WO2019065457A1 - Sealant composition for solar cell module and production method for sealant sheet for solar cell module - Google Patents

Sealant composition for solar cell module and production method for sealant sheet for solar cell module Download PDF

Info

Publication number
WO2019065457A1
WO2019065457A1 PCT/JP2018/034837 JP2018034837W WO2019065457A1 WO 2019065457 A1 WO2019065457 A1 WO 2019065457A1 JP 2018034837 W JP2018034837 W JP 2018034837W WO 2019065457 A1 WO2019065457 A1 WO 2019065457A1
Authority
WO
WIPO (PCT)
Prior art keywords
base resin
density
sealing material
mass
solar cell
Prior art date
Application number
PCT/JP2018/034837
Other languages
French (fr)
Japanese (ja)
Inventor
康佑 佐伯
伸也 米田
滋弘 上野
徳俊 赤澤
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2019065457A1 publication Critical patent/WO2019065457A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sealant composition for a solar cell module and a method for producing a sealant sheet for a solar cell module.
  • a solar cell module has a configuration in which a transparent front substrate, a solar cell element and a back surface protection sheet are laminated via a sealing material sheet for a solar cell module (see FIG. 1).
  • the sealing material sheet for a solar cell module on the premise of being exposed to strong sunlight for a long period of time outdoors is required to have extremely high light resistance.
  • a sealing material sheet using a hindered amine light stabilizer hereinafter also referred to as "HALS" has been proposed. (See Patent Document 1).
  • the molecular weight is a finding that it is preferable to use a high molecular weight hindered amine light stabilizer with a molecular weight of 1200 or more within a fixed amount range (see Patent Document 2).
  • the term "molecular weight” refers to "number average molecular weight (Mn)" unless otherwise specified.
  • the light resistance can be improved by the addition of a hindered amine light stabilizer, and as described in Patent Document 2, the hindered amine light stabilizer is further improved.
  • the occurrence of bleed-out can also be suppressed by limiting to HALS of molecular weight type and adding after appropriately adjusting the addition amount.
  • HALS copolymer type ultra high molecular weight type HALS
  • ethylene Patent Document 1
  • HALS copolymer type ultra high molecular weight type HALS
  • this HALS is an ultra-high molecular weight type having a molecular weight of more than 30,000, it is extremely excellent in compatibility with a polyethylene resin.
  • the encapsulant sheet for a solar cell module is often required to have not only the above-mentioned weather resistance but also high transparency.
  • a high degree of transparency is required for the sealing material sheet, it is necessary to limit the haze to a sufficiently low level by limiting to a resin having a low density of the base resin.
  • the density of polyethylene as a base resin needs to be a low density of 0.900 g / cm 3 or less, more preferably 0.880 / cm 3 .
  • the present invention has been made in view of the above-mentioned circumstances, and while sufficiently maintaining the transparency, fully enjoy the excellent weatherability improvement effect by the addition of "copolymer type ultra high molecular weight type HALS" It is an object of the present invention to provide an encapsulant sheet for a solar cell module capable of
  • the present inventors have excellent resin compatibility in the production of a sealing material for a solar cell module having a polyethylene-based resin as a base resin, and a hindered amine light stabilizer added to the sealing material composition as a material has excellent resin compatibility.
  • HALS of copolymer type ultra high molecular weight type first, the density of the polyethylene resin as the base resin is limited to a specific low density range with a small haze, and addition to this base resin and this By optimizing the formulation of the encapsulant composition so that the difference in density with the “copolymer type ultra-high molecular weight type HALS” falls within a predetermined range, it has excellent transparency and is highly advanced. It has been found that it is possible to produce a sealant sheet having a weather resistance, and the present invention has been completed. More specifically, the present invention provides the following.
  • a sealing material composition for a solar cell module comprising a low density polyethylene as a base resin and a crosslinking agent and a hindered amine light stabilizer, wherein the hindered amine light stabilizer is a cyclic aminovinyl compound And a copolymer having a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more, and a content ratio of the cyclic aminovinyl compound to the base resin is 0.1% by mass or more.
  • the density of the base resin is 2% by mass or less, and the density of the base resin is 0.900 g / cm 3 or less, and the difference between the density of the base resin and the density of the hindered amine light stabilizer is 0.050 g / cm 3
  • An encapsulant composition that is less than 3 cm 3 .
  • a method of manufacturing a sealing material sheet for a solar cell module comprising: a light resistance stabilizer selection step, a base resin selection step, a material mixing step, and a sheeting step, wherein the light resistance
  • a hindered amine light stabilizer which is a copolymer of a cyclic aminovinyl compound and ethylene and has a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more is selected as a light stabilizer.
  • the base resin selection step the base resin has a density of 0.900 g / cm 3 or less and a density difference with the hindered amine light stabilizer of less than 0.050 g / cm 3.
  • Polyethylene is selected, and in the material mixing step, a crosslinking agent and the hindered amine light stabilizer are added to the low density polyethylene and mixed.
  • the manufacturing method of the sealing material sheet which manufactures a sealing material composition and manufactures a sealing material sheet by melt-molding the said sealing material composition in the said sheeting process.
  • the addition amount of the hindered amine light stabilizer is an addition amount such that the content ratio of the cyclic aminovinyl compound to the base resin is 0.1 mass% or more and 0.2 mass% or less, (3) The manufacturing method of the sealing material sheet as described in-.
  • the low density polyethylene has a density of 0.885 g / cm 3 or more, and the hindered amine light stabilizer has a density of 0.930 g / cm 3 or more according to (3) or (4) The manufacturing method of the sealing material sheet as described.
  • the content of the crosslinking agent with respect to the base resin is 0.2% by mass or more and 0.5% by mass or less.
  • a seal for a solar cell module which can fully enjoy the excellent weatherability improvement effect by the addition of “copolymer type ultra-high molecular weight type HALS” while maintaining sufficient transparency.
  • An adhesive sheet can be manufactured.
  • the sealing material sheet (hereinafter, also simply referred to as “sealing material sheet") of the present invention is formed into a film or sheet by molding processing of the sealing material composition, the details of which will be described below, by a conventionally known method.
  • the sheet-like in the present invention means that the film-like is also included, and there is no difference between the two.
  • the molding temperature it is preferable to limit the molding temperature to a low temperature range of 90 ° C. to 120 ° C., and to mold the sealing material sheet without being crosslinked.
  • the crosslinking treatment may be separately performed after molding, or may be heated at a high temperature at the time of manufacturing a solar cell module described later to complete the crosslinking.
  • the encapsulant sheet has a polyethylene resin having a density of 0.900 g / cm 3 or less, preferably 0.890 g / cm 3 or less as a base resin.
  • a polyethylene resin having a density of 0.900 g / cm 3 or less, preferably 0.890 g / cm 3 or less as a base resin.
  • the upper limit of the density of the encapsulant sheet is the above-mentioned density, while the lower limit thereof is optimized in correlation with the density of the hindered amine light stabilizer used as an additive by kneading with the base resin. . Specifically, it may be adjusted so that the difference between the density of the base resin and the density of the hindered amine light stabilizer is less than 0.050 g / cm 3 , preferably less than 0.047 g / cm 3 . In the encapsulating material sheet and the encapsulating material composition of the present invention, it is premised that the density of the hindered amine light stabilizer used as the light stabilizer is larger than the density of the polyethylene as the base resin.
  • the “difference between the density of the base resin and the density of the above-mentioned hindered amine light stabilizers” in the specification is, of course, the difference obtained by subtracting the density of the base resin from the density of the hindered amine light stabilizers.
  • “copolymer type ultrahigh molecular weight type HALS” which can be preferably used as a light stabilizer in the present invention
  • “XJ-100H” molecular weight: 35,000, density is 0.931 g / cm 3 Nippon Polyethylene Co., Ltd.
  • the density of the base resin of the encapsulant sheet may be Dere if exceeded 0.881g / cm 3, preferably exceeds 0.884 g / cm 3 .
  • this sealing material sheet is formed of an uncrosslinked resin film having a gel fraction of 0% or more and 10% or less, more preferably 0%, at a stage after modularization, after film formation.
  • this uncrosslinked sealing material sheet contains a predetermined amount of a crosslinking agent, and it is assumed that crosslinking proceeds during any process until after integration as a solar cell module. It is a so-called thermosetting (or crosslinking) resin film.
  • the gel fraction of the encapsulant sheet after completion of crosslinking in the final product stage of the solar cell module, which is the final product, is preferably 50% to 90%, and more preferably 60% to 80%.
  • the composition and the addition amount of the crosslinking agent, the crosslinking assistant, and the other additives in a preferable range, it is possible to appropriately suppress the crosslinking reaction so that the gel fraction is in the above range.
  • gel fraction (%) in the present specification refers to 1.0 g of the encapsulant sheet placed in a resin mesh, extracted with 110 ° C. xylene for 12 hours, then taken out together with the resin mesh and weighed after drying processing Then, mass comparison before and after extraction is performed to measure the mass% of the remaining insoluble content, and this is taken as a gel fraction.
  • the gel fraction of 0% means that the residual insoluble content is substantially zero, and the crosslinking reaction of the encapsulant composition or the encapsulant sheet is not substantially initiated.
  • gel fraction 0% means that the above-mentioned residual insolubles are not present at all, and the above-mentioned residual insolubles measured by a precision balance have a mass% of less than 0.05% by mass. Shall be said.
  • the above-mentioned residual insolubles do not contain pigment components other than resin components.
  • inclusions other than these resin components are present in the residual insolubles according to the above-mentioned test, for example, the content of these inclusions in the resin component may be separately measured in advance.
  • the gel fraction to be originally obtained can be calculated for the residual insoluble matter derived from the resin component excluding the inclusions.
  • the melt mass flow rate (MFR) of the encapsulant sheet at the uncrosslinked stage after film formation is MFR at 190 ° C. measured under JIS-K6922-2 and a load of 2.16 kg (in the present specification, this measurement condition is hereinafter referred to as “MFR”) Is referred to as MFR.) Is preferably 5 g / 10 minutes or more and 25 g / 10 minutes or less, and more preferably 10 g / 10 minutes or more and 20 g / 10 minutes or less.
  • MFR melt mass flow rate
  • the encapsulant sheet of the present invention may be a single layer film, but may be a multilayer film constituted of a core layer and skin layers disposed on both sides of the core layer.
  • the multilayer film in the present specification is a film or sheet having a structure having a skin layer formed into at least one of the outermost layers, preferably both outermost layers, and a core layer which is a layer other than the skin layer.
  • fills the essential component requirements of this invention it is more preferable to set it as the layer structure from which MFR differs for every layer in the range which satisfy
  • the encapsulant sheet of the present invention even in the case of a single-layer encapsulant sheet, has sufficiently favorable transparency, heat resistance, and appropriate flexibility, but in such a manner it is relatively MFR. By arranging the high layer as the outermost layer, it is possible to further improve the adhesion and the molding characteristics while maintaining the above-mentioned preferable transparency and heat resistance as the sealing material sheet.
  • the sealing material composition (hereinafter, also simply referred to as "sealing material composition") used for the production of the sealing material sheet of the present invention has a low density polyethylene resin as a base resin and requires a crosslinking agent as heat. It is a resin composition of a curing system.
  • base resin refers to a resin composition containing the base resin, which is mixed with the resin having the largest content ratio in the resin component of the resin composition and the resin. It refers to the same kind of resin being used.
  • the entire mixed resin is referred to as a base resin.
  • the encapsulant composition has a density of 0.900 g / cm 3 or less, preferably 0.890 g / cm 3 or less, and as described above, the density difference with the added light stabilizer is within a predetermined range.
  • the base resin is polyethylene in the density range.
  • the lower limit of the preferable density range of the base resin of the encapsulant composition is, as described above, determined correlatively according to the density difference between the base resin and the light resistant stabilizer used after kneading.
  • Specific examples of such preferred combinations for example, a "co-polymer type ultrahigh molecular weight type of HALS" of the above-mentioned density 0.931 g / cm 3, exceeds the density 0.881g / cm 3 0.900g / cm 3 or less, preferably, there can be mentioned a combination of 0.884 g / cm 3 greater than 0.890 g / cm 3 low-density polyethylene or less.
  • the density of the base resin within the above range, the adhesion with other members constituting the solar cell module, such as a glass protective substrate, is enhanced, and the risk of cell breakage at the time of pressure bonding of each member in lamination processing Can also be reduced.
  • the polyethylene used as a base resin of the encapsulant composition is linear low density polyethylene (LLDPE) which is a copolymer of ethylene and an ⁇ -olefin.
  • the base resin is more preferably a metallocene linear low density polyethylene (M-LLDPE).
  • M-LLDPE metallocene linear low density polyethylene
  • the metallocene based linear low density polyethylene is one synthesized using a metallocene catalyst which is a single site catalyst.
  • Such polyethylene has less side chain branching and uniform comonomer distribution. For this reason, the molecular weight distribution is narrow, and it is possible to make the ultra-low density as described above, and it is possible to impart flexibility to the sealing material sheet. As a result of the flexibility given to the sealing material sheet, the adhesion between the sealing material sheet and the glass, metal or the like is enhanced.
  • linear low density polyethylene has a narrow crystallinity distribution and uniform crystal size, and thus not only does not have a large crystal size but also has low crystallinity itself due to its low density. For this reason, it is excellent in the transparency at the time of processing into a sheet form as a sealing agent sheet. Therefore, in the solar cell module, the sealing material sheet comprising the sealing material composition having the base resin as a base resin, when disposed on the light receiving surface side of the solar cell element, is attenuated by the incident light to the solar cell element. It is possible to prevent the decrease of the power generation efficiency well.
  • polyethylene resin in the present specification, not only ordinary polyethylene obtained by polymerizing ethylene but also resin obtained by polymerizing a compound having an ethylenically unsaturated bond such as ⁇ -olefin and the like And resins obtained by copolymerizing a plurality of different compounds having an ethylenically unsaturated bond, and modified resins obtained by grafting another chemical species to these resins.
  • a silane copolymer obtained by copolymerizing an ⁇ -olefin and an ethylenically unsaturated silane compound as a comonomer can be preferably used as a part of a base resin of a sealing material composition.
  • a resin By using such a resin, adhesiveness of sufficient strength can be obtained between another laminated member such as a glass protective substrate or a solar cell element and the sealing material sheet.
  • the silane copolymer is, for example, one described in JP-A 2003-46105.
  • the said copolymer is excellent in intensity
  • the silane copolymer is a copolymer obtained by copolymerizing at least an ⁇ -olefin and an ethylenically unsaturated silane compound as a comonomer and, if necessary, another unsaturated monomer as a comonomer, the copolymer And modified products or condensates of
  • one or more of ⁇ -olefins, one or more of ethylenically unsaturated silane compounds, and, if necessary, one or more of other unsaturated monomers a pressure of about 500 to 4000 kg / cm 2 , preferably about 1000 to 4000 kg / cm 2 and a temperature of about 100 to 400 ° C., preferably about 150 to 350 ° C., using a desired reaction vessel.
  • a radical polymerization initiator and, if necessary, a chain transfer agent simultaneously or stepwise, random copolymerize, and, if necessary, construct a random copolymer formed by the copolymer.
  • a portion of the silane compound can be modified or condensed to produce a copolymer of an ⁇ -olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof.
  • a copolymer of an ⁇ -olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof for example, one or more of ⁇ -olefins and, if necessary, other unsaturated monomers One or more of them are polymerized simultaneously or stepwise in the presence of a radical polymerization initiator and, if necessary, a chain transfer agent, as described above, using the desired reaction vessel, and then the polymerization thereof Graft copolymerizing one or more kinds of ethylenically unsaturated silane compounds with the polyolefin polymer formed by the above, and, if necessary, constituting a graft copolymer formed by the copolymer A part of the silane compound is modified or condensed to produce a copolymer of an ⁇ -olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof. That.
  • ⁇ -olefins examples include ethylene, propylene, 1-butene, isobutylene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 1-heptene, 1-octene, One or more selected from 1-nonene and 1-decene can be used.
  • ethylenically unsaturated silane compound for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, vinyltriisopropoxysilane, vinyltributoxysilane, vinyltripentyloxysilane, vinyltriphenoxysilane, vinyltriphenoxysilane
  • vinyltriphenoxysilane vinyltriphenoxysilane
  • vinyltriphenoxysilane vinyltriphenoxysilane
  • vinyltriphenoxysilane vinyltriphenoxysilane
  • vinyltriphenoxysilane One or more selected from benzyloxysilane, vinyltrimethylenedioxysilane, vinyltriethylenedioxysilane, vinylpropionyloxysi
  • unsaturated monomer 1 or more types selected from vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, vinyl alcohol can be used, for example.
  • Organic peroxides such as oxyisobutyrate, molecular oxygen, and azo compounds such as azobisisobutyronitrile and azoisobutylvaleronitrile can be used.
  • chain transfer agents examples include paraffin hydrocarbons such as methane, ethane, propane, butane and pentane, ⁇ -olefins such as propylene, 1-butene and 1-hexene, and aldehydes such as formaldehyde, acetaldehyde and n-butyraldehyde And ketones such as acetone, methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons, chlorinated hydrocarbons and the like.
  • paraffin hydrocarbons such as methane, ethane, propane, butane and pentane
  • ⁇ -olefins such as propylene
  • 1-butene and 1-hexene aldehydes
  • aldehydes such as formaldehyde, acetaldehyde and n-butyraldehyde
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • a method of modifying or condensing a portion of a silane compound constituting a random copolymer or a method of modifying or condensing a portion of a silane compound constituting a graft copolymer, for example, tin, zinc, iron, lead, ⁇ -olefins and ethylenically unsaturated silanes using carboxylic acid salts of metals such as cobalt, organic metal compounds such as titanates and chelates, organic bases, inorganic acids, and silanol condensation catalysts such as organic acids
  • carboxylic acid salts of metals such as cobalt
  • organic metal compounds such as titanates and chelates
  • organic bases organic bases
  • silanol condensation catalysts such as organic acids
  • Modification of the copolymer of ⁇ -olefin and the ethylenically unsaturated silane compound by dehydrating condensation reaction between silanols of the portion of the silane compound constituting the random copolymer
  • any of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer can be preferably used, but a graft copolymer is more preferable. It is further preferable to use a graft copolymer in which polyethylene for polymerization is used as a main chain and an ethylenically unsaturated silane compound is used as a side chain.
  • Such graft copolymer improves the adhesion of the encapsulant sheet for the solar cell module to other members in the solar cell module because the degree of freedom of the silanol group contributing to the adhesion becomes high. it can.
  • the content of the ethylenically unsaturated silane compound in forming the copolymer of the ⁇ -olefin and the ethylenically unsaturated silane compound is, for example, about 0.001 to 15% by mass with respect to the total mass of the copolymer. Preferably, about 0.01 to 5% by mass, more preferably about 0.05 to 2% by mass is desirable.
  • the amount of active oxygen should just be 8.5% or more and 15.00% or less, and it is preferable that it is 8.5% or more and 10.00% or less.
  • the sealing material sheet can be provided with better heat resistance, light resistance, and transparency.
  • the sealing agent composition of this invention can be made into the composition which can be melt-extruded at 120 degrees C or less.
  • preferable crosslinking agents satisfying the above conditions include n-butyl 4,4-di (t-butylperoxy) valerate, ethyl 3,3-di (t-butylperoxy) butyrate, 2,2- Peroxyketals such as di (t-butylperoxy) butane, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-) Dialkyl peroxides such as butylperoxy) hexane and 2,5-dimethyl-2,5-di (t-peroxy) hexine-3 can be preferably used as a crosslinking agent to be added to the encapsulant composition.
  • 2,2- Peroxyketals such as di (t-butylperoxy) butane, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5
  • the content of the above-mentioned crosslinking agent in the sealing material composition is preferably 0.2% by mass or more and 0.5% by mass or less with respect to the base resin in the sealing material composition, and more preferably 0. It is the range of 3 mass% or more and 0.4 mass% or less. By adding the crosslinking agent in this range, it is possible to impart sufficient durability to the sealing material sheet.
  • the sealing material sheet of this invention is formed into a film, without advancing crosslinking substantially, and content of said crosslinking agent in the sealing material sheet in the sheet
  • a crosslinking monomer having a carbon-carbon double bond and / or an epoxy group and more preferably, the functional group of the polyfunctional monomer is an allyl group, a (meth) acrylate group, a vinyl group
  • an agent In addition to promoting an appropriate crosslinking reaction by this and improving the adhesiveness with respect to the glass and metal of a sealing material sheet, this crosslinking adjuvant forms the crystallinity of linear low density polyethylene which forms a sealing material sheet. And maintain transparency. Thereby, in addition to the effect of the improvement of said adhesiveness, transparency and low temperature flexibility of a sealing material sheet can be made more excellent.
  • TAIC triallyl isocyanurate
  • diallyl phthalate diallyl phthalate
  • diallyl fumarate diallyl fumarate
  • diallyl maleate and trilyl.
  • Methylolpropane trimethacrylate (TMPT), trimethylolpropane triacrylate (TMPTA), ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonane Poly (meth) acryloxy compound such as diol diacrylate, glycidyl methacrylate containing double bond and epoxy group, 4-hydroxybutyl acrylate glycidyl ether, and containing 2 or more epoxy groups That 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, and epoxy compounds such as trimethylolpropane polyglycidyl ether.
  • crosslinking assistants it significantly contributes to the improvement of the glass adhesion of the sealing material sheet, has good compatibility with linear low density polyethylene, reduces crystallinity by crosslinking, and maintains transparency.
  • TAIC can be preferably used from the viewpoint of imparting flexibility at low temperature.
  • the content of the crosslinking aid in the encapsulant composition is preferably 0.01% by mass or more and 3% by mass or less, and more preferably 0.05% by mass, based on the base resin in the encapsulant composition. % Or more and 2.0% by mass or less. Within this range, it is possible to promote an appropriate crosslinking reaction and improve the adhesion of the sealing material sheet.
  • the encapsulant composition of the present invention is a copolymer of a cyclic aminovinyl compound and ethylene and has a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more and 0.940 g / cm 3 or less, preferably 0. containing 930 g / cm 3 or more 0.932 g / cm 3 or less is light stabilizer ( "co-polymer type ultrahigh molecular weight type of HALS").
  • This “copolymer type ultrahigh molecular weight type HALS” is a light resistance stabilizer of ultra high molecular weight type having a molecular weight of more than 30,000, and is particularly excellent in compatibility with polyethylene resins.
  • the encapsulant composition of the present invention is further unique in blending the encapsulant composition such that the density difference between the HALS and the base resin is within a certain range. It is optimized based on knowledge.
  • the “copolymer type ultrahigh molecular weight type HALS” is a light stabilizer that is a copolymer of a cyclic aminovinyl compound represented by the following general formula (1) and ethylene.
  • a light stabilizer that meets such requirements and is commercially available, for example, “XJ-100H” (molecular weight: 35000, density is 0.931 g / cm 3 , manufactured by Nippon Polyethylene Co., Ltd.) can be mentioned. .
  • R 1 and R 2 represent a hydrogen atom or a methyl group
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the addition amount of the light stabilizer is the amount described above with respect to the base oil composition of the encapsulant composition.
  • the addition amount may be such that the content ratio of the cyclic aminovinyl compound is 0.1% by mass or more and 0.2% by mass or less, preferably 0.13% by mass or more and 0.20% by mass or less.
  • HALS component of the HALS.
  • the sealant composition can further contain other components.
  • a UV absorber for example, a heat stabilizer, an adhesion improver, a nucleating agent, a dispersant, a leveling agent, a plasticizer, an antifoamer, a flame retardant, and various other fillers can be appropriately added.
  • the content ratio of these additives differs depending on the particle shape, density and the like, it is preferable that the content ratio of each additive is in the range of 0.001% by mass to 60% by mass in the sealing material composition.
  • the sealing material composition can be provided with stable mechanical strength over a long period of time, an effect of preventing yellowing, cracking and the like.
  • the method for producing a sealant sheet of the present invention is a production method using the sealant composition of the present invention, the details of which have been described above, which is a light stabilizer selection step, a base resin selection step, and a material kneading step A sheeting process.
  • “HALS of copolymer type ultrahigh molecular weight type” is selected as the light stabilizer to be added to the polyethylene-based resin as the base resin in the sealant composition.
  • the criteria for selecting a light stabilizer is that the light stabilizer is a copolymer of a cyclic aminovinyl compound and ethylene, and satisfies the requirement that the molecular weight is 30,000 or more and the density is 0.930 g / cm 3 or more. It is a thing.
  • “XJ-100H” molecular weight: 35000, density is 0.931 g / cm 3 , manufactured by Japan Polyethylene Corporation
  • Base resin selection process In the base resin selection step, a polyethylene resin to be a base resin in the encapsulant composition is selected.
  • the criteria for selection of the base resin is that the base resin is a low density polyethylene having a density of 0.900 g / cm 3 or less, preferably 0.890 g / cm 3 or less, and the hindered amine light stability selected in the previous step
  • the density difference with the agent is less than 0.050 g / cm 3 , preferably less than 0.047 g / cm 3 .
  • the sealant composition is produced by adding and crosslinking the crosslinking agent and the hindered amine light stabilizer selected in the previous step to the base resin selected in the previous step.
  • the sealing material composition produced in the previous step is melt-molded to produce a sealing material sheet.
  • Melt molding of the sealing material composition can be performed by known molding methods, that is, various molding methods such as injection molding, extrusion molding, hollow molding, compression molding, rotational molding and the like.
  • the lower limit of the molding temperature during molding may be a temperature that exceeds the melting point of the sealing material composition.
  • the upper limit of the molding temperature may be a temperature at which crosslinking does not start during film formation, that is, a temperature at which the gel fraction of the encapsulant composition can be maintained at 0% according to the 1 minute half-life temperature of the crosslinking agent used. .
  • FIG. 1 is a cross-sectional view showing an example of the layer configuration of the solar cell module of the present invention.
  • the transparent front substrate 2, the front sealing material 3, the solar cell element 4, the back sealing material 5, and the back surface protection sheet 6 are sequentially stacked from the light receiving surface side of incident light.
  • the solar cell module 1 of the present invention can use the sealant sheet of the present invention as the front sealant 3 and / or the back sealant 5.
  • the encapsulant sheet of the present invention having excellent transparency as the front encapsulant 3 disposed on the light receiving surface side of the solar cell element 4, not only improvement in designability but also improvement in power generation efficiency Can also contribute.
  • the solar cell module 1 is formed, for example, by vacuum suction after sequentially laminating the members including the transparent front substrate 2, the front sealing material 3, the solar cell element 4, the back sealing material 5, and the back protection sheet 6.
  • the above-described members can be manufactured as an integral molded body by thermocompression molding by a molding method such as a lamination method.
  • the front side sealing material 3 made of a single layer sheet and the glass substrate are laminated, or the above-mentioned adhesion strengthening layer of the front side sealing material 3 made of a multilayer sheet is an example of the transparent front substrate 2
  • the adhesion between the glass substrate and the sealing material sheet can be improved.
  • thermocompression bonding is carried out at 110 ° C. or higher, and when the curing step is carried out after the thermocompression bonding, the crosslinking reaction of polyethylene further proceeds.
  • the curing step is performed under heating conditions such that the resin temperature of the sealing material sheet is 140 ° C. or more and 170 ° C. or less.
  • the solar cell module of the present invention obtained in this manner is excellent in heat resistance and light resistance, and even when exposed to severe environments such as strong ultraviolet rays, heat rays, wind and rain, etc., it is highly advanced over a long period of time It is possible to maintain the weather resistance of the In addition, the excellent transparency can also contribute to the improvement of the design of the solar cell module and the power generation efficiency.
  • the sealing material composition which consists of the following material was fuse
  • a film was formed to have a thickness of 460 ⁇ m by a conventional method T-die method, whereby a non-crosslinked single layer sealing material sheet was formed.
  • the deposition temperature was 90 ° C. to 100 ° C.
  • Base resin 1 85 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.885 g / cm 3 and an MFR of 20 g / 10 min at 190 ° C., and the following silane-modified transparent resin (density 0.884 g / cm 3 ) A mixed resin with 15 parts by mass of cm 3 was used as “base resin 1”. The density of the base resin 1 is 0.885 g / cm 3 . This “base resin 1” was used as a base resin in Example 1 and Comparative Examples 1 and 2.
  • M-LLDPE metallocene linear low density polyethylene
  • Base resin 2 Mixed resin of 85 parts by mass of metallocene linear low density polyethylene (M-LLDPE) with a density of 0.879 g / cm 3 and MFR of 20 g / 10 min at 190 ° C. and 15 parts by mass of the following silane-modified transparent resin Of “Base resin 2”.
  • the density of the base resin 2 is 0.880 g / cm 3 .
  • This "base resin 2" was used as a base resin in Comparative Examples 3, 4 and 5.
  • Base resin 3 Mixed resin of 85 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.915 g / cm 3 and MFR of 20 g / 10 min at 190 ° C.
  • silane modified transparent resin 2 parts by mass of vinyltrimethoxysilane based on 98 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.881 g / cm 3 and an MFR at 190 ° C. of 2 g / 10 min
  • M-LLDPE metallocene linear low density polyethylene
  • the silane modified transparent resin obtained by mixing and 0.1 mass part of dicumyl peroxides as a radical generating agent (reaction catalyst), melt
  • this silane modified transparent resin is 0.884 g / cm 3 , and the MFR at 190 ° C. is 18 g / 10 min.
  • this resin corresponds to a resin containing “a silane copolymer formed by copolymerizing ⁇ -olefin and an ethylenically unsaturated silane compound as a comonomer”.
  • HALS Hindered amine light stabilizer 1
  • XJ100H manufactured by Japan Polyethylene Corporation
  • molecular weight 35,000 molecular weight 35,000, density 0.931 g / cm 3
  • this HALS is a HALS corresponding to the above-mentioned "copolymer type ultrahigh molecular weight type HALS”.
  • This hindered amine light stabilizer (HALS) was used by mixing with each of the above base resins. The amount of addition of the HALS was adjusted so that the content (% by mass) of the “HALS component (“ cyclic amino vinyl compound ”)” with respect to the base resin in each sealing material composition was the numerical value shown in Table 1.
  • Crosslinking agent "Luporox 101 (manufactured by Arkema Yoshitomi Co., Ltd.)", dialkyl peroxides butyl peroxide, molecular weight 290.4, active oxygen content 9.92 or more, half-life temperature 140 ° C. for 1 hour.
  • the addition amount of each of the crosslinking agents was adjusted such that the content (% by mass) of the sealing material composition to the base resin was 0.4% by mass.
  • a high-intensity xenon irradiation test was conducted under the above conditions, and after 2000 hours, an adhesion test was conducted according to the "peel test method".
  • the ratio (%) of the adhesion to the initial adhesion described above was used as an index of "high weather resistance (adhesion maintenance ratio)" and was evaluated according to the following evaluation criteria. The results are as shown in Table 2.
  • evaluation criteria A: The maintenance ratio of adhesion after the above "high intensity xenon irradiation test" to the initial adhesion is 50% or more
  • C The adhesion maintenance Less than 25%
  • the encapsulant sheet of the present invention is a encapsulant sheet for a solar cell module having polyethylene as a base resin, excellent in transparency, and having extremely high weather resistance. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a sealant sheet which is for a solar cell module and which can sufficiently benefit from an excellent weather resistance improvement effect provided by addition of a "copolymer-type ultra-high molecular weight HALS" while maintaining sufficient transparency. This sealant composition for a solar cell module contains a low-density polyethylene as a base resin, a crosslinking agent, and a hindered amine light-resistant stabilizer, wherein the hindered amine light-resistant stabilizer is a copolymer between a cyclic aminovinyl compound and ethylene, and has a molecular weight of 30,000 or more and a density of 0.930 g/cm3 or more, the content ratio of the cyclic aminovinyl compound to the base resin is 0.1-0.2 mass%, the base resin has a density of 0.900 g/cm3 or less, and the difference in density between the base resin and the hindered amine light-resistant stabilizer is less than 0.050 g/cm3.

Description

太陽電池モジュール用の封止材組成物及び太陽電池モジュール用の封止材シートの製造方法Sealant composition for solar cell module and method of manufacturing sealer sheet for solar cell module
 本発明は、太陽電池モジュール用の封止材組成物及び太陽電池モジュール用の封止材シートの製造方法に関する。 The present invention relates to a sealant composition for a solar cell module and a method for producing a sealant sheet for a solar cell module.
 近年、環境問題に対する意識の高まりから、クリーンなエネルギー源としての太陽電池が注目されている。現在、種々の形態からなる太陽電池モジュールが開発され、提案されている。一般に太陽電池モジュールは、透明前面基板と太陽電池素子と裏面保護シートとが、太陽電池モジュール用の封止材シートを介して積層された構成である(図1参照)。 BACKGROUND OF THE INVENTION In recent years, solar cells as clean energy sources have attracted attention due to rising awareness of environmental issues. Currently, solar cell modules of various forms have been developed and proposed. In general, a solar cell module has a configuration in which a transparent front substrate, a solar cell element and a back surface protection sheet are laminated via a sealing material sheet for a solar cell module (see FIG. 1).
 室外において、長期にわたって強い太陽光に晒されることを前提とする太陽電池モジュールに用の封止材シートには、極めて高い耐光性が求められる。この耐光性を備えるための添加剤として、ヒンダードアミン系耐光安定剤(以下「HALS」とも言う)を用いた封止材シートが提案されている。(特許文献1参照)。 The sealing material sheet for a solar cell module on the premise of being exposed to strong sunlight for a long period of time outdoors is required to have extremely high light resistance. As an additive for providing this light resistance, a sealing material sheet using a hindered amine light stabilizer (hereinafter also referred to as "HALS") has been proposed. (See Patent Document 1).
 更に、ヒンダードアミン系耐光安定剤に耐光性向上という本来の効果を発現させつつ、一方でその過剰投与に起因するブリードアウトの発生による封止材シートの光学特性の低下を避けるためには、分子量が1200以上の高分子量のヒンダードアミン系耐光安定剤を一定量の添加量範囲内で用いることが好ましいという知見が開示されている(特許文献2参照)。尚、本明細書において「分子量」とは、別段の断りのない限り、「数平均分子量(Mn)」のことを言うものとする。 Furthermore, while the intrinsic effect of improving the light resistance is exhibited in the hindered amine light stabilizers, on the other hand, in order to avoid the deterioration of the optical properties of the sealing material sheet due to the occurrence of bleed-out due to its excessive administration, the molecular weight is There is disclosed a finding that it is preferable to use a high molecular weight hindered amine light stabilizer with a molecular weight of 1200 or more within a fixed amount range (see Patent Document 2). In the present specification, the term "molecular weight" refers to "number average molecular weight (Mn)" unless otherwise specified.
 特許文献1に記載された封止材シートにおいては、ヒンダードアミン系耐光安定剤の添加により、耐光性の向上が可能であり、更に、特許文献2に記載の通り、ヒンダードアミン系耐光安定剤を、高分子量タイプのHALSに限定し、添加量も適切に調節した上で添加することにより、ブリードアウトの発生も抑制することができる。 In the sealing material sheet described in Patent Document 1, the light resistance can be improved by the addition of a hindered amine light stabilizer, and as described in Patent Document 2, the hindered amine light stabilizer is further improved. The occurrence of bleed-out can also be suppressed by limiting to HALS of molecular weight type and adding after appropriately adjusting the addition amount.
 しかしながら、近年においては、太陽電池モジュールに対して、砂漠や熱帯雨林を含む広範な環境条件下での使用を想定したより高水準の耐熱性や、より長期に亘っての耐久性等の従来品では想定されていなかった極めて高度な耐候性が要求されるようになっている。このような要求に対応するためには、先ずは、上述した高分子量タイプのHALSの添加量を更に増量することが考えられる。ところが、一般的な高分子量タイプのHALSは、ブリードアウトはしにくい反面、樹脂に対する相溶性については、必ずしも十分ではなかった。特に、封止材シートに上記のような高度な耐候性を付与すべく、ベース樹脂に大量のHALSを添加しようとする場合に、このように相溶性については不十分であるという問題が顕在化するようになっていた。 However, in recent years, conventional products such as solar cell modules with higher heat resistance and durability for a longer period, assuming use under a wide range of environmental conditions including deserts and tropical rain forests In this case, extremely high weather resistance which was not supposed is required. In order to meet such requirements, it is conceivable to first further increase the addition amount of the high molecular weight type HALS described above. However, while the general high molecular weight type HALS is difficult to bleed out, the compatibility with the resin has not always been sufficient. In particular, when it is intended to add a large amount of HALS to the base resin in order to impart the above-described high weather resistance to the sealing material sheet, such a problem that the compatibility is insufficient appears. I was supposed to
 この問題への対応として、環状アミノビニル化合物とエチレンとの共重合体であるHALS(以下「共重合体型超高分子量タイプのHALS」とも言う)を用いることが検討されるに至った(特許文献3参照)。このHALSは、分子量としては30000を超える超高分子量タイプでありながら、ポリエチレン系樹脂との相溶性に極めて優れる。 As a solution to this problem, it has been studied to use HALS (hereinafter also referred to as "copolymer type ultra high molecular weight type HALS") which is a copolymer of a cyclic aminovinyl compound and ethylene (Patent Document 1) 3). Although this HALS is an ultra-high molecular weight type having a molecular weight of more than 30,000, it is extremely excellent in compatibility with a polyethylene resin.
 一方で、意匠性或いは発電効率向上の観点から、太陽電池モジュール用の封止材シートには、上述した耐候性のみならず、同時に、高い透明性も合せて求められる場合が多い。封止材シートに高度の透明性が求められる場合、ベース樹脂の密度が低い樹脂に限定してヘーズを十分に小さく抑える必要がある。一般的には、この場合、ベース樹脂とするポリエチレンの密度を、0.900g/cm以下、より好ましくは0.880/cmの低密度とする必要があった。 On the other hand, from the viewpoint of designability or power generation efficiency, the encapsulant sheet for a solar cell module is often required to have not only the above-mentioned weather resistance but also high transparency. When a high degree of transparency is required for the sealing material sheet, it is necessary to limit the haze to a sufficiently low level by limiting to a resin having a low density of the base resin. Generally, in this case, the density of polyethylene as a base resin needs to be a low density of 0.900 g / cm 3 or less, more preferably 0.880 / cm 3 .
 しかしながら、本発明者による研究の結果、ヘーズが十分に小さい密度0.880cmの低密度のポリエチレンをベース樹脂とした場合には、ポリエチレン系樹脂との相溶性に優れる上述の「共重合体型超高分子量タイプのHALS」を用いたとしても、上述の高度な耐候性に係る要求に応えるに足る一定量以上の量を添加した場合には、封止材シートのヘーズが上昇し、上記の低密度のベース樹脂が本来有する十分な透明性を保持できなくなってしまうことが認識されるに至った。 However, as a result of research conducted by the present inventor, when low density polyethylene of density 0.880 cm 3 with sufficiently low haze is used as the base resin, the above-mentioned “copolymer type super excellent in compatibility with the polyethylene-based resin Even if a high molecular weight type HALS is used, when an amount of a certain amount or more sufficient to meet the above-mentioned high weather resistance requirement is added, the haze of the sealing material sheet is increased, and the above-described low It has been recognized that the base resin of density can not maintain sufficient transparency originally possessed.
特開2004-214641号公報Japanese Patent Application Laid-Open No. 2004-214641 特開2012-9693号公報JP 2012-9693 A 特開2010-155915号公報JP, 2010-155915, A
 本発明は、上記状況に鑑みてなされたものであり、十分な透明性を保持したまま、「共重合体型超高分子量タイプのHALS」の添加による優れた耐候性向上効果を十分に享受することができる太陽電池モジュール用の封止材シートを提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and while sufficiently maintaining the transparency, fully enjoy the excellent weatherability improvement effect by the addition of "copolymer type ultra high molecular weight type HALS" It is an object of the present invention to provide an encapsulant sheet for a solar cell module capable of
 本発明者らは、ポリエチレン系樹脂をベース樹脂とする太陽電池モジュール用の封止材の製造において、材料とする封止材組成物に添加するヒンダードアミン系耐光安定剤を、樹脂相溶性に優れる「共重合体型超高分子量タイプのHALS」に特定するのみならず、先ず、ベース樹脂とするポリエチレン系樹脂の密度をヘーズの小さい特定の低密度範囲に限定し、且つ、このベース樹脂とこれに添加する「共重合体型超高分子量タイプのHALS」との密度差が所定範囲内になるように封止材組成物の調合を最適化することで、優れた透明性を有し、尚且つ、高度の耐候性を有する封止材シートを製造することができることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The present inventors have excellent resin compatibility in the production of a sealing material for a solar cell module having a polyethylene-based resin as a base resin, and a hindered amine light stabilizer added to the sealing material composition as a material has excellent resin compatibility. In addition to being specified as “HALS of copolymer type ultra high molecular weight type”, first, the density of the polyethylene resin as the base resin is limited to a specific low density range with a small haze, and addition to this base resin and this By optimizing the formulation of the encapsulant composition so that the difference in density with the “copolymer type ultra-high molecular weight type HALS” falls within a predetermined range, it has excellent transparency and is highly advanced. It has been found that it is possible to produce a sealant sheet having a weather resistance, and the present invention has been completed. More specifically, the present invention provides the following.
 (1) 低密度ポリエチレンをベース樹脂とし、架橋剤と、ヒンダードアミン系耐光安定剤を、含有する太陽電池モジュール用の封止材組成物であって、前記ヒンダードアミン系耐光安定剤は、環状アミノビニル化合物とエチレンとの共重合体であって、分子量が30000以上、密度が0.930g/cm以上であり、前記ベース樹脂に対する前記環状アミノビニル化合物の含有量比が0.1質量%以上0.2質量%以下であって、前記ベース樹脂の密度は、0.900g/cm以下であって、且つ、前記ベース樹脂の密度と前記ヒンダードアミン系耐光安定剤の密度との差が0.050g/cm未満である、封止材組成物。 (1) A sealing material composition for a solar cell module, comprising a low density polyethylene as a base resin and a crosslinking agent and a hindered amine light stabilizer, wherein the hindered amine light stabilizer is a cyclic aminovinyl compound And a copolymer having a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more, and a content ratio of the cyclic aminovinyl compound to the base resin is 0.1% by mass or more. The density of the base resin is 2% by mass or less, and the density of the base resin is 0.900 g / cm 3 or less, and the difference between the density of the base resin and the density of the hindered amine light stabilizer is 0.050 g / cm 3 An encapsulant composition that is less than 3 cm 3 .
 (2) 全樹脂成分に対する前記架橋剤の含有量が0.2質量%以上0.5質量%以下である、(1)に記載の封止材組成物。 (2) The encapsulant composition according to (1), wherein the content of the crosslinking agent is 0.2% by mass or more and 0.5% by mass or less based on all resin components.
 (3) 太陽電池モジュール用の封止材シートの製造方法であって、耐光安定剤選定工程と、ベース樹脂選定工程と、材料混錬工程と、シート化工程と、を含んでなり、前記耐光安定剤選定工程においては、耐光安定剤として、環状アミノビニル化合物とエチレンとの共重合体であって、分子量30000以上、密度0.930g/cm以上である、ヒンダードアミン系耐光安定剤を選定し、前記ベース樹脂選定工程においては、ベース樹脂として、密度0.900g/cm以下であって、且つ、前記ヒンダードアミン系耐光安定剤との密度差が、0.050g/cm未満である低密度ポリエチレンを選定し、前記材料混錬工程においては、前記低密度ポリエチレンに、架橋剤と、前記ヒンダードアミン系耐光安定剤を添加して混錬することによって、封止材組成物を製造し、前記シート化工程においては、前記封止材組成物を溶融成形して、封止材シートを製造する、封止材シートの製造方法。 (3) A method of manufacturing a sealing material sheet for a solar cell module, comprising: a light resistance stabilizer selection step, a base resin selection step, a material mixing step, and a sheeting step, wherein the light resistance In the stabilizer selection step, a hindered amine light stabilizer which is a copolymer of a cyclic aminovinyl compound and ethylene and has a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more is selected as a light stabilizer. In the base resin selection step, the base resin has a density of 0.900 g / cm 3 or less and a density difference with the hindered amine light stabilizer of less than 0.050 g / cm 3. Polyethylene is selected, and in the material mixing step, a crosslinking agent and the hindered amine light stabilizer are added to the low density polyethylene and mixed. The manufacturing method of the sealing material sheet which manufactures a sealing material composition and manufactures a sealing material sheet by melt-molding the said sealing material composition in the said sheeting process.
 (4) 前記ヒンダードアミン系耐光安定剤の添加量を、前記ベース樹脂に対する前記環状アミノビニル化合物の含有量比が0.1質量%以上0.2質量%以下となる添加量とする、(3)に記載の封止材シートの製造方法。 (4) The addition amount of the hindered amine light stabilizer is an addition amount such that the content ratio of the cyclic aminovinyl compound to the base resin is 0.1 mass% or more and 0.2 mass% or less, (3) The manufacturing method of the sealing material sheet as described in-.
 (5) 前記低密度ポリエチレンは、密度が0.885g/cm以上であり、前記ヒンダードアミン系耐光安定剤は、密度が、0.930g/cm以上である、(3)又は(4)に記載の封止材シートの製造方法。 (5) The low density polyethylene has a density of 0.885 g / cm 3 or more, and the hindered amine light stabilizer has a density of 0.930 g / cm 3 or more according to (3) or (4) The manufacturing method of the sealing material sheet as described.
 (6) 前記架橋剤の前記ベース樹脂に対する含有量が0.2質量%以上0.5質量%以下である。(3)から(5)のいずれかに記載の、封止材シートの製造方法。 (6) The content of the crosslinking agent with respect to the base resin is 0.2% by mass or more and 0.5% by mass or less. (3) The manufacturing method of the sealing material sheet in any one of (5).
 本発明によれば、十分な透明性を保持したまま、「共重合体型超高分子量タイプのHALS」の添加による優れた耐候性向上効果を十分に享受することができる、太陽電池モジュール用の封止材シートを製造することができる。 According to the present invention, a seal for a solar cell module which can fully enjoy the excellent weatherability improvement effect by the addition of “copolymer type ultra-high molecular weight type HALS” while maintaining sufficient transparency. An adhesive sheet can be manufactured.
本発明の太陽電池モジュールの層構成の一例を示す断面図である。It is sectional drawing which shows an example of the laminated constitution of the solar cell module of this invention.
 <封止材シート>
 本発明の封止材シート(以下、単に「封止材シート」とも言う)は、下記にその詳細を説明する封止材組成物を、従来公知の方法で成型加工してフィルム状又はシート状としたものである。尚、本発明におけるシート状とはフィルム状も含む意味であり両者に差はない。
<Sealing material sheet>
The sealing material sheet (hereinafter, also simply referred to as "sealing material sheet") of the present invention is formed into a film or sheet by molding processing of the sealing material composition, the details of which will be described below, by a conventionally known method. The Incidentally, the sheet-like in the present invention means that the film-like is also included, and there is no difference between the two.
 又、封止材シートは、成形温度を90℃から120℃の低温域に限定し、未架橋のまま成形することが好ましい。架橋処理は成形後に別途行うか、或いは、後述の太陽電池モジュールの製造時点で高温加熱して架橋を完了することができる。 In addition, it is preferable to limit the molding temperature to a low temperature range of 90 ° C. to 120 ° C., and to mold the sealing material sheet without being crosslinked. The crosslinking treatment may be separately performed after molding, or may be heated at a high temperature at the time of manufacturing a solar cell module described later to complete the crosslinking.
 封止材シートは、密度0.900g/cm以下、好ましくは0.890g/cm以下のポリエチレン系樹脂をベース樹脂とする。ベース樹脂とするポリエチレンの密度が0.900g/cmを超えると、耐光安定剤の添加量を最適化したとしても、封止材シートの十分な透明性を保持することが困難となる。 The encapsulant sheet has a polyethylene resin having a density of 0.900 g / cm 3 or less, preferably 0.890 g / cm 3 or less as a base resin. When the density of polyethylene as a base resin exceeds 0.900 g / cm 3 , it becomes difficult to maintain sufficient transparency of the sheet of sealing material even if the addition amount of the light resistant stabilizer is optimized.
 又、封止材シートの密度は、上記密度を上限とする一方で、その下限については、ベース樹脂と混錬して添加剤として用いるヒンダードアミン系耐光安定剤の密度との相関において最適化される。具体的には、ベース樹脂の密度とヒンダードアミン系耐光安定剤の密度との差が0.050g/cm未満、好ましくは、0.047g/cm未満となるよう調整されればよい。尚、本発明の封止材シート及び封止材組成物においては、耐光安定剤として用いるヒンダードアミン系耐光安定剤の密度が、ベース樹脂とするポリエチレンの密度よりも大きいことが前提となるので、本明細書における「ベース樹脂の密度と前記ヒンダードアミン系耐光安定剤の密度との差」とは、当然に、ヒンダードアミン系耐光安定剤の密度からベース樹脂の密度を減じた差のことである。 The upper limit of the density of the encapsulant sheet is the above-mentioned density, while the lower limit thereof is optimized in correlation with the density of the hindered amine light stabilizer used as an additive by kneading with the base resin. . Specifically, it may be adjusted so that the difference between the density of the base resin and the density of the hindered amine light stabilizer is less than 0.050 g / cm 3 , preferably less than 0.047 g / cm 3 . In the encapsulating material sheet and the encapsulating material composition of the present invention, it is premised that the density of the hindered amine light stabilizer used as the light stabilizer is larger than the density of the polyethylene as the base resin. The “difference between the density of the base resin and the density of the above-mentioned hindered amine light stabilizers” in the specification is, of course, the difference obtained by subtracting the density of the base resin from the density of the hindered amine light stabilizers.
 本発明において耐光安定剤として好ましく用いることができる「共重合体型超高分子量タイプのHALS」の代表的なものとして、密度が0.931g/cmである「XJ-100H」(分子量:35000、日本ポリエチレン株式会社製)を挙げることができる。耐光安定剤としてこのHALSを用いる場合、封止材シートのベース樹脂の密度は、0.881g/cmを超えていればでればよく、0.884g/cmを超えていることが好ましい。 As a representative of “copolymer type ultrahigh molecular weight type HALS” which can be preferably used as a light stabilizer in the present invention, “XJ-100H” (molecular weight: 35,000, density is 0.931 g / cm 3 Nippon Polyethylene Co., Ltd. can be mentioned. When using this HALS as light stabilizer, the density of the base resin of the encapsulant sheet may be Dere if exceeded 0.881g / cm 3, preferably exceeds 0.884 g / cm 3 .
 又、この封止材シートは、製膜後、モジュール化前の段階においては、ゲル分率が0%以上10%以下、より好ましくは0%である未架橋の樹脂フィルムによって形成されている。 In addition, this sealing material sheet is formed of an uncrosslinked resin film having a gel fraction of 0% or more and 10% or less, more preferably 0%, at a stage after modularization, after film formation.
 但し、この未架橋の封止材シートは、所定量の架橋剤を含有するものであり、太陽電池モジュールとしての一体化後までの間におけるいずれかのプロセス中において、架橋が進行することが想定されている、所謂、熱硬化系(或いは架橋系)の樹脂フィルムである。最終製品である太陽電池モジュールの完成品段階における架橋完了後の封止材シートのゲル分率は50%以上90%以下であることが好ましく、60%以上80%以下であることがより好ましい。上述した通りに架橋剤、架橋助剤、及びその他の添加物の組成や添加量を好ましい範囲に調整することにより、ゲル分率が上記範囲となるように適度に架橋反応を抑制することできる。それにより、オレフィンの水蒸気バリアを有しつつ、且つ、EVA以上に低温領域での柔軟性を有し、高温での耐熱性も得ることができ、オレフィン系でありながら低温領域での成形性にも優れる封止材シートとすることができる。 However, this uncrosslinked sealing material sheet contains a predetermined amount of a crosslinking agent, and it is assumed that crosslinking proceeds during any process until after integration as a solar cell module. It is a so-called thermosetting (or crosslinking) resin film. The gel fraction of the encapsulant sheet after completion of crosslinking in the final product stage of the solar cell module, which is the final product, is preferably 50% to 90%, and more preferably 60% to 80%. As described above, by adjusting the composition and the addition amount of the crosslinking agent, the crosslinking assistant, and the other additives in a preferable range, it is possible to appropriately suppress the crosslinking reaction so that the gel fraction is in the above range. As a result, it is possible to obtain flexibility in a lower temperature range than that of EVA while having an olefin water vapor barrier, and to obtain heat resistance at high temperatures, and to formability in a low temperature range while being olefinic. Can also be an excellent sealant sheet.
 ここで、本明細書における「ゲル分率(%)」とは、封止材シート1.0gを樹脂メッシュに入れ、110℃キシレンにて12時間抽出したのち、樹脂メッシュごと取出し乾燥処理後秤量し、抽出前後の質量比較を行い残留不溶分の質量%を測定しこれをゲル分率としたものである。尚、ゲル分率0%とは、上記残留不溶分が実質的に0であり、封止材組成物或いは封止材シートの架橋反応が実質的に開始していない状態であることを言う。より具体的には、「ゲル分率0%」とは、上記残留不溶分が全く存在しない場合、及び、精密天秤によって測定した上記残留不溶分の質量%が0.05質量%未満である場合を言うものとする。尚、上記残留不溶分には、樹脂成分以外の顔料成分等は含まないものとする。これらの樹脂成分以外の混在物が、上記試験により残留不溶分に混在している場合には、例えば、予めこれらの混在物の樹脂成分中における含有量を別途測定しておくことで、これらの混在物を除く樹脂成分由来の残留不溶分について本来得られるべきゲル分率を算出することができる。 Here, “gel fraction (%)” in the present specification refers to 1.0 g of the encapsulant sheet placed in a resin mesh, extracted with 110 ° C. xylene for 12 hours, then taken out together with the resin mesh and weighed after drying processing Then, mass comparison before and after extraction is performed to measure the mass% of the remaining insoluble content, and this is taken as a gel fraction. The gel fraction of 0% means that the residual insoluble content is substantially zero, and the crosslinking reaction of the encapsulant composition or the encapsulant sheet is not substantially initiated. More specifically, “gel fraction 0%” means that the above-mentioned residual insolubles are not present at all, and the above-mentioned residual insolubles measured by a precision balance have a mass% of less than 0.05% by mass. Shall be said. The above-mentioned residual insolubles do not contain pigment components other than resin components. When inclusions other than these resin components are present in the residual insolubles according to the above-mentioned test, for example, the content of these inclusions in the resin component may be separately measured in advance. The gel fraction to be originally obtained can be calculated for the residual insoluble matter derived from the resin component excluding the inclusions.
 成膜後未架橋の段階における封止材シートのメルトマスフローレート(MFR)は、JIS-K6922-2により測定した190℃、荷重2.16kgにおけるMFR(本明細書においては、以下、この測定条件による測定値をMFRと言う。)は、5g/10分以上25g/10分以下であることが好ましく、10g/10分以上20g/10分以下であることがより好ましい。MFRが上記の範囲であることにより、ガラス、金属等からなる太陽電池モジュールの他の部材との密着性に優れた封止材シートとすることができる。尚、封止材シートが下記に説明するような多層フィルムである場合のMFRについては、全ての層が一体積層された多層状態のまま、上記処理による測定を行い、得た測定値を当該多層の封止材シートのMFR値とするものとする。 The melt mass flow rate (MFR) of the encapsulant sheet at the uncrosslinked stage after film formation is MFR at 190 ° C. measured under JIS-K6922-2 and a load of 2.16 kg (in the present specification, this measurement condition is hereinafter referred to as “MFR”) Is referred to as MFR.) Is preferably 5 g / 10 minutes or more and 25 g / 10 minutes or less, and more preferably 10 g / 10 minutes or more and 20 g / 10 minutes or less. When MFR is in the above-mentioned range, a sealing material sheet excellent in adhesion to other members of the solar cell module made of glass, metal or the like can be obtained. In addition, about MFR in case a sealing material sheet is a multilayer film which is demonstrated below, the measurement by the said process is measured in the multilayer state in which all the layers were integrally laminated, and the obtained measured value is said multilayer The MFR value of the sealant sheet of
 本発明の封止材シートは、単層フィルムであってもよいが、コア層と、コア層の両面に配置されるスキン層によって構成される多層フィルムであってもよい。尚、本明細書における多層フィルムとは、少なくともいずれかの最外層、好ましくは両最外層に成形されるスキン層と、スキン層以外の層であるコア層とを有する構造からなるフィルム又はシートのことを言う。 The encapsulant sheet of the present invention may be a single layer film, but may be a multilayer film constituted of a core layer and skin layers disposed on both sides of the core layer. The multilayer film in the present specification is a film or sheet having a structure having a skin layer formed into at least one of the outermost layers, preferably both outermost layers, and a core layer which is a layer other than the skin layer. Say that.
 封止材シートを多層フィルムとする場合には、本発明の必須の構成要件を満たす範囲内において、各層毎にMFRが異なる層構成とすることがより好ましく、この場合、MFRがより高い層をスキン層として最外層側に配置することが好ましい。本発明の封止材シートは、単層の封止材シートである場合においても、十分に好ましい透明性と耐熱性、及び適度の柔軟性を備えるものではあるが、このように相対的にMFRの高い層を最外層に配置することにより、封止材シートとして上記の好ましい透明性や耐熱性を保持しつつ、更に密着性やモールディング特性を高めることができる。 When making a sealing material sheet into a multilayer film, it is more preferable to set it as the layer structure from which MFR differs for every layer in the range which satisfy | fills the essential component requirements of this invention, and in this case, a layer with a higher MFR It is preferable to arrange | position to the outermost layer side as a skin layer. The encapsulant sheet of the present invention, even in the case of a single-layer encapsulant sheet, has sufficiently favorable transparency, heat resistance, and appropriate flexibility, but in such a manner it is relatively MFR. By arranging the high layer as the outermost layer, it is possible to further improve the adhesion and the molding characteristics while maintaining the above-mentioned preferable transparency and heat resistance as the sealing material sheet.
 例えば、3層以上の層からなる多層フィルムである封止材シートにおいては、最外層の厚さは、30μm以上120μm以下であり、且つ、最外層以外の全ての層からなる中間層と最外層の厚さの比は、最外層:中間層:最外層=1:3:1~1:8:1の範囲であることが好ましい。このようにすることにより、封止材シートとしての好ましい耐熱性を保持しつつ、最外層における好ましいモールディング特性を備えることができる。 For example, in a sealing material sheet which is a multilayer film consisting of three or more layers, the thickness of the outermost layer is 30 μm or more and 120 μm or less, and an intermediate layer and an outermost layer consisting of all layers other than the outermost layer It is preferable that the thickness ratio of (1) be in the range of outermost layer: intermediate layer: outmost layer = 1: 3: 1 to 1: 8: 1. By so doing, it is possible to provide the preferable molding characteristics in the outermost layer while maintaining the preferable heat resistance as the sealing material sheet.
 <封止材組成物>
 本発明の封止材シートの製造に用いる封止材組成物(以下、単に「封止材組成物」とも言う)は、低密度のポリエチレン系樹脂をベース樹脂とし、架橋剤を必須とする熱硬化系の樹脂組成物である。尚、本明細書において「ベース樹脂」とは、当該ベース樹脂を含有してなる樹脂組成物において、当該樹脂組成物の樹脂成分中で含有量比の最も大きい樹脂及び当該樹脂と混合されて用いられている同種の樹脂のことを言うものとする。後に実施例において例示するように密度の異なるポリエチレン系樹脂を混合樹脂とする場合は混合された樹脂全体をベース樹脂というものとする。但し、本明細書においては、「共重合体型超高分子量タイプのHALS」において環状化合物と共重合しているエチレン鎖については、封止材組成物の樹脂成分の一部は構成するが、これをベース樹脂の一部とは考えないものとする。
<Sealing material composition>
The sealing material composition (hereinafter, also simply referred to as "sealing material composition") used for the production of the sealing material sheet of the present invention has a low density polyethylene resin as a base resin and requires a crosslinking agent as heat. It is a resin composition of a curing system. In the present specification, “base resin” refers to a resin composition containing the base resin, which is mixed with the resin having the largest content ratio in the resin component of the resin composition and the resin. It refers to the same kind of resin being used. When polyethylene resins having different densities are used as a mixed resin as will be exemplified later in the examples, the entire mixed resin is referred to as a base resin. However, in the present specification, with regard to the ethylene chain copolymerized with the cyclic compound in “copolymer type ultrahigh molecular weight type HALS”, although a part of the resin component of the encapsulant composition is constituted, Shall not be considered as part of the base resin.
 [ベース樹脂]
 封止材組成物は、密度0.900g/cm以下、好ましくは、0.890g/cm以下であり、上述の通り、添加する耐光安定剤との密度差が所定範囲内となるような密度範囲にあるポリエチレンをベース樹脂とする。上記のような低密度で、且つ、耐光安定剤との密度差が小さいポリエチレンをベース樹脂とすることにより、ベース樹脂由来の本来の透明性を維持しながら、高度の耐候性を封止材シートに備えさせることができる。
[Base resin]
The encapsulant composition has a density of 0.900 g / cm 3 or less, preferably 0.890 g / cm 3 or less, and as described above, the density difference with the added light stabilizer is within a predetermined range. The base resin is polyethylene in the density range. By using a polyethylene having a low density as described above and a small density difference with the light stabilizer as the base resin, a high weather resistance can be obtained for the sealant sheet while maintaining the original transparency derived from the base resin. Can be prepared for
 封止材組成物のベース樹脂の好ましい密度範囲の下限は、上述の通り、ベース樹脂と混錬して用いる耐光安定剤との密度差に応じて相関的に決定される。それらの好ましい組合せの具体例として、例えば、上述の密度0.931g/cmの「共重合体型超高分子量タイプのHALS」と、密度0.881g/cm超え0.900g/cm以下、好ましくは、0.884g/cm超え0.890g/cm以下である低密度ポリエチレンとの組合せを挙げることができる。 The lower limit of the preferable density range of the base resin of the encapsulant composition is, as described above, determined correlatively according to the density difference between the base resin and the light resistant stabilizer used after kneading. Specific examples of such preferred combinations, for example, a "co-polymer type ultrahigh molecular weight type of HALS" of the above-mentioned density 0.931 g / cm 3, exceeds the density 0.881g / cm 3 0.900g / cm 3 or less, preferably, there can be mentioned a combination of 0.884 g / cm 3 greater than 0.890 g / cm 3 low-density polyethylene or less.
 ベース樹脂の密度を上記範囲内に調整することにより、ガラス保護基板等、太陽電池モジュールを構成する他の部材との密着性が高まり、又、ラミネート処理における各部材の圧着時におけるセル割れのリスクを低減させることもできる。 By adjusting the density of the base resin within the above range, the adhesion with other members constituting the solar cell module, such as a glass protective substrate, is enhanced, and the risk of cell breakage at the time of pressure bonding of each member in lamination processing Can also be reduced.
 封止材組成物のベース樹脂として用いるポリエチレンは、エチレンとα-オレフィンとの共重合体である直鎖低密度ポリエチレン(LLDPE)である。又、このベース樹脂は、メタロセン系直鎖低密度ポリエチレン(M-LLDPE)であることが更に好ましい。メタロセン系直鎖低密度ポリエチレンは、シングルサイト触媒であるメタロセン触媒を用いて合成されるものである。このようなポリエチレンは、側鎖の分岐が少なく、コモノマーの分布が均一である。このため、分子量分布が狭く、上記のような超低密度にすることが可能であり封止材シートに対して柔軟性を付与できる。封止材シートに柔軟性が付与される結果、封止材シートとガラス、金属等との密着性が高まる。 The polyethylene used as a base resin of the encapsulant composition is linear low density polyethylene (LLDPE) which is a copolymer of ethylene and an α-olefin. Further, the base resin is more preferably a metallocene linear low density polyethylene (M-LLDPE). The metallocene based linear low density polyethylene is one synthesized using a metallocene catalyst which is a single site catalyst. Such polyethylene has less side chain branching and uniform comonomer distribution. For this reason, the molecular weight distribution is narrow, and it is possible to make the ultra-low density as described above, and it is possible to impart flexibility to the sealing material sheet. As a result of the flexibility given to the sealing material sheet, the adhesion between the sealing material sheet and the glass, metal or the like is enhanced.
 又、直鎖低密度ポリエチレンは、結晶性分布が狭く、結晶サイズが揃っているので、結晶サイズの大きいものが存在しないばかりでなく、低密度であるために結晶性自体が低い。このため、封止材シートとしてシート状に加工した際の透明性に優れる。したがって、これをベース樹脂とする封止材組成物からなる封止材シートは、太陽電池モジュールにおいて、太陽電池素子の受光面側に配置された場合に、太陽電池素子への入射光の減衰による発電効率の低下を良く防ぐことができる。 In addition, linear low density polyethylene has a narrow crystallinity distribution and uniform crystal size, and thus not only does not have a large crystal size but also has low crystallinity itself due to its low density. For this reason, it is excellent in the transparency at the time of processing into a sheet form as a sealing agent sheet. Therefore, in the solar cell module, the sealing material sheet comprising the sealing material composition having the base resin as a base resin, when disposed on the light receiving surface side of the solar cell element, is attenuated by the incident light to the solar cell element. It is possible to prevent the decrease of the power generation efficiency well.
 本明細書における「ポリエチレン系樹脂」には、エチレンを重合して得られる通常のポリエチレンのみならず、α-オレフィン等のようなエチレン性の不飽和結合を有する化合物を重合して得られた樹脂、エチレン性不飽和結合を有する複数の異なる化合物を共重合させた樹脂、及びこれらの樹脂に別の化学種をグラフトして得られる変性樹脂等が含まれる。 In the “polyethylene resin” in the present specification, not only ordinary polyethylene obtained by polymerizing ethylene but also resin obtained by polymerizing a compound having an ethylenically unsaturated bond such as α-olefin and the like And resins obtained by copolymerizing a plurality of different compounds having an ethylenically unsaturated bond, and modified resins obtained by grafting another chemical species to these resins.
 なかでも、「α-オレフィンとエチレン性不飽和シラン化合物とをコモノマーとして共重合してなるシラン共重合体」を封止材組成物のベース樹脂の一部として好ましく用いることができる。このような樹脂を用いることにより、ガラス保護基板や太陽電池素子等といった他の積層部材と封止材シートとの間に十分な強度の接着性を得ることができる。 Among them, “a silane copolymer obtained by copolymerizing an α-olefin and an ethylenically unsaturated silane compound as a comonomer” can be preferably used as a part of a base resin of a sealing material composition. By using such a resin, adhesiveness of sufficient strength can be obtained between another laminated member such as a glass protective substrate or a solar cell element and the sealing material sheet.
 シラン共重合体とは、例えば、特開2003-46105号公報に記載されているものである。当該共重合体を太陽電池モジュールの封止材組成物の成分として用いることにより、強度、耐久性等に優れ、且つ、耐候性、耐熱性、耐水性、耐光性、耐風圧性、耐降雹性、その他の諸特性に優れ、更に、太陽電池モジュールを製造する加熱圧着等の製造条件に影響を受けることなく極めて優れた熱融着性を有し、安定的に、低コストで、種々の用途に適する太陽電池モジュールを製造し得る。 The silane copolymer is, for example, one described in JP-A 2003-46105. By using the said copolymer as a component of the sealing material composition of a solar cell module, it is excellent in intensity | strength, durability, etc., And, weather resistance, heat resistance, water resistance, light resistance, wind resistance, falling resistance, Excellent in various other properties, moreover, it has extremely excellent heat sealing property without being affected by the manufacturing conditions such as thermocompression bonding for manufacturing a solar cell module, stably, at low cost, for various applications Suitable solar cell modules can be manufactured.
 シラン共重合体は、少なくともα-オレフィンとエチレン性不飽和シラン化合物をコモノマーとし、必要に応じて更にその他の不飽和モノマーをコモノマーとして共重合して得られる共重合体であり、該共重合体の変性体ないし縮合体も含むものである。 The silane copolymer is a copolymer obtained by copolymerizing at least an α-olefin and an ethylenically unsaturated silane compound as a comonomer and, if necessary, another unsaturated monomer as a comonomer, the copolymer And modified products or condensates of
 具体的には、例えば、α-オレフィンの1種ないし2種以上と、エチレン性不飽和シラン化合物の1種ないし2種以上と、必要ならば、その他の不飽和モノマーの1種ないし2種以上とを、所望の反応容器を用いて、例えば、圧力500~4000Kg/cm位、好ましくは、1000~4000Kg/cm位、温度100~400℃位、好ましくは、150~350℃位の条件下で、ラジカル重合開始剤及び必要ならば連鎖移動剤の存在下で、同時に或いは段階的にランダム共重合させ、更には、必要に応じて、その共重合によって生成するランダム共重合体を構成するシラン化合物の部分を変性ないし縮合させて、α-オレフィンとエチレン性不飽和シラン化合物との共重合体又はその変性ないし縮合体を製造することができる。 Specifically, for example, one or more of α-olefins, one or more of ethylenically unsaturated silane compounds, and, if necessary, one or more of other unsaturated monomers. And a pressure of about 500 to 4000 kg / cm 2 , preferably about 1000 to 4000 kg / cm 2 and a temperature of about 100 to 400 ° C., preferably about 150 to 350 ° C., using a desired reaction vessel. Under this, in the presence of a radical polymerization initiator and, if necessary, a chain transfer agent, simultaneously or stepwise, random copolymerize, and, if necessary, construct a random copolymer formed by the copolymer. A portion of the silane compound can be modified or condensed to produce a copolymer of an α-olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof.
 又、α-オレフィンとエチレン性不飽和シラン化合物との共重合体又はその変性ないし縮合体としては、例えば、α-オレフィンの1種ないし2種以上と、必要ならば、その他の不飽和モノマーの1種ないし2種以上とを、所望の反応容器を用いて、上記と同様に、ラジカル重合開始剤及び必要ならば連鎖移動剤の存在下で、同時に或いは段階的に重合させ、次いで、その重合によって生成するポリオレフィン系重合体に、エチレン性不飽和シラン化合物の1種ないし2種以上をグラフト共重合させ、更には、必要に応じて、その共重合体によって生成するグラフト共重合体を構成するシラン化合物の部分を変性ないし縮合させて、α-オレフィンとエチレン性不飽和シラン化合物との共重合体又はその変性ないし縮合体を製造することができる。 Also, as a copolymer of an α-olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof, for example, one or more of α-olefins and, if necessary, other unsaturated monomers One or more of them are polymerized simultaneously or stepwise in the presence of a radical polymerization initiator and, if necessary, a chain transfer agent, as described above, using the desired reaction vessel, and then the polymerization thereof Graft copolymerizing one or more kinds of ethylenically unsaturated silane compounds with the polyolefin polymer formed by the above, and, if necessary, constituting a graft copolymer formed by the copolymer A part of the silane compound is modified or condensed to produce a copolymer of an α-olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof. That.
 α-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、イソブチレン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセンより選択される1種以上を用いることができる。 Examples of α-olefins include ethylene, propylene, 1-butene, isobutylene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 1-heptene, 1-octene, One or more selected from 1-nonene and 1-decene can be used.
 エチレン性不飽和シラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリイソプロポキシシラン、ビニルトリブトキシシラン、ビニルトリペンチロキシシラン、ビニルトリフェノキシシラン、ビニルトリベンジルオキシシラン、ビニルトリメチレンジオキシシラン、ビニルトリエチレンジオキシシラン、ビニルプロピオニルオキシシラン、ビニルトリアセトキシシラン、ビニルトリカルボキシシランより選択される1種以上を用いることができる。 As the ethylenically unsaturated silane compound, for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, vinyltriisopropoxysilane, vinyltributoxysilane, vinyltripentyloxysilane, vinyltriphenoxysilane, vinyltriphenoxysilane One or more selected from benzyloxysilane, vinyltrimethylenedioxysilane, vinyltriethylenedioxysilane, vinylpropionyloxysilane, vinyltriacetoxysilane, and vinyltricarboxysilane can be used.
 その他の不飽和モノマーとしては、例えば、酢酸ビニル、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート、エチルアクリレート、ビニルアルコールより選択される1種以上を用いることができる。 As another unsaturated monomer, 1 or more types selected from vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, vinyl alcohol can be used, for example.
 上記の重合や共重合を促進させるラジカル重合開始剤としては、例えば、ラウロイルパーオキシド、ジプロピオニルパーオキシド、ベンゾイルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルヒドロパーオキシド、t-ブチルパーオキシイソブチレート等の有機過酸化物、分子状酸素、アゾビスイソブチロニトリル、アゾイソブチルバレロニトリル等のアゾ化合物等を用いることができる。 Examples of radical polymerization initiators that promote the above polymerization and copolymerization include lauroyl peroxide, dipropionyl peroxide, benzoyl peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, and t-butyl peroxide. Organic peroxides such as oxyisobutyrate, molecular oxygen, and azo compounds such as azobisisobutyronitrile and azoisobutylvaleronitrile can be used.
 連鎖移動剤としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン等のパラフィン系炭化水素、プロピレン、1-ブテン、1-ヘキセン等のα-オレフィン、ホルムアルデヒド、アセトアルデヒド、n-ブチルアルデヒド等のアルデヒド、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン、芳香族炭化水素、塩素化炭化水素等を用いることができる。 Examples of chain transfer agents include paraffin hydrocarbons such as methane, ethane, propane, butane and pentane, α-olefins such as propylene, 1-butene and 1-hexene, and aldehydes such as formaldehyde, acetaldehyde and n-butyraldehyde And ketones such as acetone, methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons, chlorinated hydrocarbons and the like.
 ランダム共重合体を構成するシラン化合物の部分を変性ないし縮合させる方法、或いは、グラフト共重合体を構成するシラン化合物の部分を変性ないし縮合させる方法としては、例えば、錫、亜鉛、鉄、鉛、コバルト等の金属のカルボン酸塩、チタン酸エステル及びキレート化物等の有機金属化合物、有機塩基、無機酸、及び、有機酸等のシラノール縮合触媒等を用いて、α-オレフィンとエチレン性不飽和シラン化合物とのランダム共重合体或いはグラフト共重合体を構成するシラン化合物の部分のシラノール間の脱水縮合反応等を行うことにより、α-オレフィンとエチレン性不飽和シラン化合物との共重合体の変性ないし縮合体を製造する方法が挙げられる。 As a method of modifying or condensing a portion of a silane compound constituting a random copolymer, or a method of modifying or condensing a portion of a silane compound constituting a graft copolymer, for example, tin, zinc, iron, lead, Α-olefins and ethylenically unsaturated silanes using carboxylic acid salts of metals such as cobalt, organic metal compounds such as titanates and chelates, organic bases, inorganic acids, and silanol condensation catalysts such as organic acids Modification of the copolymer of α-olefin and the ethylenically unsaturated silane compound by dehydrating condensation reaction between silanols of the portion of the silane compound constituting the random copolymer or graft copolymer with the compound The method of manufacturing a condensate is mentioned.
 シラン共重合体としては、ランダム共重合体、交互共重合体、ブロック共重合体、及びグラフト共重合体のいずれであっても好ましく用いることができるが、グラフト共重合体であることがより好ましく、重合用ポリエチレンを主鎖とし、エチレン性不飽和シラン化合物が側鎖として重合したグラフト共重合体が更に好ましい。このようなグラフト共重合体は、接着力に寄与するシラノール基の自由度が高くなるため、太陽電池モジュールにおける他の部材への太陽電池モジュール用の封止材シートの接着性を向上することができる。 As the silane copolymer, any of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer can be preferably used, but a graft copolymer is more preferable. It is further preferable to use a graft copolymer in which polyethylene for polymerization is used as a main chain and an ethylenically unsaturated silane compound is used as a side chain. Such graft copolymer improves the adhesion of the encapsulant sheet for the solar cell module to other members in the solar cell module because the degree of freedom of the silanol group contributing to the adhesion becomes high. it can.
 α-オレフィンとエチレン性不飽和シラン化合物との共重合体を構成する際のエチレン性不飽和シラン化合物の含量としては、全共重合体質量に対して、例えば、0.001~15質量%位、好ましくは、0.01~5質量%位、より好ましくは、0.05~2質量%位が望ましいものである。 The content of the ethylenically unsaturated silane compound in forming the copolymer of the α-olefin and the ethylenically unsaturated silane compound is, for example, about 0.001 to 15% by mass with respect to the total mass of the copolymer. Preferably, about 0.01 to 5% by mass, more preferably about 0.05 to 2% by mass is desirable.
 [架橋剤]
 封止材組成物に用いる架橋剤としては、活性酸素量が8.5%以上15.00%以下であればよく、8.5%以上10.00%以下であることが好ましい。活性酸素量が上記範囲にある架橋剤を用いることによって、封止材シートにより優れた耐熱性と耐光性、及び透明性を備えさせることができる。
[Crosslinking agent]
As a crosslinking agent used for a sealing material composition, the amount of active oxygen should just be 8.5% or more and 15.00% or less, and it is preferable that it is 8.5% or more and 10.00% or less. By using a crosslinking agent having an active oxygen content in the above range, the sealing material sheet can be provided with better heat resistance, light resistance, and transparency.
 又、封止材組成物に用いる架橋剤の1時間半減期温度については、125℃以上145℃以下のものを用いることが好ましい。これにより、本発明の封止剤組成物を、120℃以下での溶融押出し成形が可能な組成物とすることができる。 Moreover, it is preferable to use the thing of 125 degreeC or more and 145 degrees C or less about 1 hour half life temperature of the crosslinking agent used for a sealing material composition. Thereby, the sealing agent composition of this invention can be made into the composition which can be melt-extruded at 120 degrees C or less.
 又、上記条件を満たす好ましい架橋剤の具体例として、n-ブチル4,4-ジ(t-ブチルパーオキシ)バレレート、エチル3,3-ジ(t-ブチルパーオキシ)ブチレート、2,2-ジ(t-ブチルパーオキシ)ブタン等のパーオキシケタール類、ジ‐t‐ブチルパーオキサイド、t‐ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5‐ジメチル‐2,5‐ジ(t‐ブチルパーオキシ)ヘキサン、2,5‐ジメチル‐2,5‐ジ(t‐パーオキシ)ヘキシン‐3等のジアルキルパーオキサイド類を、封止材組成物に添加する架橋剤として好ましく用いることができる。 Further, specific examples of preferable crosslinking agents satisfying the above conditions include n-butyl 4,4-di (t-butylperoxy) valerate, ethyl 3,3-di (t-butylperoxy) butyrate, 2,2- Peroxyketals such as di (t-butylperoxy) butane, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-) Dialkyl peroxides such as butylperoxy) hexane and 2,5-dimethyl-2,5-di (t-peroxy) hexine-3 can be preferably used as a crosslinking agent to be added to the encapsulant composition.
 封止材組成物における上記の架橋剤の含有量は、封止材組成物中のベース樹脂に対して0.2質量%以上0.5質量%以下であることが好ましく、より好ましくは0.3質量%以上0.4質量%以下の範囲である。この範囲の架橋剤を添加することにより、封止材シートに十分な耐久性を付与することができる。尚、本発明の封止材シートは、実質的な架橋を進行させずに成膜するものであり、成膜後のシート段階における封止材シート中の上記の架橋剤の含有量も0.2質量%以上0.5質量%以下の範囲となることが想定されている。 The content of the above-mentioned crosslinking agent in the sealing material composition is preferably 0.2% by mass or more and 0.5% by mass or less with respect to the base resin in the sealing material composition, and more preferably 0. It is the range of 3 mass% or more and 0.4 mass% or less. By adding the crosslinking agent in this range, it is possible to impart sufficient durability to the sealing material sheet. In addition, the sealing material sheet of this invention is formed into a film, without advancing crosslinking substantially, and content of said crosslinking agent in the sealing material sheet in the sheet | seat stage after film-forming is also 0.1. It is assumed to be in the range of 2% by mass to 0.5% by mass.
 [架橋助剤]
 封止材組成物には、炭素-炭素二重結合及び/又はエポキシ基を有する多官能モノマー、より好ましくは多官能モノマーの官能基がアリル基、(メタ)アクリレート基、ビニル基である架橋助剤を含有させることが好ましい。これによって適度な架橋反応を促進させて封止材シートのガラスや金属に対する密着性を向上させることに加えて、この架橋助剤が、封止材シートを形成する直鎖低密度ポリエチレンの結晶性を低下させ透明性を維持する。これにより、上記の密着性の向上の効果に加えて、封止材シートの透明性と低温柔軟性をより優れたものとすることができる。
[Crosslinking Aid]
In the encapsulant composition, a crosslinking monomer having a carbon-carbon double bond and / or an epoxy group, and more preferably, the functional group of the polyfunctional monomer is an allyl group, a (meth) acrylate group, a vinyl group It is preferable to contain an agent. In addition to promoting an appropriate crosslinking reaction by this and improving the adhesiveness with respect to the glass and metal of a sealing material sheet, this crosslinking adjuvant forms the crystallinity of linear low density polyethylene which forms a sealing material sheet. And maintain transparency. Thereby, in addition to the effect of the improvement of said adhesiveness, transparency and low temperature flexibility of a sealing material sheet can be made more excellent.
 封止材組成物に用いることができる架橋助剤としては、具体的には、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエート等のポリアリル化合物、トリメチロールプロパントリメタクリレート(TMPT)、トリメチロールプロパントリアクリレート(TMPTA)、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート等のポリ(メタ)アクリロキシ化合物、二重結合とエポキシ基を含むグリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル及びエポキシ基を2つ以上含有する1,6-ヘキサンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等のエポキシ系化合物を挙げることができる。これらは単独でもよく、2種以上を組合せてもよい。又、上記架橋助剤の中でも、封止材シートのガラス密着性向上にも顕著に寄与し、直鎖低密度ポリエチレンに対する相溶性が良好で、架橋によって結晶性を低下させ透明性を維持し、低温での柔軟性を付与する観点からTAICを好ましく用いることができる。 Specific examples of the crosslinking aid that can be used for the sealant composition include polyallyl compounds such as triallyl isocyanurate (TAIC), triallyl cyanurate, diallyl phthalate, diallyl fumarate, and diallyl maleate, and trilyl. Methylolpropane trimethacrylate (TMPT), trimethylolpropane triacrylate (TMPTA), ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonane Poly (meth) acryloxy compound such as diol diacrylate, glycidyl methacrylate containing double bond and epoxy group, 4-hydroxybutyl acrylate glycidyl ether, and containing 2 or more epoxy groups That 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, and epoxy compounds such as trimethylolpropane polyglycidyl ether. These may be independent or may combine 2 or more types. Further, among the above-mentioned crosslinking assistants, it significantly contributes to the improvement of the glass adhesion of the sealing material sheet, has good compatibility with linear low density polyethylene, reduces crystallinity by crosslinking, and maintains transparency. TAIC can be preferably used from the viewpoint of imparting flexibility at low temperature.
 封止材組成物における架橋助剤の含有量は、封止材組成物中のベース樹脂に対して、0.01質量%以上3質量%以下であることが好ましく、より好ましくは0.05質量%以上2.0質量%以下である。この範囲内であれば適度な架橋反応を促進させて封止材シートの密着性を向上させることができる。 The content of the crosslinking aid in the encapsulant composition is preferably 0.01% by mass or more and 3% by mass or less, and more preferably 0.05% by mass, based on the base resin in the encapsulant composition. % Or more and 2.0% by mass or less. Within this range, it is possible to promote an appropriate crosslinking reaction and improve the adhesion of the sealing material sheet.
 [ヒンダードアミン系耐光安定剤(HALS)]
 本発明の封止材組成物は、環状アミノビニル化合物とエチレンとの共重合体であって分子量30000以上で、密度0.930g/cm以上0.940g/cm以下、好ましくは、0.930g/cm以上0.932g/cm以下である耐光安定剤(「共重合体型超高分子量タイプのHALS」)を含有する。
[Hindered amine light stabilizers (HALS)]
The encapsulant composition of the present invention is a copolymer of a cyclic aminovinyl compound and ethylene and has a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more and 0.940 g / cm 3 or less, preferably 0. containing 930 g / cm 3 or more 0.932 g / cm 3 or less is light stabilizer ( "co-polymer type ultrahigh molecular weight type of HALS").
 この「共重合体型超高分子量タイプのHALS」は、分子量30000を超える超高分子量タイプの耐光安定剤でありながら、特にポリエチレン系樹脂との相溶性に優れるHALSである。このこと自体は、既知ではあったが、本発明の封止材組成物は、更に、このHALSとベース樹脂との密度差が一定範囲内となるように封止材組成物の配合を独自の知見に基づき最適化したものである。 This “copolymer type ultrahigh molecular weight type HALS” is a light resistance stabilizer of ultra high molecular weight type having a molecular weight of more than 30,000, and is particularly excellent in compatibility with polyethylene resins. Although this itself was known, the encapsulant composition of the present invention is further unique in blending the encapsulant composition such that the density difference between the HALS and the base resin is within a certain range. It is optimized based on knowledge.
 この「共重合体型超高分子量タイプのHALS」は、より詳細には、下記の一般式(1)で表される環状アミノビニル化合物と、エチレンとの共重合体である耐光安定剤である。このような要件を満たし市場で入手可能な耐光安定剤の例として、例えば、「XJ-100H」(分子量:35000、密度が0.931g/cm、日本ポリエチレン株式会社製)を挙げることができる。 More specifically, the “copolymer type ultrahigh molecular weight type HALS” is a light stabilizer that is a copolymer of a cyclic aminovinyl compound represented by the following general formula (1) and ethylene. As an example of a light stabilizer that meets such requirements and is commercially available, for example, “XJ-100H” (molecular weight: 35000, density is 0.931 g / cm 3 , manufactured by Nippon Polyethylene Co., Ltd.) can be mentioned. .
Figure JPOXMLDOC01-appb-C000001
                           (1)
 (式(1)中、R1及びR2は水素原子又はメチル基を示し、R3は水素原子又は炭素数1~4のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000001
(1)
(In formula (1), R 1 and R 2 represent a hydrogen atom or a methyl group, and R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
 封止材組成物に添加する耐光安定剤として、上記の「共重合体型超高分子量タイプのHALS」を用いる場合、耐光安定剤の添加量は、封止材組成物のベース脂成に対する上記の環状アミノビニル化合物の含有量比が0.1質量%以上0.2質量%以下、好ましくは、0.13質量%以上0.20質量%以下となるような添加量とすればよい。「共重合体型超高分子量タイプのHALS」の添加量を上記範囲下限以上とすることによって、耐光安定化の効果が十分に得られる。又、上記範囲上限以下とすることによって、ブリードアウト及びそれによる透明性の低下を十分に抑制することができる。尚、本明細書においては、HALS中の「環状アミノビニル化合物」を指して、当該HALSの「HALS成分」と称するものとする。 When the above-mentioned "copolymer type ultra-high molecular weight type HALS" is used as the light stabilizer added to the encapsulant composition, the addition amount of the light stabilizer is the amount described above with respect to the base oil composition of the encapsulant composition. The addition amount may be such that the content ratio of the cyclic aminovinyl compound is 0.1% by mass or more and 0.2% by mass or less, preferably 0.13% by mass or more and 0.20% by mass or less. By setting the addition amount of “copolymer type ultrahigh molecular weight type HALS” to the above-mentioned lower limit or more, the effect of light resistance stabilization can be sufficiently obtained. Also, by setting the upper limit of the above range or less, it is possible to sufficiently suppress the bleed out and the drop in transparency due to it. In the present specification, the “cyclic aminovinyl compound” in the HALS is referred to as “HALS component” of the HALS.
 [その他の添加物]
 封止材組成物には、更にその他の成分を含有させることができる。例えば、紫外線吸収剤、熱安定剤、密着性向上剤、核剤、分散剤、レベリング剤、可塑剤、消泡剤、難燃剤、及びその他の各種フィラーを適宜添加することができる。これらの添加剤の含有量比は、その粒子形状、密度等により異なるものではあるが、それぞれ封止材組成物中に0.001質量%以上60質量%以下の範囲内であることが好ましい。これらの添加剤を含むことにより、封止材組成物に対して、長期に亘って安定した機械強度や、黄変やひび割れ等の防止効果等を付与することができる。
[Other additives]
The sealant composition can further contain other components. For example, a UV absorber, a heat stabilizer, an adhesion improver, a nucleating agent, a dispersant, a leveling agent, a plasticizer, an antifoamer, a flame retardant, and various other fillers can be appropriately added. Although the content ratio of these additives differs depending on the particle shape, density and the like, it is preferable that the content ratio of each additive is in the range of 0.001% by mass to 60% by mass in the sealing material composition. By containing these additives, the sealing material composition can be provided with stable mechanical strength over a long period of time, an effect of preventing yellowing, cracking and the like.
 <封止材シートの製造方法>
 本発明の封止材シートの製造方法は、上記においてその詳細を説明した本発明の封止材組成物を用いる製造方法であって、耐光安定剤選定工程、ベース樹脂選定工程、材料混錬工程、シート化工程と、を含んでなるプロセスである。
<Method of manufacturing encapsulant sheet>
The method for producing a sealant sheet of the present invention is a production method using the sealant composition of the present invention, the details of which have been described above, which is a light stabilizer selection step, a base resin selection step, and a material kneading step A sheeting process.
 [耐光安定剤選定工程]
 耐光安定剤選定工程においては、封止材組成物においてベース樹脂とするポリエチレン系樹脂に添加する耐光安定剤として、「共重合体型超高分子量タイプのHALS」を選定する。耐光安定剤の選定の基準は、当該耐光安定剤が、環状アミノビニル化合物とエチレンとの共重合体であって、分子量が30000以上、密度が0.930g/cm以上であるという要件を満たすものであることである。そのような耐光安定剤の具体例としては、上述の通り、「XJ-100H」(分子量:35000、密度が0.931g/cm、日本ポリエチレン株式会社製)を挙げることができる。
[Light-resistant stabilizer selection process]
In the light stabilizer selection step, “HALS of copolymer type ultrahigh molecular weight type” is selected as the light stabilizer to be added to the polyethylene-based resin as the base resin in the sealant composition. The criteria for selecting a light stabilizer is that the light stabilizer is a copolymer of a cyclic aminovinyl compound and ethylene, and satisfies the requirement that the molecular weight is 30,000 or more and the density is 0.930 g / cm 3 or more. It is a thing. As a specific example of such a light stabilizer, as described above, “XJ-100H” (molecular weight: 35000, density is 0.931 g / cm 3 , manufactured by Japan Polyethylene Corporation) can be mentioned.
 [ベース樹脂選定工程]
 ベース樹脂選定工程においては、封止材組成物においてベース樹脂とするポリエチレン系樹脂を選定する。ベース樹脂の選定の基準は、当該ベース樹脂が、密度0.900g/cm以下、好ましくは0.890g/cm以下の低密度ポリエチレンであって、且つ、前工程において選定したヒンダードアミン系耐光安定剤との密度差が、0.050g/cm未満、好ましくは、0.047g/cm未満であることである。
[Base resin selection process]
In the base resin selection step, a polyethylene resin to be a base resin in the encapsulant composition is selected. The criteria for selection of the base resin is that the base resin is a low density polyethylene having a density of 0.900 g / cm 3 or less, preferably 0.890 g / cm 3 or less, and the hindered amine light stability selected in the previous step The density difference with the agent is less than 0.050 g / cm 3 , preferably less than 0.047 g / cm 3 .
 [材料混錬工程]
 材料混錬工程においては、前工程において選定したベース樹脂に、架橋剤と、前々工程において選定したヒンダードアミン系耐光安定剤を添加して混錬することによって、封止材組成物を製造する。
[Material mixing process]
In the material kneading step, the sealant composition is produced by adding and crosslinking the crosslinking agent and the hindered amine light stabilizer selected in the previous step to the base resin selected in the previous step.
 [シート化工程]
 シート化工程においては、前工程において製造した封止材組成物を溶融成形して、封止材シートを製造する。封止材組成物の溶融成形は、公知の成形法、即ち、射出成形、押出成形、中空成形、圧縮成形、回転成形等の各種成形法により行うことができる。成形時の成形温度の下限は封止材組成物の融点を超える温度であればよい。成形温度の上限は用いる架橋剤の1分間半減期温度に応じて、製膜中に架橋が開始しない温度、即ち、封止材組成物のゲル分率を0%に維持できる温度であればよい。
[Sheeting process]
In the sheeting step, the sealing material composition produced in the previous step is melt-molded to produce a sealing material sheet. Melt molding of the sealing material composition can be performed by known molding methods, that is, various molding methods such as injection molding, extrusion molding, hollow molding, compression molding, rotational molding and the like. The lower limit of the molding temperature during molding may be a temperature that exceeds the melting point of the sealing material composition. The upper limit of the molding temperature may be a temperature at which crosslinking does not start during film formation, that is, a temperature at which the gel fraction of the encapsulant composition can be maintained at 0% according to the 1 minute half-life temperature of the crosslinking agent used. .
 <太陽電池モジュール>
 図1は、本発明の太陽電池モジュールについて、その層構成の一例を示す断面図である。本発明の太陽電池モジュール1は、入射光の受光面側から、透明前面基板2、前面封止材3、太陽電池素子4、背面封止材5、及び裏面保護シート6が順に積層されている。本発明の太陽電池モジュール1は、前面封止材3及び/又は背面封止材5として、本発明の封止材シートを用いることができる。特に太陽電池素子4の受光面側に配置される前面封止材3として、透明性に優れる本発明の封止材シートを配置することによって、意匠性の向上のみならず、発電効率の向上にも寄与することができる。
<Solar cell module>
FIG. 1 is a cross-sectional view showing an example of the layer configuration of the solar cell module of the present invention. In the solar cell module 1 of the present invention, the transparent front substrate 2, the front sealing material 3, the solar cell element 4, the back sealing material 5, and the back surface protection sheet 6 are sequentially stacked from the light receiving surface side of incident light. . The solar cell module 1 of the present invention can use the sealant sheet of the present invention as the front sealant 3 and / or the back sealant 5. In particular, by arranging the encapsulant sheet of the present invention having excellent transparency as the front encapsulant 3 disposed on the light receiving surface side of the solar cell element 4, not only improvement in designability but also improvement in power generation efficiency Can also contribute.
 太陽電池モジュール1は、例えば、上記の透明前面基板2、前面封止材3、太陽電池素子4、背面封止材5、及び裏面保護シート6からなる部材を順次積層してから真空吸引等により一体化し、その後、ラミネーション法等の成形法により、上記の部材を一体成形体として加熱圧着成形して製造することができる。そして、このとき、単層シートからなる前面封止材3とガラス基板が積層されるか、又は、多層シートからなる前面封止材3の上記密着強化層が、透明前面基板2の一例であるガラス基板と対向するように積層されることで、ガラス基板と封止材シートとの密着性を向上できる。尚、上記の加熱圧着は、110℃以上で実施し、加熱圧着後に、キュア工程を実施するとポリエチレンの架橋反応が更に進む。キュア工程は、封止材シートの樹脂温度が140℃以上170℃以下となるような加熱条件において行う。これにより、封止材シートの架橋を適度に進行させて、太陽電池モジュールの耐熱性と耐光性を十分に高めることができる。 The solar cell module 1 is formed, for example, by vacuum suction after sequentially laminating the members including the transparent front substrate 2, the front sealing material 3, the solar cell element 4, the back sealing material 5, and the back protection sheet 6. After being integrated, the above-described members can be manufactured as an integral molded body by thermocompression molding by a molding method such as a lamination method. Then, at this time, the front side sealing material 3 made of a single layer sheet and the glass substrate are laminated, or the above-mentioned adhesion strengthening layer of the front side sealing material 3 made of a multilayer sheet is an example of the transparent front substrate 2 By laminating so as to face the glass substrate, the adhesion between the glass substrate and the sealing material sheet can be improved. The above-mentioned thermocompression bonding is carried out at 110 ° C. or higher, and when the curing step is carried out after the thermocompression bonding, the crosslinking reaction of polyethylene further proceeds. The curing step is performed under heating conditions such that the resin temperature of the sealing material sheet is 140 ° C. or more and 170 ° C. or less. Thereby, crosslinking of a sealing material sheet can be made to advance moderately and the heat resistance and light resistance of a solar cell module can fully be raised.
 このようにして得られる、本発明の太陽電池モジュールは、耐熱性と耐光性に優れ、強い紫外線、熱線、風雨等といった過酷な環境に曝される場合であっても、長期間に亘って高度の耐候性を維持することができるものとなっている。又、透明性においても優れたものであることにより太陽電池モジュールの意匠性と発電効率の向上にも寄与することができる。 The solar cell module of the present invention obtained in this manner is excellent in heat resistance and light resistance, and even when exposed to severe environments such as strong ultraviolet rays, heat rays, wind and rain, etc., it is highly advanced over a long period of time It is possible to maintain the weather resistance of the In addition, the excellent transparency can also contribute to the improvement of the design of the solar cell module and the power generation efficiency.
 以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to the following examples.
 [封止材シートの製造]
 下記の材料からなる封止材組成物を溶融し、実施例及び比較例の封止材シートを製造した。この封止材シートの製造は、常法Tダイ法により厚さ460μmとなるように成膜し、これにより、未架橋の単層の封止材シートとした。成膜温度は90℃~100℃とした。
[Manufacture of encapsulant sheet]
The sealing material composition which consists of the following material was fuse | melted, and the sealing material sheet of the Example and the comparative example was manufactured. In the production of this sealing material sheet, a film was formed to have a thickness of 460 μm by a conventional method T-die method, whereby a non-crosslinked single layer sealing material sheet was formed. The deposition temperature was 90 ° C. to 100 ° C.
 (ベース樹脂1)
 :密度0.885g/cm、190℃でのMFRが20g/10分のメタロセン系直鎖状低密度ポリエチレン(M-LLDPE)85質量部と、下記のシラン変性透明樹脂(密度0.884g/cm)15質量部との混合樹脂を「ベース樹脂1」とした。このベース樹脂1の密度は、0.885g/cmである。実施例1及び比較例1及び2においてこの「ベース樹脂1」をベース樹脂として用いた。
 (ベース樹脂2)
 :密度0.879g/cm、190℃でのMFRが20g/10分のメタロセン系直鎖状低密度ポリエチレン(M-LLDPE)85質量部と下記のシラン変性透明樹脂15質量部との混合樹脂を「ベース樹脂2」とした。このベース樹脂2の密度は、0.880g/cmである。比較例3、4及び5においてこの「ベース樹脂2」をベース樹脂として用いた。
 (ベース樹脂3)
 :密度0.915g/cm、190℃でのMFRが20g/10分のメタロセン系直鎖状低密度ポリエチレン(M-LLDPE)85質量部と下記のシラン変性透明樹脂15質量部との混合樹脂を「ベース樹脂3」とした。このベース樹脂3の密度は、0.910g/cmである。比較例6においてこの「ベース樹脂3」をベース樹脂として用いた。
 (シラン変性透明樹脂)
 :密度0.881g/cmであり、190℃でのMFRが2g/10分であるメタロセン系直鎖状低密度ポリエチレン(M-LLDPE)98質量部に対して、ビニルトリメトキシシラン2質量部と、ラジカル発生剤(反応触媒)としてのジクミルパーオキサイド0.1質量部とを混合し、200℃で溶融、混練して得たシラン変性透明樹脂。このシラン変性透明樹脂の密度は、0.884g/cm、190℃でのMFRは18g/10分である。又、この樹脂は、「α-オレフィンとエチレン性不飽和シラン化合物とをコモノマーとして共重合してなるシラン共重合体」含有する樹脂に該当する樹脂である。
(Base resin 1)
85 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.885 g / cm 3 and an MFR of 20 g / 10 min at 190 ° C., and the following silane-modified transparent resin (density 0.884 g / cm 3 ) A mixed resin with 15 parts by mass of cm 3 was used as “base resin 1”. The density of the base resin 1 is 0.885 g / cm 3 . This “base resin 1” was used as a base resin in Example 1 and Comparative Examples 1 and 2.
(Base resin 2)
Mixed resin of 85 parts by mass of metallocene linear low density polyethylene (M-LLDPE) with a density of 0.879 g / cm 3 and MFR of 20 g / 10 min at 190 ° C. and 15 parts by mass of the following silane-modified transparent resin Of “Base resin 2”. The density of the base resin 2 is 0.880 g / cm 3 . This "base resin 2" was used as a base resin in Comparative Examples 3, 4 and 5.
(Base resin 3)
Mixed resin of 85 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.915 g / cm 3 and MFR of 20 g / 10 min at 190 ° C. and 15 parts by mass of the following silane modified transparent resin Of “Base resin 3”. The density of the base resin 3 is 0.910 g / cm 3 . In Comparative Example 6, this "base resin 3" was used as a base resin.
(Silane modified transparent resin)
: 2 parts by mass of vinyltrimethoxysilane based on 98 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.881 g / cm 3 and an MFR at 190 ° C. of 2 g / 10 min The silane modified transparent resin obtained by mixing and 0.1 mass part of dicumyl peroxides as a radical generating agent (reaction catalyst), melt | melting at 200 degreeC, and knead | mixing. The density of this silane modified transparent resin is 0.884 g / cm 3 , and the MFR at 190 ° C. is 18 g / 10 min. In addition, this resin corresponds to a resin containing “a silane copolymer formed by copolymerizing α-olefin and an ethylenically unsaturated silane compound as a comonomer”.
 (ヒンダードアミン系耐光安定剤1(HALS))
 :「XJ100H(日本ポリエチレン株式会社製)」、分子量35000、密度0.931g/cm。このHALSは、上記の一般式(1)で表される環状アミノビニル化合物と、エチレンとの共重合体であり、環状アミノビニル化合物含量=5.1重量%(0.7モル%)である。又、このHALSは、上記の「共重合体型超高分子量タイプのHALS」に該当するHALSである。このヒンダードアミン系耐光安定剤(HALS)を上記の各ベース樹脂に混合して用いた。各封止材組成物においてベース樹脂に対する「HALS成分(「環状アミノビニル化合物」)」の含有量(質量%)が表1に示した数値となるようにHALSの添加量を調整した。
(Hindered amine light stabilizer 1 (HALS))
"XJ100H (manufactured by Japan Polyethylene Corporation)", molecular weight 35,000, density 0.931 g / cm 3 . This HALS is a copolymer of a cyclic aminovinyl compound represented by the above general formula (1) and ethylene, and the content of the cyclic aminovinyl compound = 5.1% by weight (0.7 mol%) . Moreover, this HALS is a HALS corresponding to the above-mentioned "copolymer type ultrahigh molecular weight type HALS". This hindered amine light stabilizer (HALS) was used by mixing with each of the above base resins. The amount of addition of the HALS was adjusted so that the content (% by mass) of the “HALS component (“ cyclic amino vinyl compound ”)” with respect to the base resin in each sealing material composition was the numerical value shown in Table 1.
 (架橋剤)
 「ルペロックス101(アルケマ吉富株式会社製)」、ジアルキルパーオキサイド類ブチルパーオキサイド、分子量290.4、活性酸素量9.92以上、1時間半減期温度140℃。この架橋剤を、封止材組成物のベース樹脂に対する含有量(質量%)が、0.4質量%となるように添加量をそれぞれ調整した。
(Crosslinking agent)
"Luporox 101 (manufactured by Arkema Yoshitomi Co., Ltd.)", dialkyl peroxides butyl peroxide, molecular weight 290.4, active oxygen content 9.92 or more, half-life temperature 140 ° C. for 1 hour. The addition amount of each of the crosslinking agents was adjusted such that the content (% by mass) of the sealing material composition to the base resin was 0.4% by mass.
 [封止材シート評価用試料の製造]
 太陽電池モジュールとして一体化された状態での各封止材シートの物性を評価するために、上記の通り製造した実施例及び比較例の未架橋の各封止材シートを、ETFEフィルムで挟み込んで、真空加熱ラミネーション及びその後のキュア処理により架橋処理を行ったものを実施例及び比較例の封止材シート評価用試料とした。真空加熱ラミネート条件、及び、キュア条件は下記の通りとした。
 (真空加熱ラミネート条件)
 (a)真空引き:4.0分
 (b)加圧:(0kPa~50kPa):10秒
 (c)圧力保持:(50kPa):6分
 (d)温度:110℃
 (キュア条件)
 (a)時間40分、温度150℃
[Production of Sample for Sealant Sheet Evaluation]
In order to evaluate the physical property of each sealing material sheet in the state integrated as a solar cell module, each uncrosslinked sealing material sheet of the Example manufactured as mentioned above and a comparative example is inserted | pinched by ETFE film The thing which performed the crosslinking process by vacuum heating lamination and subsequent curing treatment was made into the sample for evaluation of the sealing material sheet of an example and a comparative example. The vacuum heating laminating conditions and curing conditions were as follows.
(Vacuum heating laminating conditions)
(A) evacuation: 4.0 minutes (b) pressurization: (0 kPa to 50 kPa): 10 seconds (c) pressure holding: (50 kPa): 6 minutes (d) temperature: 110 ° C.
(Cure condition)
(A) time 40 minutes, temperature 150 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [評価例1:透明性]
 上記の各封止材シート評価用試料について、透明性(HAZE)(JIS K7136、株式会社村上色彩研究所、ヘーズ・透過率系HM150により測定)を測定した。結果は「透明性」として表2に示す。評価基準は以下の通りとした。
 (評価基準)
 A:ヘーズ3.6%以下
 B:ヘーズ3.6%超え4.5%以下
 C:ヘーズ4.5%超え
[Evaluation Example 1: Transparency]
The transparency (HAZE) (measured according to JIS K7136, Murakami Color Research Laboratory, haze-transmittance HM150) was measured for each of the above-described samples for sealing material sheet evaluation. The results are shown in Table 2 as "transparency". Evaluation criteria were as follows.
(Evaluation criteria)
A: Haze 3.6% or less B: Haze 3.6% or more and 4.5% or less C: Haze 4.5% or more
 [評価例2:高度耐候性]
 上記の各封止材シート評価用試料について、高度耐候性に係る試験を行った。各封止材シート評価用試料を、ガラス基板(白板半強化ガラス(JPT3.2 75mm×50mm×3.2mm))に、密着させて、下記の真空加熱ラミネート条件及びキュア条件で、真空加熱ラミネート処理を行い、それぞれの実施例、比較例について密着性試験用の試料を作成した。そして、これらの各試料について、下記試験方法により、初期の密着性、及び、耐候促進試験(「高強度キセノン照射試験」)実施後の密着性を測定し、両者の比から密着性の維持率を算出して、各封止材シートの高度耐候性について評価した。
 (真空加熱ラミネート条件)
 (a)真空引き:4.0分
 (b)加圧:(0kPa~50kPa):10秒
 (c)圧力保持:(50kPa):6分
 (d)温度:110℃
 (キュア条件)
 (a)時間40分、温度150℃
 (剥離試験方法)
 :ガラス基板上に密着している封止材シートを15mm幅にカットし、剥離試験機(テンシロン万能試験機 RTF-1150-H)にて垂直剥離(50mm/min)試験を行い、封止材シートの密着性を測定した。
 (高強度キセノン照射試験)
 :アトラス・ウエザオメータCi4000を用い、放射照度60W/m、ブラックパネル温度(BPT)110℃、湿度50%の条件で2000時間の照射試験を行った。
 上記の条件で高強度キセノン照射試験を行い、2000時間経過後に上記「剥離試験方法」による密着性試験を行った。この密着性の上記初期の密着性に対する比(%)を「高度耐候(密着維持率)」の指標とし、下記評価基準により評価した。結果は表2に示す通りであった。
 (評価基準)
 A:初期の密着性に対する、上記の「高強度キセノン照射試験」後の密着性の維持率が、50%以上
 B:同密着性維持率が、25%以上50%未満
 C:同密着性維持率が、25%未満
[Evaluation example 2: high weather resistance]
The test concerning high weather resistance was done about each above-mentioned sealing material sheet evaluation sample. Each sealing material sheet evaluation sample is brought into close contact with a glass substrate (white plate semi-tempered glass (JPT 3.275 mm × 50 mm × 3.2 mm)), and vacuum heating laminating is performed under the following vacuum heating laminating conditions and curing conditions. It processed and the sample for the adhesiveness test was created about each Example and comparative example. Then, for each of these samples, the adhesion in the initial stage and the adhesion after the weathering accelerated test ("high-intensity xenon irradiation test") were measured by the following test method, and the ratio of the both maintained the adhesion maintenance rate Were calculated to evaluate the high weather resistance of each sealing material sheet.
(Vacuum heating laminating conditions)
(A) evacuation: 4.0 minutes (b) pressurization: (0 kPa to 50 kPa): 10 seconds (c) pressure holding: (50 kPa): 6 minutes (d) temperature: 110 ° C.
(Cure condition)
(A) time 40 minutes, temperature 150 ° C.
(Peeling test method)
: Cut the sealing material sheet in close contact with the glass substrate to a width of 15 mm, perform vertical peeling (50 mm / min) test with a peeling tester (Tentiron universal tester RTF-1150-H), and cut the sealing material The adhesion of the sheet was measured.
(High intensity xenon irradiation test)
Irradiation test was conducted for 2000 hours under the conditions of an irradiance of 60 W / m 2 , a black panel temperature (BPT) of 110 ° C. and a humidity of 50% using an Atlas Weatherometer Ci4000.
A high-intensity xenon irradiation test was conducted under the above conditions, and after 2000 hours, an adhesion test was conducted according to the "peel test method". The ratio (%) of the adhesion to the initial adhesion described above was used as an index of "high weather resistance (adhesion maintenance ratio)" and was evaluated according to the following evaluation criteria. The results are as shown in Table 2.
(Evaluation criteria)
A: The maintenance ratio of adhesion after the above "high intensity xenon irradiation test" to the initial adhesion is 50% or more B: The adhesion maintenance ratio is 25% or more and less than 50% C: The adhesion maintenance Less than 25%
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び2より、本発明の封止材シートは、ポリエチレンをベース樹脂とし、透明性に優れ、尚且つ、極めて高度な耐候性を有する太陽電池モジュール用の封止材シートであることが分かる。 From Tables 1 and 2, it can be seen that the encapsulant sheet of the present invention is a encapsulant sheet for a solar cell module having polyethylene as a base resin, excellent in transparency, and having extremely high weather resistance. .
 1 太陽電池モジュール
 2 透明前面基板
 3 前面封止材
 4 太陽電池素子
 5 背面封止材
 6 裏面保護シート
1 solar cell module 2 transparent front substrate 3 front sealing material 4 solar battery element 5 back sealing material 6 back protective sheet

Claims (6)

  1.  低密度ポリエチレンをベース樹脂とし、架橋剤と、ヒンダードアミン系耐光安定剤を、含有する太陽電池モジュール用の封止材組成物であって、
     前記ヒンダードアミン系耐光安定剤は、環状アミノビニル化合物とエチレンとの共重合体であって、分子量が30000以上、密度が0.930g/cm以上であり、
     前記ベース樹脂に対する前記環状アミノビニル化合物の含有量比が0.1質量%以上0.2質量%以下であって、
     前記ベース樹脂の密度は、0.900g/cm以下であって、且つ、前記ベース樹脂の密度と前記ヒンダードアミン系耐光安定剤の密度との差が0.050g/cm未満である、封止材組成物。
    An encapsulant composition for a solar cell module, comprising a low density polyethylene as a base resin, a crosslinker, and a hindered amine light stabilizer,
    The hindered amine light stabilizer is a copolymer of a cyclic aminovinyl compound and ethylene, and has a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more,
    The content ratio of the cyclic aminovinyl compound to the base resin is 0.1% by mass or more and 0.2% by mass or less,
    The sealing wherein the density of the base resin is 0.900 g / cm 3 or less and the difference between the density of the base resin and the density of the hindered amine light stabilizer is less than 0.050 g / cm 3 Material composition.
  2.  前記ベース樹脂に対する前記架橋剤の含有量が0.2質量%以上0.5質量%以下である、請求項1に記載の封止材組成物。 The sealing material composition according to claim 1, wherein a content of the crosslinking agent with respect to the base resin is 0.2% by mass or more and 0.5% by mass or less.
  3.  太陽電池モジュール用の封止材シートの製造方法であって、
     耐光安定剤選定工程と、
     ベース樹脂選定工程と、
     材料混錬工程と、
     シート化工程と、を含んでなり、
     前記耐光安定剤選定工程においては、耐光安定剤として、環状アミノビニル化合物とエチレンとの共重合体であって、分子量30000以上、密度0.930g/cm以上である、ヒンダードアミン系耐光安定剤を選定し、
     前記ベース樹脂選定工程においては、ベース樹脂として、密度0.900g/cm以下であって、且つ、前記ヒンダードアミン系耐光安定剤との密度差が、0.050g/cm未満である低密度ポリエチレンを選定し、
     前記材料混錬工程においては、前記低密度ポリエチレンに、架橋剤と、前記ヒンダードアミン系耐光安定剤を添加して混錬することによって、封止材組成物を製造し、
     前記シート化工程においては、前記封止材組成物を溶融成形して、封止材シートを製造する、封止材シートの製造方法。
    A method of manufacturing an encapsulant sheet for a solar cell module, comprising:
    A light stabilizer selection process,
    Base resin selection process,
    Material mixing process,
    And a sheeting process,
    In the light stabilizer selection step, a hindered amine light stabilizer, which is a copolymer of a cyclic aminovinyl compound and ethylene, having a molecular weight of 30,000 or more and a density of 0.930 g / cm 3 or more as a light stabilizer. Select
    In the base resin selection step, a low density polyethylene having a density of 0.900 g / cm 3 or less as the base resin and a density difference with the hindered amine light stabilizer of less than 0.050 g / cm 3. Select
    In the material kneading step, a sealing agent composition is produced by adding a crosslinking agent and the hindered amine light stabilizer to the low density polyethylene, and kneading.
    In the said sheeting process, the manufacturing method of the sealing material sheet which melt-molds the said sealing material composition, and manufactures a sealing material sheet.
  4.  前記ヒンダードアミン系耐光安定剤の添加量を、前記ベース樹脂に対する前記環状アミノビニル化合物の含有量比が0.1質量%以上0.2質量%以下となる添加量とする、請求項3に記載の封止材シートの製造方法。 The addition amount of the hindered amine light stabilizer is an addition amount such that the content ratio of the cyclic aminovinyl compound to the base resin is 0.1% by mass or more and 0.2% by mass or less. Method of manufacturing encapsulant sheet.
  5.  前記低密度ポリエチレンは、密度が0.885g/cm以上であり、
     前記ヒンダードアミン系耐光安定剤は、密度が、0.930g/cm以上である、請求項3又は4に記載の封止材シートの製造方法。
    The low density polyethylene has a density of 0.885 g / cm 3 or more,
    The manufacturing method of the sealing material sheet of Claim 3 or 4 whose density is 0.930 g / cm < 3 > or more as for the said hindered amine light stabilizer.
  6.  前記架橋剤の前記ベース樹脂に対する含有量が0.2質量%以上0.5質量%以下である。請求項3から5のいずれかに記載の、封止材シートの製造方法。 The content of the crosslinking agent with respect to the base resin is 0.2% by mass or more and 0.5% by mass or less. The manufacturing method of the sealing material sheet in any one of Claims 3-5.
PCT/JP2018/034837 2017-09-28 2018-09-20 Sealant composition for solar cell module and production method for sealant sheet for solar cell module WO2019065457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-187692 2017-09-28
JP2017187692A JP6972849B2 (en) 2017-09-28 2017-09-28 Manufacturing method of encapsulant composition for solar cell module and encapsulant sheet for solar cell module

Publications (1)

Publication Number Publication Date
WO2019065457A1 true WO2019065457A1 (en) 2019-04-04

Family

ID=65901810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034837 WO2019065457A1 (en) 2017-09-28 2018-09-20 Sealant composition for solar cell module and production method for sealant sheet for solar cell module

Country Status (2)

Country Link
JP (1) JP6972849B2 (en)
WO (1) WO2019065457A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155915A (en) * 2008-12-26 2010-07-15 Japan Polyethylene Corp Sealing material for solar cell
JP2012009693A (en) * 2010-06-25 2012-01-12 Japan Polyethylene Corp Manufacturing method of resin composition for solar cell sealing material
CN102850947A (en) * 2012-09-14 2013-01-02 宁波威克丽特功能塑料有限公司 Adhesive POE solar battery packaging film and preparation method thereof
JP2013065610A (en) * 2011-09-15 2013-04-11 Dainippon Printing Co Ltd Sealant composition and sealant for solar battery module using the same
JP6311832B1 (en) * 2017-09-20 2018-04-18 大日本印刷株式会社 SEALING MATERIAL COMPOSITION AND SEALING MATERIAL SHEET FOR SOLAR CELL MODULE USING THE SAME

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139558A (en) * 2011-12-06 2013-07-18 Japan Polyethylene Corp Resin composition for sealing solar cell, and solar cell sealant and solar cell module using the same
JP2014240473A (en) * 2013-05-13 2014-12-25 旭化成株式会社 Resin sealing sheet and method of producing the same, and solar cell module
JP2015147899A (en) * 2014-02-07 2015-08-20 大日本印刷株式会社 Encapsulation material sheet for solar cell module and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155915A (en) * 2008-12-26 2010-07-15 Japan Polyethylene Corp Sealing material for solar cell
JP2012009693A (en) * 2010-06-25 2012-01-12 Japan Polyethylene Corp Manufacturing method of resin composition for solar cell sealing material
JP2013065610A (en) * 2011-09-15 2013-04-11 Dainippon Printing Co Ltd Sealant composition and sealant for solar battery module using the same
CN102850947A (en) * 2012-09-14 2013-01-02 宁波威克丽特功能塑料有限公司 Adhesive POE solar battery packaging film and preparation method thereof
JP6311832B1 (en) * 2017-09-20 2018-04-18 大日本印刷株式会社 SEALING MATERIAL COMPOSITION AND SEALING MATERIAL SHEET FOR SOLAR CELL MODULE USING THE SAME

Also Published As

Publication number Publication date
JP6972849B2 (en) 2021-11-24
JP2019062151A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US10566480B2 (en) Sealing material for solar cell modules, and manufacturing method thereof
JP2013065610A (en) Sealant composition and sealant for solar battery module using the same
WO2019059048A1 (en) Sealing material composition and sealing material sheet using same for solar cell module
JP2022089829A (en) Seal-material sheet for solar battery module
JP6255694B2 (en) Sealing material for solar cell module
JP6035707B2 (en) Manufacturing method of solar cell module
JP6287158B2 (en) Manufacturing method of solar cell module sealing material and solar cell module sealing material
JP6003481B2 (en) Encapsulant sheet and manufacturing method thereof
WO2019065457A1 (en) Sealant composition for solar cell module and production method for sealant sheet for solar cell module
JP6036117B2 (en) Manufacturing method of sealing material sheet
JP5720181B2 (en) Filler for solar cell module
JP2018050027A (en) Solar cell module
JP6197531B2 (en) Encapsulant composition and solar cell module encapsulant sheet using the same
JP6965504B2 (en) Encapsulant sheet for solar cell modules
JP6460269B2 (en) Manufacturing method of solar cell module sealing material and solar cell module sealing material
JP6418301B1 (en) Encapsulant sheet for solar cell module and solar cell module using the same
JP6741038B2 (en) Encapsulant sheet for solar cell module
JP6880729B2 (en) Solar cell module
JP2018110160A (en) Solar cell module
JP2016072542A (en) Manufacturing method of encapsulation material integrated rear surface protective sheet for solar cell module
JP2020191461A (en) Seal-material sheet for solar battery module
JP5786524B2 (en) Solar cell module
JP2018060838A (en) Seal-material sheet for solar battery module, and solar battery module arranged by use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863573

Country of ref document: EP

Kind code of ref document: A1