction mode indicates a pattern for predicting a processing target block from an adjacent block, and a plurality of modes having different pattern directions are set as candidates. Details will be described later.
  • the limited number of prediction mode candidates may be one or plural. In the present embodiment, description will be made assuming that the number of candidates is limited.
  • Steps S4 to S6 are prediction mode determination steps, and for the prediction mode candidates limited in step S3, the prediction mode candidate that minimizes the cost of predictive coding is determined as the prediction mode.
  • step S4 to step S6 the cost of predictive coding for each prediction mode candidate is evaluated.
  • Step S4 calculates a prediction block by referring to an adjacent block according to the prediction mode for each prediction mode candidate limited in step S3 with respect to the set processing target block.
  • Step S5 performs a cost calculation process of the processing target block using the prediction block calculated for each limited prediction mode candidate. This is for comparing the cost evaluation of prediction encoding for each prediction mode candidate.
  • step S6 one prediction mode for the set processing target block is determined based on the cost evaluation result of the prediction encoding in step S5. That is, among the prediction mode candidates, the prediction mode candidate with the lowest coding cost is determined as the prediction mode.
  • step S4 Details of the prediction mode determination process from step S4 to step S6 will be described later with a specific example.
  • Step S7 is a predictive encoding step, and the predictive encoding process in the prediction mode determined in step S6 is performed on the set processing target block.
  • the predictive encoding in the determined prediction mode may be executed up to the predictive encoding process at the time of cost evaluation in step S5, and the processing result may be referred to.
  • step S8 all the processing target blocks are set for the processing target image, and it is determined whether or not the intra prediction processing according to the above procedure is finished.
  • step S8 the intra prediction process for the target image ends.
  • step S8 If the determination in step S8 is No, the process returns to step S1, sets the next block to be processed, and repeats up to step S8.
  • step S1 The repetition from step S1 to step S8 continues until the determination in step S8 is Yes and the intra prediction process for the target image is completed.
  • the prediction mode determination process and the characteristic specific to the prediction mode of the encoded region and the processing target image are performed before the prediction mode determination step.
  • a prediction mode candidate limiting step based on resolution information that does not depend on or the like is executed.
  • the details of the prediction mode determination step as the prior art of the intra prediction process will be described first, and then the calculation of the MTF and its direction component as optical characteristics will be described, and the prediction mode candidate limiting step based on the resolution and direction component An example of the process will be described.
  • the prediction mode determination step a process for determining a prediction mode used for predictive encoding is performed from a plurality of prediction mode candidates set in the intra prediction process.
  • a known technique International Standard for Image Coding, H.264 / MPEG-4 AVC
  • the intra prediction process is a predictive encoding method that is also applied to a conventional image encoding apparatus, and is a predictive encoding process that performs prediction within a frame.
  • a processing target block consisting of a plurality of pixels is set, and a corresponding prediction block is predicted from an adjacent block, and a predictive encoding process is performed based on this prediction.
  • the configuration of the H.264 / MPEG-4 AVC encoder has already been shown in FIG. H. of FIG.
  • intra prediction processing unit 2 of the H.264 encoder 1 intra prediction processing for determining a prediction pattern from adjacent blocks is executed.
  • FIG. 3 is an explanatory diagram showing an example of a target image for explaining the intra prediction process.
  • the intra prediction process performed in the intra prediction process part 2 is demonstrated using FIG.
  • the subjects in the image are usually distributed in a certain area, and pixel values (luminance and color) are similar in adjacent pixels. Often doing. Using this, the pixel value of the encoding target block 4 is estimated from the pixels of the adjacent block 5 in the vicinity, which is the intra prediction process.
  • the upper, left, upper right, and upper left blocks included in the encoded area 6 are defined as adjacent blocks 5 with respect to the encoding target block 4.
  • a plurality of prediction modes are set as patterns for how to predict from which adjacent block.
  • H. H.264 defines an intra 4 ⁇ 4 (pixel) prediction mode using a luminance signal, an intra 16 ⁇ 16 (pixel) prediction mode, and an intra 8 ⁇ 8 (pixel) prediction mode using a color difference signal. .
  • each prediction mode a number called a mode representing an average value and a pixel prediction direction is defined.
  • FIG. 4 shows a pattern diagram of the luminance signal intra 4 ⁇ 4 prediction mode.
  • ModeX M X
  • M 0 an average value
  • an intra 16 ⁇ 16 prediction mode in which the pixel unit is a 16 ⁇ 16 pixel size is defined by four types of prediction modes as shown in FIG.
  • FIG. 5 shows a pattern diagram of the luminance signal intra 16 ⁇ 16 prediction mode.
  • FIG. 6 shows a pattern diagram of the color difference signal intra 8 ⁇ 8 prediction mode.
  • FIG. 7 is a flowchart illustrating an example of a prediction mode determination procedure in the intra prediction process.
  • Step S11 Prediction is performed in the intra 16 ⁇ 16 prediction mode. Since there are four types of prediction modes (see FIG. 5), the encoding cost calculation process is repeated four times to determine M ⁇ i that minimizes the cost.
  • Step S12 It is determined whether or not an edge is included in the macroblock. If no edge is included, the prediction mode of the macroblock is determined as M ⁇ i of the intra 16 ⁇ 16 prediction mode.
  • Step S13 When an edge is included in the macroblock, the macroblock is divided into 16 sub-macroblocks of 4 ⁇ 4 pixels, and nine types of intra 4 ⁇ 4 prediction modes (see FIG. 4) are provided for each macroblock. To consider. That is, the encoding cost calculation process is repeated up to 9 ⁇ 16 times.
  • m.alpha i If is smaller coding cost of m.alpha i discontinue calculation at sub-macroblock, it determines the m.alpha i as the prediction mode of the macroblock. If the cumulative coding cost of the sub macroblock is smaller, 16 prediction modes M ⁇ bj (0 ⁇ b ⁇ 15) are determined for the macroblock.
  • these methods are intended to reduce the amount of calculation by limiting and narrowing down prediction mode candidates, but the method of limiting prediction mode candidates is the processing content in the encoded region. It cannot be said that the prediction mode candidates can be narrowed down to the optimum prediction mode easily and quickly by depending on the characteristics inherent to the input image to be processed.
  • a prediction mode candidate limiting step is provided prior to the prediction mode determination step, in which the prediction mode candidate limiting step is limited from a plurality of predetermined prediction mode candidates based on resolution information at the position of the processing target block in the input image. Processing to narrow down to prediction mode candidates.
  • MTF Module Transfer Function
  • MTF expresses how faithfully the contrast of a subject can be reproduced as a spatial frequency characteristic.
  • the spatial frequency indicates the number of patterns (such as a sine wave) included per 1 [mm].
  • the MTF generally has a fixed frequency (60 lines / mm, 100 lines / mm, etc.), and a radial direction (Sagittal) from the image center in a graph in which the horizontal axis indicates the distance (image height) from the image center. ) And a concentric direction (Tangential).
  • FIG. 8 is a graph showing a typical example of the relationship between MTF and image height.
  • the MTF tends to decrease as the image height increases, and may take different values in the radial direction (Sagital) and the concentric direction (Tangential). The difference appears remarkably in a wide-angle optical system.
  • the captured image may be subjected to image processing before intra prediction processing.
  • resolution information as a result of image processing may be used.
  • the generated image resolution is constant in each area of the screen while applying the same image processing.
  • the MTF in the vertical and horizontal directions at each coordinate on the image can be obtained by simulation using design data of the optical system.
  • X k the coordinates of N points of a spot diagram at a given point on the image (a group of points formed on the image by rays passing through N lattice points on the pupil plane from a point light source).
  • y k the angle between the Sagittal direction and the horizontal plane of the image is ⁇ and the frequency in that direction is w lines / mm, the frequency s in the Sagittal direction and the frequency t in the Tangential direction are shown in FIG. )become that way.
  • Equation (12) Equation (12) and Equation (13), respectively, and can be calculated from the spot diagram.
  • Prediction mode candidate limited process Details of the prediction mode candidate limiting step in step S3 in the intra prediction processing procedure of FIG. 1 described above will be described.
  • the prediction mode candidates of the processing target block are limited according to the direction component of the resolution information (MTF) obtained in step S2 from a plurality of predetermined prediction mode candidates.
  • MTF direction component of the resolution information
  • This step in the present embodiment is for narrowing down prediction mode candidates using resolution information and reducing the amount of calculation processing of intra prediction processing in steps S4 to S6. Since the resolution information of the input image is used, there is no need to perform image analysis in advance or generate a pattern assuming the input image.
  • the outline of the prediction mode candidate limiting step in the present embodiment will be described with reference to FIG. 10, taking an example of using an optical system (lens) for imaging.
  • the resolving power varies depending on the distance from the center position of the lens.
  • the resolution distribution is a parameter that varies depending on the lens.
  • the prediction mode evaluation process can be greatly reduced.
  • the resolving power of such a lens is information that varies depending on the distance (image height) from the center of the lens and the direction at that position. For this reason, each lens determines the resolving power in consideration of the position in the image and the direction of the prediction mode, and selects the prediction mode candidates in light of the directionality, thereby reducing the optimal amount of calculation processing. Do.
  • FIG. 11 is a diagram for illustrating the position of the processing target block 4 in the target image 3.
  • the center of the image is (C X , C Y )
  • the angle ⁇ formed by the image center and the target pixel, and the distance (image height) 1 between the image center and the target pixel are expressed as follows. .
  • the direction d X is a direction representing M X.
  • s and t shown in the figure represent the S (Sagittal) direction and the T (Tangential) direction
  • the MTF at the point (i, j) is a function of the image height l in the S direction and the T direction, respectively. Defined as S (l) and T (l).
  • MTF (d X ) ⁇ H 2-5
  • the prediction mode M 1 is deleted from the prediction mode candidates.
  • the prediction mode M 4 is deleted from the prediction mode candidates.
  • the threshold value H is determined by the pixel pitch of the image sensor and the frequency of the MTF data.
  • the number of prediction modes can be reduced based on the point image reproducibility of the lens, so that the amount of calculation processing can be reduced without causing deterioration in image quality.
  • the prediction mode of the block can be determined as M 2. The amount of calculation processing can be greatly reduced.
  • the present invention can also be applied to other intra prediction modes such as the intra 16 ⁇ 16 prediction mode.
  • resolution directionality depending on the position in the image such as image distortion caused by the image processing, may be used.
  • FIG. 16 There is a conventional technique for correcting an image photographed with a wide-angle lens or a lens that generates distortion using image processing. For example, as shown in FIG. 16, this is a technique for correcting a distorted image.
  • a distorted image before image processing and (b) a corrected image after image processing are represented as a grid-like image.
  • this resolution information can be handled in the same manner as the above-described MTF, it can be used to select a prediction mode candidate and can be prioritized.
  • the second embodiment may dynamically fluctuate unlike static data. For example, in an in-vehicle camera viewpoint conversion application, image processing is performed as time passes.
  • FIG. 17 shows an example of an encoder incorporating this image processing in its configuration.
  • image processing 8 is first performed on the input signal acquired from the imaging device.
  • the image processing 8 includes various processing such as processing for viewpoint conversion, zoom processing, pan processing, color correction processing, and the like.
  • the resolution is similarly calculated, and the intra prediction is performed according to the characteristics of the image processed in the image processing 8. Processing can be performed.
  • the present invention that can assign priorities to a plurality of prediction mode candidates can be applied both statically and dynamically.
  • the present invention relates to the H.264 standard.
  • the present invention can be applied not only to H.264 intra prediction processing but also to general intra prediction processing for predicting a processing target block from adjacent blocks. Prediction using a weighted average or prediction processing involving some conversion can also be applied.
  • a prediction mode candidate holding step is provided during or before or after the prediction mode determination step of steps S4 to S6 after the prediction mode candidate limiting step of step S3 ends. May be.
  • the prediction mode candidate holding step the result of the prediction mode candidate limiting step relating to the input image imaging system, that is, a prediction mode candidate table in which the processing target block position is associated with the limited prediction mode candidate is held.
  • step S2 for input images of the same imaging system, a step of setting prediction mode candidates based on the information of the prediction mode candidate table held as described above is provided, so that step S2 and step of FIG.
  • the step of S3 can be omitted.
  • the resolution information used for limiting the prediction mode candidates does not depend on the input image, it can be applied as it is when the prediction mode candidate limitation results obtained once are the same system.
  • the intra-prediction processing method and the intra-prediction processing program when predictive encoding processing of an input image, a plurality of information are obtained based on resolution information at the position of the processing target block in the input image.
  • the prediction mode candidates are narrowed down to the limited prediction mode candidates, and the prediction block corresponding to the processing target block is predicted from the adjacent block.

Abstract

Disclosed is an intra prediction processing method provided with a processing block setting step for setting a coding processing target block constituted by a plurality of pixels of an input image; a prediction mode candidate restricting step for restricting a predetermined number of prediction mode candidates to a fewer plurality of prediction mode candidates, on the basis of resolution information of the processing target block, wherein the prediction mode candidate is an interpolation pattern representing how to interpolate the processing target block from which adjacent block located in which direction so as to create a prediction image; a prediction mode determination step for determining a prediction mode having the minimum prediction coding cost as a prediction mode to be used for prediction coding, among the prediction mode candidates which are restricted in the prediction mode candidate restricting step, and for using the determined prediction mode for prediction coding processing; and a prediction coding step for coding the processing target block using the prediction image after the prediction image of the processing target block is created in the prediction mode determined in the prediction mode determination step.

Description

イントラ予測処理方法、及びイントラ予測処理プログラムIntra prediction processing method and intra prediction processing program
 本発明は、入力画像の予測符号化に用いるため、複数画素からなる処理対象ブロックについて、対応する予測ブロックを、予測モードに従って隣接ブロックから予測するイントラ予測処理方法、及びイントラ予測処理プログラムに関する。 The present invention relates to an intra prediction processing method and an intra prediction processing program for predicting a corresponding prediction block from an adjacent block according to a prediction mode for a processing target block composed of a plurality of pixels for use in predictive encoding of an input image.
 動画圧縮処理等において、同じフレーム内で予測を行うイントラ予測処理による符号化や、時間的に連続するフレーム間で予測を行うインター予測符号化などの予測符号化技術が知られている。 In video compression processing and the like, prediction encoding techniques such as encoding by intra prediction processing for performing prediction within the same frame and inter prediction encoding for performing prediction between temporally continuous frames are known.
 これらは、画像符号化方式の国際標準・規格にも採用されており、例えば、H.264/MPEG-4 AVC(以降、H.264と呼称する)方式のエンコーダは、図2に示すように構成されている。 These are also adopted in international standards and standards for image coding systems. An H.264 / MPEG-4 AVC (hereinafter referred to as H.264) encoder is configured as shown in FIG.
 図2のH.264エンコーダ1のイントラ予測処理部2において、隣接ブロックから予測パターンを決定するイントラ予測処理が実行される。 H. of FIG. In the intra prediction processing unit 2 of the H.264 encoder 1, intra prediction processing for determining a prediction pattern from adjacent blocks is executed.
 イントラ予測処理方法は、入力画像において、複数画素からなる処理対象ブロックを設定し、対応する予測ブロックを隣接ブロックから予測するものであり、この予測に基づき予測符号化処理を行う。 In the intra prediction processing method, a processing target block composed of a plurality of pixels is set in an input image, and a corresponding prediction block is predicted from an adjacent block, and a prediction encoding process is performed based on this prediction.
 予測ブロックが処理対象ブロックに近ければ近いほど、予測符号化のコストは小さくなる。すなわち、情報量としてより圧縮することができる。処理対象ブロックの画像は隣接するブロックの画像に近いと推定し、隣接ブロックから予測するのである。 The closer the predicted block is to the processing target block, the smaller the cost of predictive coding. That is, it can be further compressed as the amount of information. The image of the processing target block is estimated to be close to the image of the adjacent block, and is predicted from the adjacent block.
 詳細は後述するが、どの隣接ブロックの画素からどのように予測するかによって、複数の予測モードが設定されている(図4に具体例を示す)。 Although details will be described later, a plurality of prediction modes are set depending on how the pixel is predicted from which adjacent block (a specific example is shown in FIG. 4).
 複数の予測モードは主にどの方向の隣接ブロックがより近いかを示すものであるが、どの予測モード(予測方向)を用いると予測精度がよくなるかは予め分からない。 The plurality of prediction modes mainly indicate in which direction the adjacent block is closer, but it is not known in advance which prediction mode (prediction direction) will improve the prediction accuracy.
 従って、すべての予測モードを実行してみて、最も予測精度のよい、すなわち符号化コストの最小となる予測モードを探索することが一般的に行われている。 Therefore, it is a common practice to search for a prediction mode with the highest prediction accuracy, that is, the lowest coding cost, by executing all the prediction modes.
 しかしながら、すべての予測モードを実行し、さらに符号化コストを算出し評価する段階まで処理を進めなければならないため、その演算量は膨大となる。 However, since all the prediction modes must be executed and the processing must be advanced to the stage where the encoding cost is calculated and evaluated, the amount of calculation becomes enormous.
 このようにイントラ予測処理方法は、非常に計算量の多い処理として知られており、そのため、イントラ予測処理方法における予測モード決定のための計算量の削減が重要な技術課題として研究されてきた。 As described above, the intra prediction processing method is known as a process with a large amount of calculation, and therefore, reduction of the calculation amount for determining the prediction mode in the intra prediction processing method has been studied as an important technical problem.
 例えば、特許文献1では、イントラ予測処理によって符号化済みの隣接ブロックの予測モードを参考にして、予測モードを絞り込む手法が提案されている。 For example, Patent Document 1 proposes a method of narrowing down the prediction mode with reference to the prediction mode of an adjacent block that has been encoded by intra prediction processing.
 図4を参照して具体例を示すと、対象ブロックの上の隣接ブロックがモードM1、左の隣接ブロックがモードM5の場合には、M1、M5に加えて、それらの間の角度となるM4、M6(図4右下参照)との4つの予測モードを候補として限定している。 When a specific example is shown with reference to FIG. 4, when the adjacent block above the target block is mode M1 and the left adjacent block is mode M5, in addition to M1 and M5, M4 is an angle between them. , M6 (see the lower right in FIG. 4) are limited as candidates.
 また、特許文献2では、対象ブロックの空間的な位置、あるいは時間軸上の位置に応じて、予測モード候補数を限定し、予測モードを評価する演算量を削減している。 Also, in Patent Document 2, the number of prediction mode candidates is limited according to the spatial position of the target block or the position on the time axis, and the amount of calculation for evaluating the prediction mode is reduced.
 特許文献2によれば、画像内のあるブロックにおいて、予測モードの候補数を限定するブロックを外部入力により決定している。限定するモード数も外部入力として与えられ、ブロックごとに可変である。 According to Patent Document 2, a block that limits the number of prediction mode candidates in a certain block in an image is determined by external input. The number of modes to be limited is also given as an external input and is variable for each block.
 このようにして、各ブロックにおいて決定された予測モードの候補数に基づき、優先順位が付けられた符号化済み近隣ブロックの予測モードから候補の予測モードを決定している。 In this way, based on the number of prediction mode candidates determined in each block, the candidate prediction mode is determined from the prediction modes of the encoded neighboring blocks with priorities.
特開2006-128770号公報JP 2006-128770 A 特開2006-148419号公報JP 2006-148419 A
 上に述べてきたように、予測符号化のためのイントラ予測処理は計算量が非常に多く、その処理を削減する方法が提案されてきた。 As described above, the intra prediction process for predictive coding has a large amount of calculation, and a method for reducing the process has been proposed.
 特に予測モード候補の数を絞り込むことで計算量を抑制しようと、上記特許文献1や特許文献2に記載されたような技術が研究されてきた。 Particularly, techniques such as those described in Patent Document 1 and Patent Document 2 have been studied in order to reduce the amount of calculation by narrowing down the number of prediction mode candidates.
 しかしながら、絞り込んだ予測モード候補による予測の精度という点から考慮すると、例えば特許文献1や2に記載の従来の方法では、以下のような問題がある。 However, in view of the accuracy of prediction by the narrowed prediction mode candidates, the conventional methods described in Patent Documents 1 and 2 have the following problems.
 第1に、予測モード候補を限定するために参照する符号化済み近隣ブロックの予測モード自体も、上述したように限定して決定した予測モードである。そのため、本当に最適な予測モードに決定できたかどうかは分からない。 First, the prediction mode itself of the encoded neighboring block that is referred to in order to limit prediction mode candidates is also the prediction mode determined in a limited manner as described above. For this reason, it is not known whether the optimum prediction mode has been determined.
 第2に、符号化済みの近隣ブロックしか参考にできない。そのため、未処理領域に似たような予測モードの傾向を示す領域が存在し、符号化処理済み領域には存在しない場合には、符号化処理済み領域の予測モードを用いて予測モードを限定することが最適とは言えない。 Second, only encoded neighboring blocks can be referenced. Therefore, when there is a region that shows a tendency of a prediction mode similar to an unprocessed region and it does not exist in the encoded processing region, the prediction mode is limited using the prediction mode of the encoded processing region. Is not optimal.
 第3に、イントラ予測処理を行うブロックの度に符号化済み近隣ブロックの予測モードを参照するようなこれらの手法は、リアルタイムでの処理に不向きである。例えば、超広角系のように常に一定の特徴が含まれる場合には、イントラ予測処理ブロックごとに近隣ブロックを参照する処理は冗長になってしまう。 Thirdly, these methods that refer to the prediction mode of the encoded neighboring block for each block for which intra prediction processing is performed are unsuitable for processing in real time. For example, when a constant feature is always included as in the super wide-angle system, the process of referring to neighboring blocks for each intra prediction processing block becomes redundant.
 すなわち、上記のような従来手法では、予測モード候補の限定方法が、符号化処理済み領域での処理内容に依存したり、処理する入力画像に固有の特徴に依存したりして、簡単迅速に最適な予測モード候補に絞り込めるものとは言えなかった。 In other words, in the conventional method as described above, the method for limiting the prediction mode candidates depends on the processing contents in the encoded region or the characteristics specific to the input image to be processed. It could not be said that it could narrow down to the optimal prediction mode candidates.
 本発明は、上記の技術的課題に鑑みてなされたものである。 The present invention has been made in view of the above technical problems.
 本発明の目的は、入力画像の予測符号化処理に際して、符号化処理済み領域の予測モードや処理対象画像に固有の特徴等に依存せずに、簡単迅速に最適な予測モード候補に絞り込み、予測モード決定のための計算量を削減することができるイントラ予測処理方法、及びイントラ予測処理プログラムを提供することである。 The object of the present invention is to narrow down the prediction mode candidates to the optimal prediction mode easily and quickly without depending on the prediction mode of the encoded region and the characteristics specific to the processing target image in the predictive encoding process of the input image. To provide an intra prediction processing method and an intra prediction processing program capable of reducing the amount of calculation for mode determination.
 上記の課題を解決するために、本発明は以下の特徴を有するものである。 In order to solve the above problems, the present invention has the following features.
 第1の態様に係るイントラ予測処理方法は、入力画像の複数画素で構成される符号化の処理対処ブロックを設定する処理ブロック設定工程と、前記処理対象ブロックを何れの方向の近接ブロックから、どの様に補間して予測画像を作るかを表す補間パターンである所定数の予測モードの候補を、前記処理対象ブロックの解像度情報に基づき、前記所定数より少ない複数の予測モード候補に絞り込む予測モード候補限定工程と、前記予測モード候補限定工程において限定された前記予測モード候補の中から、予測符号化のコストが最小となる予測モードを予想符号化に用いる予測モードとして決定し、予測符号化処理に用いる予測モード決定工程と、前記予測モード決定工程で決定された予測モードにて、前記処理対象ブロックの予測画像を作成した後に、前記予測画像を用いて前記処理対象ブロックを符号化する予測符号化工程と、を備えたことを特徴とするイントラ予測処理方法。 The intra prediction processing method according to the first aspect includes: a processing block setting step for setting a processing processing block for encoding composed of a plurality of pixels of an input image; and a target block from which adjacent block in which direction. Prediction mode candidates for narrowing down a predetermined number of prediction mode candidates, which are interpolation patterns indicating whether to create a predicted image by interpolation, to a plurality of prediction mode candidates smaller than the predetermined number based on the resolution information of the processing target block From the prediction mode candidates limited in the limiting step and the prediction mode candidate limiting step, the prediction mode that minimizes the cost of prediction encoding is determined as the prediction mode used for prediction encoding, and the prediction encoding process is performed. In the prediction mode determination step to be used and the prediction mode determined in the prediction mode determination step, the prediction image of the processing target block is After form, the intra prediction processing method is characterized in that and a predictive coding step of coding the current block using the predictive image.
 第2の態様に係るイントラ予測処理方法は、前記予測モード候補限定工程においては、前記複数の所定の予測モード候補について、それぞれの予測モード候補の示す方向と対応する前記解像度情報の方向成分に基づき、当該予測モード候補の優先度を判定することにより、限定された予測モード候補に絞り込むことを特徴とする第1の態様に係るイントラ予測処理方法。 In the intra prediction processing method according to the second aspect, in the prediction mode candidate limiting step, for the plurality of predetermined prediction mode candidates, based on the direction component of the resolution information corresponding to the direction indicated by each prediction mode candidate. The intra prediction processing method according to the first aspect, wherein the priority of the prediction mode candidates is determined to narrow down to limited prediction mode candidates.
 第3の態様に係るイントラ予測処理方法は、前記予測モード候補限定工程においては、前記入力画像を撮像した撮像装置の光学特性を、前記解像度情報として用いることを特徴とする第1または第2の態様に係るイントラ予測処理方法。 In the intra prediction processing method according to the third aspect, in the prediction mode candidate limiting step, an optical characteristic of an imaging device that captures the input image is used as the resolution information. An intra prediction processing method according to an aspect.
 第4の態様に係るイントラ予測処理方法は、前記撮像装置の光学特性は、MTFであることを特徴とする第3の態様に係るイントラ予測処理方法。 The intra prediction processing method according to the fourth aspect is the intra prediction processing method according to the third aspect, wherein the optical characteristic of the imaging device is MTF.
 第5の態様に係るイントラ予測処理方法は、前記予測モード候補限定工程においては、前記入力画像の前処理における画像処理内容により決定される前記解像度情報を用いることを特徴とする第1または第2の態様に係るイントラ予測処理方法。 In the intra prediction processing method according to the fifth aspect, in the prediction mode candidate limiting step, the resolution information determined by the image processing content in the preprocessing of the input image is used. The intra prediction processing method which concerns on the aspect.
 第6の態様に係るイントラ予測処理方法は、前記入力画像の撮像システムに関して、処理対象ブロック位置と前記予測モード候補限定工程において限定された前記予測モード候補とを対応づけた予測モード候補テーブルを保持する予測モード候補保持工程を有し、前記予測モード決定工程においては、同じ撮像システムについて保持されている前記予測モード候補テーブルの情報に基づいて前記限定された予測モード候補を設定することを特徴とする第1から第3の何れか1項の態様に係るイントラ予測処理方法。 The intra prediction processing method which concerns on a 6th aspect hold | maintains the prediction mode candidate table which matched the process target block position and the said prediction mode candidate limited in the said prediction mode candidate limitation process regarding the imaging system of the said input image. A prediction mode candidate holding step, and in the prediction mode determination step, the limited prediction mode candidates are set based on information of the prediction mode candidate table held for the same imaging system. An intra prediction processing method according to any one of the first to third aspects.
 第7の態様に係るイントラ予測処理プログラムは、コンピュータに、入力画像の複数画素で構成される符号化の処理対処ブロックを設定する処理ブロック設定工程と、前記処理対象ブロックを何れの方向の近接ブロックから、どの様に補間して予測画像を作るかを表す補間パターンである所定数の予測モードの候補を、前記処理対象ブロックの解像度情報に基づき、前記所定数より少ない複数の予測モード候補に絞り込む予測モード候補限定工程と、前記予測モード候補限定工程において限定された前記予測モード候補の中から、予測符号化のコストが最小となる予測モードを予想符号化に用いる予測モードとして決定し、予測符号化処理に用いる予測モード決定工程と、前記予測モード決定工程で決定された予測モードにて、前記処理対象ブロックの予測画像を作成した後に、前記予測画像を用いて前記処理対象ブロックを符号化する予測符号化工程と、を備えたことを特徴とするイントラ予測処理プログラム。 An intra prediction processing program according to a seventh aspect includes: a processing block setting step for setting a processing processing block for encoding composed of a plurality of pixels of an input image in a computer; and the processing target block as a neighboring block in any direction From this, the predetermined number of prediction mode candidates, which are interpolation patterns representing how to create a predicted image by interpolation, are narrowed down to a plurality of prediction mode candidates smaller than the predetermined number based on the resolution information of the processing target block. The prediction mode candidate prediction step and the prediction mode candidate limited in the prediction mode candidate limitation step is determined as a prediction mode to be used for prediction encoding, and the prediction mode with the lowest prediction encoding cost is determined, and the prediction code In the prediction mode determination step used for the conversion processing and the prediction mode determined in the prediction mode determination step. After creating a prediction image of the block, the intra prediction processing program is characterized in that and a predictive coding step of coding the current block using the predictive image.
 第8の態様に係るイントラ予測処理プログラムは、前記予測モード候補限定工程においては、前記複数の所定の予測モード候補について、それぞれの予測モード候補の示す方向と対応する前記解像度情報の方向成分に基づき、当該予測モード候補の優先度を判定することにより、限定された予測モード候補に絞り込むことを特徴とする第7の態様に係るイントラ予測処理プログラム。 In the prediction mode candidate limiting step, the intra prediction processing program according to the eighth aspect is based on the direction component of the resolution information corresponding to the direction indicated by each prediction mode candidate for the plurality of predetermined prediction mode candidates. The intra prediction processing program according to the seventh aspect is characterized by narrowing down to limited prediction mode candidates by determining the priority of the prediction mode candidates.
 第9の態様に係るイントラ予測処理プログラムは、前記予測モード候補限定工程においては、前記入力画像を撮像した撮像装置の光学特性を、前記解像度情報として用いることを特徴とする第7または第8の態様に係るイントラ予測処理プログラム。 An intra prediction processing program according to a ninth aspect uses, in the prediction mode candidate limiting step, an optical characteristic of an imaging device that captures the input image as the resolution information. An intra prediction processing program according to an aspect.
 第10の態様に係るイントラ予測処理プログラムは、前記撮像装置の光学特性は、MTFであることを特徴とする第9の態様に係るイントラ予測処理プログラム。 The intra prediction processing program according to the tenth aspect is the intra prediction processing program according to the ninth aspect, wherein the optical characteristic of the imaging device is MTF.
 第11の態様に係るイントラ予測処理プログラムは、前記予測モード候補限定工程においては、前記入力画像の前処理における画像処理内容により決定される前記解像度情報を用いることを特徴とする第7または第8の態様に係るイントラ予測処理プログラム。 An intra prediction processing program according to an eleventh aspect uses the resolution information determined by the image processing content in the preprocessing of the input image in the prediction mode candidate limiting step. An intra prediction processing program according to the above aspect.
 第12の態様に係るイントラ予測処理プログラムは、前記コンピュータに、前記入力画像の撮像システムに関して、処理対象ブロック位置と前記予測モード候補限定工程において限定された前記予測モード候補とを対応づけた予測モード候補テーブルを保持する予測モード候補保持工程を実行させ、前記予測モード決定工程においては、同じ撮像システムについて保持されている前記予測モード候補テーブルの情報に基づいて前記限定された予測モード候補を設定することを特徴とする第7から第10の何れか1項の態様に係るイントラ予測処理プログラム。 An intra prediction processing program according to a twelfth aspect relates to a prediction mode in which the processing target block position and the prediction mode candidates limited in the prediction mode candidate limiting step are associated with the computer in the input image imaging system. A prediction mode candidate holding step for holding a candidate table is executed, and in the prediction mode determination step, the limited prediction mode candidates are set based on information in the prediction mode candidate table held for the same imaging system. An intra prediction processing program according to any one of the seventh to tenth aspects.
 本発明に係るイントラ予測処理方法、及びイントラ予測処理プログラムによれば、入力画像の予測符号化処理に際して、入力画像における処理対象ブロックの位置での解像度情報に基づき、複数の所定の予測モード候補から限定された予測モード候補に絞り込み、処理対象ブロックに対応する予測ブロックを、隣接ブロックから予測する。 According to the intra prediction processing method and the intra prediction processing program according to the present invention, in predictive encoding processing of an input image, based on resolution information at the position of a processing target block in the input image, a plurality of predetermined prediction mode candidates are used. Narrow down to limited prediction mode candidates, and predict prediction blocks corresponding to the processing target block from neighboring blocks.
 これにより、符号化処理済み領域の予測モードや処理対象画像に固有の特徴等に依存せずに、簡単迅速に最適な予測モード候補に絞り込み、予測モード決定のための計算量を削減することができる。 As a result, it is possible to easily and quickly narrow down to the optimal prediction mode candidates without depending on the prediction mode of the encoded region and the characteristics unique to the processing target image, and to reduce the calculation amount for determining the prediction mode. it can.
図1は、本実施形態に係るイントラ予測処理方法の処理手順例を示すフローチャートである。FIG. 1 is a flowchart illustrating an example of a processing procedure of the intra prediction processing method according to the present embodiment. 図2は、イントラ予測処理を実行するエンコーダの機能構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a functional configuration example of an encoder that performs intra prediction processing. 図3は、イントラ予測処理の説明のための対象画像例を示した説明図である。FIG. 3 is an explanatory view showing a target image example for explaining the intra prediction process. 図4は、輝度信号のイントラ4×4予測モードのパターン図である。FIG. 4 is a pattern diagram of the luminance signal intra 4 × 4 prediction mode. 図5は、輝度信号のイントラ16×16予測モードのパターン図である。FIG. 5 is a pattern diagram of a luminance signal intra 16 × 16 prediction mode. 図6は、色差信号のイントラ8×8予測モードのパターン図である。FIG. 6 is a pattern diagram of an intra 8 × 8 prediction mode for color difference signals. 図7は、イントラ予測処理における予測モード決定手順の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of a prediction mode determination procedure in the intra prediction process. 図8は、MTFと像高の関係の代表的な例を示すグラフである。FIG. 8 is a graph showing a typical example of the relationship between MTF and image height. 図9は、任意角α、周波数kのときのSagittal方向、Tangential方向の周波数を表す図である。FIG. 9 is a diagram illustrating the frequencies in the sagittal direction and the tangential direction when the arbitrary angle α is the frequency k. 図10は、撮像に光学系(レンズ)を用いた形態での予測モード候補限定工程の概要を説明するための図である。FIG. 10 is a diagram for explaining the outline of the prediction mode candidate limiting step in the form using an optical system (lens) for imaging. 図11は、対象画像における処理対象ブロックの位置を示すための図である。FIG. 11 is a diagram for illustrating the position of the processing target block in the target image. 図12は、点(i,j)におけるイントラ4×4予測モードの方向性を表す図である。FIG. 12 is a diagram illustrating the directionality of the intra 4 × 4 prediction mode at the point (i, j). 図13は、d0方向のMTFの算出を説明するための図である。FIG. 13 is a diagram for explaining the calculation of the MTF in the d 0 direction. 図14は、d1方向のMTFの算出を説明するための図である。FIG. 14 is a diagram for explaining the calculation of the MTF in the d 1 direction. 図15は、d5方向のMTFの算出を説明するための図である。FIG. 15 is a diagram for explaining the calculation of the MTF in the d 5 direction. 図16は、画像処理によりディストーションを補正した例を示す図である。FIG. 16 is a diagram illustrating an example in which distortion is corrected by image processing. 図17は、画像処理を構成に取り入れたH.264エンコーダの例を示す図である。FIG. 17 shows an H.264 image processing that incorporates image processing. 2 is a diagram illustrating an example of an H.264 encoder. FIG.
 (第1の実施形態)
 本発明に係るイントラ予測処理方法、及びイントラ予測処理プログラムの一実施形態を、以下に図を用いて説明する。
(First embodiment)
An embodiment of an intra prediction processing method and an intra prediction processing program according to the present invention will be described below with reference to the drawings.
 (イントラ予測処理の手順例)
 図1は、本実施形態に係るイントラ予測処理方法の概略処理手順例を示すフローチャートである。図1を用いて、本実施形態に係るイントラ予測処理方法の概略処理手順例を説明する。
(Intra prediction processing procedure example)
FIG. 1 is a flowchart illustrating an example of a schematic processing procedure of the intra prediction processing method according to the present embodiment. An example of a schematic processing procedure of the intra prediction processing method according to the present embodiment will be described with reference to FIG.
 なお、以下に述べるイントラ予測処理方法の処理手順は、それらを実行するようにプログラムされたイントラ予測処理プログラムをコンピュータ等の情報処理装置に適用することにより実行される。 The processing procedure of the intra prediction processing method described below is executed by applying an intra prediction processing program programmed to execute them to an information processing apparatus such as a computer.
 図1において、ステップS1は、入力画像のイントラ予測による予測符号化処理実行の対象となるブロックとして、対象画像に複数画素からなる処理対象ブロックを設定する。 In FIG. 1, step S1 sets a processing target block composed of a plurality of pixels in the target image as a block to be subjected to predictive encoding processing by intra prediction of the input image.
 ステップS2は、入力画像における、設定した処理対象ブロックの位置での解像度情報(例えばMTF)の方向成分を算出する、あるいは取得する。MTFは、Moduler Transfer Functionであり、詳細は後述する。 Step S2 calculates or acquires the direction component of resolution information (for example, MTF) at the set position of the processing target block in the input image. MTF is a Module Transfer Function, details of which will be described later.
 ステップS3は、予測モード候補限定工程であり、複数の所定の予測モード候補から、ステップS2で求められた解像度情報(以降、MTFとする)の方向成分に応じて、処理対象ブロックの予測モード候補を限定する。 Step S3 is a prediction mode candidate limiting step, and a prediction mode candidate of a processing target block is determined according to the direction component of the resolution information (hereinafter referred to as MTF) obtained in step S2 from a plurality of predetermined prediction mode candidates. Limit.
 なお予測モードとは、処理対象のブロックを隣接ブロックから予測するためのパターンを示すものであり、パターンの方向性の異なる複数のモードが候補として設定されている。詳細は後述する。 The prediction mode indicates a pattern for predicting a processing target block from an adjacent block, and a plurality of modes having different pattern directions are set as candidates. Details will be described later.
 予測モード候補の限定数は、1つであっても複数であってもよい。本実施形態では、複数の候補に限定されたとして説明する。 The limited number of prediction mode candidates may be one or plural. In the present embodiment, description will be made assuming that the number of candidates is limited.
 ステップS3の解像度情報に基づく予測モード候補限定工程の詳細については、具体例を後述して、説明する。 Details of the prediction mode candidate limiting step based on the resolution information in step S3 will be described later with a specific example.
 ステップS4からステップS6は、予測モード決定工程であり、ステップS3で限定された予測モード候補について、予測符号化のコストが最小となる予測モード候補を予測モードとして決定する。 Steps S4 to S6 are prediction mode determination steps, and for the prediction mode candidates limited in step S3, the prediction mode candidate that minimizes the cost of predictive coding is determined as the prediction mode.
 またそのために、ステップS4からステップS6では、それぞれの予測モード候補での予測符号化のコスト評価を行っている。 For this reason, in step S4 to step S6, the cost of predictive coding for each prediction mode candidate is evaluated.
 ステップS4は、設定した処理対象ブロックに対して、ステップS3で限定された予測モード候補ごとに、当該予測モードに従い隣接ブロックを参照し、予測ブロックを算出する。 Step S4 calculates a prediction block by referring to an adjacent block according to the prediction mode for each prediction mode candidate limited in step S3 with respect to the set processing target block.
 ステップS5は、限定された予測モード候補ごとに算出された予測ブロックを用いて、処理対象ブロックのコスト計算処理を行う。予測モード候補ごとの予測符号化のコスト評価を比較するためである。 Step S5 performs a cost calculation process of the processing target block using the prediction block calculated for each limited prediction mode candidate. This is for comparing the cost evaluation of prediction encoding for each prediction mode candidate.
 ステップS6は、ステップS5の予測符号化のコスト評価結果により、設定した処理対象ブロックに対する予測モードを1つに決定する。すなわち、予測モード候補のうち、符号化コストが最小となる予測モード候補を予測モードとして決定する。 In step S6, one prediction mode for the set processing target block is determined based on the cost evaluation result of the prediction encoding in step S5. That is, among the prediction mode candidates, the prediction mode candidate with the lowest coding cost is determined as the prediction mode.
 ステップS4からステップS6の予測モード決定工程の詳細については、具体例を後述して、説明する。 Details of the prediction mode determination process from step S4 to step S6 will be described later with a specific example.
 ステップS7は、予測符号化工程であり、設定した処理対象ブロックについて、ステップS6で決定された予測モードでの予測符号化処理を行う。 Step S7 is a predictive encoding step, and the predictive encoding process in the prediction mode determined in step S6 is performed on the set processing target block.
 なお、決定された予測モードでの予測符号化は、ステップS5で、コスト評価の際に予測符号化処理まで実行しておき、その処理結果を参照するようにしてもよい。 Note that the predictive encoding in the determined prediction mode may be executed up to the predictive encoding process at the time of cost evaluation in step S5, and the processing result may be referred to.
 ステップS8は、処理対象の画像に対して、すべての処理対象ブロックを設定し、上記手順によるイントラ予測処理を終えたかどうかを判定する。 In step S8, all the processing target blocks are set for the processing target image, and it is determined whether or not the intra prediction processing according to the above procedure is finished.
 ステップS8で判定がYesの場合は、対象画像に対するイントラ予測処理は終了する。 If the determination is Yes in step S8, the intra prediction process for the target image ends.
 ステップS8で判定がNoの場合は、ステップS1へ戻り、次の処理対象ブロックを設定し、ステップS8までを繰り返す。 If the determination in step S8 is No, the process returns to step S1, sets the next block to be processed, and repeats up to step S8.
 ステップS1からステップS8の反復は、ステップS8で判定がYesとなり、対象画像に対するイントラ予測処理が終了するまで継続する。 The repetition from step S1 to step S8 continues until the determination in step S8 is Yes and the intra prediction process for the target image is completed.
 本実施形態に係るイントラ予測処理方法とそれを実行するためのイントラ予測処理プログラムでは、このようにして予測モード決定工程の前に、符号化処理済み領域の予測モードや処理対象画像に固有の特徴等に依存しない解像度情報に基づく予測モード候補限定工程を実行する。 In the intra-prediction processing method and the intra-prediction processing program for executing the same according to the present embodiment, in this way, the prediction mode determination process and the characteristic specific to the prediction mode of the encoded region and the processing target image are performed before the prediction mode determination step. A prediction mode candidate limiting step based on resolution information that does not depend on or the like is executed.
 これにより、予測モードを決定するための符号化コスト評価の計算量を削減し、簡単迅速に最適な予測モード候補に絞り込めるよう図っている。 This makes it possible to reduce the amount of calculation for encoding cost evaluation for determining the prediction mode, and to narrow down to the optimal prediction mode candidates easily and quickly.
 以下にまず、イントラ予測処理の従来技術としての予測モード決定工程について詳細を述べ、その後で光学特性としてのMTFとその方向成分の算出について述べ、その解像度と方向成分に基づいた予測モード候補限定工程の処理例を説明する。 First, the details of the prediction mode determination step as the prior art of the intra prediction process will be described first, and then the calculation of the MTF and its direction component as optical characteristics will be described, and the prediction mode candidate limiting step based on the resolution and direction component An example of the process will be described.
 (予測モード決定工程)
 上述したステップS4からステップS6の予測モード決定工程について詳細を説明する。
(Prediction mode determination process)
Details of the prediction mode determination step from step S4 to step S6 described above will be described.
 予測モード決定工程では、イントラ予測処理において設定されている複数の予測モード候補から、予測符号化に用いる予測モードを決定する処理が行われる。この工程は、従来の公知技術(画像符号化方式の国際標準・H.264/MPEG-4 AVC)を用いる例を説明する。 In the prediction mode determination step, a process for determining a prediction mode used for predictive encoding is performed from a plurality of prediction mode candidates set in the intra prediction process. In this process, an example of using a known technique (International Standard for Image Coding, H.264 / MPEG-4 AVC) will be described.
 イントラ予測処理は、従来の画像符号化装置においても適用されている予測符号化方法であり、フレーム内で予測を行う予測符号化処理である。 The intra prediction process is a predictive encoding method that is also applied to a conventional image encoding apparatus, and is a predictive encoding process that performs prediction within a frame.
 入力画像において、複数画素からなる処理対象ブロックを設定し、対応する予測ブロックを隣接ブロックから予測するものであり、この予測に基づき予測符号化処理を行う。 In the input image, a processing target block consisting of a plurality of pixels is set, and a corresponding prediction block is predicted from an adjacent block, and a predictive encoding process is performed based on this prediction.
 例えば、H.264/MPEG-4 AVC方式のエンコーダの構成を、既に図2に示した。図2のH.264エンコーダ1のイントラ予測処理部2において、隣接ブロックから予測パターンを決定するイントラ予測処理が実行される。 For example, H. The configuration of the H.264 / MPEG-4 AVC encoder has already been shown in FIG. H. of FIG. In the intra prediction processing unit 2 of the H.264 encoder 1, intra prediction processing for determining a prediction pattern from adjacent blocks is executed.
 図3は、イントラ予測処理について説明するための対象画像例を示した説明図である。イントラ予測処理部2で行われるイントラ予測処理について、図3を用いて説明する。 FIG. 3 is an explanatory diagram showing an example of a target image for explaining the intra prediction process. The intra prediction process performed in the intra prediction process part 2 is demonstrated using FIG.
 動画像(入力画像)から1枚のフレーム(対象画像)3を抽出したとき、通常は画像内の被写体はある程度の領域で分布しており、隣り合う画素において画素値(輝度や色)が類似していることが多い。このことを利用して、近傍にある隣接ブロック5の画素から、符号化の処理対象ブロック4の画素値の推定を行うのがイントラ予測処理である。 When one frame (target image) 3 is extracted from a moving image (input image), the subjects in the image are usually distributed in a certain area, and pixel values (luminance and color) are similar in adjacent pixels. Often doing. Using this, the pixel value of the encoding target block 4 is estimated from the pixels of the adjacent block 5 in the vicinity, which is the intra prediction process.
 H.264では、符号化の処理対象ブロック4に対して、符号化済み領域6に含まれる上、左、右上、左上のブロックが隣接ブロック5として定義されている。 H. In H.264, the upper, left, upper right, and upper left blocks included in the encoded area 6 are defined as adjacent blocks 5 with respect to the encoding target block 4.
 次に、具体的なイントラ予測処理について述べる。 Next, specific intra prediction processing will be described.
 <予測モードについて>
 どの隣接ブロックからどのように予測するかについては、複数の予測モードがパターンとして設定されている。
<About prediction mode>
A plurality of prediction modes are set as patterns for how to predict from which adjacent block.
 H.264では、輝度信号を用いる
・イントラ4×4(画素)予測モード
・イントラ16×16(画素)予測モード
と、色差信号を用いる
・イントラ8×8(画素)予測モード
と、が定義されている。
H. H.264 defines an intra 4 × 4 (pixel) prediction mode using a luminance signal, an intra 16 × 16 (pixel) prediction mode, and an intra 8 × 8 (pixel) prediction mode using a color difference signal. .
 それぞれの予測モードには、平均値と画素の予測方向とを表すモードと呼ばれる番号が定義されている。 In each prediction mode, a number called a mode representing an average value and a pixel prediction direction is defined.
 例えば、図4に輝度信号のイントラ4×4予測モードのパターン図を示す。イントラ4×4予測モードでは、図4に示すように、平均値を表すMode2(以降はModeX=MXと表記する)と、方向を表すM0、M1、M3、M4、・・・、M8との9種類の予測モードが定義されている。 For example, FIG. 4 shows a pattern diagram of the luminance signal intra 4 × 4 prediction mode. In the intra 4 × 4 prediction mode, as shown in FIG. 4, Mode 2 representing an average value (hereinafter referred to as ModeX = M X ) and M 0 , M 1 , M 3 , M 4 ,. Nine types of prediction modes with M 8 are defined.
 さらに輝度信号においては、画素単位を16×16画素サイズにしたイントラ16×16予測モードが図5のように4種類の予測モードで定義されている。図5に輝度信号のイントラ16×16予測モードのパターン図を示す。 Furthermore, in the luminance signal, an intra 16 × 16 prediction mode in which the pixel unit is a 16 × 16 pixel size is defined by four types of prediction modes as shown in FIG. FIG. 5 shows a pattern diagram of the luminance signal intra 16 × 16 prediction mode.
 同様にして、色差信号においても8×8画素のイントラ8×8予測モードが図6のように定義されている。図6に色差信号のイントラ8×8予測モードのパターン図を示す。 Similarly, an 8 × 8 pixel intra 8 × 8 prediction mode is defined in the color difference signal as shown in FIG. FIG. 6 shows a pattern diagram of the color difference signal intra 8 × 8 prediction mode.
 これらの予測モード番号と、そのモードで実際に予測した結果からの差分値とを符号化することで、画像そのものを符号化するよりも遥かに高い圧縮率を実現している。 By encoding these prediction mode numbers and the difference values from the results actually predicted in that mode, a much higher compression rate than that of the image itself is realized.
 図4のアルファベット記号を用いてより具体的に示す。 This is shown more specifically using the alphabet symbols in Fig. 4.
 例えばイントラ4×4予測モードのM0のとき、隣接画素A~Dが符号化済みであれば、符号化の処理対象ブロックa~pは、
 a,e,i,m=A   (1)
 b,f,j,n=B   (2)
 c,g,k,o=C   (3)
 d,h,l,p=D   (4)
と予測され、イントラ4×4予測モードのM1の場合、隣接画素I~Lが符号化済みであれば、
 a,b,c,d=I   (5)
 e,f,g,h=J   (6)
 i,j,k,l=K   (7)
 m,n,o,p=L   (8)
と予測される。イントラ4×4予測モードのM2の場合は、
 a~p=(A+B+C+D+I+J+K+L+4)>>3
   (A~D,I~Lが符号化済みのとき)
 a~p=(I+J+K+L+2)>>2
   (A~Dのどれかが参照不可で、I~Lがすべて符号化済みのとき)
 a~p=(A+B+C+D+2)>>2
   (A~Dがすべて符号化済みで、I~Lのどれかが参照不可のとき)
 a~p=128
   (A~DとI~Lとに参照不可が含まれるとき)
                              (9)
と予測される。同様にしてM3、M4、・・・、M8も図4で示されている方向に従って予測される。
For example, when the M 0 of the intra 4 × 4 prediction mode, if the adjacent pixels A ~ D is already encoded, the target block a ~ p of coding,
a, e, i, m = A (1)
b, f, j, n = B (2)
c, g, k, o = C (3)
d, h, l, p = D (4)
In the case of M 1 in the intra 4 × 4 prediction mode, if adjacent pixels I to L have been encoded,
a, b, c, d = I (5)
e, f, g, h = J (6)
i, j, k, l = K (7)
m, n, o, p = L (8)
It is predicted. For M 2 in intra 4 × 4 prediction mode:
a to p = (A + B + C + D + I + J + K + L + 4) >> 3
(When A to D and I to L are already encoded)
a to p = (I + J + K + L + 2) >> 2
(When any of A to D cannot be referenced and I to L are all encoded)
a to p = (A + B + C + D + 2) >> 2
(When A to D are all encoded and any of I to L cannot be referenced)
a to p = 128
(When A to D and I to L contain unreferenceable)
(9)
It is predicted. Similarly, M 3 , M 4 ,..., M 8 are also predicted according to the directions shown in FIG.
 <予測モードの決定と計算量>
 H.264のイントラ予測処理は画素単位での予測を行うため、きめ細かい予測が可能となり、高画質で高圧縮な符号化を実現している。しかしながら、その一方で予測に要する演算処理量は激増している。
<Determination of prediction mode and calculation amount>
H. Since the H.264 intra prediction process performs prediction in units of pixels, fine prediction is possible, and high-quality and high-compression encoding is realized. On the other hand, however, the amount of calculation processing required for prediction has increased dramatically.
 例えば、16×16画素の輝度信号マクロブロックの予測モードを決定する処理の例を、図7を用いて説明する。図7は、イントラ予測処理における予測モード決定手順の一例を示すフローチャートである。 For example, an example of processing for determining a prediction mode of a luminance signal macroblock of 16 × 16 pixels will be described with reference to FIG. FIG. 7 is a flowchart illustrating an example of a prediction mode determination procedure in the intra prediction process.
 図7の重要なステップのみ以下に述べる。 Only the important steps in Fig. 7 are described below.
 ステップS11:イントラ16×16予測モードで予測を行う。予測モードは4種類(図5参照)あるため、符号化コスト算出処理を4回繰り返し、コストが最小となるMαiを決定する。 Step S11: Prediction is performed in the intra 16 × 16 prediction mode. Since there are four types of prediction modes (see FIG. 5), the encoding cost calculation process is repeated four times to determine Mα i that minimizes the cost.
 ステップS12:マクロブロック内にエッジが含まれるかどうかを判定する。エッジが含まれていなければ、当該マクロブロックの予測モードはイントラ16×16予測モードのMαiとして決定する。 Step S12: It is determined whether or not an edge is included in the macroblock. If no edge is included, the prediction mode of the macroblock is determined as Mα i of the intra 16 × 16 prediction mode.
 ステップS13:マクロブロック内にエッジが含まれている場合は、4×4画素単位のサブマクロブロック16個に分割し、各々のマクロブロックで9種類(図4参照)のイントラ4×4予測モードを検討する。つまり符号化コスト算出処理を最大9×16回繰り返す。 Step S13: When an edge is included in the macroblock, the macroblock is divided into 16 sub-macroblocks of 4 × 4 pixels, and nine types of intra 4 × 4 prediction modes (see FIG. 4) are provided for each macroblock. To consider. That is, the encoding cost calculation process is repeated up to 9 × 16 times.
 ステップS14:あるサブマクロブロックにおけるイントラ4×4予測モードが決まる度に、当該マクロブロックにおける現時点での累積符号化コスト(ΣCost(Mβbj))(Σはb=0~15)と、ステップS11で得られたMαiの符号化コストとを比較する。 Step S14: Every time the intra 4 × 4 prediction mode in a certain sub macroblock is determined, the current cumulative coding cost (ΣCost (Mβ bj )) (Σ is b = 0 to 15) in the macroblock, and step S11 Is compared with the encoding cost of Mα i obtained in the above.
 Mαiの符号化コストの方が小さければサブマクロブロックでの計算を中止し、Mαiを当該マクロブロックの予測モードとして決定する。サブマクロブロックの累積符号化コストの方が小さければ、当該マクロブロックで16個の予測モードMβbj(0≦b≦15)を決定する。 If is smaller coding cost of m.alpha i discontinue calculation at sub-macroblock, it determines the m.alpha i as the prediction mode of the macroblock. If the cumulative coding cost of the sub macroblock is smaller, 16 prediction modes Mβ bj (0 ≦ b ≦ 15) are determined for the macroblock.
 以上のように、各ブロックですべての予測方向(予測モード)に対して符号化コストを評価する必要がある。符号化コストを評価するためには、その予測モードで符号化した場合にどれだけの符号量になるのかを判断するため、イントラ予測処理の次のステップまで処理を進める必要があり、その演算量は膨大になる。 As described above, it is necessary to evaluate the encoding cost for all prediction directions (prediction modes) in each block. In order to evaluate the encoding cost, it is necessary to proceed to the next step of the intra prediction process in order to determine how much code amount is required when encoding is performed in the prediction mode. Will be enormous.
 そこで、この演算処理量を削減するために、従来から様々な手法が提案されている(例えば、特許文献2、3参照)。 Therefore, in order to reduce the amount of calculation processing, various methods have been conventionally proposed (for example, see Patent Documents 2 and 3).
 これらは、既に述べたように、予測モード候補を限定して絞り込むことで、演算量を削減しようとするものであるが、予測モード候補の限定方法が、符号化処理済み領域での処理内容に依存したり、処理する入力画像に固有の特徴に依存したりして、簡単迅速に最適な予測モード候補に絞り込めるものとは言えない。 As described above, these methods are intended to reduce the amount of calculation by limiting and narrowing down prediction mode candidates, but the method of limiting prediction mode candidates is the processing content in the encoded region. It cannot be said that the prediction mode candidates can be narrowed down to the optimum prediction mode easily and quickly by depending on the characteristics inherent to the input image to be processed.
 本実施形態は、予測モード決定工程に先立ち、予測モード候補限定工程を設け、その中で、入力画像における処理対象ブロックの位置での解像度情報に基づき、複数の所定の予測モード候補から限定された予測モード候補に絞り込む処理を行っている。 In the present embodiment, a prediction mode candidate limiting step is provided prior to the prediction mode determination step, in which the prediction mode candidate limiting step is limited from a plurality of predetermined prediction mode candidates based on resolution information at the position of the processing target block in the input image. Processing to narrow down to prediction mode candidates.
 これにより、撮像時の光学特性(MTF)等、入力画像に依存しない、すなわち符号化処理済み領域の予測モードや処理対象画像に固有の特徴等に依存しない解像度情報に基づくことで、簡単迅速に最適な予測モード候補に絞り込み、予測モードを決定するための符号化コスト評価の計算量を削減している。 This makes it easy and quick to rely on resolution information that does not depend on the input image, such as optical characteristics (MTF) at the time of imaging, i.e., does not depend on the prediction mode of the encoded region or the characteristics specific to the processing target image. The calculation amount for encoding cost evaluation for determining the prediction mode is reduced by narrowing down to the optimal prediction mode candidates.
 また入力画像に依存しない解像度情報に基づくため、限定された予測モード候補をテーブルにして保持しておけば、絞り込みのための評価も、その都度演算する必要がなくなり、リアルタイムでの予測符号化処理も可能となる。 In addition, because it is based on resolution information that does not depend on the input image, if limited prediction mode candidates are stored in a table, it is not necessary to perform evaluation for narrowing down each time, and prediction encoding processing in real time Is also possible.
 以下に、まず光学特性による解像度(方向成分)の低下について述べる。MTFを例に採っているが、光学特性(解像度情報)としては、OTF、PSFなど、他の特性を用いてもよい。 In the following, the decrease in resolution (direction component) due to optical characteristics will be described first. Although MTF is taken as an example, other characteristics such as OTF and PSF may be used as optical characteristics (resolution information).
 <MTF>
 カメラなどの撮像装置における光学系の性能を表す指標の1つにMTF(Moduler Transfer Function)がある。
<MTF>
One index that represents the performance of an optical system in an imaging apparatus such as a camera is MTF (Module Transfer Function).
 MTFは、被写体の持つコントラストをどの程度忠実に再現できるかを空間周波数特性として表現したものである。空間周波数は、1[mm]当たりに含まれるパターン(正弦波など)数を示す。 MTF expresses how faithfully the contrast of a subject can be reproduced as a spatial frequency characteristic. The spatial frequency indicates the number of patterns (such as a sine wave) included per 1 [mm].
 MTFは一般的に、周波数を固定(60本/mm、100本/mmなど)して、横軸に画像中心からの距離(像高)をとったグラフにおいて、画像中心から放射状の方向(Sagittal)と同心円方向(Tangential)の2方向についてプロットしたものとして表現される。 The MTF generally has a fixed frequency (60 lines / mm, 100 lines / mm, etc.), and a radial direction (Sagittal) from the image center in a graph in which the horizontal axis indicates the distance (image height) from the image center. ) And a concentric direction (Tangential).
 図8は、MTFと像高の関係の代表的な例を示すグラフである。 FIG. 8 is a graph showing a typical example of the relationship between MTF and image height.
 一般に、MTFは像高が高くなるに従って低下する傾向があり、また、放射状の方向(Sagittal)と同心円方向(Tangential)で異なる値をとることがある。その差異は、広角な光学系においては、顕著に現れる。 In general, the MTF tends to decrease as the image height increases, and may take different values in the radial direction (Sagital) and the concentric direction (Tangential). The difference appears remarkably in a wide-angle optical system.
 また、MTFを計測する方法として、特許文献(特開2001-324413号公報)のような方法が開示されている。 Further, as a method for measuring MTF, a method as disclosed in a patent document (Japanese Patent Laid-Open No. 2001-324413) is disclosed.
 <画像処理>
 一方、撮像された画像をイントラ予測処理の前に画像処理する場合がある。そのような場合には、画像処理の結果としての解像度情報を用いてもよい。
<Image processing>
On the other hand, the captured image may be subjected to image processing before intra prediction processing. In such a case, resolution information as a result of image processing may be used.
 例えば、特許文献(特開2009-284421号公報)では、広角な車載カメラで撮影した画像を歪み補正及び視点変換した画像を表示している。 For example, in the patent document (Japanese Patent Laid-Open No. 2009-284421), an image obtained by distortion correction and viewpoint conversion of an image taken with a wide-angle on-vehicle camera is displayed.
 このような画像では、元の撮像系で撮影された画像に対して画像処理による拡大・縮小処理が行われており、特に拡大処理が行われている部分では解像度が低下している。 In such an image, enlargement / reduction processing by image processing is performed on an image captured by the original imaging system, and the resolution is lowered particularly in a portion where the enlargement processing is performed.
 生成される画像解像度は、同じ画像処理を適用している間は、画面のそれぞれの領域で一定である。 The generated image resolution is constant in each area of the screen while applying the same image processing.
 (MTFの方向成分の算出)
 ここでは、画像の解像度特性として撮像系のMTFを用いる場合を説明する。MTFの方向成分に応じて予測モード候補を取捨選択するために、まず光学系の設計データから水平・垂直方向のMTF成分を算出する方法について述べる。
(Calculation of direction component of MTF)
Here, a case where the MTF of the imaging system is used as the resolution characteristic of the image will be described. In order to select prediction mode candidates according to the MTF direction component, a method for calculating horizontal and vertical MTF components from the design data of the optical system will be described first.
 <光学系の設計データからの算出>
 画像上の各座標における垂直及び水平方向のMTFは、光学系の設計データを用いてシミュレーションによって求めることができる。
<Calculation from optical system design data>
The MTF in the vertical and horizontal directions at each coordinate on the image can be obtained by simulation using design data of the optical system.
 画像上の任意の点におけるスポットダイヤグラム(点光源から瞳面上のN個の格子点を通る光線が画像上に作る点群。光線追跡によって求められる)のN個の点の座標をxk、ykとする。Sagittal方向と画像の水平面のなす角をαとし、その方向の周波数をw本/mmとすると、Sagittal方向の周波数sとTangential方向の周波数tは、図9からそれぞれ式(10)及び式(11)のようになる。 X k , the coordinates of N points of a spot diagram at a given point on the image (a group of points formed on the image by rays passing through N lattice points on the pupil plane from a point light source). Let y k . Assuming that the angle between the Sagittal direction and the horizontal plane of the image is α and the frequency in that direction is w lines / mm, the frequency s in the Sagittal direction and the frequency t in the Tangential direction are shown in FIG. )become that way.
 s=wcosα                      (10)
 t=wsinα                      (11)
 MTFの水平及び垂直方向の値、MTFh(i,j)及びMTFv(i,j)は、それぞれ式(12)及び式(13)のように表すことができ、スポットダイヤグラムから計算できる。
s = wcosα (10)
t = wsinα (11)
The horizontal and vertical values of MTF, MTF h (i, j) and MTF v (i, j) can be expressed as in Equation (12) and Equation (13), respectively, and can be calculated from the spot diagram.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 <像高に対するMTF値からの算出>
 MTFの水平及び垂直方向成分の値が算出されれば、説明は略すが、任意の方向の成分を求めることができる。
<Calculation from MTF value for image height>
If the values of the horizontal and vertical components of the MTF are calculated, the component in an arbitrary direction can be obtained although the description is omitted.
 <像高に対するMTF値からの算出>
 図8のようなSagittal方向及びTangential方向のMTF値のみが得られるときの、MTFの任意の方向の成分を求める求め方については後で述べる。
<Calculation from MTF value for image height>
A method for obtaining a component in an arbitrary direction of the MTF when only the MTF values in the sagittal direction and the tangential direction as shown in FIG. 8 are obtained will be described later.
 (予測モード候補限定工程)
 既述した図1のイントラ予測処理手順における、ステップS3の予測モード候補限定工程について詳細を説明する。
(Prediction mode candidate limited process)
Details of the prediction mode candidate limiting step in step S3 in the intra prediction processing procedure of FIG. 1 described above will be described.
 <解像度情報の方向成分による予測モード候補の限定>
 予測モード候補限定工程では、複数の所定の予測モード候補から、ステップS2で求められた解像度情報(MTF)の方向成分に応じて、処理対象ブロックの予測モード候補を限定する。
<Limitation of prediction mode candidates based on direction component of resolution information>
In the prediction mode candidate limiting step, the prediction mode candidates of the processing target block are limited according to the direction component of the resolution information (MTF) obtained in step S2 from a plurality of predetermined prediction mode candidates.
 本実施形態におけるこの工程は、解像度情報を利用して予測モード候補を絞り込み、ステップS4からステップS6の工程でのイントラ予測処理の演算処理量を削減するためのものである。入力画像の解像度情報を利用するため、事前に画像解析を行ったり、入力画像を想定したパターンを生成したりする必要はない。 This step in the present embodiment is for narrowing down prediction mode candidates using resolution information and reducing the amount of calculation processing of intra prediction processing in steps S4 to S6. Since the resolution information of the input image is used, there is no need to perform image analysis in advance or generate a pattern assuming the input image.
 本実施形態における予測モード候補限定工程の概要を、撮像に光学系(レンズ)を用いた形態を例にとって、図10を用いて説明する。 The outline of the prediction mode candidate limiting step in the present embodiment will be described with reference to FIG. 10, taking an example of using an optical system (lens) for imaging.
 撮像対象の物体を光学系としてレンズを介して結像させると、レンズの中心位置からの距離によってその解像力が異なる。また、その解像力の分布は、レンズによって異なるパラメータである。 When an object to be imaged is imaged through a lens as an optical system, the resolving power varies depending on the distance from the center position of the lens. The resolution distribution is a parameter that varies depending on the lens.
 この解像力情報を利用して、画質の劣化を招かないように演算処理量の削減を行う。 Using this resolving power information, the amount of calculation processing is reduced so as not to deteriorate the image quality.
 図10に示すように、レンズの解像力が高ければ(図10上)一画素ずつ処理を行い、高画質、高圧縮を狙った予測を行う。 As shown in FIG. 10, if the resolving power of the lens is high (upper part of FIG. 10), processing is performed pixel by pixel, and prediction aiming at high image quality and high compression is performed.
 一方で、レンズの解像力がそもそも低いのであれば(図10下)、演算コストが高い一画素単位の処理を行う必要はない。方向を表す予測モードは考慮せずに、演算コストが低い予測モード候補、例えばM2(図4参照)と限定すれば、予測モードの評価処理を大幅に削減することができる。 On the other hand, if the resolving power of the lens is low in the first place (the lower part of FIG. 10), it is not necessary to perform processing for each pixel, which has a high calculation cost. Without considering the prediction mode representing the direction, if the prediction mode is limited to a prediction mode candidate having a low calculation cost, for example, M 2 (see FIG. 4), the prediction mode evaluation process can be greatly reduced.
 ところで、このようなレンズの解像力は、レンズの中心からの距離(像高)、またその位置での方向によっても異なる情報である。このため、各レンズによって、画像中の位置と、予測モードの方向とを加味して解像力を判断し、予測モード候補をその方向性と照らして取捨選択することにより、最適な演算処理量削減を行う。 Incidentally, the resolving power of such a lens is information that varies depending on the distance (image height) from the center of the lens and the direction at that position. For this reason, each lens determines the resolving power in consideration of the position in the image and the direction of the prediction mode, and selects the prediction mode candidates in light of the directionality, thereby reducing the optimal amount of calculation processing. Do.
 例えば、設定した処理対象ブロックの位置において、複数の所定の予測モード候補について、それぞれの予測モード候補の方向性と対応する解像度情報の方向成分に基づき、当該予測モード候補を取捨選択することにより、限定された予測モード候補に絞り込む。 For example, for a plurality of predetermined prediction mode candidates at the set position of the processing target block, by selecting the prediction mode candidates based on the direction component of the resolution information corresponding to the directionality of each prediction mode candidate, Narrow down to limited prediction mode candidates.
 解像度の方向成分に応じて予測モード候補を限定する具体的な処理について、以下に説明する。 Specific processing for limiting prediction mode candidates according to the direction component of resolution will be described below.
 <像高に対するMTF値からの方向成分算出>
 図11は、対象画像3における処理対象ブロック4の位置を示すための図である。
<Calculation of direction component from MTF value for image height>
FIG. 11 is a diagram for illustrating the position of the processing target block 4 in the target image 3.
 図11に示す画素f(i,j)を左上にした4×4画素の処理対象ブロック4のイントラ予測処理を行うとする。 Suppose that the intra prediction process of the processing target block 4 of 4 × 4 pixels with the pixel f (i, j) shown in FIG.
 このとき、画像の中心を(CX,CY)とすれば、画像中心と対象画素とがなす角度θ、画像中心と対象画素との距離(像高)lは、それぞれ以下で表される。 At this time, if the center of the image is (C X , C Y ), the angle θ formed by the image center and the target pixel, and the distance (image height) 1 between the image center and the target pixel are expressed as follows. .
 θ=arctan(|j-CY|/|i-CX|)      (14)
 l=|(i,j)-(CX,CY)|            (15)
 さらに、画素f(i,j)を左上にしたブロックを処理対象ブロック4とすると、点(i,j)におけるイントラ4×4予測モードの方向性を図12のように表す。
θ = arctan (| j−C Y | / | i−C X |) (14)
l = | (i, j) − (C X , C Y ) | (15)
Furthermore, when the block with the pixel f (i, j) at the upper left is the processing target block 4, the directionality of the intra 4 × 4 prediction mode at the point (i, j) is represented as shown in FIG.
 ここで方向dXは、MXを表す方向であるとする。また、図に示しているs、tはS(Sagittal)方向、T(Tangential)方向を表しており、点(i,j)におけるMTFを、像高lの関数としてS方向、T方向でそれぞれS(l)、T(l)として定義する。 Here, it is assumed that the direction d X is a direction representing M X. Further, s and t shown in the figure represent the S (Sagittal) direction and the T (Tangential) direction, and the MTF at the point (i, j) is a function of the image height l in the S direction and the T direction, respectively. Defined as S (l) and T (l).
 これらを用いて、点(i,j)におけるdX(X={0,1,3,4,・・・,8})方向のMTFを以下のように定義する。 Using these, the MTF in the d X (X = {0, 1, 3, 4,..., 8}) direction at the point (i, j) is defined as follows.
 MTF(dX)=|S(l)cosδ|+|T(l)sinδ| (16)
 ここで、δは以下の通りである。
MTF (d X ) = | S (l) cosδ | + | T (l) sinδ | (16)
Here, δ is as follows.
 δ=|θ-(1/2)π|       (d0のとき)    (17)
 δ= θ               (d1のとき)    (18)
 δ=|θ-(3/4)π|       (d3のとき)    (19)
 δ=|θ-(1/4)π|       (d4のとき)    (20)
 δ=|θ-(3/8)π|       (d5のとき)    (21)
 δ=|θ-(1/8)π|       (d6のとき)    (22)
 δ=|θ-(5/8)π|       (d7のとき)    (23)
 δ=|θ+(1/8)π|       (d8のとき)    (24)
 例えば、d0方向のMTFは、図13のように捉えることができる。また同様に、d1、d5方向についても図14、15のように表すことができる。
δ = | θ− (1/2) π | (when d 0 ) (17)
δ = θ (when d 1 ) (18)
δ = | θ− (3/4) π | (when d 3 ) (19)
δ = | θ− (1/4) π | (when d 4 ) (20)
δ = | θ− (3/8) π | (when d 5 ) (21)
δ = | θ− (1/8) π | (when d 6 ) (22)
δ = | θ− (5/8) π | (when d 7 ) (23)
δ = | θ + (1/8) π | (when d 8 ) (24)
For example, the MTF in the d 0 direction can be captured as shown in FIG. Similarly, the directions d 1 and d 5 can also be expressed as shown in FIGS.
 <予測モード候補の限定>
 上記のようにして求めた解像度(MTF)のdX方向成分に応じて、対応する方向性を有する予測モード候補を選別する処理例を説明する。
<Limitation of prediction mode candidates>
A processing example for selecting a prediction mode candidate having a corresponding directionality according to the d X direction component of the resolution (MTF) obtained as described above will be described.
 例えば、求めたdX(X={0,1,3,4,・・・,8})方向のMTFを、所定の閾値Hと比較して、
 MTF(dX)<H                    (25)
となるとき、dX方向に対応する(例えば垂直な)方向性を有する予測モードMYは、予測モードの候補から削除するものとする。
For example, the MTF in the obtained d X (X = {0, 1, 3, 4,..., 8}) direction is compared with a predetermined threshold value H,
MTF (d X ) <H (25)
When the prediction mode M Y with (e.g., vertical) direction that corresponds to the d X direction shall be deleted from the prediction mode candidate.
 例えば、d0方向のMTFが閾値Hを下回るときは、予測モードM1は予測モードの候補から削除する。d3方向のMTFが閾値Hを下回るときは、予測モードM4は、予測モードの候補から削除する。 For example, when the MTF in the d 0 direction falls below the threshold value H, the prediction mode M 1 is deleted from the prediction mode candidates. When the MTF in the d 3 direction is less than the threshold value H, the prediction mode M 4 is deleted from the prediction mode candidates.
 ここで閾値Hは、撮像素子の画素ピッチ、及びMTFデータの周波数により決定する。 Here, the threshold value H is determined by the pixel pitch of the image sensor and the frequency of the MTF data.
 本実施形態の予測モード候補限定方法によれば、レンズの点像再現性に基づいて予測モードの候補を減らすことができるため、画質の劣化を招くことなく、演算処理量を削減することができる。 According to the prediction mode candidate limiting method of the present embodiment, the number of prediction modes can be reduced based on the point image reproducibility of the lens, so that the amount of calculation processing can be reduced without causing deterioration in image quality. .
 もし、MTF(dX)(X={0,1,3,4,・・・,8})のすべてが閾値H以下であれば、当該ブロックの予測モードをM2に決定することができ、演算処理量を大幅に削減することができる。 If all of the MTF (d X ) (X = {0, 1, 3, 4,..., 8}) are equal to or less than the threshold value H, the prediction mode of the block can be determined as M 2. The amount of calculation processing can be greatly reduced.
 上述の予測モード候補限定の処理では、イントラ4×4予測モードに関してのみ述べたが、イントラ16×16予測モードなど他のイントラ予測モードにも適用できる。 In the prediction mode candidate limited processing described above, only the intra 4 × 4 prediction mode has been described, but the present invention can also be applied to other intra prediction modes such as the intra 16 × 16 prediction mode.
 例えば、16×16画素のマクロブロックにおいて、平均値予測のM2に決定することができれば、図7で例示して説明したように4×4画素単位で処理をする必要はなく、演算処理量を抑えることができる。 For example, in a 16 × 16 pixel macroblock, if the average value prediction M 2 can be determined, it is not necessary to perform processing in units of 4 × 4 pixels as illustrated in FIG. Can be suppressed.
 <予測モード候補の優先度>
 また、予測モードの候補数を決定するだけでなく、上述のMTF(dX)を降順に並べれば、優先順位として決定することができる。すなわち、解像力の低い方向に対応する方向性を有するモードから優先的に候補から削除する処理を行うこともできる。
<Priority of prediction mode candidate>
Further, not only the number of prediction mode candidates but also the above-described MTF (d x ) are arranged in descending order, the priority can be determined. That is, it is possible to preferentially delete a candidate from a mode having directionality corresponding to a direction with low resolution.
 処理系によっては、予測モードの処理数に限界があり、すべての予測モード候補を計算できない可能性もあり、そのような場合には、適正な処理数になるまで、対応する解像力の方向成分に応じた優先度判定に従って、予測モード候補を候補から外していくようにしてもよい。 Depending on the processing system, there is a limit to the number of prediction mode processes, and there is a possibility that not all prediction mode candidates can be calculated. You may make it exclude a prediction mode candidate from a candidate according to the priority determination according to.
 (第2の実施形態)
 上述の実施形態は、光学特性として撮像系のMTFを用いて説明した。
(Second Embodiment)
The above-described embodiments have been described using the MTF of the imaging system as the optical characteristics.
 イントラ予測処理の前に画像処理が行われるような場合には、その画像処理に起因する画像のひずみ等、画像内の位置に依存する解像度の方向性を使用してもよい。 When image processing is performed before intra prediction processing, resolution directionality depending on the position in the image, such as image distortion caused by the image processing, may be used.
 例として以下に、本発明の第2の実施形態について述べる。 As an example, a second embodiment of the present invention will be described below.
 広角系のレンズや歪曲収差を生じるレンズなどで撮影された画像を、画像処理を用いて補正する従来技術がある。例えば、図16に示すように、歪曲している画像を補正する技術である。図16では、画像処理前の(a)歪曲画像と、画像処理後の(b)補正後画像を、格子状の画像として表している。 There is a conventional technique for correcting an image photographed with a wide-angle lens or a lens that generates distortion using image processing. For example, as shown in FIG. 16, this is a technique for correcting a distorted image. In FIG. 16, (a) a distorted image before image processing and (b) a corrected image after image processing are represented as a grid-like image.
 このような画像処理は何らかの補間が行われるため、図中の格子形状からも分かるように、方向によって解像度の違いが生じる。 Since such image processing is subjected to some kind of interpolation, the resolution varies depending on the direction, as can be seen from the lattice shape in the figure.
 この解像度情報は上述したMTFと同じように扱うことができるため、同様に予測モード候補の選択に用いて優先順位付けを行うことができる。 Since this resolution information can be handled in the same manner as the above-described MTF, it can be used to select a prediction mode candidate and can be prioritized.
 なお、第2の実施形態はMTFのように静的なデータとは異なり、動的に変動する場合もある。例えば、車載カメラの視点変換の用途などでは、時間の経過に伴い画像処理が行われる。 Note that, unlike the MTF, the second embodiment may dynamically fluctuate unlike static data. For example, in an in-vehicle camera viewpoint conversion application, image processing is performed as time passes.
 この画像処理を構成に取り入れたエンコーダの例を図17に示す。 FIG. 17 shows an example of an encoder incorporating this image processing in its configuration.
 図17に示したエンコード処理では、撮像装置から取得した入力信号に対して、最初に画像処理8が行われる。画像処理8は、視点変換のための処理であったり、ズーム処理、パン処理、色補正処理などであったり、様々な処理がある。 In the encoding process shown in FIG. 17, image processing 8 is first performed on the input signal acquired from the imaging device. The image processing 8 includes various processing such as processing for viewpoint conversion, zoom processing, pan processing, color correction processing, and the like.
 このときに生じたパラメータ情報を、第2の実施形態におけるイントラ予測処理部9に入力すれば、同様に解像度(方向成分)を算出し、画像処理8で処理した画像の特性に合わせてイントラ予測処理を行うことができる。 If the parameter information generated at this time is input to the intra prediction processing unit 9 in the second embodiment, the resolution (direction component) is similarly calculated, and the intra prediction is performed according to the characteristics of the image processed in the image processing 8. Processing can be performed.
 以上のように、複数の予測モード候補に対して優先順位を付けることができる本発明は、静的にも動的にも適用することができる。 As described above, the present invention that can assign priorities to a plurality of prediction mode candidates can be applied both statically and dynamically.
 なお本発明は、H.264のイントラ予測処理だけに限らず、処理対象ブロックを隣接ブロックから予測するイントラ予測処理一般に適用することができる。加重平均を用いた予測や何らかの変換を伴うような予測処理でも適用できる。 Note that the present invention relates to the H.264 standard. The present invention can be applied not only to H.264 intra prediction processing but also to general intra prediction processing for predicting a processing target block from adjacent blocks. Prediction using a weighted average or prediction processing involving some conversion can also be applied.
 <予測モード候補限定の結果保持及び活用>
 入力画像における解像度情報の処理対象ブロックの位置での方向成分に基づき、複数の所定の予測モード候補から限定された予測モード候補に絞り込んだ結果は、保存しておくことで、上記、イントラ予測処理の計算量削減に有効に活用することもできる。
<Preservation and use of results limited to prediction mode candidates>
Based on the direction component at the position of the processing target block of the resolution information in the input image, the result of narrowing down a plurality of predetermined prediction mode candidates to the limited prediction mode candidates is saved, so that the intra prediction process described above is saved. It can also be effectively used to reduce the amount of calculation.
 例えば、図1のイントラ予測処理の手順において、ステップS3の予測モード候補限定工程の終わった後、ステップS4からステップS6の予測モード決定工程の間、あるいはその前後において、予測モード候補保持工程を設けてもよい。 For example, in the procedure of the intra prediction process of FIG. 1, a prediction mode candidate holding step is provided during or before or after the prediction mode determination step of steps S4 to S6 after the prediction mode candidate limiting step of step S3 ends. May be.
 予測モード候補保持工程では、入力画像の撮像システムに関しての予測モード候補限定工程の結果、すなわち、処理対象ブロック位置と限定された予測モード候補とを対応づけた予測モード候補テーブルを保持する。 In the prediction mode candidate holding step, the result of the prediction mode candidate limiting step relating to the input image imaging system, that is, a prediction mode candidate table in which the processing target block position is associated with the limited prediction mode candidate is held.
 これにより、同じ撮像システムの入力画像に対しては、上記のように保持されている予測モード候補テーブルの情報に基づいて予測モード候補を設定する工程を設けることで、図1のステップS2及びステップS3の工程を省略することができる。 Thus, for input images of the same imaging system, a step of setting prediction mode candidates based on the information of the prediction mode candidate table held as described above is provided, so that step S2 and step of FIG. The step of S3 can be omitted.
 このように、予測モード候補限定のために用いる解像度情報が入力画像に依存しないことで、一度求めた予測モード候補限定の結果が同じシステムの場合はそのまま適用できるのである。 Thus, since the resolution information used for limiting the prediction mode candidates does not depend on the input image, it can be applied as it is when the prediction mode candidate limitation results obtained once are the same system.
 上述してきたように、本実施形態に係るイントラ予測処理方法、及びイントラ予測処理プログラムによれば、入力画像の予測符号化処理に際して、入力画像における処理対象ブロックの位置での解像度情報に基づき、複数の所定の予測モード候補から限定された予測モード候補に絞り込み、処理対象ブロックに対応する予測ブロックを、隣接ブロックから予測する。 As described above, according to the intra-prediction processing method and the intra-prediction processing program according to the present embodiment, when predictive encoding processing of an input image, a plurality of information are obtained based on resolution information at the position of the processing target block in the input image. The prediction mode candidates are narrowed down to the limited prediction mode candidates, and the prediction block corresponding to the processing target block is predicted from the adjacent block.
 これにより、符号化処理済み領域の予測モードや処理対象画像に固有の特徴等に依存せずに、簡単迅速に最適な予測モード候補に絞り込み、予測モード決定のための計算量を削減することができる。 As a result, it is possible to easily and quickly narrow down to the optimal prediction mode candidates without depending on the prediction mode of the encoded region and the characteristics unique to the processing target image, and to reduce the calculation amount for determining the prediction mode. it can.
 なお、上述の実施形態は、すべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 In addition, the above-mentioned embodiment is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 H.264エンコーダ
 2 イントラ予測処理部
 3 フレーム(イントラ予測処理の対象画像)
 4 処理対象ブロック
 5 隣接ブロック
 6 符号化済み領域
 7 未処理領域
 8 画像処理部
 9 イントラ予測処理部(第2の実施形態)
1H. H.264 Encoder 2 Intra Prediction Processing Unit 3 Frame (Intra Prediction Process Target Image)
4 processing target block 5 adjacent block 6 encoded region 7 unprocessed region 8 image processing unit 9 intra prediction processing unit (second embodiment)

Claims (12)

  1.  入力画像の複数画素で構成される符号化の処理対処ブロックを設定する処理ブロック設定工程と、
     前記処理対象ブロックを何れの方向の近接ブロックから、どの様に補間して予測画像を作るかを表す補間パターンである所定数の予測モードの候補を、前記処理対象ブロックの解像度情報に基づき、前記所定数より少ない複数の予測モード候補に絞り込む予測モード候補限定工程と、
     前記予測モード候補限定工程において限定された前記予測モード候補の中から、予測符号化のコストが最小となる予測モードを予想符号化に用いる予測モードとして決定し、予測符号化処理に用いる予測モード決定工程と、
     前記予測モード決定工程で決定された予測モードにて、前記処理対象ブロックの予測画像を作成した後に、前記予測画像を用いて前記処理対象ブロックを符号化する予測符号化工程と、
    を備えたことを特徴とするイントラ予測処理方法。
    A processing block setting step for setting a processing processing block of encoding composed of a plurality of pixels of the input image;
    Based on the resolution information of the processing target block, a predetermined number of prediction mode candidates that are interpolation patterns representing how to interpolate the processing target block from adjacent blocks in which direction to create a prediction image. A prediction mode candidate limiting step for narrowing down to a plurality of prediction mode candidates smaller than a predetermined number;
    From the prediction mode candidates limited in the prediction mode candidate limiting step, the prediction mode that minimizes the cost of prediction encoding is determined as the prediction mode used for prediction encoding, and the prediction mode used for prediction encoding processing is determined. Process,
    A prediction encoding step of encoding the processing target block using the prediction image after creating a prediction image of the processing target block in the prediction mode determined in the prediction mode determination step;
    An intra prediction processing method characterized by comprising:
  2.  前記予測モード候補限定工程においては、
     前記複数の所定の予測モード候補について、それぞれの予測モード候補の示す方向と対応する前記解像度情報の方向成分に基づき、当該予測モード候補の優先度を判定することにより、限定された予測モード候補に絞り込むことを特徴とする請求項1に記載のイントラ予測処理方法。
    In the prediction mode candidate limiting step,
    For the plurality of predetermined prediction mode candidates, by determining the priority of the prediction mode candidate based on the direction component of the resolution information corresponding to the direction indicated by each prediction mode candidate, the prediction mode candidates are limited. The intra prediction processing method according to claim 1, wherein narrowing down is performed.
  3.  前記予測モード候補限定工程においては、
     前記入力画像を撮像した撮像装置の光学特性を、前記解像度情報として用いることを特徴とする請求項1に記載のイントラ予測処理方法。
    In the prediction mode candidate limiting step,
    The intra prediction processing method according to claim 1, wherein an optical characteristic of an imaging apparatus that has captured the input image is used as the resolution information.
  4.  前記撮像装置の光学特性は、MTFであることを特徴とする請求項3に記載のイントラ予測処理方法。 4. The intra prediction processing method according to claim 3, wherein the optical characteristic of the imaging device is MTF.
  5.  前記予測モード候補限定工程においては、
     前記入力画像の前処理における画像処理内容により決定される前記解像度情報を用いることを特徴とする請求項1に記載のイントラ予測処理方法。
    In the prediction mode candidate limiting step,
    The intra prediction processing method according to claim 1, wherein the resolution information determined by image processing content in the preprocessing of the input image is used.
  6.  前記入力画像の撮像システムに関して、処理対象ブロック位置と前記予測モード候補限定工程において限定された前記予測モード候補とを対応づけた予測モード候補テーブルを保持する予測モード候補保持工程を有し、
     前記予測モード決定工程においては、
     同じ撮像システムについて保持されている前記予測モード候補テーブルの情報に基づいて前記限定された予測モード候補を設定することを特徴とする請求項1に記載のイントラ予測処理方法。
    A prediction mode candidate holding step for holding a prediction mode candidate table in which the processing target block position and the prediction mode candidates limited in the prediction mode candidate limiting step are associated with the input image imaging system,
    In the prediction mode determination step,
    The intra prediction processing method according to claim 1, wherein the limited prediction mode candidates are set based on information in the prediction mode candidate table held for the same imaging system.
  7.  コンピュータに、
     入力画像の複数画素で構成される符号化の処理対処ブロックを設定する処理ブロック設定工程と、
     前記処理対象ブロックを何れの方向の近接ブロックから、どの様に補間して予測画像を作るかを表す補間パターンである所定数の予測モードの候補を、前記処理対象ブロックの解像度情報に基づき、前記所定数より少ない複数の予測モード候補に絞り込む予測モード候補限定工程と、
     前記予測モード候補限定工程において限定された前記予測モード候補の中から、予測符号化のコストが最小となる予測モードを予想符号化に用いる予測モードとして決定し、予測符号化処理に用いる予測モード決定工程と、
     前記予測モード決定工程で決定された予測モードにて、前記処理対象ブロックの予測画像を作成した後に、前記予測画像を用いて前記処理対象ブロックを符号化する予測符号化工程と、
    を備えたことを特徴とするイントラ予測処理プログラム。
    On the computer,
    A processing block setting step for setting a processing processing block of encoding composed of a plurality of pixels of the input image;
    Based on the resolution information of the processing target block, a predetermined number of prediction mode candidates that are interpolation patterns representing how to interpolate the processing target block from adjacent blocks in which direction to create a prediction image. A prediction mode candidate limiting step for narrowing down to a plurality of prediction mode candidates smaller than a predetermined number;
    From the prediction mode candidates limited in the prediction mode candidate limiting step, the prediction mode that minimizes the cost of prediction encoding is determined as the prediction mode used for prediction encoding, and the prediction mode used for prediction encoding processing is determined. Process,
    A prediction encoding step of encoding the processing target block using the prediction image after creating a prediction image of the processing target block in the prediction mode determined in the prediction mode determination step;
    An intra prediction processing program characterized by comprising:
  8.  前記予測モード候補限定工程においては、
     前記複数の所定の予測モード候補について、それぞれの予測モード候補の示す方向と対応する前記解像度情報の方向成分に基づき、当該予測モード候補の優先度を判定することにより、限定された予測モード候補に絞り込むことを特徴とする請求項7に記載のイントラ予測処理プログラム。
    In the prediction mode candidate limiting step,
    For the plurality of predetermined prediction mode candidates, by determining the priority of the prediction mode candidate based on the direction component of the resolution information corresponding to the direction indicated by each prediction mode candidate, the prediction mode candidates are limited. The intra prediction processing program according to claim 7, wherein narrowing down is performed.
  9.  前記予測モード候補限定工程においては、
     前記入力画像を撮像した撮像装置の光学特性を、前記解像度情報として用いることを特徴とする請求項7に記載のイントラ予測処理プログラム。
    In the prediction mode candidate limiting step,
    The intra prediction processing program according to claim 7, wherein optical characteristics of an imaging device that captures the input image are used as the resolution information.
  10.  前記撮像装置の光学特性は、MTFであることを特徴とする請求項9に記載のイントラ予測処理プログラム。 The intra prediction processing program according to claim 9, wherein the optical characteristic of the imaging device is MTF.
  11.  前記予測モード候補限定工程においては、
     前記入力画像の前処理における画像処理内容により決定される前記解像度情報を用いることを特徴とする請求項7に記載のイントラ予測処理プログラム。
    In the prediction mode candidate limiting step,
    The intra prediction processing program according to claim 7, wherein the resolution information determined by image processing content in the preprocessing of the input image is used.
  12.  前記コンピュータに、
     前記入力画像の撮像システムに関して、処理対象ブロック位置と前記予測モード候補限定工程において限定された前記予測モード候補とを対応づけた予測モード候補テーブルを保持する予測モード候補保持工程を実行させ、
     前記予測モード決定工程においては、
     同じ撮像システムについて保持されている前記予測モード候補テーブルの情報に基づいて前記限定された予測モード候補を設定することを特徴とする請求項7に記載のイントラ予測処理プログラム。
    In the computer,
    With respect to the input image imaging system, a prediction mode candidate holding step for holding a prediction mode candidate table in which a processing target block position and the prediction mode candidates limited in the prediction mode candidate limiting step are associated is executed.
    In the prediction mode determination step,
    The intra prediction processing program according to claim 7, wherein the limited prediction mode candidates are set based on information in the prediction mode candidate table held for the same imaging system.
PCT/JP2011/055327 2010-04-16 2011-03-08 Intra prediction processing method and intra prediction processing program WO2011129163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012510601A JP5376049B2 (en) 2010-04-16 2011-03-08 Intra prediction processing method and intra prediction processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010094826 2010-04-16
JP2010-094826 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129163A1 true WO2011129163A1 (en) 2011-10-20

Family

ID=44798542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055327 WO2011129163A1 (en) 2010-04-16 2011-03-08 Intra prediction processing method and intra prediction processing program

Country Status (2)

Country Link
JP (1) JP5376049B2 (en)
WO (1) WO2011129163A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157924A1 (en) * 2015-03-27 2016-10-06 ソニー株式会社 Image processing device, image processing method, program and recording medium
WO2017204185A1 (en) * 2016-05-27 2017-11-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Encoding device, decoding device, encoding method, and decoding method
WO2019065917A1 (en) * 2017-09-29 2019-04-04 株式会社ニコン Moving-image compression device, electronic apparatus, and moving-image compression program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151017A (en) * 2003-11-13 2005-06-09 Sharp Corp Image coding apparatus
JP2007024889A (en) * 2005-07-12 2007-02-01 Canon Inc Otf-measuring system
JP2008193458A (en) * 2007-02-06 2008-08-21 Victor Co Of Japan Ltd Camera image compression processor and compression processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151017A (en) * 2003-11-13 2005-06-09 Sharp Corp Image coding apparatus
JP2007024889A (en) * 2005-07-12 2007-02-01 Canon Inc Otf-measuring system
JP2008193458A (en) * 2007-02-06 2008-08-21 Victor Co Of Japan Ltd Camera image compression processor and compression processing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10362305B2 (en) 2015-03-27 2019-07-23 Sony Corporation Image processing device, image processing method, and recording medium
WO2016157924A1 (en) * 2015-03-27 2016-10-06 ソニー株式会社 Image processing device, image processing method, program and recording medium
JPWO2016157924A1 (en) * 2015-03-27 2018-01-18 ソニー株式会社 Image processing apparatus, image processing method, program, and recording medium
CN115150619B (en) * 2016-05-27 2024-02-13 松下电器(美国)知识产权公司 Encoding device and decoding device
CN115150619A (en) * 2016-05-27 2022-10-04 松下电器(美国)知识产权公司 Encoding device and decoding device
US11962804B2 (en) 2016-05-27 2024-04-16 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
CN109155854A (en) * 2016-05-27 2019-01-04 松下电器(美国)知识产权公司 Code device, decoding apparatus, coding method and coding/decoding method
US11134270B2 (en) 2016-05-27 2021-09-28 Panasonic Intellectual Property Corporation Of America Encoder, decoder, encoding method, and decoding method
CN114979647A (en) * 2016-05-27 2022-08-30 松下电器(美国)知识产权公司 Encoding device and decoding device
CN114979650A (en) * 2016-05-27 2022-08-30 松下电器(美国)知识产权公司 Encoding device and decoding device
CN114979648A (en) * 2016-05-27 2022-08-30 松下电器(美国)知识产权公司 Encoding method, decoding method, and encoding and decoding method
CN115037939A (en) * 2016-05-27 2022-09-09 松下电器(美国)知识产权公司 Encoding device and decoding device
JPWO2017204185A1 (en) * 2016-05-27 2019-03-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Encoding device, decoding device, encoding method, and decoding method
CN115150630A (en) * 2016-05-27 2022-10-04 松下电器(美国)知识产权公司 Encoding device and decoding device
CN115037939B (en) * 2016-05-27 2024-02-13 松下电器(美国)知识产权公司 Encoding device and decoding device
WO2017204185A1 (en) * 2016-05-27 2017-11-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Encoding device, decoding device, encoding method, and decoding method
CN114979650B (en) * 2016-05-27 2024-02-13 松下电器(美国)知识产权公司 Encoding device and decoding device
CN114979647B (en) * 2016-05-27 2024-02-13 松下电器(美国)知识产权公司 Encoding device and decoding device
CN114979648B (en) * 2016-05-27 2024-02-13 松下电器(美国)知识产权公司 Encoding method, decoding method, and encoding and decoding methods
CN115150630B (en) * 2016-05-27 2024-02-20 松下电器(美国)知识产权公司 Encoding device and decoding device
WO2019065917A1 (en) * 2017-09-29 2019-04-04 株式会社ニコン Moving-image compression device, electronic apparatus, and moving-image compression program

Also Published As

Publication number Publication date
JP5376049B2 (en) 2013-12-25
JPWO2011129163A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
CN110839155B (en) Method and device for motion estimation, electronic equipment and computer-readable storage medium
CA2702165C (en) Image generation method and apparatus, program therefor, and storage medium which stores the program
US20200007872A1 (en) Video decoding method, video decoder, video encoding method and video encoder
KR20040028911A (en) Method and apparatus for motion estimation between video frames
JP2009230537A (en) Image processor, image processing program, image processing method, and electronic equipment
US20120321203A1 (en) Ghost detection device and imaging device using the same, ghost detection method and ghost removal method
WO2010050412A1 (en) Calibration index determination device, calibration device, calibration performance evaluation device, system, method, and program
CN109688413B (en) Method and encoder for encoding a video stream in a video encoding format supporting auxiliary frames
JP5376049B2 (en) Intra prediction processing method and intra prediction processing program
US8818089B2 (en) Device and method of removing chromatic aberration in image
JP2016184801A (en) Moving image encoding device
CN100364337C (en) Image processing method and image processing device
US20050078884A1 (en) Method and apparatus for interpolating a digital image
EP2903263A1 (en) Image processing device and image processing method
KR100986607B1 (en) Method for video interpolation and computer recordable medium storing the method
JP5446285B2 (en) Image processing apparatus and image processing method
CN111445435A (en) No-reference image quality evaluation method based on multi-block wavelet transform
KR100882085B1 (en) Method for enhancing contrast of image
JP4083159B2 (en) Motion vector setting method for digital video
JP3959547B2 (en) Image processing apparatus, image processing method, and information terminal apparatus
CN113992911A (en) Intra-frame prediction mode determination method and device for panoramic video H264 coding
JP2006215657A (en) Method, apparatus, program and program storage medium for detecting motion vector
US20090147022A1 (en) Method and apparatus for processing images, and image display apparatus
JP6171584B2 (en) Moving picture coding apparatus, moving picture coding method, and moving picture coding program
JP4426930B2 (en) Image restoration device, image restoration method, and image restoration program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510601

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768684

Country of ref document: EP

Kind code of ref document: A1