WO2019065438A1 - Machining device - Google Patents
Machining device Download PDFInfo
- Publication number
- WO2019065438A1 WO2019065438A1 PCT/JP2018/034780 JP2018034780W WO2019065438A1 WO 2019065438 A1 WO2019065438 A1 WO 2019065438A1 JP 2018034780 W JP2018034780 W JP 2018034780W WO 2019065438 A1 WO2019065438 A1 WO 2019065438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- processing unit
- workpiece
- drilling
- discharge groove
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P23/00—Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
- B23P23/02—Machine tools for performing different machining operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q39/00—Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
- B23Q39/04—Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps
Definitions
- the present invention relates to, for example, a processing apparatus that performs machining on a work.
- the base of a machine tool is provided with a tip for collecting cuttings and coolant, and the collected cuttings and coolant are collected in a collection tank provided so as to be extractable in the base.
- Processing apparatus is disclosed.
- a processing apparatus in which a coolant device is disposed behind a processing unit and chips are flowed using an inclined bed oil pan.
- the conventional processing apparatus since it is necessary to flow the used coolant which contains chips etc. to the back of a processing unit, the conventional processing apparatus has a bad discharge efficiency of chips.
- a drive device for positioning a work is required, or a bed supporting a jig for supporting a work must be designed with a heavy thickness. Therefore, it is possible that a dropper for collecting coolant and chips can not be provided immediately below the chips are discharged, and chips tend to be deposited on the processing apparatus.
- the present invention has been made in consideration of such problems, and it is an object of the present invention to provide a processing apparatus which can improve the chip discharge efficiency and can lead to stable operation of a production line.
- a processing apparatus includes a support having a plurality of work attachment surfaces, at least two processing units that perform drilling on a work fixed on the work attachment surface, and fixing the work attachment surface At least one processing unit for performing tapping on the processed work, an oil pan for receiving at least used coolant from the processing unit, and a coolant tank, the oil pan performing the drilling 2 It is characterized by having an outlet for discharging the used coolant to the coolant tank between two processing units.
- the amount of chips and the like is larger in drilling than in tapping.
- the oil pan has an outlet for discharging the used coolant to the coolant tank between the two processing units to be drilled, so the used coolant with a large amount of chips etc. can be supplied to the coolant tank through the outlet. It can be discharged. That is, the discharge efficiency of the used coolant having a large amount of chips and the like can be enhanced, and the amount of chips and the like remaining in the oil pan can be reduced. This improves chip discharge efficiency and leads to stable operation of the production line.
- the oil pan has a rectangular shape when viewed from the top, and the discharge port is a corner corresponding to the portion between the two processing units to be drilled among the four corners of the oil pan. It may be formed in Thus, the used coolant having a large amount of chips and the like from the two processing units to be drilled can be discharged efficiently.
- the planar shape of the discharge port preferably has a rectangular shape in which the processing direction by one of the processing units is the longitudinal direction.
- the oil pan includes a first discharge groove formed closer to one processing unit to be drilled and a second discharge formed closer to the other processing unit to be drilled. And a third discharge groove formed closer to the processing unit that performs tapping, and the first discharge groove and the third discharge groove are directed toward the other processing unit, respectively.
- the second discharge groove may be inclined downward toward the one processing unit.
- the first discharge groove, the second discharge groove, and the third discharge groove formed in the oil pan are all inclined downward toward the discharge port, so that the used coolant including chips etc. is discharged. It can be more efficiently discharged to the outlet.
- the number of drilling heads for drilling the work on the first discharge groove is the drilling for drilling the work on the second discharge groove.
- the inclination angle of the first ejection groove is ⁇ a and the inclination angle of the second ejection groove is ⁇ b, which is larger than the number of heads, it is preferable that ⁇ a> ⁇ b.
- the number of heads drilling the work on the first discharge groove is greater than the number of heads drilling the work on the second discharge groove, cutting to the first discharge groove is performed.
- the amount of scraps etc. will be larger than the amount of chips etc. to the second discharge groove. Therefore, by making the inclination angle ⁇ a of the first discharge groove larger than the inclination angle ⁇ b of the second discharge groove, the discharge efficiency of the used coolant with a large amount of chips etc. becomes high, and the oil pans become chips etc. The amount of remaining can be reduced.
- FIG. 2 is a plan view of the processing device as viewed from above.
- FIG. 3A is a schematic view showing the processing operation of the processing apparatus
- FIG. 3B is a flowchart showing the processing operation of the processing apparatus.
- FIG. 4A is a schematic view showing drilling and tapping by a pair of machining units as viewed from the top
- FIG. 4B is a schematic view seen from arrow A in FIG. 4A.
- Table 1 which shows a series of processing operation of a processing apparatus.
- It is a perspective view which partially omits and shows the processing apparatus (1st processing apparatus) which concerns on a 1st modification.
- It is a top view which shows a 1st processing apparatus seeing from an upper surface.
- FIGS. 1 to 12 An embodiment of a processing apparatus according to the present invention will be described with reference to FIGS. 1 to 12.
- the processing apparatus 10 includes, as shown in FIG. 1, a workstation 12 installed at the center, a first processing machine 14A installed at the left side of the workstation 12, for example, and a workstation 12 It has the 2nd processing machine 14B installed in the back side, and the 3rd processing machine 14C installed in the right side of work station 12, for example.
- a coolant tank 17 see FIG. 1
- the coolant tank 17 removes chips and the like from the used coolant including chips and the like that are emitted during processing by the first processing machine 14A, the second processing machine 14B, and the like.
- the work station 12 is installed, for example, on a flat square base 18, a turntable 20 rotatably mounted on the base 18, a post 22 fixed at the center of the turntable 20, and a top of the post 22.
- the motor which is not shown in figure is stored inside, and it has the rotational drive part 24 which rotationally drives the support
- the support 22 is rotationally driven in one direction about the support shaft together with the turntable 20 by the motor. In this case, when the support 22 is viewed from above, it is rotationally driven clockwise.
- the support column 22 is formed in a columnar shape whose longitudinal direction is the vertical direction, and has four side surfaces, that is, four work mounting surfaces 25. For example, three workpieces W (see FIG.
- Positioning means 26 can be attached to each work mounting surface 25 of the column 22. This makes the work W accurate and reliable. Positioning can be fixed. In the case where each of the three workpieces W is attached to each workpiece attachment surface 25 one by one in the vertical direction, the attachment positions of the workpieces W will be referred to as bottom, middle, and top.
- the controller 16 has a positioning drive 27 for rotating the column 22 clockwise by 1/4 rotation.
- the positioning drive unit 27 rotates each of the columns 22 clockwise by 1 ⁇ 4 rotation to position each work attachment surface 25 in a position facing the front, a position facing the first processing machine 14A, and a second processing machine 14B. And the position facing the third processing machine 14C.
- a cylinder block of an internal combustion engine is exemplified as the workpiece W to be machined by the machining device 10.
- another workpiece such as a transmission case of a vehicle may be applied as the workpiece W.
- a transmission case of a vehicle may be applied as the workpiece W.
- Attachment and detachment of the work W to the support 22 is performed to the work attachment surface 25 facing the front among the four work attachment surfaces 25 of the support 22.
- machining is performed on the workpiece W mounted on the other workpiece mounting surface 25. That is, the workpiece W is attached to the workpiece attachment surface 25 facing the front among the four workpiece attachment surfaces 25 of the column 22.
- the first processing machine 14A moves along a first rail base 28A extending toward the work station 12 and a first rail 30A (see FIG. 2) provided on the upper surface of the first rail base 28A. It has a first processing unit 32A and a first movement driving means 34A (for example, a screw feed mechanism: see FIG. 2) for driving the first processing unit 32A to be able to move back and forth relative to the work station 12.
- the first rail base 28A has at least discharge grooves M1 and M2 (see FIG. 2) for flowing chips and coolant toward the work station 12.
- the first processing unit 32A includes a first column 36A movably attached to the first rail 30A, and a first jig attachment plate 38A attached to a surface of the first column 36A facing the workstation 12. Have. As schematically shown in FIGS. 3A and 4A, at least two types of first multiaxial machining heads 40A are attached to the first jig attachment plate 38A. For example, the first multiaxial processing head 40A is attached along the vertical direction at the horizontal center position of the first jig attachment plate 38A and the position near the second processing machine 14B. Of course, the first multi-axis machining head 40A is attached corresponding to the position (lower, middle and upper) of the work W attached to the column 22 of the work station 12.
- first processing unit 32A three long first cylindrical portions 42A protruding toward the work station 12 are formed at a position near the second processing machine 14B, and the first processing unit 32A is configured to receive the first through the respective long first cylindrical portions 42A.
- the multi-axis machining head 40A is attached and protrudes toward the work station 12 more than the other first multi-axis machining heads 40A at the central position.
- a rotation drive mechanism (not shown) for driving to rotate the first multi-axis machining head 40A individually is incorporated.
- the second processing machine 14B extends along a second rail base 28B extending toward the work station 12 and a second rail 30B provided on the upper surface of the second rail base 28B.
- a second movement drive means 34B for example, a screw feed mechanism: see FIG. 2 for driving the second processing unit 32B so as to be able to move forward and backward with respect to the work station 12.
- the second rail mount 28B has at least discharge grooves M3 and M4 (see FIG. 2) for flowing the used coolant toward the work station 12.
- the second processing unit 32B includes a second column 36B movably attached to the second rail 30B, and a second jig attachment plate 38B attached to the surface of the second column 36B facing the workstation 12.
- a second jig attachment plate 38B attached to the surface of the second column 36B facing the workstation 12.
- the second multi-axis machining head 40B is mounted along the vertical direction at the horizontal center position of the second jig attachment plate 38B, the position near the first processing machine 14A, and the position near the third processing machine 14C. It is done.
- long second cylindrical portions 42B protruding toward the work station 12 are formed at positions near the first processing machine 14A and positions near the third processing machine 14C, respectively.
- a two-multi-axis machining head 40B is attached and protrudes toward the workstation 12 more than the other second multi-axis machining heads 40B at the central position.
- a rotation drive mechanism (not shown) for driving to rotate the second multi-axis machining head 40B individually is also incorporated in the second column 36B.
- the third processing machine 14C like the first processing machine 14A, has a third rail base 28C extending toward the workstation 12 and an upper surface of the third rail base 28C.
- a third processing unit 32C that moves along the provided third rail 30C, and a third movement driving unit 34C that drives the third processing unit 32C to be able to move to the work station 12 (for example, a screw feed mechanism: FIG. 2) Reference).
- the third rail mount 28C has discharge grooves M5 and M6 (see FIG. 2) for flowing at least the used coolant toward the work station 12.
- the third processing unit 32C includes a third column 36C movably attached to the third rail 30C, and a third jig attachment plate 38C attached to the surface of the third column 36C facing the work station 12. Have. As schematically shown in FIGS. 3A and 4A, at least two types of third multiaxial machining heads 40C are attached to the third jig attachment plate 38C. For example, the third multi-axis processing head 40C is attached in the vertical direction at the horizontal center position of the third jig attachment plate 38C and the position near the second processing machine 14B.
- third cylindrical portions 42C protruding toward the work station 12 are formed at a position near the second processing machine 14B, and the third multiaxial processing head 40C is provided through the respective long third cylindrical portions 42C. It is attached and protrudes toward the work station 12 more than the other third multi-axis machining head 40C at the central position.
- a rotation drive mechanism (not shown) for driving to rotate the third multi-axis machining head 40C individually is incorporated.
- the first multi-axis processing head 40A at the center of the first multi-axis processing head 40A of the first processing unit 32A of the workpiece W fixed to the support 22, Machining (for example, drilling) is performed on each front surface of the three workpieces W fixed on the lower, middle and upper stages of the workpiece mounting surface 25 facing the first jig mounting plate 38A.
- the first multi-axial processing head 40A closer to the second processing machine 14B includes the lower, middle and upper stages of the workpiece mounting surface 25 facing the second processing machine 14B.
- the processing (for example, drilling) is performed on the right side surfaces of the three workpieces W (surfaces facing the first processing machine 14A).
- the second multi-axis processing head 40B at the center of the second multi-axis processing head 40B of the second processing unit 32B faces the second jig attachment plate 38B of the work W fixed to the column 22. Machining (for example, drilling) is performed on each front surface of the three workpieces W fixed on the lower, middle and upper stages of the workpiece attachment surface 25.
- the second multi-axis processing head 40B closer to the first processing machine 14A is three of the work mounting surfaces 25 of the column 22 fixed to the lower, middle and upper stages of the work mounting surface 25 facing the first processing machine 14A.
- the processing (for example, drilling) is performed on the left side surface (the surface facing the second processing machine 14B) of the workpiece W.
- the second multi-axis processing head 40B closer to the third processing machine 14C is the lower, middle and upper stages of the work mounting surface 25 facing the third processing machine 14C among the works W fixed to the work mounting surface 25 of the column 22
- the processing (for example, drilling) is performed on the right side surfaces (surfaces facing the second processing machine 14B) of the three workpieces W fixed to the surface.
- the third multi-axis processing head 40C at the center of the third multi-axis processing head 40C of the third processing unit 32C faces the third jig attachment plate 38C of the work W fixed to the column 22. Processing (e.g., tapping) is performed on each front surface of the three workpieces W fixed on the lower, middle and upper stages of the workpiece attachment surface 25.
- Processing e.g., tapping
- the third multi-axis processing head 40C closer to the second processing machine 14B is the lower, middle and upper stages of the workpiece mounting surface 25 facing the second processing machine 14B among the workpieces W fixed to the workpiece mounting surface 25 of the column 22
- the processing for example, tapping processing
- step S1 drilling by the first processing unit 32A and third processing unit 32C.
- step S2 drilling by the first processing unit 32A and third processing unit 32C.
- step S2 drilling (machining 2) by the second machining unit 32B is performed.
- step S2 drilling (machining 2) by the second machining unit 32B is performed.
- step S2 drilling (machining 2) by the second machining unit 32B is performed.
- step S2 drilling (machining 2) by the second machining unit 32B is performed.
- drilling by the first processing unit 32A and tapping by the third processing unit 32C in the processing 1 be performed simultaneously.
- the “simultaneous” includes not only simultaneous initiation but also shifting of the start time, and also including a case where drilling and tapping partially overlap in time.
- step 1 one work W 1 is fixed only to the lower part of the work attachment surface 25 facing the front among the work attachment surfaces 25 of the columns 22. That is, in step 1, one work W1 is input.
- one work W2 is fixed (dropped) on the lower side of the work attachment surface 25 facing the front.
- the processing by the first processing unit 32A to the third processing unit 32C is performed.
- drilling by the second processing unit 32B is performed.
- drilling (lower) is performed on the front and left side surfaces of the workpiece W1, respectively.
- one work W3 is fixed (dropped) on the lower side of the work attachment surface 25 facing the front.
- the processing by the first processing unit 32A to the third processing unit 32C is performed.
- the first processing unit 32A and the third processing unit 32C initially perform the right side of the workpiece W1.
- the surface is drilled (lower), the left side is tapped (lower), and the front of the workpiece W2 is drilled (lower).
- drilling (lower stage) is performed on the front surface of the workpiece W1 and the left side surface of the workpiece W2 by the second processing unit 32B.
- one work W4 is fixed (dropped) on the lower side of the work attachment surface 25 facing the front.
- the processing by the first processing unit 32A to the third processing unit 32C is performed.
- the first processing unit 32A is first
- the third processing unit 32C performs tapping on the front of the workpiece W1 (lower), tapping on the left side of the workpiece W2 (lower), and drilling on the right side (lower), the front of the workpiece W3 Drilling (bottom) is performed.
- the second processing unit 32B performs drilling (lower) on the right side of the workpiece W1, drilling (lower) on the front of the workpiece W2, and drilling (lower) on the left side of the workpiece W3.
- the workpiece W1 of the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage.
- the processing by the first processing unit 32A to the third processing unit 32C is performed.
- the workpiece W2 is opposed to the first processing unit 32A
- the workpiece W3 is opposed to the second processing unit 32B
- the workpiece W2 is opposed to the third processing unit 32C.
- tapping (lower) is performed on the front of the workpiece W2
- drilling (lower) is performed on the right side.
- drilling (lower) is performed on the front and right sides of the workpiece W3
- tapping (lower) is performed on the left.
- drilling (lower stage) is performed on the front and left side surfaces of the workpiece W4.
- the workpiece W2 on the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage.
- the processing by the first processing unit 32A to the third processing unit 32C is performed.
- the workpiece W1 is opposite to the first processing unit 32A
- the workpiece W4 is opposite to the second processing unit 32B
- the workpiece W3 is opposite to the third processing unit 32C.
- drilling (middle step) is performed on the front and left side surfaces of the work W1
- tapping (lower step) is performed on the front of the work W3
- drilling (lower step) is performed on the right side.
- drilling (lower) is performed on the front and right sides of the workpiece W4, and tapping (lower) is performed on the left.
- the workpiece W3 of the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, the workpiece W2 is located opposite to the first processing unit 32A, the workpiece W2 is located opposite to the second processing unit 32B, and the workpiece W4 is located opposite to the third processing unit 32C.
- drilling (middle step) is performed on the front and right sides of the workpiece W 1 and tapping (middle step) is performed on the left side. Further, drilling (middle) is performed on the front and left side of the workpiece W2, tapping (lower) is performed on the front of the workpiece W4, and drilling (lower) is performed on the right.
- the workpiece W4 on the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, the workpiece W3 is positioned opposite to the first processing unit 32A, the workpiece W2 is opposed to the second processing unit 32B, and the workpiece W1 is positioned opposite to the third processing unit 32C.
- tapping (middle step) is performed on the front of the workpiece W1
- drilling (middle step) is performed on the right side.
- drilling (middle step) is performed on the front and right sides of the workpiece W2, tapping on the left side (middle) is performed, and drilling on the front and left side of the workpiece W3 (middle).
- the workpiece W1 on the workpiece mounting surface 25 facing the front is removed from the middle stage and fixed to the upper stage.
- the processing by the first processing unit 32A to the third processing unit 32C is performed.
- tapping (middle step) is performed on the front of the workpiece W2
- drilling (middle step) is performed on the right side.
- drilling (middle step) is performed on the front and right sides of the workpiece W3
- tapping on the left side (middle) is performed
- drilling on the front and left side of the workpiece W4 (middle) is performed. The same applies to the following.
- the work W1 is removed in step 13
- the work W2 is removed in step 14
- the work W3 is removed in step 15
- the work W4 is removed in step 16.
- chips and coolant from the first processing machine 14A, the second processing machine 14B and the third processing machine 14C are discharged from the first processing machine 14A and the discharge grooves M1 and M2 and the second processing It flows to the workstation 12 through the discharge groove M4 of the machine 14B and the discharge grooves M5 and M6 of the third processing machine 14C.
- the discharge grooves formed around the support column 22 are formed closer to the first processing groove 14A and the first discharge groove Ma and closer to the second processing device 14B.
- the second discharge groove Mb and the third discharge groove Mc formed closer to the third processing machine 14C.
- the oil pan 13 has, for example, a rectangular shape when viewed from the top.
- the used coolant from the first processing machine 14A flows toward the workstation 12 through the discharge grooves M1 and M2, and the used coolant from the second processing machine 14B flows into the workstation 12 through the discharge groove M4.
- the used coolant from the third processing machine 14C flows toward the workstation 12 through the discharge grooves M5 and M6.
- the used coolant that has flowed into the workstation 12 flows to the discharge groove M3 of the second processing machine 14B through the first discharge groove Ma, the second discharge groove Mb, and the third discharge groove Mc, and further, this discharge It flows to the coolant tank 17 through the groove M3.
- the processing apparatus according to the first modification (hereinafter referred to as the first processing apparatus 10A) has substantially the same configuration as the above-described processing apparatus 10 as shown in FIGS. The difference is that the mechanism 50A and the second plate advancing and retracting mechanism 50B are included.
- the first plate advancing and retracting mechanism 50A advances and retracts the first plate 54A to which the first breakage sensor 52A for detecting breakage of the first multi-axis processing head 40A is attached between the column 22 of the workstation 12 and the first processing unit 32A.
- the first plate advancing and retracting mechanism 50A may move the first plate 54A in the vertical direction or in the lateral direction.
- the first plate 54A is normally at, for example, an initial position, that is, a position retracted from between the support 22 and the first processing unit 32A.
- the second plate advancing and retracting mechanism 50B advances and retracts the second plate 54B to which the second breakage sensor 52B for detecting breakage of the second multi-axis processing head 40B is attached between the column 22 of the workstation 12 and the second processing unit 32B.
- the second plate advancing and retracting mechanism 50B may move the second plate 54B in the vertical direction or in the lateral direction.
- the second plate 54B is also normally at, for example, an initial position, that is, a position retracted from between the support 22 and the second processing unit 32B.
- the first plate advancing and retracting mechanism 50A drives the first plate 54A at the initial position based on, for example, the input of the first closing signal Sc1 from the control device 16, and thereby between the support 22 and the first processing unit 32A. Position on Furthermore, the detection result S1 of breakage from the first breakage sensor 52A is output to the control device 16. Also, based on the input of the first open signal So1 from the control device 16, the first plate 54A is driven to return the first plate 54A to the initial position.
- the second plate advancing and retracting mechanism 50B drives the second plate 54B in the initial position based on, for example, the input of the second closing signal Sc2 from the control device 16 to position the column 22 and the second processing unit 32B. Do. Furthermore, the detection result S2 of breakage from the second breakage sensor 52B is output to the control device 16. Further, based on the input of the second open signal So2 from the control device 16, the second plate 54B is driven to return the second plate 54B to the initial position.
- the width of the first plate 54A is substantially the same as the width of the first rail base 28A of the first processing machine 14A, and the length of the first plate 54A is the first jig mounting plate of the first processing unit 32A. It is almost the same as the vertical length of 38A. Therefore, when the first plate 54A and the second plate 54B are in the initial positions, that is, as shown in FIG. 8, the first plate 54A and the second plate 54B are respectively formed on the front surfaces of the first processing unit 32A and the second processing unit 32B. When the second plate 54B does not exist, the processing area Z is formed by the first processing unit 32A, the second processing unit 32B, and the third processing unit 32C. Then, as shown in FIG.
- the processing region Z (see FIG. 8) by the first processing unit 32A to the third processing unit 32C is the first plate It can be separated by 54A. That is, a new processing area Za surrounded by the first plate 54A, the second processing unit 32B, and the third processing unit 32C around the work station 12 is formed.
- the size of the second plate 54B is substantially the same as the lateral width of the second rail base 28B of the second processing machine 14B, and the longitudinal length of the second plate 54B is the second jig of the second processing unit 32B.
- the longitudinal length of the mounting plate 38B is substantially the same. Therefore, as shown in FIG. 10, when the second plate 54B is positioned on the front surface of the second processing unit 32B, the processing region Z (see FIG. 8) by the first processing unit 32A to the third processing unit 32C is the second plate It can be separated by 54B. That is, a new processing area Zb surrounded by the first processing unit 32A, the second plate 54B, and the third processing unit 32C around the work station 12 is formed.
- step S101 of FIG. 11 the first plate 54A and the second plate 54B are located in the initial state, for example, above.
- step S102 the second plate advancing / retracting mechanism 50B lowers the second plate 54B, and the second processing unit The second plate 54B is positioned between 32B and the column 22.
- step S103 the workpiece W is processed by the first processing unit 32A and the third processing unit 32C.
- the second movement driving means 34B brings the second multiaxial processing head 40B of the second processing unit 32B close to the second breakage sensor 52B.
- the second breakage sensor 52B detects breakage of the second multi-axis machining head 40B.
- chips generated by drilling scatter in the direction of the second processing unit 32B.
- scattering of chips into the second processing unit 32B is blocked by the second plate 54B. That is, it is possible to prevent the chips generated by the drilling by the first processing unit 32A from being scattered to the second processing unit 32B.
- the second plate advancing and retracting mechanism 50B returns the second plate 54B to the initial position in step S104. That is, the second breakage sensor 52B is returned to the original position, the second plate 54B is raised, and the second plate 54B is returned to the initial position.
- step S105 the first plate advancing / retracting mechanism 50A lowers the first plate 54A, and the first plate 54A is moved between the first processing unit 32A and the support 22. 1 Position the plate 54A.
- step S106 the workpiece W is processed by the second processing unit 32B.
- the first movement driving means 34A brings the first multi-axis processing head 40A of the first processing unit 32A close to the first breakage sensor 52A.
- the first breakage sensor 52A detects breakage of the first multi-axis machining head 40A.
- the first plate advancing / retracting mechanism 50A returns the first plate 54A to the initial position in step S107. That is, the first breakage sensor 52A is returned to the original position, and the first plate 54A is raised to return the first plate 54A to the initial position.
- the processing apparatus according to the second modification (hereinafter referred to as the second processing apparatus 10B) has substantially the same configuration as the above-described processing apparatus 10 as shown in FIG. It is characterized by the discharge structure.
- the discharge grooves M1 and M2 on both sides of the first processing machine 14A are formed in inclined grooves inclined downward toward the work station 12, respectively.
- the discharge grooves M3 and M4 on both sides are respectively formed in inclined grooves inclined downward toward the work station 12.
- the discharge grooves M5 and M6 on both sides are respectively formed in inclined grooves inclined downward toward the work station 12.
- the inclination angle of these grooves is, for example, in the range of 2 ° to 4 °.
- the first discharge groove Ma and the third discharge groove Mc formed in the oil pan 13 of the work station 12 are respectively formed in inclined grooves inclined downward toward the second processing machine 14B, and are used for the second discharge
- the groove Mb is formed in an inclined groove inclined downward toward the first processing machine 14A.
- the oil pan 13 has a fourth discharge groove Md and a fifth discharge groove Me on the front side.
- the fourth discharge groove Md is formed in an inclined groove inclined downward toward the first processing machine 14A
- the fifth discharge groove Me is an inclined groove inclined downward toward the third processing machine 14C. Is formed.
- the downstream end of the fourth discharge groove Md substantially coincides with the upstream end of the first discharge groove Ma
- the downstream end of the fifth discharge groove Me and the upstream end of the third discharge groove Mc are substantially equal. Match.
- the discharge port 60 is formed in the corner corresponding to the boundary of the 1st processing machine 14A and the 2nd processing machine 14B among the oil pans 13 of the workstation 12.
- a guide portion 61 (a weir, a conduit, etc.) for guiding the used coolant dropped through the discharge port 60 to the coolant tank 17 is formed.
- the used coolant on the first discharge groove Ma or on the second discharge groove Mb flows to the discharge port 60 through the first discharge groove Ma or the second discharge groove Mb, respectively.
- the used coolant on the third discharge groove Mc flows to the discharge port 60 through the third discharge groove Mc and the second discharge groove Mb.
- the used coolant on the fourth discharge groove Md flows to the discharge port 60 through the fourth discharge groove Md and the first discharge groove Ma, and the used coolant on the fifth discharge groove Me is 5) Flow to the discharge port 60 through the discharge groove Me, the third discharge groove Mc and the second discharge groove Mb.
- the inclination angle of the first ejection groove Ma of the oil pan 13 is ⁇ a
- the inclination angle of the second ejection groove Mb is ⁇ b
- the inclination angle of the third ejection groove Mc is ⁇ c
- the inclination angle of the fourth ejection groove Md is Let ⁇ d be the inclination angle of the fifth discharge groove Me be ⁇ e.
- ⁇ 11, ⁇ 12, ⁇ 21, ⁇ 22, ⁇ 31 and ⁇ 32 are almost the same, for example, in the range of 2 ° to 4 °.
- ⁇ a> ⁇ c> ⁇ b ⁇ b is larger than ⁇ 11, ⁇ 12 and the like.
- the range of 3 ° to 6 ° may be mentioned as ⁇ a, ⁇ b and ⁇ c.
- ⁇ d is approximately the same as ⁇ a
- ⁇ e is approximately the same as ⁇ c.
- the magnitudes of these inclination angles are merely an example, and may be appropriately set according to the discharge flow rate of the used coolant in the first processing machine 14A, the second processing machine 14B, and the third processing machine 14C.
- the discharge flow rate of the used coolant is higher than that of the third processing machine 14C. Therefore, as the planar shape of the discharge port 60, for example, a rectangular shape in which the processing direction by the first processing machine 14A is a longitudinal direction is used. Therefore, the used coolant from the first processing machine 14A can be efficiently flowed to the discharge port 60.
- the number of drilling heads for drilling the work W on the first discharge groove Ma is higher than the number of heads for drilling the work W on the second discharge groove Mb.
- the number of drilling heads for drilling the work W on the first discharge groove Ma is the first multiple of the first processing unit 32A in the center This is the total of the number of drilling heads in the axial processing head 40A and the number of drilling heads in the second multi-axis processing head 40B closer to the first processing unit 32A in the second processing unit 32B.
- the number of drilling heads for drilling the work W on the second discharge groove Mb is, for example, as shown in FIG. 3A, a second multi-axis at the center of the second processing unit 32B. It is the total of the number of heads for drilling in the processing head 40B and the number of heads for drilling in the first multi-axis processing head 40A closer to the second processing unit 32B in the first processing unit 32A.
- the number of heads drilling on the work W on the first discharge groove Ma is larger than the number of heads drilling on the work W on the second discharge groove Mb.
- the amount of chips and the like to the first discharge groove Ma is larger than the amount of chips and the like to the second discharge groove Mb. Therefore, by making the inclination angle ⁇ a of the first discharge groove Ma larger than the inclination angle ⁇ b of the second discharge groove Mb, the discharge efficiency of the used coolant having a large amount of chips etc. becomes high, and the oil pan 13 The amount of chips and the like remaining can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Drilling And Boring (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Abstract
This machining device comprises: a support column (22) having a plurality of workpiece attachment surfaces; a first machining unit (32A) and a second machining unit (32B) that perform drilling on a workpiece fixed to the workpiece attachment surfaces; a third machining unit (32C) that performs tapping on the workpiece; an oil pan (13) that receives used coolant containing chips and the like, from the machining units; and a coolant tank (17). The oil pan (13) comprises, between the first machining unit (32A) and the second machining unit (32B) that perform drilling, a discharge port (60) that discharges the used coolant to the coolant tank (17).
Description
本発明は、例えばワークに対して機械加工を施す加工装置に関する。
The present invention relates to, for example, a processing apparatus that performs machining on a work.
従来、例えば特許第5329049号公報には、工作機械のベースに切削屑及びクーラントを回収する落とし口を設け、回収された切削屑及びクーラントを、ベース内に引き出し可能に設けられた回収タンクに回収する加工装置が開示されている。また、従来は、多軸加工において、加工ユニットの後方にクーラント装置を配置し、傾斜したベッドオイルパンを使って切屑を流す加工装置がある。
Conventionally, for example, in Japanese Patent No. 5329049, the base of a machine tool is provided with a tip for collecting cuttings and coolant, and the collected cuttings and coolant are collected in a collection tank provided so as to be extractable in the base. Processing apparatus is disclosed. In addition, conventionally, in multi-axis processing, there is a processing apparatus in which a coolant device is disposed behind a processing unit and chips are flowed using an inclined bed oil pan.
しかしながら、従来の加工装置は、加工ユニットの後方まで切り屑等を含む使用済みクーラントを流す必要があるため、切り屑の排出効率が悪い。例えば、3方向から加工を行うような加工装置の場合、ワークを位置決めするための駆動装置が必要であったり、ワークを支えるための治具を支えるベッドを重厚に設計しなければならない。そのため、切り屑が排出される直下にクーラントや切り屑を回収する落とし口を設けることができず、切り屑が加工装置に堆積しやすくなることが考えられる。
However, since it is necessary to flow the used coolant which contains chips etc. to the back of a processing unit, the conventional processing apparatus has a bad discharge efficiency of chips. For example, in the case of a processing apparatus that performs processing from three directions, a drive device for positioning a work is required, or a bed supporting a jig for supporting a work must be designed with a heavy thickness. Therefore, it is possible that a dropper for collecting coolant and chips can not be provided immediately below the chips are discharged, and chips tend to be deposited on the processing apparatus.
本発明はこのような課題を考慮してなされたものであり、切り屑の排出効率を向上させることができ、生産ラインの安定稼働につながる加工装置を提供することを目的とする。
The present invention has been made in consideration of such problems, and it is an object of the present invention to provide a processing apparatus which can improve the chip discharge efficiency and can lead to stable operation of a production line.
[1] 本発明に係る加工装置は、複数のワーク取付面を有する支柱と、前記ワーク取付面に固定されたワークに対してドリル加工を行う少なくとも2つの加工ユニットと、前記ワーク取付面に固定されたワークに対してタップ加工を行う少なくとも1つの加工ユニットと、前記加工ユニットからの少なくとも使用済みクーラントを受けるオイルパンと、クーラントタンクとを有し、前記オイルパンは、ドリル加工を行う前記2つの加工ユニットの間に、前記使用済みクーラントを前記クーラントタンクに排出する排出口を有することを特徴とする。
[1] A processing apparatus according to the present invention includes a support having a plurality of work attachment surfaces, at least two processing units that perform drilling on a work fixed on the work attachment surface, and fixing the work attachment surface At least one processing unit for performing tapping on the processed work, an oil pan for receiving at least used coolant from the processing unit, and a coolant tank, the oil pan performing the drilling 2 It is characterized by having an outlet for discharging the used coolant to the coolant tank between two processing units.
タップ加工よりもドリル加工の方が切り屑等の量が多い。オイルパンは、ドリル加工を行う2つの加工ユニットの間に、使用済みクーラントをクーラントタンクに排出する排出口を有することから、切り屑等の量が多い使用済みクーラントを、排出口を通じてクーラントタンクに排出することができる。すなわち、切り屑等の量が多い使用済みクーラントの排出効率が高くなり、オイルパンに切り屑等が残存する量を少なくすることができる。これは、切り屑の排出効率が向上し、生産ラインの安定稼働につながる。
The amount of chips and the like is larger in drilling than in tapping. The oil pan has an outlet for discharging the used coolant to the coolant tank between the two processing units to be drilled, so the used coolant with a large amount of chips etc. can be supplied to the coolant tank through the outlet. It can be discharged. That is, the discharge efficiency of the used coolant having a large amount of chips and the like can be enhanced, and the amount of chips and the like remaining in the oil pan can be reduced. This improves chip discharge efficiency and leads to stable operation of the production line.
[2] 本発明において、前記オイルパンは、上面から見て矩形状を有し、前記排出口は、前記オイルパンの四隅のうち、ドリル加工を行う前記2つの加工ユニットの間に対応する隅に形成されていてもよい。これにより、ドリル加工を行う2つの加工ユニットからの切り屑等の量が多い使用済みクーラントを排出口を効率よく排出することができる。
[2] In the present invention, the oil pan has a rectangular shape when viewed from the top, and the discharge port is a corner corresponding to the portion between the two processing units to be drilled among the four corners of the oil pan. It may be formed in Thus, the used coolant having a large amount of chips and the like from the two processing units to be drilled can be discharged efficiently.
[3] 本発明において、前記排出口の平面形状は、一方の前記加工ユニットによる加工方向を長手方向とする長方形状を有することが好ましい。これにより、ドリル加工を行う2つの加工ユニットからの切り屑等の量が多い使用済みクーラントを排出口にさらに効率よく排出することができる。
[3] In the present invention, the planar shape of the discharge port preferably has a rectangular shape in which the processing direction by one of the processing units is the longitudinal direction. As a result, the used coolant having a large amount of chips and the like from the two processing units to be drilled can be more efficiently discharged to the discharge port.
[4] 本発明において、前記オイルパンは、ドリル加工を行う一方の前記加工ユニット寄りに形成された第1排出用溝と、ドリル加工を行う他方の前記加工ユニット寄りに形成された第2排出用溝と、タップ加工を行う前記加工ユニット寄りに形成された第3排出用溝とを有し、前記第1排出用溝及び前記第3排出用溝は、それぞれ前記他方の加工ユニットに向かって下り傾斜とされ、前記第2排出用溝は、前記一方の加工ユニットに向かって下り傾斜とされていてもよい。
[4] In the present invention, the oil pan includes a first discharge groove formed closer to one processing unit to be drilled and a second discharge formed closer to the other processing unit to be drilled. And a third discharge groove formed closer to the processing unit that performs tapping, and the first discharge groove and the third discharge groove are directed toward the other processing unit, respectively. The second discharge groove may be inclined downward toward the one processing unit.
オイルパンに形成された第1排出用溝、第2排出用溝及び第3排出用溝は、いずれも排出口に向かって下り傾斜とされているため、切り屑等を含む使用済みクーラントを排出口にさらに効率よく排出することができる。
The first discharge groove, the second discharge groove, and the third discharge groove formed in the oil pan are all inclined downward toward the discharge port, so that the used coolant including chips etc. is discharged. It can be more efficiently discharged to the outlet.
[5] 本発明において、前記第1排出用溝上で前記ワークに対してドリル加工を行うドリル加工用のヘッドの数が、前記第2排出用溝上で前記ワークに対してドリル加工を行うドリル加工用のヘッドの数よりも多く、前記第1排出用溝の傾斜角をθa、前記第2排出用溝の傾斜角をθbとしたとき、θa>θbであることが好ましい。
[5] In the present invention, the number of drilling heads for drilling the work on the first discharge groove is the drilling for drilling the work on the second discharge groove. When the inclination angle of the first ejection groove is θa and the inclination angle of the second ejection groove is θb, which is larger than the number of heads, it is preferable that θa> θb.
第1排出用溝上でワークに対してドリル加工を行うヘッドの数が、第2排出用溝上でワークに対してドリル加工を行うヘッドの数よりも多いことから、第1排出用溝への切り屑等の量が第2排出用溝への切り屑等の量よりも多くなる。そこで、第1排出用溝の傾斜角θaを第2排出用溝の傾斜角θbよりも大きくことで、切り屑等の量が多い使用済みクーラントの排出効率が高くなり、オイルパンに切り屑等が残存する量を少なくすることができる。
Since the number of heads drilling the work on the first discharge groove is greater than the number of heads drilling the work on the second discharge groove, cutting to the first discharge groove is performed. The amount of scraps etc. will be larger than the amount of chips etc. to the second discharge groove. Therefore, by making the inclination angle θa of the first discharge groove larger than the inclination angle θb of the second discharge groove, the discharge efficiency of the used coolant with a large amount of chips etc. becomes high, and the oil pans become chips etc. The amount of remaining can be reduced.
本発明に係る加工装置によれば、切り屑の排出効率を向上させることができ、生産ラインの安定稼働につながる。
ADVANTAGE OF THE INVENTION According to the processing apparatus which concerns on this invention, the discharge | emission efficiency of chips can be improved and it leads to the stable operation of a production line.
以下、本発明に係る加工装置の実施の形態例を図1~図12を参照しながら説明する。
Hereinafter, an embodiment of a processing apparatus according to the present invention will be described with reference to FIGS. 1 to 12.
本実施の形態に係る加工装置10は、図1に示すように、中央に設置されたワークステーション12と、ワークステーション12の例えば左側に設置された第1加工機14Aと、ワークステーション12の例えば奥側に設置された第2加工機14Bと、ワークステーション12の例えば右側に設置された第3加工機14Cとを有する。例えば正面に沿って第1加工機14Aとワークステーション12と第3加工機14Cが並び、ワークステーション12の後方に第2加工機14Bが配置されて、上面から見たとき、T字状の配置とされている。なお、加工装置10は、第2加工機14Bの後方に、制御装置16のほか、クーラントタンク17(図2参照)、図示しないチップコンベア、空圧機器及び油圧ユニット等が設置されている。クーラントタンク17は、第1加工機14A、第2加工機14B等による加工の際に出る切り屑等を含む使用済みクーラントから切り屑等を除去する。
The processing apparatus 10 according to the present embodiment includes, as shown in FIG. 1, a workstation 12 installed at the center, a first processing machine 14A installed at the left side of the workstation 12, for example, and a workstation 12 It has the 2nd processing machine 14B installed in the back side, and the 3rd processing machine 14C installed in the right side of work station 12, for example. For example, when the first processing machine 14A, the workstation 12, and the third processing machine 14C are arranged along the front, and the second processing machine 14B is disposed behind the workstation 12, when viewed from the top, T-shaped arrangement It is assumed. In the processing apparatus 10, a coolant tank 17 (see FIG. 2), a chip conveyor (not shown), a pneumatic device, a hydraulic unit, and the like are installed behind the second processing machine 14B, in addition to the control device 16. The coolant tank 17 removes chips and the like from the used coolant including chips and the like that are emitted during processing by the first processing machine 14A, the second processing machine 14B, and the like.
ワークステーション12は、例えば平面正方形状の土台18と、土台18上に回転自在に取り付けられたターンテーブル20と、ターンテーブル20の中心に固定された支柱22と、支柱22の上部に設置され、且つ、内部に図示しないモータが格納され、支柱22を回転駆動する回転駆動部24と、を有する。モータによって支柱22がターンテーブル20と共に支軸を中心に一方向に回転駆動する。この場合、支柱22を上から見たとき、時計方向に回転駆動する。支柱22は、鉛直方向を長手方向とする柱状に形成され、4つの側面、すなわち、4つのワーク取付面25を有する。各ワーク取付面25には、それぞれ例えば3つのワークW(図4B参照)が装着可能となっている。支柱22の各ワーク取付面25には、図示しない位置決めピン(又は位置決め穴)や係止爪等の位置決め手段26(図4A参照)が設けられており、これによりワークWを正確に且つ確実に位置決め固定することができる。なお、各ワーク取付面25に垂直方向に3つのワークWをそれぞれ1つずつ取り付ける場合は、ワークWの取り付け位置を下から下段、中段及び上段と記す。
The work station 12 is installed, for example, on a flat square base 18, a turntable 20 rotatably mounted on the base 18, a post 22 fixed at the center of the turntable 20, and a top of the post 22. And the motor which is not shown in figure is stored inside, and it has the rotational drive part 24 which rotationally drives the support | pillar 22. The support 22 is rotationally driven in one direction about the support shaft together with the turntable 20 by the motor. In this case, when the support 22 is viewed from above, it is rotationally driven clockwise. The support column 22 is formed in a columnar shape whose longitudinal direction is the vertical direction, and has four side surfaces, that is, four work mounting surfaces 25. For example, three workpieces W (see FIG. 4B) can be attached to the workpiece attachment surfaces 25 respectively. Positioning means 26 (see FIG. 4A), such as positioning pins (or positioning holes) and locking claws (not shown), are provided on each work mounting surface 25 of the column 22. This makes the work W accurate and reliable. Positioning can be fixed. In the case where each of the three workpieces W is attached to each workpiece attachment surface 25 one by one in the vertical direction, the attachment positions of the workpieces W will be referred to as bottom, middle, and top.
制御装置16は、支柱22を1/4回転ずつ時計方向に回転するための位置決め駆動部27を有する。位置決め駆動部27は、支柱22を1/4回転ずつ時計方向に回転することによって、各ワーク取付面25を、正面と対向する位置、第1加工機14Aと対向する位置、第2加工機14Bと対向する位置、第3加工機14Cと対向する位置に位置決めする。
The controller 16 has a positioning drive 27 for rotating the column 22 clockwise by 1/4 rotation. The positioning drive unit 27 rotates each of the columns 22 clockwise by 1⁄4 rotation to position each work attachment surface 25 in a position facing the front, a position facing the first processing machine 14A, and a second processing machine 14B. And the position facing the third processing machine 14C.
なお、本実施の形態では、加工装置10で加工するワークWとして、内燃機関(エンジン)のシリンダブロックを例示するが、ワークWとして、他の工作物、例えば車両のミッションケース等を適用することも勿論可能である。
In the present embodiment, a cylinder block of an internal combustion engine (engine) is exemplified as the workpiece W to be machined by the machining device 10. However, another workpiece such as a transmission case of a vehicle may be applied as the workpiece W. Of course it is possible.
支柱22へのワークWの着脱は、支柱22の4つのワーク取付面25のうち、正面を向いたワーク取付面25に対して行われる。その間、他のワーク取付面25に装着されたワークWに対して加工が行われる。すなわち、支柱22の4つのワーク取付面25のうち、正面を向いたワーク取付面25には、ワークWが取り付けられる。支柱22が時計方向に回転することで、ワークWに対する加工が実施され、支柱22の回転に伴って、再び正面を向いたワーク取付面25からワークWが取り外されることになる。
Attachment and detachment of the work W to the support 22 is performed to the work attachment surface 25 facing the front among the four work attachment surfaces 25 of the support 22. In the meantime, machining is performed on the workpiece W mounted on the other workpiece mounting surface 25. That is, the workpiece W is attached to the workpiece attachment surface 25 facing the front among the four workpiece attachment surfaces 25 of the column 22. By rotating the support 22 in the clockwise direction, the processing on the work W is performed, and as the support 22 rotates, the work W is removed from the work mounting surface 25 facing the front again.
そして、第1加工機14Aは、ワークステーション12に向かって延在する第1レール台28Aと、第1レール台28Aの上面に設けられた第1レール30A(図2参照)に沿って移動する第1加工ユニット32Aと、第1加工ユニット32Aをワークステーション12に対して進退可能に駆動する第1移動駆動手段34A(例えばねじ送り機構:図2参照)とを有する。第1レール台28Aは、少なくとも切り屑やクーラントをワークステーション12に向けて流すための排出用溝M1及びM2(図2参照)を有する。
Then, the first processing machine 14A moves along a first rail base 28A extending toward the work station 12 and a first rail 30A (see FIG. 2) provided on the upper surface of the first rail base 28A. It has a first processing unit 32A and a first movement driving means 34A (for example, a screw feed mechanism: see FIG. 2) for driving the first processing unit 32A to be able to move back and forth relative to the work station 12. The first rail base 28A has at least discharge grooves M1 and M2 (see FIG. 2) for flowing chips and coolant toward the work station 12.
第1加工ユニット32Aは、第1レール30Aに移動可能に取り付けられた第1コラム36Aと、第1コラム36Aのうち、ワークステーション12に対向する面に取り付けられた第1治具取付板38Aとを有する。第1治具取付板38Aには、図3A及び図4Aに模式的に示すように、少なくとも2種類の第1多軸加工ヘッド40Aが取り付けられている。例えば第1治具取付板38Aの水平方向中央位置と、第2加工機14B寄りの位置に、それぞれ第1多軸加工ヘッド40Aが垂直方向に沿って取り付けられている。もちろん、ワークステーション12の支柱22に取り付けられたワークWの位置(下段、中段及び上段)に対応して第1多軸加工ヘッド40Aが取り付けられている。これは、後述する第2加工ユニット32B及び第3加工ユニット32Cにおいても同様である。また、第1加工ユニット32Aは、第2加工機14B寄りの位置に、ワークステーション12に向かって突出する3つの長い第1筒部42Aが形成され、各長い第1筒部42Aを通してそれぞれ第1多軸加工ヘッド40Aが取り付けられて、中央位置における他の第1多軸加工ヘッド40Aよりもワークステーション12側に突出した形態となっている。なお、第1コラム36A内には、第1多軸加工ヘッド40Aをそれぞれ個別に回転駆動する図示しない回転駆動機構が組み込まれている。
The first processing unit 32A includes a first column 36A movably attached to the first rail 30A, and a first jig attachment plate 38A attached to a surface of the first column 36A facing the workstation 12. Have. As schematically shown in FIGS. 3A and 4A, at least two types of first multiaxial machining heads 40A are attached to the first jig attachment plate 38A. For example, the first multiaxial processing head 40A is attached along the vertical direction at the horizontal center position of the first jig attachment plate 38A and the position near the second processing machine 14B. Of course, the first multi-axis machining head 40A is attached corresponding to the position (lower, middle and upper) of the work W attached to the column 22 of the work station 12. The same applies to the second processing unit 32B and the third processing unit 32C described later. Further, in the first processing unit 32A, three long first cylindrical portions 42A protruding toward the work station 12 are formed at a position near the second processing machine 14B, and the first processing unit 32A is configured to receive the first through the respective long first cylindrical portions 42A. The multi-axis machining head 40A is attached and protrudes toward the work station 12 more than the other first multi-axis machining heads 40A at the central position. In addition, in the first column 36A, a rotation drive mechanism (not shown) for driving to rotate the first multi-axis machining head 40A individually is incorporated.
図1及び図2に示すように、第2加工機14Bは、ワークステーション12に向かって延在する第2レール台28Bと、第2レール台28Bの上面に設けられた第2レール30Bに沿って移動する第2加工ユニット32Bと、第2加工ユニット32Bをワークステーション12に対して進退可能に駆動する第2移動駆動手段34B(例えばねじ送り機構:図2参照)とを有する。第2レール台28Bは、少なくとも使用済みクーラントをワークステーション12に向けて流すための排出用溝M3及びM4(図2参照)を有する。
As shown in FIGS. 1 and 2, the second processing machine 14B extends along a second rail base 28B extending toward the work station 12 and a second rail 30B provided on the upper surface of the second rail base 28B. And a second movement drive means 34B (for example, a screw feed mechanism: see FIG. 2) for driving the second processing unit 32B so as to be able to move forward and backward with respect to the work station 12. The second rail mount 28B has at least discharge grooves M3 and M4 (see FIG. 2) for flowing the used coolant toward the work station 12.
第2加工ユニット32Bは、第2レール30Bに移動可能に取り付けられた第2コラム36Bと、第2コラム36Bのうち、ワークステーション12に対向する面に取り付けられた第2治具取付板38Bとを有する。第2治具取付板38Bには、図3Aに模式的に示すように、少なくとも3種類の第2多軸加工ヘッド40Bが取り付けられている。例えば第2治具取付板38Bの水平方向中央位置と、第1加工機14A寄りの位置と、第3加工機14C寄りの位置に、それぞれ第2多軸加工ヘッド40Bが垂直方向に沿って取り付けられている。また、第1加工機14A寄りの位置及び第3加工機14C寄りの位置には、ワークステーション12に向かって突出する長い第2筒部42Bが形成され、各長い第2筒部42Bを通してそれぞれ第2多軸加工ヘッド40Bが取り付けられて、中央位置における他の第2多軸加工ヘッド40Bよりもワークステーション12側に突出した形態となっている。なお、第2コラム36B内にも、第2多軸加工ヘッド40Bをそれぞれ個別に回転駆動する図示しない回転駆動機構が組み込まれている。
The second processing unit 32B includes a second column 36B movably attached to the second rail 30B, and a second jig attachment plate 38B attached to the surface of the second column 36B facing the workstation 12. Have. As schematically shown in FIG. 3A, at least three types of second multiaxial machining heads 40B are attached to the second jig attachment plate 38B. For example, the second multi-axis machining head 40B is mounted along the vertical direction at the horizontal center position of the second jig attachment plate 38B, the position near the first processing machine 14A, and the position near the third processing machine 14C. It is done. In addition, long second cylindrical portions 42B protruding toward the work station 12 are formed at positions near the first processing machine 14A and positions near the third processing machine 14C, respectively. A two-multi-axis machining head 40B is attached and protrudes toward the workstation 12 more than the other second multi-axis machining heads 40B at the central position. In addition, a rotation drive mechanism (not shown) for driving to rotate the second multi-axis machining head 40B individually is also incorporated in the second column 36B.
図1及び図2に示すように、第3加工機14Cは、第1加工機14Aと同様に、ワークステーション12に向かって延在する第3レール台28Cと、第3レール台28Cの上面に設けられた第3レール30Cに沿って移動する第3加工ユニット32Cと、第3加工ユニット32Cをワークステーション12に対して進退可能に駆動する第3移動駆動手段34C(例えばねじ送り機構:図2参照)とを有する。第3レール台28Cは、少なくとも使用済みクーラントをワークステーション12に向けて流すための排出用溝M5及びM6(図2参照)を有する。
As shown in FIGS. 1 and 2, the third processing machine 14C, like the first processing machine 14A, has a third rail base 28C extending toward the workstation 12 and an upper surface of the third rail base 28C. A third processing unit 32C that moves along the provided third rail 30C, and a third movement driving unit 34C that drives the third processing unit 32C to be able to move to the work station 12 (for example, a screw feed mechanism: FIG. 2) Reference). The third rail mount 28C has discharge grooves M5 and M6 (see FIG. 2) for flowing at least the used coolant toward the work station 12.
第3加工ユニット32Cは、第3レール30Cに移動可能に取り付けられた第3コラム36Cと、第3コラム36Cのうち、ワークステーション12に対向する面に取り付けられた第3治具取付板38Cとを有する。第3治具取付板38Cには、図3A及び図4Aに模式的に示すように、少なくとも2種類の第3多軸加工ヘッド40Cが取り付けられている。例えば第3治具取付板38Cの水平方向中央位置と、第2加工機14B寄りの位置に、それぞれ第3多軸加工ヘッド40Cが垂直方向に取り付けられている。また、第2加工機14B寄りの位置には、ワークステーション12に向かって突出する3つの長い第3筒部42Cが形成され、各長い第3筒部42Cを通してそれぞれ第3多軸加工ヘッド40Cが取り付けられて、中央位置における他の第3多軸加工ヘッド40Cよりもワークステーション12側に突出した形態となっている。なお、第3コラム36C内にも、第3多軸加工ヘッド40Cをそれぞれ個別に回転駆動する図示しない回転駆動機構が組み込まれている。
The third processing unit 32C includes a third column 36C movably attached to the third rail 30C, and a third jig attachment plate 38C attached to the surface of the third column 36C facing the work station 12. Have. As schematically shown in FIGS. 3A and 4A, at least two types of third multiaxial machining heads 40C are attached to the third jig attachment plate 38C. For example, the third multi-axis processing head 40C is attached in the vertical direction at the horizontal center position of the third jig attachment plate 38C and the position near the second processing machine 14B. In addition, three long third cylindrical portions 42C protruding toward the work station 12 are formed at a position near the second processing machine 14B, and the third multiaxial processing head 40C is provided through the respective long third cylindrical portions 42C. It is attached and protrudes toward the work station 12 more than the other third multi-axis machining head 40C at the central position. In addition, in the third column 36C, a rotation drive mechanism (not shown) for driving to rotate the third multi-axis machining head 40C individually is incorporated.
上述した構成により、図3Aに示すように、第1加工ユニット32Aの第1多軸加工ヘッド40Aのうち、中央の第1多軸加工ヘッド40Aは、支柱22に固定されたワークWのうち、第1治具取付板38Aに対向するワーク取付面25の下段、中段及び上段に固定された3つのワークWの各正面に対して加工(例えばドリル加工)を行う。第2加工機14B寄りの第1多軸加工ヘッド40Aは、支柱22のワーク取付面25に固定されたワークWのうち、第2加工機14Bに対向するワーク取付面25の下段、中段及び上段の3つのワークWの右側面(第1加工機14Aに対向する面)に対して加工(例えばドリル加工)を行う。
With the above-described configuration, as shown in FIG. 3A, of the first multi-axis processing head 40A at the center of the first multi-axis processing head 40A of the first processing unit 32A, of the workpiece W fixed to the support 22, Machining (for example, drilling) is performed on each front surface of the three workpieces W fixed on the lower, middle and upper stages of the workpiece mounting surface 25 facing the first jig mounting plate 38A. Of the workpiece W fixed to the workpiece mounting surface 25 of the column 22, the first multi-axial processing head 40A closer to the second processing machine 14B includes the lower, middle and upper stages of the workpiece mounting surface 25 facing the second processing machine 14B. The processing (for example, drilling) is performed on the right side surfaces of the three workpieces W (surfaces facing the first processing machine 14A).
同様に、第2加工ユニット32Bの第2多軸加工ヘッド40Bのうち、中央の第2多軸加工ヘッド40Bは、支柱22に固定されたワークWのうち、第2治具取付板38Bに対向するワーク取付面25の下段、中段及び上段に固定された3つのワークWの各正面に対して加工(例えばドリル加工)を行う。第1加工機14A寄りの第2多軸加工ヘッド40Bは、支柱22のワーク取付面25のうち、第1加工機14Aに対向するワーク取付面25の下段、中段及び上段に固定された3つのワークWの左側面(第2加工機14Bに対向する面)に対して加工(例えばドリル加工)を行う。第3加工機14C寄りの第2多軸加工ヘッド40Bは、支柱22のワーク取付面25に固定されたワークWのうち、第3加工機14Cに対向するワーク取付面25の下段、中段及び上段に固定された3つのワークWの右側面(第2加工機14Bに対向する面)に対して加工(例えばドリル加工)を行う。
Similarly, the second multi-axis processing head 40B at the center of the second multi-axis processing head 40B of the second processing unit 32B faces the second jig attachment plate 38B of the work W fixed to the column 22. Machining (for example, drilling) is performed on each front surface of the three workpieces W fixed on the lower, middle and upper stages of the workpiece attachment surface 25. The second multi-axis processing head 40B closer to the first processing machine 14A is three of the work mounting surfaces 25 of the column 22 fixed to the lower, middle and upper stages of the work mounting surface 25 facing the first processing machine 14A. The processing (for example, drilling) is performed on the left side surface (the surface facing the second processing machine 14B) of the workpiece W. The second multi-axis processing head 40B closer to the third processing machine 14C is the lower, middle and upper stages of the work mounting surface 25 facing the third processing machine 14C among the works W fixed to the work mounting surface 25 of the column 22 The processing (for example, drilling) is performed on the right side surfaces (surfaces facing the second processing machine 14B) of the three workpieces W fixed to the surface.
同様に、第3加工ユニット32Cの第3多軸加工ヘッド40Cのうち、中央の第3多軸加工ヘッド40Cは、支柱22に固定されたワークWのうち、第3治具取付板38Cに対向するワーク取付面25の下段、中段及び上段に固定された3つのワークWの各正面に対して加工(例えばタップ加工)を行う。第2加工機14B寄りの第3多軸加工ヘッド40Cは、支柱22のワーク取付面25に固定されたワークWのうち、第2加工機14Bに対向するワーク取付面25の下段、中段及び上段に固定された3つのワークWの左側面(第3加工機14Cに対向する面)に対して加工(例えばタップ加工)を行う。
Similarly, the third multi-axis processing head 40C at the center of the third multi-axis processing head 40C of the third processing unit 32C faces the third jig attachment plate 38C of the work W fixed to the column 22. Processing (e.g., tapping) is performed on each front surface of the three workpieces W fixed on the lower, middle and upper stages of the workpiece attachment surface 25. The third multi-axis processing head 40C closer to the second processing machine 14B is the lower, middle and upper stages of the workpiece mounting surface 25 facing the second processing machine 14B among the workpieces W fixed to the workpiece mounting surface 25 of the column 22 The processing (for example, tapping processing) is performed on the left side surface (the surface facing the third processing machine 14C) of the three workpieces W fixed on the surface of the workpiece W.
第1加工ユニット32A~第3加工ユニット32Cによる加工の順番は、図3Aの模式図及び図3Bのフローチャートに示すように、ステップS1において、第1加工ユニット32Aによるドリル加工と第3加工ユニット32Cによるタップ加工(加工1)を行った後、ステップS2において、第2加工ユニット32Bによるドリル加工(加工2)が行われる。加工1における第1加工ユニット32Aによるドリル加工と第3加工ユニット32Cによるタップ加工は、同時に行うことが好ましい。「同時に行う」とは、同時に開始することのほか、開始時間をずらしながらも、ドリル加工とタップ加工とが時間的に一部重複している場合を含む。特に、ドリル加工による加工負荷が定常状態になった後に、タップ加工を開始することが好ましい。これにより、タップ加工による加工精度を高めることができる。
The order of processing by the first processing unit 32A to the third processing unit 32C is, as shown in the schematic view of FIG. 3A and the flowchart of FIG. 3B, in step S1, drilling by the first processing unit 32A and third processing unit 32C. After tapping (machining 1) according to the above, in step S2, drilling (machining 2) by the second machining unit 32B is performed. It is preferable that drilling by the first processing unit 32A and tapping by the third processing unit 32C in the processing 1 be performed simultaneously. The “simultaneous” includes not only simultaneous initiation but also shifting of the start time, and also including a case where drilling and tapping partially overlap in time. In particular, it is preferable to start tapping after the processing load by drilling has reached a steady state. Thereby, the processing precision by tap processing can be raised.
ここで、加工装置10による4つのワークW1~W4に対する加工処理を図5の表1を参照しながら説明する。なお、ワークステーション12の支柱22が上面から見て時計方向に1/4回転する毎に1ステップ進むと定義する。
Here, the processing process for the four works W1 to W4 by the processing apparatus 10 will be described with reference to Table 1 of FIG. In addition, it is defined as advancing by one step each time the column 22 of the work station 12 rotates clockwise as viewed from the top.
また、表1において、「正○」は正面へのドリル加工を示し、「正◎」は正面へのタップ加工を示す。「右○」はワークに向かって右側面へのドリル加工を示し、「右◎」はワークに向かって右側面へのタップ加工を示す。「左○」はワークに向かって左側面へのドリル加工を示し、「左◎」はワークに向かって左側面へのタップ加工を示す。
Further, in Table 1, “positive ○” indicates drilling in the front, and “positive」 ”indicates tapping in the front. "Right ○" indicates drilling on the right side toward the work, and "right」 "indicates tapping on the right side toward the work. "Left ○" indicates drilling on the left side toward the work, and "left ◎" indicates tapping on the left side toward the work.
先ず、ステップ1において、支柱22のワーク取付面25のうち、正面を向いたワーク取付面25の下段のみに、1つのワークW1を固定する。すなわち、ステップ1において、1つのワークW1を投入する。
First, in step 1, one work W 1 is fixed only to the lower part of the work attachment surface 25 facing the front among the work attachment surfaces 25 of the columns 22. That is, in step 1, one work W1 is input.
次のステップ2において、正面を向いたワーク取付面25の下段に、1つのワークW2を固定(投入)する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。このとき、図3A~図4Bに示すように、第1加工ユニット32Aによるドリル加工と第3加工ユニット32Cによるタップ加工を行った後、第2加工ユニット32Bによるドリル加工が行われる。この段階では、ワークW1のみが加工領域に入っているため、ワークW1の正面と左側面にそれぞれドリル加工(下段)が行われる。
In the next step 2, one work W2 is fixed (dropped) on the lower side of the work attachment surface 25 facing the front. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, as shown in FIGS. 3A to 4B, after drilling by the first processing unit 32A and tapping by the third processing unit 32C, drilling by the second processing unit 32B is performed. At this stage, since only the workpiece W1 is in the machining area, drilling (lower) is performed on the front and left side surfaces of the workpiece W1, respectively.
次のステップ3において、正面を向いたワーク取付面25の下段に、1つのワークW3を固定(投入)する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。このとき、ワークW1が第2加工ユニット32Bに対向し、ワークW2が第1加工ユニット32Aに対向していることから、最初に第1加工ユニット32Aと第3加工ユニット32Cによって、ワークW1の右側面にドリル加工(下段)、左側面にタップ加工(下段)が行われると共に、ワークW2の正面にドリル加工(下段)が行われる。その後、第2加工ユニット32Bによって、ワークW1の正面及びワークW2の左側面にドリル加工(下段)が行われる。
In the next step 3, one work W3 is fixed (dropped) on the lower side of the work attachment surface 25 facing the front. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, since the workpiece W1 faces the second processing unit 32B and the workpiece W2 faces the first processing unit 32A, the first processing unit 32A and the third processing unit 32C initially perform the right side of the workpiece W1. The surface is drilled (lower), the left side is tapped (lower), and the front of the workpiece W2 is drilled (lower). Thereafter, drilling (lower stage) is performed on the front surface of the workpiece W1 and the left side surface of the workpiece W2 by the second processing unit 32B.
次のステップ4において、正面を向いたワーク取付面25の下段に、1つのワークW4を固定(投入)する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。このとき、ワークW1が第3加工ユニット32Cに対向し、ワークW2が第2加工ユニット32Bに対向し、ワークW3が第1加工ユニット32Aに対向していることから、最初に第1加工ユニット32Aと第3加工ユニット32Cによって、ワークW1の正面にタップ加工(下段)が行われ、ワークW2の左側面にタップ加工(下段)、右側面にドリル加工(下段)が行われ、ワークW3の正面にドリル加工(下段)が行われる。その後、第2加工ユニット32Bによって、ワークW1の右側面にドリル加工(下段)、ワークW2の正面にドリル加工(下段)、ワークW3の左側面にドリル加工(下段)が行われる。
In the next step 4, one work W4 is fixed (dropped) on the lower side of the work attachment surface 25 facing the front. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, since the workpiece W1 faces the third processing unit 32C, the workpiece W2 faces the second processing unit 32B, and the workpiece W3 faces the first processing unit 32A, the first processing unit 32A is first The third processing unit 32C performs tapping on the front of the workpiece W1 (lower), tapping on the left side of the workpiece W2 (lower), and drilling on the right side (lower), the front of the workpiece W3 Drilling (bottom) is performed. Thereafter, the second processing unit 32B performs drilling (lower) on the right side of the workpiece W1, drilling (lower) on the front of the workpiece W2, and drilling (lower) on the left side of the workpiece W3.
次のステップ5において、正面を向いたワーク取付面25のワークW1を下段から取り外して中段に固定する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。このとき、第1加工ユニット32Aに対向してワークW4、第2加工ユニット32Bに対向してワークW3、第3加工ユニット32Cに対向してワークW2が位置されている。これにより、ワークW2の正面にタップ加工(下段)が行われ、右側面にドリル加工(下段)が行われる。また、ワークW3の正面及び右側面にドリル加工(下段)が行われ、左側面にタップ加工(下段)が行われる。また、ワークW4の正面及び左側面にドリル加工(下段)が行われる。
In the next step 5, the workpiece W1 of the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, the workpiece W2 is opposed to the first processing unit 32A, the workpiece W3 is opposed to the second processing unit 32B, and the workpiece W2 is opposed to the third processing unit 32C. Thus, tapping (lower) is performed on the front of the workpiece W2, and drilling (lower) is performed on the right side. Further, drilling (lower) is performed on the front and right sides of the workpiece W3, and tapping (lower) is performed on the left. Further, drilling (lower stage) is performed on the front and left side surfaces of the workpiece W4.
次のステップ6において、正面を向いたワーク取付面25のワークW2を下段から取り外して中段に固定する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。このとき、第1加工ユニット32Aに対向してワークW1、第2加工ユニット32Bに対向してワークW4、第3加工ユニット32Cに対向してワークW3が位置されている。これにより、ワークW1の正面及び左側面にドリル加工(中段)が行われ、ワークW3の正面にタップ加工(下段)が行われ、右側面にドリル加工(下段)が行われる。また、ワークW4の正面及び右側面にドリル加工(下段)が行われ、左側面にタップ加工(下段)が行われる。
In the next step 6, the workpiece W2 on the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, the workpiece W1 is opposite to the first processing unit 32A, the workpiece W4 is opposite to the second processing unit 32B, and the workpiece W3 is opposite to the third processing unit 32C. Thereby, drilling (middle step) is performed on the front and left side surfaces of the work W1, tapping (lower step) is performed on the front of the work W3, and drilling (lower step) is performed on the right side. Further, drilling (lower) is performed on the front and right sides of the workpiece W4, and tapping (lower) is performed on the left.
次のステップ7において、正面を向いたワーク取付面25のワークW3を下段から取り外して中段に固定する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。このとき、第1加工ユニット32Aに対向してワークW2、第2加工ユニット32Bに対向してワークW1、第3加工ユニット32Cに対向してワークW4が位置されている。これにより、ワークW1の正面及び右側面にドリル加工(中段)が行われると共に左側面にタップ加工(中段)が行われる。また、ワークW2の正面及び左側面にドリル加工(中段)が行われ、ワークW4の正面にタップ加工(下段)が行われ、右側面にドリル加工(下段)が行われる。
In the next step 7, the workpiece W3 of the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, the workpiece W2 is located opposite to the first processing unit 32A, the workpiece W2 is located opposite to the second processing unit 32B, and the workpiece W4 is located opposite to the third processing unit 32C. As a result, drilling (middle step) is performed on the front and right sides of the workpiece W 1 and tapping (middle step) is performed on the left side. Further, drilling (middle) is performed on the front and left side of the workpiece W2, tapping (lower) is performed on the front of the workpiece W4, and drilling (lower) is performed on the right.
次のステップ8において、正面を向いたワーク取付面25のワークW4を下段から取り外して中段に固定する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。このとき、第1加工ユニット32Aに対向してワークW3、第2加工ユニット32Bに対向してワークW2、第3加工ユニット32Cに対向してワークW1が位置されている。これにより、ワークW1の正面にタップ加工(中段)が行われ、右側面にドリル加工(中段)が行われる。また、ワークW2の正面及び右側面にドリル加工(中段)が行われると共に、左側面にタップ加工(中段)が行われ、ワークW3の正面及び左側面にドリル加工(中段)が行われる。
In the next step 8, the workpiece W4 on the workpiece mounting surface 25 facing the front is removed from the lower stage and fixed in the middle stage. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. At this time, the workpiece W3 is positioned opposite to the first processing unit 32A, the workpiece W2 is opposed to the second processing unit 32B, and the workpiece W1 is positioned opposite to the third processing unit 32C. Thus, tapping (middle step) is performed on the front of the workpiece W1, and drilling (middle step) is performed on the right side. In addition, drilling (middle step) is performed on the front and right sides of the workpiece W2, tapping on the left side (middle) is performed, and drilling on the front and left side of the workpiece W3 (middle).
次のステップ9において、正面を向いたワーク取付面25のワークW1を中段から取り外して上段に固定する。その後、第1加工ユニット32A~第3加工ユニット32Cによる加工処理を行う。これにより、ワークW2の正面にタップ加工(中段)が行われ、右側面にドリル加工(中段)が行われる。また、ワークW3の正面及び右側面にドリル加工(中段)が行われると共に、左側面にタップ加工(中段)が行われ、ワークW4の正面及び左側面にドリル加工(中段)が行われる。以下同様である。
In the next step 9, the workpiece W1 on the workpiece mounting surface 25 facing the front is removed from the middle stage and fixed to the upper stage. Thereafter, the processing by the first processing unit 32A to the third processing unit 32C is performed. Thus, tapping (middle step) is performed on the front of the workpiece W2, and drilling (middle step) is performed on the right side. In addition, drilling (middle step) is performed on the front and right sides of the workpiece W3, tapping on the left side (middle) is performed, and drilling on the front and left side of the workpiece W4 (middle) is performed. The same applies to the following.
そして、ステップ13において、ワークW1が取り外され、ステップ14において、ワークW2が取り外され、ステップ15において、ワークW3が取り外され、ステップ16において、ワークW4が取り外される。
Then, the work W1 is removed in step 13, the work W2 is removed in step 14, the work W3 is removed in step 15, and the work W4 is removed in step 16.
上述の例では、4つのワークW1~W4に対する加工処理について説明したが、その他、ステップ5、6、7及び8でワークW1、W2、W3及びW4をそれぞれ下段から中段に移動した後に、新たなワークW5、W6、W7及びW8を下段に投入してもよい。
In the above example, the processing for the four works W1 to W4 has been described, but in addition, after moving the works W1, W2, W3 and W4 from the lower stage to the middle stage in steps 5, 6, 7 and 8, respectively, The works W5, W6, W7 and W8 may be introduced to the lower stage.
さらに、ステップ9、10、11及び12でワークW1、W2、W3及びW4をそれぞれ中段から上段に移動した後に、新たなワークW5、W6、W7及びW8を下段から中段に移動し、その後、さらに、新たなワークW9、W10、W11及びW12を下段に投入してもよい。
Further, after moving the works W1, W2, W3 and W4 from the middle to the upper stage in steps 9, 10, 11 and 12, respectively, move the new works W5, W6, W7 and W8 from the lower to the middle, and then further The new works W9, W10, W11 and W12 may be introduced to the lower stage.
つまり、ワークWの中段や上段への移動に伴って、下段が空いた段階で、下段に新たなワークWを投入することで、5個以上のワークWに対して加工することができる。ここでは、下段から中段や上段へワークWを移動させたが、上段から中段や下段に移動させてもよい。また、移動の際に、取付けの向きを90°回転させたり、ワークWのワーク取付面25を反転させることで、ワークWのすべての外表面を加工することができる。移動の際、図示しない機内シャッターで加工領域と加工装置の正面とを区切ることで、加工中にワークWの投入と払い出しを行うことができる。
That is, it is possible to process five or more workpieces W by introducing a new workpiece W to the lower stage at the stage where the lower stage becomes vacant as the workpiece W moves to the middle stage or the upper stage. Here, the work W is moved from the lower stage to the middle or upper stage, but may be moved from the upper stage to the middle or lower stage. In addition, by rotating the mounting direction by 90 ° or reversing the workpiece attachment surface 25 of the workpiece W when moving, all outer surfaces of the workpiece W can be processed. At the time of movement, by dividing the processing area and the front of the processing apparatus by an in-machine shutter (not shown), it is possible to insert and dispense the work W during processing.
なお、図2に示すように、第1加工機14A、第2加工機14B及び第3加工機14Cからの切り屑やクーラントは、第1加工機14Aの排出用溝M1及びM2、第2加工機14Bの排出用溝M4並びに第3加工機14Cの排出用溝M5及びM6を通じてワークステーション12に流される。ワークステーション12のオイルパン13のうち、支柱22の周囲に形成された排出用溝は、第1加工機14A寄りに形成された第1排出用溝Maと、第2加工機14B寄りに形成された第2排出用溝Mbと、第3加工機14C寄りに形成された第3排出用溝Mcとを有する。なお、オイルパン13は上面から見て例えば矩形状を有する。
As shown in FIG. 2, chips and coolant from the first processing machine 14A, the second processing machine 14B and the third processing machine 14C are discharged from the first processing machine 14A and the discharge grooves M1 and M2 and the second processing It flows to the workstation 12 through the discharge groove M4 of the machine 14B and the discharge grooves M5 and M6 of the third processing machine 14C. Among the oil pans 13 of the work station 12, the discharge grooves formed around the support column 22 are formed closer to the first processing groove 14A and the first discharge groove Ma and closer to the second processing device 14B. The second discharge groove Mb and the third discharge groove Mc formed closer to the third processing machine 14C. The oil pan 13 has, for example, a rectangular shape when viewed from the top.
そして、第1加工機14Aからの使用済みクーラントは、排出用溝M1及びM2を通じてワークステーション12に向かって流れ、第2加工機14Bからの使用済みクーラントは、排出用溝M4を通じてワークステーション12に向かって流れ、第3加工機14Cからの使用済みクーラントは、排出用溝M5及びM6を介してワークステーション12に向かって流れる。ワークステーション12に流れ込んだ使用済みクーラントは、第1排出用溝Ma、第2排出用溝Mb及び第3排出用溝Mcを通じて第2加工機14Bの排出用溝M3に流れ、さらに、この排出用溝M3を通じてクーラントタンク17に流れる。
Then, the used coolant from the first processing machine 14A flows toward the workstation 12 through the discharge grooves M1 and M2, and the used coolant from the second processing machine 14B flows into the workstation 12 through the discharge groove M4. Flowing, the used coolant from the third processing machine 14C flows toward the workstation 12 through the discharge grooves M5 and M6. The used coolant that has flowed into the workstation 12 flows to the discharge groove M3 of the second processing machine 14B through the first discharge groove Ma, the second discharge groove Mb, and the third discharge groove Mc, and further, this discharge It flows to the coolant tank 17 through the groove M3.
次に、本実施の形態に係る加工装置10のいくつかの変形例について図6~図12を参照しながら説明する。
Next, several modified examples of the processing apparatus 10 according to the present embodiment will be described with reference to FIGS.
第1の変形例に係る加工装置(以下、第1加工装置10Aと記す)は、図6及び図7に示すように、上述した加工装置10とほぼ同様の構成を有するが、第1プレート進退機構50Aと、第2プレート進退機構50Bとを有する点で異なる。
The processing apparatus according to the first modification (hereinafter referred to as the first processing apparatus 10A) has substantially the same configuration as the above-described processing apparatus 10 as shown in FIGS. The difference is that the mechanism 50A and the second plate advancing and retracting mechanism 50B are included.
第1プレート進退機構50Aは、ワークステーション12の支柱22と第1加工ユニット32Aの間に、第1多軸加工ヘッド40Aの折損を検知する第1折損センサ52Aを取り付けた第1プレート54Aを進退させる。この場合、第1プレート進退機構50Aは、第1プレート54Aを上下方向に移動させてもよいし、横方向に移動させてもよい。第1プレート54Aは、通常は、例えば初期位置、すなわち、支柱22と第1加工ユニット32Aの間から退避した位置にある。
The first plate advancing and retracting mechanism 50A advances and retracts the first plate 54A to which the first breakage sensor 52A for detecting breakage of the first multi-axis processing head 40A is attached between the column 22 of the workstation 12 and the first processing unit 32A. Let In this case, the first plate advancing and retracting mechanism 50A may move the first plate 54A in the vertical direction or in the lateral direction. The first plate 54A is normally at, for example, an initial position, that is, a position retracted from between the support 22 and the first processing unit 32A.
第2プレート進退機構50Bは、ワークステーション12の支柱22と第2加工ユニット32Bの間に、第2多軸加工ヘッド40Bの折損を検知する第2折損センサ52Bを取り付けた第2プレート54Bを進退させる。この場合、第2プレート進退機構50Bは、第2プレート54Bを上下方向に移動させてもよいし、横方向に移動させてもよい。第2プレート54Bも、通常は、例えば初期位置、すなわち、支柱22と第2加工ユニット32Bの間から退避した位置にある。
The second plate advancing and retracting mechanism 50B advances and retracts the second plate 54B to which the second breakage sensor 52B for detecting breakage of the second multi-axis processing head 40B is attached between the column 22 of the workstation 12 and the second processing unit 32B. Let In this case, the second plate advancing and retracting mechanism 50B may move the second plate 54B in the vertical direction or in the lateral direction. The second plate 54B is also normally at, for example, an initial position, that is, a position retracted from between the support 22 and the second processing unit 32B.
そして、第1プレート進退機構50Aは、例えば制御装置16からの第1閉鎖信号Sc1の入力に基づいて、初期位置にある第1プレート54Aを駆動して、支柱22と第1加工ユニット32Aの間に位置決めする。さらに、第1折損センサ52Aからの折損の検知結果S1を制御装置16に出力する。また、制御装置16からの第1開放信号So1の入力に基づいて、第1プレート54Aを駆動して、第1プレート54Aを初期位置に戻す。
Then, the first plate advancing and retracting mechanism 50A drives the first plate 54A at the initial position based on, for example, the input of the first closing signal Sc1 from the control device 16, and thereby between the support 22 and the first processing unit 32A. Position on Furthermore, the detection result S1 of breakage from the first breakage sensor 52A is output to the control device 16. Also, based on the input of the first open signal So1 from the control device 16, the first plate 54A is driven to return the first plate 54A to the initial position.
第2プレート進退機構50Bは、例えば制御装置16からの第2閉鎖信号Sc2の入力に基づいて、初期位置にある第2プレート54Bを駆動して、支柱22と第2加工ユニット32Bの間に位置決めする。さらに、第2折損センサ52Bからの折損の検知結果S2を制御装置16に出力する。また、制御装置16からの第2開放信号So2の入力に基づいて、第2プレート54Bを駆動して、第2プレート54Bを初期位置に戻す。
The second plate advancing and retracting mechanism 50B drives the second plate 54B in the initial position based on, for example, the input of the second closing signal Sc2 from the control device 16 to position the column 22 and the second processing unit 32B. Do. Furthermore, the detection result S2 of breakage from the second breakage sensor 52B is output to the control device 16. Further, based on the input of the second open signal So2 from the control device 16, the second plate 54B is driven to return the second plate 54B to the initial position.
第1プレート54Aの大きさは、横方向の幅が第1加工機14Aの第1レール台28Aの横幅とほぼ同じで、縦方向の長さが第1加工ユニット32Aの第1治具取付板38Aの縦方向の長さとほぼ同じとされている。従って、第1プレート54A及び第2プレート54Bがそれぞれ初期位置にある場合、すなわち、図8に示すように、第1加工ユニット32A及び第2加工ユニット32Bの各前面に、それぞれ第1プレート54A及び第2プレート54Bが存在しない場合は、第1加工ユニット32A、第2加工ユニット32B及び第3加工ユニット32Cによって加工領域Zが形成される。そして、図9に示すように、第1プレート54Aを第1加工ユニット32Aの前面に位置決めしたとき、第1加工ユニット32A~第3加工ユニット32Cによる加工領域Z(図8参照)を第1プレート54Aによって区切ることができる。すなわち、ワークステーション12を中心とした、第1プレート54Aと第2加工ユニット32Bと第3加工ユニット32Cとで囲まれた新たな加工領域Zaが形成されることとなる。
The width of the first plate 54A is substantially the same as the width of the first rail base 28A of the first processing machine 14A, and the length of the first plate 54A is the first jig mounting plate of the first processing unit 32A. It is almost the same as the vertical length of 38A. Therefore, when the first plate 54A and the second plate 54B are in the initial positions, that is, as shown in FIG. 8, the first plate 54A and the second plate 54B are respectively formed on the front surfaces of the first processing unit 32A and the second processing unit 32B. When the second plate 54B does not exist, the processing area Z is formed by the first processing unit 32A, the second processing unit 32B, and the third processing unit 32C. Then, as shown in FIG. 9, when the first plate 54A is positioned on the front surface of the first processing unit 32A, the processing region Z (see FIG. 8) by the first processing unit 32A to the third processing unit 32C is the first plate It can be separated by 54A. That is, a new processing area Za surrounded by the first plate 54A, the second processing unit 32B, and the third processing unit 32C around the work station 12 is formed.
一方、第2プレート54Bの大きさは、横方向の幅が第2加工機14Bの第2レール台28Bの横幅とほぼ同じで、縦方向の長さが第2加工ユニット32Bの第2治具取付板38Bの縦方向の長さとほぼ同じとされている。従って、図10に示すように、第2プレート54Bを第2加工ユニット32Bの前面に位置決めしたとき、第1加工ユニット32A~第3加工ユニット32Cによる加工領域Z(図8参照)を第2プレート54Bによって区切ることができる。すなわち、ワークステーション12を中心とした、第1加工ユニット32Aと第2プレート54Bと第3加工ユニット32Cとで囲まれた新たな加工領域Zbが形成されることとなる。
On the other hand, the size of the second plate 54B is substantially the same as the lateral width of the second rail base 28B of the second processing machine 14B, and the longitudinal length of the second plate 54B is the second jig of the second processing unit 32B. The longitudinal length of the mounting plate 38B is substantially the same. Therefore, as shown in FIG. 10, when the second plate 54B is positioned on the front surface of the second processing unit 32B, the processing region Z (see FIG. 8) by the first processing unit 32A to the third processing unit 32C is the second plate It can be separated by 54B. That is, a new processing area Zb surrounded by the first processing unit 32A, the second plate 54B, and the third processing unit 32C around the work station 12 is formed.
ここで、第1加工装置10Aの処理動作を図11のフローチャートも参照しながら説明する。
Here, the processing operation of the first processing apparatus 10A will be described with reference to the flowchart of FIG.
先ず、図11のステップS101において、第1プレート54A及び第2プレート54Bは、初期状態、例えば上方に位置されている。
First, in step S101 of FIG. 11, the first plate 54A and the second plate 54B are located in the initial state, for example, above.
その後、第1加工ユニット32Aによるドリル加工及び第3加工ユニット32Cによるタップ加工が行われる前に、ステップS102において、第2プレート進退機構50Bは、第2プレート54Bを下降して、第2加工ユニット32Bと支柱22との間に第2プレート54Bを位置決めする。
Thereafter, before drilling by the first processing unit 32A and tapping by the third processing unit 32C are performed, in step S102, the second plate advancing / retracting mechanism 50B lowers the second plate 54B, and the second processing unit The second plate 54B is positioned between 32B and the column 22.
その後、ステップS103において、ワークWに対して第1加工ユニット32A及び第3加工ユニット32Cによる加工を実施する。この第1加工ユニット32A及び第3加工ユニット32Cによる加工の間に、第2移動駆動手段34Bは、第2加工ユニット32Bの第2多軸加工ヘッド40Bを第2折損センサ52Bに近づける。第2折損センサ52Bは、第2多軸加工ヘッド40Bの折損を検知する。
Thereafter, in step S103, the workpiece W is processed by the first processing unit 32A and the third processing unit 32C. During the processing by the first processing unit 32A and the third processing unit 32C, the second movement driving means 34B brings the second multiaxial processing head 40B of the second processing unit 32B close to the second breakage sensor 52B. The second breakage sensor 52B detects breakage of the second multi-axis machining head 40B.
第1加工ユニット32A及び第3加工ユニット32Cによるドリル加工及びタップ加工の間、特に、ドリル加工で出た切り屑は第2加工ユニット32Bの方向に飛散することになる。しかし、第2プレート54Bによって第2加工ユニット32Bへの切り屑の飛散が遮られることになる。つまり、第1加工ユニット32Aによるドリル加工で出た切り屑を第2加工ユニット32Bに飛散させることを防ぐことができる。
During drilling and tapping by the first processing unit 32A and the third processing unit 32C, in particular, chips generated by drilling scatter in the direction of the second processing unit 32B. However, scattering of chips into the second processing unit 32B is blocked by the second plate 54B. That is, it is possible to prevent the chips generated by the drilling by the first processing unit 32A from being scattered to the second processing unit 32B.
ワークWに対する第1加工ユニット32A及び第3加工ユニット32Cによる加工が終了した段階で、ステップS104において、第2プレート進退機構50Bは、第2プレート54Bを初期位置に戻す。すなわち、第2折損センサ52Bを元の位置に戻し、第2プレート54Bを上昇して、第2プレート54Bを初期位置に戻す。
When the processing by the first processing unit 32A and the third processing unit 32C on the workpiece W is completed, the second plate advancing and retracting mechanism 50B returns the second plate 54B to the initial position in step S104. That is, the second breakage sensor 52B is returned to the original position, the second plate 54B is raised, and the second plate 54B is returned to the initial position.
その後、第2加工ユニット32Bによるドリル加工が行われる前に、ステップS105において、第1プレート進退機構50Aは、第1プレート54Aを下降して、第1加工ユニット32Aと支柱22との間に第1プレート54Aを位置決めする。
Thereafter, before the drilling by the second processing unit 32B is performed, in step S105, the first plate advancing / retracting mechanism 50A lowers the first plate 54A, and the first plate 54A is moved between the first processing unit 32A and the support 22. 1 Position the plate 54A.
その後、ステップS106において、ワークWに対して第2加工ユニット32Bによる加工を実施する。この第2加工ユニット32Bによる加工の間に、第1移動駆動手段34Aは、第1加工ユニット32Aの第1多軸加工ヘッド40Aを第1折損センサ52Aに近づける。第1折損センサ52Aは、第1多軸加工ヘッド40Aの折損を検知する。
Thereafter, in step S106, the workpiece W is processed by the second processing unit 32B. During processing by the second processing unit 32B, the first movement driving means 34A brings the first multi-axis processing head 40A of the first processing unit 32A close to the first breakage sensor 52A. The first breakage sensor 52A detects breakage of the first multi-axis machining head 40A.
ワークWに対する第2加工ユニット32Bによる加工が終了した段階で、ステップS107において、第1プレート進退機構50Aは、第1プレート54Aを初期位置に戻す。すなわち、第1折損センサ52Aを元の位置に戻し、第1プレート54Aを上昇して、第1プレート54Aを初期位置に戻す。
When the processing by the second processing unit 32B on the workpiece W is completed, the first plate advancing / retracting mechanism 50A returns the first plate 54A to the initial position in step S107. That is, the first breakage sensor 52A is returned to the original position, and the first plate 54A is raised to return the first plate 54A to the initial position.
第2加工ユニット32Bによるドリル加工の間、ドリル加工で出た切り屑は第1加工ユニット32Aの方向に飛散することになる。しかし、第1プレート54Aによって第1加工ユニット32Aへの切り屑の飛散が遮られることになる。つまり、第2加工ユニット32Bによるドリル加工で出た切り屑を第1加工ユニット32Aに飛散させることを防ぐことができる。
During drilling by the second processing unit 32B, chips generated by drilling scatter in the direction of the first processing unit 32A. However, scattering of the chips to the first processing unit 32A is blocked by the first plate 54A. That is, it is possible to prevent the chips generated by the drilling by the second processing unit 32B from being scattered to the first processing unit 32A.
次に、第2の変形例に係る加工装置(以下、第2加工装置10Bと記す)は、図12に示すように、上述した加工装置10とほぼ同様の構成を有するが、使用済みクーラントの排出構造に特徴を有する。
Next, the processing apparatus according to the second modification (hereinafter referred to as the second processing apparatus 10B) has substantially the same configuration as the above-described processing apparatus 10 as shown in FIG. It is characterized by the discharge structure.
具体的には、第1加工機14Aの両側の排出用溝M1及びM2は、それぞれワークステーション12に向かって下り傾斜とされた傾斜溝に形成されている。第2加工機14Bも、両側の排出用溝M3及びM4は、それぞれワークステーション12に向かって下り傾斜とされた傾斜溝に形成されている。第3加工機14Cも、両側の排出用溝M5及びM6は、それぞれワークステーション12に向かって下り傾斜とされた傾斜溝に形成されている。これらの溝の傾斜角度としては、例えば2°~4°の範囲である。
Specifically, the discharge grooves M1 and M2 on both sides of the first processing machine 14A are formed in inclined grooves inclined downward toward the work station 12, respectively. Also in the second processing machine 14B, the discharge grooves M3 and M4 on both sides are respectively formed in inclined grooves inclined downward toward the work station 12. Also in the third processing machine 14C, the discharge grooves M5 and M6 on both sides are respectively formed in inclined grooves inclined downward toward the work station 12. The inclination angle of these grooves is, for example, in the range of 2 ° to 4 °.
ワークステーション12のオイルパン13に形成された第1排出用溝Ma及び第3排出用溝Mcは、それぞれ第2加工機14Bに向かって下り傾斜とされた傾斜溝に形成され、第2排出用溝Mbは、第1加工機14Aに向かって下り傾斜とされた傾斜溝に形成されている。また、上記オイルパン13には、その正面側に第4排出用溝Md及び第5排出用溝Meを有する。第4排出用溝Mdは、第1加工機14Aに向かって下り傾斜とされた傾斜溝に形成され、第5排出用溝Meは、第3加工機14Cに向かって下り傾斜とされた傾斜溝に形成されている。この場合、第4排出用溝Mdの下流端と第1排出用溝Maの上流端とがほぼ一致し、第5排出用溝Meの下流端と第3排出用溝Mcの上流端とがほぼ一致している。
The first discharge groove Ma and the third discharge groove Mc formed in the oil pan 13 of the work station 12 are respectively formed in inclined grooves inclined downward toward the second processing machine 14B, and are used for the second discharge The groove Mb is formed in an inclined groove inclined downward toward the first processing machine 14A. Further, the oil pan 13 has a fourth discharge groove Md and a fifth discharge groove Me on the front side. The fourth discharge groove Md is formed in an inclined groove inclined downward toward the first processing machine 14A, and the fifth discharge groove Me is an inclined groove inclined downward toward the third processing machine 14C. Is formed. In this case, the downstream end of the fourth discharge groove Md substantially coincides with the upstream end of the first discharge groove Ma, and the downstream end of the fifth discharge groove Me and the upstream end of the third discharge groove Mc are substantially equal. Match.
そして、この第2加工装置10Bでは、ワークステーション12のオイルパン13のうち、第1加工機14Aと第2加工機14Bとの境界に対応する隅に、排出口60が形成されている。排出口60の下部には、排出口60を通じて落下する使用済みクーラントをクーラントタンク17に導くガイド部61(樋や導管等)が形成されている。
And in this 2nd processing apparatus 10B, the discharge port 60 is formed in the corner corresponding to the boundary of the 1st processing machine 14A and the 2nd processing machine 14B among the oil pans 13 of the workstation 12. At a lower portion of the discharge port 60, a guide portion 61 (a weir, a conduit, etc.) for guiding the used coolant dropped through the discharge port 60 to the coolant tank 17 is formed.
従って、第1排出用溝Ma上又は第2排出用溝Mb上の使用済みクーラントは、それぞれ第1排出用溝Ma又は第2排出用溝Mbを通じて排出口60に流れる。第3排出用溝Mc上の使用済みクーラントは、第3排出用溝Mc及び第2排出用溝Mbを通じて排出口60に流れる。同様に、第4排出用溝Md上の使用済みクーラントは、第4排出用溝Md及び第1排出用溝Maを通じて排出口60に流れ、第5排出用溝Me上の使用済みクーラントは、第5排出用溝Me、第3排出用溝Mc及び第2排出用溝Mbを通じて排出口60に流れる。
Therefore, the used coolant on the first discharge groove Ma or on the second discharge groove Mb flows to the discharge port 60 through the first discharge groove Ma or the second discharge groove Mb, respectively. The used coolant on the third discharge groove Mc flows to the discharge port 60 through the third discharge groove Mc and the second discharge groove Mb. Similarly, the used coolant on the fourth discharge groove Md flows to the discharge port 60 through the fourth discharge groove Md and the first discharge groove Ma, and the used coolant on the fifth discharge groove Me is 5) Flow to the discharge port 60 through the discharge groove Me, the third discharge groove Mc and the second discharge groove Mb.
上述した各種排出用溝M1~M6、Ma~Meの傾斜角の大小関係は、以下の通りである。この大小関係はあくまでも一例である。
The magnitude relationship of the inclination angles of the various discharge grooves M1 to M6 and Ma to Me described above is as follows. This magnitude relationship is merely an example.
先ず、第1加工機14Aの両側の排出用溝M1及びM2の傾斜角をθ11及びθ12とする。第2加工機14Bの両側の排出用溝M3及びM4の傾斜角をθ21及びθ22とする。第3加工機14Cの両側の排出用溝M5及びM6の傾斜角をθ31及びθ32とする。オイルパン13の第1排出用溝Maの傾斜角をθa、第2排出用溝Mbの傾斜角をθb、第3排出用溝Mcの傾斜角をθc、第4排出用溝Mdの傾斜角をθd、第5排出用溝Meの傾斜角をθeとする。
First, let the inclination angles of the discharge grooves M1 and M2 on both sides of the first processing machine 14A be θ11 and θ12. Let the inclination angles of the discharge grooves M3 and M4 on both sides of the second processing machine 14B be θ21 and θ22. Let the inclination angles of the discharge grooves M5 and M6 on both sides of the third processing machine 14C be θ31 and θ32. The inclination angle of the first ejection groove Ma of the oil pan 13 is θa, the inclination angle of the second ejection groove Mb is θb, the inclination angle of the third ejection groove Mc is θc, and the inclination angle of the fourth ejection groove Md is Let θd be the inclination angle of the fifth discharge groove Me be θe.
θ11、θ12、θ21、θ22、θ31及びθ32はほぼ同じで、例えば2°~4°の範囲が挙げられる。
Θ11, θ12, θ21, θ22, θ31 and θ32 are almost the same, for example, in the range of 2 ° to 4 °.
θa>θc>θbで、θbはθ11、θ12等よりも大きい。θa、θb、θcは、例えば3°~6°の範囲が挙げられる。θdはθaとほぼ同程度であり、θeはθcとほぼ同程度である。
Θa> θc> θb, θb is larger than θ11, θ12 and the like. For example, the range of 3 ° to 6 ° may be mentioned as θa, θb and θc. θd is approximately the same as θa, and θe is approximately the same as θc.
これらの傾斜角の大きさは、あくまでも一例であり、第1加工機14A、第2加工機14B及び第3加工機14Cでの使用済みクーラントの排出流量に応じて適宜設定すればよい。
The magnitudes of these inclination angles are merely an example, and may be appropriately set according to the discharge flow rate of the used coolant in the first processing machine 14A, the second processing machine 14B, and the third processing machine 14C.
さらに、この第2加工装置10Bでは、第1加工機14A及び第2加工機14Bがドリル加工のみを行うことから、使用済みクーラントの排出流量が第3加工機14Cよりも多くなる。そこで、排出口60の平面形状として、第1加工機14Aによる加工方向を長手方向とする形状、例えば長方形としている。そのため、第1加工機14Aからの使用済みクーラントを効率よく排出口60に流すことができる。
Furthermore, in the second processing device 10B, since the first processing machine 14A and the second processing machine 14B only perform drilling, the discharge flow rate of the used coolant is higher than that of the third processing machine 14C. Therefore, as the planar shape of the discharge port 60, for example, a rectangular shape in which the processing direction by the first processing machine 14A is a longitudinal direction is used. Therefore, the used coolant from the first processing machine 14A can be efficiently flowed to the discharge port 60.
また、第1排出用溝Ma上でワークWに対してドリル加工を行うドリル加工用のヘッドの数が、第2排出用溝Mb上でワークWに対してドリル加工を行うヘッドの数よりも多い場合は、傾斜角θa>θbとすることが好ましい。
Further, the number of drilling heads for drilling the work W on the first discharge groove Ma is higher than the number of heads for drilling the work W on the second discharge groove Mb. When there are many, it is preferable to set it as inclination-angle (theta) a> (theta) b.
ここで、第1排出用溝Ma上でワークWに対してドリル加工を行うドリル加工用のヘッドの数は、例えば図3Aに示すように、第1加工ユニット32Aのうち、中央における第1多軸加工ヘッド40Aにおけるドリル加工用のヘッドの数と、第2加工ユニット32Bのうち、第1加工ユニット32A寄りの第2多軸加工ヘッド40Bにおけるドリル加工用のヘッドの数との合計である。
Here, as shown in FIG. 3A, for example, as shown in FIG. 3A, the number of drilling heads for drilling the work W on the first discharge groove Ma is the first multiple of the first processing unit 32A in the center This is the total of the number of drilling heads in the axial processing head 40A and the number of drilling heads in the second multi-axis processing head 40B closer to the first processing unit 32A in the second processing unit 32B.
また、第2排出用溝Mb上でワークWに対してドリル加工を行うドリル加工用のヘッドの数は、例えば図3Aに示すように、第2加工ユニット32Bのうち、中央における第2多軸加工ヘッド40Bにおけるドリル加工用のヘッドの数と、第1加工ユニット32Aのうち、第2加工ユニット32B寄りの第1多軸加工ヘッド40Aにおけるドリル加工用のヘッドの数との合計である。
Further, the number of drilling heads for drilling the work W on the second discharge groove Mb is, for example, as shown in FIG. 3A, a second multi-axis at the center of the second processing unit 32B. It is the total of the number of heads for drilling in the processing head 40B and the number of heads for drilling in the first multi-axis processing head 40A closer to the second processing unit 32B in the first processing unit 32A.
上述のように、第1排出用溝Ma上でワークWに対してドリル加工を行うヘッドの数が、第2排出用溝Mb上でワークWに対してドリル加工を行うヘッドの数よりも多いことから、第1排出用溝Maへの切り屑等の量が第2排出用溝Mbへの切り屑等の量よりも多くなる。そこで、第1排出用溝Maの傾斜角θaを第2排出用溝Mbの傾斜角θbよりも大きくことで、切り屑等の量が多い使用済みクーラントの排出効率が高くなり、オイルパン13に切り屑等が残存する量を少なくすることができる。
As described above, the number of heads drilling on the work W on the first discharge groove Ma is larger than the number of heads drilling on the work W on the second discharge groove Mb. Thus, the amount of chips and the like to the first discharge groove Ma is larger than the amount of chips and the like to the second discharge groove Mb. Therefore, by making the inclination angle θa of the first discharge groove Ma larger than the inclination angle θb of the second discharge groove Mb, the discharge efficiency of the used coolant having a large amount of chips etc. becomes high, and the oil pan 13 The amount of chips and the like remaining can be reduced.
以上、本発明について好適な実施の形態を用いて説明したが、本発明の技術的範囲は、上記の実施の形態の記載範囲に限定されることはない。上記の実施の形態に、多様な変更又は改良を加えることが可能であることは、当業者に明らかである。そのような変更又は改良を加えた形態も、本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。また、請求の範囲に記載された括弧書きの符号は、本発明の理解の容易化のために添付図面中の符号に倣って付したものであり、本発明がその符号をつけた要素に限定されて解釈されるものではない。
As mentioned above, although this invention was demonstrated using the suitable embodiment, the technical scope of this invention is not limited to the description range of said embodiment. It is apparent to those skilled in the art that various changes or modifications can be added to the above-described embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention. Further, reference numerals in parentheses in the appended claims are added in accordance with the reference numerals in the attached drawings for the purpose of facilitating the understanding of the present invention, and the present invention is limited to the elements to which the reference numerals are attached. Not be interpreted.
Claims (5)
- 複数のワーク取付面(25)を有する支柱(22)と、
前記ワーク取付面(25)に固定されたワーク(W)に対してドリル加工を行う少なくとも2つの加工ユニット(32A、32B)と、
前記ワーク取付面(25)に固定されたワーク(W)に対してタップ加工を行う少なくとも1つの加工ユニット(32C)と、
前記加工ユニットからの少なくとも使用済みクーラントを受けるオイルパン(13)と、
クーラントタンク(17)とを有し、
前記オイルパン(13)は、ドリル加工を行う前記2つの加工ユニット(32A、32B)の間に、前記使用済みクーラントを前記クーラントタンク(17)に排出する排出口(60)を有することを特徴とする加工装置(10B)。 A post (22) having a plurality of work mounting surfaces (25);
At least two processing units (32A, 32B) for drilling a workpiece (W) fixed to the workpiece mounting surface (25);
At least one processing unit (32C) for tapping a work (W) fixed to the work mounting surface (25);
An oil pan (13) for receiving at least the used coolant from the processing unit;
And a coolant tank (17)
The oil pan (13) is characterized by having a discharge port (60) for discharging the used coolant to the coolant tank (17) between the two processing units (32A, 32B) for drilling. Processing device (10B). - 請求項1記載の加工装置(10B)において、
前記オイルパン(13)は、上面から見て矩形状を有し、
前記排出口(60)は、前記オイルパン(13)の四隅のうち、ドリル加工を行う前記2つの加工ユニット(32A、32B)の間に対応する隅に形成されていることを特徴とする加工装置(10B)。 In the processing apparatus (10B) according to claim 1,
The oil pan (13) has a rectangular shape when viewed from the top,
The discharge port (60) is formed at the corresponding corner between the two processing units (32A, 32B) to be drilled among the four corners of the oil pan (13). Device (10B). - 請求項1又は2記載の加工装置(10B)において、
前記排出口(60)の平面形状は、一方の前記加工ユニット(32A)による加工方向を長手方向とする長方形状を有することを特徴とする加工装置(10B)。 The processing apparatus (10B) according to claim 1 or 2,
The processing device (10B) is characterized in that the planar shape of the discharge port (60) has a rectangular shape in which the processing direction by the one processing unit (32A) is a longitudinal direction. - 請求項1~3のいずれか1項に記載の加工装置(10B)において、
前記オイルパン(13)は、ドリル加工を行う一方の前記加工ユニット(32A)寄りに形成された第1排出用溝(Ma)と、ドリル加工を行う他方の前記加工ユニット(32B)寄りに形成された第2排出用溝(Mb)と、タップ加工を行う前記加工ユニット(32C)寄りに形成された第3排出用溝(Mc)とを有し、
前記第1排出用溝(Ma)及び前記第3排出用溝(Mc)は、それぞれ前記他方の加工ユニット(32B)に向かって下り傾斜とされ、
前記第2排出用溝(Mb)は、前記一方の加工ユニット(32A)に向かって下り傾斜とされていることを特徴とする加工装置(10B)。 The processing apparatus (10B) according to any one of claims 1 to 3
The oil pan (13) is formed on a first discharge groove (Ma) formed closer to one of the processing units (32A) to be drilled and on the other side of the processing unit (32B) to be drilled The second discharge groove (Mb), and the third discharge groove (Mc) formed closer to the processing unit (32C) that performs tapping,
The first discharge groove (Ma) and the third discharge groove (Mc) are respectively inclined downward toward the other processing unit (32B),
A processing apparatus (10B) characterized in that the second discharge groove (Mb) is inclined downward toward the one processing unit (32A). - 請求項4記載の加工装置(10B)において、
前記第1排出用溝(Ma)上で前記ワーク(W)に対してドリル加工を行うドリル加工用のヘッドの数が、前記第2排出用溝(Mb)上で前記ワーク(W)に対してドリル加工を行うドリル加工用のヘッドの数よりも多く、
前記第1排出用溝(Ma)の傾斜角をθa、前記第2排出用溝(Mb)の傾斜角をθbとしたとき、
θa>θb
であることを特徴とする加工装置(10B)。 In the processing apparatus (10B) according to claim 4,
The number of drilling heads for drilling the work (W) on the first discharge groove (Ma) is the number of heads for drilling on the work (W) on the second discharge groove (Mb) More than the number of drilling heads used to drill
When an inclination angle of the first discharge groove (Ma) is θa and an inclination angle of the second discharge groove (Mb) is θb,
θa> θb
The processing apparatus (10B) characterized by being.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019545024A JP6872622B2 (en) | 2017-09-29 | 2018-09-20 | Processing equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017192172 | 2017-09-29 | ||
JP2017-192172 | 2017-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019065438A1 true WO2019065438A1 (en) | 2019-04-04 |
Family
ID=65903331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/034780 WO2019065438A1 (en) | 2017-09-29 | 2018-09-20 | Machining device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6872622B2 (en) |
WO (1) | WO2019065438A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110712040A (en) * | 2019-10-30 | 2020-01-21 | 汇龙电机有限公司 | Motor casing drilling and tapping equipment |
CN112059619A (en) * | 2020-09-04 | 2020-12-11 | 胡君分 | Full-automatic drilling and tapping combined machine tool of motor cylinder |
CN112571071A (en) * | 2021-01-18 | 2021-03-30 | 上海柔尔沐电子科技有限公司 | Regulator cubicle power instrument panel installation device |
CN113732633A (en) * | 2021-09-22 | 2021-12-03 | 牧野机床(中国)有限公司 | Processing method of combined piece |
CN114734254A (en) * | 2022-05-09 | 2022-07-12 | 海盐县富宏紧固件有限公司 | Nut slot milling machine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57170941U (en) * | 1981-04-17 | 1982-10-27 | ||
JPS60175540U (en) * | 1984-04-28 | 1985-11-20 | 豊田工機株式会社 | Separate jig bed NC dedicated machine |
JPH02109663A (en) * | 1988-10-20 | 1990-04-23 | Nachi Fujikoshi Corp | Rotary transfer machine |
JPH07505095A (en) * | 1993-01-20 | 1995-06-08 | バイツイグ ウント フランク ツルマテイツク ゲーエムベーハー | Turret type machine tool |
DE19917856A1 (en) * | 1999-04-20 | 2000-11-02 | Konstruktionsbuero Reiner Gann | Processing machine has transport device running at height of machining station in plan view; cover for transport device/workpiece, at least in region into which swarf and/or coolant fall |
JP2007301673A (en) * | 2006-05-11 | 2007-11-22 | Honda Motor Co Ltd | Machine tool system |
JP2014161969A (en) * | 2013-02-26 | 2014-09-08 | Fanuc Ltd | Machine tool equipped with cover structure suitable for discharging chips |
-
2018
- 2018-09-20 WO PCT/JP2018/034780 patent/WO2019065438A1/en active Application Filing
- 2018-09-20 JP JP2019545024A patent/JP6872622B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57170941U (en) * | 1981-04-17 | 1982-10-27 | ||
JPS60175540U (en) * | 1984-04-28 | 1985-11-20 | 豊田工機株式会社 | Separate jig bed NC dedicated machine |
JPH02109663A (en) * | 1988-10-20 | 1990-04-23 | Nachi Fujikoshi Corp | Rotary transfer machine |
JPH07505095A (en) * | 1993-01-20 | 1995-06-08 | バイツイグ ウント フランク ツルマテイツク ゲーエムベーハー | Turret type machine tool |
DE19917856A1 (en) * | 1999-04-20 | 2000-11-02 | Konstruktionsbuero Reiner Gann | Processing machine has transport device running at height of machining station in plan view; cover for transport device/workpiece, at least in region into which swarf and/or coolant fall |
JP2007301673A (en) * | 2006-05-11 | 2007-11-22 | Honda Motor Co Ltd | Machine tool system |
JP2014161969A (en) * | 2013-02-26 | 2014-09-08 | Fanuc Ltd | Machine tool equipped with cover structure suitable for discharging chips |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110712040A (en) * | 2019-10-30 | 2020-01-21 | 汇龙电机有限公司 | Motor casing drilling and tapping equipment |
CN112059619A (en) * | 2020-09-04 | 2020-12-11 | 胡君分 | Full-automatic drilling and tapping combined machine tool of motor cylinder |
CN112571071A (en) * | 2021-01-18 | 2021-03-30 | 上海柔尔沐电子科技有限公司 | Regulator cubicle power instrument panel installation device |
CN113732633A (en) * | 2021-09-22 | 2021-12-03 | 牧野机床(中国)有限公司 | Processing method of combined piece |
CN114734254A (en) * | 2022-05-09 | 2022-07-12 | 海盐县富宏紧固件有限公司 | Nut slot milling machine |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019065438A1 (en) | 2020-08-20 |
JP6872622B2 (en) | 2021-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019065438A1 (en) | Machining device | |
US7240412B2 (en) | Composite lathe | |
US7266871B2 (en) | Machine tool | |
EP1862253A1 (en) | Machine tool | |
US9950374B2 (en) | Workpiece clamping apparatus, machine tool and method for working a workpiece | |
US6457919B1 (en) | Multi-purpose machine tool for high volume secondary operations | |
EP1153682B1 (en) | Machine tool | |
KR20170011793A (en) | Multi Axis Machine for The Shift Pipe | |
JP7008715B2 (en) | Processing equipment and processing method | |
JP6887512B2 (en) | Processing equipment and processing method | |
CN211916291U (en) | Numerical control machine tool | |
CN109676398A (en) | A kind of rack gear production system | |
JP6961848B1 (en) | Machine Tools | |
KR20220028867A (en) | Bed and machine tool having this | |
CN210307014U (en) | Inflating valve processing lathe | |
JP2013059842A (en) | Workpiece conveying device of machine tool, and machine tool | |
US6387025B1 (en) | Machining device equipped with spindle position interchanger and method for interchanging spindle positions | |
JP4407934B2 (en) | Shaft processing equipment | |
CN215786957U (en) | Horizontal milling machine tool workbench | |
CN116475848B (en) | Multi-working-procedure integrated machine tool | |
JP2003145301A (en) | Machine tool | |
CN217831963U (en) | High-efficiency double-shaft numerical control boring machine | |
CN211916290U (en) | Gantry structure and numerical control machine tool | |
JP7490694B2 (en) | Machine Tools | |
JP3910847B2 (en) | Small high-speed NC lathe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18861176 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019545024 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18861176 Country of ref document: EP Kind code of ref document: A1 |